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ABSTRACT OF THESIS 

Predicting genetic interactions in the mammalian genome 

By JOSEPH KAWASH 

 

Thesis Director: 

Andrey Grigoriev 

 

 

Genetic interaction and synthetic lethality are important tools that can be utilized to 

study the organization of a species genome. However genetic interaction information for 

mammalian and in particular human genomes is lacking when compared to other model 

organisms. This lack of information may be attributed to the difficulty and unreliability that 

seems to persist in acquiring information on genetic interactions from human cell lines. 

One method of resolving this problem is to use conserved genetic interactions identified in 

model organisms that can be extrapolated into the context of the mammalian genome. In 

this study, a survey is performed of genetic interaction networks from such model 

organisms including Saccharomyces cerevisiae, Drosophila melanogaster, and 

Caenorhabditis elegans to test the ability of predicting genetic interactions in mammalian 

genomes. Additional information supporting genetic interactions, from protein interaction 

datasets as well as human homologs, is used to reinforce the confidence in found potential 

interacting gene pairs. Using orthologous human gene identifiers, networks are overlaid in 

order to identify potentially conserved interactions for the purpose of identifying 
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interacting genetic pairs in the mammalian genome. The common interactors are scored 

based on the model organism from which they were identified as well as their prevalence 

across different networks and supplemented through identification of homologous genes 

and human protein interactions. We find that there exist interacting gene pairs that are 

conserved between model organisms as well as human protein interactions. These 

interactions are verified using experimental information available from the literature to 

validate a subset of these findings.  
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INTRODUCTION 

 

Genetic interactions are an important element in studying the organization of a 

genome. To identify these interactions, pairwise combinations of two gene mutations, or 

deletions of genes, are observed for either the induction of cell death or a significantly 

measurable fitness detriment. If either of these phenotypes is observed, the gene pair is 

determined to be interacting (Costanzo et al, 2010). One of the subsets of a genetic 

interaction is cell death, termed synthetic lethality. These interactions are often found to be 

occurring between genes that exist either within the same pathway or functionally similar 

pathways (Ashworth et al, 2011). Synthetic lethal interactions are especially important when 

researching the organization of the genome particularly during disease, as it often identifies 

a specific genetic susceptibility (Farmer et al, 2005). These synthetic lethal interactions that 

present themselves in the genome have the possibility of being exploited through targeted 

therapy, unilaterally affecting a single cell line (Ashworth et al, 2011).  

Genetic interaction networks have been studied extensively in several model 

organisms, particularly in the yeast Saccharomyces cerevisiae and Schizosaccharomyces 

pombe (Costanzo et al, 2010; Dixon et al, 2008). A study was performed using 

Saccharomyces cerevisiae to generate a genome scale interaction map through the analysis 

of 5.4 million pairwise interactions. The result of the study was a genetic interaction map 

that covered about 75% of the genome. This mapping has spawned a large amount of 

insight on potential genetic interactions along with the synthetic lethal subset that ultimately 

helps lead to a better understanding of genetic pathways and functionality in the cell 

(Costanzo et al, 2010).  
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By combining information for both synthetic lethal interactions and fitness 

detriments of double knockout mutants, gene interaction networks can be developed giving 

insight to the organization of an organism’s genome that has proved useful in several model 

organisms. Studies have been performed using many popular model species including 

Saccharomyces cerevisiae, Drosophila melanogaster, and Caenorhabditis elegans 

(Costanzo et al, 2010; McQuilton et al, 2012;  Lee et al, 2008). A study has also been 

performed in mammals utilizing a mixed dataset from rat, mouse, dog, and human in order 

to attempt and better explain the organization of the human gene interaction network (Lin 

et al, 2010).  

The human genome contains about 20,000 genes, leaving the possibilities of 200 

million different gene pair combinations (Lin et al, 2010). Extracting this information can 

be time consuming and difficult to assess in a reasonable manner, and often times the 

methods that are used can be unreliable compared to the methods used in other model 

organisms such as yeast. In this case the human dataset was generated using a radiation 

hybrid approach that is much less straightforward than using the double knockout 

approach often found in yeast studies (Lin et al, 2010; Costanzo et al, 2010; Dixon et al, 

2008). In order to alleviate some of these potential problems, it may be possible to use the 

available information from a compilation of these model organisms and then to extrapolate 

reliable genetic interactions that best relate to the human genome.  

Similar attempts have been made to extract conserved interaction pairs utilizing the 

protein interaction models (Gandhi et al, 2006) and generating a common yeast gene 

interactome (Dixon et al, 2008). However these studies were limited in that they were only 

making observations of the protein interactions, limiting the potential for genetic research, 
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or in the case of yeast, did not observe the amount of conservation from species of other 

genera.  

In the study performed by Gandhi, protein interaction datasets were utilized with 

roughly 70,000 interactions between the same model organisms that are planned to be used 

in this study (Saccharomyces cerevisiae, Drosophila melanogaster, and Caenorhabditis 

elegans) and were compared between all species. Few interacting protein pairs between any 

combination of the species were shown to be conserved relative to the amount of 

interacting protein pairs that were studied (Gandhi et al, 2006). The research done by 

Gandhi demonstrates that it is possible to identify conserved interaction pairs between 

several different species and shows promise that similar results can be found when utilizing 

genetic interactions. To support this belief, it has been shown that the protein interaction 

dataset does not necessarily overlap in large part with that of the genomic interaction 

dataset (Costanzo et al, 2010). The commonality between genetic interactions and protein 

interactions using the yeast dataset proves to be low, estimated between 10 and 15% 

(Costanzo et al, 2010). Research performed by Dixon (2008) showed that there is greater 

amount of overlap, almost 30%, between genetic interactions. Therefore although the 

combination of genetic and protein interacting pairs may indeed lead to a high confidence 

of conserved interaction, protein interactions alone may not be sufficient for the collection 

of conserved interactions between species, leaving a great amount of potentially 

unidentified interactions that can be supplemented through the analysis of genetic 

interactions.   

In this study genetic interactions are surveyed across several model 

organisms Saccharomyces cerevisiae, Drosophila melanogaster, and Caenorhabditis 

elegans and compared with the human protein interaction database in order to 
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extrapolate interactions that may be conserved within the mammalian genome. Utilizing 

orthologs of human genes, genetic networks were created from the model organisms and 

overlaid to identify commonality. These common elements were then scored based on the 

experimental methods that were used to create their respective interaction dataset as well as 

the frequency that a particular pair is identified between datasets. Using this information 

and validating the results using human genetic interactions that were found in available 

literature, it was possible to identify a subset of genetic interactions that had the potential to 

be conserved across all species. This demonstrated the ability for conserved genetic 

interactions to be identified in mammalian genomes using model organisms, opening a 

great amount of potential in the development of targeted therapies for drug and disease 

study in mammals.  
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METHODS 

Pairwise genetic interactions were collected for four sets of model organisms from 

various different datasets: Mammalian (Lin et al, 2010); Yeast, Saccharomyces cerevisiae 

(Costanzo et al, 2010); Fly, Drosophila melanogaster (McQuilton et al, 2012); and 

Nematode, Caenorhabditis elegans (Lee et al, 2008). 

The largest dataset was the mammalian dataset containing about seven million gene 

interaction pairs. The other datasets had far fewer numbers of interactions with the yeast 

dataset containing 75 thousand pairs of interactors.  The nematode dataset was composed 

of roughly 630 thousand interactions, and the fruit fly dataset yielded seven thousand gene 

interactions.  

The reliability of the datasets was for this purpose determined by the experimental 

methods used to generate the dataset. In the mammalian dataset, radiation hybrids were 

utilized giving it the lowest amount of confidence in the interactions that were identified 

from this dataset. The yeast interaction dataset was generated through the analysis of 

double knockout strains and was considered the most robust of the datasets. Both the 

nematode dataset and the fly dataset were generated from curated information that is found 

in Wormbase and Flybase respectively and were also considered high confidence datasets.  

Information from the pairwise gene interactions in yeast was graphed using python 

to create a gene interaction network. This graph was created with each gene representing a 

node and each interaction an edge. The purpose of generating this graph was to determine 

the betweenness and degree of each of the nodes. Fitness detriments based on double 

knockouts of genes (Costanzo et al, 2010) were then correlated to the average betweenness 

value and average degree of each pair. Other studies have identified a high amount of 
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correlation between either the degree of the node or the betweenness of the node and the 

importance that it has on the graph (Joy et al, 2004) 

Pearson correlation coefficients of gene coexpression were collected using the 

genomes of the previously mentioned model organisms datasets and genetic coexpression 

information that was obtained from COXPRESdb (Obayashi et al, 2012). Pearson 

correlation coefficients of gene coexpression for all possible pairwise gene combinations 

within the genome were collected. Pearson correlation coefficients of gene coexpression 

using only the interacting gene pairs within the genome were also collected. These two 

datasets were then plotted in a histogram and overlaid for comparison.  

Additional datasets were used to supplement the confidence of the genetic 

interactions. These datasets included human homologues collected from Homologene 

(Geer et al, 2010) and human protein interactions from BioGrid (Stark et al, 2006). In this 

way, even if a gene is not represented as a conserved genetic interaction between species, it 

is still represented with a moderate amount of confidence if a similar interaction exists 

between either human homologues or protein interactions.  

A common identifier was generated for all nodes within the graphs for the purpose 

of comparison using Biomart (Kasprzyk, 2012). In the case of genes, human orthologs 

where used when available in the form of Genbank IDs. Proteins were converted to their 

genetic predecessor also utilizing a Genbank ID.  

Interaction sets utilizing common IDs were graphed and compared using python. 

Pairwise interactions were tabulated referencing the dataset used to generate them. 

Comparisons of the output tables were then made to identify common entries between 

various networks. 
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A scoring algorithm for the genetic interactions was developed based on the 

prominence of a specific interaction between datasets. An interaction that is part of the 

mammalian dataset received one point; yeast, fly, and nematode received two points; all 

supplemental interaction sets were also one point. The scores of each interaction were 

generated by summing the value of all the datasets they are reported in. This allowed the 

genes that are observed in high confidence datasets repetitively to be considered likely 

conserved interactions and therefore received a higher score than those interactions that 

were present in either few datasets or an unreliable dataset. Because in this study we are 

looking to identify genetic interactions, the additional datasets from human protein 

interactions and homologs are not considered as high value as the model organism 

datasets.  

Validation of the output was performed through a literature search of known 

synthetic lethal interactions in humans (Farmer et al, 2005; Bommi-Reddy et al, 2008). 

These interactions were collected and searched for through the outputs to validate the 

accuracy of the predictions made by either the individual gene interaction sets or 

combining the interaction datasets.  

DrugBank contributed information pertaining to available drugs as well as their 

genetic targets where applicable. This was used in preliminary research by searching 

through datasets for interactions where one of the genetic partners could be influenced in 

some way by a particulardrug. Drug targets were identified using Genbank IDs and cross 

referencing these targets in the outputs generated from the networks. Tables were 

generated containing information on the interaction pair and the drug that would influence 

the pair.  
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RESULTS 

The method of identification of genetic interactors was varied between species. It 

was determined that, due to the use of radiation hybrids and the large number of genetic 

interactions that had little validation, the mammalian genetic interaction set was not a major 

factor in determining a conserved or reliable genetic interaction and instead deemed a 

supplemental genetic interaction set.  

There was no correlation identified between either the average betweenness or the 

average degree of an interacting pair and their respective fitness detriment posed on the 

cell. This was observed when analyzing the yeast genetic interaction dataset which claimed 

reliable and consistent fitness data for the entire interactome (Figs 1-2). This indicated that 

these measures, although often used in protein interaction studies as a means of 

determining the importance of a node or interaction set (Joy et al, 2004), may not be 

reliable indicators of the importance of a gene in genetic interaction studies. Although what 

could be identified from this information was that with the increase of either average gene 

betweeenness or average gene degree, it is less likely that the given interacting pair is 

important in the maintenance of fitness in the organism.  

A key method in determining the validity of a genetic interaction dataset was the 

shift in the Pearson correlation coefficient of coexpression between all genetic pairs and 

those pairs identified as connected (Fig. 3-6). This has previously been exemplified as a 

reliable means of determining reliability of interacting datasets through the analysis of 

protein interactions in yeast (Grigoriev, 2001) However, there was no shift between these 

two datasets when observing the mammalian genetic interaction dataset (Fig. 6). This 

reinforced the notion that the mammalian dataset was not a reliable dataset to use when 

identifying potential genetic interactions. There was however an observable shift in the 
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correlation coefficients when observing the worm as well as the fly datasets (Fig. 4-5). 

Although there is very little shift when observing the correlation of coexpression of yeast, 

this was still considered a reliable dataset due to means by which the interactions were 

created, in this case utilizing double knockout arrays (Fig. 3). 

Overall there was very little overlap between the datasets (Table 1) compared to the 

large number of interactions that were identified within all the organisms individually. This 

trend however follows other trends that were demonstrated when comparing the overlap of 

interactions between protein interaction data of the same set of species (Gandhi et al, 

2006). In the case of genetic interactions only five were identified between yeast and 

nematode, and 20 identified between fly and nematode. Utilizing alternative datasets 

however identified more overlap. Between fly genetic interactions and human protein 

interactions, there were 1779 interactions identified. Utilizing the nematode dataset and 

human protein interactions, there were 566 interactions. Forty-nine entries existed between 

yeast genetic interactions and human protein interactions. When all of these datasets were 

overlapped, it was found that 18 entries existed between nematode, fly, and protein and 

only a single entry exists between nematode yeast and protein (Table 2). These overlapping 

interactions were considered of greater confidence than any of the interactions that were 

only available in a single dataset and relied simply on the identification of human orthologs 

for their existence.  

The validation of the network using literature curated genetic interactions found 

four synthetic lethal genetic interactions that span multiple output datasets. The BRCA1-

PARP interaction (Farmer et al, 2006) as well as VHL–MET, VHL-CDK6 and VHL–

MAP2K1 (Bommi-Reddy et al, 2008) were all found in at least the fly and the worm 

interaction datasets. In the case of BRCA1-PARP, the interactions were found in the 
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overlapping datasets of nematode and fly as well. All were supplemented through the 

identification of human homologs as well as being present in protein interactions.  

DISCUSSION 

Overall there were a very high number of interactions that were generated by each 

of the graphs individually, especially the mammalian interaction dataset. Although not all 

the information in these datasets proved to be useful or reliable in the case of identifying 

conserved genetic interactions. The mammalian dataset was considered to be of little use 

because the interacting pairs were identified using radiation hybrids, and it was felt that this 

was not as reliable as using double knockouts such as in yeast. This is also shown through 

the graphs demonstrating the difference between Pearson correlation of genetic 

coexpression. In the mammalian dataset, there is very little difference in coexpression of all 

genetic pairs and interacting genetic pairs (Fig. 6). The datasets from fly and nematode 

however showed a much greater shift between all genetic pairs and interacting pairs (Fig. 4-

5). This is a much better indication of a reliable dataset as pairs that are considered 

interacting should be expressed at similar time in order to compensate for the loss of a 

partner. The Pearson correlation coefficient of yeast did not show a great amount of shift 

between all pairs and connecting pairs (Fig. 3). This may be explained through the fact that 

the yeast interaction data also takes positive interactions into account, and although there is 

little shift, this is still considered a reliable dataset due to the means by which the pairwise 

interactions were generated. The yeast interaction set utilized a double knockout approach 

and then assayed the growth of the colony on media, so it is very straightforward if the 

interaction of two genes is required for cellular viability.  

In an attempt to correlate the interaction occurring with a fitness detriment, 

measures of betweenness and degree of each gene were calculated from the yeast dataset 
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and plotted against the previously determined fitness detriment. It was determined that 

there was no correlation between either gene degree or gene betweenness and the amount 

of detriment this had to the cell, therefore this information could not be reliably used to 

estimate the importance of an interacting pair.  

In addition to using Pearson correlation coefficient of coexpression as a means to 

determine the value of an interaction dataset, the datasets were overlaid with each other to 

find out the amount of commonality between them. Overall there was very little that was 

common between all of the datasets. There were no common entries between all of the 

genetic datasets although pairwise overlap was identified between yeast and nematode along 

with fly and nematode. In order to strengthen the existing overlapping results as well as 

provide an additional means of validating the singular results, alternative interaction 

datasets were used and compared. In this case the use of protein interaction information 

was utilized as a reliable alternative dataset. The human protein interaction dataset was 

used because the goal of this work is identifying conserved human genetic interactions, and 

due to the large amount of potential variance between species proteomes, this difference in 

proteomes was a variable that we did not want to consider. Overlapping human protein 

interactions with genetic interactions from the various model species identified far more 

potential interacting partners in all three species than using genetic interactions alone. In 

addition it was possible to identify most of the genetic interactions existing in nematode and 

fly that also existed in human protein interaction data (18 out of 20). This information 

supports the idea that genetic interactions that are conserved between model organisms are 

likely to be expressed in the mammalian genome.  

To validate the interactions, found known synthetic lethal interactions were 

identified in the research. In this case interactions found were BRCA1-PARP (Farmer et al, 
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2006), VHL – MET, VHL - CDK6 and VHL – MAP2K1 (Bommi-Reddy et al, 2008). 

These interactions were identified in the output across nearly all datasets with the exception 

of yeast, indicating that conserved interactions from the model organisms can be 

extrapolated to identify synthetic lethal in mammals. Additionally, all of these interaction 

sets were identified in human protein interaction datasets. This suggests that the use of 

protein interaction information may provide a great deal of insight to determining the 

validity of a genetic interaction. These interactions would be conserved between other 

organisms and can be especially helpful when working to predict mammalian genetic 

interactions.  

To provide additional insight to the potential these interactions have regarding the 

development of targeted drug therapies, information was utilized from DrugBank 

concerning genetic targets of several drug compounds. The genetic interactors that were 

previously identified in the overlapping datasets were found to often times have multiple 

drug compounds that would be interacting with one of the pairs of genes. This result is 

promising showing that it is possible to use such an analysis to unilaterally target a specific 

mutation within a cell line with a drug regime that can hinder the viability of the mutated 

cell. This can lead to a great amount of potential towards the advance of research in fields 

such as cancer drug development and therapy where unilaterally mutated cell lines can be 

identified and more specifically targeted.  
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Figure 1. Degree vs. fitness detriment. Graph depicting the average degree of the two genes 

making up a genetic interaction compared with the measured fitness detriment of the loss 

of the gene pair from the yeast dataset.  
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Figure 2. Average betweenness vs. fitness detriment. Graph depicting the average 

betweenness of the two genes making up a genetic interaction compared with the measured 

fitness detriment of the loss of the gene pair from the yeast dataset. 
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Figure 3. Pearson correlation coefficient of gene coexpression in yeast. Histogram 

comparing the overlap of PCC of gene coexpression between all possible gene pairs and 

connected gene pairs in yeast. 
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Figure 4. Pearson correlation coefficient of gene coexpression in fly. Histogram comparing 

the overlap of PCC of gene coexpression between all possible gene pairs and connected 

gene pairs in fly. 
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Figure 5. Pearson correlation coefficient of gene coexpression in nematode. Histogram 

comparing the overlap of PCC of gene coexpression between all possible gene pairs and 

connected gene pairs in nematode. 
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Figure 6. Pearson correlation coefficient of gene coexpression in humans. Histogram 

comparing the overlap of PCC of gene coexpression between all possible gene pairs and 

connected gene pairs in humans. 
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Gene Interactant Network Species 

CH471098 BC007546 W 

CH471098 D13811 W 

CH471098 D13811 W 

CH471098 D13811 W 

CH471098 M69175 W 

CH471098 M69175 W 

CH471098 M69175 W 

CH471098 X79193 W 

CH471098 X79193 W 

Figure 7. Example of output. Example of genetic interactions found in the output 

generated from querying human orthologs in the worm gene interaction network.  
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Figure 8. Example of overlapping network results. A small example of a genetic interaction 

network from the output using the nematode network, and the overlaps that exists between 

other networks utilized.  
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Interactions  CH471076 

AF181120 

CH471076 

CH471052 

CH471052 

Y00486 

CH471052 

X04526 

Nematode 2 2 2 2 

Fly  0 0 0 2 

Yeast  2 2 2 0 

Protein  0 0 1 0 

Total  4 4 5 4 

Figure 9. Example of scoring. An example of scoring interactions present across multiple 

networks. Each network is assigned a value, with the sum of the values being assigned to the 

interaction giving a measure of its potential conservation.  
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All 

Mamma-

Fly 

Mammal-

Nematode 

Mammal-

Yeast Fly-Yeast 

Fly-

Nematode 

Nematode-

Yeast 

Genetic 

Interactions 0 ~ ~ ~ 0 20 5 

Protein 

Interactions 

(Gandhi 

2006) 16 43 15 0 0 36 0 

Table 1. Common entries between datasets. A summary of the common interactions found 

between genetic interaction networks and common interactions found between protein 

interaction networks (Gandhi et al. 2006).  
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Fly Nematode Yeast 

Nematode-
Fly 

Nematode-
Yeast 

Genetic and Human 

Protein Interactions 1779 20 49 18 1 
Table 2. Common entries between datasets including proteins. A summary of the common 

entries that were found between genetic interactions and their overlap in the human protein 

interaction network.  


