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ABSTRACT OF THE DISSERTATION

Response surface methods for assessing synergistic effects

of three or more drugs

by John Oleynick

Dissertation Director: Professor Yong Lin

Drug synergy occurs when two or more drugs are used in a combination therapy, and

the total effect of the drugs is more than would be expected based on their individual

effects. Although numerous methods exist for evaluating synergy between two drugs,

few have been developed for three or more drugs, and most of them have some significant

drawbacks.

This dissertation extends a number of two-drug synergy methods to accommodate

three or more drugs. First, the method of Plummer and Short [27] is extended to three

or more drugs, which is an appropriate method for cases where only global synergy may

be present. Next, the parametric method of Kong and Lee [19] is extended, which is

appropriate for cases where local synergy may be present. Finally, the semiparametric

method of Kong and Lee [20] is extended to three or more drugs, which is an appro-

priate method for cases where either local synergy may be present or where the model

assumptions of the extended Plummer and Short method and the extended Kong and

Lee methods are not met.

For each method, synergy models are presented for the case of n drugs; the models

are then implemented and evaluated using simulated data for the case of three drugs,

and their goodness of fit is evaluated using simulations.
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When more than two drugs are used in a combination, there is an additional com-

plexity not present in 2-drug synergy: determining whether any detected synergy is

between all n drugs or only a subset of the drugs. All of the new methods presented in

this dissertation are able to make that distinction.
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Preface

This dissertation is organized as follows.

Chapter 1 briefly describes the background of drug synergy, the motivating example,

and the research objectives and specific aims.

Chapter 2 discusses a number of response surface methods for assessing synergy in

two drugs, and existing methods for assessing synergy in three drugs.

Chapter 3 describes a formal model for synergy, the Loewe Additivity Model [24, 21].

Chapter 4 describes an extension to n drugs of the two-drug method of Plummer

and Short[27]. An implementation of the method is created for three drugs to evaluate

the performance of the extended method.

Chapter 5 describes an extension to n drugs of the two-drug parametric method

of Kong and Lee[19]. An implementation of the method is created for three drugs to

evaluate the performance of the extended method.

Chapter 6 describes an extension to n drugs of the two-drug semiparametric method

of Kong and Lee[20]. An implementation of the method is created for three drugs to

evaluate the performance of the extended method.

Chapter 7 presents a summary and discussion of the dissertation, and proposes

directions for future research.
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Chapter 1

Introduction

1.1 Background

When two or more drugs are used in a combination therapy, it is possible that the

total effect of the drugs together may be more or less than would be expected based

on their individual effects alone. In some situations, this has the potential to provide

valuable benefits. In cancer treatments, where the individual drugs often have toxic

side effects at higher doses, a combination therapy that is more effective than expected

allows the individual drugs to be given at lower doses, yet still be effective [10, 17]. In

other situations, this may be dangerous. For patients receiving treatment for multiple

conditions, the combination of treatments may render one or more of the individual

treatments ineffective or toxic. The potential for this is especially great in the elderly,

where 76% use two or more prescription drugs and 37% use five or more [14]. This

phenomenon of the total effect of the drugs being different than would be expected is

referred to as “synergy”.

The formal definition of the term “synergy” refers to a drug interaction where the

response of the combination of drugs is better than would be expected based on the

drugs’ individual responses. Cases of interactions where the response is worse than

would be expected are referred to as “antagonism”. Cases where there is no interaction

between the drugs, and the response is the same as would be expected are referred to as

“additive”. The term “synergy” is also used generically to refer to statistical methods

that identify and quantify interactions between drugs or other treatments.

Research in synergy goes back at least to the 1920’s and 1930’s, for applications

in pharmacology and in agricultural pesticides [24, 4]. Most research has focused on

synergy between only two drugs and a number of methods are now available to identify
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synergy between two drugs, but little research has been done on synergy between three

or more drugs. Many authors suggest that their methods can be easily extended to

three or more drugs, but few have actually done that, and most existing extensions

have one or more significant drawbacks.

This thesis proposes extensions to a number of existing 2-drug synergy analysis

methods so that the extended methods can identify synergy between 3 drugs, and

could be further extended to more than 3 drugs.

1.2 Motivating example

A study was conducted to investigate the potential synergistic effect of all-trans retinoic

acid (RA), 1α,25-dihydroxyvitamin D3 (VD3), and sodium butyrate (NaB) on 12-O-

tetradecanoylphorbol-13-acetate (TPA) induced differentiation in a human promyelo-

cytic leukemia cell line, HL-60. In an initial study, HL-60 cells were treated once with

different concentrations of TPA (0.1, 1, 10, and 100 ng/ml) for 48 hours, and the effects

of TPA on growth and differentiation of HL-60 cells were assessed by scoring the num-

ber of viable cells and the number of adherent cells. In subsequent studies the dose of

0.1ng/ml of TPA was chosen to be studied for potential synergistic effects of TPA, RA,

VD3, and NaB on differentiation in cultured HL-60 cells. In the subsequent studies,

doses of 1, 10, 100, 1000, and 10000 nM of RA were used alone and with TPA, doses of

0.1, 1, and 10 nM of VD3 were used alone and with TPA; and doses of 1, 10, 100, and

1000 nM of NaB were used alone and with TPA. Furthermore a “cocktail” combination

of TPA, RA, VD3 and NaB was also studied. The effects of the treatments on the

growth and differentiation of HL-60 cells were assessed by scoring the number of viable

cells and the number of adherent cells. Table 1.1 shows the mean number of viable cells

and adherent cells for the various treatment combinations.

As the table shows, the two-drug combinations generally have fewer viable cells and

more adherent cells than the individual drugs alone. In turn, the three-drug combina-

tions that include TPA generally have fewer viable cells and more adherent cells than

the two-drug combinations, while the four-drug combination has the fewest viable cells
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Table 1.1: Mean Treatment Results from HL-60 Differentiation Study.

Treatment
Viable Adherent

Cells (×106) Cells

Control 1.590 1.000

Ethanol 1.598 0.800

TPA 0.16 nM 1.421 55.883

VD3 0.1 nM 1.565 2.017

RA 200 nM 1.323 2.300

NaB 450 µM 1.346 2.083

TPA 0.16 nM + VD3 0.1 nM 1.456 86.900

TPA 0.16 nM + RA 200 nM 1.175 111.950

TPA 0.16 nM + NaB 450 µM 1.247 89.333

TPA 0.16 nM + VD3 0.1 nM + RA 200 nM 1.181 181.383

TPA 0.16 nM + VD3 0.1 nM + NaB 450 µM 1.209 111.250

TPA 0.16 nM + RA 200 nM + NaB 450 µM 1.223 138.817

VD3 0.1 nM + RA 200 nM + NaB 450 µM 1.313 4.883

TPA 0.16 nM + VD3 0.1 nM + RA 200 nM + NaB 450 µM 1.060 242.300

and the most adherent cells.

But a simple improvement by a combination of drugs doesn’t necessarily mean there

is a synergistic relationship between the drugs, the relationship could just be additive,

where the amount of improvement is what would be expected based on the individual

drugs alone. A more detailed analysis is necessary to confirm that synergy is really

present.

An analysis of the two-drug combinations found a number of cases of synergy [23],

but the three and four-drug combinations could not be analyzed because no adequate

statistical methods were available. In order to determine whether synergy is present in

the three and four-drug combinations new statistical methods must be developed.

1.3 Research objectives

1.3.1 Objectives

The objective of this dissertation is to develop statistical methods to evaluate drug

synergy for three or more drugs. A review of available methods to assess synergy with
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three or more drugs finds only a few candidates, each of which has drawbacks. But

there are a large number of methods for assessing two drug synergy. This thesis will

extend a number of 2-drug synergy methods to handle three or more drugs, without

the drawbacks of the current three-drug methods.

This dissertation will focus on three methods in particular as candidates to be

extended to support three or more drugs: the method of Plummer and Short [27], the

parametric method of Kong and Lee [19], and the semiparametric method of Kong and

Lee [20].

All three of these methods model the dose-response relationship using a response

surface. Using the response surface, it is possible to make inferences about intermediate

doses that were not tested, in addition to making inferences about the doses that were

tested.

The method of Plummer and Short is the simplest of the three methods, but also

requires the most assumptions to be met. It assumes each individual drug has a (pos-

sibly transformed) response linearly related to the log of the dose. It does not require

that the relative potency of one drug to another be constant, but does assume that the

relative potency is log-linearly related to the dose. It also assumes that any synergy or

antagonism is present at all combinations of non-zero doses, and that the strength of

the synergy or antagonism is the same at all of those doses.

The parametric method of Kong and Lee extends the method of Plummer and Short,

removing one of its limitations. Because the Plummer and Short method assumes

that synergy or antagonism is the same at all non-zero combination doses, in essence

it assumes that synergy or antagonism is “global” across all dose combinations. The

parametric method of Kong and Lee drops this assumption and allows for “local” regions

of synergy or antagonism, so the strength of the synergy may vary from one region to

another, and the “direction” may even change from synergy in one region to antagonism

in another.

The semiparametric method of Kong and Lee also allows “local” synergy and antag-

onism, and does so even more flexibly than their parametric method. The parametric

method allows for local synergy using a polynomial function of the dose levels, but a
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single polynomial function is used to model the relationship for all dose levels. The semi-

parametric method instead uses thin plate splines (the three-dimensional equivalent of

a two-dimensional cubic spline) to model the synergy, allowing for much more flexibility.

In addition to the added flexibility from the thin plate splines, the Kong and Lee semi-

parametric method also allows more flexibility for the dose-response relationship of the

individual drugs. Instead of only allowing a linear relationship between log-dose and

the (possibly transformed) response, the semiparametric method also allows a linear

relationship between the untransformed dose and the (possibly transformed) response.

1.3.2 Specific aims

The specific aims of this dissertation are to extend the 2-drug synergy methods described

above to handle three or more drugs.

Specifically, the aims are:

1. Extend the Plummer and Short method to three or more drugs.

2. Extend the Kong and Lee parametric method to three or more drugs.

3. Extend the Kong and Lee semiparametric method to three or more drugs.

For each method a model will be proposed that can accommodate n drugs. The

model will then be evaluated in detail by implementing the model for the case of three

drugs, and evaluating its estimation of the response surface and its goodness of fit.
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Chapter 2

Literature Review

2.1 Overview

The literature on drug synergy is extensive. This chapter will not provide an exhaustive

review, but will only focus on research that provides a basis for this thesis to extend.

In addition to the three methods mentioned in the previous chapter, this chapter will

also review the method of Finney [9], which was a precursor to the method of Plummer

and Short, and still serves as the foundation for the other response surface methods

described here.

2.2 Finney’s Method

Some of the earliest work in using response surface models for synergy was done by

Finney [9]. Like the earlier work of Bliss [4], this was done in the area of insecticides

and fungicides so the focus is on poisons and toxicity.

Finney used Bliss’s terminology and classification of joint toxic action into 3 types:

“similar joint action”, “independent joint action”, and “[similar] synergistic action”.

Similar joint action refers to the case where the poisons or drugs operate “similarly

[and] any quantity of one constituent can be replaced by a proportionate amount of

any other without disturbing the potency”. Independent joint action refers to cases

where “the mortalities, not the doses, are additive”, which “may occur with a mixture

whose constituents produce their toxic effect in entirely different ways, as, for example,

a mixture of two insecticides of which one is a stomach poison and the other a contact

poison.” Bliss had defined synergy as “characterized by a toxicity greater than that

predicted from experiments with the isolated constituents”, but one of Finney’s goals
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was to provide a more exact definition.

In similar joint action, the regression lines of the response (mortality probits in

Finney’s examples) on log doses are parallel. In this case, the regression lines for two

poisons can be written as:

Y1 = a1 + b log λ (2.1)

Y2 = a2 + b log λ (2.2)

where λ is the dose.

The relative potency is defined as “the ratio of equally effective doses”, and in

Finney’s work is constant at all doses. Suppose dose x1 of the first poison has the same

response Y as dose x2 of the second poison. Then the relative potency of the second to

the first is defined as ρ = x1/x2. Under the assumptions in equations (2.1) and (2.2),

it can be shown that log ρ = (a2 − a1) /b.

So any dose of the second poison can be converted to an equivalent dose of the first

poison by multiplying it by ρ. For a given dose λ2 of the second poison, its response

can be predicted by converting it to an equivalent dose of the first poison, and then

using equation (2.1):

Y = a1 + b log (ρλ2) .

Consequently, in a mixture of the two poisons, with λ1 of the first poison and λ2

of the second poison, the second poison can be replaced by its equivalent amount of

the first poison, ρλ2, and under the assumption of similar action the response for the

mixture is given by:

Y = a1 + b log (λ1 + ρλ2) . (2.3)

The relationship is the same if the amounts of the two poisons are expressed as

proportions of the total dose of the mixture. If λ is the total dose of both poisons, and

the proportions of the two poisons in the mixture are π1 and π2 respectively, then:

Y = a1 + b log (π1 + ρπ2)λ.

or, equivalently, if x = logλ:

Y = a1 + b log (π1 + ρ2π2) + bx. (2.4)



8

Finney uses (2.4) as the basis for the model of synergy he proposes:

Y = a+ b log (π1 + ρπ2 + κ
√
ρπ1π2) + bx. (2.5)

As in (2.4), x is the log of the total dose of the mixture, π1 and π2 are the proportions

of the two poisons in the mixture, and ρ is the relative potency of the second poison

relative to the first. The new term in this equation is κ, which Finney refers to as the

“coefficient of synergism”. The difference between this equation and the original is the

additional term κ
√
ρπ1π2. If κ = 0, then the additional term is 0 and equation (2.5) is

identical to equation (2.4), so there is only joint similar action between the two poisons.

If κ is positive, then the response is greater than would be predicted by the individual

responses alone, so there is synergy between the two poisons. If κ is negative, then the

response is less than would be predicted, which is antagonism.

Finney offers no explanation for the choice of the geometric mean here. Presumably

any monotonic function of π1 and ρπ2 would work although the interpretation of κ

might be different. One advantage of the geometric mean over the arithmetic mean is

that it takes on the value of 0 whenever either π1 or π2 is 0, reflecting the fact that

the model reduced to a model with only one poison alone. Another possible advantage

of the geometric mean over other monotonic functions is that it gives equal weight to

both components of the mixture.

Finney’s proposed model addresses a number of deficiencies he found in two of

Bliss’s early models of synergy. It is not clear why Finney does not address Bliss’s

independence model, because Finney’s paper does reference Bliss’s later work, which

included the independence model. Finney does not appear to have been aware of

Loewe’s model [24]. Perhaps that is because Loewe’s work was originally published in

a German language publication, in 1926, and he did not publish in English language

publications until much later, in 1953, while Finney published his proposed model in

1942.

Finney described a method for estimating κ in Equation (2.5) using the LD50s of

the individual components and their combinations, but that will not be described here.

Although it was useful at the time it was originally proposed, now the parametrization
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in (2.5) can be estimated directly using nonlinear regression.

Although he did not fully develop it, Finney stated that the concepts here could

be “easily” extended to three or more poisons, as long as the assumption was still

met that the regression lines of the (possibly transformed) response on log dose for all

individual poisons and their mixtures were parallel. He extended equation (2.3) for the

case of three poisons. In this case, there are three poisons with doses λ1, λ2, and λ3,

respectively, with the second and third poisons having potencies of ρ2 and ρ3 relative

to the first. If the poisons have similar action, a dose of λ1 + ρ2λ2 + ρ3λ3 of the first

poison should be equivalent to the mixture, so the regression line of the mixture would

then be:

Y = a1 + b log (λ1 + ρ2λ2 + ρ3λ3) .

2.3 Plummer and Short’s Method

The work of Plummer and Short [27] extends and generalizes the work of Finney [9]. One

of the key assumptions of Finney’s model is that the relative potency of one drug to the

other must be constant. This is reflected in the requirement that the (log) dose-response

curves of the two drugs must be parallel. Although Finney mentioned the possibility

of the curves not being parallel, he did not attempt to “unravel the complexities”. The

model of Plummer and Short [27] addresses the additional complexities of non-constant

relative potencies, and is thus able to relax that requirement somewhat.

The Plummer and Short model begins with a similar assumption as Finney, that

the individual drugs have straight log dose-response curves. Using a notation slightly

different from Finney, the response of one drug, Drug A, is described as:

Y = β0 + β1 log (A)

where Y is the response, A is the dose of Drug A, and β0 and β1 are respectively the

intercept and slope of the linear log dose-response curve.

Plummer and Short first restate Finney’s model in their own notation by assuming

that there is a second drug, Drug B, whose log dose-response curve is parallel to that of

Drug A, and which has a constant relative potency of P to Drug A. If the drugs have



10

an additive effect, then the response for a combination of Drug A and Drug B can be

written as:

Y = β0 + β1 log (A+ P ∗B)

where B is the dose of Drug B. In this case, P ∗B is the dose of Drug A that is equivalent

to the dose B of Drug B. If the drugs do not have an additive effect, then their response

can be modeled using Finney’s model, expressed in Plummer and Short’s notation as:

Y = β0 + β1 log
(
A+ P ∗B + β2 (A ∗ P ∗B)1/2

)
where β2 is the coefficient of synergism.

If the relative potency of the two drugs is not constant, then the log dose-response

curves will not be parallel. But, as long as both curves are linear, the logarithm of the

relative potency at any dose level is linearly related to the log dose of either drug. This

is the case that Plummer and Short’s method can handle which Finney’s method could

not.

If the log of the relative potency at any dose level is linearly related to the log dose

of either drug, then:

log (P ) = β2 + β3 log (B)

where β2 and β3 are constants.

When both drug A and drug B are present, Plummer and Short treat a combination

of the two drugs as a dose B′ of drug B alone, in which some amount of drug B has

been replaced by an amount of drug A with an equivalent effect:

B′ = B +A/P

In this case, Plummer and Short use the relative potency at the dose B′ level, so:

log (P ) = β2 + β3 log
(
B′
)

(2.6)

The Plummer and Short model is then defined as:

Y = β0 + β1 log
(
A+ P ∗B + β4 (A ∗ P ∗B)1/2

)
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where P is defined as in (2.6), and B′ is the solution to:

B′ = B +A ∗ e−β2−β3 log(B′) (= B +A/P ) (2.7)

The model can also be equivalently expressed as:

Y = β0 + β1 log

(
A+B ∗ eβ2+β3log(B′) + β4

(
A ∗B ∗ eβ2+β3log(B′)

)1/2
)

where B′ is the solution to (2.7). This model can be fitted using iterative methods for

nonlinear regression, solving (2.7) numerically at each iteration for each dose combina-

tion to determine B′.

In the model, β0 and β1 represent the intercept and slope of the log dose-response

curve for drug A alone. β2 and β3 describe the difference between the drug B and

drug A log dose-response curves, with β2 corresponding to the “horizontal” difference

between the lines and β3 corresponding to the difference of slopes. If the log dose-

response curves are parallel, then β3 = 0. β4 represents the coefficient of synergy in

this model, with positive values indicating synergy.

The presence of synergy can be tested by fitting full and reduced models with and

without the β4 term. The assumption of parallel log dose-response curves can be tested

by fitting full and reduced models with and without the β3 term.

2.4 Kong and Lee’s Parametric Method

While the model of Plummer and Short [27] generalized the work of Finney [9] to

remove the restriction of constant relative potency between the two drugs, it still used

a single parameter to model synergy. This forced the model to treat synergy as being

constant at all dose levels and combinations, so it could not accurately model a case

where some dose combinations were synergistic, while others were additive or were

even antagonistic, or where different combination treatments had different degrees of

synergy. To solve this problem, Kong and Lee [19] proposed a more general parametric

model that allowed for regions of “local” synergy or antagonism, which they called the

Generalized Response Surface (GRS) model.
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The GRS model uses the Loewe additivity model [24, 21] as a starting point. The

Loewe additivity model is specified as:

d1

Dy,1
+

d2

Dy,2
= 1 (2.8)

where d1 and d2 are the doses of drugs 1 and 2 respectively in the mixture, and y is the

additive effect at the combination treatment of (d1, d2). Dy,1 and Dy,2 are the doses of

drug 1 and drug 2 respectively that are required to produce effect y when each drug

is used alone. The function F1(D1) denotes the dose-response curve for drug 1 alone

while the function F2(D2) denotes the curve for drug 2 alone. Given the inverses of

the dose-response functions, F−1
1 (y) and F−1

2 (y), the predicted additive effect y for a

combination of two doses can be calculated by replacing Dy,1 and Dy,2 by F−1
1 (y) and

F−1
2 (y) respectively, and then solving equation (2.8).

Equation (2.8) can be re-written as:

d1 + d2
Dy,1

Dy,2
= Dy,1 (2.9)

where
Dy,1
Dy,2

is the relative potency of drug 2 to drug 1, which can be notated as ρ (y).

The GRS model assumes that the individual log dose-response curves are linear and

of the form:

Y1 = β0 + β1 logDY,1,

Y2 = α0 + α1 logDY,2

(2.10)

If the relative potency ρ is constant, then the predicted additive effect for the mix-

ture, from (2.9) and (2.10), is:

Y = β0 + β1 log (d1 + ρd2)

Adding a single parameter to model the synergy relationship gives the Finney model:

Y = β0 + β1 log
(
d1 + ρd2 + κ (d1ρd2)

1
2

)
(2.11)

where κ indicates whether the relationship is additive (κ = 0), synergistic (κ > 0), or

antagonistic (κ < 0).
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The constant relative potency requirement can then be relaxed as follows. Let

Y1 = Y2 = y, so:

β0 + β1 logDy,1 =α0 + α1 logDy,2

β1 logDy,1 =α0 − β0 + (α1 − β1) logDy,2 + β1 logDy,2

β1 log
Dy,1

Dy,2
=α0 − β0 + (α1 − β1) logDy,2

log
Dy,1

Dy,2
=
α0 − β0

β1
+
α1 − β1

β1
logDy,2

log ρ (y) =
α0 − β0

β1
+
α1 − β1

β1
logDy,2

Define γ1 = α0−β0
β1

and γ2 = α1−β1
β1

and the relative potency can then be expressed as:

ρ (y) = exp (γ1 + γ2 logDy,2)

As before, Dy,2 is the amount of drug 2 alone that has the same effect as the mixture,

assuming additivity, that is Dy,2 = ρ (y)−1 d1 + d2. But given one of the two, Dy,2 and

y are uniquely determined, so y can be suppressed and the relative potency at a dose

(d1, d2) can be calculated by solving ρ = exp (γ1 + γ2 logD2) subject to D2 = ρ−1d1+d2.

Relaxing the requirement of a constant ρ in this manner, combined with the Finney

model in (2.11) results in the Plummer and Short model. But the model still suffers

from a single parameter to assess the synergy.

The solution of the GRS model is to replace the single synergy parameter κ by a

function of the doses, the relative potency parameters, and multiple synergy parameters

as follows:

Y = β0 + β1 log
(
d1 + ρd2 + f (d1, d2; γ, κ) (d1ρd2)

1
2

)
(2.12)

where the function f (d1, d2; γ, κ) is able to capture any local synergy or antagonism,

not just global synergy or antagonism. In their paper Kong and Lee define the function

as:

f (d1, d2; γ, κ) =κ0 + κ1d
1
2
1 + κ2 (ρd2)

1
2 + κ3d1

+ κ4ρd2 + κ5 (d1ρd2)
1
2

(2.13)

where f is a function of d1 and d2, the γ parameters model the relative potency of

ρ, and the κ parameters are the coefficients of the quadratic function and model the
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synergy relationship. If κ1 = κ2 = κ3 = κ4 = κ5 = 0, then the model reduces to the

Plummer and Short model.

When using the GRS model, Kong and Lee suggest that the first analysis step is

to determine whether the GRS model significantly improves the Plummer and Short

model by testing H0 : κ1 = κ2 = κ3 = κ4 = κ5 = 0 against H1 : κi 6= 0 for any i where

i = 1, ..., 5 using an F-statistic:

F =
(RSSP−S − RSSfull) /q

RSSfull/ (n− p)

with q = 5 and n − p degrees of freedom, where n is the number of observations and

p = 10 is the number of parameters in the model (2.12) and (2.13), RSSfull is the residual

sum of squares from the GRS model, and RSSP−S is the residual sum of squares of the

Plummer and Short model. Kong and Lee caution that the F test here assumes that

the responses on the Y -scale are normally distributed, and that the assumption should

be checked with residual plots or some other method.

If the GRS model does significantly improve the Plummer and Short model, the

next step is to remove any unnecessary terms, using a backward elimination procedure

and the Akaike Information Criterion (AIC).

The procedure begins by fitting the full GRS model and calculating the AIC. Next,

a term to be removed is selected. The candidate terms are all γ, β and higher-order

terms of κ’s that have a p-value greater than a defined level of significance α, such as

α = 0.10. The term with the smallest absolute t-value of the candidates is removed

from the model, with the restriction that no lower-order terms are removed until after

the corresponding higher-order terms have been removed. After the term is removed, a

new model is fitted and the AIC of the new model is calculated. The process continues

until all γ, β and higher-order terms of κ’s left in the model have a p-value less α, or

until the AIC value increases.

The synergy at a specified combination dose (d1, d2) can be determined by deter-

mined by the sign and magnitude of the polynomial function f (d1, d2; γ, κ). Because

γ and κ are estimated, their asymptotic properties follow the standard results from
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a nonlinear regression. For each combination dose (d1, d2), the variance of the es-

timated polynomial f (d1, d2; γ, κ) can be approximated using the delta method by

V̂arf =
(

∂f
∂(γ,κ)

)′
Σ
(

∂f
∂(γ,κ)

)
|(γ,κ)=(γ̂,κ̂) where

∂f

∂ (γ, κ)
=

(
∂f

∂γ1
,
∂f

∂γ2
,
∂f

∂κ0
,
∂f

∂κ1
,
∂f

∂κ2
,
∂f

∂κ3
,
∂f

∂κ4
,
∂f

∂κ5

)′
=

(
∂f

∂ρ

∂f

∂γ1
,
∂f

∂ρ

∂f

∂γ2
, 1, d

1
2
1 , (ρd2)

1
2 , d1, ρd2, (d1ρd2)

1
2

)′
with ∂f

∂ρ = 1
2κ2

(
d2
ρ

) 1
2

+ κ4d2 + 1
2κ5

(
d1d2
ρ

) 1
2
, ∂ρ
∂γ1

=
ρ2(d2+d1ρ−1)

ρ(d2+d1ρ−1)+γ2d1
, and

∂ρ
∂γ2

=
ρ2(d2+d1ρ−1)

ρ(d2+d1ρ−1)+γ2d1
log
(
d2 + d1ρ

−1
)
. Σ is the estimated covariance matrix of the pa-

rameters (γ1, γ2, κ0, κ1, κ2, κ3, κ4, κ5). So the (1− α)×100% upper and lower confidence

surfaces for f (d1, d2; γ, κ) can be constructed as:

fl,u (d1, d2) = f̂ (d1, d2)± tα
2
,n−p

√
V̂arf (d1, d2),

where tα
2
,n−p is the upper α

2 percentile of a t-distribution with n−p degrees of freedom.

2.5 Kong and Lee’s Semiparametric Method

While the parametric model of Kong and Lee allowed for regions of local synergy and

antagonism, it required that the scaled responses be normally distributed, and involved

a model building process to remove insignificant terms from the model. They later

proposed a semiparametric model [20] that was more robust to departures from the

model assumptions, while still allowing regions of local synergy or antagonism.

2.5.1 The Semiparametric Model

Like their parametric model, the Kong and Lee semiparametric model uses the Loewe

additivity model [24, 21] as a starting point. The Loewe additivity model is specified

as:

d1

Dy,1
+

d2

Dy,2
= 1 (2.14)

where d1 and d2 are the doses of drugs 1 and 2 respectively in the mixture, and y is

the theoretic additive effect at the combination treatment of (d1, d2). Dy,1 and Dy,2

are the doses of drug 1 and drug 2 respectively that are required to produce effect y
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when each drug is used alone. The function F1(D1) denotes the dose-response curve

for drug 1 alone while the function F2(D2) denotes the curve for drug 2 alone. Given

the inverses of the dose-response functions, F−1
1 (y) and F−1

2 (y), the predicted additive

effect y for a combination of two doses can be calculated by replacing Dy,1 and Dy,2

by F−1
1 (y) and F−1

2 (y) respectively, and then solving equation (2.14). Kong and Lee

denote the predicted additive effect for combination dose (d1, d2) as Fp(d1, d2).

The Kong and Lee semiparametric model is a two-component model defined as:

Y = Fp (d1, d2) + f (d1, d2) (2.15)

Fp(d1, d2) is the predicted additive effect, as described in the preceding paragraph. The

interaction part f(d1, d2) is a function that is estimated nonparametrically to capture

any departure from additivity, and hence any synergy or antagonism. Because f is

a function of the doses, it allows for local synergy and antagonism, not just global

synergy or antagonism. If the observed effect at the combination dose (d1, d2) is more

or less than the predicted effect, then f(d1, d2) will be non-zero and there is synergy or

antagonism for that combination dose. The model also contains a mean zero random

error term that is not shown in the equation.

2.5.2 Fitting the Parametric Part of the Model

The model is fitted in separate steps. First the parametric part is fitted to determine

the additive part Fp(d1, d2) of the model, and then a nonparametric method is used to

find f(d1, d2).

The parametric part can be fitted in a number of different ways. Kong and Lee

describe methods for two common cases: (1) where the individual drugs have linear

dose-response curves (possibly with the response transformed as necessary), and (2)

where the individual drugs have linear log dose-response curves (again, possibly with a

transformation of the response).
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In the first case, the dose-response curves for drugs 1 and 2 can be specified respec-

tively as:

Y = g(E) = β0 + β1Dy,1, (2.16)

Y = g(E) = β0 + β2Dy,2 (2.17)

Where E is the observed effect at the given dose, and g(E) is a monotonic function, such

as g(E) = log E
1−E . The intercepts in (2.16) are the same because the effects should be

the same for a dose of zero of either drug. Kong and Lee refer to Y as the transformed

effect. Based on the Loewe additivity model, the predicted effect in Y -scale can be

calculated from d1
(Y−β0)/β1

+ d2
(Y−β0)/β2

= 1. The predicted additive response function is

then:

Y = g(E) = Fp(d1, d2) = β0 + β1d1 + β2d2

In the second case, where the individual drugs have linear log dose-response curves,

the (possibly transformed) effects can be specified as:

Y = g(E) = β0 + β1logDy,1,

Y = g(E) = α0 + α1logDy,2

Here again, E is the observed effect at the given dose, and g(E) is a monotonic function,

and Y is the transformed effect. In their earlier work [19], Kong and Lee showed that

based on the Loewe additivity model, the predicted additive response function is:

Y = g(E) = Fp(d1, d2) = β0 + β1log(d1 + β2ρd2)

where ρ is obtained by solving:

ρ = exp

(
α0 − β0

β1
+
α1 − β1

β1
log
(
ρ−1d1 + d2

))

2.5.3 Fitting the Nonparametric Part of the Model

Once the additive part of (2.15) has been estimated, the interaction part, f (d1, d2), can

be estimated. For most observed dose combinations (d1i, d2i) (i = 1, . . . , n), f could

be estimated by the difference of the observed effect and the predicted additive effect,
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Yi − F̂p(d1i, d2i), where Yi = g(Ei). But f (d1, d2) is used to model the departure from

additivity, so it should always be zero when either drug is used alone. To ensure this,

Kong and Lee define an indicator function that only has a unit value when both drug

doses are non-zero:

1{d1 6=0 & d2 6=0} =


1 if d1 6= 0 & d2 6= 0,

0 Otherwise.

The nonparametric part f(d1, d2) can then be estimated for all dose combinations

(d1i, d2i) (i = 1, . . . , n), by the differences
{
Yi − F̂p(d1i, d2i)

}
1{d1i 6=0 & d2i 6=0} for i =

1, . . . , n.

Modeling the Nonparametric Part as a Thin Plate Spline

The function f (d1, d2) can be estimated by minimizing a penalized residual sum of

squares (PRSS):

PRSS =

n∑
i=1

((
Yi − F̂p (d1i, d2i)

)
1{d1i 6=0 & d2i 6=0} − f (d1i, d2i)

)2
+ λJ (f) (2.18)

where the first term measures the goodness of fit, the third term, J (f), measures the

smoothness of the function f (d1, d2), and the second term, λ, is a smoothing parameter

that measures the trade off between the goodness of fit and the smoothness of the

function f .

But the minimizer of PRSS is necessarily a natural thin plate spline [13]. As a

thin plate spline, f (d1, d2) can be expressed as a linear combination of the radial basis

functions:

f (d1, d2) = γ0 + γ1d1 + γ2d2 +

K∑
k=1

vkη
(
‖(d1, d2)T − (κ1k, κ2k)

T ‖
)

with the radial basis function:

η (r) =


1

16π r
2 log r2 for r > 0,

0 for r = 0.

and with knots, (κ1k, κ2k)
T (k = 1, . . . ,K), which are all of the distinct values of the

combination doses (d1i, d2i)
T (i = 1, . . . , n). The distance between any two combination
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doses is defined as the Euclidean distance, so the distance between a combination dose

and a knot is:

‖(d1, d2)T − (κ1k, κ2k)
T ‖ =

√
(d1 − κ1k)

2 + (d2 − κ2k)
2.

Kong and Lee define a K ×K matrix Ω =
[
‖(κ1k, κ2k)

T − (κ1k′ , κ2k′)
T ‖
]

1≤k,k′≤K
,

a K× 3 matrix T T = [1, κ1k, κ2k]1≤k≤K , and a vector v = (v1, . . . , vk)
T . The minimizer

of (2.18) then satisfies J (f) = vTΩv and Tv = 0. They then define:

YR = [
(
Y1 − F̂p (d11, d21)

)
1{d11 6=0 & d21 6=0}, . . . ,(

Yn − F̂p (d1n, d2n)
)

1{d1n 6=0 & d2n 6=0}]
T ,

X = [1, d1i, d2i]1≤i≤n ∈ R
n×3,

Z1 =

[
η
(
‖(d1i, d2i)

T − (κ1k, κ2k)
T ‖
)

1≤i≤n

]
∈ Rn×K ,

and

γ = (γ0, γ1, γ2)T .

Suppose FG is a QR decomposition of T T such that F is a K×K orthogonal matrix,

G is a K× 3 upper triangular matrix, and T T = FG. Let F1 be the first three columns

of F , and F2 be the remaining K − 3 columns. Following the argument in Green and

Silverman (1994, p. 166), Kong and Lee can then show that Tv = 0 if and only if v

can be expressed as F2ξ, where ξ is a K − 3 vector. The minimizer of (2.18) is then

essentially equivalent to minimizing

(YR −Xγ − Z1F2ξ)
T (YR −Xγ − Z1F2ξ) + λξTF T2 ΩF2ξ. (2.19)

Estimating the Thin Plate Spline Using a Mixed Effects Model

In order to minimize (2.19), select the smoothing parameter λ, and estimate the function

f (d1, d2), Kong and Lee adopted the technique of Ruppert, Wand and Carroll of using

a mixed effect model to estimate a thin plate spline [28].

First, define u =
(
F T2 ΩF2

) 1
2 ξ, where

(
F T2 ΩF2

) 1
2 is the matrix square root of F T2 ΩF2

(Ruppert et al., 2003, p. 329). Then minimizing (2.19) is equivalent to minimizing

(YR −Xγ − Z1u)T (YR −Xγ − Z1u) + λuTu. (2.20)
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where Z = Z1F2

(
F T2 ΩF2

)− 1
2 . Expression (2.20) is proportional to the negative expo-

nential part of the joint distribution of YR and u under the following model assumption:

YR = Xγ + Zu+ ε

with u
ε

 ∼ N
0

0

 ,

σ2
uIK−3 0

0 σ2
ε In

 (2.21)

where λ is replaced by σ2
ε /σ

2
u. The solution of minimizing (2.20) is the same as the best

linear unbiased predictor (BLUP) for γ and u in the mixed model (2.21). This solution

can be written as (
γ̃

ũ

)
= BLUP

(
γ

u

)
=
(
CTC + λD

)−1
CTYR, (2.22)

with C = [X Z] and D = diag (0, 0, 0, 1, . . . , 1), where the number of zeros in the matrix

D corresponds to the number of γi’s (i = 0, 1, 2), and the number of ones corresponds

to the number of ui’s (i = 1, . . . ,K − 3).

For any combination dose (d1, d2), if we denote f (d1, d2) = γ0 + γ1d1 + γ2d2 + Z0u

with Z0 =
[
η
(
‖(d1, d2)T − (κ1k, κ2k)

T ‖
)]

1≤k,k′≤K
F2

(
F T2 ΩF2

)− 1
2 , then f̃ (d1, d2) =

γ̃0 + γ̃1d1 + γ̃2d2 + +Z0ũ is the BLUP for f (d1, d2). Usually σ2
ε and σ2

u are unknown,

and so λ = σ2
ε /σ

2
u is unknown, and γ̃ and ũ are also unknown. If σ̂2

ε and σ̂2
u are

the restricted maximum likelihood estimators (REML) σ2
ε and σ2

u in the mixed model

(2.21), and λ̂ = σ̂2
ε /σ̂

2
u is used to estimate λ in (2.22), we can then obtain the estimated

BLUP for γ and u, γ̂ and û. Then the estimated BLUP for f (d1, d2) is f̂ (d1, d2) =

γ̂0 + γ̂1d1 + γ̂2d2 + Z0û. Especially, the fitted value f̂ (d1i, d2i) (i = 1, . . . , n) is the ith

component of C
(
CTC + λ̂D

)−1
CTYR.

2.5.4 Estimating the Variance of the Nonparametric Part

The nonparametric part of the model, f (d1, d2), which assesses synergy, has now been

estimated, but to assess it statistically the variability of f (d1, d2) must be determined.

Kong and Lee believe it would be very difficult to derive a theoretic formula for the vari-

ance of f (d1, d2) in the two-stage estimation framework. Instead they use a bootstrap
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method to estimate the variance of f (d1, d2) and use that to construct a confidence

interval for it.

Kong and Lee considered a bootstrap approximation for a partially linear regression

model in a semiparametric framework that Liang et. al. had presented [22], but did

not use it because they were concerned that the standard errors of the residuals from

estimating the dose-effect curves may be very different than those of the residuals from

estimating the function f (d1, d2). Instead, they used a wild bootstrap method that

could account for the different error structures [8]. The wild bootstrap method doesn’t

just resample the residuals, it uses a product of each residual and a random number with

a mean of zero and standard deviation of 1, which allows the different error structures

[15]. Kong and Lee also followed a recommendation by Davison and Hinkley (1997,

Section 7.6) to reduce the biases in estimating the standard error for f̂ (d1, d2). Kong

and Lee summarized their procedure as follows:

Step 1. Fit the model based on the original observations, obtain f̂ (d1i, d2i) and λ̂,

where f̂ (d1i, d2i) is the ith component of C
(
CTC + λ̂D

)−1
CTYR.

Step 2. Obtain the residuals from the undersmoothed estimation of f (d1, d2), that

is, ε̂i = Yi − F̂p (d1i, d2i) − f̂0.5λ̂ (d1i, d2i). Here f̂0.5λ̂ (d1i, d2i) is the ith component of

C
(
CTC + 0.5λ̂D

)−1
CTYR.

Step 3. Generate n i.i.d. (independent and identically distributed) random variables

ε∗1, . . . , ε
∗
n with mean 0 and variance 1, for example, ε∗i = −

√
5−1
2 with probability

√
5+1

2
√

5

and ε∗i =
√

5+1
2 with probability

√
5−1

2
√

5
(Handle and Marron, 1991).

Step 4. Obtain the fitted value from the oversmoothed estimation of f (d1, d2), say,

Y ∗i = F̂p (d1i, d2i) + f̂2λ̂ (d1i, d2i) + ε̂iε̂
∗
i for i = 1, . . . , n. Here f̂2λ̂ (d1i, d2i) is the ith

component of C
(
CTC + 2λ̂D

)−1
CTYR.

Step 5. Fit the model using the generated data (d1i, d2i, Y
∗
i ) (i = 1, . . . , n), and then

obtain the estimated function f∗ (d1, d2).

Step 6. Repeat step 2 to step 5 B (say, 50) times.

Kong and Lee denote the estimated f (d1, d2) in the bth (b = 1, . . . , B) iteration as
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f∗b (d1, d2), and then estimate the standard deviation of f (d1, d2) by:

ŜD
∗B (

f̂ (d1, d2)
)

=

(
1

B

B∑
b=1

(
f∗b (d1, d2)− f̂ (d1, d2)

)2
) 1

2

,

They then construct a 100 (1− α) % pointwise confidence interval for f (d1, d2):[
f̂ (d1, d2)− zα

2
× ŜD

∗B (
f̂ (d1, d2)

)
, f̂ (d1, d2) + zα

2
× ŜD

∗B (
f̂ (d1, d2)

)]
,

where zα
2

is the upper α
2 × 100% percentile of the standard normal distribution, and

f̂ (d1, d2) is the estimated BLUP for f (d1, d2).

Kong and Lee performed a case study which showed that the estimated variance

for f (d1, d2) can account for the carry-over errors from estimating the marginal dose-

response curves. They performed a simulation study that showed that their bootstrap

confidence intervals have good coverage properties. While extending this method to 3

drugs, we discovered some bias issues with the bootstrap samples used to estimate the

variance for the confidence intervals; see Appendix C for details.

2.6 Methods for Three Drugs

Although most work in the drug synergy area has been done for the two drug case,

some work has been done for three or more drugs. This section will briefly describe

that work and mention the benefits and drawbacks of the current approaches.

The Median Effect method of Chou and Talalay [6] can be used with 3 or more

drugs. It has been used in oncology studies of 3 drugs [5], and is even available as

part of a commercial software package. However, this method has a number of draw-

backs. First, it can only analyze experiments conducted using “ray” designs, where

each combination of drugs has a constant ratio of doses. Multiple rays can be ana-

lyzed separately, but unlike response surface methods, such analyses cannot use the

data from the multiple rays to increase their sensitivity. Second, the method cannot

identify 3-way synergy above and beyond any 2-way synergy (or, equivalently, using

the definitions in Section 3.1, it can only identify 3-way synergy based on Definition

I, but not 3-way synergy based on Definition II). And most important, the method

as described and used in the cited references does not use statistical inference for its
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measure of synergy. So while it quantifies synergy, it does not determine whether that

quantity is significantly different from a quantity indicating additivity. While those are

the most important drawbacks of the Median Effect method, Greco et al identified a

number of other drawbacks, including overestimating antagonism at low responses, due

to nonlinearity in the median effect plot [11].

The Greco method of identifying synergy [12] is a response surface method similar

to the Plummer and Short method described in Section 2.3. Like the Plummer and

Short method it has no restrictions on the study design, but it can only identify global

synergy between two drugs. Snyder et al have extended the Greco model to handle

3 drugs [29]. The extended model is able to identify 3-way synergy based on both

Definition I and Definition II in Section 3.1. But, the extended model still assumes

any synergy or antagonism is global, and cannot handle regions of local synergy or

antagonism.

Another extension of the Greco method has been done by White et al [32, 31]. This

extension can also identify 3-way synergy based on both definitions of Section 3.1, and

it can identify local synergy or antagonism, not just global synergy or antagonism.

But one drawback of this method is that although it can identify portions of a design

ray where synergy is statistically significant, it cannot identify regions where synergy

is statistically significant. Another drawback to this method is that it is a complex,

multi-step method that requires careful model building at a number of steps. In the

cited study of 3 drugs [32], the first analysis stage produced 40 polynomial models, while

the second stage reduced that to 10 hierarchical models, and the final stage produced a

single hierarchical model. None of the 2 drug response surface methods described above

required that level of modeling complexity. The Kong and Lee parametric method

uses a relatively simple backwards elimination procedure to select its model, while the

Plummer and Short method considers only a single model. The thin-plate splines of

the Kong and Lee semiparametric provide flexible polynomial models that require no

selection of models or knots.
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Chapter 3

Defining Synergy with Three or More Drugs

3.1 Informal Definitions

An informal definition of drug synergy for two drugs is that two drugs are synergistic

if their effect when used together is greater than would be expected, based on their

effects when used alone. A slightly less informal definition of synergy for two drugs is

that two drugs are synergistic (or antagonistic) if there is a departure from additivity.

If a third drug is included, then the informal definition can be easily extended:

three drugs are synergistic if their effect when used together is greater than would be

expected, based on their effects when used alone. This definition of synergy between

three drugs will be referred to as “Definition I” of three drug synergy.

But this informal definition of three drug synergy does not distinguish some impor-

tant differences in cases of synergy. With three drugs, it is possible that there is synergy

between only a pair of drugs, such that the pair of drugs is synergistic regardless of

whether or not the third drug is present. This type of synergy will be referred to as

“2-way synergy”. It is also possible that there is synergy that truly depends on all three

drugs, and only exists when all three drugs are present. This type of synergy will be

referred to as “3-way synergy”.

An informal definition of three drug synergy that does distinguish between 2-way

synergy and 3-way synergy is that three drugs are synergistic if their effect when used

together is greater than would be expected, based on their effects when used alone, and

based on their effects when used in pair-wise combinations, taking into account any

2-way synergy. This definition of synergy between three drugs will be referred to as

“Definition II”.
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Returning to the slightly less informal definition of synergy as a departure from

additivity, that definition cannot distinguish between all types of synergy when three

drugs are involved. It corresponds to synergy as defined by “Definition I”, but does not

correspond to synergy as defined by “Definition II”.

Both informal definitions of synergy can be useful in different applications. In cancer

treatment, where drugs may have severe side effects, it can be important to distinguish

between 2-way synergy and 3-way synergy, so a third drug is only included in the

treatment if it is truly necessary for the synergistic relationship. In this case Definition

II would be preferred. Definition II would also be preferred if previous studies have

shown that there is 2-way synergy between one or more pairs of the drugs, in which

case it would be important to distinguish between the synergy already expected from the

two drugs and any additional synergy. But, if there is no additional cost or penalty if an

extraneous drug is included in the treatment, or if previous studies or prior knowledge

have shown that there is no 2-way synergy between any pair of the 3 drugs, then the

simpler Definition I could be used.

3.2 Graphical Illustration

Two drug synergy is frequently illustrated using “isobolograms”. In an isobologram,

lines connect drug doses with equal responses. If the two drugs are additive and the

drugs have constant relative potency, then the lines connecting equivalent doses will all

be straight, diagonal lines. If the individual dose response curves are monotonic, and

higher doses have “better” responses (where better may be higher in some models and

lower in others), then any departure from additivity can be identified by the curvature

of the lines connecting the doses with equal responses. If synergism is present, then the

lines will be curved “inward”, towards the origin, reflecting how the same response is

achieved with lower doses than would be expected if the drugs were additive. Similarly,

if antagonism is present, the lines will be curved “outward”, away from the origin. As

long as the monotonicity and “better” assumptions are met, the interpretation of the

direction of the curvature is the same regardless of whether a higher response is better

or a lower response is better.
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The three panels in Figure 3.1 show a single isobologram illustrating additivity,

synergy, and antagonism. For simplicity, the two drugs are assumed to have equal

potency. In each panel, the isobologram passes through the dose combination of 10

units of drug 1, with no drug 2. In the additive panel, if that dose of drug 1 is reduced

from 10 units to 5 units, it is necessary to increase the dose of drug 2 to 5 units in order

to maintain the same response level. But, in the synergy panel, if the dose of drug 1 is

reduced to 5 units, it is only necessary to increase the dose of drug 2 to approximately

2 units to maintain the same response level. While in the antagonism panel, if the

dose of drug 1 is reduced to 5 units, it is necessary to increase the dose of drug 2 to

approximately 8 units to maintain the same response level.
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Figure 3.1: Two-drug isobolograms showing additivity, synergy and antagonism.

Isobolograms for two drug synergy are projections of a 2-dimensional figure in 3-

dimensional space, onto a graph in 2-dimensional space. The three dimensions are the

doses of the two drugs, and their response. Adding a third drug turns the isobolograms

into 3-dimensional figures in 4-dimensional space, which cannot be easily visualized.

While isobolograms were lines in 2-dimensional space for the two drug case, they now

become surfaces in 3-dimensional space for the three drug case. Multiple lines, repre-

senting multiple response levels in the two drug case, could easily be shown on a single

graph. Because it is difficult to show multiple surfaces on a single graph, as required

for the three drug case, this paper will generally show three-drug isobolograms using

multiple graphs, with separate graphs for different dose levels of one of the drugs.
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As described above, an additive response in the two drug case appears as a straight,

diagonal line in an isobologram for two drugs. For the three drug case, an additive

response appears as a flat surface, as shown in Figure 3.2.
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Figure 3.2: Additivity between all three drugs.

A particular combination treatment is represented by a point on an isobologram. If

the combination treatment is additive, then the point will be on the surface in Figure 3.2.

If the point is below the surface, but has the same response as the surface, then that

combination treatment is synergistic. If the point is above the surface, but has the

same response as the surface, then that combination treatment is antagonistic.

As described in the previous section, with three drugs there can be multiple defi-

nitions of synergy (and antagonism), and isobolograms can be useful to help visualize

the different definitions.

Figure 3.3 shows an isobologram surface for a response where there is 2-way synergy

between drugs 1 and 3, but additivity between drugs 1 and 2 and between drugs 2 and

3, and no 3-way synergy between all three drugs. The surface is no longer flat, reflecting

the synergy between drugs 1 and 3. Although this is only 2-way synergy and drug 3

plays no role in the synergy, a point on this surface would be identified as synergy by

Definition I of three drug synergy, because the point is below the surface in Figure 3.2.
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In order to meet the requirements of Definition II of three drug synergy, a point would

have to be below the surface in Figure 3.3, not just below the surface in Figure 3.2.
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Figure 3.3: Synergy between drugs 1 and 3, Additivity between drugs 1 and 2 and
between drugs 2 and 3.

Figure 3.4 shows an isobologram surface for a response where there is 2-way synergy

between all three pairs of drugs, but still no 3-way synergy. The surface is curved,

reflecting the 2-way synergy between the pairs of drugs. As in Figure 3.3, a point

on this surface would be identified as synergy by Definition I of three drug synergy,

because the point is below the surface in Figure 3.2. In order to meet the requirements

of Definition II of three drug synergy, a point would have to be below the surface in

Figure 3.4, not just below the surface in Figure 3.2.

Figure 3.5 shows an isobologram surface for a response where there is 2-way synergy

between all three pairs of drugs, and 3-way synergy between the three drugs. A point

on this surface would be identified as synergy by both Definition I and Definition II of

three drug synergy.
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Figure 3.4: 2-Way synergy between all three pairs of drugs.
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Figure 3.5: 2-Way synergy between all three pairs of drugs and 3-Way synergy between
the three drugs.
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3.3 Formal Definitions

A number of formal definitions have been proposed for drug synergy [24] [4] [16]. The

Bliss independence model and the Loewe additivity model are the two most cited models

[21]. The Loewe additivity model is more broadly applicable (the Bliss model is limited

to outcomes that are proportions), and is consistent with the graphical isobologram

approach described above, so it will be the formal model used in this thesis.

For 2 drugs, the traditional Loewe additivity model can be defined as:

d1

Dy,1
+

d2

Dy,2
= II


< 1 Synergism,

= 1 Additivity,

> 1 Antagonism

(3.1)

where d1 is the dose of drug 1 in the combination of two drugs and d2 is the dose of

drug 2 in the combination. Assuming that y is the effect of the combination of the two

drugs at the given doses (d1, d2), Dy,1 is the dose of drug 1 that would be required to

produce the same effect y if drug 1 had been used alone, while Dy,2 is the dose of drug

2 that would be required to produce the same effect y if drug 2 had been used alone.

II is the “interaction index”, and represents one of the three possible outcomes shown

above [21].

To accommodate 3 drugs, a simple extension of this model has been used [3]:

d1

Dy,1
+

d2

Dy,2
+

d3

Dy,3
= II


< 1 Synergism,

= 1 Additivity,

> 1 Antagonism

(3.2)

In this extension, y is the effect of the combination of the three drugs at the given doses

(d1, d2, d3), d3 is the dose of drug 3 in the combination treatment, Dy,3 is the dose of

drug 3 that would be required to produce the same effect y if drug 3 had been used

alone, and d1, d2, Dy,1, Dy,2 and II have the same meaning as in (3.1).

It is possible to show that the 3 drug interaction index has the properties of an

interaction index, namely that II = 1 for additivity, that II < 1 for synergy, and that

II > 1 for antagonism.
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II =
d1

Dy,1
+

d2

Dy,2
+

d3

Dy,3

II =
Dy,1

Dy,1

(
d1

Dy,1
+

d2

Dy,2
+

d3

Dy,3

)

II =
1

Dy,1

(
d1 + d2

Dy,1

Dy,2
+ d3

Dy,1

Dy,3

)

II =
1

Dy,1
(d1 + ρ2d2 + ρ3d3)

where ρ2 is the relative potency of Drug 2 to Drug 1, and ρ3 is the relative potency

of Drug 3 to Drug 1.

If there is additivity between the 3 drugs, then d1 + ρ2d2 + ρ3d3 = Dy,1 and II = 1.

If there is synergy between the 3 drugs, then d1 + ρ2d2 + ρ3d3 < Dy,1 and II < 1. If

there is antagonism between the 3 drugs, then d1 + ρ2d2 + ρ3d3 > Dy,1 and II > 1. So

(3.2) has all of the properties of an interaction index.

To accommodate n drugs, a further extension of the Loewe additivity model can

been specified as [3]:

n∑
j=1

dj
Dy,j

= II


< 1 Synergism,

= 1 Additivity,

> 1 Antagonism

(3.3)

In this extension, y is the effect of the combination of the n drugs at the given doses

(d1, . . . , dn). dj , where 1 ≤ j ≤ n, is the dose of drug j in the combination treatment,

and Dy,j is the dose of drug j that would be required to produce the same effect y if

drug j had been used alone. II has the same interpretation as in (3.1) and (3.2). In

this extension, II can be shown to have the properties of an interaction index using an

argument similar to that used above for the 3-drug interaction index (3.2).

The models above correspond to the informal ”Definition I” of synergy. Although

we have done considerable work attempting to develop a formal model that corresponds
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to the informal ”Definition II” of synergy, a successful model has not yet been found.

Such a model will remain open as an area for future research.
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Chapter 4

Extend Plummer and Short’s Model to Three or More

Drugs

4.1 General Model Description

The first synergy method that this thesis extends to handle more than two drugs is

Plummer and Short’s method, which was described in Section 2.3.

Assume there are n drugs, where each drug is uniquely identified by a positive

integer j, 1 ≤ j ≤ n.

Assume the individual drugs have straight log dose-response curves, although the

curves need not be parallel. The response for drug 1 can be specified as:

Y = β0 + β1 log (d1) (4.1)

where Y is the response, d1 is the dose of Drug 1, and β0 and β1 are respectively the

intercept and slope of the linear log dose-response curve.

As in Plummer and Short’s method, given that the log-dose response curve of drug

j is also linear, the logarithm of the relative potency of drug 1 and drug j is linearly

related to the log dose of either drug, so the relative potency of drug 1 and drug j can

be expressed as:

log (ρj) = β2j−2 + β2j−1 log (dj)

where ρj is the relative potency, and β2j−2 and β2j−1 are constants.

When both drug 1 and drug j are present, we can treat the combination of the two

drugs as a dose Dj of drug j alone, in which some amount of drug j has been replaced

by an amount of drug 1 with an equivalent effect:

Dj = dj + d1/ρj
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The relative potency at this level is then:

log (ρj) = β2j−2 + β2j−1 log (Dj) (4.2)

While each drug j, 2 ≤ j ≤ n, has its relative potency compared to drug 1, ρj ,

defined as above, for notational convenience we will also define ρ1 = 1 (which could be

interpreted as the relative potency of drug 1 to itself).

With n drugs there can be a number of different kinds of drug interactions, which

will be characterized by the number of drugs involved in the interaction, and referred

to as “2-way interactions”, “3-way interactions”, etc., all the way up to an “n-way

interaction”. The “2-way interactions” are between a single pair of drugs, and do not

depend in any way on the presence or absence of any of the other drugs. Similarly, “3-

way interactions” are between three of the n drugs, and only depend on the presence of

the three drugs involved in the interaction. The “n-way interaction” is an interaction

between all n drugs, and depends on the presence of all n drugs.

With n drugs, for each of the “p-way interactions”, 2 ≤ p ≤ n, there are mp =
(
n
p

)
different interactions, each of which is between a unique combination of p of the n drugs,

and a total of
∑n

p=2mp interactions.

An extended Plummer and Short model for n drugs can be defined as:

Y = β0 + β1 log

 n∑
j=1

ρjdj +
n∑
p=2

∑
1≤i1<i2<···<ip≤n

γi1i2...ip

 p∏
j=1

ρijdij

1/p


where the relative potency parameters ρj are defined as above and dj is the amount of

Drug j in the combination. In addition, i1, i2, . . . , ip, where 1 ≤ i1 < i2 < . . . ip ≤ n,

are the drugs involved in a p-way interaction, with respective doses dij and respective

relative potencies to Drug 1 of ρij .

The monotonicity assumption (4.1) implies that a larger dose of a drug has a “bet-

ter” effect, although better could mean either larger or smaller; when a larger effect is

better, β1 > 0, and when a smaller effect is better, β1 < 0.

The γ coefficients model the interactions between combinations of drugs, with the

coefficient γi1i2...ip modeling the p-way interaction between drugs i1, i2, . . . , ip. For
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all of the γ parameters in the model, positive values indicate synergy, negative values

indicate antagonism, and a value of zero indicates additivity.

4.2 Three Drug Model Description

We assume there are three drugs, 1, 2, and 3. An extended Plummer and Short model

can then be defined as:

Y = β0 + β1 log(d1 + ρ2d2 + ρ3d3

+ γ12 (d1ρ2d2)1/2 + γ13 (d1ρ3d3)1/2 + γ23 (ρ2d2ρ3d3)1/2

+ γ123 (d1ρ2d2ρ3d3)1/3)

(4.3)

where ρ2 and ρ3 are defined as in (4.2), and D2 and D3 are respectively the solutions

to:

D2 = d2 + d1e
−β2−β3 log(D2) (= d2 + d1/ρ2) (4.4)

D3 = d3 + d1e
−β4−β5 log(D3) (= d3 + d1/ρ3) (4.5)

The model can assess 3-way drug synergy as defined by Definition II of synergy in

Section 3.1 (synergy as defined by Definition I could be assessed by removing the model

terms containing γ12, γ13, and γ13).

In the model, β0 and β1 represent the intercept and slope of the log dose-response

curve for drug 1 alone. β2 and β3 describe the difference between the drug 2 and

drug 1 log dose-response curves, with β2 corresponding to the “horizontal” difference

between the lines and β3 corresponding to the difference of slopes. If the log dose-

response curves are parallel, then β3 = 0. β4 and β5 describe the difference between the

drug 3 and drug 1 log dose-response curves, with β4 corresponding to the “horizontal”

difference between the lines and β5 corresponding to the difference of slopes. If the log

dose-response curves are parallel, then β5 = 0.

The rest of the coefficients in the model describe the synergy relationships. γ12

is a coefficient of synergy for 2-way synergy between drugs 1 and drug 2, γ13 is a

coefficient of synergy for 2-way synergy between drugs 1 and 3, γ23 is a coefficient of

synergy for 2-way synergy between drugs 2 and 3, and γ123 is a coefficient of synergy
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for 3-way synergy between all 3 drugs. For all of the synergy parameters in the model,

positive values indicate synergy, negative values indicate antagonism, and a value of

zero indicates additivity.

The model can be fitted using iterative methods for nonlinear regression, solving

(4.4) and (4.5) numerically at each iteration for each dose combination to determine

D2 and D3. The presence of synergy can be tested by fitting full and reduced models

with and without the γ12, γ13, γ23 and γ123 terms, or by testing the significance of each

of those terms in the full model.

It is possible to show the equivalence of (4.3) and the Interaction Index of the 3-

drug Loewe additivity model in (3.2); the steps follow those that Lee et al [21] used to

show the equivalence of the Plummer and Short model and the 2-drug Loewe additivity

model.

In (4.3), if d2 = d3 = 0, then Y = β0 + β1 log (d1), and exp
(
Y−β0
β1

)
= Dy,1 (recall

from Section 3.3 that Dy,1 is the dose of drug 1 that would have to be used alone

to have the same effect y). Similarly, if d1 = d3 = 0, then Y = β0 + β1 log (ρ2d2),

and ρ−1
2 exp

(
Y−β0
β1

)
= Dy,2, while if d1 = d2 = 0, then Y = β0 + β1 log (ρ3d3), and

ρ−1
3 exp

(
Y−β0
β1

)
= Dy,3.

Next, for notational simplicity, let

Λ = γ12 (d1ρ2d2)1/2 + γ13 (d1ρ3d3)1/2 + γ23 (ρ2d2ρ3d3)1/2 + γ123 (d1ρ2d2ρ3d3)1/3

so (4.3) can be rewritten more compactly as

Y = β0 + β1 log (d1 + ρ2d2 + ρ3d3 + Λ)

The following steps can then be used to show the equivalence of (4.3) and the
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Interaction Index of the 3-drug Loewe Additivity Model (3.2).

exp

(
Y − β0

β1

)
= d1 + ρ2d2 + ρ3d3 + Λ

exp

(
Y − β0

β1

)
− Λ = d1 + ρ2d2 + ρ3d3

1− Λ

exp
(
Y−β0
β1

) =
d1

exp
(
Y−β0
β1

) +
ρ2d2

exp
(
Y−β0
β1

) +
ρ3d3

exp
(
Y−β0
β1

)
1− Λ

exp
(
Y−β0
β1

) =
d1

exp
(
Y−β0
β1

) +
d2

ρ−1
2 exp

(
Y−β0
β1

) +
d3

ρ−1
3 exp

(
Y−β0
β1

)
1− Λ

exp
(
Y−β0
β1

) =
d1

Dy,1
+

d2

Dy,2
+

d3

Dy,3

So, returning to the original notation, the Interaction Index of the Loewe additivity

model is equivalent to

II = 1− γ12 (d1ρ2d2)1/2 + γ13 (d1ρ3d3)1/2 + γ23 (ρ2d2ρ3d3)1/2 + γ123 (d1ρ2d2ρ3d3)1/3

exp
(
Y−β0
β1

)
4.3 Response Surface Estimation

An R program was used to implement the extended Plummer and Short method de-

scribed in the previous section.

Five data sets were constructed and analyzed using the program. The five con-

structed data sets corresponded to 5 different synergy scenarios: additivity between all

3 drugs, 2-way synergy between one pair of the drugs, 3-way synergy between all of the

drugs, 2-way synergy between one pair of drugs combined with 3-way synergy between

all of the drugs, and a combination of localized 3-way synergy and 3-way antagonism

(this last scenario violates the model’s assumption of global synergy so the model is not

expected to perform well).

Each constructed data set consisted of generated measurements for combination

treatments of 3 drugs. All 3 drugs had 7 dose levels. In addition to a dose of 0, the first

drug had dose levels of 2.5, 5, 7.5, 10, 15, and 20. The second drug had levels one half

of the first drug, while the third had levels one quarter of the first drug. The relative

potency of the first drug to the second drug was defined as ρ2:

log (ρ2) = β2 + β3 log (D2) (4.6)
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where D2 is the solution to:

D2 = d2 + d1/ρ2

and β2 = log 2 and β3 = 0.02. The relative potency of the first drug to the third drug

was defined as ρ3:

log (ρ3) = β4 + β5 log (D3) (4.7)

where D3 is the solution to:

D3 = d3 + d1/ρ3

and β4 = log 3 and β5 = 0.005. All possible combinations of the 3 drugs at the given

dose levels were used, with three generated results (repetitions) at each combination.

The generated response variable was a proportion, such as the proportion of cells

viable after the given treatment, a common end point in many nonclinical oncology

studies. Because the analysis program assumes the response E is a proportion, it ini-

tially transforms it to be the transformed effect Y using the function g (E) = logitE =

log E
1−E . All generated responses were constructed on the transformed scale as y,

and then transformed to be E on the original scale of responses using the function

g−1 (y) = logit−1 y = 1
1+exp (−y) . A small amount of random noise, from a normal dis-

tribution with a mean of 0 and a standard deviation of 0.1, was added to each generated

response value before its antilogit transformation.

4.3.1 First Scenario: Additivity

The constructed data set for the first scenario assumed all 3 drugs were additive. The

response was constructed as:

y = β0 + β1 log (d1 + ρ2d2 + ρ3d3) + ε

where

ε ∼ N
(
0, 0.12

)
and where β0 = 4, β1 = −1, and ρ2 and ρ3 were defined as in (4.6) and (4.7) respectively,

with β2 = log 2, β3 = 0.02, β4 = log 3, and β5 = 0.005.
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The analysis of the first scenario found no significant two-way interactions (p =

0.149, p = 0.060, and p = 0.392) and no significant three-way interaction (p = 0.122).

Figure 4.1 shows the results of the analysis. Panels A through C of the figure show

the fitted log dose-response curves for each individual drug, used alone. The log-dose

response curves were used to construct initial estimates for the extended Plummer and

Short model.
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Figure 4.1: Results from first scenario, with all additive relations.

Panels D through G in the figure show contour plots of the “observed” constructed

data, with each panel showing the contour plot at a different dose of Drug A. Each plot

shows the response contours for the given doses of Drug B and Drug C, on the X and

Y axes respectively. The generally straight contour lines in all four panels, i.e. at all

doses of Drug A, reflect the additivity between the drugs.

Panels H through K in the figure show contour plots of the fitted model. The plots

closely match the corresponding plots in panels D through G, showing that the model

has accurately fitted the “observed” data. Panel L shows the residuals from the fitted

model, plotted against the observed (logit) response.
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4.3.2 Second Scenario: Two-Way Synergy

The constructed data set for the second scenario assumed that there was 2-way syn-

ergy between drugs 2 and 3, but all other relations were additive. The response was

constructed as:

y = β0 + β1 log
(
d1 + ρ2d2 + ρ3d3 + γ23 (ρ2d2ρ3d3)

1
2

)
+ ε

where

ε ∼ N
(
0, 0.12

)
and where β0 = 4, β1 = −1, ρ2 and ρ3 were defined as in (4.6) and (4.7) respectively,

with β2 = log 2, β3 = 0.02, β4 = log 3, β5 = 0.005, and γ23 = 2.

The analysis of the second scenario found a significant interaction between the

second and third drugs (p < 0.001), although neither of the other two-way interactions

were significant (p = 0.858 and p = 0.291), nor was the three-way interaction (p =

0.605). The coefficient for the interaction between the second and third drugs, γ23,

was estimated to be 1.91 (95% confidence interval: (1.68, 2.17)), with its positive sign

indicating that this interaction is synergistic, not antagonistic.

Figure 4.2 shows the results for the second constructed data set. As in the previous

scenario, the log-dose response curves in Panels A through C were used to construct

initial estimates for the extended Plummer and Short model.
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Figure 4.2: Results from second scenario, with 2-way synergy between Drug B and
Drug C, but additivity for all other relations.
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In this scenario, the contour plots of the “observed” data in Panels D through G

are now curved, reflecting the 2-way synergy between Drug B and Drug C.

Panels H through K show contour plots of the fitted model, and again the plots

closely match the corresponding plots in panels D through G, showing that the model

has accurately fitted the “observed” data. As before, Panel L shows the residuals from

the fitted model, plotted against the observed (logit) response.

4.3.3 Third Scenario: Three-Way Synergy

The constructed data set for the third scenario assumed that there was 3-way synergy

between all 3 drugs, but all 2-way relations were additive. The response was constructed

as:

y = β0 + β1 log
(
d1 + ρ2d2 + ρ3d3 + γ123 (d1ρ2d2ρ3d3)

1
3

)
+ ε

where

ε ∼ N
(
0, 0.12

)
and where β0 = 4, β1 = −1, ρ2 and ρ3 were defined as in (4.6) and (4.7) respectively,

with β2 = log 2, β3 = 0.02, β4 = log 3, β5 = 0.005, and γ123 = 1.5.

The analysis of the third scenario found a significant three-way interaction between

the drugs (p < 0.001), although none of the two-way interactions were significant (p =

0.251, p = 0.103 and p = 0.231). The coefficient for the three-way interaction between

the drugs, γ123, was estimated to be 1.57 (95% confidence interval: (1.45, 1.68)), with

its positive sign indicating that this interaction is synergistic, not antagonistic.

Figure 4.3 shows the results for the third constructed data set. As in the previous

scenarios, the log-dose response curves in Panels A through C were used to construct

initial estimates for the extended Plummer and Short model.

Also as in the previous scenario, the contour plots of the “observed” data in Panels

D through G are still curved, reflecting the 3-way synergy between Drug A, Drug B

and Drug C. But the lines in Panel D are straight, reflecting the fact that this is 3-way

synergy that depends on Drug A being present. In the previous scenario, the lines in

Panel D were curved, because the 2-way synergy between Drug B and Drug C was
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Figure 4.3: Results from third scenario, with 3-way synergy between Drug A, Drug B
and Drug C, but additivity between each pair of drugs.
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present even in the absence of Drug A.

Panels H through K show contour plots of the fitted model, and once again the plots

closely match the corresponding plots in panels D through G, showing that the model

has accurately fitted the “observed” data. As before, Panel L shows the residuals from

the fitted model, plotted against the observed (logit) response.

4.3.4 Fourth Scenario: Two-Way Synergy and Three-Way Synergy

The constructed data set for the fourth scenario assumed that there was 2-way synergy

between one pair of drugs and 3-way synergy between all 3 drugs. The response was

constructed as:

y = β0 + β1 log
(
d1 + ρ2d2 + ρ3d3 + γ23 (ρ2d2ρ3d3)

1
2 + γ123 (d1ρ2d2ρ3d3)

1
3

)
+ ε

where

ε ∼ N
(
0, 0.12

)
and where β0 = 4, β1 = −1, ρ2 and ρ3 were defined as in (4.6) and (4.7) respectively,

with β2 = log 2, β3 = 0.02, β4 = log 3, β5 = 0.005, γ23 = 2, and γ123 = 1.5.

The analysis of the fourth scenario found a significant interaction between the second

and third drugs (p < 0.001) and a significant three-way interaction between all three

drugs (p< 0.001), but the other two-way interactions were not significant (p = 0.071 and

p = 0.163). The coefficient for the interaction between the second and third drugs, γ23,

was estimated to be 2.08 (95% confidence interval: (1.82, 2.37)), while the coefficient

for the three-way interaction between all three drugs, γ123, was estimated to be 1.45

(95% confidence interval: (1.31, 1.60)), with both positive signs indicating that the

interactions are synergistic, not antagonistic.

Figure 4.4 shows the results for the fourth constructed data set. As in the previous

scenarios, the log-dose response curves in Panels A through C were used to construct

initial estimates for the extended Plummer and Short model.

As in both previous scenarios, the contour plots of the “observed” data in Panels

E through G are still curved, reflecting the 2-way synergy between Drug A and Drug
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Figure 4.4: Results from fourth scenario, with 2-way synergy between Drug A and Drug
B, and 3-way synergy between Drug A, Drug B and Drug C.
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B, and the 3-way synergy between Drug A, Drug B and Drug C. Unlike the previous

scenario (but like the second scenario), the lines in Panel D are curved, because the

2-way synergy between Drug B and Drug C is still present even in the absence of Drug

A.

Panels H through K show contour plots of the fitted model, and once again the plots

closely match the corresponding plots in panels D through G, showing that the model

has accurately fitted the “observed” data. As before, Panel L shows the residuals from

the fitted model, plotted against the observed (logit) response.

4.3.5 Fifth Scenario: Local Three-Way Synergy and Antagonism

The constructed data set for the fifth scenario assumed that there was local 3-way

synergy between all 3 drugs in one region, but local 3-way antagonism between all 3

drugs in another region; all 2-way relations were assumed to be additive. The response

was constructed as:

y = β0 + β1 log (d1 + ρ2d2 + ρ3d3

+f123 (d1, d2, d3;β2, β3, β4, β5, κ123) (d1ρ2d2ρ3d3)
1
3

)
+ ε

where:

f123 (d1, d2, d3;β2, β3, β4, β5, κ123) =κ123,0 + κ123,1d
1
3
1 + κ123,2 (ρ2d2)

1
3 + κ123,3 (ρ3d3)

1
3

+ κ123,4d1 + κ123,5ρ2d2 + κ123,6ρ3d3

+ κ123,7 (d1ρ2d2ρ3d3)
1
3

and

ε ∼ N
(
0, 0.12

)
and β0 = 4, β1 = −1, ρ2 and ρ3 were defined as in (4.6) and (4.7) respectively, with

β2 = log 2, β3 = 0.02, β4 = log 3, β5 = 0.005, κ123,0 = 1, κ123,3 = 0.5, κ123,7 = −0.2,

and κ123,i = 0, i ∈ {1, 2, 4, 5, 6}.

This scenario violates one of the underlying assumptions of the Plummer and Short

model, that any synergy or antagonism is “global” and the same at all dose levels,

because the interaction depends on the function f123, which depends on the dose levels.
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The result of violating this assumption can be seen in the inaccurate estimates that

follow.

The analysis of the fifth scenario found all of the two-way interactions to be signifi-

cant (p = 0.004 for γ12, p = 0.010 for γ13 and γ23), as well as the three-way interaction

(p = 0.020). The coefficient for the two-way interaction between drugs one and two, γ12,

was estimated to be 0.24 (95% confidence interval: (0.08, 0.41)), while the coefficient

for the two-way interaction between drugs one and three, γ13, was estimated to be 0.22

(95% confidence interval: (0.05, 0.40)), and the coefficient for the two-way interaction

between drugs two and three, γ23, was estimated to be 0.26 (95% confidence interval:

(0.08, 0.47)). The coefficient for the three-way interaction between the drugs, γ123, was

estimated to be 0.26 (95% confidence interval: (0.03, 0.48)). All four coefficient signs

were positive, indicating the interactions are synergistic, not antagonistic.

Figure 4.5 shows the results for the fifth constructed data set. As in the previous

scenarios, the log-dose response curves in Panels A through C were used to construct

initial estimates for the extended Plummer and Short model.

In this scenario, the contour plots of the “observed” data in Panels D through G,

in the region of local 3-way synergy, are curved “down” at and the low dose of Drug A,

but not curved consistently in one direction at higher doses of Drug A, reflecting the

mix of synergism and antagonism.

As before, Panels H through K show contour plots of the fitted model. In Panels

H through K, the lines in the contour plot are consistently curved down, reflecting the

(incorrectly) estimated global synergism of the model. Because the model assumes that

synergy or antagonism is the same at all dose combinations, and because there were

more observations with synergy than with antagonism, the model has determined that

synergy is present, even in the regions of local antagonism.

Panel L shows the residuals from the fitted model, plotted against the observed

(logit) response. Because the model does not fit the data very well in this scenario, the

residuals are much larger than in the previous scenarios.

The large residuals in Panel L and the poor fit in Panel K indicate that a model

assumption has been violated, and that the estimated coefficients are not meaningful.
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Figure 4.5: Results from fifth scenario, with local 3-way synergy in one region and local
3-way antagonism in another.
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4.4 Evaluating Goodness of Fit

Simulated data was created to evaluate the goodness of fit of the extended Plummer and

Short method. The simulated data was constructed using the extended Plummer and

Short model in (4.3), with known “true” values for the parameters and an additional

random component. The random component was taken from a normal distribution

with a mean of 0 and a standard deviation of 0.1. The simulated data used the same

dose levels as in the original constructed data sets.

The goodness of fit was evaluated for five different scenarios. The first four scenarios

corresponded to the first four scenarios evaluated in in the Response Surface Estimation

section, 4.3: additivity between all 3 drugs, 2-way synergy between one pair of the drugs,

3-way synergy between all of the drugs, and 2-way synergy between one pair of drugs

combined with 3-way synergy between all of the drugs.

The fifth scenario of the Response Surface Estimation section was a scenario with

local synergy and antagonism, which violated one of the model assumptions of the

extended Plummer and Short method and was not fit well. Rather than evaluating the

poorness of the fit for that scenario, the goodness of fit was evaluated in a new scenario.

The new scenario had 2-way synergy between one pair of drugs, 2-way antagonism

between another pair of drugs, and 3-way synergy between all 3 drugs.

For each scenario 100 simulated data sets were constructed, and each simulated

data set was analyzed using the extended Plummer and Short method. The goodness

of fit under each scenario was then evaluated using the estimated parameters from each

simulated data set. The estimated parameters were used to calculate the mean estimate

of each parameter, the bias of each parameter estimate (the mean of the difference of

each estimate and the known, true value), the percent bias of each parameter estimate

(the bias divided by the true value, times 100%), and the mean standard error of each

parameter estimate.

Additionally, the goodness of fit of the model was evaluated based on the classi-

fication of each drug interaction as either synergistic, antagonistic or additive. The
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classification of an interaction is determined by the statistical significance of its corre-

sponding γ parameter. If the parameter is positive and significant, then the interaction

is classified as synergistic; if the parameter is negative and significant, then the interac-

tion is classified as antagonistic; if the parameter is not-significant then the interaction

is classified as additive. To evaluate the goodness of fit, for each γ parameter the num-

ber of simulation runs that were classified into each category was counted, and the

percentage of runs that chose the “correct” category was recorded.

Because the classification is based on the statistical significance of a parameter,

the “correct” category for an interaction is not simply based on the true value of the

γ parameter for that interaction. Although positive values indicate synergy, positive

values close to zero may not be far enough from zero to achieve significant synergy.

Similarly, although negative values indicate antagonism, negative values close to zero

may not be far enough from zero to achieve significant antagonism. So the “correct”

category must take into account not just the true value of the parameter, but also the

“expected” significance of the parameter.

The standard errors for the parameters are estimated as part of the nonlinear regres-

sion performed on the model of the extended Plummer and Short parametric method.

The nonlinear regression software used in this implementation of the extended Plummer

and Short parametric method, the nls() function in R, uses the Gauss-Newton method

to estimate the regression parameters and their standard errors. The estimated stan-

dard errors are based on the design of the model and the residual mean square error,

which estimates the standard deviation.

In the simulations used to evaluate the goodness of fit, the true standard deviation is

known, and used to create the simulated data. In the same way that the Gauss-Newton

method uses the estimated standard deviation to estimate the standard errors of the

estimated parameters in the model, the known true standard deviation can be used to

calculate a “true standard error” for each known, true parameter. These can then be

used to calculate the expected “true” significance of the parameter, which can then be

used to define the “correct” category for a drug interaction.

The “true standard error” for each regression parameter was calculated from the
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known true standard deviation and a design matrix based on derivatives of the model

specified in Equation (4.3). The derivatives are not shown here, but are similar (al-

though simpler) to those shown in Appendix A for the extended Kong and Lee para-

metric method.

The “true standard errors” for the regression parameters were then used to calculate

the expected significance of the parameter, and the classification of its corresponding

drug interaction as either synergistic, antagonistic or additive.

Figures 4.6, 4.7, 4.8, and 4.9 summarizes the bias and classification results respec-

tively for the γ12, γ13, γ23, and γ123 parameters under all 5 scenarios. The percent

bias is generally less than 5%, and the bias is small. The interactions are generally

classified correctly at least 90% of the time. The slightly higher than expected rate

of mis-classification may be due to slight differences in the calculations performed by

the R nls() function and the derivative-based design matrix used to calculate the “true

standard errors”.
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Figure 4.6: Summary of bias and classification for γ12.



52

Scenario

NA NA NA NA NA

Percent Bias (%)

−0.0040

−0.0038

−0.0036

−0.0034

●

●

●

●

●

Bias

91.0
91.5
92.0
92.5
93.0

1 2 3 4 5

●

●

●

● ●

Percent Correct (%)

Figure 4.7: Summary of bias and classification for γ13.

Table 4.1 through Table 4.5 describe in greater detail the results for all scenarios

and all parameters. As the tables show, all of the parameters have been estimated

fairly close to their true values, with small biases and generally small percent biases.

The large percent biases for β3 and β5 are caused by those parameters being so close to

zero, that even the relatively small biases become very large percent biases when the

bias is divided by the true value.
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Table 4.1: Results from first scenario, with all additive relations.
Mean

True Mean Absolute Percent Standard Percent Percent Percent
Parameter Value Estimate Bias Bias Error Antag. Additive Syn.

β0 4. 4.012 0.01239 0.3 0.05435 NA NA NA

β1 1. 0.9956 -0.004393 -0.4 0.01932 NA NA NA

β2 0.6931 0.6782 -0.01497 -2.2 0.06543 NA NA NA

β3 0.008 0.01666 0.008665 108.3 0.03008 NA NA NA

β4 1.099 1.09 -0.008981 -0.8 0.05256 NA NA NA

β5 0.005 0.01319 0.008187 163.7 0.03257 NA NA NA

γ12 0. -0.004222 -0.004222 NA 0.04816 7 92 1

γ13 0. -0.003987 -0.003987 NA 0.05064 5 93 2

γ23 0. 0.0003786 0.0003786 NA 0.05652 1 99 0

γ123 0. 0.01141 0.01141 NA 0.07471 2 91 7

Table 4.2: Results from second scenario, with 2-way synergy between Drug B and Drug
C, but additivity for all other relations.

Mean
True Mean Absolute Percent Standard Percent Percent Percent

Parameter Value Estimate Bias Bias Error Antag. Additive Syn.

β0 4. 4.011 0.01144 0.3 0.05872 NA NA NA

β1 1. 0.9957 -0.004347 -0.4 0.02174 NA NA NA

β2 0.6931 0.6808 -0.01235 -1.8 0.06596 NA NA NA

β3 0.008 0.01568 0.007682 96.0 0.03152 NA NA NA

β4 1.099 1.091 -0.007439 -0.7 0.05263 NA NA NA

β5 0.005 0.01262 0.007622 152.4 0.0328 NA NA NA

γ12 0. -0.002921 -0.002921 NA 0.04991 7 92 1

γ13 0. -0.003455 -0.003455 NA 0.0516 6 91 3

γ23 2. 2.02 0.01956 1.0 0.1605 0 0 100

γ123 0. 0.006675 0.006675 NA 0.0949 0 94 6

Table 4.3: Results from third scenario, with 3-way synergy between Drug A, Drug B
and Drug C, but additivity between each pair of drugs.

Mean
True Mean Absolute Percent Standard Percent Percent Percent

Parameter Value Estimate Bias Bias Error Antag. Additive Syn.

β0 4. 4.014 0.0142 0.4 0.05687 NA NA NA

β1 1. 0.9946 -0.005373 -0.5 0.02099 NA NA NA

β2 0.6931 0.6768 -0.01634 -2.4 0.06764 NA NA NA

β3 0.008 0.01805 0.01005 125.6 0.03269 NA NA NA

β4 1.099 1.088 -0.0106 -1.0 0.05362 NA NA NA

β5 0.005 0.015 0.01 200.0 0.03501 NA NA NA

γ12 0. -0.003711 -0.003711 NA 0.04877 8 91 1

γ13 0. -0.003768 -0.003768 NA 0.05106 5 92 3

γ23 0. 0.00222 0.00222 NA 0.05838 1 99 0

γ123 1.5 1.524 0.0242 1.6 0.0723 0 0 100
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Table 4.4: Results from fourth scenario, with 2-way synergy between Drug B and Drug
C, combined with 3-way synergy between Drug A, Drug B and Drug C.

Mean
True Mean Absolute Percent Standard Percent Percent Percent

Parameter Value Estimate Bias Bias Error Antag. Additive Syn.

β0 4. 4.012 0.01248 0.3 0.05946 NA NA NA

β1 1. 0.9951 -0.004905 -0.5 0.02249 NA NA NA

β2 0.6931 0.6797 -0.01348 -1.9 0.06721 NA NA NA

β3 0.008 0.01662 0.008621 107.8 0.0332 NA NA NA

β4 1.099 1.09 -0.008415 -0.8 0.05302 NA NA NA

β5 0.005 0.01367 0.008674 173.5 0.03433 NA NA NA

γ12 0. -0.002648 -0.002648 NA 0.05015 8 91 1

γ13 0. -0.003304 -0.003304 NA 0.0518 6 91 3

γ23 2. 2.025 0.02465 1.2 0.1669 0 0 100

γ123 1.5 1.521 0.0211 1.4 0.08548 0 0 100

Table 4.5: Results from fifth scenario, with 2-way antagonism between Drug A and
Drug B, 2-way synergy between Drug B and Drug C, and 3-way synergy between the
three drugs.

Mean
True Mean Absolute Percent Standard Percent Percent Percent

Parameter Value Estimate Bias Bias Error Antag. Additive Syn.

β0 4. 4.012 0.01195 0.3 0.05899 NA NA NA

β1 1. 0.9954 -0.004554 -0.5 0.0221 NA NA NA

β2 0.6931 0.6801 -0.01303 -1.9 0.06576 NA NA NA

β3 0.008 0.01593 0.007927 99.1 0.03181 NA NA NA

β4 1.099 1.091 -0.007998 -0.7 0.05263 NA NA NA

β5 0.005 0.01313 0.008131 162.6 0.03363 NA NA NA

γ12 -0.5 -0.5044 -0.004423 0.9 0.03729 100 0 0

γ13 0. -0.003844 -0.003844 NA 0.0509 6 91 3

γ23 2. 2.023 0.02291 1.1 0.1652 0 0 100

γ123 1.5 1.516 0.01568 1.0 0.07742 0 0 100



55

Scenario

1.00
1.05
1.10
1.15
1.20

●

●

●
NA NA

Percent Bias (%)

0.000
0.005
0.010
0.015
0.020
0.025

●

●

●

●
●

Bias

99.0
99.2
99.4
99.6
99.8

100.0

1 2 3 4 5
●

●

●

● ●

Percent Correct (%)

Figure 4.8: Summary of bias and classification for γ23.
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Figure 4.9: Summary of bias and classification for γ123.
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Chapter 5

Extend Kong and Lee’s Parametric Model to Three or

More Drugs

The next synergy method that this thesis extends to handle more than 2 drugs is Kong

and Lee’s parametric method, which was described in Section 2.4. As Kong and Lee’s

parametric method is a generalization of the Plummer and Short method, this extension

is a generalization of the Plummer and Short extension proposed in Chapter 4.

This chapter will first describe a model for an extension of Kong and Lee’s para-

metric method to n drugs. It will then describe in more detail the model for 3 drugs,

and an implementation of the 3-drug model. The implementation of the 3-drug model

will then be evaluated using simulated data.

5.1 General Model Description

The extended Kong and Lee parametric model begins with the same assumptions of the

extended Plummer and Short method regarding the individual drugs, their individual

responses, and their relative potencies to each other. See Section 4.1 for details.

An extended Kong and Lee parametric model for n drugs can then be defined as:

Y =β0 + β1 log

(
n∑
j=1

ρjdj

+
n∑
p=2

∑
1≤i1<i2<···<ip≤n

fi1i2...ip
(
di1 , . . . , dip ; ρi1 , . . . , ρip , κi1i2...ip

) p∏
j=1

ρijdij

 1
p )

(5.1)

where the relative potency parameters ρj are defined as previously and dj is the amount

of Drug j in the combination. In addition, i1, i2, . . . , ip are the drugs involved in a
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p-way interaction, with respective doses of di1 , . . . , dip , and respective relative potencies

to Drug 1 of ρi1 , . . . , ρip .

The key difference between the extended Kong and Lee parametric model and the

extended Plummer and Short model is that the fixed γ coefficients in the extended

Plummer and Short model, which model the interactions between combinations of

drugs, have been replaced by functions that allow the interactions to be modeled more

flexibly. The f functions model the interactions between combinations of drugs, with

the function fi1i2...ip modeling the p-way interaction between drugs i1, i2, . . . , ip. The κ

vectors are vectors of parameters used in the f functions, with the vector κi1i2...ip used

in the function fi1i2...ip . For all of the f functions in the model, positive values indicate

synergy, negative values indicate antagonism, and a value of zero indicates additivity.

The f model functions and their κ parameter vectors allow more flexibility in mod-

eling the interactions than is possible with the γ interaction coefficients in the extended

Plummer and Short model. In the extended Plummer and Short model, a particular

interaction is modeled by a scalar γi1i2...ip so it must be consistent across all dose combi-

nations; if the interaction is synergistic, the model assumes the interaction is synergistic

at all dose combinations, and that it has the same strength of synergy at all dose com-

binations. In the extended Kong and Lee parametric model, the f model functions and

their associated κ parameter vectors allow a particular interaction to vary in direction

or strength at different dose combinations.

Each f function is a function of the doses involved in the interaction, their relative

potencies, and the function’s κ parameter vector. For the function fi1i2...ip , modeling

the p-way interaction between drugs i1, i2, . . . , ip, with relative potencies compared to
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Drug 1 of ρi1 , . . . , ρip , the following definition is proposed:

fi1i2...ip
(
di1 , . . . dip ; ρi1 , . . . ρip , κi1i2...ip

)
=κi1i2...ip,0

+

p∑
j=1

κi1i2...ip,j
(
ρijdij

)1/p
+

p∑
j=1

κi1i2...ip,p+j
(
ρijdij

)
(5.2)

+ κi1i2...ip,2p+1

 p∏
j=1

ρijdij

1/p

where the parameter vector κi1i2...ip =
(
κi1i2...ip,0, . . . , κi1i2...ip,2p+i

)
.

The proposed functions only include polynomials of the individual drug doses and

the geometric mean of all p drug doses, they do not include polynomial combinations

of less than p drugs. The other polynomial combinations of less than p drugs are not

included for a number of reasons. We believe the proposed functions already allow

sufficient flexibility in modeling drug interactions. Any polynomial combinations of less

than p drugs are already included in the f functions that model the j-way interactions,

where j < p. Also, including the polynomial combinations of i drugs in f functions of

j-way interactions, where i < j, may make it harder to estimate the polynomials across

the multiple f functions, and increase the sample size required to adequately estimate

them; there was some evidence of this in early experiments with a three-drug model

that did include polynomial combinations of 2 drugs in the 3-way interaction function.

In the proposed functions, if the only non-zero parameters in all of the parameter

vectors κi1i2...ip , 1 ≤ i1 < i2 < · · · < ip ≤ n, are κi1i2...ip,0, then the extended Kong

and Lee parametric model reduces to an extended Plummer and Short model, with

γi1i2...ip = κi1i2...ip,0, for all 1 ≤ i1 < i2 < · · · < ip ≤ n.



60

5.2 Three Drug Model Description

We assume there are three drugs, 1, 2, and 3. The extended Kong and Lee parametric

model can be specified as:

Y = β0 + β1 log(d1 + ρ2d2 + ρ3d3

+ f12 (d1, d2;β2, β3, κ12) (d1ρ2d2)1/2 + f13 (d1, d3;β4, β5, κ13) (d1ρ3d3)1/2

+ f23 (d2, d3;β2, β3, β4, β5, κ23) (ρ2d2ρ3d3)1/2

+ f123 (d1, d2, d3;β2, β3, β4, β5, κ123) (d1ρ2d2ρ3d3)1/3)

(5.3)

where κ12, κ13, κ23 and κ123 are vectors of parameters for modeling any local synergy

and antagonism, and ρ2 and ρ3 are defined as in (4.2), and D2 and D3 are respectively

the solutions to:

D2 = d2 + d1e
−β2−β3 log(D2) (= d2 + d1/ρ2)

D3 = d3 + d1e
−β4−β5 log(D3) (= d3 + d1/ρ3)

Similar to the f (d1, d2; γ) function in the original Kong and Lee parametric method,

the functions f12 (d1, d2;β2, β3, κ12), f13 (d1, d3;β4, β5, κ13), f23 (d2, d3;β2, β3, β4, β5, κ23),

and f123 (d1, d2, d3;β2, β3, β4, β5, κ123) will be able to capture any local synergy or an-

tagonism, not just global synergy or antagonism that the extended Plummer and Short

method captures. The functions will be similar to the function used by the original

Kong and Lee parametric method:

f12 (d1, d2;β2, β3, κ12) =κ12,0 + κ12,1d
1
2
1 + κ12,2 (ρ2d2)

1
2 + κ12,3d1

+ κ12,4ρ2d2 + κ12,5 (d1ρ2d2)
1
2

f13 (d1, d3;β4, β5, κ13) =κ13,0 + κ13,1d
1
2
1 + κ13,2 (ρ3d3)

1
2 + κ13,3d1

+ κ13,4ρ3d3 + κ13,5 (d1ρ3d3)
1
2

f23 (d2, d3;β2, β3, β4, β5, κ23) =κ23,0 + κ23,1 (ρ2d2)
1
2 + κ23,2 (ρ3d3)

1
2 + κ23,3ρ2d2

+ κ23,4ρ3d3 + κ23,5 (ρ2d2ρ3d3)
1
2
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f123 (d1, d2, d3;β2, β3, β4, β5, κ123) =κ123,0 + κ123,1d
1
3
1 + κ123,2 (ρ2d2)

1
3 + κ123,3 (ρ3d3)

1
3

+ κ123,4d1 + κ123,5ρ2d2 + κ123,6ρ3d3

+ κ123,7 (d1ρ2d2ρ3d3)
1
3

As can be seen above, the extended Kong and Lee parametric method generalizes

the extended Plummer and Short method by replacing the scalar parameters γ12, γ13,

γ23 and γ123 in the extended Plummer and Short model in (4.3), with the more flexible

functions f12, f13, f23 and f123 in the extended Kong and Lee parametric model in

(5.3). If all κ parameters in the f12, f13, f23 and f123 functions are zero except for κ12,0,

κ13,0, and κ23,0 and κ123,0, then the extended Plummer and Short model reduces to an

extended Plummer and Short model, with γ12 = κ12,0, γ13 = κ13,0, γ23 = κ23,0, and

γ123 = κ123,0.

5.2.1 Interaction Index Equivalence

It is possible to show the equivalence of the extended Kong and Lee parametric model,

specified in (5.3), and the Interaction Index of the 3-drug Loewe additivity model,

specified in (3.2). The derivation follows that used for the Extended Plummer and

Short Model, in Section 4.2. using steps that follow those that Lee et al [21] used to

show the equivalence of the Plummer and Short model and the 2-drug Loewe additivity

model.

In (5.3), if d2 = d3 = 0, then Y = β0 + β1 log (d1), and exp
(
Y−β0
β1

)
= Dy,1 (recall

from Section 3.3 that Dy,1 is the dose of drug 1 that would have to be used alone

to have the same effect y). Similarly, if d1 = d3 = 0, then Y = β0 + β1 log (ρ2d2),

and ρ−1
2 exp

(
Y−β0
β1

)
= Dy,2, while if d1 = d2 = 0, then Y = β0 + β1 log (ρ3d3), and

ρ−1
3 exp

(
Y−β0
β1

)
= Dy,3.

Next, for notational simplicity, let

Λ =f12 (d1, d2;β2, β3, κ1) (d1ρ2d2)1/2

+ f13 (d1, d3;β4, β5, κ2) (d1ρ3d3)1/2

+ f23 (d2, d3;β2, β3, β4, β5, κ3) (ρ2d2ρ3d3)1/2

+ f123 (d1, d2, d3;β2, β3, β4, β5, κ0) (d1ρ2d2ρ3d3)1/3
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so (5.3) can be rewritten more compactly as

Y = β0 + β1 log (d1 + ρ2d2 + ρ3d3 + Λ)

The following steps can then be used to show the equivalence of (5.3) and the

Interaction Index of the 3-drug Loewe Additivity Model (3.2).

exp

(
Y − β0

β1

)
= d1 + ρ2d2 + ρ3d3 + Λ

exp

(
Y − β0

β1

)
− Λ = d1 + ρ2d2 + ρ3d3

1− Λ

exp
(
Y−β0
β1

) =
d1

exp
(
Y−β0
β1

) +
ρ2d2

exp
(
Y−β0
β1

) +
ρ3d3

exp
(
Y−β0
β1

)
1− Λ

exp
(
Y−β0
β1

) =
d1

exp
(
Y−β0
β1

) +
d2

ρ−1
2 exp

(
Y−β0
β1

) +
d3

ρ−1
3 exp

(
Y−β0
β1

)
1− Λ

exp
(
Y−β0
β1

) =
d1

Dy,1
+

d2

Dy,2
+

d3

Dy,3

So, returning to the original notation, the Interaction Index of the Loewe additivity

model is equivalent to

II = 1−
(
f12 (d1, d2;β2, β3, κ1) (d1ρ2d2)1/2

+ f13 (d1, d3;β4, β5, κ2) (d1ρ3d3)1/2

+ f23 (d2, d3;β2, β3, β4, β5, κ3) (ρ2d2ρ3d3)1/2

+ f123 (d1, d2, d3;β2, β3, β4, β5, κ0) (d1ρ2d2ρ3d3)1/3
)

×

(
exp

(
Y − β0

β1

))−1

5.2.2 Model Fitting and Variance Estimation

The extended Kong and Lee parametric model in (5.3) is a nonlinear model that can

be fitted using nonlinear regression. Because the β and κ parameters are estimated,

their asymptotic properties follow the standard results from a nonlinear regression.

The synergy or antagonism at a specified combination dose (d1, d2, d3) is determined

by the sign and magnitude of the polynomial functions f12, f13, f23 and f123. The

variance of the functions f12, f13, f23, and f123 can be estimated using the delta method.
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Their estimated variance can then used to test the statistical significance of any synergy

or antagonism estimated by f12, f13, f23 and f123.

The rest of this sub-section shows how to estimate the variance of the f functions

using the delta method, and how to calculate their confidence intervals. Dose combi-

nations whose confidence interval does not include zero indicate significant synergy or

antagonism.

For each combination dose (d1, d2), the variance of the estimated polynomial

f12 (d1, d2;β, κ) can be approximated using the delta method by

V̂arf12 =
(

∂f12
∂(β,κ)

)′
Σ
(

∂f12
∂(β,κ)

)
|(β,κ)=(β̂,κ̂) where

∂f12

∂ (β, κ)
=

(
∂f12

∂β2
,
∂f12

∂β3
,
∂f12

∂κ12,0
,
∂f12

∂κ12,1
,
∂f12

∂κ12,2
,
∂f12

∂κ12,3
,
∂f12

∂κ12,4
,
∂f12

∂κ12,5

)′
=

(
∂f12

∂ρ2

∂ρ2

∂β2
,
∂f12

∂ρ3

∂ρ3

∂β3
, 1, d

1
2
1 , (ρ2d2)

1
2 , d1, ρ2d2, (d1ρ2d2)

1
2

)′

with ∂f12
∂ρ2

= 1
2κ12,2

(
d2
ρ2

) 1
2

+ κ12,4d2 + 1
2κ12,5

(
d1d2
ρ2

) 1
2
, ∂ρ2
∂β2

=
ρ22(d2+d1ρ

−1
2 )

ρ2(d2+d1ρ
−1
2 )+β3d1

, and

∂ρ2
∂β3

=
ρ22(d2+d1ρ

−1
2 )

ρ2(d2+d1ρ
−1
2 )+β3d1

log
(
d2 + d1ρ

−1
2

)
. Σ is the estimated covariance matrix of the

parameters (β2, β3, κ12,0, κ12,1, κ12,2, κ12,3, κ12,4, κ12,5). So the (1− α)×100% upper and

lower confidence surfaces for f12 (d1, d2;β, κ) can be constructed as:

f12l,u (d1, d2) = f̂12 (d1, d2)± tα
2
,n−p

√
V̂arf12 (d1, d2),

where tα
2
,n−p is the upper α

2 percentile of a t-distribution with n−p degrees of freedom.

For each combination dose (d1, d3), the variance of the estimated polynomial

f13 (d1, d3;β, κ) can be approximated using the delta method by

V̂arf13 =
(

∂f13
∂(β,κ)

)′
Σ
(

∂f13
∂(β,κ)

)
|(β,κ)=(β̂,κ̂) where

∂f13

∂ (β, κ)
=

(
∂f13

∂β4
,
∂f13

∂β5
,
∂f13

∂κ13,0
,
∂f13

∂κ13,1
,
∂f13

∂κ13,2
,
∂f13

∂κ13,3
,
∂f13

∂κ13,4
,
∂f13

∂κ13,5

)′
=

(
∂f13

∂ρ3

∂ρ3

∂β4
,
∂f13

∂ρ3

∂ρ3

∂β5
, 1, d

1
2
1 , (ρ3d3)

1
2 , d1, ρ3d3, (d1ρ3d3)

1
2

)′

with ∂f13
∂ρ3

= 1
2κ13,2

(
d3
ρ3

) 1
2

+ κ13,4d3 + 1
2κ13,5

(
d1d3
ρ3

) 1
2
, ∂ρ3
∂β4

=
ρ23(d3+d1ρ

−1
3 )

ρ3(d3+d1ρ
−1
3 )+β5d1

, and

∂ρ3
∂β5

=
ρ23(d3+d1ρ

−1
3 )

ρ3(d3+d1ρ
−1
3 )+β5d1

log
(
d3 + d1ρ

−1
3

)
. Σ is the estimated covariance matrix of the

parameters (β4, β5, κ13,0, κ13,1, κ13,2, κ13,3, κ13,4, κ13,5). So the (1− α)×100% upper and
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lower confidence surfaces for f13 (d1, d3;β, κ) can be constructed as:

f13l,u (d1, d3) = f̂13 (d1, d3)± tα
2
,n−p

√
V̂arf13 (d1, d3),

where tα
2
,n−p is the upper α

2 percentile of a t-distribution with n−p degrees of freedom.

For each combination dose (d2, d3), the variance of the estimated polynomial

f23 (d2, d3;β, κ) can be approximated using the delta method by

V̂arf23 =
(

∂f23
∂(β,κ)

)′
Σ
(

∂f23
∂(β,κ)

)
|(β,κ)=(β̂,κ̂) where

∂f23

∂ (β, κ)
=

(
∂f23

∂β2
,
∂f23

∂β3
,
∂f23

∂β4
,
∂f23

∂β5
,
∂f23

∂κ23,0
,
∂f23

∂κ23,1
,
∂f23

∂κ23,2
,
∂f23

∂κ23,3
,
∂f23

∂κ23,4
,
∂f23

∂κ23,5

)′
=

(
∂f23

∂ρ2

∂ρ2

∂β2
,
∂f23

∂ρ2

∂ρ2

∂β3
,
∂f23

∂ρ3

∂ρ3

∂β4
,
∂f23

∂ρ3

∂ρ3

∂β5
, 1, (ρ2d2)

1
2 , (ρ3d3)

1
2 , ρ2d2, ρ3d3,

(ρ2d2ρ3d3)
1
2

)′

with ∂f23
∂ρ2

= 1
2κ23,1

(
d2
ρ2

) 1
2

+ κ23,3d2 + 1
2κ23,5

(
d2ρ3d3
ρ2

) 1
2
, ∂f23
∂ρ3

= 1
2κ23,2

(
d3
ρ3

) 1
2

+ κ23,4d3 +

1
2κ23,5

(
ρ2d2d3
ρ3

) 1
2
, and ∂ρ2

∂β2
, ∂ρ2∂β3

, ∂ρ3∂β4
, and ∂ρ3

∂β5
defined as shown above. Σ is the estimated

covariance matrix of the parameters (β2, β3, β4, β5, κ23,0, κ23,1, κ23,2, κ23,3, κ23,4, κ23,5).

So the (1− α)× 100% upper and lower confidence surfaces for f23 (d2, d3;β, κ) can be

constructed as:

f23l,u (d2, d3) = f̂23 (d2, d3)± tα
2
,n−p

√
V̂arf23 (d2, d3),

where tα
2
,n−p is the upper α

2 percentile of a t-distribution with n−p degrees of freedom.

For each combination dose (d1, d2, d3), the variance of the estimated polynomial

f123 (d1, d2, d3;β, κ) can be approximated using the delta method by

V̂arf123 =
(
∂f123
∂(β,κ)

)′
Σ
(
∂f123
∂(β,κ)

)
|(β,κ)=(β̂,κ̂) where

∂f123

∂ (β, κ)
=

(
∂f123

∂β2
,
∂f123

∂β3
,
∂f123

∂β4
,
∂f123

∂β5
,
∂f123

∂κ123,0
,
∂f123

∂κ123,1
,

∂f123

∂κ123,2
,
∂f123

∂κ123,3
,
∂f123

∂κ123,4
,
∂f123

∂κ123,5
,
∂f123

∂κ123,6
,
∂f123

∂κ123,7

)′
=

(
∂f123

∂ρ2

∂ρ2

∂β2
,
∂f123

∂ρ2

∂ρ2

∂β3
,
∂f123

∂ρ3

∂ρ3

∂β4
,
∂f123

∂ρ3

∂ρ3

∂β5
, 1, (d1)

1
3 ,

(ρ2d2)
1
3 , (ρ3d3)

1
3 , d1, ρ2d2, ρ3d3, (d1ρ2d2ρ3d3)

1
3

)′
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with ∂f123
∂ρ2

= 1
3κ123,2

(
d2
ρ22

) 1
3

+ κ123,5d2 + 1
3κ123,7

(
d1d2ρ3d3

ρ22

) 1
3
, ∂f123

∂ρ3
= 1

3κ123,3

(
d3
ρ23

) 1
3

+

κ123,6d3 + 1
3κ123,7

(
d1ρ2d2d3

ρ23

) 1
3
, and ∂ρ2

∂β2
, ∂ρ2
∂β3

, ∂ρ3
∂β4

, and ∂ρ3
∂β5

defined as shown above. Σ

is the estimated covariance matrix of the parameters (β2, β3, β4, β5, κ123,0, κ123,1, κ123,2,

κ123,3, κ123,4, κ123,5, κ123,6, κ123,7). So the (1− α) × 100% upper and lower confidence

surfaces for f123 (d1, d2, d3;β, κ) can be constructed as:

f123l,u (d1, d2, d3) = f̂123 (d1, d2, d3)± tα
2
,n−p

√
V̂arf123 (d1, d2, d3),

where tα
2
,n−p is the upper α

2 percentile of a t-distribution with n−p degrees of freedom.

5.2.3 Model Building Algorithm

Because of the large number of parameters, a model building algorithm, similar to

that in Kong and Lee, will be used to attempt to reduce the model to its essential

parameters.

After fitting the full model, the parameter with the smallest t value will be considered

for removal, subject to the following restrictions. No “main effect” parameter will be

removed from the model as long as any of its interaction terms remain in the model.

Also, none of the β parameters will be considered for removal, nor will κ12,0, κ13,0, κ23,0,

or κ123,0. After the candidate parameter for removal is chosen, a new model excluding

that parameter will be fitted. The Akaike Information Criterion (AIC) for the reduced

model will then be compared to the AIC from the original model. If the AIC of the

reduced model is better (lower) than the AIC of the original model, then the candidate

parameter is removed from the model, and the process repeats, considering another

parameter for removal. If the AIC of the reduced model is worse (higher) than the AIC

of the original model, then the model building algorithm concludes and the original

model is selected as the “final” model. If all candidate parameters are removed, the

model will have been reduced to the extended Plummer and Short model.

The variance estimations described in Section 5.2.2 were based on the full extended

Kong and Lee parametric model. The variance estimation based on the final model is

done similarly.
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5.3 Response Surface Estimation

An R program was created to implement the extended Kong and Lee parametric method

described in the Section 5.2.

Because no data sets were available for analysis, simulated data sets were used. Two

data sets were constructed and analyzed using the program. The two constructed data

sets corresponded to 2 different synergy scenarios.

In the first scenario there was 2-way synergy between one pair of drugs and also

3-way synergy between all of the drugs. This scenario evaluates how well the model

can distinguish between the two types of synergy.

In the second scenario there was localized 3-way synergy and 3-way antagonism.

This scenario evaluates how well the model handles synergistic relationships which

could not be adequately modeled by the extended Plummer and Short model.

5.3.1 Simulation Data Construction

For both synergy scenarios, each constructed data set consisted of generated measure-

ments for combination treatments of 3 drugs. All 3 drugs had 7 dose levels. In addition

to a dose of 0, the first drug had dose levels of 2.5, 5, 7.5, 10, 15, and 20. The second

drug had levels one half of the first drug, while the third had levels one quarter of the

first drug. At each unique dose combination, 3 repetitions were simulated.

The relative potency of the first drug to the second drug was defined as ρ2:

log (ρ2) = β2 + β3 log (D2) (5.4)

where D2 is the solution to:

D2 = d2 + d1/ρ2

and β2 = log 2 and β3 = 0.02. The relative potency of the first drug to the third drug

was defined as ρ3:

log (ρ3) = β4 + β5 log (D3) (5.5)

where D3 is the solution to:

D3 = d3 + d1/ρ3
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and β4 = log 3 and β5 = 0.005. All possible combinations of the 3 drugs at the given

dose levels were used, with three generated results at each combination.

The generated response variable was a proportion, such as the proportion of cells

viable after the given treatment, a common end point in many nonclinical oncology

studies. Because the analysis program assumes the response E is a proportion, it ini-

tially transforms it to be the transformed effect Y using the function g (E) = logitE =

log E
1−E . All generated responses were constructed on the transformed scale as y,

and then transformed to be E on the original scale of responses using the function

g−1 (y) = logit−1 y = 1
1+exp (−y) . A small amount of random noise, from a normal dis-

tribution with a mean of 0 and a standard deviation of 0.1, was added to each generated

response value before its antilogit transformation.

The constructed data set for the first scenario assumed that there was 2-way synergy

between one pair of drugs and 3-way synergy between all 3 drugs. The response was

constructed as:

Y = β0 + β1 log(d1 + ρ2d2 + ρ3d3

+ f12 (d1, d2;β2, β3, κ1) (d1ρ2d2)1/2

+ f123 (d1, d2, d3;β2, β3, β4, β5, κ0) (d1ρ2d2ρ3d3)1/3) + ε

where:

f12 (d1, d2;β2, β3, κ1) =κ12,0 + κ12,1d
1
2
1 + κ12,2 (ρ2d2)

1
2 + κ12,3d1

+ κ12,4ρ2d2 + κ12,5 (d1ρ2d2)
1
2

f123 (d1, d2, d3;β2, β3, β4, β5, κ0) =κ123,0 + κ123,1d
1
3
1 + κ123,2 (ρ2d2)

1
3 + κ123,3 (ρ3d3)

1
3

+ κ123,4d1 + κ123,5ρ2d2 + κ123,6ρ3d3

+ κ123,7 (d1ρ2d2ρ3d3)
1
3

ε ∼ N
(
0, 0.12

)
where β0 = 4, β1 = −1, ρ2 and ρ3 were defined as in (5.4) and (5.5) respectively, with

β2 = log 2, β3 = 0.02, β4 = log 3, β5 = 0.005, κ12,0 = 0.4, κ123,7 = 0.08, and all other

parameters were 0.
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The constructed data set for the second scenario assumed that there was local 3-way

synergy between all 3 drugs in one region, but local 3-way antagonism between all 3

drugs in another region; all 2-way relations were assumed to be additive. The response

was constructed as: The response was constructed as:

Y = β0 + β1 log(d1 + ρ2d2 + ρ3d3

+ f123 (d1, d2, d3;β2, β3, β4, β5, κ0) (d1ρ2d2ρ3d3)1/3) + ε

where:

f123 (d1, d2, d3;β2, β3, β4, β5, κ0) =κ123,0 + κ123,1d
1
3
1 + κ123,2 (ρ2d2)

1
3 + κ123,3 (ρ3d3)

1
3

+ κ123,4d1 + κ123,5ρ2d2 + κ123,6ρ3d3

+ κ123,7 (d1ρ2d2ρ3d3)
1
3

ε ∼ N
(
0, 0.12

)
where β0 = 4, β1 = −1, ρ2 and ρ3 were defined as in (5.4) and (5.5) respectively, with

β2 = log 2, β3 = 0.02, β4 = log 3, β5 = 0.005, κ123,0 = 1, κ123,3 = 0.5, κ123,7 = −0.2,

and all other parameters were 0.

5.3.2 First Scenario: Two-Way Synergy and Three-Way Synergy

The full fitted model for the first scenario data is shown in Table 5.1. It shows that

κ123,7 was the only significant κ parameter in the model, and it was estimated slightly

over 50% above its true value. κ12,0, the only other κ parameter with a non-zero true

value, was not significant, and it was also estimated about 50% above its true value.

Although κ12,0 was not significant, nor were any of the other κ parameters in the

f12 function, the confidence interval for the f12 function itself was significantly different

from zero at most dose combinations, as shown in Panel R of Figure 5.1. This indicates

that the model did detect the synergy between Drugs 1 and Drugs 2, even though the

individual parameter estimates were not significant.

For the final model, the model building algorithm removed all of the κ parameters

considered for removal, except for κ123,7. The remaining κ parameters were retained in

the model because of the model building rules, although some of them would have been
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Table 5.1: Estimated parameters of full model for Scenario 1
Parameter True Value Estimated Value Standard Error p-value

β0 4. 3.988 0.0715 <0.001

β1 -1. -0.993 0.0321 <0.001

β2 0.693 0.677 0.0724 <0.001

β3 0.02 0.036 0.046 0.430

β4 1.099 1.114 0.0513 <0.001

β5 0.005 -0.015 0.045 0.734

κ12,0 0.4 0.611 0.3759 0.104

κ12,1 0. -0.16 0.1794 0.373

κ12,2 0. 0.043 0.1683 0.799

κ12,3 0. 0.026 0.0283 0.354

κ12,4 0. -0.01 0.0251 0.680

κ12,5 0. -0.001 0.0201 0.976

κ13,0 0. -0.468 0.3472 0.178

κ13,1 0. 0.251 0.1587 0.115

κ13,2 0. 0.1 0.1925 0.602

κ13,3 0. -0.029 0.0247 0.238

κ13,4 0. -0.021 0.0342 0.543

κ13,5 0. -0.009 0.0245 0.708

κ23,0 0. -0.033 0.3386 0.922

κ23,1 0. -0.059 0.1451 0.684

κ23,2 0. 0.059 0.1872 0.753

κ23,3 0. 0.013 0.0223 0.572

κ23,4 0. 0.009 0.0342 0.791

κ23,5 0. -0.02 0.024 0.408

κ123,0 0. 1.606 1.0768 0.136

κ123,1 0. -0.465 0.4474 0.299

κ123,2 0. -0.329 0.4238 0.438

κ123,3 0. -0.351 0.4621 0.447

κ123,4 0. 0.011 0.034 0.746

κ123,5 0. 0.015 0.0305 0.632

κ123,6 0. 0.013 0.0411 0.749

κ123,7 0.08 0.125 0.0441 0.005
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retained anyway due to their significance. The final fitted model for the first scenario

data is shown in Table 5.1. As shown in the table, κ123,7 is still significant, although it

is estimated almost 40% above its true value. κ12,0, the only other κ parameter with a

non-zero true value, is now significant, and is estimated only less than 10% above its

true value. This appears to be one case where the final model performs better than

the full model, although the goodness of fit evaluations showed in general that the full

model usually performs better than the final model.

Table 5.2: Estimated parameters of final model for Scenario 1
Parameter True Value Estimated Value Standard Error p-value

β0 4. 3.988 0.054 <0.001

β1 -1. -0.994 0.0221 <0.001

β2 0.693 0.692 0.0596 <0.001

β3 0.02 0.02 0.0311 0.514

β4 1.099 1.103 0.0434 <0.001

β5 0.005 0.013 0.0323 0.690

κ12,0 0.4 0.429 0.0567 <0.001

κ13,0 0. -0.014 0.1029 0.889

κ13,1 0. 0.05 0.0293 0.086

κ13,2 0. -0.055 0.03 0.069

κ23,0 0. -0.027 0.0501 0.594

κ123,0 0. 0.88 0.486 0.070

κ123,1 0. -0.286 0.1253 0.023

κ123,2 0. -0.176 0.1188 0.138

κ123,3 0. -0.077 0.1337 0.564

κ123,7 0.08 0.11 0.0264 <0.001

Figure 5.1 graphically shows the results for the first constructed data set. Panels

A through C of the figure show the fitted log dose-response curves for each individual

drug, used alone. The log-dose response curves were used to construct initial estimates

for the extended Kong and Lee parametric model.
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Figure 5.1: Results from first constructed data set, with 2-way synergy between Drug
A and Drug B, and 3-way synergy between Drug A, Drug B and Drug C.
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Most of the remaining plots show contour plots of various models and functions,

but many of these are 3-dimensional figures in 4-dimensional space. So they are shown

using multiple contour plots of 3-dimensional figures, for different levels along the fourth

dimension. The dose level of Drug A is treated as the fourth dimension, so there are

separate figures for different dose levels of Drug A. Within each plot, the contours show

the response for the given doses of Drug B and Drug C on the X and Y axes respectively.

Panels D through G in the figure show contour plots of the “observed” constructed

data. The contour plots of the “observed” data in Panels E through G are generally

curved downward, reflecting the the 3-way synergy between Drug A, Drug B and Drug

C. Some of the lines are rather jagged, due to the variability in the data. The lines

in Panel D are more straight, reflecting the fact that this is 3-way synergy that is not

present when Drug A is not present. The 2-way synergy between Drug A and Drug B

is difficult to discern in the plots because it does not occur along the X and Y axes of

the individual plots, but rather across the X axes of all of the plots.

Panels H through K show contour plots of the full fitted model. Panels I through

K are curved downward, reflecting the 3-way synergy, and have smoothed out the

jaggedness in the observed data plots. Panel L shows the residuals of the full fitted

model, plotted against the observed (logit) response.

Panels M through P show contour plots of the final fitted model. There appears to

be little difference between the plots of the final model and the full model. Panel Q

shows the residuals of the final fitted model, which do not appear to be very different

from those of the full fitted model, shown in Panel L.

Panel R shows a contour plot of the f12 function of the full fitted model. The dashed

red line shows where the upper 95% confidence interval for the mean crosses the zero

plane. This indicates the border of the region of statistical significant synergy between

Drug A and Drug B, which is present and significant at most dose combinations.

Panel S shows a contour plot of the f13 function of the full fitted model. Ideally

the plot would be perfectly flat on the zero plane, reflecting the true value zero of f13.

Although the positive contour lines surface indicate that synergy is present, the lack of a

dashed red line indicates that it is not statistically significant at any dose combination.
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Panel T shows a contour plot of the f23 function of the full fitted model. As with

the plot of f13, ideally this plot would be perfectly flat on the zero plane, reflecting

the true value zero of f23. And as with f13, although the positive contour lines surface

indicate that synergy is present, the lack of a dashed red line indicates that it is not

statistically significant at any dose combination.

Panels U through X show contour plots of the f123 function of the full fitted model.

The positive contour lines indicate that synergy is present, and the dashed red lines

indicate that it is statistically significant at most dose combinations, except where Drug

A is absent.

Panels Y through BB show contour plots of the Interaction Index based on the full

fitted model. The contour lines less than 1 indicate that synergy is present at most

dose combinations, except where Drug A is absent.

5.3.3 Second Scenario: Local Three-Way Synergy and Antagonism

The full fitted model for the second scenario data is shown in Table 5.3. As shown in

the table, κ123,7 was the only significant κ parameters in the model. κ123,0 and κ123,3

were over-estimated by approximately 20%, although κ123,7 was estimated within 5%

of its true value.

Although κ123,7 was the only significant parameter in the f123 function, the model

did find significant 3-way synergy and antagonism, as shown in Panels V through X

of Figure 5.2. This indicates that the model did detect the 3-way local synergy and

local antagonism between the drugs, even though only one of the individual parameter

estimates was significant.

The final fitted model for the second scenario data is shown in Table 5.4. Of the

κ parameters considered for removal that had a true value of zero, only some were

removed by the model building algorithm. κ13,1 and κ23,2 were left in the model, and

both of them were significant. significance. Of the three κ parameters with true non-

zero values, κ123,0 is not significant, but both κ123,3 and κ123,7 are significant. κ123,0 is

now underestimated by over 50%, while κ123,3 is overestimated by 50%, and κ123,7 is

underestimated by about 20%.
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Table 5.3: Estimated parameters of full model for Scenario 2
Parameter True Value Estimated Value Standard Error p-value

β0 4. 3.978 0.0759 <0.001

β1 -1. -0.987 0.0339 <0.001

β2 0.693 0.677 0.0772 <0.001

β3 0.02 0.022 0.0485 0.645

β4 1.099 1.112 0.0551 <0.001

β5 0.005 -0.006 0.0483 0.907

κ12,0 0. -0.106 0.3414 0.755

κ12,1 0. -0.033 0.1642 0.843

κ12,2 0. 0.09 0.1588 0.571

κ12,3 0. 0.015 0.0262 0.566

κ12,4 0. -0.007 0.0246 0.782

κ12,5 0. -0.013 0.0193 0.500

κ13,0 0. -0.504 0.365 0.168

κ13,1 0. 0.322 0.1694 0.057

κ13,2 0. 0.06 0.2009 0.766

κ13,3 0. -0.036 0.0264 0.172

κ13,4 0. 0.005 0.0361 0.893

κ13,5 0. -0.032 0.0254 0.202

κ23,0 0. 0.145 0.3721 0.697

κ23,1 0. 0.133 0.1629 0.414

κ23,2 0. -0.194 0.2 0.331

κ23,3 0. -0.02 0.0248 0.419

κ23,4 0. 0.041 0.0366 0.262

κ23,5 0. -0.015 0.025 0.551

κ123,0 1. 1.188 0.9986 0.235

κ123,1 0. 0.184 0.4234 0.664

κ123,2 0. -0.541 0.4124 0.190

κ123,3 0.5 0.608 0.4525 0.179

κ123,4 0. -0.011 0.0324 0.729

κ123,5 0. 0.049 0.031 0.113

κ123,6 0. 0.003 0.0411 0.947

κ123,7 -0.2 -0.212 0.0351 <0.001
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Table 5.4: Estimated parameters of final model for Scenario 2
Parameter True Value Estimated Value Standard Error p-value

β0 4. 4.034 0.0569 <0.001

β1 -1. -1.017 0.0231 <0.001

β2 0.693 0.727 0.0621 <0.001

β3 0.02 -0.017 0.0314 0.596

β4 1.099 1.138 0.0469 <0.001

β5 0.005 -0.03 0.0343 0.389

κ12,0 0. 0.007 0.0449 0.871

κ13,0 0. -0.297 0.1609 0.065

κ13,1 0. 0.23 0.1012 0.023

κ13,3 0. -0.04 0.0157 0.011

κ23,0 0. 0.317 0.1895 0.095

κ23,2 0. -0.245 0.1243 0.049

κ23,4 0. 0.041 0.0217 0.060

κ123,0 1. 0.45 0.493 0.361

κ123,1 0. 0.227 0.1182 0.055

κ123,2 0. -0.155 0.1948 0.425

κ123,3 0.5 0.726 0.1371 <0.001

κ123,5 0. 0.027 0.0137 0.047

κ123,7 -0.2 -0.242 0.0272 <0.001

Figure 5.2 shows the results for the second constructed data set. Panels A through

C of the figure show the fitted log dose-response curves for each individual drug, used

alone. The log-dose response curves were used to construct initial estimates for the

extended Kong and Lee parametric model.
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Figure 5.2: Results from second constructed data set, with local 3-way synergy in one
region and local 3-way antagonism in another.
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Panels D through G in the figure show contour plots of the “observed” constructed

data. The contour plots of the “observed” data in Panels E through G have some lines

curved downward, but other lines that are not curved downward, particularly at the

highest dose, reflecting the mix of local 3-way synergy and antagonism between Drug

A, Drug B and Drug C. The lines in Panel D are slightly jagged, but more straight,

reflecting the fact that this synergy and antagonism is 3-way synergy and antagonism,

and is not present when Drug A is not present.

Panels H through K show contour plots of the full fitted model. The fitted surfaces

match the observed surfaces fairly well, curved downward in some regions, but not in

others. Panel L shows the residuals of the full fitted model, plotted against the observed

(logit) response.

Panels M through P show contour plots of the final fitted model. There appears to

be little difference between the plots of the final model and the full model. Panel Q

shows the residuals of the final fitted model, which do not appear to be very different

from those of the full fitted model, shown in Panel L.

Panels R, S and T respectively show contour plots of the f12, f13 and f23 functions

of the full fitted model. Ideally these plots would be perfectly flat on the zero plane,

reflecting the true value zero of the functions. Although both positive and negative

contour lines of the surface indicate that synergy or antagonism may be present, the

lack of dashed red lines and dashed blue lines indicates that it is not statistically

significant at any dose combination.

Panels U through X show contour plots of the f123 function of the full fitted model.

The positive contour lines indicate regions where synergy is present, while the negative

contour lines indicate regions where antagonism is present. The dashed red lines and

dashed blue lines respectively indicate regions where the synergy and antagonism is

statistically significant.

Panels Y through BB show contour plots of the Interaction Index based on the

full fitted model. The contour lines less than 1 indicate the dose combinations where

synergy is present, while the contour lines greater than 1 indicate the dose combinations

where antagonism is present.
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5.4 Model Evaluation Using Simulated Data

An R program was created to implement and evaluate the goodness of fit of the extended

Kong and Lee parametric method for 3 drugs described in Section 5.2. The method

was evaluated using simulated data under two different synergy scenarios, the same

scenarios used to evaluate the response surface estimation of the method in Section 5.3:

2-way synergy between one pair of drugs combined with 3-way synergy between all of

the drugs, and a combination of localized 3-way synergy and 3-way antagonism.

The goodness of fit of the extended Kong and Lee parametric method was evaluated

using simulated data constructed as described in the Section 5.3.1. For each of the

two synergy scenarios described, 100 simulated data sets were constructed, and each

simulated data set was analyzed using the extended Kong and Lee parametric method.

Both the full model and the final model, selected by the model selection algorithm,

were evaluated.

The goodness of fit was evaluated in two ways: by evaluating the estimated param-

eters of the model, and by evaluating the estimated functions of the model, f12, f13, f23

and f123, at each dose combination; this second evaluation included an evaluation of

the classification of the dose combination as either synergistic, antagonistic or additive.

5.4.1 Goodness of Fit Based On Estimated Parameters

To evaluate the goodness of fit of the model, each parameter was evaluated as follows.

First, when evaluating a final model, the percentage of time that the parameter was

included in the final model was calculated (this evaluation was skipped for the full

models). Next the mean of the estimated parameter was calculated; if the parameter

was not included in the model for a given simulation run, its estimate was taken as

zero for that simulation run, so the mean is based on all 100 simulation runs. Then the

mean of the standard error of the parameters estimates was calculated; this mean was

only based on the simulation runs where the parameter was actually included in the

model. Next, the coverage of the parameter’s 95% confidence interval was calculated,

by calculating the percentage of time the estimated confidence interval contained the
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true value of the parameter. If the parameter was not included in the model for a given

simulation run, and its true value was zero, then the confidence interval was considered

to have included the true value. If the parameter was not included in the model for

a given simulation run, and its true value was not zero, then the confidence interval

was considered to have not included the true value. The mean bias of each estimate

was calculated as the mean of the difference between each estimate and the true value.

The percent bias was calculated as the bias divided by the true value, times 100%; the

percent bias was not calculated in cases where the true value was zero.

Table 5.5 shows the results of the full model for the first scenario, 2-way synergy

between one pair of drugs combined with 3-way synergy. As the table shows, most of

the parameters have a very small percent bias, except for the β3 and β5 parameters,

which have very small true values. The coverage of the confidence intervals is fairly

high, and close to the nominal 95% for most parameters.

Table 5.6 shows the results of the final model for first scenario. With the final model,

the relative bias of κ123,7, one of the two non-zero κ parameters, is much higher than

in the full model. The coverage for the confidence intervals is lower, as low as 57% for

some cases including κ123,7.

Based on these results, it appears that there may be a problem with the model

selection algorithm, and the full model may be a better model to use. The similarity of

the f12, f13, f23 and f123 functions may make it difficult to distinguish the parameters

from each other, and difficult to distinguish two-way synergy from three-way synergy.

Although there is no 2-way synergy or antagonism between Drug 1 and Drug 3, and

between Drug 2 and Drug 3, a number of κ parameters from the f13 and f23 functions,

which model those 2-way interactions, are being included in the final model approxi-

mately 50% of the time, even though all of those parameters have a true value of zero.

And perhaps not coincidentally, κ123,7, which has a true value that is non-zero, and

which is a parameter of f123 that models the three-way synergy, is being excluded from

the final model nearly 25% of the time.

Table 5.7 shows the results of the full model for the second scenario, local 3-way

synergy and antagonism between all three drugs. As the table shows, most of the
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Table 5.5: Evaluation of estimated parameters of full model of Scenario 1
Mean Confidence

True Mean Standard Interval Percent
Parameter Value Estimate Error Coverage Bias Bias

β0 4. 3.998 0.0727 96% -0.002 -0.0%
β1 -1. -1.001 0.0326 97% -0.001 0.1%
β2 0.693 0.686 0.0731 95% -0.007 -1.0%
β3 0.02 0.021 0.0461 99% 0.001 2.8%
β4 1.099 1.093 0.0524 97% -0.005 -0.5%
β5 0.005 0.008 0.0461 96% 0.003 60.0%
κ12,0 0.4 0.407 0.3842 97% 0.007 1.9%
κ12,1 0. -0.003 0.1821 94% -0.003 NA
κ12,2 0. -0.002 0.1752 98% -0.002 NA
κ12,3 0. 0.001 0.0284 97% 0.001 NA
κ12,4 0. 0.001 0.0268 94% 0.001 NA
κ12,5 0. -0.001 0.0208 96% -0.001 NA
κ13,0 0. 0.046 0.3426 95% 0.046 NA
κ13,1 0. -0.013 0.159 94% -0.013 NA
κ13,2 0. -0.024 0.1872 94% -0.024 NA
κ13,3 0. 0.001 0.0251 94% 0.001 NA
κ13,4 0. 0.003 0.0334 97% 0.003 NA
κ13,5 0. 0.003 0.0241 93% 0.003 NA
κ23,0 0. 0.018 0.348 94% 0.018 NA
κ23,1 0. 0.001 0.1535 96% 0.001 NA
κ23,2 0. -0.01 0.1875 94% -0.01 NA
κ23,3 0. 0. 0.0239 97% 0. NA
κ23,4 0. 0.001 0.0337 95% 0.001 NA
κ23,5 0. 0.001 0.0239 98% 0.001 NA
κ123,0 0. -0.099 1.0736 95% -0.099 NA
κ123,1 0. -0.001 0.4489 97% -0.001 NA
κ123,2 0. 0.02 0.4361 96% 0.02 NA
κ123,3 0. 0.052 0.4557 95% 0.052 NA
κ123,4 0. 0.003 0.0342 96% 0.003 NA
κ123,5 0. 0.001 0.0324 97% 0.001 NA
κ123,6 0. -0.002 0.0406 95% -0.002 NA
κ123,7 0.08 0.072 0.0436 95% -0.008 -9.9%
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Table 5.6: Evaluation of estimated parameters of final model of Scenario 1
Included Mean Confidence

True In Final Mean Standard Interval Percent
Parameter Value Model Estimate Error Coverage Bias Bias

β0 4. 100% 3.999 0.0579 90% -0.001 -0.0%
β1 -1. 100% -1.001 0.0239 89% -0.001 0.1%
β2 0.693 100% 0.683 0.0626 94% -0.011 -1.5%
β3 0.02 100% 0.024 0.0347 90% 0.004 20.0%
β4 1.099 100% 1.093 0.0473 95% -0.006 -0.5%
β5 0.005 100% 0.009 0.0357 92% 0.004 88.8%
κ12,0 0.4 100% 0.426 0.1456 81% 0.026 6.5%
κ12,1 0. 51% -0.01 0.0797 77% -0.01 NA
κ12,2 0. 47% -0.005 0.0838 84% -0.005 NA
κ12,3 0. 19% 0.001 0.0197 91% 0.001 NA
κ12,4 0. 19% 0. 0.0194 95% 0. NA
κ12,5 0. 21% 0.001 0.0173 89% 0.001 NA
κ13,0 0. 100% 0.04 0.1416 72% 0.04 NA
κ13,1 0. 54% -0.005 0.0883 72% -0.005 NA
κ13,2 0. 48% -0.027 0.0892 81% -0.027 NA
κ13,3 0. 25% -0.001 0.0198 85% -0.001 NA
κ13,4 0. 13% 0.003 0.0293 94% 0.003 NA
κ13,5 0. 24% 0.004 0.0213 88% 0.004 NA
κ23,0 0. 100% 0.041 0.1434 80% 0.041 NA
κ23,1 0. 46% -0.011 0.0769 83% -0.011 NA
κ23,2 0. 48% -0.009 0.0961 77% -0.009 NA
κ23,3 0. 17% 0. 0.019 95% 0. NA
κ23,4 0. 19% -0.001 0.0274 95% -0.001 NA
κ23,5 0. 21% 0.004 0.0203 91% 0.004 NA
κ123,0 0. 100% -0.163 0.5187 75% -0.163 NA
κ123,1 0. 97% 0.016 0.1515 71% 0.016 NA
κ123,2 0. 99% 0.042 0.149 76% 0.042 NA
κ123,3 0. 99% 0.055 0.1686 74% 0.055 NA
κ123,4 0. 13% 0.003 0.0242 98% 0.003 NA
κ123,5 0. 15% 0.002 0.021 94% 0.002 NA
κ123,6 0. 20% 0. 0.0299 89% 0. NA
κ123,7 0.08 76% 0.065 0.0287 73% -0.015 -18.3%
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parameters have a very small percent bias, except for the β3 and β5 parameters, which

have very small true values, so even a small bias becomes a very large percent bias. The

coverage of the confidence intervals is fairly high, at least 95% for most parameters.

Table 5.7: Evaluation of estimated parameters of full model of Scenario 2
Mean Confidence

True Mean Standard Interval Percent
Parameter Value Estimate Error Coverage Bias Bias

β0 4. 4.001 0.0718 97% 0.001 0.0%
β1 -1. -1.002 0.0321 97% -0.002 0.2%
β2 0.693 0.689 0.0722 95% -0.004 -0.6%
β3 0.02 0.018 0.0453 97% -0.002 -7.9%
β4 1.099 1.094 0.052 97% -0.004 -0.4%
β5 0.005 0.007 0.0454 97% 0.002 37.9%
κ12,0 0. 0.001 0.321 98% 0.001 NA
κ12,1 0. -0.002 0.1535 95% -0.002 NA
κ12,2 0. 0.001 0.1481 98% 0.001 NA
κ12,3 0. 0. 0.0242 96% 0. NA
κ12,4 0. 0.001 0.0231 95% 0.001 NA
κ12,5 0. -0.001 0.0178 97% -0.001 NA
κ13,0 0. 0.043 0.3354 96% 0.043 NA
κ13,1 0. -0.011 0.1558 94% -0.011 NA
κ13,2 0. -0.023 0.1842 94% -0.023 NA
κ13,3 0. 0.001 0.0247 94% 0.001 NA
κ13,4 0. 0.003 0.0331 97% 0.003 NA
κ13,5 0. 0.003 0.0227 93% 0.003 NA
κ23,0 0. 0.012 0.3393 94% 0.012 NA
κ23,1 0. 0.002 0.1507 97% 0.002 NA
κ23,2 0. -0.008 0.1843 94% -0.008 NA
κ23,3 0. 0. 0.0237 96% 0. NA
κ23,4 0. 0.001 0.0333 94% 0.001 NA
κ23,5 0. 0.001 0.0224 98% 0.001 NA
κ123,0 1. 0.941 0.9409 96% -0.059 -5.9%
κ123,1 0. -0.005 0.3979 97% -0.005 NA
κ123,2 0. 0.006 0.3865 96% 0.006 NA
κ123,3 0.5 0.54 0.4167 96% 0.04 8.0%
κ123,4 0. 0.002 0.03 97% 0.002 NA
κ123,5 0. 0. 0.0297 95% 0. NA
κ123,6 0. -0.002 0.0381 94% -0.002 NA
κ123,7 -0.2 -0.205 0.0325 95% -0.005 2.7%

Table 5.8 shows the results of the final model for second scenario. With the final

model, the relative bias of κ123,3, one of the three non-zero κ parameters, is much higher

than in the full model. The coverage for the confidence intervals is lower, as low as 82%

for some cases including κ123,3.

As with final model results for the first scenario, it appears that there may be
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a problem with the model selection algorithm, and the full model may be a better

model to use. In this scenario there is no 2-way synergy or antagonism, so all of the

κ parameters of the f12, f13 and f23 functions have a true value of zero, and none of

them should be included in the final model (except the “intercepts”, κ12,0, κ13,0, and

κ23,0 which are always included in the model). But, some of those κ parameters are

being included in the final model over 40% of the time.

Table 5.8: Evaluation of estimated parameters of final model of Scenario 2
Included Mean Confidence

True In Final Mean Standard Interval Percent
Parameter Value Model Estimate Error Coverage Bias Bias

β0 4. 100% 4.004 0.0556 94% 0.004 0.1%
β1 -1. 100% -1.003 0.0225 93% -0.003 0.3%
β2 0.693 100% 0.69 0.0598 94% -0.003 -0.4%
β3 0.02 100% 0.019 0.0324 93% -0.001 -7.3%
β4 1.099 100% 1.097 0.0457 93% -0.002 -0.2%
β5 0.005 100% 0.004 0.0338 91% -0.001 -12.4%
κ12,0 0. 100% -0.002 0.1225 84% -0.002 NA
κ12,1 0. 44% 0.003 0.068 81% 0.003 NA
κ12,2 0. 48% 0.001 0.0799 87% 0.001 NA
κ12,3 0. 15% -0.001 0.017 95% -0.001 NA
κ12,4 0. 24% 0. 0.017 93% 0. NA
κ12,5 0. 19% -0.001 0.0157 94% -0.001 NA
κ13,0 0. 100% 0.039 0.1352 75% 0.039 NA
κ13,1 0. 50% -0.013 0.0831 76% -0.013 NA
κ13,2 0. 47% -0.017 0.0877 83% -0.017 NA
κ13,3 0. 23% 0.001 0.0185 86% 0.001 NA
κ13,4 0. 13% 0.002 0.0291 94% 0.002 NA
κ13,5 0. 22% 0.002 0.0203 91% 0.002 NA
κ23,0 0. 100% 0.008 0.1287 84% 0.008 NA
κ23,1 0. 40% -0.001 0.0773 92% -0.001 NA
κ23,2 0. 41% -0.003 0.0929 86% -0.003 NA
κ23,3 0. 17% 0. 0.0185 96% 0. NA
κ23,4 0. 16% 0. 0.0281 94% 0. NA
κ23,5 0. 13% 0.001 0.0203 97% 0.001 NA
κ123,0 1. 100% 0.94 0.5091 82% -0.06 -6.0%
κ123,1 0. 100% 0.001 0.1398 80% 0.001 NA
κ123,2 0. 100% 0.008 0.1423 86% 0.008 NA
κ123,3 0.5 100% 0.527 0.1674 83% 0.027 5.4%
κ123,4 0. 13% 0.002 0.0199 96% 0.002 NA
κ123,5 0. 20% 0.001 0.0183 92% 0.001 NA
κ123,6 0. 24% -0.002 0.0258 91% -0.002 NA
κ123,7 -0.2 100% -0.204 0.0253 88% -0.004 2.2%
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5.4.2 Goodness of Fit Based On Model Functions

The second way of evaluating the goodness of fit is to evaluate the values of the f12, f13,

f23 and f123 functions at each combination of doses, and to evaluate the classification

of the dose as either synergistic, antagonistic or additive. Each function was evaluated

at each dose combination as follows.

First, the mean of the function’s estimated value from the simulation runs was

calculated. The bias was calculated as the difference between the mean estimated value

and the true value of the function. The percent bias was calculated as the bias divided

by the true value of the function, times 100%; if the true value of the function is zero,

then the percent bias cannot be calculated.

The mean square error of the estimates was calculated as the mean of the square

of the difference between the estimated value of the function for a given simulation run

and its true value.

The confidence interval coverage was calculated as the percentage of times that the

estimated 95% confidence interval for the function included its true value.

The last method of evaluating the goodness of fit of the model functions was based on

the classification of each dose combination as either synergistic, antagonistic or additive.

The classification of a dose combination is determined from the estimated value of the

function at that dose combination, and its estimated 95% confidence interval. If the

upper limit of the confidence interval is less than zero, then the dose combination is

classified as synergistic; if the lower limit of the confidence interval is greater than zero,

then the dose combination is classified as antagonistic; if the confidence interval includes

zero, then the dose combination is classified as additive. To evaluate the goodness of fit,

at each dose the number of simulation runs that were classified into each category were

counted, and the percentage of runs that chose the “correct” category was recorded.

Because the classification is based on the confidence interval for the estimated value

of the function, and thus its statistical significance, the “correct” category for a dose

combination is not simply based on the true value of the function for that dose com-

bination. Although negative values indicate antagonism, negative values close to zero
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may not be far enough from zero to indicate significant antagonism. Similarly, although

positive values indicate synergy, positive values close to zero may not be far enough

from zero to indicate significant synergy. So the “correct” category must take into

account not just the true value of the function, but also the “expected” width of the

confidence interval for the estimate of the function.

The estimated confidence interval for the function is estimated using the delta

method and the estimated standard errors for the parameters, as described in Sec-

tion 5.2.2. The standard errors for the parameters are estimated as part of the nonlinear

regression performed on the model of the extended Kong and Lee parametric method.

The nonlinear regression software used in this implementation of the extended Kong

and Lee parametric method, the nls() function in R, uses the Gauss-Newton method to

estimate the regression parameters and their standard errors. The estimated standard

errors are based on the design of the model and the residual mean square error, which

estimates the standard deviation.

In the simulations used to evaluate the goodness of fit, the true standard deviation is

known, and used to create the simulated data. In the same way that the Gauss-Newton

method uses the estimated standard deviation to estimate the standard errors of the

estimated parameters in the model, the known true standard deviation can be used to

calculate a “true standard error” for each known, true parameter. The delta method

can then be used to calculate the “true standard errors” of the model functions f12, f13,

f23 and f123. The “true standard errors” of the model functions can be used to calculate

confidence intervals for the model functions. Finally, these confidence intervals can then

be used to define the “correct” category for a dose combination.

The “true standard error” for each regression parameter was calculated from the

known true standard deviation and a design matrix based on derivatives of the model

specified in Equation (5.3). See Appendix A for details.

The “true standard errors” for the regression parameters were then used to calculate

the “true standard error” for each model function, using the Delta method, in the same

way the estimated standard error for the model function is calculated, as described in

Section 5.2.2. The “true standard error” for the model function was used to calculate
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a confidence interval for the true value of the function. The confidence interval based

on the “true standard error” was then used to determine the “correct” category for

each dose combination. If the confidence interval was completely above zero, then the

correct category was defined to be synergism. If the confidence interval was completely

below zero, then the correct category was defined to be antagonism. If the confidence

interval included zero, then the correct category was defined to be additive.

Because of the large number of dose combinations, especially for f123, it is generally

more useful to examine summaries of the evaluations measures, rather than the individ-

ual measures at particular dose combinations. The evaluation measures are summarized

graphically below, but tables listing the measures at each dose combination are included

in Appendix B

Figure 5.3 shows box plots summarizing the results for function f12. The figure

shows the results for percent bias, bias, confidence interval coverage, and correct clas-

sification for both models of both scenarios.

The percent bias and bias are both fairly small, and close to zero (for the second

scenario, the true value of f12 is zero, so the percent bias could not be calculated). For

both scenarios, the full model generally performs better than the final model, which

has a noticeable negative bias.

For the full model of both scenarios, the confidence interval coverage is very close

to its nominal level of 95%. The coverage is somewhat less for the final model of

both scenarios, suggesting that the final model is underestimating the variability in the

model.

The percentage of correct classification is very good for both models of both sce-

narios.
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Figure 5.4 shows box plots summarizing the results for function f13. The true

value of f13 is zero for both scenarios, so percent bias could not be calculated for

either of them. The bias is similar for both models of both scenarios, and all models

underestimated the true value of f13.

For the confidence interval coverage and correct classification, the full model per-

forms better than the final model for both scenarios, although the confidence interval

coverage does not quite reach the nominal 95% level of the confidence interval.
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Figure 5.5 shows box plots summarizing the results for function f23. As with f13,

The true value of f23 is zero for both scenarios, so percent bias could not be calculated

for either of them. The bias is similar for both models of both scenarios, and all models

overestimated the true value of f23.

For the confidence interval coverage and correct classification, the full model again

performs better than the final model for both scenarios, and the confidence interval

coverage is very close to the 95% level of the confidence interval.
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Figure 5.5: Goodness of fit evaluation of function f23.
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For function f123, most of the percent bias measurements are between -15% and

15%, but there are a few percent bias measurements that are quite extreme, on the

order of 400% and -200%. If the extreme measurements are included in a graph, then

the bulk of the measurements are indistinguishable from each other because the scale

has to be so large to accommodate the extreme measurements.

Figure 5.6 shows box plots summarizing the results for function f123, excluding all

percent bias measurements outside the range of -15% to 15%, which are not shown in

the plot. A total of 11 large measurements were removed, and these large measurements

will be discussed shortly. The remaining measurements are fairly small, and generally

within 5%.

Under both scenarios there was little difference between the percent bias and the

bias of the full model and the final model. The confidence interval coverage of the full

model was much closer than the final model to the nominal 95% level of the confidence

interval. The final model performed more accurate classification than the full model

for the first scenario, but the classification by the full model was still very accurate.
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Figure 5.6: Goodness of fit evaluation of function f123. Some extreme percent bias
measurements have been excluded; see text for details.
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In Figure 5.6, eleven extremely large percent bias measurements from the full and

final models for Scenario 2 were excluded from the plot to make it more readable. As

described previously, the percent bias is calculated as the bias divided by the true value

of f123, multiplied by 100%. But these extreme percent bias measurements were not

due to extreme bias measurements. Instead, they were caused by dose combinations

where the bias of the estimate was not unusual, but the true value of f123 at that dose

combination was so close to zero that the percent bias became huge. Figure 5.7 shows

the percent bias measurements from Figure 5.6, plotted against their corresponding

true value of f123. As the figure shows, the extreme percent bias measurements for

Scenario 2 all occurred where the true value of f123 was very close to zero.
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Figure 5.7: Goodness of fit evaluation of function f123.
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Chapter 6

Extend Kong and Lee’s Semiparametric Model to Three

or More Drugs

6.1 General Model Description

The next synergy method that this thesis extends to handle three or more drugs is

Kong and Lee’s semiparametric method, which was described in Section 2.5.

As with Kong and Lee’s semiparametric method, we use the Loewe additivity model

as a starting point, although now that there are n drugs we use the extended Loewe

additivity model in (3.3). Assume that function Fj(Dj) denotes the dose-response

curve for drug j alone, for 1 ≤ j ≤ n. Given the inverses of the dose-response functions,

F−1
j (y), the predicted additive effect y for a combination of n doses can be calculated

by replacing each Dy,j in (3.3) by F−1
j (y) and then solving equation (3.3). We will

denote the predicted additive effect for combination dose (d1, . . . , dn) as F0(d1, . . . , dn).

As in Kong and Lee’s method, a two-component model could be defined as:

Y = F0 (d1, . . . , dn) + f (d1, . . . , dn)

with F0 (d1, . . . , dn) modeling the theoretic additive result and f (d1, . . . , dn) capturing

the interaction. But such a model would only capture a drug interaction compared to

the individual drugs used alone, and it would capture any drug interaction, regardless

of whether it was between all n drugs or only between a subset of the n drugs.

With n drugs there can be a number of different kinds of drug interactions, which

will be characterized by the number of drugs involved in the interaction, and referred

to as “2-way interactions”, “3-way interactions”, etc., all the way up to an “n-way

interaction”. The “2-way interactions” are between a single pair of drugs, and do not
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depend in any way on the presence or absence of any of the other drugs. Similarly, “3-

way interactions” are between three of the n drugs, and only depend on the presence of

the three drugs involved in the interaction. The “n-way interaction” is an interaction

between all n drugs, and depends on the presence of all n drugs.

With n drugs, for each of the “p-way interactions”, 2 ≤ p ≤ n, there are mp =
(
n
p

)
different interactions, each of which is between a unique combination of p of the n drugs.

Overall, there are a total of
∑n

p=2mp = M different interactions.

To capture all possible interactions, a M + 1-component model will be considered:

Y = F0 (d1, . . . , dn) +

n∑
p=2

∑
1≤i1<i2<···<ip≤n

fi1i2...ip
(
di1 , . . . , dip

)
with conditions:

fi1i2...ip
(
di1 , . . . , dip

)
= 0 if dij = 0 for any ij ∈ {i1, i2, . . . , ip}.

F0 is defined as above, and dj is the amount of Drug j in the combination; dij , where

ij ∈ {i1, i2, . . . , ip}, is the amount of the jth drug in the combination of p drugs.

The f functions model the interactions between combinations of drugs, with the

function fi1i2...ip modeling the p-way interaction between Drug i1, Drug i2, . . . , and

Drug ip. For all of the f functions in the model, positive values indicate synergy,

negative values indicate antagonism, and a value of zero indicates additivity, assuming

a higher response is “better” (if a lower response is “better” then the interpretations of

the signs are reversed).

6.2 Three Drug Model Description

To illustrate the method in greater detail, we will focus on a 3-drug model, but the

concepts and implementation could be extended to the n-drug model described above.

With 3 drugs we assume that function F1(D1) denotes the dose-response curve for

drug 1 alone, F2(D2) denotes the curve for drug 2 alone, and F3(D3) denotes the curve

for drug 3 alone. Given the inverses of the dose-response functions, F−1
1 (y), F−1

2 (y),

and F−1
3 (y), the predicted additive effect y for a combination of three doses can be

calculated by replacing Dy,1, Dy,2, and Dy,3 in (3.2) by F−1
1 (y), F−1

2 (y), and F−1
3 (y)



98

respectively, and then solving equation (3.2). We will denote the predicted additive

effect for combination dose (d1, d2, d3) as F0(d1, d2, d3).

To capture all possible interactions, a five-component model will be considered:

Y = F0 (d1, d2, d3) + f12 (d1, d2) + f13 (d1, d3) + f23 (d2, d3) + f123 (d1, d2, d3) (6.1)

with conditions:

f12 (d1, 0) = f12 (0, d2) = f13 (d1, 0) = f13 (0, d3) = f23 (d2, 0) = f23 (0, d3) = 0,

f123 (d1, d2, 0) = f123 (d1, 0, d3) = f123 (0, d2, d3) = 0.

where f12 (d1, d2), f13 (d1, d3), and f23 (d2, d3) capture the two-drug interactions, and

f123 (d1, d2, d3) captures the three-drug interaction.

Suppose the individual dose-effect curves are decreasing. If f123 (d1, d2, d3) < 0,

then the observed effect at (d1, d2, d3) is more than the predicted effect based on the

individual drugs and two-drug combinations, so the combination dose (d1, d2, d3) is

(local) synergistic. If f123 (d1, d2, d3) > 0, then the observed effect at (d1, d2, d3) is less

than the predicted effect based on the individual drugs and two-drug combinations, so

the combination dose (d1, d2, d3) is (local) antagonistic. If the individual dose-effect

curves were increasing, the interpretation of the sign of f123 would be reversed.

6.3 Estimation Method Description

As in Kong and Lee’s method, the model will be fitted using a multiple step process,

although now three steps will be used instead of two. The three steps can be summarized

as: (1) estimate the predicted additive effect, F0 (d1, d2, d3), (2) estimate the two-drug

interaction terms, f12 (d1, d2), f13 (d1, d3), and f23 (d2, d3), and (3) estimate the three-

drug interaction term, f123 (d1, d2, d3).

In order to estimate the predicted additive effect, F0 (d1, d2, d3), the individual drug

dose-response curves, F1 (d1), F2 (d2) and F3 (d3), for drugs 1, 2 and 3 are first estimated

using the dose-response results where each drug was used alone. This can be done either

parametrically, using linear dose-response or linear log-dose response models as Kong

and Lee did, or nonparametrically, using monotone smoothing based on a spline function
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[18]. The estimated predicted additive effect F̂0 (d1i, d2i, d3i) at the combination dose

(d1i, d2i, d3i) is then the solution of y from the Loewe’s additivity model equation:

d1i

F̂−1
1 (y)

+
d2i

F̂−1
2 (y)

+
d3i

F̂−1
3 (y)

= 1.

Once the predicted additive effect, F0 (d1, d2, d3), has been estimated, the two-drug

interaction terms, f23 (d2, d3), f13 (d1, d3), and f12 (d1, d2), can then be estimated. They

are estimated using subsets of the data: the subset where d1 = 0 is used to estimate

f23 (d2, d3), the subset where d2 = 0 is used to estimate f13 (d1, d3), and the subset

where d3 = 0 is used to estimate f12 (d1, d2). After the two-drug interaction terms have

been estimated, the three-drug interaction term, f123 (d1, d2, d3) is estimated.

Two different approaches were considered for estimating the two-drug interaction

terms, f12 (d1, d2), f13 (d1, d3), and f23 (d2, d3), and the three-drug interaction term,

f123 (d1, d2, d3).

The first approach was based on Kong and Lee’s thin plate spline smoothing method,

with Kong and Lee’s smoothing method used to estimate the two-drug interaction

terms. Kong and Lee’s smoothing method was extended to smooth thin plate splines

of order 3, as described below in Section 6.3.1, and this extended method was used to

estimate the three-drug interaction term.

The second approach used Generalized Cross Validation (GCV) to smooth the thin

plate splines. GCV can smooth thin plate splines of any order so it was used to estimate

both the two-drug interaction terms and the three-drug interaction term. An advantage

of this approach is that GCV can smooth thin plate splines of any order, so it easily

scales to more than 3 drugs, while the first approach would have to be further extended

to handle more than 3 drugs. Section 6.3.2 describes the GCV approach in detail. An

additional advantage of the GCV approach is that the GCV software is implemented

in FORTRAN and is able to perform the smoothing faster. Because of its advantages,

the GCV approach was used in the implementations of the extended Kong and Lee

semiparametric method that were created for this thesis.
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6.3.1 Extended Kong and Lee Smoothing

Similar to Kong and Lee’s approach for estimating the two-drug interaction terms, the

three-drug interaction term can be estimated by minimizing a penalized residual sum

of squares:

PRSS =

n∑
i=1

(wi − f123 (d1i, d2i, d3i))
2 + λJ (f123) , (6.2)

where

wi =
(
Yi − F̂0(d1i, d2i, d3i)− f̂12(d1i, d2i)− f̂13(d1i, d3i)− f̂23(d2i, d3i)

)
×1{d1i 6=0 & d2i 6=0 & d3i 6=0}

Similar to (2.18), the first term of (6.2) measures the goodness of fit, the third term,

J (f123), measures the smoothness of the function f123 (d1, d2, d3), and the second term,

λ, is a smoothing parameter that measures the trade off between the goodness of fit

and the smoothness of the function f123.

As in Kong and Lee’s two drug case, the minimizer of PRSS is necessarily a natural

thin plate spline, although here it is a natural thin plate spline of order 3 [13]. As a

thin plate spline of order 3, f123 (d1, d2, d3) can be expressed as a linear combination of

the radial basis functions:

f123 (d1, d2, d3) = γ0 + γ1d1 + γ2d2 + γ3d3 +
K∑
k=1

vkη
(
‖(d1, d2, d3)T − (κ1k, κ2k, κ3k)

T ‖
)

with the radial basis function:

η (r) =
1

8π
r3

and with knots, (κ1k, κ2k, κ3k)
T (k = 1, . . . ,K), which are all of the distinct values of

the combination doses (d1i, d2i, d3i)
T (i = 1, . . . , n). The distance between any two

combination doses is defined as the Euclidean distance, so the distance between a

combination dose and a knot is:

‖(d1, d2, d3)T − (κ1k, κ2k, κ3k)
T ‖ =

√
(d1 − κ1k)

2 + (d2 − κ2k)
2 + (d3 − κ3k)

2.

We can then define aK×K matrix Ω =
[
‖(κ1k, κ2k, κ3k)

T − (κ1k′ , κ2k′ , κ3k′)
T ‖
]

1≤k,k′≤K
,
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a K × 4 matrix T T = [1, κ1k, κ2k, κ3k]1≤k≤K , and a vector v = (v1, . . . , vk)
T . The mini-

mizer of (6.2) then satisfies J (f) = vTΩv and Tv = 0. We can then define:

YR = [w1, . . . , wn]T ,

X = [1, d1i, d2i, d3i]1≤i≤n ∈ R
n×4,

Z1 =

[
η
(
‖(d1i, d2i, d3i)

T − (κ1k, κ2k, κ3k)
T ‖
)

1≤i≤n

]
∈ Rn×K ,

and

γ = (γ0, γ1, γ2, γ3)T .

Suppose FG is a QR decomposition of T T such that F is a K × K orthogonal

matrix, G is a K × 4 upper triangular matrix, and T T = FG. Let F1 be the first four

columns of F , and F2 be the remaining K − 4 columns. Following the argument in

Green and Silverman (1994, p. 166), we could then show that Tv = 0 if and only if

v can be expressed as F2ξ, where ξ is a K − 4 vector. The minimizer of (6.2) is then

essentially equivalent to minimizing

(YR −Xγ − Z1F2ξ)
T (YR −Xγ − Z1F2ξ) + λξTF T2 ΩF2ξ. (6.3)

Similar to Kong and Lee’s approach to minimizing (2.19) and estimating f (d1, d2),

we can minimize (6.3), select the smoothing parameter λ, and estimate f123 (d1, d2, d3)

by using the technique of Ruppert, Wand and Carroll which uses a mixed effect model

to estimate a thin plate spline [28]. Our approach closely follows that of Kong and

Lee, and only differs in the dimensions of some of the vectors and matrices (e.g. here

γi (i = 0, 1, 2, 3) and ui (i = 1, . . . ,K − 4)).

6.3.2 Generalized Cross Validation Smoothing

The second approach used to estimate f123 (d1, d2, d3) was to estimate it as a thin plate

spline of order 3, using Generalized Cross Validation (GCV), which can be used to fit

smoothing splines and thin plate splines of any order [7, 30]. The fitting was done using

the R package rgcvpack [33], which uses the GCVPACK library [2] to do the actual

fitting.
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As part of the second approach, the original Kong and Lee method for estimating

synergy between two drugs was modified to use GCV to fit the thin plate splines that

estimate f (d1, d2), instead of the Kong and Lee mixed model-based approach to fit the

thin plate splines.

The Kong and Lee approach of estimating the standard error of f (d1, d2) was also

modified. The approach follows Kong and Lee in using a wild bootstrap, but was

generalized to be expressed in terms of the smoothed, undersmoothed and oversmoothed

estimates of f (d1, d2), rather than the specific calculations Kong and Lee had used to

estimate f (d1, d2) and its undersmoothed and oversmoothed variants.

The approach can be summarized as follows:

Step 1. Fit the model based on the original observations, obtain F̂0(d1i, d2i) and

f̂ (d1i, d2i), along with λ̂, where λ̂, is the estimate of the smoothing parameter λ in the

estimate of f̂ .

Step 2. Obtain the residuals from the undersmoothed estimation of f (d1, d2), that

is, ε̂i = Yi − F̂0 (d1i, d2i) − f̂0.5λ̂ (d1i, d2i), where f̂0.5λ̂ (d1i, d2i) is the undersmoothed

estimate of f , with smoothing parameter 0.5λ̂.

Step 3. Generate n i.i.d. (independent and identically distributed) random variables

ε∗1, . . . , ε
∗
n with mean 0 and variance 1, for example, ε∗i = −

√
5−1
2 with probability

√
5+1

2
√

5

and ε∗i =
√

5+1
2 with probability

√
5−1

2
√

5
.

Step 4. Obtain the fitted value from the oversmoothed estimation of f (d1, d2),

say, Y ∗i = F̂0 (d1i, d2i) + f̂2λ̂ (d1i, d2i) + ε̂iε̂
∗
i for i = 1, . . . , n, where f̂2λ̂ (d1i, d2i) is the

oversmoothed estimate of f , with smoothing parameter 2λ̂.

Step 5. Fit the model using the generated data (d1i, d2i, Y
∗
i ) (i = 1, . . . , n), and then

obtain the estimated function f∗ (d1, d2).

Step 6. Repeat step 2 to step 5 B (say, 50) times.

Denote the estimated f (d1, d2) in the bth (b = 1, . . . , B) iteration as f∗b (d1, d2), and

then estimate the standard deviation of f (d1, d2) by:

ŜD
∗B (

f̂ (d1, d2)
)

=

(
1

B

B∑
b=1

(
f∗b (d1, d2)− f̂ (d1, d2)

)2
) 1

2

,
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Then construct a 100 (1− α) % confidence interval for f (d1, d2):

[
f̂ (d1, d2)− zα

2
× ŜD

∗B (
f̂ (d1, d2)

)
, f̂ (d1, d2) + zα

2
× ŜD

∗B (
f̂ (d1, d2)

)]
,

where zα
2

is the upper α
2 × 100% percentile of the standard normal distribution, and

f̂ (d1, d2) is the smoothed estimate for f (d1, d2).

6.4 Variance Estimation Method Description

Similar to Kong and Lee, the variance of f12 (d1, d2), f13 (d1, d3), f23 (d2, d3), and

f123 (d1, d2, d3) can be estimated using a wild bootstrap [8]. An overview of the proce-

dure follows:

1. Fit the model using the original observations, obtaining F̂0(d1i, d2i, d3i), f̂12(d1i, d2i),

f̂13(d1i, d3i), f̂23(d2i, d3i), and f̂123(d1i, d2i, d3i), along with λ̂12, λ̂13, λ̂23, and λ̂123,

where λ̂k, k ∈ {123, 12, 13, 23}, is the estimate of the smoothing parameter λ in

the estimate of f̂k (in (2.18) for f12, f13 and f23, in (6.2) for f123).

2. Let

ε̂i = Yi − F̂0(d1i, d2i, d3i)

−f̂
12, 0.5λ̂12

(d1i, d2i)− f̂13, 0.5λ̂13
(d1i, d3i)− f̂23, 0.5λ̂23

(d2i, d3i)

−f̂
123, 0.5λ̂123

(d1i, d2i, d3i),

where f̂
k, 0.5λ̂k

, k ∈ {123, 12, 13, 23}, is the undersmoothed estimate of fk, with

smoothing parameter 0.5λ̂k.

3. Generate n i.i.d. random variables ε∗1, ..., ε
∗
n with mean 0 and variance 1.

4. Obtain the “fitted” value Y ∗i

Y ∗i = F̂0(d1i, d2i, d3i) + ηi + ε̂iε
∗
i
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for i = 1, ..., n, where

ηi =



f̂
12, 2λ̂12

(d1i, d2i) + f̂
13, 2λ̂13

(d1i, d3i)

+ f̂
23, 2λ̂23

(d2i, d3i)

+ f̂
123, 2λ̂123

(d1i, d2i, d3i)

If d1i 6= 0 and d2i 6= 0 and d3i 6= 0,

f̂
12, 2λ̂12

(d1i, d2i) If d1i 6= 0 and d2i 6= 0 and d3i = 0,

f̂
13, 2λ̂13

(d1i, d3i) If d1i 6= 0 and d2i = 0 and d3i 6= 0,

f̂
23, 2λ̂23

(d2i, d3i) If d1i = 0 and d2i 6= 0 and d3i 6= 0,

Yi − F̂0(d1i, d2i, d3i) Otherwise.

and where f̂
k, 2λ̂k

, k ∈ {123, 12, 13, 23}, is the oversmoothed estimate of fk, with

smoothing parameter 2λ̂k.

A preliminary method for generating Y ∗i always used the first case of ηi, regardless

of the values, of d1i, d2i and d3i[26]. But that was found to have bias in some of the

Y ∗i bootstrap samples. Further investigation showed that the same type of bias

was present in the original Kong and Lee method, as described in Appendix C.

To help reduce the bias for the extended three drug method, the two drug solution

in Appendix C was extended for three drugs, resulting in the various cases of ηi

being added, with the last case being especially important.

5. Fit the model using the generated data (d1i, d2i, d3i, Y
∗
i ) (i = 1, ..., n), and then

obtain the estimated functions F ∗0 (d1, d2, d3), f∗12(d1, d2), f∗13(d1, d3), f∗23(d2, d3),

and f∗123(d1, d2, d3).

6. Repeat step 2 to step 5 B (say, 50) times.

Let f∗b123(d1, d2, d3) be the estimate of the bth iteration, the standard deviation for

f123(d1, d2, d3) can then be estimated by

ŜD
∗B

(f̂123(d1, d2, d3)) =

(
1

B

B∑
b=1

(
f∗b123(d1, d2, d3)− f̂123(d1, d2, d3)

)2
)1/2

,

and a 100(1− α)% confidence interval for f123(d1, d2, d3) can be constructed as

f̂123(d1, d2, d3)± zα
2
× ŜD

∗B
(f̂123(d1, d2, d3)).
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The standard deviations and confidence intervals for f12(d1, d2), f13(d1, d3), and

f23(d2, d3) can be estimated in a similar fashion.

6.5 Response Surface Estimation

An R program was created to implement the extended Kong and Lee semiparametric

method described in the previous section.

Five constructed data sets were analyzed using the program. Similar to the data sets

constructed for the extended Plummer and Short method, the data sets corresponded to

5 different synergy scenarios: additivity between all 3 drugs, 2-way synergy between one

pair of the drugs, 3-way synergy between all of the drugs, 2-way synergy between one

pair of drugs combined with 3-way synergy between all of the drugs, and a combination

of localized 3-way synergy and 3-way antagonism.

Each constructed data set consisted of generated measurements for combination

treatments of 3 drugs. All 3 drugs had 7 dose levels. In addition to a dose of 0, the first

drug had dose levels of 2.5, 5, 7.5, 10, 15, and 20. The second drug had levels one half

of the first drug, while the third had levels one quarter of the first drug. The relative

potency of the first drug to the second drug was defined as ρ2:

log (ρ2) = β2 + β3 log (D2) (6.4)

where D2 is the solution to:

D2 = d2 + d1/ρ2

and β2 = log 2 and β3 = 0.02. The relative potency of the first drug to the third drug

was defined as ρ3:

log (ρ3) = β4 + β5 log (D3) (6.5)

where D3 is the solution to:

D3 = d3 + d1/ρ3

and β4 = log 3 and β5 = 0.005. All possible combinations of the 3 drugs at the given

dose levels were used. For each combination of drugs where all 3 drugs were not zero,

there were six generated results at each combination. For each combination of drugs
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where one drug was zero, there were twelve generated results at each combination;

the additional results were used to improve the estimates of the two-way drug synergy

estimates.

The generated response variable was a proportion, such as the proportion of cells

viable after the given treatment, a common end point in many nonclinical oncology

studies. Because the analysis program assumes the response E is a proportion, it ini-

tially transforms it to be the transformed effect Y using the function g (E) = logitE =

log E
1−E . All generated responses were constructed on the transformed scale as y,

and then transformed to be E on the original scale of responses using the function

g−1 (y) = logit−1 y = 1
1+exp (−y) . A small amount of random noise, from a normal dis-

tribution with a mean of 0 and a standard deviation of 0.2, was added to each generated

response value before its antilogit transformation.

Each constructed data set was constructed based on a five-component model speci-

fied in (6.1), with an additional random component:

y = F0 (d1, d2, d3) + f12 (d1, d2) + f13 (d1, d3) + f23 (d2, d3) + f123 (d1, d2, d3) + ε (6.6)

where:

ε ∼ N
(
0, 0.22

)
and with the same conditions as (6.1):

f12 (d1, 0) = f12 (0, d2) = f13 (d1, 0) = f13 (0, d3) = f23 (d2, 0) = f23 (0, d3) = 0,

f123 (d1, d2, 0) = f123 (d1, 0, d3) = f123 (0, d2, d3) = 0.

All five data sets were constructed based on (6.6), but with different functions used for

f12, f13, f23 and f123. A common F0 function was used to construct all four data sets:

F0 (d1, d2, d3) = β0 + β1 log (d1 + ρ2d2 + ρ3d3)

where β0 = 4, β1 = −1, and ρ2 and ρ3 were defined as in (6.4) and (6.5) respectively,

with β2 = log 2, β3 = 0.02, β4 = log 3, and β5 = 0.005.

For each scenario, the constructed data set was analyzed by the extended Kong

and Lee semiparametric program. Figures show the actual and fitted data for each
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scenario, along with the residuals from the fitted model. Fitted results and residuals

from intermediate steps are also shown. The figures of the estimated f12, f13, f23 and

f123 functions include dashed lines showing where a 95% confidence interval for the

fitted surface crosses the zero plane, indicating statistically significant synergy and/or

antagonism; dashed blue lines are used to indicate synergy while dashed red lines are

used to indicate antagonism.

6.5.1 First Scenario: Additivity

The constructed data set for the first scenario assumed all drugs were additive. The

response was constructed using the following function definitions:

f12 (d1, d2) = 0

f13 (d1, d3) = 0

f23 (d2, d3) = 0

f123 (d1, d2, d3) = 0

Figure 6.1 shows the results for the first constructed data set. Panels A through

C of the figure show the fitted log dose-response curves for each individual drug, used

alone. The log-dose response curves were used to construct initial estimates for the

parametric part of the extended Kong and Lee semiparametric model.

Panels D through G in the figure show contour plots of the “observed” constructed

data, with each panel showing the contour plot at a different dose of Drug A. Each plot

shows the response contours for the given doses of Drug B and Drug C, on the X and

Y axes respectively.

The contour lines in Panels D through G should generally be straight, reflecting the

additivity between the drugs, but some of them are ”jagged”, especially at higher doses.

There are likely two causes for this jaggedness. The first is that the high variability

of the responses makes the lines more jagged; preliminary results that used much less

variability when constructing the data produced much more straight lines[26]. The

second may be with the contour plotting software itself. Some authors have proposed

using GCVPACK to produce contour plots, in order ”to produce smoothly varying
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Figure 6.1: Results from first scenario, with all additive relations.
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contour plots, with none of the jagged corners that plague many other interpolation

methods [1].” This proposal was not tried here because GCVPACK is already being

used to estimate the fitted response surface, and using the exact same method to fit the

response surface and plot the ”observed” surface, may cause the plots of the response

surface to more closely resemble the plots of the ”observed” surfaces.

The next five rows of panels reflect the results at two intermediate steps of the

extended method, and the final results.

The first step of the extended method is to fit a parametric additive model to the

data. The results from this step are shown in Panels H through L. Panels H through

K show contour plots of the fitted model at different doses of Drug A. The contour

lines in these panels are straight, reflecting the additive nature of the fitted parametric

model. Because the “observed” data in this scenario actually is additive, the fitted

contour lines in these panels closely correspond to most of the observed contour lines in

Panels D through G, although some of the observed lines are more jagged, for reasons

described above. Panel L shows the residuals from the fitted model, plotted against the

observed (logit) response.

The second step of the extended Kong and Lee method is to make nonparametric

estimates of f12, f13, and f23 in (6.1), which model the 2-way drug interactions. These

estimates are then added to the parametric additive model fitted in the first step, to

augment its fit.

Panels M through O show contour plots of f12, f13, and f23 respectively. Note that

in Panels M and O the axes represent different drugs than in the other contour plots.

These three plots show some random noise, but no statistically significant departure

from the 0 plane.

Panels P through T show the results after augmenting the additive parametric model

with the nonparametric estimates of the 2-way interactions, f12, f13 and f23. Panels P

through S show contour plots of the augmented fitted model at different doses of Drug

A. The contour lines in these panels are also generally straight, like those in Panels

H through K. Because the “observed” data in this scenario actually is additive, the

nonparametric estimates of 2-way synergy, f12, f13, and f23, were essentially 0 and did
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little to change the original parametric estimate shown in Panels H through K. Panel

T shows the residuals from the augmented model, plotted against the observed (logit)

response. The residuals show little change from those in Panel L, again reflecting the

fact that the 2-way nonparametric estimates have done little to change the original

additive parametric estimates.

The third and final step of the extended method is to make a nonparametric estimate

of f123, which models the 3-way drug interaction. This estimate is then added to the

model from the second step to further augment its fit.

Panels U through X show contour plots of f123 at different levels of Drug A. Like

the plots of f12, f13 and f23, these plots show no departure from the 0 contour.

Panels Y through CC show the results after augmenting the previous model with

the nonparametric estimate of 3-way interaction, f123. Panels Y through BB show

contour plots of the further augmented fitted model at different doses of Drug A. The

contour lines in these panels are also generally straight, because the “observed” data in

this scenario actually is additive. As in the previous step, the nonparametric estimates

f123 of 3-way synergy are essentially 0 and do little to change the estimates from the

previous step. Panel CC shows the residuals from the further augmented model, plotted

against the observed (logit) response. The residuals also show little change from those

in Panel T, again reflecting the fact that the 3-way nonparametric estimates have done

little to change the estimates from the previous step.

6.5.2 Second Scenario: Two-Way Synergy

The constructed data set for the second scenario assumed that there was 2-way syn-

ergy between drugs 2 and 3, but all other relations were additive. The response was

constructed using these function definitions:

f12 (d1, d2) = 0

f13 (d1, d3) = 0

f23 (d2, d3) = −0.2
√

log (d2 + 1) log (d3 + 1)

f123 (d1, d2, d3) = 0
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Figure 6.2 shows the results for the second constructed data set. As in the previous

scenario, the log-dose response curves in Panels A through C were used to construct

initial estimates for the parametric part of the extended Kong and Lee model.

In this scenario, the contour plots of the “observed” data in Panels D through G

are now curved, reflecting the 2-way synergy between Drug B and Drug C. As in the

previous scenario, the next three rows show the fitted model after the first two initial

steps of the extended Kong and Lee model, and after the final step.

Panels H through L show the results after the first step, of fitting a parametric

additive model. Panels H through K show contour plots of the additive model at

different doses of Drug A. As in the previous scenario, the lines here are straight. But

in this scenario, they do not match the observed data very well, which is reflected in

the larger residuals in panel L.

Panels M through O show contour plots of f12, f13, and f23 respectively. Although

Panels M and N still show no departure from the 0 plane for f12 and f13 respectively,

the plot of f23 in Panel O reflects the non-zero definition of f23 in this scenario. The

dashed blue line shows the contour where the upper limit of the 95% confidence interval

of the f23 estimate crosses the zero plane, indicating statistically significant synergy for

all dose combinations whose contours are at or below that contour.

Panels P through T show the results after augmenting the additive parametric model

with the nonparametric estimates of the 2-way interactions, f12, f13 and f23. Panels

P through S show contour plots at different doses of Drug A. Now the contour lines

are curved, reflecting the 2-way synergy between Drug B and Drug C, which has been

detected. The plots in Panels P through S are closer in shape to the observed data in

Panels D through G than were the plots in Panels H through K. The residuals in Panel

T are smaller than those in Panel L, reflecting the improvement in the model that has

been made by the nonparametric estimates of the 2-way drug interactions.

Panels U through X show contour plots of f123 at different levels of Drug A. As in

the previous scenario, these plots are flat, and near the 0 plane.

Panels Y through CC show the results after augmenting the previous model with the

nonparametric estimate of 3-way interaction, f123. Panels Y through BB show contour
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Figure 6.2: Results from second scenario, with 2-way synergy between Drug B and
Drug C, but additivity for all other relations.
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plots of the further augmented fitted model at different doses of Drug A. The contour

lines in these panels are little changed from those of the previous step, shown in Panels

P through S, showing that the estimation of f123 is essentially nothing and changes the

model very little. The residuals in Panel CC also show little improvement from those

of the previous step, in Panel T.

6.5.3 Third Scenario: Three-Way Synergy

The constructed data set for the third scenario assumed that there was 3-way synergy

between all 3 drugs, but all 2-way relations were additive. The response was constructed

using these function definitions:

f12 (d1, d2) = 0

f13 (d1, d3) = 0

f23 (d2, d3) = 0

f123 (d1, d2, d3) = −0.1 (log (d1 + 1) log (d2 + 1) log (d3 + 1))
1
3

Figure 6.3 shows the results for the third constructed data set. As in the previous

scenarios, the log-dose response curves in Panels A through C were used to construct

initial estimates for the parametric part of the extended Kong and Lee model.

Also as in the previous scenario, the contour plots of the “observed” data in Panels

E through G are still curved, reflecting the 3-way synergy between Drug A, Drug B

and Drug C. But here the lines in Panel D are straight, reflecting the fact that this is

3-way synergy that depends on Drug A being present. In the previous scenario, the

lines in Panel D were curved, because the 2-way synergy between Drug B and Drug C

was present even in the absence of Drug A. As in the previous scenario, the next five

rows show the fitted model after the first two initial steps of the extended Kong and

Lee model, and after the final step.

Panels H through L show the results after the first step, of fitting a parametric

additive model. Panels H through K show contour plots of the additive model at

different doses of Drug A, and as in the previous scenarios, the lines here are straight.

But in this scenario, they do not match the observed data very well, except for Panel
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Figure 6.3: Results from third scenario, with 3-way synergy between Drug A, Drug B
and Drug C, but additivity between each pair of drugs.
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H where Drug A is absent and there is no interaction. This poor fit is reflected in the

large residuals in panel L.

Panels M through O show contour plots of f12, f13, and f23 respectively. As in the

first scenario, all three panels show no departure from the 0 plane.

Panels P through T show the results after augmenting the additive parametric

model with the nonparametric estimates of the 2-way interactions, f12, f13 and f23.

Panels P through S show contour plots at different doses of Drug A. Here the lines are

still straight, reflecting the fact that the estimates of f12, f13 and f23 did not detect

any 2-way synergy between any of the drugs. The residuals in Panel T are essentially

unchanged from those in Panel L, also reflecting the fact that augmenting the model

with 2-way interactions has done little or nothing to improve it.

Panels U through X show contour plots of f123 at different levels of Drug A. Unlike

the previous scenarios, these plots are not flat, reflecting the non-zero definition of

f123 in this scenario. The dashed blue lines show the contours where the upper limit

of the 95% confidence interval of the f123 estimate crosses the zero plane, indicating

statistically significant synergy for all dose combinations whose contours are at or below

that contour.

Panels Y through CC show the results after augmenting the previous model with the

nonparametric estimate of 3-way interaction, f123. Panels Y through BB show contour

plots of the further augmented fitted model at different doses of Drug A. Here the lines

in the contour plots in Panels Z through BB are now curved, accurately reflecting the

3-way synergy that has been detected, and matching the original data in Panels G

through I. The lines on contour plot in Panel Y are still straight, reflecting the fact

that the synergy is only present when all 3 drugs are present, and matching the original

data in Panel D. Although the residuals in Panel CC do not look much smaller than

those in the previous steps, their mean square has actually been reduced from 0.055 in

Panel T, to 0.040 in Panel CC, indicating how much the model has been improved by

the final step.
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6.5.4 Fourth Scenario: Two-Way Synergy and Three-Way Synergy

The constructed data set for the fourth scenario assumed that there was 2-way synergy

between one pair of drugs and 3-way synergy between all 3 drugs. The response was

constructed using these function definitions:

f12 (d1, d2) = 0

f13 (d1, d3) = 0

f23 (d2, d3) = −0.2
√

log (d2 + 1) log (d3 + 1)

f123 (d1, d2, d3) = −0.1 (log (d1 + 1) log (d2 + 1) log (d3 + 1))
1
3

Figure 6.4 shows the results for the fourth constructed data set. As in the previous

scenarios, the log-dose response curves in Panels A through C were used to construct

initial estimates for the parametric part of the extended Kong and Lee model.

As in both previous scenarios, the contour plots of the “observed” data in Panels

E through G are still curved, reflecting the 2-way synergy between Drug B and Drug

C, and the 3-way synergy between Drug A, Drug B and Drug C. Unlike the previous

scenario (but like the 2nd scenario) the lines in Panel D are curved, reflecting the fact

that there is 2-way synergy that is present even when Drug A is absent. In the previous

scenario, the lines in Panel D were straight, because the 3-way synergy between Drug

A, Drug B and Drug C depended on the presence of Drug A.

As in the previous scenarios, the next five rows show the fitted model after the first

two initial steps of the extended Kong and Lee model, and after the final step.

Panels H through L show the results after the first step, of fitting a parametric

additive model. Panels H through K show contour plots of the additive model at

different doses of Drug A, and as in the previous scenarios, the lines here are straight.

In this scenario, they do not match the observed data very well and this poor fit is

reflected in the large residuals in panel L.

Panels M through O show contour plots of f12, f13, and f23 respectively. Although

Panels M and N still show no departure from the 0 lane for f12 and f13 respectively,

the plot of f23 in Panel O reflects the non-zero definition of f23 in this scenario. The
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Figure 6.4: Results from fourth scenario, with 2-way synergy between Drug B and Drug
C, and 3-way synergy between Drug A, Drug B and Drug C.
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dashed blue line shows the contour where the upper limit of the 95% confidence interval

of the f23 estimate crosses the zero plane, indicating statistically significant synergy for

all dose combinations whose contours are at or below that contour.

Panels P through T show the results after augmenting the additive parametric model

with the nonparametric estimates of the 2-way interactions, f12, f13 and f23. Panels P

through S show contour plots at different doses of Drug A. Here the lines are curved,

reflecting the 2-way synergy between Drug B and Drug C, which has been detected.

The plots in Panels P through S are closer in shape to the observed data in Panels

D through G than were the plots in Panels H through K, although they still do not

quite match. The residuals in Panel T are smaller than those in Panel L, reflecting the

improvement in the model that has been made by the nonparametric estimates of the

2-way drug interactions, but they still exhibit a pattern and do not show a very good

fit.

Panels U through X show contour plots of f123 at different levels of Drug A. As

in the previous scenario, these plots are not flat, reflecting the non-zero definition of

f123 in this scenario. The dashed blue lines show the contours where the upper limit

of the 95% confidence interval of the f123 estimate crosses the zero plane, indicating

statistically significant synergy for all dose combinations whose contours are at or below

that contour.

Panels Y through CC show the results after augmenting the previous model with the

nonparametric estimate of 3-way interaction, f123. Panels Y through BB show contour

plots of the further augmented fitted model at different doses of Drug A. Here the lines

in the contour plots in Panels Y through BB are now curved, accurately reflecting the

2-way and 3-way synergy that has been detected, and matching the original data in

Panels G through I. Although the residuals in Panel CC do not look much smaller than

those in the previous steps, their mean square has actually been reduced from 0.066 in

Panel T, to 0.041 in Panel CC, indicating how much the model has been improved by

the final step.



119

6.5.5 Fifth Scenario: Local Three-Way Synergy and Antagonism

The constructed data set for the fifth scenario assumed that there was local 3-way

synergy between all 3 drugs in one region, where the dose of the first drug was less than

15, but local 3-way antagonism between all 3 drugs in another region, where the dose

of the first drug was greater than 15; all 2-way relations were assumed to be additive.

The response was constructed using these function definitions:

f12 (d1, d2) = 0

f13 (d1, d3) = 0

f23 (d2, d3) = 0

f123 (d1, d2, d3) = 0.2h (d1) (log (d1 + 1) log (d2 + 1) log (d3 + 1))
1
3

where:

h (x) = min (max (x− 15,−0.5) , 0.4)

Figure 6.5 shows the results for the fifth constructed data set. As in the previous

scenarios, the log-dose response curves in Panels A through C were used to construct

initial estimates for the parametric part of the extended Kong and Lee model.

In this scenario, the contour plot of the “observed” data in Panel D are roughly

straight, reflecting the fact that this synergy is 3-way synergy and which is not present

when Drug A is absent. The contour plots in Panels E and F, the region of local 3-way

synergy, are curved “down” and are similar to those in the previous scenario, which

had global 3-way synergy. But the contour plot in Panel G, in the region of local 3-way

antagonism, is curved “up” (with a fair amount of “jaggedness”), in contrast to the

plot in Panel G of the previous scenario. As in the previous scenarios, the next five

rows show the fitted model after the first two initial steps of the extended Kong and

Lee model, and after the final step.

Panels H through L show the results after the first step, of fitting a parametric

additive model. Panels H through K show contour plots of the additive model at

different doses of Drug A, and as in the previous scenarios, the lines here are straight.

And as in the previous two scenarios, they do not match the observed data very well,



120

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

● ●

●
●

●

●

●
●

●
● ●

●

●
●

●
●

●

● ●

●
●

●
●

●
● ●

●
●

● ●
●

●

●

●
●

●
●

●

●

●

●

●
●

● ●
●

●

●

● ●
● ●

●
●

●
●

●
● ●

● ●

●

●
●

● ●

●

●

●
●

●

●
●

●

●

●
●

●
●

●
●

●

●
●

●
●

● ●

●

●
●

●
●

● ●

●

●

●

●
● ●

●

●

0 5 10 15 20

0.
6

0.
8

1.
0

Dose

S
ca

le
d 

R
es

po
ns

e

A. DrugA Alone

●

●
●

●
●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●
●

●
●

●
●

●

●
●

●

● ●
●

●

●
●

● ●

●

●

●

●

●
● ●

●

●

●

●
●

●
●

●

●

●

●

●
● ●

●

●
●

●
●

●

●
●

● ●

●

●

● ●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●
●

●
● ●

●
●

●

●
●

●

● ●

●

●
●

●

● ●

●

●

●

●

● ● ●

●

●

0 2 4 6 8 10

0.
65

0.
85

Dose
S

ca
le

d 
R

es
po

ns
e

B. DrugB Alone

●

● ●

● ●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●
●

●

●

● ● ●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

● ●

●

●

●
●

●

●
●

●

●

●
● ●

●
●

●
●

●
●

● ●

●

●
●

●
●

●

●

●
●

●

●

● ●

●

●
●

●

●
●

●
● ●

● ●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

0 1 2 3 4 50.
75

0.
90

Dose

S
ca

le
d 

R
es

po
ns

e

C. DrugC Alone

0 2 4 6 8 10

0
2

4

DrugB dose

D
ru

gC
 d

os
e

0.6

0.70.80.9

D. Constructed Data
 DrugA dose = 0

0 2 4 6 8 10

0
2

4

DrugB dose

D
ru

gC
 d

os
e

0.5

0.6

0.70.80.9

E. Constructed Data
 DrugA dose = 5

0 2 4 6 8 10

0
2

4

DrugB dose

D
ru

gC
 d

os
e

0.5

0.6

0.6

0.70.8

F. Constructed Data
 DrugA dose = 10

0 2 4 6 8 10

0
2

4

DrugB dose

D
ru

gC
 d

os
e 0.6

0.60.7

G. Constructed Data
 DrugA dose = 20

0 2 4 6 8 10

0
2

4

DrugB dose

D
ru

gC
 d

os
e

0.7
0.80.9

H. KL 2k8 Param Only
 DrugA dose = 0

0 2 4 6 8 10

0
2

4

DrugB dose

D
ru

gC
 d

os
e

0.6

0.70.80.9

I. KL 2k8 Param Only
 DrugA dose = 5

0 2 4 6 8 10

0
2

4

DrugB dose

D
ru

gC
 d

os
e

0.6

0.70.8

J. KL 2k8 Param Only
 DrugA dose = 10

0 2 4 6 8 10

0
2

4

DrugB dose

D
ru

gC
 d

os
e

0.60.7

K. KL 2k8 Param Only
 DrugA dose = 20

●●

●
●

●
●

●
●●●

●●●●

●

●

●

●

●
●

●●

●

●

●

●

●●

●●
●

●

●●●

● ●

●
●

●
●

●

●
●

●

●

●

●

●

●

●●

●●

●●

●●

●●
●
●

●

●●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●●

●

●●
●

●

●
●

●●

●

●
●

●●

●

●

●●

●●

●

●●
●

●

●
●●●

●
●●

●

●●
●

●

●

●
●
●

●
●

●

●●
●

●

●

●
●●

●

●

●

●●

●

●

●

●
●

●
●●

●

●●●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●

●
●

●
●●

●

●
●●●
●

●

●

●●
●●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●●

●

●
●●

●
●

●

●●●●

●

●

●

●
●

●

●

●

●

●

●
●

●●
●

●
●

● ●

●
●

●
●●●

●
●

●

●
●
●●

●●
●

●

●

●●

●
●●

●
●

●●

●
●
●

●

●

●●●

●

●
●

●●

●●
●●●

●●

●●

●

●●

●
●

●

●
●

●●

●
●

●

●

●●
●

●
●●●●

●

●

●

●●

●

●
●

●

●
●●

●

●
●

●

●●
●

●
●
●

●●

●
●

●
●●

●●●
●

●
●●

●

●●

●

●

●
●

●

●●

●
●●●

●
●

●●●

●
●

●
●

●

●
●

●

●●
●

●

●●
●

●
●

●

●

●●
●

●
●

●●

●
●

●
●

●●●

●

●

●
●

●
●

●
●

●

●●
●

●
●●●

●
●

●
●

●

●
●

●
●

●
●

●
●●

●●●

●

●

●

●●

●

●

●●

●
●

●●

●●

●

●

●
●

●

●●●

●

●

●●●
●●

●●
●●

●
●

●

●

●

●

●●

●●

●

●●

●●

●

●

●
●

●

●

●

●
●

●

●
●●

●●

●

●
●●

●
●

●

●

●
●

●●●●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●●
●

●●
●●●●

●●
●●●

●

●●

●

●
●

●●

●

●

●●

●
●●

●
●

●

●

●

●

●
●

●

●
●

●
●

●●●●

●

●
●

●
●

●
●●

●

●
●

●●
●

●

●●

●

●

●

●
●

●

●
●

●●
●

●

●

●

●

●

●

●

●●
●●

●●
●

●●

●

●

●●

●

●

●
●

●

●●

●

●
●●

●

●
●

●

●●

●
●

●●

●●

●

●

●
●

●

●
●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●●

●

●● ●
●

●
●

●

●

●●

●●

●
●●

●
●

●

●

●●●
●

●●
●

●●●
●

●

●

●
●

●●●

●
●

●●
●
●

●

●
●

●

●

●
●●

●

●●

●
●

●●

●●
●●
●

●●●

●

●

●●●●●●

●●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●●
●●
●●

●●
●

●
●

●

●

●

●

●●●

●

●

●

●
●

●
●

●●
●

●

●
●

●
●

●

●
●

●

●
●●

●

●

●●●●●●

●

●
●

●

●

●

●

●

●●
●●

●●

●

●

●

●

●●●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●
●

●●
●

●

●
●

● ●

●

●

●
●●
●

●
●

●
●

●

●

●

●●●●
●
●

●

●

●
●
●

●
●

●

●●
●●

●

●●●

●●

●
●

●●

●●

●
●

●

●
●

●
●

●

●●
●●

●

●●
●

●●
●

●
●

●

●

●

●●

●
●

●
●

●

●

●

●●

●
●

●
●●●

●
●

●●●
●

●

●
●

●
●

●●

●

●

●
●

●

●

●

●
●

●

●

●●●●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●
●

●
●●

●

●●

●
●●

●
●

●

●
●

●
●

●
●●

●

●
●

●

●
●

●●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●
●

●
●●

●

●

●

●

●●
●

●

●●

●●●●

●

●

●

●
●

●

●●
●●

●

●●●

●

●
●

●
●

●

●●●

●
●

●●●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●●
●

●

●

●●
●

●

●

●

● ●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●●

●
●

●

●●
●●
●

●●

●

●●

●

●

●●●
●

●
●

●
●●

●
●

●

●

●

●

●●

●
●

●

●

●●

●

●
●●●
●

●

●

●

●

●

●
●

●●
●

●

●

●
●

●

●

●

●●
●●

●●
●

●

●

●●

●
●

●

●

●

●

●●●
●

●

●

●

●●

●
●

●

●
●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●
●●

●

●

●

●
●

●

●

●

●

●

●●●
●

●

●●

●
●●

●

●
●

●●

●●

●

●

●

●

●

−0.5 0.5 1.5

−0
.5

0.
5

Observed, logit (Scaled)O
bs

−P
re

d 
(K

L2
k8

 P
ar

am
) L. KL 2k8 Param Only

Residuals

0 5 10 15 20

0
4

8

DrugA dose

D
ru

gB
 d

os
e

0

M. KL 2k8 f12
 DrugC dose = 0

0 5 10 15 20

0
2

4

DrugA dose

D
ru

gC
 d

os
e

0

N. KL 2k8 f13
 DrugB dose = 0

0 2 4 6 8 10

0
2

4

DrugB dose

D
ru

gC
 d

os
e

0

O. KL 2k8 f23
 DrugA dose = 0

0 2 4 6 8 10

0
2

4

DrugB dose

D
ru

gC
 d

os
e

0.7
0.80.9

P. KL 2k8 Param + 2Semi
 DrugA dose = 0

0 2 4 6 8 10

0
2

4

DrugB dose

D
ru

gC
 d

os
e

0.6

0.70.80.9

Q. KL 2k8 Param + 2Semi
 DrugA dose = 5

0 2 4 6 8 10

0
2

4

DrugB dose

D
ru

gC
 d

os
e

0.6

0.70.8

R. KL 2k8 Param + 2Semi
 DrugA dose = 10

0 2 4 6 8 10

0
2

4

DrugB dose

D
ru

gC
 d

os
e 0.5

0.60.7

S. KL 2k8 Param + 2Semi
 DrugA dose = 20

●●

●
●

●
●●

●●●

●●●●

●

●

●

●

●
●

●●

●

●

●

●

●●

●●
●

●

●●●

● ●

●
●

●
●

●

●
●

●

●

●

●

●

●

●●

●●

●●

●●

●●
●●

●

●●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●●

●

●●
●

●

●
●

●●

●

●
●

●●

●

●

●●

●●

●

●●
●

●

●
●●●

●
●●

●

●●
●

●

●

●
●
●

●
●

●

●●
●

●

●

●
●●

●

●

●

●●

●

●

●

●
●

●
●●

●

●●●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●

●
●

●
●●

●

●
●●●
●

●

●

●●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●●

●

●
●●

●
●

●

●●●●

●

●

●

●
●

●

●

●

●

●

●
●

●●
●

●
●

● ●

●
●

●
●●●

●
●

●

●
●
●●

●●
●●

●

●●

●
●●

●
●

●●

●
●

●

●

●
●●●

●

●
●

●●
●●

●●●

●●

●●

●

●●

●
●

●

●
●

●●

●
●

●

●

●●
●

●
●●●●

●

●

●

●●

●

●
●

●

●
●●

●

●
●

●

●●
●

●
●
●

●●

●
●

●
●●

●●●
●

●
●●

●

●●

●

●

●●

●

●●

●
●●●

●
●

●●●

●
●

●
●

●

●
●

●

●●
●

●

●●
●

●
● ●

●

●●
●

●
●

●●

●
●

●
●

●●●

●

●

●
●

●
●

●
●

●

●●
●

●
●
●●

●
●

●
●

●

●
●

●
●

●
●

●
●●

●●●

●

●

●

●●

●

●

●●

●
●

●●

●●

●

●

●
●

●

●●●

●

●

●●●
●●

●●
●●

●
●

●

●

●

●

●●

●●

●

●●

●●

●

●

●
●

●

●

●

●
●

●

●
●●

●●

●

●
●●

●
●

●

●

●
●

●●●●
●

●

●

●

●●

●

●

●

●
●

●
●

●

●●
●

●●
●●●●

●●
●●●

●

●●

●

●
●

●●

●

●

●●

●
●●

●
●

●

●

●

●

●
●

●

●

●

●
●

●●●●

●

●
●

●
●

●
●●

●

●
●

●●
●

●

●●

●

●

●

●
●

●

●
●

●●
●

●

●

●

●

●

●

●

●●
●●

●●
●

●●

●

●

●●

●

●

●
●

●

●●

●

●●●

●

●
●

●

●●

●
●

●●
●●

●

●

●
●

●

●
●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●●

●

●●
●

●

●
●

●

●

●●

●●

●
●●

●
●

●

●

●●●
●

●●
●

●●●
●

●

●

●
●

●●●

●
●

●●
●
●

●

●
●

●

●

●
●●

●

●●

●
●

●●

●●
●●
●

●●●

●

●

●●●●●●

●●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●●
●●
●●

●●
●

●
●

●

●

●

●

●●●

●

●

●

●
●

●
●

●●
●

●

●
●

●
●

●

●
●

●

●
●●

●

●

●●●●●●

●

●
●

●

●

●

●

●

●●
●●

●●

●

●

●

●

●●●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●
●

●●
●

●

●
●

● ●

●

●

●
●●

●

●
●

●
●

●

●

●

●●●●
●
●

●
●

●
●
●

●
●

●

●●
●●

●

●●●

●●

●
●

●●
●●

●
●

●

●
●

●
●

●

●●●●

●

●●
●
●●

●

●●
●

●

●

●●

●
●

●
●

●

●

●

●●

●
●

●
●●●

●
●

●●●
●

●

●●

●
●

●●

●

●

●
●

●

●

●

●
●

●

●

●●●●●
●

●

●
●

●

●
●

●

●

●

●

●

●

●●
●

●
●

●
●●

●

●●

●
●●

●
●

●

●
●

●
●

●
●●

●

●
●

●

●●

●●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●
●

●
●●

●

●

●

●

●●
●

●

●●

●●●●

●

●

●

●
●

●

●●
●●

●

●●●

●

●
●

●
●

●

●●●

●
●

●●●●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●●●
●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●●

●
●

●

●●
●●●

●●

●

●●

●

●

●●● ●
●
●

●
●●

●
●

●

●
●

●

●●

●
●

●
●

●●

●

●
●●●
●

●

●

●

●

●

●
●

●●
●

●

●

●●
●

●
●

●●
●●

●●
●

●

●

●●

●
●

●

●

●

●

●●●
●

●

●

●

●●

●
●

●

●
●

●

●

●
●●

●

●

●

●
●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●
●●

●

●

●

●
●

●

●

●

●

●

●●●
●

●

●●

●●●

●

●
●

●●

●●

●

●

●

●

●

−0.5 0.5 1.5

−0
.5

0.
5

Observed, logit (Scaled)

O
bs

−P
re

d 
(K

L2
k8

 P
ar

am
2S

em
i)

T. KL 2k8 Param + 2Semi
Residuals

0 2 4 6 8 10

0
2

4

DrugB dose

D
ru

gC
 d

os
e

U. KL 2k8 f123
 DrugA dose = 0

0 2 4 6 8 10

0
2

4

DrugB dose

D
ru

gC
 d

os
e

−0.2

−0.1
0

V. KL 2k8 f123
 DrugA dose = 5

0 2 4 6 8 10

0
2

4

DrugB dose

D
ru

gC
 d

os
e

−0.2

−0.1

0

W. KL 2k8 f123
 DrugA dose = 10

0 2 4 6 8 10

0
2

4

DrugB dose

D
ru

gC
 d

os
e

0
0.1

0.2

X. KL 2k8 f123
 DrugA dose = 20

0 2 4 6 8 10

0
2

4

DrugB dose

D
ru

gC
 d

os
e

0.7
0.80.9

Y. KL 2k8 SemiParam
 DrugA dose = 0

0 2 4 6 8 10

0
2

4

DrugB dose

D
ru

gC
 d

os
e

0.6

0.70.80.9

Z. KL 2k8 SemiParam
 DrugA dose = 5

0 2 4 6 8 10

0
2

4

DrugB dose

D
ru

gC
 d

os
e 0.5

0.6
0.70.8

AA. KL 2k8 SemiParam
 DrugA dose = 10

0 2 4 6 8 10

0
2

4

DrugB dose

D
ru

gC
 d

os
e

0.60.7

BB. KL 2k8 SemiParam
 DrugA dose = 20

●●

●
●

●
●●

●●●

●●●●

●

●

●

●

●
●

●●

●

●

●

●

●●

●●
●

●

●●●

● ●

●
●

●
●

●

●
●

●

●

●

●

●

●

●●

●●

●●

●●

●●●
●

●

●●
●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●●

●

●●
●

●

●
●

●●

●

●
●

●●

●

●

●●

●●

●

●●
●

●

●
●●●

●
●●

●

●●
●

●

●

●
●
●

●
●

●

●
●

●

●

●

●
●●

●

●

●

●●

●

●

●

●
●

●
●●

●

●●●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●

●
●

●
●●

●

●
●●●
●

●

●

●●
●●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●
●

●

●●●●

●

●

●

●
●

●

●

●

●

●

●
●

●●
●

●
●

●
●

●
●

●
●●●

●
●

●

●
●

●●
●●

●
●

●

●●

●
●●

●
●

●●

●
●
●

●

●

●●●

●

●
●

●●

●●
●●●

●●

●●

●

●●

●
●

●

●
●

●●

●
●

●

●

●●
●

●
●●●●

●

●

●

●●

●

●
●

●

●
●●

●

●

●

●

●●●
●

●
●

●●

●
●

●
●

●
●●●

●
●

●●

●

●●

●

●

●●

●

●●

●
●●●

●
●

●●●

●
●

●
●

●

●
●

●

●●
●

●

●●
●

●
●

●

●

●●
●

●

●

●●

●
●

●
●

●●●

●

●

●
●

●
●

●
●

●

●●
●

●
●●●

●
●

●
●

●

●
●

●
●

●
●

●
●●

●●
●

●

●

●

●●

●

●

●●

●
●

●●

●●

●

●

●
●

●

●●●

●

●

●●●
●

●

●●
●●

●
●

●

●

●

●

●●

●●

●

●●

●●

●

●

●
●

●

●

●

●
●

●
●

●●
●●

●

●
●●

●
●

●

●

●
●

●●●●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●●
●

●●
●●●●

●●
●●●

●

●●

●

●
●

●●

●

●

●●

●●●
●
●

●

●
●

●

●
●

●

● ●

●
●

●●●
●

●

●
●

●
●

●
●●

●

●
●

●●
●

●

●●
●

●

●

●
●

●

●
●

●●
●

●●

●

●

●

●

●

●●

●●
●●
●

●●

●

●

●●

●

●

●
●

●

●●

●

●
●●

●

●
●

●

●●

●
●

●●

●●

●

●

●
●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●●
●

●

●
●

●

●
●●

●●

●
●●

●
●

●

●

●●●
●

●●
●

●●●
●

●

●

●
●

●●●

●
●

●●
●
●

●

●
●

●

●

●
●●

●

●●

●
●

●●

●●
●●
●

●●●

●

●

●●●●●●
●●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●●
●●
●●

●●

●

●
●

●

●

●

●

●●●

●

●

●

●
●

●
●

●
●

●

●

●
●

●
●

●

●
●

●

●
●●

●

●

●●

●●●●

●

●●

●

●

●

●

●●●
●●

●●

●

●

●

●

●●●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●
●

●
●

●

●

●
●

●
●

●

●

●
●●

●

●
●

●
●

●

●

●

●●●●
●
●

●

●

●
●●

●
●

●

●●●●
●

●●● ●●

●
●

●●
●●

●

●
●

●
●

●
●

●

●●
●●

●

●●
●●●

●

●
●

●

●

●

●●

●
●

●
●

●

●

●

●●

●
●

●
●●●

●
●

●●●●

●

●
●

●
●

●●

●

●

●
●

●

●

●

●
●

●

●

●●●●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●
●●

●

●●

●
●●

●
●

●●
●

●
●

●
●
●

●

●
●

●

●●

●●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●
●●

●
●

●

●

●●
●

●

●●

●●●●

●

●

●

●
●

●

●●
●●

●
●●●

●

●
●

●
●

●

●●● ●
●

●●●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●●

●
●

●

●●
●

●
●

●●

●

●●

●

●

●●●

●
●
●

●
●●

●
●

●

●

●

●

●●

●
●

●

●

●●

●

●
●●

●
●

●

●

●

●

●

●
●

●●
●

●

●

●
●

●

●
●

●●
●●

●●
●

●

●

●●

●
●

●

●

●

●

●●●
●

●

●

●

●●

●
●

●
●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●●

●

●
●

●
●

●

●

●

●

●

●●●
●

●

●●

●
●●

●

●
●

●●

●

●

●

●

●

●

●

−0.5 0.5 1.5

−0
.6

0.
0

0.
6

Observed, logit (Scaled)

O
bs

−P
re

d 
(K

L2
k8

 S
em

iP
ar

am
)

CC. KL 2k8 SemiParam
Residuals

Figure 6.5: Results from fifth scenario, with local 3-way synergy in one region and local
3-way antagonism in another.
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except for Panel H where Drug A is absent and there is no interaction. This poor fit is

reflected in the large residuals in panel L.

Panels M through O show contour plots of f12, f13, and f23 respectively. As in the

first and third scenarios, all three panels show no departure from the 0 plane.

Panels P through T show the results after augmenting the additive parametric

model with the nonparametric estimates of the 2-way interactions, f12, f13 and f23.

Panels P through S show contour plots at different doses of Drug A. Here the lines are

still straight, reflecting the fact that the estimates of f12, f13 and f23 did not detect

any 2-way synergy between any of the drugs. The residuals in Panel T are essentially

unchanged from those in Panel L, also reflecting the fact that augmenting the model

with 2-way interactions has done little or nothing to improve it.

Panels U through X show contour plots of f123 at different levels of Drug A. As

in the previous scenario, these plots are not flat, reflecting the non-zero definition of

f123 in this scenario. As in the previous scenario, the contour lines in Panels V and

W are negative, and the dashed blue lines show the contours where the upper limit

of the 95% confidence interval of the f123 estimate crosses the zero plane, indicating

statistically significant synergy for all dose combinations whose contours are at or below

that contour. But in Panel X, the region of antagonism, the contour lines are at positive

values, and the dashed red lines show the contours where the lower limit of the 95%

confidence interval of the f123 estimate crosses the zero plane, indicating statistically

significant antagonism for all dose combinations whose contours are at or above that

contour.

Panels Y through CC show the results after augmenting the previous model with the

nonparametric estimate of 3-way interaction, f123. Panels Y through BB show contour

plots of the further augmented fitted model at different doses of Drug A. Here the lines

in the contour plots in Panels Z through BB are now curved, and they are curved in the

proper “direction” accurately reflecting the 3-way synergy and 3-way antagonism that

has been detected, and closely matching the original data in Panels E through G. The

lines in contour plot in Panel Y are still straight, reflecting the fact that the synergy

or antagonism is only present when all 3 drugs are present, and closely matching the
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original data in Panel D. Although the residuals in Panel CC are not necessarily visibly

smaller than those in the previous steps, their mean square has been improved from

0.048 to 0.041, showing how the model has been improved by this final step.

The handling of this scenario by the extended Kong and Lee method shows how this

method is able to detect local synergy and antagonism, unlike the extended Plummer

and Short method, which could only detect global synergy or antagonism.

6.6 Simulations to Evaluate Goodness of Fit and Confidence Intervals

Simulations were used to evaluate the goodness of fit of the extended Kong and Lee

model and its confidence intervals, using a process similar to that used in Kong and

Lee [20].

The simulated data was constructed similarly to that used in Section 6.5 for Re-

sponse Surface Estimation, using the same five-component model:

y = F0 (d1, d2, d3) + f12 (d1, d2) + f13 (d1, d3) + f23 (d2, d3) + f123 (d1, d2, d3) + ε

where:

ε ∼ N
(
0, σ2

i

)
and with the same conditions as (6.1):

f12 (d1, 0) = f12 (0, d2) = f13 (d1, 0) = f13 (0, d3) = f23 (d2, 0) = f23 (0, d3) = 0,

f123 (d1, d2, 0) = f123 (d1, 0, d3) = f123 (0, d2, d3) = 0.

The same F0 function was used to construct the simulated data sets:

F0 (d1, d2, d3) = β0 + β1 log (d1 + ρ2d2 + ρ3d3)

where β0 = 4, β1 = −1, and ρ2 and ρ3 were defined as in (6.4) and (6.5) respectively,

with β2 = log 2, β3 = 0.02, β4 = log 3, and β5 = 0.005.

Simulated data was constructed using the marginal single drug dose-response curves

of the data set from the first scenario of Section 6.5, known “true” functions f123,

f12, f13, and f23 for the nonparametric parts of the model, and additional random
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components. Seven different random components were used, depending on whether

the combination of drugs included all 3 drugs, or only a subset of them; the random

components will be described in greater detail below. The simulated data used the

same dose levels as in the original constructed data sets.

The “true” functions of the semiparametric parts of the model were defined as below:

f12(d1, d2) = 0

f13(d1, d3) = 0

f23 (d2, d3) = −0.2
√

log (d2 + 1) log (d3 + 1)

f123 (d1, d2, d3) = 0.4h (d1) (log (d1 + 1) log (d2 + 1) log (d3 + 1))
1
3

where:

h (x) = min (max (x− 15,−0.5) , 0.4)

The true functions model local 3-way synergy and local 3-way antagonism, as well as

global 2-way synergy between one pair of drugs. There is local 3-way synergy between

all 3 drugs in the region where the dose of the first drug is less than 15, but local 3-way

antagonism between all 3 drugs in the region where the dose of the first drug is greater

than 15. There is global 2-way synergy between drug 2 and drug 3; the other 2-way

relations are additive. The functions model a combination of the fourth scenario (2-way

and 3-way global synergy) and fifth scenario (3-way local synergy and local antagonism)

in the previous section.

A “true” logit-scale response for each dose combination was constructed as the sum

of an additive model and the appropriate f123, f12, f13 and f23 functions. The additive

model was constructed in the same manner as it was for the first scenario in Section

6.5. For dose combinations where only one drug’s dose was non-zero, the true response

was calculated using only the additive model. For dose combinations where two drugs’

doses were non-zero, the response was calculated as the sum of the additive model and

the appropriate f12, f13 or f23 function. For dose combinations where all three drugs’

doses were non-zero, the true response was calculated as the sum of the additive model

and the f12, f13, f23 and f123 functions.
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A random component was then added to the “true” logit-scale responses. The

random component was taken from a normal distribution with a mean of 0 and a

standard deviation that depended on which doses for that response were non-zero.

Seven different standard deviations were used, σ1, σ2, . . . , σ7, one each for the three

cases where only one drug was non-zero, one each for the three cases where only two

of the drugs were non-zero, and one for the case where all three drugs were non-zero.

For the three standard deviations in the cases where only one drug was non-zero, σ1,

σ2, and σ3, the standard deviation was the MSE from a linear regression model of

the logit response on log dose for the Section 6.5 first scenario data of that drug alone

(σ1 = 0.2342, σ2 = 0.1694, σ3 = 0.2026). For the standard deviations of the cases where

two drugs were non-zero, σ4, σ5, and σ6, the standard deviation was the estimated MSE

of the nonparametric function of those two doses (either f12, f13 or f23), estimated using

the Section 6.5 fourth scenario data (σ4 = 0.1977, σ5 = 0.1998, σ6 = 0.2015). For the

standard deviation of the case where all three drugs were non-zero, σ7, the standard

deviation was the estimated MSE of the nonparametric function f123, again estimated

using the Section 6.5 fourth scenario data (σ7 = 0.2014).

To test the goodness of fit and confidence intervals, multiple plates at a time were

simulated, with the same true logit-scale responses, but with different random com-

ponents. For dose combinations where all three drugs were present, three plates were

simulated, for three repetitions of that dose combination (each with a different random

component). Because the dose combinations with only one or two drugs present are

critical for accurately estimating the parametric additive model and the 2-way nonpara-

metric functions, six plates (or repetitions) were simulated for each dose combination

where only one or two drugs were present. One hundred sets of simulated plates were

generated.

Each set of simulated plates was fitted using the extended 3-drug Kong and Lee semi-

parametric method and their f12, f13, f23 and f123 functions were estimated. Confidence

intervals for the functions were estimated using the wild bootstrap-based method, with

49 bootstrap samples for each set of simulated plates.

Figures 6.6 and 6.7 show the results of the fit of the simulations, while Figures 6.8
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and 6.9 show the results of the confidence intervals for one of the simulation runs.

Figure 6.6 shows the results of estimating f12, f13 and f23. Each of these functions

is a function of two variables, the dose levels of two of the drugs, and corresponds

to a surface in 3-dimensional space. Showing multiple surfaces in a single graph of

3-dimensional space would be difficult to read, so multiple 2-dimensional cross-sections

of the surface are shown at different dose levels.

Panels A through E of Figure 6.6 show the true and estimated curves of f12. f12 is

a function of d1 and d2. Each panel shows a cross section of the surface at a different

level of d1, with d2 plotted on the X-axis, and the value of f12 at the corresponding

values of d1 and d2 plotted on the Y-axis. In each panel, the true curve of f12 is shown

as a solid black line and the estimated curves of f12 from the simulations are shown

as dashed color lines. In most cases, the estimated curves are fairly close to the true

curves.
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Figure 6.6: Estimated values of f12, f13 and f23 from the simulations.

Panels F through J of Figure 6.6 show the true and estimated curves of f13. f13 is

a function of d1 and d3. Each panel shows a cross section of the surface at a different
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level of d1, with d3 plotted on the X-axis, and the value of f13 at the corresponding

values of d1 and d3 plotted on the Y-axis. In each panel, the true curve of f13 is shown

as a solid black line and the estimated curves of f13 from the simulations are shown

as dashed color lines. In most cases, the estimated curves are fairly close to the true

curves.

Panels K through O of Figure 6.6 show the true and estimated curves of f23. f23 is

a function of d2 and d3. Each panel shows a cross section of the surface at a different

level of d2, with d3 plotted on the X-axis, and the value of f23 at the corresponding

values of d2 and d3 plotted on the Y-axis. In each panel, the true curve of f23 is shown

as a solid black line and the estimated curves of f23 from the simulations are shown

as dashed color lines. In most cases, the estimated curves are fairly close to the true

curves.

Figure 6.7 shows the results of estimating f123. f123 is a function of three variables,

the dose levels of the three drugs, and corresponds to a surface in 4-dimensional space.

It is shown here as multiple two-dimensional cross sections of the surface, with each

panel showing the cross section at different levels of d1 and d2. Each panel then shows

the cross section with d3 plotted on the X-axis and the value of f123 at the corresponding

values of d1, d2, and d3 shown on the Y-axis. In each panel, the true curve of f123 is

shown as a solid black line and the estimated curves of f123 from the simulations are

shown as dashed color lines. In all cases, the estimated curves are fairly close to the

true curves.

Figure 6.8 shows the estimated confidence intervals of f12, f13 and f23, for one of the

simulation runs. Each of these functions is a function of two variables, the dose levels

of two of the drugs, and corresponds to a surface in 3-dimensional space. Showing a

surface and its confidence interval in a single graph of 3-dimensional space would be

difficult to read, so multiple 2-dimensional cross-sections of the surface are shown at

different dose levels, in the same manner as the estimated fits were shown in Figure 6.6.

Panels A through E of Figure 6.8 show the true and estimated curves of f12 for one

simulation run (the same run shown in Panels A through J), along with the estimated

confidence interval of f12. f12 is a function of d1 and d2. Each panel shows a cross
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Figure 6.7: Estimated values of f123 from the simulations.
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section of the surface at a different level of d1, with d2 plotted on the X-axis, and the

value of f12 at the corresponding values of d1 and d2 plotted on the Y-axis. In each

panel, the true curve of f12 is shown as a solid black line, the estimated curve of f12

from the simulation run is shown as a dashed black line, and the estimated confidence

interval of f12 from the simulation run is shown with dotted black lines for the upper

and lower limits of the confidence interval. In all cases, the estimated curves are fairly

close to the true curves, and the confidence intervals include the true curves.
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Figure 6.8: Estimated confidence intervals of f12, f13 and f23 from one of the simulation
runs.

Panels F through J of Figure 6.8 show the true and estimated curves of f13 for one

simulation run (the same simulation run shown in Panels A through F), along with the

estimated confidence interval of f13. f13 is a function of d1 and d3. Each panel shows a

cross section of the surface at a different level of d1, with d3 plotted on the X-axis, and

the value of f13 at the corresponding values of d1 and d3 plotted on the Y-axis. In each

panel, the true curve of f13 is shown as a solid black line, the estimated curve of f13

from the simulation run is shown as a dashed black line, and the estimated confidence
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interval of f13 from the simulation run is shown with dotted black lines for the upper

and lower limits of the confidence interval. In all cases, the estimated curves are fairly

close to the true curves, and the confidence intervals include the true curves.

Panels K through O of Figure 6.8 show the true and estimated curves of f23 for one

simulation run, along with the estimated confidence interval of f23. f23 is a function of

d2 and d3. Each panel shows a cross section of the surface at a different level of d2, with

d3 plotted on the X-axis, and the value of f23 at the corresponding values of d2 and d3

plotted on the Y-axis. In each panel, the true curve of f23 is shown as a solid black line,

the estimated curve of f23 from the simulation run is shown as a dashed black line, and

the estimated confidence interval of f23 from the simulation run is shown with dotted

black lines for the upper and lower limits of the confidence interval. In all cases, the

estimated curves are fairly close to the true curves, and the confidence intervals include

the true curves.

Figure 6.9 shows the estimated confidence intervals of f123 for one of the simulation

runs (the same simulation run as in Figure 6.8). f123 is a function of three variables, the

dose levels of the three drugs, and corresponds to a surface in 4-dimensional space. Like

the plots of the model fit previously shown in Figure 6.7, it is shown here as multiple

two-dimensional cross sections of the surface, with each panel showing the cross section

at different levels of d1 and d2. Each panel then shows the cross section with d3 plotted

on the X-axis and the value of f123 at the corresponding values of d1, d2, and d3 shown

on the Y-axis. In each panel, the true curve of f123 is shown as a solid black line, the

estimated curve of f123 from the simulation run is shown as a dashed black line, and

the estimated confidence interval of f123 from the simulation run is shown with dotted

black lines for the upper and lower limits of the confidence interval. In all cases, the

estimated curves are fairly close to the true curves, and the confidence intervals usually

include the true curves.

The following graphs evaluate and summarize in more detail the simulation results

for the nonparametric functions f12, f13, f23, and f123. Each function is summarized

by two graphs; the first graph is a box plot of the bias, percent bias, and confidence

interval coverage for the function. The percent bias is the bias divided by the true
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Figure 6.9: Estimated confidence intervals of f123 from one of the simulation runs.
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value, times 100%; it is not defined if the true value is zero. The confidence interval

coverage shows the percentage of time the estimated 95% confidence for the function

included its true value.

The second graph shows the percentage of time the function at a particular dose

combination was classified as either synergistic, additive, or antagonistic. For the ex-

tended Kong and Lee parametric method, it was possible to determine the “correct”

classification for each dose combination, and compare the estimated classification to

the “correct” classification. But that is not possible to do here for the extended Kong

and Lee semiparametric method. The classification of a function at a particular dose

combination is based on the confidence interval for the function at that dose combina-

tion, not just the estimated value of the function. So although the true value of the

function is known, a true value that is close to zero may be classified as additive if it is

not sufficiently far from zero.

For the parametric method, it was possible to theoretically determine how far from

zero the true function would have to be in order to be considered synergistic or additive.

The distance depended on the variability of the model functions, and was a function

of the known true standard deviation used in the simulation, and the design matrix of

the parametric model. But in this semiparametric method the standard error for the

nonparametric functions is estimated using a wild bootstrap and it is not possible to

determine what the “expected” or “true” standard error of the function is.

While the following graphs summarize the performance of the method over all dose

combinations, further details are available in Appendix D, which lists the performance

of the method at each dose combination.

Figures 6.10 and 6.11 summarize the performance for estimating function f12, which

models any two-way synergy between drugs 1 and 2. The true value of the function is

always zero, so the percent bias is not defined. The absolute bias measurements were

very close to zero, and the confidence interval coverage was close to its nominal level of

95%. The function was correctly classified as additive most of the time.

Figures 6.12 and 6.13 summarize the performance for estimating function f13, which

models any two-way synergy between drugs 1 and 3. The true value of the function is
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Figure 6.10: Bias and confidence interval coverage for f12 in the simulation runs.
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Figure 6.11: Classification percentages for f12 in the simulation runs. The shaded labels
at the top of each panel indicate the dose of Drug 1, while the diagonal labels along
the bottom of the panels are the dose of Drug 2.
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always zero, so the percent bias is not defined. The absolute bias measurements were

reasonably small. The median confidence interval coverage is around 85%, not 95%.

The function was correctly classified as additive most of the time.
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Figure 6.12: Bias and confidence interval coverage for f13 in the simulation runs.

Figures 6.14 and 6.15 summarize the performance for estimating function f23, which

models any two-way synergy between drugs 2 and 3. The percent bias is not too large,

with a median of approximately -10% (the the percent bias and bias have opposite signs

because the true value of the function is negative). The median confidence interval

coverage is around 75%, not 95%. The function was classified as synergistic most of

the time.

Figures 6.16 and 6.17 summarize the performance for estimating function f123, which

models any three-way synergy between drugs 1, 2, and 3. The percent bias is not too

large, with a median not far from 0%, and the bias also very close to 0. The median

confidence interval coverage is around 90%, not 95%. When the dose of Drug 1 was

less than 20, the function was classified as synergistic most of the time; when the dose

of Drug 1 was equal to 20, the function was classified as antagonistic much of the time.

As the preceding figures have shown, the performance of the method was good in

most cases, for estimating the nonparametric functions and their confidence intervals,
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Figure 6.13: Classification percentages for f13 in the simulation runs. The shaded labels
at the top of each panel indicate the dose of Drug 1, while the diagonal labels along
the bottom of the panels are the dose of Drug 3.
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Figure 6.14: Bias and confidence interval coverage for f23 in the simulation runs.
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Figure 6.15: Classification percentages for f23 in the simulation runs. The shaded labels
at the top of each panel indicate the dose of Drug 2, while the diagonal labels along
the bottom of the panels are the dose of Drug 3.
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Figure 6.16: Bias and confidence interval coverage for f123 in the simulation runs.
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Figure 6.17: Classification percentages for f123 in the simulation runs. The shaded
labels at the top of each panel indicate the dose of Drug 1 and Drug 2 (as Dose 1 :
Dose 2), while the diagonal labels along the bottom of the panels are the dose of Drug
3.
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and in identifying cases of synergy or antagonism.
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Chapter 7

Summary, Discussion and Future Directions

7.1 Summary

Three response surface methods for determining drug synergy with three or more drugs

have been described and evaluated in the previous chapters. The three methods are

able to identify increasingly complicated cases of synergy.

With n drugs, there are a total of
∑n

p=2

(
n
p

)
interactions between the unique com-

binations of drugs. Each of the three methods separately models each interaction, but

the methods differ in how they model the interactions.

The extended Plummer and Short method is the most limited method in that it

assumes any synergy or antagonism between a set of drugs is “global”, that is the same

at all dose levels. The method uses a single parameter coefficient to model the synergy

between a particular combination of drugs, so any synergy is the same at all dose levels

of that combination of drugs.

But for interactions that meet the assumptions of the extended Plummer and Short

method, it was shown to accurately model the response surface for a number of synergy

scenarios, and to provide a good fit of the data.

The only drawback of the method is for interactions that have local synergy, such as

the fourth scenario in Section 4.3, which cannot be accurately modeled by the method.

However, if the only synergy present is global and not local, the extended Plummer and

Short method is the most sensitive of the presented methods, and will require smaller

sample sizes to detect the synergy.

The extended Kong and Lee parametric method generalizes the extended Plummer

and Short method in order to detect local synergy or antagonism. Where the extended
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Plummer and Short method used a single parameter coefficient to model the synergy

between a particular combination of drugs, the extended Kong and Lee parametric

method uses a function. This function is a function of the doses of the drugs and of a

set of parameters that allow the strength and direction of the synergy or antagonism

to vary flexibly with the doses. Interactions that have local synergy, such as the second

scenario in Section 5.3.3 can be accurately modeled by the extended Kong and Lee

parametric method.

The extended Kong and Lee parametric method was shown to accurately estimate

the response surfaces for a number of synergy scenarios, including a scenario with local

synergy and antagonism; the model also provided a good fit of the data.

The drawback of the extended Kong and Lee parametric method over the Plum-

mer and Short method is the larger sample size that is required to estimate so many

additional parameters.

Like the extended Kong and Lee parametric method, the extended Kong and Lee

semiparametric method also generalizes the extended Plummer and Short method in

order to detect local synergy or antagonism, but it does so differently. Instead of simply

replacing the synergy parameters coefficient in the extended Plummer and Short model,

the extended Kong and Lee semiparametric model is an additive model that includes

an extended Plummer and Short model that has been restricted to assume additivity

between the drugs. Nonparametric functions are also included in the additive model

to model any departure from additivity. The nonparametric functions are functions

of the doses of the drugs, which allows the strength and direction of the synergy or

antagonism to vary flexibly with the doses. Interactions that have local synergy, such

as the fifth scenario in Section 6.5 can be accurately modeled by the extended Kong

and Lee semiparametric method.

The extended Kong and Lee semiparametric method was shown to accurately esti-

mate the response surfaces for a number of synergy scenarios, including a scenario with

local synergy and antagonism; the model also provided a good fit of the data.

The increased flexibility of the extended Kong and Lee semiparametric method does

come with some drawbacks over the other two methods. The primary drawback is the
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larger sample size that is required to estimate the nonparametric functions that model

the departure from additivity. The simulation data used in this dissertation used at

least twice as many repetitions at each dose combination for the semiparametric method

than was used for the parametric method (twice as many repetitions were used for drug

combinations used to estimate the 3-way interaction, six times as many were used for

drug combinations used to estimate the 2-way interactions). The other drawback of the

semiparametric method is that its sequential nature makes it too difficult to estimate

its variability based on any theoretical method; the variability can only be estimated

using a wild bootstrap, which increases the amount of time required to fit the model.

7.2 Discussion

The motivating example for this dissertation, in Section 1.2, was a synergy study of 4

compounds. However due to some experimental design issues of the study, it was not

possible to analyze the study using the any of the methods developed in this dissertation.

This section will discuss the design issues and propose an experimental design for a

future study that could be analyzed using the methods of this dissertation.

For four compounds the response surface is a surface in 5-dimensional space, with

4 of the dimensions corresponding to the doses of the individual compounds, and the

fifth dimension representing the response. Ideally, responses will be available for all

possible dose combinations, in order to accurately estimate the response surface. The

motivating example did not test all possible dose combinations that would make up a

complete grid of points, it only tested a subset of points, which consisted of a sparse

grid of points.

Although the compounds in the motivating example were tested individually with

between 3 and 6 dose levels, if we assume each drug was only tested at 2 dose levels

it is easier to show the sparseness of the grid and to propose a feasible new design

of a complete grid of points. For simplicity we also assume the 2 dose levels of each

compound are 1 and 2, although the actual levels can be different in the proposed

design, and are not important for the structure of the grid.
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Figure 7.1 shows the grid of points that make up a complete grid of all possible

points for 4 compounds, tested with 2 dose levels each. Each panel of the figure shows

the grid of points for a specific dose combination of Drug 1 and Drug 2, whose dose

levels are shown in the shaded area immediately above the panel (e.g. the panel in the

upper left corner shows the grid of points where the dose of Drug 1 is 0 and the dose of

Drug 2 is 2, indicated by the label “Drug 1 = 0, Drug 2 = 2”). Within each panel, the

dose of Drug 3 is shown on the X-axis and the dose of Drug 4 is shown on the Y-axis.

So the point in the upper left corner of the panel in the upper left corner represents

the combination where the dose of Drug 1 is 0 and the dose of Drug 2 is 2, the dose of

Drug 3 is 0, and the dose of Drug 4 is 2.

In Figure 7.1, two different symbols are used to distinguish combinations that were

tested in the motivating example from combinations that were not tested: the filled-in

black circles represent dose combinations there were tested, while the blue circle outlines

represent dose combinations that were not tested. This helps illustrate the sparseness

of the grid of points tested; ideally each point shown in the grid would have been tested.

In the motivating example, the most critical missing dose combinations in the sparse

grid of points tested were the 2-drug combinations that did not include TPA. Although

TPA was paired with each other compound for testing, none of the other compounds

were paired with each other for testing. Without these combinations it is not possible

to test for synergy between those pairs of compounds, and thus not possible to adjust

for all of the possible cases of 2-way synergy when assessing any 3-way synergy or 4-

way synergy. Although the experiment only tested a small proportion of total dose

combinations, if the other pairs of compounds other than TPA had been tested with

each other, it would have been possible to analyze the results using one of the methods

developed in this dissertation. Because only one dose combination was tested for each

3-way interaction and for the 4-way interaction, it would not be possible to test for local

synergy so global synergy would have to be assumed. Thus the extended Plummer and

Short model would be the most appropriate method to use for the analysis, although

the extended Kong and Lee semiparametric method could be used if the assumption of

individual log-dose response curves was not met.
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In order to more thoroughly analyze the synergy properties of the 4 compounds

tested in the motivating example, it would be necessary to re-do the experiment using

a different design. One feasible design would be to use only two dose levels for all

four compounds, but test all unique combinations of the compounds. If this design

were shown in a graph like that in Figure 7.1, each point of the graph would be a

filled-in black circle. With two dose levels, and the doses of zero for testing for lower-

order interactions, the proposed design would require testing (2 + 1)4 = 34 = 81 dose

combinations. With this design it would then be possible to identify any 2-way, 3-way

and 4-way synergy between the compounds.

An even simpler design could be used for the motivating example if the dose of

interest for one of the drugs, such as TPA, has already been determined, and the goal

of the study is to identify synergy between the other drugs, in the presence of that

drug. In that case, the design reduces to a synergy study of only 3 drugs. With two

dose levels, and the doses of zero for testing for lower-order interactions, a design would

require test testing only (2 + 1)3 = 33 = 27 dose combinations. With this design it

would then be possible to identify any 2-way and 3-way synergy between the three

compounds, in the presence of the first compound. If this design were shown in a graph

like that in Figure 7.1, only one of the three columns of panels would be needed (e.g.

the center column of panels, where the dose of Drug 1 is always equal to 1), and only

the points of the three panels in that column of the graph would have to be filled-in

black circles.

7.3 Future Directions

The previous chapters described a number of new approaches to modeling synergy

between three or more drugs, but there are still areas where additional work could be

done.
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7.3.1 Generalize Loewe additivity model

In Chapter 3 the Loewe additivity model was extended to accommodate three or more

drugs. But the extended model can only identify whether the overall effects are syner-

gistic, antagonistic or additive; it cannot distinguish between n-way synergy, and p-way

synergy, 2 ≤ p < n, and it cannot take into account more than one synergistic rela-

tionship between the different combinations of drugs. At a minimum, the model should

be generalized so it can take into account and adjust for any lower order synergy. Ide-

ally, a generalized model should be created that simultaneously models all interactions

between all combinations of drugs.

7.3.2 Find most synergistic combination of drugs

Another area for future work is to find the most synergistic combination for a given

total dose of drugs. Focusing on the 2-drug case, for simplicity, assume the two drugs

are given in doses d1 and d2 respectively, for a total dose of d1 + ρd2 = dt, and that

the total dose of dt is fixed, and that D1 is the dose of drug 1 alone that has the same

response as the combination, and that D2 is the dose of drug 2 alone that has the same

response as the combination. If the drugs are additive, then the points (D1, 0) and

(0, D2) are connected by a line, and all points (d1, d2) along that line have the same

response. But if there is synergy, then some of the points have a better response, and

it would be beneficial to find the pair of points with the best response.

7.3.3 Improve extended Kong and Lee parametric method model se-

lection

The extended Kong and Lee parametric method described Chapter 5 used a parametric

model to model a complicated response surface for interactions between combinations of

drugs. The model included a large number of parameters, but only some of them may be

significant. The method used a backward elimination procedure to remove unnecessary

parameters from the model, as had been done in Kong and Lee’s parametric method for

two drugs. But with more than two drugs the backward elimination procedure did not
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work very well, and the full model generally performed better than the final, reduced

model. Another area of work would be to find a better method of model selection,

perhaps one as simple as a forward selection method, or something more complicated

such as LASSO or ridge regression.

7.3.4 Use nonparametric functions in extended Kong and Lee para-

metric method

The extended Kong and Lee parametric method used parametric functions to flexibly

model the synergy relationships. Alternatively, nonparametric functions could be used.

More specifically, this proposed model would keep the overall structure of the extended

Kong and Lee parametric model, specified in (5.1), but replace the parametric functions

specified in (5.2) with nonparametric functions.

This approach would allow even greater flexibility than the current parametric func-

tions. And by using the nonparametric functions in the context of the parametric model,

but without switching to the multi-stage estimation used in the extended Kong and Lee

semiparametric model, it would not require the use of the wild bootstrap for variance

estimation.

7.3.5 Experimental design and sample size

And finally, two other related areas for future work are in experimental design and

sample size. Finding an optimal design for an experiment, and determining the sample

size requirements would be useful for all of the extended methods, but especially for the

extended Kong and Lee semiparametric method described in Chapter 6. The semipara-

metric method sequentially estimates the different interactions, starting from the 2-way

interactions and proceeding in increasing order to the n-way interaction. This makes it

critical that the lower order interactions are estimated accurately, so they do not bias

the estimations of the higher order interactions. Chapter 6 used larger sample sizes to

estimate the lower order interactions (the “edges” of the design space, where one or

more of the drugs has a dose of 0), but additional work could determine the optimal

ratio of the sample sizes for the drug combinations for the different order interactions.
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Appendix A

Extended Kong and Lee Parametric Method Model

Function Derivatives

The extended Kong and Lee parametric method is shown below:

Y = β0 + β1 log(d1 + ρ2d2 + ρ3d3

+ f12 (d1, d2;β2, β3, κ12) (d1ρ2d2)1/2 + f13 (d1, d3;β4, β5, κ13) (d1ρ3d3)1/2

+ f23 (d2, d3;β2, β3, β4, β5, κ23) (ρ2d2ρ3d3)1/2

+ f123 (d1, d2, d3;β2, β3, β4, β5, κ123) (d1ρ2d2ρ3d3)1/3)

where:

log (ρ2) = β2 + β3 log (D2)

D2 = d2 + d1e
−β2−β3 log(D2) = d2 + d1/ρ2

log (ρ3) = β4 + β5 log (D3)

D3 = d3 + d1e
−β4−β5 log(D3) = d3 + d1/ρ3

and

f12 (d1, d2;β2, β3, κ12) =κ12,0 + κ12, 1d
1
2
1 + κ12,2 (ρ2d2)

1
2 + κ12,3d1

+ κ12, 4ρ2d2 + κ12,5 (d1ρ2d2)
1
2

f13 (d1, d3;β4, β5, κ13) =κ13,0 + κ13,1d
1
2
1 + κ13,2 (ρ3d3)

1
2 + κ13,3d1

+ κ13,4ρ3d3 + κ13,5 (d1ρ3d3)
1
2

f23 (d2, d3;β2, β3, β4, β5, κ23) =κ23,0 + κ23,1 (ρ2d2)
1
2 + κ23,2 (ρ3d3)

1
2 + κ23,3ρ2d2

+ κ23,4ρ3d3 + κ23,5 (ρ2d2ρ3d3)
1
2
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f123 (d1, d2, d3;β2, β3, β4, β5, κ123) =κ123,0 + κ123,1d
1
3
1 + κ123,2 (ρ2d2)

1
3 + κ123,3 (ρ3d3)

1
3

+ κ123,4d1 + κ123,5ρ2d2 + κ123,6ρ3d3

+ κ123,7 (d1ρ2d2ρ3d3)
1
3

The parameters modeling the relative potency of the drugs to each other can be

restated as:

log (ρ2) = β2 + β3 log (D2)

ρ2 = eβ2+β3 log(D2)

log (ρ3) = β4 + β5 log (D3)

ρ3 = eβ4+β5 log(D3)

and then the model itself can be restated equivalently as:

Y = β0 + β1 log

(
d1 + d2e

β2+β3 log(D2) + d3e
β4+β5 log(D3)

+ f12 (d1, d2;β2, β3, κ12)
(
d1d2e

β2+β3 log(D2)
)1/2

+ f13 (d1, d3;β4, β5, κ13)
(
d1d3e

β4+β5 log(D3)
)1/2

+ f23 (d2, d3;β2, β3, β4, β5, κ23)
(
d2d3e

β2+β3 log(D2)+β4+β5 log(D3)
)1/2

+f123 (d1, d2, d3;β2, β3, β4, β5, κ123)

×
(
d1d2d3e

β2+β3 log(D2)+β4+β5 log(D3)
)1/3

)
The extended Kong and Lee parametric model is a nonlinear model. Nonlinear

models in general are of the form:

Yi = f (Xi, γ) + εi

where Xi is the vector of predictor variables for the ith case:

Xi =



Xi1

Xi2

. . .

Xiq
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and γ is the vector of regression coefficients:

γ =



γ0

γ1

. . .

γp−1


Nonlinear models are generally fitted using numerical search procedures to estimate

the regression parameters and their standard errors. One common method is the Gauss-

Newton method (see [25] for additional details). The Gauss-Newton method iteratively

estimates the regression parameter vector γ with a vector g:

g =



g0

g1

. . .

gp−1


using repeated approximations based on a Taylor series expansion of the function f .

The Taylor series expansion is calculated using a matrix of partial derivatives of the

function f with respect to the parameters γ:

Dik =

[
∂f (Xi, γ)

∂γk

]
γ=g

(A.1)

Once the parameters have been estimated, the D matrix is also used to estimate

the standard errors of the parameter estimates, using the estimated error term:

s2 {g} = MSE
(
D′D

)′−1
(A.2)

In the extended Kong and Lee parametric method in Chapter 5, the functions

f12, f13, f23 and f123 at a given dose combination are classified as either synergistic,

antagonistic or additive. This classification depends on the estimated standard errors of

the functions, which are determined using the delta method and the estimated standard

errors of the model parameters; the estimated standard errors of the model parameters

are estimated as described above.

To determine the “correct” classification of the functions in order to evaluate the

performance of the method, the “true standard error” of each parameter is calculated
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using (A.2), but using the simulations’ known true standard deviation and known true

parameter values. This calculation depends on the D matrix in (A.1). The derivatives

for the D matrix of the extended Kong and Lee parametric model for three drugs are

shown below.

For the extended Kong and Lee parametric method the function f of the nonlinear

model is defined as:

f = β0 + β1 log

(
d1 + d2e

β2+β3 log(D2) + d3e
β4+β5 log(D3)

+ f12 (d1, d2;β2, β3, κ12)
(
d1d2e

β2+β3 log(D2)
)1/2

+ f13 (d1, d3;β4, β5, κ13)
(
d1d3e

β4+β5 log(D3)
)1/2

+ f23 (d2, d3;β2, β3, β4, β5, κ23)
(
d2d3e

β2+β3 log(D2)+β4+β5 log(D3)
)1/2

+ f123 (d1, d2, d3;β2, β3, β4, β5, κ123)

×
(
d1d2d3e

β2+β3 log(D2)+β4+β5 log(D3)
)1/3

)
and the parameter vector γ = (β0, β1, β2, β3, β4, β5, κ12,0, . . . , κ12,5, κ13,0, . . . , κ13,5,

κ23,0, . . . , κ23,5, κ123,0, . . . , κ123,6, κ123,7)′.

As a notational convenience, Λ will be defined to be as:

Λ =d1 + d2e
β2+β3 log(D2) + d3e

β4+β5 log(D3)

+ f12 (d1, d2;β2, β3, κ12)
(
d1d2e

β2+β3 log(D2)
)1/2

+ f13 (d1, d3;β4, β5, κ13)
(
d1d3e

β4+β5 log(D3)
)1/2

+ f23 (d2, d3;β2, β3, β4, β5, κ23)
(
d2d3e

β2+β3 log(D2)+β4+β5 log(D3)
)1/2

+ f123 (d1, d2, d3;β2, β3, β4, β5, κ123)
(
d1d2d3e

β2+β3 log(D2)+β4+β5 log(D3)
)1/3

The derivatives that are needed for the D matrix can then be defined using:

∂f

∂β0
= 1

∂f

∂β1
= log (Λ)
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∂f

∂β2
=
β1

Λ

[
d2e

β2+β3 log(D2)

+
1

2
f12 (d1, d2;β2, β3, κ12)

(
d1d2e

β2+β3 log(D2)
)1/2

+
(
d1d2e

β2+β3 log(D2)
)1/2 ∂f12

∂β2

+
1

2
f23 (d2, d3;β2, β3, β4, β5, κ23)

(
d2d3e

β2+β3 log(D2)+β4+β5 log(D3)
)1/2

+
(
d2d3e

β2+β3 log(D2)+β4+β5 log(D3)
)1/2 ∂f23

∂β2

+
1

3
f123 (d1, d2, d3;β2, β3, β4, β5, κ123)

(
d1d2d3e

β2+β3 log(D2)+β4+β5 log(D3)
)1/3

+
(
d1d2d3e

β2+β3 log(D2)+β4+β5 log(D3)
)1/3 ∂f123

∂β2

]
∂f

∂β3
=
β1

Λ

[
d2e

β2+β3 log(D2) log (D2)

+
1

2
f12 (d1, d2;β2, β3, κ12)

(
d1d2e

β2+β3 log(D2)
)1/2

log (D2)

+
(
d1d2e

β2+β3 log(D2)
)1/2 ∂f12

∂β3

+
1

2
f23 (d2, d3;β2, β3, β4, β5, κ23)

(
d2d3e

β2+β3 log(D2)+β4+β5 log(D3)
)1/2

log (D2)

+
(
d2d3e

β2+β3 log(D2)+β4+β5 log(D3)
)1/2 ∂f23

∂β3

+
1

3
f123 (d1, d2, d3;β2, β3, β4, β5, κ123)

(
d1d2d3e

β2+β3 log(D2)+β4+β5 log(D3)
)1/3

× log (D2)

+
(
d1d2d3e

β2+β3 log(D2)+β4+β5 log(D3)
)1/3 ∂f123

∂β3

]
∂f

∂β4
=
β1

Λ

[
d3e

β4+β5 log(D3)

+
1

2
f13 (d1, d3;β4, β5, κ13)

(
d1d3e

β4+β5 log(D3)
)1/2

+
(
d1d3e

β4+β5 log(D3)
)1/2 ∂f13

∂β4

+
1

2
f23 (d2, d3;β2, β3, β4, β5, κ23)

(
d2d3e

β2+β3 log(D2)+β4+β5 log(D3)
)1/2

+
(
d2d3e

β2+β3 log(D2)+β4+β5 log(D3)
)1/2 ∂f23

∂β4

+
1

3
f123 (d1, d2, d3;β2, β3, β4, β5, κ123)

(
d1d2d3e

β2+β3 log(D2)+β4+β5 log(D3)
)1/3

+
(
d1d2d3e

β2+β3 log(D2)+β4+β5 log(D3)
)1/3 ∂f123

∂β4

]
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∂f

∂β5
=
β1

Λ

[
d3e

β4+β5 log(D3) log (D3)

+
1

2
f13 (d1, d3;β4, β5, κ13)

(
d1d3e

β4+β5 log(D3)
)1/2

log (D3)

+
(
d1d3e

β4+β5 log(D3)
)1/2 ∂f13

∂β5

+
1

2
f23 (d2, d3;β2, β3, β4, β5, κ23)

(
d2d3e

β2+β3 log(D2)+β4+β5 log(D3)
)1/2

log (D3)

+
(
d2d3e

β2+β3 log(D2)+β4+β5 log(D3)
)1/2 ∂f23

∂β5

+
1

3
f123 (d1, d2, d3;β2, β3, β4, β5, κ123)

(
d1d2d3e
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Appendix B

Extended Kong and Lee Parametric Method Model

Function Goodness of Fit Tables

In Section 5.4.2, the extended Kong and Lee parametric method evaluated the perfor-

mance of the method by evaluating the estimation of the model functions, f12, f13, f23

and f123 at each dose combination. Because of the large number of dose combinations,

particularly for the f123 function, the results of the evaluation were summarized graph-

ically in that section. The following tables show the individual results at each dose

combination, under each of the two scenarios evaluated, for both the full model and

the final model.

The tables columns are labeled as follows; see Section 5.4.2 for additional details.

true the true value of the function.

ave the mean of the estimated values of the function.

abs.bias the bias.

rel.bias the percent bias, divided by 100%.

mse the mean squared error of the estimates.

cr.ci the confidence interval coverage,divided by 100%.

p.ant the percentage of times the function was classified as antagonistic.

p.add the percentage of times the function was classified as additive.

p.syn the percentage of times the function was classified as synergistic.
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B.1 Model Function Goodness of Fit Tables, First Scenario

B.1.1 Full Model

Table B.1 shows the detailed results from the evaluation of f12, based on the full

model. The function has a constant true value of 0.4, indicating antagonism, and

this is correctly identified by most simulation runs at most dose combinations.

Table B.1: Evaluation of f12 at all doses, for full model of Scenario 1.
DrugA DrugB true ave abs.bias rel.bias mse cr.ci p.ant p.add p.syn

2.5 1.25 0.400 0.405 0.005 0.012 0.014 0.93 0 7 93

5.0 1.25 0.400 0.412 0.012 0.031 0.009 0.97 0 1 99

7.5 1.25 0.400 0.418 0.018 0.046 0.010 0.97 0 1 99

10.0 1.25 0.400 0.423 0.023 0.058 0.012 0.96 0 2 98

15.0 1.25 0.400 0.432 0.032 0.080 0.018 0.96 0 6 94

20.0 1.25 0.400 0.440 0.040 0.099 0.030 0.95 0 22 78

2.5 2.50 0.400 0.399 -0.001 -0.004 0.010 0.92 0 1 99

5.0 2.50 0.400 0.405 0.005 0.014 0.007 0.92 0 0 100

7.5 2.50 0.400 0.411 0.011 0.027 0.008 0.92 0 0 100

10.0 2.50 0.400 0.416 0.016 0.039 0.009 0.95 0 0 100

15.0 2.50 0.400 0.424 0.024 0.059 0.013 0.98 0 0 100

20.0 2.50 0.400 0.431 0.031 0.077 0.022 0.96 0 13 87

2.5 3.75 0.400 0.398 -0.002 -0.006 0.011 0.92 0 2 98

5.0 3.75 0.400 0.404 0.004 0.010 0.009 0.91 0 0 100

7.5 3.75 0.400 0.409 0.009 0.023 0.010 0.93 0 0 100

10.0 3.75 0.400 0.413 0.013 0.034 0.011 0.93 0 0 100

15.0 3.75 0.400 0.421 0.021 0.052 0.014 0.97 0 1 99

20.0 3.75 0.400 0.428 0.028 0.069 0.020 0.96 0 10 90

2.5 5.00 0.400 0.399 -0.001 -0.001 0.013 0.94 0 5 95

5.0 5.00 0.400 0.405 0.005 0.014 0.011 0.90 0 1 99

7.5 5.00 0.400 0.410 0.010 0.026 0.012 0.92 0 1 99

10.0 5.00 0.400 0.414 0.014 0.036 0.013 0.92 0 1 99

15.0 5.00 0.400 0.421 0.021 0.053 0.015 0.96 0 1 99

20.0 5.00 0.400 0.428 0.028 0.069 0.020 0.96 0 8 92

2.5 7.50 0.400 0.408 0.008 0.020 0.018 0.94 0 14 86

5.0 7.50 0.400 0.413 0.013 0.033 0.015 0.94 0 3 97

7.5 7.50 0.400 0.417 0.017 0.044 0.015 0.95 0 1 99

10.0 7.50 0.400 0.421 0.021 0.053 0.016 0.94 0 1 99

15.0 7.50 0.400 0.427 0.027 0.069 0.017 0.96 0 2 98

20.0 7.50 0.400 0.433 0.033 0.082 0.021 0.98 0 10 90

2.5 10.00 0.400 0.420 0.020 0.050 0.029 0.93 0 32 68

5.0 10.00 0.400 0.425 0.025 0.062 0.024 0.95 0 21 79

7.5 10.00 0.400 0.429 0.029 0.072 0.023 0.96 0 12 88

10.0 10.00 0.400 0.432 0.032 0.080 0.023 0.96 0 12 88

15.0 10.00 0.400 0.438 0.038 0.094 0.023 0.96 0 12 88

20.0 10.00 0.400 0.443 0.043 0.107 0.028 0.96 0 21 79

Table B.2 shows the detailed results from the evaluation of f13, based on the full

model. The function’s constant true value of zero indicates additivity, and this is

correctly identified by most simulation runs at most dose combinations.
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Table B.2: Evaluation of f13 at all doses, for full model of Scenario 1.
DrugA DrugC true ave abs.bias rel.bias mse cr.ci p.ant p.add p.syn

2.5 0.625 0.000 -0.013 -0.013 . 0.012 0.93 6 93 1

5.0 0.625 0.000 -0.005 -0.005 . 0.008 0.94 4 94 2

7.5 0.625 0.000 0.000 0.000 . 0.009 0.94 4 94 2

10.0 0.625 0.000 0.004 0.004 . 0.012 0.96 2 96 2

15.0 0.625 0.000 0.011 0.011 . 0.018 0.94 3 94 3

20.0 0.625 0.000 0.016 0.016 . 0.029 0.95 2 95 3

2.5 1.250 0.000 -0.009 -0.009 . 0.007 0.93 6 93 1

5.0 1.250 0.000 -0.003 -0.003 . 0.004 0.95 4 95 1

7.5 1.250 0.000 0.001 0.001 . 0.005 0.95 3 95 2

10.0 1.250 0.000 0.004 0.004 . 0.006 0.95 3 95 2

15.0 1.250 0.000 0.009 0.009 . 0.010 0.96 2 96 2

20.0 1.250 0.000 0.013 0.013 . 0.018 0.99 1 99 0

2.5 1.875 0.000 -0.005 -0.005 . 0.008 0.93 3 93 4

5.0 1.875 0.000 -0.001 -0.001 . 0.005 0.95 1 95 4

7.5 1.875 0.000 0.003 0.003 . 0.005 0.92 5 92 3

10.0 1.875 0.000 0.005 0.005 . 0.006 0.95 4 95 1

15.0 1.875 0.000 0.009 0.009 . 0.009 0.96 3 96 1

20.0 1.875 0.000 0.012 0.012 . 0.014 0.97 2 97 1

2.5 2.500 0.000 -0.002 -0.002 . 0.009 0.92 4 92 4

5.0 2.500 0.000 0.002 0.002 . 0.006 0.94 2 94 4

7.5 2.500 0.000 0.005 0.005 . 0.006 0.93 5 93 2

10.0 2.500 0.000 0.007 0.007 . 0.006 0.95 4 95 1

15.0 2.500 0.000 0.010 0.010 . 0.008 0.96 2 96 2

20.0 2.500 0.000 0.011 0.011 . 0.012 0.95 4 95 1

2.5 3.750 0.000 0.006 0.006 . 0.015 0.93 4 93 3

5.0 3.750 0.000 0.009 0.009 . 0.009 0.94 4 94 2

7.5 3.750 0.000 0.010 0.010 . 0.008 0.97 3 97 0

10.0 3.750 0.000 0.011 0.011 . 0.008 0.95 4 95 1

15.0 3.750 0.000 0.012 0.012 . 0.009 0.96 4 96 0

20.0 3.750 0.000 0.012 0.012 . 0.012 0.94 5 94 1

2.5 5.000 0.000 0.015 0.015 . 0.024 0.92 5 92 3

5.0 5.000 0.000 0.016 0.016 . 0.015 0.94 5 94 1

7.5 5.000 0.000 0.016 0.016 . 0.012 0.97 3 97 0

10.0 5.000 0.000 0.016 0.016 . 0.012 0.96 3 96 1

15.0 5.000 0.000 0.016 0.016 . 0.012 0.95 4 95 1

20.0 5.000 0.000 0.015 0.015 . 0.015 0.96 4 96 0
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Table B.3 shows the detailed results from the evaluation of f23, based on the full

model. The function’s constant true value of zero indicates additivity, and this is

correctly identified by most simulation runs at most dose combinations.

Table B.3: Evaluation of f23 at all doses, for full model of Scenario 1.
DrugB DrugC true ave abs.bias rel.bias mse cr.ci p.ant p.add p.syn

1.25 0.625 0.000 0.007 0.007 . 0.016 0.97 1 97 2

2.50 0.625 0.000 0.013 0.013 . 0.013 0.98 1 98 1

3.75 0.625 0.000 0.015 0.015 . 0.012 0.99 0 99 1

5.00 0.625 0.000 0.016 0.016 . 0.012 0.98 0 98 2

7.50 0.625 0.000 0.012 0.012 . 0.015 0.98 1 98 1

10.00 0.625 0.000 0.004 0.004 . 0.025 0.97 3 97 0

1.25 1.250 0.000 0.004 0.004 . 0.010 0.97 2 97 1

2.50 1.250 0.000 0.010 0.010 . 0.008 0.97 1 97 2

3.75 1.250 0.000 0.013 0.013 . 0.008 0.99 0 99 1

5.00 1.250 0.000 0.013 0.013 . 0.008 0.98 0 98 2

7.50 1.250 0.000 0.010 0.010 . 0.010 0.99 1 99 0

10.00 1.250 0.000 0.002 0.002 . 0.017 0.98 2 98 0

1.25 1.875 0.000 0.003 0.003 . 0.010 0.95 4 95 1

2.50 1.875 0.000 0.009 0.009 . 0.008 0.96 2 96 2

3.75 1.875 0.000 0.012 0.012 . 0.008 0.96 1 96 3

5.00 1.875 0.000 0.012 0.012 . 0.008 0.98 0 98 2

7.50 1.875 0.000 0.009 0.009 . 0.009 0.97 2 97 1

10.00 1.875 0.000 0.002 0.002 . 0.015 0.98 2 98 0

1.25 2.500 0.000 0.002 0.002 . 0.010 0.94 4 94 2

2.50 2.500 0.000 0.008 0.008 . 0.008 0.95 3 95 2

3.75 2.500 0.000 0.011 0.011 . 0.008 0.96 1 96 3

5.00 2.500 0.000 0.012 0.012 . 0.008 0.96 2 96 2

7.50 2.500 0.000 0.009 0.009 . 0.009 0.97 2 97 1

10.00 2.500 0.000 0.002 0.002 . 0.014 1.00 0 100 0

1.25 3.750 0.000 0.001 0.001 . 0.014 0.95 4 95 1

2.50 3.750 0.000 0.008 0.008 . 0.009 0.97 2 97 1

3.75 3.750 0.000 0.011 0.011 . 0.009 0.95 4 95 1

5.00 3.750 0.000 0.011 0.011 . 0.008 0.94 5 94 1

7.50 3.750 0.000 0.009 0.009 . 0.009 0.96 4 96 0

10.00 3.750 0.000 0.002 0.002 . 0.012 0.99 1 99 0

1.25 5.000 0.000 0.000 0.000 . 0.022 0.95 4 95 1

2.50 5.000 0.000 0.007 0.007 . 0.015 0.96 3 96 1

3.75 5.000 0.000 0.010 0.010 . 0.013 0.94 4 94 2

5.00 5.000 0.000 0.011 0.011 . 0.011 0.94 4 94 2

7.50 5.000 0.000 0.009 0.009 . 0.011 0.94 5 94 1

10.00 5.000 0.000 0.002 0.002 . 0.013 0.97 2 97 1

Table B.4 shows the detailed results from the evaluation of f123, based on the full

model. The function always has a positive true value, indicating antagonism, and this

is correctly identified by most simulation runs at most dose combinations.
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Table B.4: Evaluation of f123 at all doses, for full model of Scenario 1.

DrugA DrugB DrugC true ave abs.bias rel.bias mse cr.ci p.ant p.add p.syn

2.5 1.25 0.625 0.183 0.161 -0.022 -0.121 0.050 0.93 0 88 12

5.0 1.25 0.625 0.231 0.205 -0.026 -0.114 0.032 0.96 0 78 22

7.5 1.25 0.625 0.265 0.236 -0.029 -0.109 0.027 0.98 0 72 28

10.0 1.25 0.625 0.293 0.262 -0.031 -0.105 0.025 0.99 0 66 34

15.0 1.25 0.625 0.336 0.303 -0.033 -0.099 0.026 0.99 0 64 36

20.0 1.25 0.625 0.370 0.336 -0.035 -0.094 0.039 0.98 0 70 30

2.5 2.50 0.625 0.231 0.217 -0.014 -0.060 0.038 0.94 0 73 27

5.0 2.50 0.625 0.292 0.274 -0.018 -0.061 0.024 0.92 0 50 50

7.5 2.50 0.625 0.335 0.314 -0.020 -0.061 0.023 0.92 0 41 59

10.0 2.50 0.625 0.369 0.347 -0.022 -0.060 0.022 0.93 0 34 66

15.0 2.50 0.625 0.424 0.399 -0.024 -0.058 0.026 0.95 0 34 66

20.0 2.50 0.625 0.467 0.441 -0.026 -0.055 0.040 0.98 0 42 58

2.5 3.75 0.625 0.265 0.256 -0.009 -0.034 0.036 0.91 0 65 35

5.0 3.75 0.625 0.335 0.322 -0.013 -0.039 0.025 0.91 0 41 59

7.5 3.75 0.625 0.384 0.368 -0.015 -0.040 0.025 0.91 0 31 69

10.0 3.75 0.625 0.423 0.406 -0.017 -0.040 0.026 0.91 0 23 77

15.0 3.75 0.625 0.485 0.466 -0.019 -0.039 0.029 0.94 0 18 82

20.0 3.75 0.625 0.535 0.515 -0.020 -0.038 0.043 0.98 0 29 71

2.5 5.00 0.625 0.292 0.286 -0.006 -0.020 0.034 0.93 0 57 43

5.0 5.00 0.625 0.369 0.359 -0.010 -0.026 0.026 0.93 0 35 65

7.5 5.00 0.625 0.423 0.411 -0.012 -0.028 0.027 0.91 0 22 78

10.0 5.00 0.625 0.466 0.452 -0.014 -0.029 0.028 0.91 0 17 83

15.0 5.00 0.625 0.534 0.519 -0.016 -0.029 0.031 0.92 0 12 88

20.0 5.00 0.625 0.589 0.573 -0.017 -0.028 0.044 0.97 0 25 75

2.5 7.50 0.625 0.335 0.334 -0.002 -0.005 0.032 0.97 0 54 46

5.0 7.50 0.625 0.423 0.418 -0.005 -0.013 0.028 0.95 0 27 73

7.5 7.50 0.625 0.485 0.477 -0.008 -0.016 0.030 0.93 0 20 80

10.0 7.50 0.625 0.534 0.525 -0.009 -0.017 0.031 0.93 0 14 86

15.0 7.50 0.625 0.613 0.602 -0.011 -0.017 0.033 0.97 0 12 88

20.0 7.50 0.625 0.675 0.664 -0.011 -0.017 0.044 0.98 0 15 85

2.5 10.00 0.625 0.370 0.371 0.001 0.003 0.041 0.98 0 62 38

5.0 10.00 0.625 0.466 0.464 -0.002 -0.005 0.039 0.98 0 43 57

7.5 10.00 0.625 0.534 0.530 -0.005 -0.009 0.042 0.97 0 29 71

10.0 10.00 0.625 0.589 0.583 -0.006 -0.010 0.043 0.97 0 24 76

15.0 10.00 0.625 0.675 0.668 -0.007 -0.011 0.043 0.99 0 16 84

20.0 10.00 0.625 0.744 0.736 -0.008 -0.011 0.051 0.99 0 16 84

2.5 1.25 1.250 0.231 0.222 -0.008 -0.035 0.030 0.93 0 78 22

5.0 1.25 1.250 0.291 0.279 -0.012 -0.043 0.018 0.98 0 52 48

7.5 1.25 1.250 0.334 0.319 -0.015 -0.045 0.016 0.98 0 42 58

10.0 1.25 1.250 0.369 0.352 -0.017 -0.046 0.015 0.98 0 31 69

15.0 1.25 1.250 0.423 0.404 -0.019 -0.045 0.017 0.98 0 24 76

20.0 1.25 1.250 0.467 0.446 -0.021 -0.044 0.030 0.98 0 37 63

2.5 2.50 1.250 0.291 0.291 0.000 0.000 0.022 0.94 0 47 53

5.0 2.50 1.250 0.368 0.364 -0.004 -0.011 0.012 0.94 0 6 94

7.5 2.50 1.250 0.422 0.415 -0.007 -0.016 0.012 0.92 0 4 96

10.0 2.50 1.250 0.465 0.457 -0.008 -0.018 0.012 0.94 0 3 97

15.0 2.50 1.250 0.534 0.523 -0.010 -0.020 0.015 0.97 0 3 97

20.0 2.50 1.250 0.589 0.577 -0.012 -0.020 0.028 0.98 0 13 87

2.5 3.75 1.250 0.334 0.339 0.005 0.014 0.022 0.97 0 35 65

5.0 3.75 1.250 0.422 0.423 0.001 0.002 0.014 0.93 0 4 96

7.5 3.75 1.250 0.484 0.482 -0.002 -0.003 0.014 0.92 0 4 96

10.0 3.75 1.250 0.533 0.530 -0.003 -0.006 0.015 0.91 0 1 99

15.0 3.75 1.250 0.611 0.606 -0.005 -0.009 0.017 0.94 0 2 98

20.0 3.75 1.250 0.674 0.668 -0.006 -0.010 0.030 0.95 0 6 94

2.5 5.00 1.250 0.368 0.376 0.008 0.022 0.022 0.96 0 30 70

5.0 5.00 1.250 0.465 0.469 0.004 0.009 0.015 0.92 0 3 97

7.5 5.00 1.250 0.533 0.535 0.002 0.003 0.016 0.89 0 1 99

Continued on Next Page
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Table B.4 – Continued

.DrugA DrugB DrugC true ave abs.bias rel.bias mse cr.ci p.ant p.add p.syn

10.0 5.00 1.250 0.587 0.587 0.000 0.000 0.016 0.89 0 0 100

15.0 5.00 1.250 0.674 0.672 -0.002 -0.003 0.018 0.92 0 0 100

20.0 5.00 1.250 0.742 0.740 -0.003 -0.004 0.029 0.96 0 4 96

2.5 7.50 1.250 0.423 0.435 0.012 0.029 0.022 0.98 0 26 74

5.0 7.50 1.250 0.533 0.541 0.008 0.015 0.017 0.95 0 0 100

7.5 7.50 1.250 0.611 0.617 0.006 0.010 0.019 0.92 0 0 100

10.0 7.50 1.250 0.673 0.678 0.005 0.007 0.019 0.92 0 0 100

15.0 7.50 1.250 0.772 0.775 0.003 0.004 0.019 0.94 0 0 100

20.0 7.50 1.250 0.851 0.853 0.002 0.003 0.027 0.97 0 0 100

2.5 10.00 1.250 0.466 0.481 0.015 0.032 0.032 1.00 0 34 66

5.0 10.00 1.250 0.588 0.599 0.011 0.019 0.029 0.97 0 7 93

7.5 10.00 1.250 0.673 0.682 0.009 0.013 0.031 0.96 0 4 96

10.0 10.00 1.250 0.742 0.749 0.008 0.010 0.031 0.96 0 0 100

15.0 10.00 1.250 0.851 0.857 0.006 0.007 0.028 0.97 0 0 100

20.0 10.00 1.250 0.937 0.943 0.006 0.006 0.033 0.98 0 0 100

2.5 1.25 1.875 0.264 0.263 -0.001 -0.004 0.025 0.98 0 67 33

5.0 1.25 1.875 0.334 0.328 -0.005 -0.016 0.015 0.97 0 32 68

7.5 1.25 1.875 0.383 0.375 -0.008 -0.021 0.015 0.96 0 18 82

10.0 1.25 1.875 0.422 0.412 -0.010 -0.023 0.015 0.98 0 8 92

15.0 1.25 1.875 0.485 0.472 -0.012 -0.025 0.017 0.97 0 10 90

20.0 1.25 1.875 0.534 0.521 -0.014 -0.025 0.029 0.96 0 25 75

2.5 2.50 1.875 0.334 0.341 0.007 0.021 0.018 0.97 0 32 68

5.0 2.50 1.875 0.421 0.424 0.003 0.007 0.010 0.94 0 2 98

7.5 2.50 1.875 0.483 0.484 0.000 0.001 0.010 0.93 0 1 99

10.0 2.50 1.875 0.533 0.531 -0.001 -0.002 0.010 0.96 0 0 100

15.0 2.50 1.875 0.611 0.608 -0.003 -0.006 0.013 0.95 0 0 100

20.0 2.50 1.875 0.674 0.669 -0.005 -0.007 0.025 0.98 0 5 95

2.5 3.75 1.875 0.383 0.394 0.012 0.031 0.019 0.97 0 22 78

5.0 3.75 1.875 0.483 0.491 0.008 0.016 0.011 0.94 0 2 98

7.5 3.75 1.875 0.554 0.559 0.005 0.009 0.012 0.93 0 0 100

10.0 3.75 1.875 0.610 0.614 0.004 0.006 0.012 0.95 0 0 100

15.0 3.75 1.875 0.700 0.702 0.002 0.002 0.014 0.94 0 0 100

20.0 3.75 1.875 0.772 0.772 0.001 0.001 0.025 0.97 0 1 99

2.5 5.00 1.875 0.422 0.437 0.015 0.035 0.019 0.96 0 14 86

5.0 5.00 1.875 0.532 0.543 0.011 0.020 0.013 0.95 0 0 100

7.5 5.00 1.875 0.610 0.619 0.009 0.014 0.013 0.92 0 0 100

10.0 5.00 1.875 0.672 0.679 0.007 0.010 0.013 0.91 0 0 100

15.0 5.00 1.875 0.771 0.776 0.005 0.007 0.014 0.93 0 0 100

20.0 5.00 1.875 0.850 0.854 0.004 0.005 0.024 0.96 0 0 100

2.5 7.50 1.875 0.484 0.503 0.019 0.039 0.021 0.98 0 9 91

5.0 7.50 1.875 0.611 0.626 0.015 0.025 0.015 0.95 0 0 100

7.5 7.50 1.875 0.700 0.713 0.013 0.018 0.016 0.94 0 0 100

10.0 7.50 1.875 0.771 0.782 0.011 0.015 0.015 0.93 0 0 100

15.0 7.50 1.875 0.884 0.894 0.010 0.011 0.015 0.94 0 0 100

20.0 7.50 1.875 0.974 0.983 0.009 0.009 0.022 0.97 0 0 100

2.5 10.00 1.875 0.534 0.555 0.022 0.041 0.032 0.99 0 25 75

5.0 10.00 1.875 0.673 0.691 0.018 0.027 0.028 0.97 0 3 97

7.5 10.00 1.875 0.771 0.787 0.016 0.020 0.028 0.95 0 0 100

10.0 10.00 1.875 0.849 0.864 0.014 0.017 0.028 0.95 0 0 100

15.0 10.00 1.875 0.974 0.987 0.013 0.013 0.025 0.95 0 0 100

20.0 10.00 1.875 1.073 1.085 0.012 0.012 0.030 0.96 0 0 100

2.5 1.25 2.500 0.291 0.293 0.003 0.009 0.023 0.97 0 57 43

5.0 1.25 2.500 0.367 0.366 -0.002 -0.004 0.015 0.95 0 21 79

7.5 1.25 2.500 0.422 0.417 -0.004 -0.010 0.015 0.95 0 8 92

10.0 1.25 2.500 0.465 0.459 -0.006 -0.013 0.016 0.97 0 8 92

15.0 1.25 2.500 0.533 0.525 -0.008 -0.016 0.018 0.97 0 6 94

20.0 1.25 2.500 0.588 0.579 -0.010 -0.016 0.030 0.96 0 15 85

2.5 2.50 2.500 0.367 0.378 0.011 0.029 0.016 0.98 0 19 81

Continued on Next Page
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Table B.4 – Continued

.DrugA DrugB DrugC true ave abs.bias rel.bias mse cr.ci p.ant p.add p.syn

5.0 2.50 2.500 0.464 0.470 0.007 0.014 0.009 0.96 0 0 100

7.5 2.50 2.500 0.532 0.536 0.004 0.008 0.009 0.94 0 0 100

10.0 2.50 2.500 0.586 0.589 0.002 0.004 0.010 0.95 0 0 100

15.0 2.50 2.500 0.673 0.673 0.000 0.000 0.012 0.96 0 0 100

20.0 2.50 2.500 0.742 0.741 -0.001 -0.001 0.023 0.98 0 1 99

2.5 3.75 2.500 0.421 0.437 0.015 0.037 0.018 0.97 0 11 89

5.0 3.75 2.500 0.532 0.543 0.011 0.021 0.010 0.97 0 0 100

7.5 3.75 2.500 0.610 0.619 0.009 0.015 0.011 0.94 0 0 100

10.0 3.75 2.500 0.672 0.679 0.007 0.011 0.011 0.92 0 0 100

15.0 3.75 2.500 0.771 0.776 0.005 0.007 0.012 0.94 0 0 100

20.0 3.75 2.500 0.850 0.854 0.004 0.005 0.023 0.97 0 0 100

2.5 5.00 2.500 0.464 0.483 0.019 0.040 0.019 0.96 0 8 92

5.0 5.00 2.500 0.586 0.601 0.014 0.025 0.011 0.98 0 0 100

7.5 5.00 2.500 0.672 0.684 0.012 0.018 0.012 0.94 0 0 100

10.0 5.00 2.500 0.740 0.751 0.011 0.014 0.011 0.93 0 0 100

15.0 5.00 2.500 0.849 0.858 0.009 0.010 0.012 0.95 0 0 100

20.0 5.00 2.500 0.936 0.944 0.008 0.008 0.022 0.96 0 0 100

2.5 7.50 2.500 0.533 0.556 0.023 0.043 0.021 0.99 0 3 97

5.0 7.50 2.500 0.672 0.691 0.019 0.028 0.014 0.97 0 0 100

7.5 7.50 2.500 0.770 0.787 0.016 0.021 0.014 0.95 0 0 100

10.0 7.50 2.500 0.849 0.864 0.015 0.018 0.014 0.95 0 0 100

15.0 7.50 2.500 0.973 0.986 0.013 0.014 0.013 0.96 0 0 100

20.0 7.50 2.500 1.072 1.085 0.013 0.012 0.020 0.96 0 0 100

2.5 10.00 2.500 0.587 0.613 0.026 0.043 0.033 0.99 0 15 85

5.0 10.00 2.500 0.741 0.762 0.021 0.029 0.027 0.97 0 1 99

7.5 10.00 2.500 0.849 0.868 0.019 0.023 0.027 0.95 0 0 100

10.0 10.00 2.500 0.935 0.953 0.018 0.019 0.027 0.95 0 0 100

15.0 10.00 2.500 1.072 1.088 0.016 0.015 0.024 0.95 0 0 100

20.0 10.00 2.500 1.181 1.197 0.016 0.014 0.030 0.97 0 0 100

2.5 1.25 3.750 0.333 0.338 0.005 0.015 0.026 0.96 0 49 51

5.0 1.25 3.750 0.421 0.421 0.001 0.001 0.019 0.96 0 17 83

7.5 1.25 3.750 0.483 0.481 -0.002 -0.004 0.019 0.95 0 6 94

10.0 1.25 3.750 0.532 0.528 -0.004 -0.007 0.020 0.95 0 3 97

15.0 1.25 3.750 0.611 0.605 -0.006 -0.010 0.021 0.97 0 3 97

20.0 1.25 3.750 0.674 0.666 -0.007 -0.011 0.033 0.98 0 8 92

2.5 2.50 3.750 0.421 0.434 0.013 0.031 0.018 0.98 0 16 84

5.0 2.50 3.750 0.531 0.540 0.009 0.016 0.010 0.98 0 0 100

7.5 2.50 3.750 0.609 0.615 0.006 0.010 0.010 0.99 0 0 100

10.0 2.50 3.750 0.671 0.676 0.005 0.007 0.010 0.99 0 0 100

15.0 2.50 3.750 0.770 0.773 0.002 0.003 0.011 0.97 0 0 100

20.0 2.50 3.750 0.849 0.851 0.001 0.002 0.022 0.98 0 0 100

2.5 3.75 3.750 0.483 0.500 0.018 0.036 0.019 0.96 0 5 95

5.0 3.75 3.750 0.609 0.622 0.013 0.022 0.011 0.99 0 0 100

7.5 3.75 3.750 0.698 0.709 0.011 0.016 0.010 0.99 0 0 100

10.0 3.75 3.750 0.769 0.779 0.009 0.012 0.010 0.97 0 0 100

15.0 3.75 3.750 0.882 0.890 0.007 0.008 0.010 0.96 0 0 100

20.0 3.75 3.750 0.973 0.979 0.006 0.007 0.021 0.96 0 0 100

2.5 5.00 3.750 0.532 0.553 0.021 0.039 0.020 0.96 0 4 96

5.0 5.00 3.750 0.671 0.688 0.017 0.025 0.011 0.99 0 0 100

7.5 5.00 3.750 0.769 0.783 0.014 0.018 0.011 0.98 0 0 100

10.0 5.00 3.750 0.848 0.860 0.013 0.015 0.010 0.97 0 0 100

15.0 5.00 3.750 0.972 0.983 0.011 0.011 0.010 0.96 0 0 100

20.0 5.00 3.750 1.071 1.081 0.010 0.009 0.020 0.96 0 0 100

2.5 7.50 3.750 0.610 0.635 0.025 0.041 0.023 0.99 0 1 99

5.0 7.50 3.750 0.770 0.791 0.021 0.027 0.014 0.98 0 0 100

7.5 7.50 3.750 0.882 0.900 0.018 0.021 0.014 0.95 0 0 100

10.0 7.50 3.750 0.972 0.989 0.017 0.018 0.013 0.94 0 0 100

15.0 7.50 3.750 1.114 1.129 0.015 0.014 0.013 0.97 0 0 100
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Table B.4 – Continued

.DrugA DrugB DrugC true ave abs.bias rel.bias mse cr.ci p.ant p.add p.syn

20.0 7.50 3.750 1.228 1.242 0.015 0.012 0.022 0.95 0 0 100

2.5 10.00 3.750 0.673 0.700 0.028 0.041 0.037 1.00 0 8 92

5.0 10.00 3.750 0.848 0.872 0.024 0.028 0.029 0.96 0 0 100

7.5 10.00 3.750 0.972 0.993 0.021 0.022 0.028 0.95 0 0 100

10.0 10.00 3.750 1.071 1.091 0.020 0.019 0.028 0.95 0 0 100

15.0 10.00 3.750 1.227 1.246 0.019 0.015 0.028 0.96 0 0 100

20.0 10.00 3.750 1.352 1.370 0.018 0.013 0.037 0.95 0 0 100

2.5 1.25 5.000 0.367 0.370 0.003 0.008 0.039 0.96 0 53 47

5.0 1.25 5.000 0.463 0.462 -0.001 -0.003 0.032 0.95 0 27 73

7.5 1.25 5.000 0.531 0.528 -0.004 -0.007 0.032 0.95 0 13 87

10.0 1.25 5.000 0.586 0.580 -0.006 -0.010 0.032 0.94 0 9 91

15.0 1.25 5.000 0.672 0.665 -0.008 -0.012 0.033 0.95 0 6 94

20.0 1.25 5.000 0.741 0.732 -0.009 -0.012 0.044 0.97 0 8 92

2.5 2.50 5.000 0.463 0.474 0.011 0.024 0.029 0.99 0 31 69

5.0 2.50 5.000 0.585 0.592 0.007 0.012 0.020 0.99 0 2 98

7.5 2.50 5.000 0.671 0.675 0.004 0.006 0.020 0.99 0 1 99

10.0 2.50 5.000 0.739 0.742 0.003 0.004 0.019 0.97 0 0 100

15.0 2.50 5.000 0.848 0.849 0.001 0.001 0.020 0.97 0 0 100

20.0 2.50 5.000 0.935 0.934 0.000 -0.001 0.030 0.96 0 0 100

2.5 3.75 5.000 0.531 0.547 0.016 0.030 0.030 0.99 0 17 83

5.0 3.75 5.000 0.671 0.682 0.011 0.017 0.020 1.00 0 0 100

7.5 3.75 5.000 0.769 0.778 0.009 0.012 0.018 1.00 0 0 100

10.0 3.75 5.000 0.847 0.854 0.007 0.009 0.018 1.00 0 0 100

15.0 3.75 5.000 0.971 0.977 0.006 0.006 0.018 0.96 0 0 100

20.0 3.75 5.000 1.071 1.075 0.005 0.004 0.028 0.96 0 0 100

2.5 5.00 5.000 0.586 0.605 0.019 0.032 0.030 0.99 0 11 89

5.0 5.00 5.000 0.739 0.754 0.015 0.020 0.020 0.98 0 0 100

7.5 5.00 5.000 0.847 0.859 0.012 0.015 0.018 0.98 0 0 100

10.0 5.00 5.000 0.933 0.944 0.011 0.012 0.017 0.98 0 0 100

15.0 5.00 5.000 1.070 1.079 0.009 0.008 0.018 0.96 0 0 100

20.0 5.00 5.000 1.179 1.187 0.008 0.007 0.029 0.96 0 0 100

2.5 7.50 5.000 0.672 0.695 0.023 0.034 0.034 0.99 0 5 95

5.0 7.50 5.000 0.848 0.866 0.019 0.022 0.023 0.98 0 0 100

7.5 7.50 5.000 0.971 0.988 0.017 0.017 0.022 0.98 0 0 100

10.0 7.50 5.000 1.070 1.085 0.015 0.014 0.022 0.97 0 0 100

15.0 7.50 5.000 1.226 1.240 0.014 0.011 0.023 0.94 0 0 100

20.0 7.50 5.000 1.351 1.364 0.013 0.010 0.035 0.95 0 0 100

2.5 10.00 5.000 0.741 0.767 0.026 0.035 0.049 0.98 0 10 90

5.0 10.00 5.000 0.934 0.956 0.022 0.023 0.038 0.98 0 0 100

7.5 10.00 5.000 1.070 1.090 0.019 0.018 0.038 0.96 0 0 100

10.0 10.00 5.000 1.179 1.197 0.018 0.015 0.039 0.96 0 0 100

15.0 10.00 5.000 1.351 1.368 0.017 0.012 0.042 0.94 0 0 100

20.0 10.00 5.000 1.489 1.505 0.016 0.011 0.056 0.92 0 0 100
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B.1.2 Final Model

Table B.5 shows the detailed results from the evaluation of f12, based on the final

model. The function has a constant true value of 0.4, indicating antagonism, and this

is correctly identified by most simulation runs at most dose combinations.

Table B.5: Evaluation of f12 at all doses, for final model of Scenario 1.
DrugA DrugB true ave abs.bias rel.bias mse cr.ci p.ant p.add p.syn

2.5 1.25 0.400 0.408 0.008 0.019 0.012 0.87 0 3 97

5.0 1.25 0.400 0.412 0.012 0.030 0.008 0.88 0 0 100

7.5 1.25 0.400 0.415 0.015 0.037 0.009 0.89 0 0 100

10.0 1.25 0.400 0.417 0.017 0.042 0.010 0.90 0 1 99

15.0 1.25 0.400 0.419 0.019 0.049 0.015 0.88 0 2 98

20.0 1.25 0.400 0.421 0.021 0.052 0.024 0.88 0 7 93

2.5 2.50 0.400 0.399 -0.001 -0.002 0.009 0.87 0 0 100

5.0 2.50 0.400 0.405 0.005 0.012 0.007 0.89 0 0 100

7.5 2.50 0.400 0.408 0.008 0.021 0.007 0.87 0 0 100

10.0 2.50 0.400 0.411 0.011 0.027 0.008 0.88 0 0 100

15.0 2.50 0.400 0.415 0.015 0.037 0.012 0.90 0 0 100

20.0 2.50 0.400 0.417 0.017 0.042 0.018 0.87 0 3 97

2.5 3.75 0.400 0.394 -0.006 -0.015 0.010 0.88 0 1 99

5.0 3.75 0.400 0.400 0.000 0.001 0.007 0.87 0 0 100

7.5 3.75 0.400 0.405 0.005 0.012 0.008 0.88 0 0 100

10.0 3.75 0.400 0.408 0.008 0.020 0.009 0.89 0 0 100

15.0 3.75 0.400 0.413 0.013 0.031 0.012 0.90 0 0 100

20.0 3.75 0.400 0.416 0.016 0.039 0.016 0.87 0 2 98

2.5 5.00 0.400 0.391 -0.009 -0.024 0.011 0.84 0 2 98

5.0 5.00 0.400 0.398 -0.002 -0.006 0.009 0.84 0 0 100

7.5 5.00 0.400 0.403 0.003 0.007 0.009 0.86 0 0 100

10.0 5.00 0.400 0.406 0.006 0.016 0.010 0.88 0 0 100

15.0 5.00 0.400 0.412 0.012 0.029 0.012 0.89 0 0 100

20.0 5.00 0.400 0.416 0.016 0.039 0.016 0.87 0 3 97

2.5 7.50 0.400 0.387 -0.013 -0.032 0.016 0.85 0 4 96

5.0 7.50 0.400 0.396 -0.004 -0.011 0.012 0.85 0 1 99

7.5 7.50 0.400 0.401 0.001 0.004 0.012 0.87 0 0 100

10.0 7.50 0.400 0.406 0.006 0.015 0.012 0.89 0 0 100

15.0 7.50 0.400 0.413 0.013 0.032 0.013 0.91 0 0 100

20.0 7.50 0.400 0.418 0.018 0.044 0.016 0.90 0 2 98

2.5 10.00 0.400 0.386 -0.014 -0.034 0.026 0.82 0 11 89

5.0 10.00 0.400 0.396 -0.004 -0.010 0.020 0.85 0 9 91

7.5 10.00 0.400 0.403 0.003 0.007 0.018 0.84 0 6 94

10.0 10.00 0.400 0.408 0.008 0.020 0.017 0.87 0 3 97

15.0 10.00 0.400 0.416 0.016 0.039 0.017 0.92 0 3 97

20.0 10.00 0.400 0.422 0.022 0.054 0.020 0.92 0 4 96

Table B.6 shows the detailed results from the evaluation of f13, based on the final

model. The function’s constant true value of zero indicates additivity, and this is

correctly identified by most simulation runs at most dose combinations.

Table B.7 shows the detailed results from the evaluation of f23, based on the final
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Table B.6: Evaluation of f13 at all doses, for final model of Scenario 1.
DrugA DrugC true ave abs.bias rel.bias mse cr.ci p.ant p.add p.syn

2.5 0.625 0.000 -0.005 -0.005 . 0.009 0.87 10 87 3

5.0 0.625 0.000 -0.005 -0.005 . 0.007 0.89 10 89 1

7.5 0.625 0.000 -0.004 -0.004 . 0.008 0.86 11 86 3

10.0 0.625 0.000 -0.003 -0.003 . 0.009 0.84 12 84 4

15.0 0.625 0.000 0.001 0.001 . 0.014 0.83 11 83 6

20.0 0.625 0.000 0.005 0.005 . 0.020 0.82 11 82 7

2.5 1.250 0.000 -0.004 -0.004 . 0.005 0.91 7 91 2

5.0 1.250 0.000 -0.004 -0.004 . 0.004 0.93 6 93 1

7.5 1.250 0.000 -0.003 -0.003 . 0.005 0.88 9 88 3

10.0 1.250 0.000 -0.002 -0.002 . 0.006 0.88 9 88 3

15.0 1.250 0.000 0.001 0.001 . 0.009 0.87 9 87 4

20.0 1.250 0.000 0.005 0.005 . 0.013 0.87 10 87 3

2.5 1.875 0.000 -0.003 -0.003 . 0.005 0.92 6 92 2

5.0 1.875 0.000 -0.003 -0.003 . 0.004 0.92 6 92 2

7.5 1.875 0.000 -0.002 -0.002 . 0.004 0.88 9 88 3

10.0 1.875 0.000 -0.001 -0.001 . 0.005 0.87 9 87 4

15.0 1.875 0.000 0.002 0.002 . 0.008 0.86 8 86 6

20.0 1.875 0.000 0.006 0.006 . 0.011 0.86 9 86 5

2.5 2.500 0.000 -0.002 -0.002 . 0.006 0.91 7 91 2

5.0 2.500 0.000 -0.002 -0.002 . 0.004 0.93 5 93 2

7.5 2.500 0.000 -0.001 -0.001 . 0.005 0.88 8 88 4

10.0 2.500 0.000 0.001 0.001 . 0.006 0.87 9 87 4

15.0 2.500 0.000 0.004 0.004 . 0.007 0.87 7 87 6

20.0 2.500 0.000 0.007 0.007 . 0.010 0.88 7 88 5

2.5 3.750 0.000 0.002 0.002 . 0.009 0.86 10 86 4

5.0 3.750 0.000 0.002 0.002 . 0.007 0.91 7 91 2

7.5 3.750 0.000 0.003 0.003 . 0.006 0.89 8 89 3

10.0 3.750 0.000 0.004 0.004 . 0.007 0.88 8 88 4

15.0 3.750 0.000 0.007 0.007 . 0.008 0.89 7 89 4

20.0 3.750 0.000 0.011 0.011 . 0.009 0.89 7 89 4

2.5 5.000 0.000 0.006 0.006 . 0.014 0.83 10 83 7

5.0 5.000 0.000 0.006 0.006 . 0.010 0.89 8 89 3

7.5 5.000 0.000 0.007 0.007 . 0.009 0.90 8 90 2

10.0 5.000 0.000 0.008 0.008 . 0.009 0.90 8 90 2

15.0 5.000 0.000 0.011 0.011 . 0.009 0.89 7 89 4

20.0 5.000 0.000 0.014 0.014 . 0.011 0.89 6 89 5
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model. The function’s constant true value of zero indicates additivity, and this is

correctly identified by most simulation runs at most dose combinations.

Table B.7: Evaluation of f23 at all doses, for final model of Scenario 1.
DrugB DrugC true ave abs.bias rel.bias mse cr.ci p.ant p.add p.syn

1.25 0.625 0.000 0.027 0.027 . 0.014 0.90 5 90 5

2.50 0.625 0.000 0.020 0.020 . 0.010 0.94 4 94 2

3.75 0.625 0.000 0.013 0.013 . 0.008 0.94 3 94 3

5.00 0.625 0.000 0.007 0.007 . 0.008 0.94 3 94 3

7.50 0.625 0.000 -0.006 -0.006 . 0.010 0.96 3 96 1

10.00 0.625 0.000 -0.020 -0.020 . 0.017 0.91 7 91 2

1.25 1.250 0.000 0.022 0.022 . 0.010 0.92 3 92 5

2.50 1.250 0.000 0.017 0.017 . 0.007 0.93 4 93 3

3.75 1.250 0.000 0.012 0.012 . 0.006 0.94 4 94 2

5.00 1.250 0.000 0.007 0.007 . 0.006 0.96 2 96 2

7.50 1.250 0.000 -0.004 -0.004 . 0.007 0.96 3 96 1

10.00 1.250 0.000 -0.016 -0.016 . 0.012 0.93 6 93 1

1.25 1.875 0.000 0.017 0.017 . 0.009 0.91 3 91 6

2.50 1.875 0.000 0.014 0.014 . 0.007 0.91 4 91 5

3.75 1.875 0.000 0.010 0.010 . 0.006 0.94 3 94 3

5.00 1.875 0.000 0.006 0.006 . 0.006 0.95 2 95 3

7.50 1.875 0.000 -0.003 -0.003 . 0.007 0.94 4 94 2

10.00 1.875 0.000 -0.013 -0.013 . 0.011 0.91 7 91 2

1.25 2.500 0.000 0.013 0.013 . 0.010 0.89 5 89 6

2.50 2.500 0.000 0.011 0.011 . 0.007 0.91 4 91 5

3.75 2.500 0.000 0.008 0.008 . 0.006 0.92 4 92 4

5.00 2.500 0.000 0.005 0.005 . 0.006 0.94 3 94 3

7.50 2.500 0.000 -0.003 -0.003 . 0.007 0.93 5 93 2

10.00 2.500 0.000 -0.011 -0.011 . 0.010 0.90 8 90 2

1.25 3.750 0.000 0.004 0.004 . 0.012 0.90 5 90 5

2.50 3.750 0.000 0.005 0.005 . 0.008 0.92 5 92 3

3.75 3.750 0.000 0.004 0.004 . 0.007 0.92 5 92 3

5.00 3.750 0.000 0.002 0.002 . 0.007 0.91 6 91 3

7.50 3.750 0.000 -0.003 -0.003 . 0.007 0.91 6 91 3

10.00 3.750 0.000 -0.010 -0.010 . 0.009 0.90 8 90 2

1.25 5.000 0.000 -0.004 -0.004 . 0.016 0.89 7 89 4

2.50 5.000 0.000 -0.002 -0.002 . 0.011 0.90 7 90 3

3.75 5.000 0.000 -0.001 -0.001 . 0.010 0.89 8 89 3

5.00 5.000 0.000 -0.002 -0.002 . 0.009 0.90 7 90 3

7.50 5.000 0.000 -0.005 -0.005 . 0.009 0.88 9 88 3

10.00 5.000 0.000 -0.009 -0.009 . 0.011 0.88 10 88 2

Table B.8 shows the detailed results from the evaluation of f123, based on the final

model. The function always has a positive true value, indicating antagonism, and this

is correctly identified by most simulation runs at most dose combinations.

Table B.8: Evaluation of f123 at all doses, for final model of Scenario 1.

DrugA DrugB DrugC true ave abs.bias rel.bias mse cr.ci p.ant p.add p.syn

2.5 1.25 0.625 0.183 0.118 -0.065 -0.356 0.053 0.74 1 78 21

5.0 1.25 0.625 0.231 0.178 -0.053 -0.230 0.033 0.84 0 65 35

7.5 1.25 0.625 0.265 0.219 -0.046 -0.173 0.026 0.89 0 54 46

Continued on Next Page
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Table B.8 – Continued

.DrugA DrugB DrugC true ave abs.bias rel.bias mse cr.ci p.ant p.add p.syn

10.0 1.25 0.625 0.293 0.252 -0.041 -0.139 0.022 0.91 0 46 54

15.0 1.25 0.625 0.336 0.302 -0.034 -0.101 0.021 0.93 0 37 63

20.0 1.25 0.625 0.370 0.340 -0.030 -0.081 0.027 0.94 0 33 67

2.5 2.50 0.625 0.231 0.187 -0.044 -0.189 0.035 0.81 1 60 39

5.0 2.50 0.625 0.292 0.257 -0.035 -0.118 0.023 0.84 0 42 58

7.5 2.50 0.625 0.335 0.306 -0.029 -0.087 0.019 0.87 0 25 75

10.0 2.50 0.625 0.369 0.344 -0.025 -0.069 0.018 0.92 0 15 85

15.0 2.50 0.625 0.424 0.403 -0.021 -0.049 0.019 0.93 0 10 90

20.0 2.50 0.625 0.467 0.449 -0.018 -0.040 0.026 0.91 0 15 85

2.5 3.75 0.625 0.265 0.238 -0.027 -0.103 0.028 0.82 0 49 51

5.0 3.75 0.625 0.335 0.315 -0.020 -0.060 0.019 0.87 0 21 79

7.5 3.75 0.625 0.384 0.368 -0.016 -0.041 0.018 0.89 0 9 91

10.0 3.75 0.625 0.423 0.410 -0.013 -0.031 0.018 0.90 0 4 96

15.0 3.75 0.625 0.485 0.475 -0.010 -0.021 0.020 0.93 0 5 95

20.0 3.75 0.625 0.535 0.526 -0.009 -0.017 0.028 0.91 0 9 91

2.5 5.00 0.625 0.292 0.279 -0.013 -0.045 0.025 0.86 0 40 60

5.0 5.00 0.625 0.369 0.362 -0.007 -0.020 0.018 0.89 0 12 88

7.5 5.00 0.625 0.423 0.419 -0.004 -0.009 0.017 0.89 0 3 97

10.0 5.00 0.625 0.466 0.464 -0.002 -0.004 0.018 0.90 0 3 97

15.0 5.00 0.625 0.534 0.534 0.000 -0.001 0.021 0.91 0 2 98

20.0 5.00 0.625 0.589 0.589 0.000 -0.001 0.029 0.92 0 5 95

2.5 7.50 0.625 0.335 0.347 0.012 0.035 0.023 0.91 0 28 72

5.0 7.50 0.625 0.423 0.438 0.015 0.036 0.019 0.88 0 4 96

7.5 7.50 0.625 0.485 0.501 0.017 0.034 0.020 0.88 0 3 97

10.0 7.50 0.625 0.534 0.551 0.017 0.032 0.021 0.87 0 3 97

15.0 7.50 0.625 0.613 0.630 0.017 0.028 0.024 0.89 0 2 98

20.0 7.50 0.625 0.675 0.691 0.015 0.023 0.031 0.90 0 3 97

2.5 10.00 0.625 0.370 0.403 0.033 0.090 0.030 0.89 0 25 75

5.0 10.00 0.625 0.466 0.501 0.035 0.075 0.027 0.91 0 8 92

7.5 10.00 0.625 0.534 0.570 0.035 0.066 0.028 0.89 0 4 96

10.0 10.00 0.625 0.589 0.624 0.035 0.059 0.029 0.88 0 3 97

15.0 10.00 0.625 0.675 0.708 0.033 0.049 0.032 0.86 0 2 98

20.0 10.00 0.625 0.744 0.774 0.030 0.041 0.038 0.86 0 2 98

2.5 1.25 1.250 0.231 0.189 -0.041 -0.179 0.030 0.84 0 64 36

5.0 1.25 1.250 0.291 0.259 -0.032 -0.110 0.018 0.89 0 36 64

7.5 1.25 1.250 0.334 0.308 -0.027 -0.080 0.014 0.91 0 25 75

10.0 1.25 1.250 0.369 0.346 -0.023 -0.062 0.013 0.93 0 13 87

15.0 1.25 1.250 0.423 0.405 -0.019 -0.044 0.013 0.92 0 8 92

20.0 1.25 1.250 0.467 0.450 -0.016 -0.035 0.019 0.94 0 10 90

2.5 2.50 1.250 0.291 0.269 -0.023 -0.078 0.020 0.90 0 37 63

5.0 2.50 1.250 0.368 0.351 -0.017 -0.046 0.012 0.92 0 4 96

7.5 2.50 1.250 0.422 0.408 -0.014 -0.032 0.010 0.88 0 3 97

10.0 2.50 1.250 0.465 0.453 -0.012 -0.025 0.010 0.89 0 0 100

15.0 2.50 1.250 0.534 0.524 -0.010 -0.019 0.012 0.94 0 0 100

20.0 2.50 1.250 0.589 0.578 -0.010 -0.017 0.018 0.91 0 1 99

2.5 3.75 1.250 0.334 0.326 -0.008 -0.024 0.017 0.93 0 15 85

5.0 3.75 1.250 0.422 0.417 -0.005 -0.011 0.011 0.91 0 3 97

7.5 3.75 1.250 0.484 0.481 -0.003 -0.006 0.010 0.90 0 1 99

10.0 3.75 1.250 0.533 0.531 -0.002 -0.004 0.010 0.89 0 0 100

15.0 3.75 1.250 0.611 0.609 -0.003 -0.004 0.012 0.94 0 0 100

20.0 3.75 1.250 0.674 0.670 -0.004 -0.006 0.018 0.91 0 1 99

2.5 5.00 1.250 0.368 0.373 0.005 0.013 0.016 0.92 0 7 93

5.0 5.00 1.250 0.465 0.471 0.006 0.014 0.011 0.89 0 1 99

7.5 5.00 1.250 0.533 0.540 0.007 0.012 0.011 0.89 0 0 100

10.0 5.00 1.250 0.587 0.593 0.006 0.011 0.011 0.88 0 0 100

15.0 5.00 1.250 0.674 0.678 0.004 0.006 0.013 0.92 0 0 100

20.0 5.00 1.250 0.742 0.744 0.002 0.002 0.018 0.92 0 0 100

2.5 7.50 1.250 0.423 0.450 0.027 0.064 0.019 0.88 0 4 96

Continued on Next Page
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Table B.8 – Continued

.DrugA DrugB DrugC true ave abs.bias rel.bias mse cr.ci p.ant p.add p.syn

5.0 7.50 1.250 0.533 0.559 0.026 0.048 0.014 0.90 0 0 100

7.5 7.50 1.250 0.611 0.635 0.024 0.039 0.013 0.89 0 0 100

10.0 7.50 1.250 0.673 0.695 0.022 0.033 0.013 0.91 0 0 100

15.0 7.50 1.250 0.772 0.789 0.018 0.023 0.014 0.92 0 0 100

20.0 7.50 1.250 0.851 0.863 0.013 0.015 0.019 0.92 0 0 100

2.5 10.00 1.250 0.466 0.513 0.047 0.101 0.029 0.86 0 7 93

5.0 10.00 1.250 0.588 0.631 0.043 0.074 0.023 0.88 0 0 100

7.5 10.00 1.250 0.673 0.713 0.040 0.059 0.021 0.88 0 0 100

10.0 10.00 1.250 0.742 0.778 0.037 0.049 0.021 0.89 0 0 100

15.0 10.00 1.250 0.851 0.881 0.030 0.035 0.020 0.93 0 0 100

20.0 10.00 1.250 0.937 0.961 0.024 0.025 0.024 0.93 0 0 100

2.5 1.25 1.875 0.264 0.238 -0.026 -0.100 0.022 0.92 0 47 53

5.0 1.25 1.875 0.334 0.315 -0.019 -0.058 0.013 0.94 0 21 79

7.5 1.25 1.875 0.383 0.368 -0.015 -0.040 0.011 0.95 0 4 96

10.0 1.25 1.875 0.422 0.410 -0.013 -0.030 0.011 0.94 0 2 98

15.0 1.25 1.875 0.485 0.475 -0.010 -0.020 0.012 0.93 0 1 99

20.0 1.25 1.875 0.534 0.526 -0.009 -0.017 0.018 0.95 0 3 97

2.5 2.50 1.875 0.334 0.324 -0.010 -0.029 0.015 0.93 0 13 87

5.0 2.50 1.875 0.421 0.415 -0.006 -0.015 0.009 0.92 0 1 99

7.5 2.50 1.875 0.483 0.478 -0.005 -0.010 0.008 0.91 0 0 100

10.0 2.50 1.875 0.533 0.528 -0.004 -0.008 0.008 0.92 0 0 100

15.0 2.50 1.875 0.611 0.607 -0.005 -0.007 0.010 0.94 0 0 100

20.0 2.50 1.875 0.674 0.668 -0.006 -0.009 0.015 0.89 0 0 100

2.5 3.75 1.875 0.383 0.386 0.004 0.010 0.014 0.93 0 4 96

5.0 3.75 1.875 0.483 0.488 0.004 0.009 0.009 0.93 0 1 99

7.5 3.75 1.875 0.554 0.558 0.004 0.007 0.008 0.91 0 0 100

10.0 3.75 1.875 0.610 0.614 0.003 0.005 0.008 0.91 0 0 100

15.0 3.75 1.875 0.700 0.701 0.001 0.001 0.010 0.92 0 0 100

20.0 3.75 1.875 0.772 0.769 -0.003 -0.004 0.015 0.90 0 0 100

2.5 5.00 1.875 0.422 0.437 0.016 0.037 0.015 0.92 0 2 98

5.0 5.00 1.875 0.532 0.546 0.014 0.026 0.010 0.95 0 0 100

7.5 5.00 1.875 0.610 0.622 0.012 0.020 0.009 0.91 0 0 100

10.0 5.00 1.875 0.672 0.683 0.010 0.015 0.009 0.93 0 0 100

15.0 5.00 1.875 0.771 0.777 0.006 0.007 0.010 0.91 0 0 100

20.0 5.00 1.875 0.850 0.851 0.001 0.001 0.015 0.91 0 0 100

2.5 7.50 1.875 0.484 0.520 0.036 0.075 0.019 0.88 0 1 99

5.0 7.50 1.875 0.611 0.642 0.031 0.051 0.013 0.88 0 0 100

7.5 7.50 1.875 0.700 0.727 0.027 0.039 0.012 0.92 0 0 100

10.0 7.50 1.875 0.771 0.794 0.023 0.030 0.011 0.91 0 0 100

15.0 7.50 1.875 0.884 0.900 0.016 0.018 0.011 0.95 0 0 100

20.0 7.50 1.875 0.974 0.983 0.009 0.009 0.015 0.93 0 0 100

2.5 10.00 1.875 0.534 0.588 0.055 0.103 0.030 0.86 0 1 99

5.0 10.00 1.875 0.673 0.720 0.047 0.070 0.022 0.87 0 0 100

7.5 10.00 1.875 0.771 0.812 0.041 0.054 0.019 0.91 0 0 100

10.0 10.00 1.875 0.849 0.885 0.036 0.042 0.018 0.93 0 0 100

15.0 10.00 1.875 0.974 1.000 0.026 0.027 0.017 0.94 0 0 100

20.0 10.00 1.875 1.073 1.090 0.017 0.016 0.021 0.94 0 0 100

2.5 1.25 2.500 0.291 0.275 -0.016 -0.055 0.018 0.92 0 36 64

5.0 1.25 2.500 0.367 0.357 -0.010 -0.028 0.011 0.93 0 8 92

7.5 1.25 2.500 0.422 0.414 -0.007 -0.017 0.010 0.94 0 1 99

10.0 1.25 2.500 0.465 0.459 -0.005 -0.012 0.011 0.94 0 0 100

15.0 1.25 2.500 0.533 0.529 -0.004 -0.007 0.013 0.92 0 0 100

20.0 1.25 2.500 0.588 0.584 -0.004 -0.007 0.019 0.93 0 2 98

2.5 2.50 2.500 0.367 0.367 -0.001 -0.002 0.013 0.94 0 6 94

5.0 2.50 2.500 0.464 0.465 0.001 0.002 0.008 0.94 0 0 100

7.5 2.50 2.500 0.532 0.533 0.001 0.002 0.007 0.93 0 0 100

10.0 2.50 2.500 0.586 0.587 0.001 0.001 0.007 0.92 0 0 100

15.0 2.50 2.500 0.673 0.671 -0.001 -0.002 0.009 0.93 0 0 100
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Table B.8 – Continued

.DrugA DrugB DrugC true ave abs.bias rel.bias mse cr.ci p.ant p.add p.syn

20.0 2.50 2.500 0.742 0.737 -0.004 -0.006 0.014 0.91 0 0 100

2.5 3.75 2.500 0.421 0.433 0.012 0.028 0.013 0.93 0 2 98

5.0 3.75 2.500 0.532 0.542 0.010 0.019 0.008 0.94 0 0 100

7.5 3.75 2.500 0.610 0.618 0.008 0.014 0.008 0.91 0 0 100

10.0 3.75 2.500 0.672 0.678 0.006 0.010 0.008 0.90 0 0 100

15.0 3.75 2.500 0.771 0.772 0.002 0.002 0.009 0.92 0 0 100

20.0 3.75 2.500 0.850 0.847 -0.003 -0.004 0.013 0.92 0 0 100

2.5 5.00 2.500 0.464 0.487 0.023 0.049 0.015 0.88 0 1 99

5.0 5.00 2.500 0.586 0.605 0.019 0.032 0.009 0.94 0 0 100

7.5 5.00 2.500 0.672 0.687 0.015 0.023 0.008 0.95 0 0 100

10.0 5.00 2.500 0.740 0.752 0.012 0.016 0.008 0.90 0 0 100

15.0 5.00 2.500 0.849 0.854 0.005 0.006 0.009 0.90 0 0 100

20.0 5.00 2.500 0.936 0.935 -0.001 -0.001 0.013 0.90 0 0 100

2.5 7.50 2.500 0.533 0.575 0.042 0.079 0.020 0.87 0 0 100

5.0 7.50 2.500 0.672 0.707 0.035 0.052 0.013 0.91 0 0 100

7.5 7.50 2.500 0.770 0.799 0.029 0.037 0.011 0.90 0 0 100

10.0 7.50 2.500 0.849 0.872 0.023 0.027 0.010 0.91 0 0 100

15.0 7.50 2.500 0.973 0.986 0.013 0.014 0.010 0.95 0 0 100

20.0 7.50 2.500 1.072 1.077 0.004 0.004 0.015 0.94 0 0 100

2.5 10.00 2.500 0.587 0.647 0.060 0.102 0.032 0.85 0 1 99

5.0 10.00 2.500 0.741 0.790 0.049 0.067 0.021 0.88 0 0 100

7.5 10.00 2.500 0.849 0.890 0.041 0.049 0.018 0.91 0 0 100

10.0 10.00 2.500 0.935 0.969 0.034 0.037 0.017 0.91 0 0 100

15.0 10.00 2.500 1.072 1.094 0.022 0.020 0.016 0.92 0 0 100

20.0 10.00 2.500 1.181 1.192 0.011 0.009 0.021 0.92 0 0 100

2.5 1.25 3.750 0.333 0.331 -0.002 -0.006 0.018 0.92 0 24 76

5.0 1.25 3.750 0.421 0.422 0.001 0.003 0.013 0.92 0 1 99

7.5 1.25 3.750 0.483 0.485 0.003 0.005 0.013 0.93 0 1 99

10.0 1.25 3.750 0.532 0.535 0.003 0.006 0.014 0.92 0 0 100

15.0 1.25 3.750 0.611 0.613 0.002 0.004 0.017 0.91 0 0 100

20.0 1.25 3.750 0.674 0.674 0.001 0.001 0.022 0.90 0 1 99

2.5 2.50 3.750 0.421 0.432 0.011 0.026 0.014 0.95 0 2 98

5.0 2.50 3.750 0.531 0.541 0.009 0.018 0.009 0.95 0 0 100

7.5 2.50 3.750 0.609 0.617 0.008 0.012 0.009 0.94 0 0 100

10.0 2.50 3.750 0.671 0.677 0.005 0.008 0.009 0.92 0 0 100

15.0 2.50 3.750 0.770 0.771 0.001 0.001 0.010 0.94 0 0 100

20.0 2.50 3.750 0.849 0.845 -0.004 -0.005 0.014 0.94 0 0 100

2.5 3.75 3.750 0.483 0.504 0.022 0.045 0.015 0.92 0 1 99

5.0 3.75 3.750 0.609 0.626 0.017 0.028 0.009 0.96 0 0 100

7.5 3.75 3.750 0.698 0.711 0.013 0.018 0.008 0.94 0 0 100

10.0 3.75 3.750 0.769 0.778 0.009 0.011 0.008 0.93 0 0 100

15.0 3.75 3.750 0.882 0.883 0.001 0.001 0.009 0.92 0 0 100

20.0 3.75 3.750 0.973 0.966 -0.006 -0.006 0.014 0.90 0 0 100

2.5 5.00 3.750 0.532 0.563 0.031 0.059 0.017 0.91 0 1 99

5.0 5.00 3.750 0.671 0.695 0.024 0.035 0.010 0.95 0 0 100

7.5 5.00 3.750 0.769 0.787 0.018 0.023 0.009 0.94 0 0 100

10.0 5.00 3.750 0.848 0.860 0.012 0.014 0.008 0.93 0 0 100

15.0 5.00 3.750 0.972 0.974 0.002 0.002 0.009 0.92 0 0 100

20.0 5.00 3.750 1.071 1.065 -0.007 -0.006 0.014 0.91 0 0 100

2.5 7.50 3.750 0.610 0.659 0.049 0.080 0.023 0.87 0 0 100

5.0 7.50 3.750 0.770 0.807 0.037 0.048 0.013 0.89 0 0 100

7.5 7.50 3.750 0.882 0.910 0.028 0.032 0.010 0.92 0 0 100

10.0 7.50 3.750 0.972 0.992 0.020 0.021 0.010 0.94 0 0 100

15.0 7.50 3.750 1.114 1.121 0.007 0.006 0.012 0.93 0 0 100

20.0 7.50 3.750 1.228 1.222 -0.005 -0.004 0.019 0.92 0 0 100

2.5 10.00 3.750 0.673 0.738 0.065 0.097 0.034 0.82 0 0 100

5.0 10.00 3.750 0.848 0.898 0.050 0.059 0.021 0.87 0 0 100

7.5 10.00 3.750 0.972 1.010 0.038 0.039 0.018 0.92 0 0 100
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Table B.8 – Continued

.DrugA DrugB DrugC true ave abs.bias rel.bias mse cr.ci p.ant p.add p.syn

10.0 10.00 3.750 1.071 1.099 0.029 0.027 0.017 0.93 0 0 100

15.0 10.00 3.750 1.227 1.239 0.012 0.010 0.020 0.93 0 0 100

20.0 10.00 3.750 1.352 1.350 -0.002 -0.002 0.028 0.92 0 0 100

2.5 1.25 5.000 0.367 0.373 0.006 0.017 0.024 0.90 0 17 83

5.0 1.25 5.000 0.463 0.471 0.008 0.016 0.021 0.94 0 4 96

7.5 1.25 5.000 0.531 0.539 0.008 0.014 0.021 0.91 0 3 97

10.0 1.25 5.000 0.586 0.593 0.007 0.012 0.022 0.91 0 3 97

15.0 1.25 5.000 0.672 0.677 0.005 0.007 0.024 0.89 0 2 98

20.0 1.25 5.000 0.741 0.743 0.001 0.002 0.029 0.92 0 2 98

2.5 2.50 5.000 0.463 0.481 0.017 0.038 0.020 0.92 0 3 97

5.0 2.50 5.000 0.585 0.598 0.014 0.023 0.015 0.90 0 1 99

7.5 2.50 5.000 0.671 0.681 0.010 0.015 0.015 0.90 0 0 100

10.0 2.50 5.000 0.739 0.746 0.006 0.009 0.015 0.91 0 0 100

15.0 2.50 5.000 0.848 0.848 0.000 0.000 0.015 0.90 0 0 100

20.0 2.50 5.000 0.935 0.928 -0.007 -0.008 0.020 0.89 0 0 100

2.5 3.75 5.000 0.531 0.558 0.027 0.051 0.021 0.92 0 1 99

5.0 3.75 5.000 0.671 0.690 0.019 0.029 0.014 0.91 0 0 100

7.5 3.75 5.000 0.769 0.782 0.013 0.017 0.013 0.89 0 0 100

10.0 3.75 5.000 0.847 0.855 0.008 0.009 0.013 0.89 0 0 100

15.0 3.75 5.000 0.971 0.969 -0.002 -0.002 0.014 0.91 0 0 100

20.0 3.75 5.000 1.071 1.059 -0.012 -0.011 0.019 0.89 0 0 100

2.5 5.00 5.000 0.586 0.621 0.036 0.061 0.023 0.88 0 0 100

5.0 5.00 5.000 0.739 0.764 0.025 0.034 0.015 0.92 0 0 100

7.5 5.00 5.000 0.847 0.864 0.017 0.020 0.013 0.92 0 0 100

10.0 5.00 5.000 0.933 0.943 0.010 0.010 0.013 0.93 0 0 100

15.0 5.00 5.000 1.070 1.067 -0.003 -0.003 0.015 0.91 0 0 100

20.0 5.00 5.000 1.179 1.165 -0.014 -0.012 0.021 0.90 0 0 100

2.5 7.50 5.000 0.672 0.723 0.052 0.077 0.028 0.89 0 0 100

5.0 7.50 5.000 0.848 0.884 0.036 0.043 0.017 0.90 0 0 100

7.5 7.50 5.000 0.971 0.996 0.025 0.026 0.014 0.92 0 0 100

10.0 7.50 5.000 1.070 1.085 0.015 0.014 0.014 0.94 0 0 100

15.0 7.50 5.000 1.226 1.225 -0.001 -0.001 0.019 0.92 0 0 100

20.0 7.50 5.000 1.351 1.336 -0.016 -0.012 0.029 0.90 0 0 100

2.5 10.00 5.000 0.741 0.807 0.066 0.090 0.039 0.85 0 0 100

5.0 10.00 5.000 0.934 0.982 0.047 0.051 0.024 0.90 0 0 100

7.5 10.00 5.000 1.070 1.104 0.033 0.031 0.021 0.91 0 0 100

10.0 10.00 5.000 1.179 1.200 0.022 0.018 0.022 0.93 0 0 100

15.0 10.00 5.000 1.351 1.353 0.002 0.001 0.029 0.90 0 0 100

20.0 10.00 5.000 1.489 1.474 -0.015 -0.010 0.043 0.87 0 0 100
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B.2 Model Function Goodness of Fit Tables, Second Scenario

B.2.1 Full Model

Table B.9 shows the detailed results from the evaluation of f12, based on the full model.

The function’s constant true value of zero indicates additivity, and this is correctly

identified by most simulation runs at most dose combinations.

Table B.9: Evaluation of f12 at all doses, for full model of Scenario 2.
DrugA DrugB true ave abs.bias rel.bias mse cr.ci p.ant p.add p.syn

2.5 1.25 0.000 -0.012 -0.012 . 0.009 0.95 5 95 0

5.0 1.25 0.000 -0.015 -0.015 . 0.006 0.97 3 97 0

7.5 1.25 0.000 -0.018 -0.018 . 0.007 0.96 4 96 0

10.0 1.25 0.000 -0.020 -0.020 . 0.009 0.93 6 93 1

15.0 1.25 0.000 -0.024 -0.024 . 0.014 0.94 5 94 1

20.0 1.25 0.000 -0.027 -0.027 . 0.023 0.93 6 93 1

2.5 2.50 0.000 -0.005 -0.005 . 0.006 0.96 3 96 1

5.0 2.50 0.000 -0.008 -0.008 . 0.003 0.96 2 96 2

7.5 2.50 0.000 -0.010 -0.010 . 0.004 0.96 2 96 2

10.0 2.50 0.000 -0.011 -0.011 . 0.005 0.95 4 95 1

15.0 2.50 0.000 -0.014 -0.014 . 0.009 0.92 6 92 2

20.0 2.50 0.000 -0.016 -0.016 . 0.016 0.92 8 92 0

2.5 3.75 0.000 -0.003 -0.003 . 0.007 0.95 2 95 3

5.0 3.75 0.000 -0.004 -0.004 . 0.004 0.94 3 94 3

7.5 3.75 0.000 -0.005 -0.005 . 0.004 0.96 3 96 1

10.0 3.75 0.000 -0.006 -0.006 . 0.005 0.95 4 95 1

15.0 3.75 0.000 -0.008 -0.008 . 0.008 0.94 5 94 1

20.0 3.75 0.000 -0.010 -0.010 . 0.014 0.94 5 94 1

2.5 5.00 0.000 -0.001 -0.001 . 0.008 0.94 3 94 3

5.0 5.00 0.000 -0.002 -0.002 . 0.005 0.94 3 94 3

7.5 5.00 0.000 -0.003 -0.003 . 0.005 0.95 4 95 1

10.0 5.00 0.000 -0.004 -0.004 . 0.006 0.93 6 93 1

15.0 5.00 0.000 -0.005 -0.005 . 0.008 0.92 7 92 1

20.0 5.00 0.000 -0.005 -0.005 . 0.013 0.94 5 94 1

2.5 7.50 0.000 -0.003 -0.003 . 0.013 0.95 4 95 1

5.0 7.50 0.000 -0.002 -0.002 . 0.009 0.93 5 93 2

7.5 7.50 0.000 -0.002 -0.002 . 0.009 0.91 6 91 3

10.0 7.50 0.000 -0.002 -0.002 . 0.009 0.92 6 92 2

15.0 7.50 0.000 -0.002 -0.002 . 0.009 0.92 6 92 2

20.0 7.50 0.000 -0.001 -0.001 . 0.013 0.95 4 95 1

2.5 10.00 0.000 -0.007 -0.007 . 0.023 0.95 4 95 1

5.0 10.00 0.000 -0.006 -0.006 . 0.017 0.94 4 94 2

7.5 10.00 0.000 -0.005 -0.005 . 0.016 0.93 5 93 2

10.0 10.00 0.000 -0.004 -0.004 . 0.015 0.92 5 92 3

15.0 10.00 0.000 -0.002 -0.002 . 0.014 0.94 4 94 2

20.0 10.00 0.000 -0.001 -0.001 . 0.016 0.95 4 95 1

Table B.10 shows the detailed results from the evaluation of f13, based on the full

model. The function’s constant true value of zero indicates additivity, and this is

correctly identified by most simulation runs at most dose combinations.
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Table B.10: Evaluation of f13 at all doses, for full model of Scenario 2.
DrugA DrugC true ave abs.bias rel.bias mse cr.ci p.ant p.add p.syn

2.5 0.625 0.000 -0.012 -0.012 . 0.008 0.97 1 97 2

5.0 0.625 0.000 -0.007 -0.007 . 0.007 0.96 3 96 1

7.5 0.625 0.000 -0.005 -0.005 . 0.008 0.97 2 97 1

10.0 0.625 0.000 -0.004 -0.004 . 0.010 0.96 3 96 1

15.0 0.625 0.000 -0.004 -0.004 . 0.017 0.95 4 95 1

20.0 0.625 0.000 -0.007 -0.007 . 0.031 0.92 6 92 2

2.5 1.250 0.000 -0.018 -0.018 . 0.006 0.94 5 94 1

5.0 1.250 0.000 -0.012 -0.012 . 0.004 0.91 5 91 4

7.5 1.250 0.000 -0.009 -0.009 . 0.005 0.93 4 93 3

10.0 1.250 0.000 -0.008 -0.008 . 0.007 0.91 7 91 2

15.0 1.250 0.000 -0.008 -0.008 . 0.013 0.89 9 89 2

20.0 1.250 0.000 -0.010 -0.010 . 0.025 0.90 8 90 2

2.5 1.875 0.000 -0.022 -0.022 . 0.007 0.92 7 92 1

5.0 1.875 0.000 -0.016 -0.016 . 0.005 0.88 8 88 4

7.5 1.875 0.000 -0.012 -0.012 . 0.006 0.90 5 90 5

10.0 1.875 0.000 -0.011 -0.011 . 0.008 0.90 7 90 3

15.0 1.875 0.000 -0.010 -0.010 . 0.013 0.86 11 86 3

20.0 1.875 0.000 -0.011 -0.011 . 0.022 0.89 10 89 1

2.5 2.500 0.000 -0.025 -0.025 . 0.009 0.93 7 93 0

5.0 2.500 0.000 -0.018 -0.018 . 0.006 0.89 8 89 3

7.5 2.500 0.000 -0.014 -0.014 . 0.007 0.93 4 93 3

10.0 2.500 0.000 -0.012 -0.012 . 0.008 0.90 6 90 4

15.0 2.500 0.000 -0.011 -0.011 . 0.012 0.89 8 89 3

20.0 2.500 0.000 -0.012 -0.012 . 0.021 0.89 9 89 2

2.5 3.750 0.000 -0.029 -0.029 . 0.014 0.92 7 92 1

5.0 3.750 0.000 -0.022 -0.022 . 0.009 0.92 6 92 2

7.5 3.750 0.000 -0.017 -0.017 . 0.009 0.96 3 96 1

10.0 3.750 0.000 -0.015 -0.015 . 0.009 0.94 5 94 1

15.0 3.750 0.000 -0.013 -0.013 . 0.012 0.91 6 91 3

20.0 3.750 0.000 -0.014 -0.014 . 0.018 0.89 9 89 2

2.5 5.000 0.000 -0.033 -0.033 . 0.024 0.93 6 93 1

5.0 5.000 0.000 -0.024 -0.024 . 0.016 0.94 5 94 1

7.5 5.000 0.000 -0.020 -0.020 . 0.014 0.95 4 95 1

10.0 5.000 0.000 -0.017 -0.017 . 0.013 0.94 4 94 2

15.0 5.000 0.000 -0.014 -0.014 . 0.014 0.95 4 95 1

20.0 5.000 0.000 -0.014 -0.014 . 0.019 0.91 7 91 2
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Table B.11 shows the detailed results from the evaluation of f23, based on the full

model. The function’s constant true value of zero indicates additivity, and this is

correctly identified by most simulation runs at most dose combinations.

Table B.11: Evaluation of f23 at all doses, for full model of Scenario 2.
DrugB DrugC true ave abs.bias rel.bias mse cr.ci p.ant p.add p.syn

1.25 0.625 0.000 -0.011 -0.011 . 0.014 0.97 2 97 1

2.50 0.625 0.000 -0.011 -0.011 . 0.012 0.97 2 97 1

3.75 0.625 0.000 -0.013 -0.013 . 0.014 0.93 5 93 2

5.00 0.625 0.000 -0.015 -0.015 . 0.016 0.94 5 94 1

7.50 0.625 0.000 -0.019 -0.019 . 0.023 0.89 8 89 3

10.00 0.625 0.000 -0.025 -0.025 . 0.038 0.87 10 87 3

1.25 1.250 0.000 -0.011 -0.011 . 0.008 0.97 2 97 1

2.50 1.250 0.000 -0.010 -0.010 . 0.007 0.94 5 94 1

3.75 1.250 0.000 -0.010 -0.010 . 0.007 0.92 7 92 1

5.00 1.250 0.000 -0.011 -0.011 . 0.009 0.91 7 91 2

7.50 1.250 0.000 -0.013 -0.013 . 0.013 0.90 7 90 3

10.00 1.250 0.000 -0.017 -0.017 . 0.022 0.91 7 91 2

1.25 1.875 0.000 -0.013 -0.013 . 0.008 0.96 3 96 1

2.50 1.875 0.000 -0.011 -0.011 . 0.007 0.94 5 94 1

3.75 1.875 0.000 -0.010 -0.010 . 0.007 0.93 7 93 0

5.00 1.875 0.000 -0.010 -0.010 . 0.007 0.92 8 92 0

7.50 1.875 0.000 -0.011 -0.011 . 0.010 0.91 8 91 1

10.00 1.875 0.000 -0.013 -0.013 . 0.017 0.91 7 91 2

1.25 2.500 0.000 -0.016 -0.016 . 0.009 0.94 5 94 1

2.50 2.500 0.000 -0.013 -0.013 . 0.007 0.93 6 93 1

3.75 2.500 0.000 -0.011 -0.011 . 0.007 0.92 8 92 0

5.00 2.500 0.000 -0.010 -0.010 . 0.007 0.93 7 93 0

7.50 2.500 0.000 -0.010 -0.010 . 0.009 0.92 7 92 1

10.00 2.500 0.000 -0.011 -0.011 . 0.015 0.93 6 93 1

1.25 3.750 0.000 -0.024 -0.024 . 0.012 0.96 4 96 0

2.50 3.750 0.000 -0.019 -0.019 . 0.009 0.95 5 95 0

3.75 3.750 0.000 -0.015 -0.015 . 0.008 0.91 9 91 0

5.00 3.750 0.000 -0.013 -0.013 . 0.008 0.93 7 93 0

7.50 3.750 0.000 -0.011 -0.011 . 0.009 0.91 8 91 1

10.00 3.750 0.000 -0.011 -0.011 . 0.013 0.91 7 91 2

1.25 5.000 0.000 -0.034 -0.034 . 0.020 0.95 5 95 0

2.50 5.000 0.000 -0.027 -0.027 . 0.015 0.93 7 93 0

3.75 5.000 0.000 -0.022 -0.022 . 0.013 0.91 8 91 1

5.00 5.000 0.000 -0.019 -0.019 . 0.013 0.92 7 92 1

7.50 5.000 0.000 -0.015 -0.015 . 0.013 0.89 10 89 1

10.00 5.000 0.000 -0.013 -0.013 . 0.017 0.90 9 90 1

Table B.12 shows the detailed results from the evaluation of f123, based on the full

model. The true value of the function has some positive values and some negative

values, reflecting the mix of synergism and antagonism. The sign of the value of the

function was correctly estimated by most simulation runs, and the correct relationship

(synergism or antagonism) was identified in many cases. In some cases the magnitude

of the relationship did not reach statistical significance, so some cases of true synergism
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or true antagonism were identified as additive.

Table B.12: Evaluation of f123 at all doses, for full model of Scenario 2.

DrugA DrugB DrugC true ave abs.bias rel.bias mse cr.ci p.ant p.add p.syn

2.5 1.25 0.625 1.160 1.190 0.031 0.027 0.041 0.95 0 0 100

5.0 1.25 0.625 1.039 1.072 0.032 0.031 0.030 0.93 0 0 100

7.5 1.25 0.625 0.954 0.987 0.033 0.034 0.027 0.96 0 0 100

10.0 1.25 0.625 0.886 0.919 0.032 0.036 0.025 0.95 0 0 100

15.0 1.25 0.625 0.779 0.809 0.030 0.039 0.026 0.93 0 1 99

20.0 1.25 0.625 0.692 0.719 0.027 0.039 0.039 0.92 0 4 96

2.5 2.50 0.625 1.039 1.059 0.020 0.019 0.034 0.92 0 0 100

5.0 2.50 0.625 0.888 0.909 0.021 0.024 0.025 0.91 0 0 100

7.5 2.50 0.625 0.781 0.802 0.022 0.028 0.021 0.94 0 0 100

10.0 2.50 0.625 0.695 0.717 0.022 0.031 0.019 0.92 0 0 100

15.0 2.50 0.625 0.559 0.579 0.020 0.035 0.020 0.98 0 1 99

20.0 2.50 0.625 0.451 0.468 0.017 0.037 0.032 0.95 0 28 72

2.5 3.75 0.625 0.954 0.969 0.014 0.015 0.033 0.92 0 0 100

5.0 3.75 0.625 0.781 0.797 0.016 0.021 0.024 0.91 0 0 100

7.5 3.75 0.625 0.658 0.675 0.017 0.026 0.022 0.94 0 0 100

10.0 3.75 0.625 0.561 0.577 0.017 0.030 0.020 0.94 0 0 100

15.0 3.75 0.625 0.405 0.420 0.015 0.037 0.022 0.96 0 21 79

20.0 3.75 0.625 0.281 0.294 0.013 0.045 0.035 0.94 0 71 29

2.5 5.00 0.625 0.887 0.899 0.012 0.014 0.033 0.92 0 0 100

5.0 5.00 0.625 0.695 0.709 0.014 0.020 0.025 0.92 0 0 100

7.5 5.00 0.625 0.561 0.575 0.015 0.026 0.023 0.94 0 1 99

10.0 5.00 0.625 0.453 0.468 0.015 0.033 0.022 0.93 0 9 91

15.0 5.00 0.625 0.282 0.296 0.013 0.048 0.024 0.96 0 55 45

20.0 5.00 0.625 0.146 0.157 0.011 0.076 0.039 0.95 0 87 13

2.5 7.50 0.625 0.779 0.792 0.013 0.016 0.036 0.93 0 0 100

5.0 7.50 0.625 0.560 0.575 0.015 0.027 0.029 0.94 0 3 97

7.5 7.50 0.625 0.406 0.421 0.016 0.039 0.028 0.94 0 20 80

10.0 7.50 0.625 0.282 0.298 0.016 0.056 0.028 0.93 0 52 48

15.0 7.50 0.625 0.087 0.102 0.015 0.172 0.034 0.95 0 88 12

20.0 7.50 0.625 -0.069 -0.056 0.013 -0.186 0.052 0.94 4 93 3

2.5 10.00 0.625 0.693 0.711 0.018 0.026 0.052 0.96 0 9 91

5.0 10.00 0.625 0.452 0.472 0.020 0.044 0.044 0.93 0 38 62

7.5 10.00 0.625 0.282 0.303 0.021 0.074 0.045 0.91 0 61 39

10.0 10.00 0.625 0.146 0.167 0.021 0.145 0.047 0.93 0 85 15

15.0 10.00 0.625 -0.069 -0.048 0.021 -0.297 0.057 0.93 3 95 2

20.0 10.00 0.625 -0.241 -0.222 0.019 -0.078 0.079 0.94 13 86 1

2.5 1.25 1.250 1.201 1.229 0.028 0.023 0.027 0.98 0 0 100

5.0 1.25 1.250 1.049 1.079 0.029 0.028 0.019 0.98 0 0 100

7.5 1.25 1.250 0.942 0.972 0.030 0.032 0.017 0.99 0 0 100

10.0 1.25 1.250 0.857 0.886 0.029 0.034 0.017 0.97 0 0 100

15.0 1.25 1.250 0.721 0.749 0.028 0.038 0.022 0.93 0 0 100

20.0 1.25 1.250 0.612 0.637 0.025 0.040 0.039 0.89 0 9 91

2.5 2.50 1.250 1.049 1.066 0.016 0.016 0.020 0.97 0 0 100

5.0 2.50 1.250 0.858 0.877 0.018 0.021 0.012 0.96 0 0 100

7.5 2.50 1.250 0.724 0.742 0.019 0.026 0.010 0.96 0 0 100

10.0 2.50 1.250 0.616 0.634 0.019 0.030 0.010 0.97 0 0 100

15.0 2.50 1.250 0.445 0.462 0.017 0.038 0.014 0.95 0 3 97

20.0 2.50 1.250 0.308 0.322 0.014 0.047 0.030 0.93 0 51 49

2.5 3.75 1.250 0.942 0.953 0.011 0.012 0.020 0.97 0 0 100

5.0 3.75 1.250 0.724 0.737 0.013 0.018 0.011 0.96 0 0 100

7.5 3.75 1.250 0.569 0.583 0.014 0.024 0.010 0.93 0 0 100

10.0 3.75 1.250 0.446 0.460 0.014 0.031 0.010 0.98 0 1 99

15.0 3.75 1.250 0.250 0.263 0.012 0.049 0.014 0.98 0 42 58

20.0 3.75 1.250 0.094 0.104 0.010 0.105 0.031 0.93 0 88 12

2.5 5.00 1.250 0.857 0.866 0.009 0.010 0.019 0.97 0 0 100

Continued on Next Page
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Table B.12 – Continued

.DrugA DrugB DrugC true ave abs.bias rel.bias mse cr.ci p.ant p.add p.syn

5.0 5.00 1.250 0.616 0.627 0.011 0.018 0.011 0.93 0 0 100

7.5 5.00 1.250 0.446 0.458 0.012 0.026 0.010 0.95 0 1 99

10.0 5.00 1.250 0.311 0.322 0.012 0.037 0.011 0.96 0 19 81

15.0 5.00 1.250 0.095 0.106 0.010 0.110 0.016 0.95 0 84 16

20.0 5.00 1.250 -0.077 -0.068 0.008 -0.108 0.034 0.93 3 94 3

2.5 7.50 1.250 0.721 0.731 0.009 0.013 0.022 0.95 0 0 100

5.0 7.50 1.250 0.445 0.457 0.012 0.026 0.014 0.94 0 3 97

7.5 7.50 1.250 0.251 0.263 0.012 0.049 0.014 0.91 0 44 56

10.0 7.50 1.250 0.096 0.108 0.013 0.132 0.016 0.96 0 83 17

15.0 7.50 1.250 -0.151 -0.139 0.012 -0.078 0.024 0.92 14 86 0

20.0 7.50 1.250 -0.348 -0.338 0.010 -0.029 0.045 0.93 37 63 0

2.5 10.00 1.250 0.613 0.627 0.014 0.023 0.037 0.96 0 11 89

5.0 10.00 1.250 0.309 0.325 0.017 0.054 0.029 0.96 0 50 50

7.5 10.00 1.250 0.095 0.112 0.018 0.185 0.029 0.94 0 89 11

10.0 10.00 1.250 -0.076 -0.058 0.018 -0.235 0.032 0.94 5 93 2

15.0 10.00 1.250 -0.347 -0.330 0.017 -0.050 0.044 0.93 37 63 0

20.0 10.00 1.250 -0.564 -0.548 0.016 -0.028 0.069 0.92 65 35 0

2.5 1.25 1.875 1.230 1.258 0.028 0.023 0.027 0.96 0 0 100

5.0 1.25 1.875 1.057 1.086 0.030 0.028 0.018 0.95 0 0 100

7.5 1.25 1.875 0.934 0.964 0.030 0.032 0.017 0.97 0 0 100

10.0 1.25 1.875 0.836 0.866 0.030 0.036 0.018 0.95 0 0 100

15.0 1.25 1.875 0.681 0.709 0.028 0.041 0.024 0.92 0 0 100

20.0 1.25 1.875 0.556 0.582 0.025 0.046 0.043 0.90 0 16 84

2.5 2.50 1.875 1.057 1.073 0.016 0.016 0.020 0.97 0 0 100

5.0 2.50 1.875 0.838 0.856 0.018 0.022 0.011 0.93 0 0 100

7.5 2.50 1.875 0.683 0.702 0.019 0.028 0.010 0.95 0 0 100

10.0 2.50 1.875 0.560 0.579 0.019 0.034 0.010 0.95 0 0 100

15.0 2.50 1.875 0.364 0.382 0.018 0.048 0.016 0.94 0 16 84

20.0 2.50 1.875 0.208 0.223 0.015 0.073 0.033 0.92 0 70 30

2.5 3.75 1.875 0.934 0.945 0.011 0.012 0.019 0.97 0 0 100

5.0 3.75 1.875 0.683 0.697 0.013 0.019 0.010 0.93 0 0 100

7.5 3.75 1.875 0.507 0.521 0.014 0.027 0.009 0.95 0 0 100

10.0 3.75 1.875 0.366 0.380 0.014 0.038 0.010 0.97 0 7 93

15.0 3.75 1.875 0.142 0.155 0.013 0.090 0.016 0.95 0 72 28

20.0 3.75 1.875 -0.037 -0.027 0.010 -0.282 0.033 0.92 2 94 4

2.5 5.00 1.875 0.836 0.845 0.009 0.010 0.019 0.98 0 0 100

5.0 5.00 1.875 0.560 0.571 0.011 0.019 0.010 0.96 0 0 100

7.5 5.00 1.875 0.366 0.378 0.012 0.032 0.009 0.94 0 4 96

10.0 5.00 1.875 0.211 0.223 0.012 0.056 0.010 0.95 0 41 59

15.0 5.00 1.875 -0.036 -0.025 0.011 -0.303 0.017 0.94 2 96 2

20.0 5.00 1.875 -0.233 -0.224 0.009 -0.038 0.036 0.92 21 79 0

2.5 7.50 1.875 0.681 0.690 0.009 0.014 0.021 0.96 0 0 100

5.0 7.50 1.875 0.365 0.376 0.012 0.032 0.013 0.96 0 8 92

7.5 7.50 1.875 0.142 0.155 0.012 0.087 0.013 0.93 0 71 29

10.0 7.50 1.875 -0.035 -0.023 0.013 -0.359 0.015 0.95 3 94 3

15.0 7.50 1.875 -0.317 -0.305 0.012 -0.038 0.025 0.90 55 45 0

20.0 7.50 1.875 -0.543 -0.532 0.010 -0.019 0.047 0.92 80 20 0

2.5 10.00 1.875 0.557 0.571 0.014 0.026 0.036 0.96 0 14 86

5.0 10.00 1.875 0.209 0.225 0.016 0.079 0.026 0.93 0 73 27

7.5 10.00 1.875 -0.036 -0.019 0.017 -0.481 0.027 0.94 2 94 4

10.0 10.00 1.875 -0.232 -0.214 0.018 -0.077 0.030 0.91 25 75 0

15.0 10.00 1.875 -0.542 -0.525 0.017 -0.032 0.044 0.92 80 20 0

20.0 10.00 1.875 -0.790 -0.774 0.016 -0.020 0.070 0.92 95 5 0

2.5 1.25 2.500 1.254 1.283 0.030 0.024 0.027 0.96 0 0 100

5.0 1.25 2.500 1.062 1.094 0.032 0.030 0.019 0.96 0 0 100

7.5 1.25 2.500 0.927 0.960 0.032 0.035 0.018 0.95 0 0 100

10.0 1.25 2.500 0.820 0.852 0.032 0.039 0.019 0.95 0 0 100

15.0 1.25 2.500 0.648 0.679 0.030 0.047 0.026 0.93 0 0 100

Continued on Next Page
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Table B.12 – Continued

.DrugA DrugB DrugC true ave abs.bias rel.bias mse cr.ci p.ant p.add p.syn

20.0 1.25 2.500 0.512 0.539 0.028 0.054 0.045 0.89 0 19 81

2.5 2.50 2.500 1.062 1.080 0.018 0.017 0.021 0.97 0 0 100

5.0 2.50 2.500 0.821 0.842 0.020 0.025 0.012 0.95 0 0 100

7.5 2.50 2.500 0.651 0.672 0.021 0.032 0.010 0.95 0 0 100

10.0 2.50 2.500 0.516 0.537 0.021 0.041 0.011 0.94 0 0 100

15.0 2.50 2.500 0.300 0.320 0.020 0.065 0.017 0.91 0 26 74

20.0 2.50 2.500 0.128 0.145 0.017 0.136 0.034 0.90 0 79 21

2.5 3.75 2.500 0.927 0.940 0.013 0.014 0.020 0.96 0 0 100

5.0 3.75 2.500 0.652 0.666 0.015 0.023 0.011 0.91 0 0 100

7.5 3.75 2.500 0.457 0.473 0.016 0.034 0.010 0.96 0 0 100

10.0 3.75 2.500 0.302 0.318 0.016 0.052 0.010 0.93 0 13 87

15.0 3.75 2.500 0.055 0.070 0.015 0.267 0.017 0.91 0 85 15

20.0 3.75 2.500 -0.142 -0.129 0.013 -0.090 0.035 0.90 8 91 1

2.5 5.00 2.500 0.820 0.830 0.010 0.013 0.020 0.95 0 0 100

5.0 5.00 2.500 0.516 0.529 0.013 0.024 0.011 0.96 0 0 100

7.5 5.00 2.500 0.302 0.315 0.013 0.044 0.010 0.94 0 15 85

10.0 5.00 2.500 0.131 0.145 0.014 0.104 0.011 0.92 0 70 30

15.0 5.00 2.500 -0.140 -0.127 0.013 -0.091 0.018 0.93 15 85 0

20.0 5.00 2.500 -0.357 -0.346 0.011 -0.031 0.037 0.91 48 52 0

2.5 7.50 2.500 0.649 0.660 0.011 0.017 0.022 0.97 0 0 100

5.0 7.50 2.500 0.301 0.314 0.013 0.044 0.013 0.96 0 20 80

7.5 7.50 2.500 0.056 0.070 0.014 0.254 0.013 0.94 0 89 11

10.0 7.50 2.500 -0.140 -0.125 0.014 -0.103 0.015 0.95 11 88 1

15.0 7.50 2.500 -0.450 -0.436 0.014 -0.031 0.025 0.88 85 15 0

20.0 7.50 2.500 -0.698 -0.686 0.012 -0.018 0.048 0.90 97 3 0

2.5 10.00 2.500 0.512 0.528 0.016 0.031 0.037 0.96 0 22 78

5.0 10.00 2.500 0.129 0.147 0.018 0.141 0.026 0.95 0 86 14

7.5 10.00 2.500 -0.141 -0.122 0.019 -0.136 0.026 0.94 8 91 1

10.0 10.00 2.500 -0.356 -0.337 0.020 -0.055 0.030 0.94 54 46 0

15.0 10.00 2.500 -0.698 -0.679 0.019 -0.027 0.043 0.91 96 4 0

20.0 10.00 2.500 -0.971 -0.953 0.018 -0.018 0.070 0.92 100 0 0

2.5 1.25 3.750 1.291 1.327 0.036 0.028 0.032 0.96 0 0 100

5.0 1.25 3.750 1.071 1.110 0.038 0.036 0.022 0.97 0 0 100

7.5 1.25 3.750 0.917 0.956 0.039 0.042 0.020 0.97 0 0 100

10.0 1.25 3.750 0.793 0.832 0.039 0.049 0.020 0.95 0 0 100

15.0 1.25 3.750 0.597 0.635 0.038 0.063 0.026 0.92 0 2 98

20.0 1.25 3.750 0.441 0.476 0.035 0.080 0.044 0.91 0 32 68

2.5 2.50 3.750 1.071 1.096 0.025 0.023 0.026 0.93 0 0 100

5.0 2.50 3.750 0.795 0.822 0.027 0.034 0.016 0.92 0 0 100

7.5 2.50 3.750 0.601 0.629 0.028 0.046 0.013 0.92 0 0 100

10.0 2.50 3.750 0.446 0.473 0.028 0.062 0.013 0.95 0 1 99

15.0 2.50 3.750 0.199 0.225 0.027 0.134 0.018 0.93 0 55 45

20.0 2.50 3.750 0.002 0.026 0.025 15.172 0.034 0.90 1 90 9

2.5 3.75 3.750 0.917 0.936 0.019 0.021 0.026 0.94 0 0 100

5.0 3.75 3.750 0.601 0.622 0.021 0.036 0.015 0.92 0 0 100

7.5 3.75 3.750 0.378 0.401 0.022 0.059 0.013 0.90 0 5 95

10.0 3.75 3.750 0.201 0.223 0.022 0.112 0.013 0.92 0 43 57

15.0 3.75 3.750 -0.082 -0.060 0.022 -0.266 0.018 0.92 4 93 3

20.0 3.75 3.750 -0.307 -0.287 0.020 -0.065 0.035 0.91 35 65 0

2.5 5.00 3.750 0.793 0.810 0.017 0.021 0.026 0.93 0 0 100

5.0 5.00 3.750 0.446 0.465 0.019 0.043 0.015 0.90 0 1 99

7.5 5.00 3.750 0.201 0.221 0.020 0.099 0.013 0.91 0 43 57

10.0 5.00 3.750 0.005 0.025 0.020 3.911 0.013 0.90 1 88 11

15.0 5.00 3.750 -0.305 -0.286 0.020 -0.064 0.020 0.91 57 43 0

20.0 5.00 3.750 -0.554 -0.536 0.018 -0.032 0.038 0.91 88 12 0

2.5 7.50 3.750 0.598 0.615 0.017 0.029 0.028 0.91 0 2 98

5.0 7.50 3.750 0.199 0.219 0.020 0.098 0.016 0.92 0 52 48

7.5 7.50 3.750 -0.081 -0.061 0.021 -0.253 0.015 0.93 7 92 1

Continued on Next Page



177

Table B.12 – Continued

.DrugA DrugB DrugC true ave abs.bias rel.bias mse cr.ci p.ant p.add p.syn

10.0 7.50 3.750 -0.305 -0.284 0.021 -0.069 0.017 0.90 70 30 0

15.0 7.50 3.750 -0.660 -0.640 0.021 -0.031 0.026 0.90 100 0 0

20.0 7.50 3.750 -0.944 -0.925 0.019 -0.020 0.049 0.92 100 0 0

2.5 10.00 3.750 0.441 0.463 0.022 0.050 0.041 0.95 0 42 58

5.0 10.00 3.750 0.002 0.027 0.024 10.681 0.028 0.95 0 95 5

7.5 10.00 3.750 -0.306 -0.281 0.025 -0.083 0.027 0.94 39 61 0

10.0 10.00 3.750 -0.553 -0.527 0.026 -0.047 0.030 0.95 92 8 0

15.0 10.00 3.750 -0.944 -0.918 0.026 -0.027 0.044 0.93 100 0 0

20.0 10.00 3.750 -1.256 -1.232 0.025 -0.020 0.071 0.92 100 0 0

2.5 1.25 5.000 1.320 1.365 0.045 0.034 0.048 0.93 0 0 100

5.0 1.25 5.000 1.079 1.126 0.047 0.044 0.036 0.93 0 0 100

7.5 1.25 5.000 0.909 0.957 0.048 0.053 0.032 0.95 0 0 100

10.0 1.25 5.000 0.773 0.821 0.048 0.062 0.031 0.94 0 0 100

15.0 1.25 5.000 0.557 0.604 0.047 0.085 0.034 0.96 0 11 89

20.0 1.25 5.000 0.384 0.430 0.045 0.117 0.049 0.95 0 46 54

2.5 2.50 5.000 1.079 1.112 0.034 0.031 0.043 0.91 0 0 100

5.0 2.50 5.000 0.775 0.811 0.036 0.046 0.030 0.93 0 0 100

7.5 2.50 5.000 0.561 0.597 0.037 0.065 0.026 0.92 0 2 98

10.0 2.50 5.000 0.390 0.426 0.037 0.095 0.024 0.93 0 17 83

15.0 2.50 5.000 0.118 0.154 0.036 0.306 0.026 0.94 0 83 17

20.0 2.50 5.000 -0.099 -0.065 0.034 -0.345 0.040 0.95 5 92 3

2.5 3.75 5.000 0.908 0.937 0.028 0.031 0.043 0.92 0 0 100

5.0 3.75 5.000 0.561 0.591 0.030 0.054 0.030 0.91 0 2 98

7.5 3.75 5.000 0.316 0.347 0.031 0.099 0.026 0.91 0 27 73

10.0 3.75 5.000 0.120 0.152 0.032 0.263 0.024 0.93 0 80 20

15.0 3.75 5.000 -0.191 -0.160 0.031 -0.162 0.027 0.93 17 82 1

20.0 3.75 5.000 -0.439 -0.410 0.029 -0.067 0.042 0.95 49 51 0

2.5 5.00 5.000 0.773 0.798 0.026 0.033 0.043 0.92 0 1 99

5.0 5.00 5.000 0.390 0.418 0.028 0.072 0.030 0.91 0 17 83

7.5 5.00 5.000 0.120 0.149 0.029 0.241 0.026 0.90 1 75 24

10.0 5.00 5.000 -0.095 -0.066 0.029 -0.307 0.025 0.91 8 88 4

15.0 5.00 5.000 -0.437 -0.408 0.029 -0.066 0.029 0.93 74 26 0

20.0 5.00 5.000 -0.710 -0.683 0.027 -0.038 0.046 0.95 95 5 0

2.5 7.50 5.000 0.557 0.583 0.026 0.047 0.045 0.91 0 16 84

5.0 7.50 5.000 0.118 0.147 0.028 0.240 0.031 0.89 1 80 19

7.5 7.50 5.000 -0.190 -0.161 0.029 -0.154 0.028 0.88 18 81 1

10.0 7.50 5.000 -0.437 -0.407 0.030 -0.068 0.028 0.90 81 19 0

15.0 7.50 5.000 -0.828 -0.798 0.030 -0.036 0.036 0.92 100 0 0

20.0 7.50 5.000 -1.140 -1.112 0.028 -0.025 0.057 0.95 100 0 0

2.5 10.00 5.000 0.385 0.416 0.031 0.081 0.057 0.93 0 56 44

5.0 10.00 5.000 -0.099 -0.065 0.033 -0.337 0.041 0.93 8 91 1

7.5 10.00 5.000 -0.438 -0.404 0.034 -0.078 0.038 0.93 60 40 0

10.0 10.00 5.000 -0.710 -0.675 0.035 -0.049 0.040 0.93 95 5 0

15.0 10.00 5.000 -1.140 -1.105 0.035 -0.030 0.053 0.93 100 0 0

20.0 10.00 5.000 -1.484 -1.450 0.034 -0.023 0.078 0.94 100 0 0
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B.2.2 Final Model

Table B.13 shows the detailed results from the evaluation of f12, based on the final

model. The function’s constant true value of zero indicates additivity, and this is

correctly identified by most simulation runs at most dose combinations.

Table B.13: Evaluation of f12 at all doses, for final model of Scenario 2.
DrugA DrugB true ave abs.bias rel.bias mse cr.ci p.ant p.add p.syn

2.5 1.25 0.000 -0.006 -0.006 . 0.005 0.92 4 92 4

5.0 1.25 0.000 -0.013 -0.013 . 0.004 0.93 4 93 3

7.5 1.25 0.000 -0.018 -0.018 . 0.005 0.89 8 89 3

10.0 1.25 0.000 -0.021 -0.021 . 0.006 0.87 9 87 4

15.0 1.25 0.000 -0.024 -0.024 . 0.009 0.87 9 87 4

20.0 1.25 0.000 -0.024 -0.024 . 0.014 0.85 10 85 5

2.5 2.50 0.000 -0.004 -0.004 . 0.004 0.93 3 93 4

5.0 2.50 0.000 -0.010 -0.010 . 0.003 0.96 2 96 2

7.5 2.50 0.000 -0.013 -0.013 . 0.004 0.93 4 93 3

10.0 2.50 0.000 -0.015 -0.015 . 0.004 0.91 5 91 4

15.0 2.50 0.000 -0.017 -0.017 . 0.007 0.89 7 89 4

20.0 2.50 0.000 -0.017 -0.017 . 0.011 0.86 9 86 5

2.5 3.75 0.000 -0.002 -0.002 . 0.005 0.94 2 94 4

5.0 3.75 0.000 -0.008 -0.008 . 0.003 0.93 2 93 5

7.5 3.75 0.000 -0.010 -0.010 . 0.004 0.91 5 91 4

10.0 3.75 0.000 -0.012 -0.012 . 0.005 0.89 6 89 5

15.0 3.75 0.000 -0.013 -0.013 . 0.006 0.89 6 89 5

20.0 3.75 0.000 -0.012 -0.012 . 0.010 0.89 6 89 5

2.5 5.00 0.000 -0.002 -0.002 . 0.006 0.90 5 90 5

5.0 5.00 0.000 -0.007 -0.007 . 0.004 0.91 3 91 6

7.5 5.00 0.000 -0.009 -0.009 . 0.004 0.89 6 89 5

10.0 5.00 0.000 -0.010 -0.010 . 0.005 0.89 6 89 5

15.0 5.00 0.000 -0.010 -0.010 . 0.007 0.88 6 88 6

20.0 5.00 0.000 -0.008 -0.008 . 0.010 0.89 6 89 5

2.5 7.50 0.000 -0.003 -0.003 . 0.009 0.89 5 89 6

5.0 7.50 0.000 -0.006 -0.006 . 0.006 0.89 5 89 6

7.5 7.50 0.000 -0.008 -0.008 . 0.006 0.89 6 89 5

10.0 7.50 0.000 -0.008 -0.008 . 0.006 0.89 5 89 6

15.0 7.50 0.000 -0.007 -0.007 . 0.007 0.88 6 88 6

20.0 7.50 0.000 -0.004 -0.004 . 0.010 0.89 5 89 6

2.5 10.00 0.000 -0.006 -0.006 . 0.014 0.86 7 86 7

5.0 10.00 0.000 -0.008 -0.008 . 0.010 0.88 6 88 6

7.5 10.00 0.000 -0.008 -0.008 . 0.008 0.88 8 88 4

10.0 10.00 0.000 -0.008 -0.008 . 0.008 0.87 8 87 5

15.0 10.00 0.000 -0.005 -0.005 . 0.009 0.89 5 89 6

20.0 10.00 0.000 -0.002 -0.002 . 0.011 0.89 5 89 6

Table B.14 shows the detailed results from the evaluation of f13, based on the final

model. The function’s constant true value of zero indicates additivity, and this is

correctly identified by most simulation runs at most dose combinations.

Table B.15 shows the detailed results from the evaluation of f23, based on the final
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Table B.14: Evaluation of f13 at all doses, for final model of Scenario 2.
DrugA DrugC true ave abs.bias rel.bias mse cr.ci p.ant p.add p.syn

2.5 0.625 0.000 -0.016 -0.016 . 0.006 0.91 6 91 3

5.0 0.625 0.000 -0.010 -0.010 . 0.005 0.89 7 89 4

7.5 0.625 0.000 -0.008 -0.008 . 0.007 0.91 6 91 3

10.0 0.625 0.000 -0.008 -0.008 . 0.008 0.85 9 85 6

15.0 0.625 0.000 -0.012 -0.012 . 0.013 0.79 13 79 8

20.0 0.625 0.000 -0.019 -0.019 . 0.022 0.76 15 76 9

2.5 1.250 0.000 -0.017 -0.017 . 0.005 0.89 8 89 3

5.0 1.250 0.000 -0.010 -0.010 . 0.004 0.89 7 89 4

7.5 1.250 0.000 -0.008 -0.008 . 0.004 0.92 5 92 3

10.0 1.250 0.000 -0.007 -0.007 . 0.006 0.88 8 88 4

15.0 1.250 0.000 -0.010 -0.010 . 0.009 0.83 12 83 5

20.0 1.250 0.000 -0.016 -0.016 . 0.016 0.79 13 79 8

2.5 1.875 0.000 -0.019 -0.019 . 0.006 0.89 9 89 2

5.0 1.875 0.000 -0.012 -0.012 . 0.004 0.89 8 89 3

7.5 1.875 0.000 -0.009 -0.009 . 0.005 0.91 5 91 4

10.0 1.875 0.000 -0.008 -0.008 . 0.006 0.86 9 86 5

15.0 1.875 0.000 -0.011 -0.011 . 0.009 0.81 13 81 6

20.0 1.875 0.000 -0.016 -0.016 . 0.015 0.76 15 76 9

2.5 2.500 0.000 -0.022 -0.022 . 0.007 0.84 12 84 4

5.0 2.500 0.000 -0.014 -0.014 . 0.005 0.86 11 86 3

7.5 2.500 0.000 -0.011 -0.011 . 0.005 0.88 8 88 4

10.0 2.500 0.000 -0.010 -0.010 . 0.006 0.85 10 85 5

15.0 2.500 0.000 -0.012 -0.012 . 0.009 0.80 14 80 6

20.0 2.500 0.000 -0.017 -0.017 . 0.014 0.77 15 77 8

2.5 3.750 0.000 -0.029 -0.029 . 0.010 0.83 13 83 4

5.0 3.750 0.000 -0.020 -0.020 . 0.008 0.84 12 84 4

7.5 3.750 0.000 -0.016 -0.016 . 0.007 0.88 8 88 4

10.0 3.750 0.000 -0.015 -0.015 . 0.008 0.88 8 88 4

15.0 3.750 0.000 -0.016 -0.016 . 0.009 0.81 13 81 6

20.0 3.750 0.000 -0.020 -0.020 . 0.014 0.76 16 76 8

2.5 5.000 0.000 -0.037 -0.037 . 0.017 0.78 16 78 6

5.0 5.000 0.000 -0.027 -0.027 . 0.013 0.80 14 80 6

7.5 5.000 0.000 -0.023 -0.023 . 0.012 0.83 11 83 6

10.0 5.000 0.000 -0.021 -0.021 . 0.011 0.82 11 82 7

15.0 5.000 0.000 -0.021 -0.021 . 0.013 0.79 13 79 8

20.0 5.000 0.000 -0.025 -0.025 . 0.017 0.77 15 77 8
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model. The function’s constant true value of zero indicates additivity, and this is

correctly identified by most simulation runs at most dose combinations.

Table B.15: Evaluation of f23 at all doses, for final model of Scenario 2.
DrugB DrugC true ave abs.bias rel.bias mse cr.ci p.ant p.add p.syn

1.25 0.625 0.000 -0.008 -0.008 . 0.012 0.85 11 85 4

2.50 0.625 0.000 -0.009 -0.009 . 0.010 0.88 8 88 4

3.75 0.625 0.000 -0.011 -0.011 . 0.011 0.84 11 84 5

5.00 0.625 0.000 -0.013 -0.013 . 0.012 0.83 12 83 5

7.50 0.625 0.000 -0.017 -0.017 . 0.015 0.78 17 78 5

10.00 0.625 0.000 -0.021 -0.021 . 0.020 0.78 15 78 7

1.25 1.250 0.000 -0.008 -0.008 . 0.007 0.86 9 86 5

2.50 1.250 0.000 -0.008 -0.008 . 0.006 0.89 7 89 4

3.75 1.250 0.000 -0.009 -0.009 . 0.006 0.89 8 89 3

5.00 1.250 0.000 -0.010 -0.010 . 0.007 0.87 9 87 4

7.50 1.250 0.000 -0.013 -0.013 . 0.009 0.81 15 81 4

10.00 1.250 0.000 -0.017 -0.017 . 0.013 0.80 14 80 6

1.25 1.875 0.000 -0.009 -0.009 . 0.007 0.90 8 90 2

2.50 1.875 0.000 -0.009 -0.009 . 0.006 0.90 8 90 2

3.75 1.875 0.000 -0.009 -0.009 . 0.006 0.90 8 90 2

5.00 1.875 0.000 -0.010 -0.010 . 0.006 0.89 9 89 2

7.50 1.875 0.000 -0.013 -0.013 . 0.008 0.85 12 85 3

10.00 1.875 0.000 -0.015 -0.015 . 0.011 0.84 12 84 4

1.25 2.500 0.000 -0.011 -0.011 . 0.007 0.90 7 90 3

2.50 2.500 0.000 -0.011 -0.011 . 0.006 0.91 8 91 1

3.75 2.500 0.000 -0.011 -0.011 . 0.006 0.90 8 90 2

5.00 2.500 0.000 -0.011 -0.011 . 0.006 0.89 9 89 2

7.50 2.500 0.000 -0.013 -0.013 . 0.007 0.87 11 87 2

10.00 2.500 0.000 -0.015 -0.015 . 0.010 0.85 11 85 4

1.25 3.750 0.000 -0.018 -0.018 . 0.009 0.87 11 87 2

2.50 3.750 0.000 -0.016 -0.016 . 0.007 0.88 11 88 1

3.75 3.750 0.000 -0.015 -0.015 . 0.007 0.88 11 88 1

5.00 3.750 0.000 -0.015 -0.015 . 0.007 0.87 12 87 1

7.50 3.750 0.000 -0.016 -0.016 . 0.008 0.88 11 88 1

10.00 3.750 0.000 -0.017 -0.017 . 0.010 0.84 13 84 3

1.25 5.000 0.000 -0.026 -0.026 . 0.013 0.86 13 86 1

2.50 5.000 0.000 -0.023 -0.023 . 0.010 0.87 12 87 1

3.75 5.000 0.000 -0.022 -0.022 . 0.009 0.87 12 87 1

5.00 5.000 0.000 -0.021 -0.021 . 0.009 0.84 14 84 2

7.50 5.000 0.000 -0.021 -0.021 . 0.010 0.84 15 84 1

10.00 5.000 0.000 -0.021 -0.021 . 0.011 0.84 13 84 3

Table B.16 shows the detailed results from the evaluation of f123, based on the final

model. The true value of the function has some positive values and some negative

values, reflecting the mix of synergism and antagonism. The sign of the value of the

function was correctly estimated by most simulation runs, and the correct relationship

(synergism or antagonism) was identified in many cases. In some cases the magnitude

of the relationship did not reach statistical significance, so some cases of true synergism

or true antagonism were identified as additive.
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Table B.16: Evaluation of f123 at all doses, for final model of Scenario 2.

DrugA DrugB DrugC true ave abs.bias rel.bias mse cr.ci p.ant p.add p.syn

2.5 1.25 0.625 1.160 1.185 0.026 0.022 0.030 0.92 0 0 100

5.0 1.25 0.625 1.039 1.066 0.026 0.025 0.024 0.92 0 0 100

7.5 1.25 0.625 0.954 0.981 0.026 0.028 0.022 0.86 0 0 100

10.0 1.25 0.625 0.886 0.913 0.026 0.030 0.021 0.86 0 0 100

15.0 1.25 0.625 0.779 0.804 0.025 0.033 0.021 0.85 0 0 100

20.0 1.25 0.625 0.692 0.717 0.024 0.035 0.029 0.85 0 1 99

2.5 2.50 0.625 1.039 1.059 0.020 0.019 0.021 0.94 0 0 100

5.0 2.50 0.625 0.888 0.908 0.021 0.024 0.016 0.91 0 0 100

7.5 2.50 0.625 0.781 0.802 0.021 0.027 0.015 0.88 0 0 100

10.0 2.50 0.625 0.695 0.717 0.021 0.031 0.015 0.89 0 0 100

15.0 2.50 0.625 0.559 0.580 0.021 0.038 0.017 0.90 0 0 100

20.0 2.50 0.625 0.451 0.471 0.020 0.045 0.025 0.87 0 7 93

2.5 3.75 0.625 0.954 0.971 0.017 0.018 0.019 0.91 0 0 100

5.0 3.75 0.625 0.781 0.799 0.018 0.024 0.015 0.87 0 0 100

7.5 3.75 0.625 0.658 0.677 0.019 0.029 0.014 0.90 0 0 100

10.0 3.75 0.625 0.561 0.580 0.019 0.034 0.014 0.86 0 0 100

15.0 3.75 0.625 0.405 0.424 0.019 0.047 0.017 0.88 0 6 94

20.0 3.75 0.625 0.281 0.300 0.019 0.066 0.027 0.86 0 32 68

2.5 5.00 0.625 0.887 0.902 0.016 0.018 0.019 0.92 0 0 100

5.0 5.00 0.625 0.695 0.713 0.017 0.025 0.015 0.91 0 0 100

7.5 5.00 0.625 0.561 0.579 0.018 0.032 0.015 0.91 0 0 100

10.0 5.00 0.625 0.453 0.472 0.018 0.041 0.015 0.89 0 1 99

15.0 5.00 0.625 0.282 0.301 0.019 0.066 0.019 0.89 0 29 71

20.0 5.00 0.625 0.146 0.164 0.018 0.125 0.030 0.86 0 67 33

2.5 7.50 0.625 0.779 0.795 0.016 0.020 0.024 0.88 0 0 100

5.0 7.50 0.625 0.560 0.577 0.018 0.031 0.019 0.91 0 0 100

7.5 7.50 0.625 0.406 0.424 0.019 0.046 0.019 0.91 0 5 95

10.0 7.50 0.625 0.282 0.302 0.019 0.068 0.020 0.88 0 26 74

15.0 7.50 0.625 0.087 0.107 0.020 0.226 0.025 0.85 1 75 24

20.0 7.50 0.625 -0.069 -0.050 0.020 -0.282 0.037 0.86 13 84 3

2.5 10.00 0.625 0.693 0.711 0.018 0.026 0.033 0.85 0 1 99

5.0 10.00 0.625 0.452 0.472 0.020 0.044 0.028 0.85 0 7 93

7.5 10.00 0.625 0.282 0.303 0.021 0.074 0.027 0.87 0 34 66

10.0 10.00 0.625 0.146 0.168 0.022 0.149 0.028 0.85 0 66 34

15.0 10.00 0.625 -0.069 -0.047 0.022 -0.326 0.034 0.84 10 86 4

20.0 10.00 0.625 -0.241 -0.218 0.023 -0.094 0.048 0.85 35 64 1

2.5 1.25 1.250 1.201 1.218 0.017 0.014 0.021 0.89 0 0 100

5.0 1.25 1.250 1.049 1.068 0.018 0.017 0.015 0.96 0 0 100

7.5 1.25 1.250 0.942 0.961 0.018 0.020 0.014 0.92 0 0 100

10.0 1.25 1.250 0.857 0.875 0.019 0.022 0.013 0.86 0 0 100

15.0 1.25 1.250 0.721 0.739 0.018 0.025 0.016 0.90 0 0 100

20.0 1.25 1.250 0.612 0.630 0.017 0.028 0.025 0.89 0 1 99

2.5 2.50 1.250 1.049 1.061 0.012 0.011 0.013 0.95 0 0 100

5.0 2.50 1.250 0.858 0.871 0.013 0.015 0.009 0.94 0 0 100

7.5 2.50 1.250 0.724 0.737 0.014 0.019 0.008 0.92 0 0 100

10.0 2.50 1.250 0.616 0.630 0.014 0.023 0.008 0.94 0 0 100

15.0 2.50 1.250 0.445 0.459 0.014 0.032 0.011 0.93 0 1 99

20.0 2.50 1.250 0.308 0.322 0.014 0.044 0.021 0.92 0 21 79

2.5 3.75 1.250 0.942 0.951 0.009 0.010 0.012 0.96 0 0 100

5.0 3.75 1.250 0.724 0.734 0.011 0.015 0.008 0.92 0 0 100

7.5 3.75 1.250 0.569 0.581 0.012 0.020 0.007 0.92 0 0 100

10.0 3.75 1.250 0.446 0.458 0.012 0.027 0.008 0.90 0 0 100

15.0 3.75 1.250 0.250 0.263 0.013 0.050 0.012 0.90 0 19 81

20.0 3.75 1.250 0.094 0.106 0.012 0.131 0.023 0.89 1 74 25

2.5 5.00 1.250 0.857 0.865 0.008 0.009 0.013 0.91 0 0 100

5.0 5.00 1.250 0.616 0.626 0.010 0.016 0.008 0.92 0 0 100

7.5 5.00 1.250 0.446 0.457 0.011 0.024 0.008 0.88 0 0 100

Continued on Next Page
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Table B.16 – Continued

.DrugA DrugB DrugC true ave abs.bias rel.bias mse cr.ci p.ant p.add p.syn

10.0 5.00 1.250 0.311 0.322 0.012 0.037 0.009 0.90 0 6 94

15.0 5.00 1.250 0.095 0.108 0.012 0.129 0.013 0.88 0 71 29

20.0 5.00 1.250 -0.077 -0.064 0.012 -0.160 0.025 0.87 12 86 2

2.5 7.50 1.250 0.721 0.729 0.008 0.011 0.017 0.93 0 0 100

5.0 7.50 1.250 0.445 0.456 0.010 0.023 0.011 0.93 0 0 100

7.5 7.50 1.250 0.251 0.263 0.012 0.047 0.011 0.90 0 19 81

10.0 7.50 1.250 0.096 0.108 0.013 0.132 0.012 0.88 0 73 27

15.0 7.50 1.250 -0.151 -0.137 0.014 -0.091 0.018 0.90 28 72 0

20.0 7.50 1.250 -0.348 -0.333 0.014 -0.041 0.031 0.87 75 25 0

2.5 10.00 1.250 0.613 0.623 0.010 0.017 0.026 0.85 0 1 99

5.0 10.00 1.250 0.309 0.322 0.013 0.041 0.018 0.91 0 23 77

7.5 10.00 1.250 0.095 0.109 0.014 0.152 0.018 0.90 0 73 27

10.0 10.00 1.250 -0.076 -0.060 0.016 -0.204 0.019 0.88 12 86 2

15.0 10.00 1.250 -0.347 -0.330 0.017 -0.049 0.026 0.90 75 25 0

20.0 10.00 1.250 -0.564 -0.546 0.018 -0.031 0.040 0.88 93 7 0

2.5 1.25 1.875 1.230 1.246 0.015 0.012 0.020 0.90 0 0 100

5.0 1.25 1.875 1.057 1.073 0.017 0.016 0.014 0.91 0 0 100

7.5 1.25 1.875 0.934 0.951 0.017 0.018 0.013 0.91 0 0 100

10.0 1.25 1.875 0.836 0.854 0.017 0.021 0.013 0.89 0 0 100

15.0 1.25 1.875 0.681 0.698 0.017 0.025 0.016 0.88 0 0 100

20.0 1.25 1.875 0.556 0.573 0.017 0.030 0.026 0.87 0 4 96

2.5 2.50 1.875 1.057 1.067 0.010 0.010 0.013 0.92 0 0 100

5.0 2.50 1.875 0.838 0.849 0.012 0.014 0.008 0.95 0 0 100

7.5 2.50 1.875 0.683 0.696 0.013 0.018 0.007 0.92 0 0 100

10.0 2.50 1.875 0.560 0.573 0.013 0.023 0.008 0.90 0 0 100

15.0 2.50 1.875 0.364 0.378 0.014 0.037 0.011 0.90 0 4 96

20.0 2.50 1.875 0.208 0.221 0.013 0.064 0.022 0.89 0 38 62

2.5 3.75 1.875 0.934 0.942 0.008 0.008 0.012 0.92 0 0 100

5.0 3.75 1.875 0.683 0.693 0.010 0.014 0.007 0.95 0 0 100

7.5 3.75 1.875 0.507 0.518 0.011 0.021 0.007 0.92 0 0 100

10.0 3.75 1.875 0.366 0.377 0.011 0.031 0.008 0.91 0 2 98

15.0 3.75 1.875 0.142 0.154 0.012 0.086 0.012 0.89 0 53 47

20.0 3.75 1.875 -0.037 -0.025 0.012 -0.331 0.024 0.87 7 88 5

2.5 5.00 1.875 0.836 0.843 0.007 0.008 0.013 0.90 0 0 100

5.0 5.00 1.875 0.560 0.569 0.009 0.016 0.008 0.95 0 0 100

7.5 5.00 1.875 0.366 0.376 0.010 0.028 0.007 0.91 0 1 99

10.0 5.00 1.875 0.211 0.222 0.011 0.053 0.008 0.88 0 22 78

15.0 5.00 1.875 -0.036 -0.024 0.012 -0.339 0.014 0.88 8 88 4

20.0 5.00 1.875 -0.233 -0.220 0.012 -0.053 0.026 0.85 56 44 0

2.5 7.50 1.875 0.681 0.688 0.007 0.010 0.017 0.91 0 0 100

5.0 7.50 1.875 0.365 0.374 0.010 0.026 0.010 0.94 0 3 97

7.5 7.50 1.875 0.142 0.154 0.011 0.079 0.010 0.89 0 55 45

10.0 7.50 1.875 -0.035 -0.023 0.012 -0.351 0.011 0.91 6 91 3

15.0 7.50 1.875 -0.317 -0.304 0.014 -0.044 0.018 0.91 79 21 0

20.0 7.50 1.875 -0.543 -0.528 0.015 -0.027 0.032 0.85 94 6 0

2.5 10.00 1.875 0.557 0.566 0.009 0.017 0.025 0.88 0 2 98

5.0 10.00 1.875 0.209 0.221 0.012 0.059 0.017 0.89 0 42 58

7.5 10.00 1.875 -0.036 -0.022 0.014 -0.387 0.016 0.88 7 88 5

10.0 10.00 1.875 -0.232 -0.216 0.015 -0.067 0.017 0.90 58 42 0

15.0 10.00 1.875 -0.542 -0.525 0.017 -0.032 0.025 0.91 98 2 0

20.0 10.00 1.875 -0.790 -0.772 0.018 -0.023 0.041 0.86 99 1 0

2.5 1.25 2.500 1.254 1.271 0.017 0.013 0.020 0.89 0 0 100

5.0 1.25 2.500 1.062 1.081 0.018 0.017 0.015 0.90 0 0 100

7.5 1.25 2.500 0.927 0.946 0.019 0.021 0.013 0.93 0 0 100

10.0 1.25 2.500 0.820 0.839 0.019 0.024 0.013 0.87 0 0 100

15.0 1.25 2.500 0.648 0.668 0.019 0.030 0.016 0.88 0 0 100

20.0 1.25 2.500 0.512 0.531 0.019 0.037 0.027 0.84 0 7 93

2.5 2.50 2.500 1.062 1.074 0.012 0.011 0.014 0.91 0 0 100

Continued on Next Page
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Table B.16 – Continued

.DrugA DrugB DrugC true ave abs.bias rel.bias mse cr.ci p.ant p.add p.syn

5.0 2.50 2.500 0.821 0.835 0.014 0.017 0.009 0.92 0 0 100

7.5 2.50 2.500 0.651 0.666 0.015 0.023 0.008 0.91 0 0 100

10.0 2.50 2.500 0.516 0.531 0.015 0.030 0.008 0.88 0 0 100

15.0 2.50 2.500 0.300 0.316 0.016 0.053 0.012 0.87 0 10 90

20.0 2.50 2.500 0.128 0.144 0.016 0.125 0.023 0.83 1 65 34

2.5 3.75 2.500 0.927 0.937 0.010 0.010 0.013 0.91 0 0 100

5.0 3.75 2.500 0.652 0.663 0.012 0.018 0.008 0.95 0 0 100

7.5 3.75 2.500 0.457 0.470 0.013 0.028 0.007 0.92 0 0 100

10.0 3.75 2.500 0.302 0.316 0.014 0.046 0.008 0.90 0 4 96

15.0 3.75 2.500 0.055 0.070 0.015 0.269 0.013 0.85 2 73 25

20.0 3.75 2.500 -0.142 -0.126 0.015 -0.107 0.025 0.86 25 75 0

2.5 5.00 2.500 0.820 0.828 0.009 0.011 0.014 0.89 0 0 100

5.0 5.00 2.500 0.516 0.527 0.011 0.021 0.009 0.95 0 0 100

7.5 5.00 2.500 0.302 0.315 0.013 0.042 0.008 0.92 0 5 95

10.0 5.00 2.500 0.131 0.145 0.014 0.104 0.009 0.89 0 51 49

15.0 5.00 2.500 -0.140 -0.125 0.015 -0.107 0.015 0.85 30 70 0

20.0 5.00 2.500 -0.357 -0.341 0.016 -0.043 0.028 0.83 80 20 0

2.5 7.50 2.500 0.649 0.658 0.009 0.014 0.018 0.88 0 0 100

5.0 7.50 2.500 0.301 0.313 0.012 0.040 0.011 0.93 0 9 91

7.5 7.50 2.500 0.056 0.070 0.014 0.247 0.010 0.90 1 78 21

10.0 7.50 2.500 -0.140 -0.125 0.015 -0.108 0.012 0.91 27 73 0

15.0 7.50 2.500 -0.450 -0.433 0.017 -0.038 0.019 0.90 97 3 0

20.0 7.50 2.500 -0.698 -0.680 0.018 -0.026 0.034 0.85 100 0 0

2.5 10.00 2.500 0.512 0.524 0.012 0.023 0.026 0.88 0 4 96

5.0 10.00 2.500 0.129 0.143 0.015 0.114 0.017 0.90 0 62 38

7.5 10.00 2.500 -0.141 -0.124 0.017 -0.119 0.016 0.89 28 72 0

10.0 10.00 2.500 -0.356 -0.338 0.018 -0.051 0.017 0.89 81 19 0

15.0 10.00 2.500 -0.698 -0.677 0.020 -0.029 0.026 0.90 100 0 0

20.0 10.00 2.500 -0.971 -0.949 0.022 -0.022 0.042 0.86 100 0 0

2.5 1.25 3.750 1.291 1.316 0.026 0.020 0.025 0.88 0 0 100

5.0 1.25 3.750 1.071 1.099 0.027 0.025 0.018 0.88 0 0 100

7.5 1.25 3.750 0.917 0.945 0.028 0.031 0.016 0.89 0 0 100

10.0 1.25 3.750 0.793 0.822 0.029 0.036 0.016 0.87 0 0 100

15.0 1.25 3.750 0.597 0.627 0.029 0.049 0.019 0.87 0 0 100

20.0 1.25 3.750 0.441 0.470 0.029 0.066 0.029 0.85 0 10 90

2.5 2.50 3.750 1.071 1.092 0.021 0.019 0.019 0.87 0 0 100

5.0 2.50 3.750 0.795 0.818 0.023 0.029 0.012 0.86 0 0 100

7.5 2.50 3.750 0.601 0.625 0.024 0.040 0.011 0.84 0 0 100

10.0 2.50 3.750 0.446 0.471 0.025 0.056 0.011 0.86 0 0 100

15.0 2.50 3.750 0.199 0.225 0.026 0.131 0.015 0.88 0 36 64

20.0 2.50 3.750 0.002 0.028 0.026 16.243 0.026 0.81 7 81 12

2.5 3.75 3.750 0.917 0.935 0.019 0.020 0.019 0.85 0 0 100

5.0 3.75 3.750 0.601 0.622 0.021 0.035 0.012 0.86 0 0 100

7.5 3.75 3.750 0.378 0.401 0.023 0.060 0.010 0.87 0 2 98

10.0 3.75 3.750 0.201 0.224 0.024 0.119 0.011 0.85 0 26 74

15.0 3.75 3.750 -0.082 -0.056 0.025 -0.309 0.016 0.85 10 86 4

20.0 3.75 3.750 -0.307 -0.281 0.026 -0.084 0.028 0.78 67 33 0

2.5 5.00 3.750 0.793 0.811 0.018 0.022 0.019 0.82 0 0 100

5.0 5.00 3.750 0.446 0.466 0.021 0.046 0.012 0.90 0 1 99

7.5 5.00 3.750 0.201 0.223 0.022 0.111 0.011 0.86 0 24 76

10.0 5.00 3.750 0.005 0.029 0.024 4.579 0.012 0.85 3 86 11

15.0 5.00 3.750 -0.305 -0.280 0.025 -0.083 0.018 0.85 76 24 0

20.0 5.00 3.750 -0.554 -0.527 0.026 -0.048 0.031 0.83 96 4 0

2.5 7.50 3.750 0.598 0.616 0.019 0.031 0.023 0.83 0 1 99

5.0 7.50 3.750 0.199 0.221 0.022 0.109 0.014 0.89 0 38 62

7.5 7.50 3.750 -0.081 -0.057 0.024 -0.294 0.013 0.85 9 89 2

10.0 7.50 3.750 -0.305 -0.280 0.026 -0.084 0.014 0.88 79 21 0

15.0 7.50 3.750 -0.660 -0.633 0.028 -0.042 0.022 0.87 100 0 0

Continued on Next Page
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.DrugA DrugB DrugC true ave abs.bias rel.bias mse cr.ci p.ant p.add p.syn

20.0 7.50 3.750 -0.944 -0.915 0.029 -0.031 0.038 0.86 100 0 0

2.5 10.00 3.750 0.441 0.462 0.021 0.048 0.030 0.82 0 10 90

5.0 10.00 3.750 0.002 0.027 0.025 10.807 0.019 0.87 3 87 10

7.5 10.00 3.750 -0.306 -0.279 0.027 -0.088 0.018 0.85 72 28 0

10.0 10.00 3.750 -0.553 -0.524 0.029 -0.052 0.019 0.86 100 0 0

15.0 10.00 3.750 -0.944 -0.912 0.032 -0.033 0.029 0.85 100 0 0

20.0 10.00 3.750 -1.256 -1.223 0.033 -0.027 0.047 0.85 100 0 0

2.5 1.25 5.000 1.320 1.358 0.038 0.029 0.036 0.81 0 0 100

5.0 1.25 5.000 1.079 1.119 0.040 0.037 0.028 0.85 0 0 100

7.5 1.25 5.000 0.909 0.950 0.041 0.046 0.025 0.86 0 0 100

10.0 1.25 5.000 0.773 0.815 0.042 0.055 0.024 0.88 0 0 100

15.0 1.25 5.000 0.557 0.600 0.043 0.077 0.026 0.87 0 2 98

20.0 1.25 5.000 0.384 0.427 0.043 0.111 0.036 0.85 0 17 83

2.5 2.50 5.000 1.079 1.112 0.034 0.031 0.030 0.81 0 0 100

5.0 2.50 5.000 0.775 0.811 0.036 0.047 0.022 0.86 0 0 100

7.5 2.50 5.000 0.561 0.598 0.038 0.067 0.019 0.86 0 1 99

10.0 2.50 5.000 0.390 0.428 0.039 0.099 0.019 0.86 0 7 93

15.0 2.50 5.000 0.118 0.158 0.040 0.340 0.022 0.87 0 57 43

20.0 2.50 5.000 -0.099 -0.058 0.041 -0.410 0.033 0.84 12 82 6

2.5 3.75 5.000 0.908 0.940 0.032 0.035 0.030 0.81 0 0 100

5.0 3.75 5.000 0.561 0.595 0.035 0.062 0.021 0.85 0 1 99

7.5 3.75 5.000 0.316 0.352 0.036 0.115 0.019 0.84 0 8 92

10.0 3.75 5.000 0.120 0.158 0.038 0.314 0.019 0.84 0 54 46

15.0 3.75 5.000 -0.191 -0.151 0.039 -0.207 0.023 0.85 33 65 2

20.0 3.75 5.000 -0.439 -0.399 0.040 -0.092 0.036 0.81 86 14 0

2.5 5.00 5.000 0.773 0.804 0.031 0.040 0.030 0.80 0 1 99

5.0 5.00 5.000 0.390 0.424 0.034 0.088 0.021 0.86 0 4 96

7.5 5.00 5.000 0.120 0.156 0.036 0.302 0.019 0.86 1 54 45

10.0 5.00 5.000 -0.095 -0.058 0.038 -0.396 0.020 0.84 13 83 4

15.0 5.00 5.000 -0.437 -0.397 0.040 -0.091 0.026 0.85 91 9 0

20.0 5.00 5.000 -0.710 -0.669 0.041 -0.058 0.040 0.81 98 2 0

2.5 7.50 5.000 0.557 0.589 0.032 0.057 0.033 0.81 0 2 98

5.0 7.50 5.000 0.118 0.154 0.036 0.301 0.023 0.85 1 61 38

7.5 7.50 5.000 -0.190 -0.153 0.038 -0.199 0.021 0.85 36 63 1

10.0 7.50 5.000 -0.437 -0.397 0.040 -0.091 0.022 0.84 90 10 0

15.0 7.50 5.000 -0.828 -0.786 0.042 -0.051 0.031 0.86 100 0 0

20.0 7.50 5.000 -1.140 -1.096 0.044 -0.039 0.048 0.86 100 0 0

2.5 10.00 5.000 0.385 0.419 0.035 0.090 0.040 0.79 0 18 82

5.0 10.00 5.000 -0.099 -0.060 0.039 -0.392 0.027 0.83 12 83 5

7.5 10.00 5.000 -0.438 -0.397 0.041 -0.094 0.025 0.85 87 13 0

10.0 10.00 5.000 -0.710 -0.666 0.043 -0.061 0.027 0.84 99 1 0

15.0 10.00 5.000 -1.140 -1.094 0.046 -0.041 0.038 0.86 100 0 0

20.0 10.00 5.000 -1.484 -1.435 0.049 -0.033 0.058 0.85 100 0 0
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Appendix C

Biased Bootstrap Estimates in the Kong and Lee

Semiparametric Variance Estimation

When the Kong and Lee semiparametric method was initially extended to handle 3

drugs, the variance and confidence intervals of the nonparametric part were estimated

using a wild bootstrap in a manner similar to that originally used by Kong and Lee[26].

But some preliminary evaluation of the confidence intervals revealed a possible prob-

lem in the bootstrap estimates used to construct the confidence intervals. Further

investigation suggested that the problem was not limited to the extended Kong and

Lee confidence intervals, and that it was also present in the confidence intervals in the

original Kong and Lee method.

The variance estimation method described in the Section 2.5.4 was implemented in

a program that analyzed a case study in the original Kong and Lee paper [20]. Al-

though the estimates of the confidence interval appear reasonable, the implementation

of the method seems to have a problem with the estimates of of f∗ (d1i, d2i). For the

data analyzed in the original case study, Figure C.1 shows the estimates of f̂ (d1i, d2i)

as a solid black lines at a number of dose levels. The estimates of f∗ (d1i, d2i) from

19 bootstrapped runs are shown as dashed lines. As the figure shows, the estimates of

f∗ (d1i, d2i) are generally overestimating f̂ (d1i, d2i), and thus underestimating the mag-

nitude of the synergy. Because the estimates of f∗ (d1i, d2i) are not centered around

f̂ (d1i, d2i), the sample standard deviation used to estimate the variance is probably

overestimating the variance of f̂ (d1i, d2i).

The source of this problem has not yet been determined, but it seems to be related

to the wild bootstrap and the two-step nature of the Kong and Lee method, first

estimating a parametric additive model, and then estimating a nonparametric model
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Figure C.1: Original estimated fit and bootstrapped fits.

of the departure from additivity.

The Kong and Lee variance estimation method is based on the methods of Härdle

and Marron [15], and Davison and Hinkley [8]. Although bootstrapping of linear re-

gression is usually done based on the residuals, Härdle and Marron identify the problem

of bootstrapping residuals from nonparametric regression, and proposed to instead use

a wild bootstrap with each original residual multiplied by a random component and

added back to its original fitted value to create a new generated observation.

One complication of the Kong and Lee method comes from the two-step nature of

the method. The observations that are fitted in the nonparametric regression of the

second step of the method are not the original observations, they are actually residuals

from the parametric regression fit of the additive model that was fitted in the first step

of the method. So there are two possibilities to consider as the “original” observations

in bootstrapping the semiparametric model: the actual original observations, or the

observations that were originally fitted by the nonparametric regression, which were

really residuals from the first step of the method. The Kong and Lee method uses the

actual original observations.

Another complication of the Kong and Lee method seems to be related to the special

nature of some of the original observations. The original observations from treatments

where only one of the drugs is present are used to estimate the dose-response curve for

that drug alone. Those same observations are also used to estimate the additive model

surface used in the first step of the method.
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There seems to be a problem with generating wild bootstrap samples of these ob-

servations where only one drug is present, although the exact nature of the problem is

not yet clear. One of the components of the wild bootstrap samples generated in is an

Step 4 is oversmoothed estimate of f (d1i, d2i). But this estimate may not improve the

parametric fit very much, because by definition f (d1, d2) should be 0 when only one

drug is present, so perhaps this is causing a problem when it is used to estimate the

additive surface. Or perhaps the problem is that the Härdle and Marron results are

valid for generating bootstrap samples to make estimates of nonparametric regressions,

but the Kong and Lee method is using the generated bootstrap samples first in a para-

metric regression, and then using the residuals from that regression in a nonparametric

regression. And perhaps the generated bootstrap samples estimate a very different ad-

ditive model than the original samples did. Additional work is necessary to identify the

cause of the problem.

One possible solution to the problem has been investigated and seems to show some

promise. Step 4 of the variance estimation algorithm was modified to treat observa-

tions where only one drug is present differently than observations where both drugs

are present. The existing algorithm was used for observations where both drugs are

present, but for observations where only one drug was present, the original observation

was used, rather than a generated observation. This ensures that the same parametric

additive model will be fit to each set of bootstrap samples. This also effectively mod-

ifies the algorithm to treat the residuals from the parametric model as the “original

observations”, rather than the original observations themselves. In some sense that

interpretation may more closely match the assumptions of Härdle and Marron, and

Davison and Hinkley, because the residuals from the parametric model really were the

observations originally fit by the nonparametric regression.

Figure C.2 shows the results when the variance estimation algorithm is modified as

described in the previous paragraph. As before, the estimates of f̂ (d1i, d2i) are shown

as solid black lines, and the estimates of f∗ (d1, d2) from 19 bootstrapped runs are

shown as dashed lines. But now the estimates of f∗ (d1i, d2i) are more evenly clustered

around f̂ (d1i, d2i), rather than being clustered above it as in Figure C.1.



188

0.0 0.5 1.0 1.5 2.0

−
1

.0
−

0
.6

−
0

.2
0

.2

f.hat: d1 = 0

d2

f.
h

a
t

0.0 0.5 1.0 1.5 2.0

−
1

.0
−

0
.6

−
0

.2
0

.2

f.hat: d1 = 1

d2

f.
h

a
t

0.0 0.5 1.0 1.5 2.0

−
1

.0
−

0
.6

−
0

.2
0

.2

f.hat: d1 = 2

d2

f.
h

a
t

0.0 0.5 1.0 1.5 2.0

−
1

.0
−

0
.6

−
0

.2
0

.2

f.hat: d1 = 4

d2
f.
h

a
t

Figure C.2: Revised estimated fit and bootstrapped fits.
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Appendix D

Extended Kong and Lee Semiparametric Method Model

Function Goodness of Fit Tables

In Section 6.6, the extended Kong and Lee semiparametric method evaluated the per-

formance of the method by evaluating the estimation of the model functions, f12, f13,

f23 and f123 at each dose combination. Because of the large number of dose combina-

tions, particularly for the f123 function, the results of the evaluation were summarized

graphically in that section. The following tables show the individual results at each

dose combination.

Table D.1 shows the performance for estimating function f12, which models any

two-way synergy between drugs 1 and 2. The interpretation of the columns is the same

as the interpretation of the columns of Table D.3, although here the reported doses are

for drugs 1 and 2, and the results are for f12 instead of f23.

The true value of f12 (“true”) is 0 at all dose combinations, and in most cases

the average estimates (“ave”) were reasonably close, as shown by the relatively small

bias (“abs.bias”). The variance estimates of f12 (“var”) seem fairly good, with the

proportion of estimated confidence intervals containing the true value of f12 being close

to 0.95 in most cases. f12 is additive at all dose combinations, and identified as such

at least 85% of the time for all dose combinations except, where it was only correctly

identified 80% of the time.

Table D.2 shows the performance for estimating function f13, which models any

two-way synergy between drugs 1 and 3. The interpretation of the columns is the same

as the interpretation of the columns of Table D.3, although here the reported doses are

for drugs 1 and 3, and the results are for f13 instead of f23.

The true value of f13 (“true”) is 0 at all dose combinations, and in most cases



190

Table D.1: Simulation results for f12

dose1 dose2 true ave abs.bias pct.bias var cr.bci p.ant p.add p.syn
2.5 1.25 0.0 -0.005 -0.005 NA 0.002 100 0 100 0
5.0 1.25 0.0 0.005 0.005 NA 0.002 99 0 99 1

10.0 1.25 0.0 0.002 0.002 NA 0.002 95 2 95 3
20.0 1.25 0.0 -0.004 -0.004 NA 0.002 85 4 85 11
2.5 2.50 0.0 -0.003 -0.003 NA 0.003 100 0 100 0
5.0 2.50 0.0 0.005 0.005 NA 0.002 99 1 99 0

10.0 2.50 0.0 0.011 0.011 NA 0.003 93 4 93 3
20.0 2.50 0.0 -0.006 -0.006 NA 0.003 83 4 83 13
2.5 5.00 0.0 -0.002 -0.002 NA 0.003 98 2 98 0
5.0 5.00 0.0 0.009 0.009 NA 0.003 96 3 96 1

10.0 5.00 0.0 -0.002 -0.002 NA 0.004 91 6 91 3
20.0 5.00 0.0 -0.006 -0.006 NA 0.003 88 2 88 10
2.5 10.00 0.0 -0.005 -0.005 NA 0.003 93 1 93 6
5.0 10.00 0.0 -0.006 -0.006 NA 0.004 85 9 85 6

10.0 10.00 0.0 0.005 0.005 NA 0.004 87 7 87 6
20.0 10.00 0.0 -0.002 -0.002 NA 0.006 86 6 86 8

the average estimates (“ave”) were reasonably close, as shown by the relatively small

bias (“abs.bias”). The variance estimates of f13 (“var”) seem fairly good, with the

proportion of estimated confidence intervals containing the true value of f13 being close

to 0.95 in most cases. f13 is additive at all dose combinations, and was generally

identified as such, except at the highest dose of drug 1, where f13 was misidentified as

either antagonistic or synergistic up to 35% of the time.

Table D.2: Simulation results for f13

dose1 dose3 true ave abs.bias pct.bias var cr.bci p.ant p.add p.syn
2.5 0.625 0.0 -0.001 -0.001 NA 0.002 98 0 98 2
5.0 0.625 0.0 0.002 0.002 NA 0.002 98 1 98 1

10.0 0.625 0.0 0.004 0.004 NA 0.002 97 2 97 1
20.0 0.625 0.0 0.005 0.005 NA 0.002 79 12 79 9
2.5 1.250 0.0 -0.005 -0.005 NA 0.002 97 0 97 3
5.0 1.250 0.0 0.003 0.003 NA 0.002 96 2 96 2

10.0 1.250 0.0 0.007 0.007 NA 0.002 93 4 93 3
20.0 1.250 0.0 0.010 0.010 NA 0.003 79 13 79 8
2.5 2.500 0.0 -0.008 -0.008 NA 0.003 91 5 91 4
5.0 2.500 0.0 -0.002 -0.002 NA 0.004 89 8 89 3

10.0 2.500 0.0 0.012 0.012 NA 0.003 83 11 83 6
20.0 2.500 0.0 0.016 0.016 NA 0.003 82 14 82 4
2.5 5.000 0.0 0.000 0.000 NA 0.003 82 11 82 7
5.0 5.000 0.0 0.004 0.004 NA 0.004 82 9 82 9

10.0 5.000 0.0 0.019 0.019 NA 0.004 81 16 81 3
20.0 5.000 0.0 0.019 0.019 NA 0.005 78 16 78 6
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Table D.3 shows the performance for estimating function f23, which models any two-

way synergy between drugs 2 and 3. Each row of the table describes the performance

of the method for a particular dose combination of the two drugs, indicated by the

columns “dose2” and “dose3”. “true” is the true value of the function f23 at that dose

combination. ‘Each simulation run estimated the value of f23 at that dose combination,

and ‘ave” is the average of of those estimated values. “abs.bias” is the mean bias of

the estimated values of f23, that is the mean of the bias for each estimated f23. Each

simulation run also estimated the variance of its f23 estimate, and the mean of the

variance estimates is reported as “var”. The results of each simulation run’s estimate

of f23 and the variance of the estimate were used to construct a 95% confidence interval

for f23; “cr.bci” reports the proportion of those confidence intervals that contained

the true value of f23. The confidence interval from each simulation run was used to

determine if that drug combination was antagonistic, additive, or synergistic; “p.ant”

reports the percentage of runs which identified the combination as antagonistic, “p.add”

reports the percentage of runs which identified the combination as additive, and “p.syn”

reports the percentage of runs which identified the combination as synergistic.

In most cases the average estimated value of f23 (“ave”) was reasonably close to its

true value (“true”), as shown by the relatively small mean bias (“abs.bias”). The vari-

ance estimates (“var”) may be underestimating the variance because the proportion of

confidence intervals including the true value of f23 (“cr.bci”) did not reach the specified

confidence level of 0.95. The true function f23 was synergistic at all dose combinations,

and except for two low dose combinations, f23 was identified as significantly synergistic

in at least 85% of the simulation runs.

Table D.4 shows the performance for estimating function f123, which models any

three-way synergy between all three drugs. The interpretation of the columns is the

same as the interpretation of the columns of Table D.3, although here the reported

doses are for drugs 1, 2 and 3, and the results are for f123 instead of f23.

In most cases the average estimated value of f123 (“ave”) was reasonably close to

its true value (“true”), as shown by the relatively small mean bias (“abs.bias”). The

variance estimates (“var”) seem to be fairly good with the proportion of estimated
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Table D.3: Simulation results for f23
dose2 dose3 true ave abs.bias pct.bias var cr.bci p.ant p.add p.syn

1.25 0.625 -0.125 -0.092 0.034 -27.1 0.003 71 0 43 57

2.50 0.625 -0.156 -0.117 0.039 -25.3 0.002 69 0 17 83

5.00 0.625 -0.187 -0.136 0.050 -27.0 0.002 53 0 9 91

10.00 0.625 -0.216 -0.172 0.044 -20.2 0.002 58 0 2 98

1.25 1.250 -0.162 -0.138 0.025 -15.1 0.003 81 0 15 85

2.50 1.250 -0.202 -0.176 0.026 -12.7 0.003 84 0 6 94

5.00 1.250 -0.241 -0.212 0.029 -12.1 0.003 80 0 4 96

10.00 1.250 -0.279 -0.259 0.020 -7.2 0.003 71 0 2 98

1.25 2.500 -0.202 -0.180 0.021 -10.6 0.003 80 0 12 88

2.50 2.500 -0.251 -0.240 0.011 -4.3 0.003 83 0 4 96

5.00 2.500 -0.300 -0.297 0.002 -0.8 0.003 85 0 0 100

10.00 2.500 -0.347 -0.339 0.008 -2.3 0.004 77 0 2 98

1.25 5.000 -0.241 -0.196 0.045 -18.7 0.004 61 0 17 83

2.50 5.000 -0.300 -0.279 0.020 -6.7 0.004 69 0 4 96

5.00 5.000 -0.358 -0.353 0.006 -1.5 0.004 74 0 3 97

10.00 5.000 -0.415 -0.413 0.002 -0.4 0.005 80 0 1 99

confidence intervals containing the true value of f123 (“cr.bci”) being close to 0.95 in

most cases. The true function f123 is synergistic at low doses, and antagonistic at

high doses of drug 1, around 20. At low doses of drug 1, the synergism was correctly

identified in most cases (“p.syn”). For the high dose of drug 1, the antagonism was

sometimes significant at low doses of drug 2 and drug 3 (“p.ant” in Table D.4), and

was significant for the majority of cases with high doses of drugs 2 and 3 (“p.ant” in

Table D.4).

Table D.4: Simulation results for f123

dose1 dose2 dose3 true.f0 f0.ave abs.bias pct.bias f0.var cr.bci p.ant p.add p.syn

2.5 1.25 0.625 -0.158 -0.130 0.028 -18.0 0.004 93 0 37 63

5.0 1.25 0.625 -0.178 -0.148 0.030 -17.0 0.004 92 0 30 70

10.0 1.25 0.625 -0.196 -0.162 0.034 -17.5 0.004 93 0 24 76

20.0 1.25 0.625 0.170 0.098 -0.072 -42.2 0.005 86 26 74 0

2.5 2.50 0.625 -0.183 -0.166 0.017 -9.3 0.004 93 0 24 76

5.0 2.50 0.625 -0.206 -0.190 0.016 -7.9 0.005 96 0 11 89

10.0 2.50 0.625 -0.227 -0.215 0.012 -5.2 0.005 96 0 9 91

20.0 2.50 0.625 0.196 0.133 -0.064 -32.3 0.005 82 53 47 0

2.5 5.00 0.625 -0.206 -0.175 0.030 -14.8 0.005 95 0 24 76

5.0 5.00 0.625 -0.232 -0.201 0.031 -13.3 0.005 91 0 17 83

10.0 5.00 0.625 -0.256 -0.216 0.039 -15.3 0.006 90 0 16 84

20.0 5.00 0.625 0.221 0.137 -0.085 -38.2 0.006 74 49 51 0

2.5 10.00 0.625 -0.227 -0.186 0.041 -17.9 0.005 87 0 29 71

5.0 10.00 0.625 -0.256 -0.214 0.042 -16.4 0.006 88 0 18 82

10.0 10.00 0.625 -0.282 -0.244 0.037 -13.3 0.007 94 0 10 90

20.0 10.00 0.625 0.244 0.157 -0.087 -35.5 0.008 74 55 45 0

2.5 1.25 1.250 -0.187 -0.179 0.009 -4.6 0.006 96 0 28 72

5.0 1.25 1.250 -0.211 -0.206 0.005 -2.4 0.006 94 0 17 83

10.0 1.25 1.250 -0.233 -0.226 0.007 -2.9 0.005 94 0 11 89

20.0 1.25 1.250 0.202 0.141 -0.061 -30.0 0.006 91 45 55 0

2.5 2.50 1.250 -0.217 -0.231 -0.014 6.5 0.006 94 0 15 85

Continued on Next Page
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Table D.4 – Continued

.dose1 dose2 dose3 true.f0 f0.ave abs.bias pct.bias f0.var cr.bci p.ant p.add p.syn

5.0 2.50 1.250 -0.244 -0.270 -0.026 10.5 0.007 93 0 6 94

10.0 2.50 1.250 -0.269 -0.303 -0.033 12.4 0.006 90 0 5 95

20.0 2.50 1.250 0.233 0.199 -0.034 -14.7 0.007 95 68 32 0

2.5 5.00 1.250 -0.244 -0.242 0.003 -1.0 0.007 96 0 16 84

5.0 5.00 1.250 -0.275 -0.290 -0.015 5.6 0.008 94 0 9 91

10.0 5.00 1.250 -0.303 -0.310 -0.007 2.1 0.008 96 0 8 92

20.0 5.00 1.250 0.263 0.213 -0.050 -18.9 0.008 87 66 34 0

2.5 10.00 1.250 -0.269 -0.255 0.014 -5.2 0.008 93 0 22 78

5.0 10.00 1.250 -0.303 -0.300 0.003 -1.1 0.009 94 0 14 86

10.0 10.00 1.250 -0.334 -0.337 -0.003 0.9 0.009 95 0 8 92

20.0 10.00 1.250 0.289 0.233 -0.057 -19.6 0.012 82 60 40 0

2.5 1.25 2.500 -0.217 -0.208 0.008 -3.8 0.007 95 0 27 73

5.0 1.25 2.500 -0.244 -0.242 0.002 -1.0 0.007 93 0 15 85

10.0 1.25 2.500 -0.269 -0.269 -0.000 0.1 0.007 94 0 11 89

20.0 1.25 2.500 0.233 0.179 -0.054 -23.1 0.007 92 54 46 0

2.5 2.50 2.500 -0.251 -0.275 -0.024 9.7 0.008 85 0 15 85

5.0 2.50 2.500 -0.282 -0.325 -0.043 15.2 0.008 88 0 9 91

10.0 2.50 2.500 -0.311 -0.362 -0.051 16.5 0.008 86 0 2 98

20.0 2.50 2.500 0.269 0.263 -0.006 -2.3 0.009 94 80 20 0

2.5 5.00 2.500 -0.282 -0.286 -0.004 1.3 0.009 92 0 14 86

5.0 5.00 2.500 -0.318 -0.340 -0.022 7.0 0.009 92 0 10 90

10.0 5.00 2.500 -0.351 -0.375 -0.024 6.9 0.009 94 0 5 95

20.0 5.00 2.500 0.304 0.298 -0.006 -2.0 0.010 92 85 15 0

2.5 10.00 2.500 -0.311 -0.305 0.006 -2.0 0.010 94 0 16 84

5.0 10.00 2.500 -0.351 -0.369 -0.019 5.4 0.012 90 0 15 85

10.0 10.00 2.500 -0.386 -0.422 -0.036 9.3 0.011 89 0 6 94

20.0 10.00 2.500 0.335 0.320 -0.014 -4.3 0.014 86 72 28 0

2.5 1.25 5.000 -0.244 -0.227 0.017 -7.1 0.008 90 0 23 77

5.0 1.25 5.000 -0.275 -0.262 0.013 -4.7 0.009 90 0 22 78

10.0 1.25 5.000 -0.303 -0.291 0.012 -4.0 0.009 88 0 15 85

20.0 1.25 5.000 0.263 0.179 -0.084 -31.9 0.009 78 50 50 0

2.5 2.50 5.000 -0.282 -0.291 -0.008 2.9 0.011 91 0 21 79

5.0 2.50 5.000 -0.318 -0.354 -0.036 11.2 0.010 83 0 10 90

10.0 2.50 5.000 -0.351 -0.387 -0.036 10.3 0.011 86 0 11 89

20.0 2.50 5.000 0.304 0.277 -0.027 -8.9 0.013 90 75 25 0

2.5 5.00 5.000 -0.318 -0.315 0.003 -1.0 0.012 87 0 19 81

5.0 5.00 5.000 -0.358 -0.375 -0.016 4.6 0.012 90 0 11 89

10.0 5.00 5.000 -0.395 -0.402 -0.007 1.7 0.014 88 0 11 89

20.0 5.00 5.000 0.342 0.339 -0.003 -0.9 0.014 84 80 20 0

2.5 10.00 5.000 -0.351 -0.308 0.043 -12.2 0.014 89 0 26 74

5.0 10.00 5.000 -0.395 -0.390 0.005 -1.2 0.015 91 0 21 79

10.0 10.00 5.000 -0.435 -0.441 -0.005 1.2 0.016 90 0 8 92

20.0 10.00 5.000 0.377 0.374 -0.003 -0.8 0.019 86 78 22 0
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