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Studies on the category adjustment often use sequential stimulus estimation tasks
are in which people see a target stimulus then must reproduce its size using an
adjustable response stimulus. Two empirical questions remain regarding
methodological considerations in such tasks. In this study, the starting length and
velocity of response stimulus as well as the time interval between target
presentation and response are investigated. We found that velocity and response

delay affect estimates but starting size does not. (77 words)



The Effect of Category Adjustment Model (CAM) on the Stimulus Estimation:

How aspects of the response stimulus affects task performance

Introduction

It is important to remember and recall information accurately in daily life.

We are often required to report a stimulus’ value along some continuous dimension,
such as weight, number, length, or hue. For example, in cooking, one might need to
recall the amount of celery used in a soup, the number of apples used in baking a pie,
the correct length to cut carrots, or the proper shade of a particular beer. However,
any given memory we have, there is certain to be inexactness surrounding it. This is
in part because our perceptual and memory systems are not perfect, and this
natural imperfection of sensory perception or cognitive processes could cause
inexactness to enter the representation. In such cases of inexactness, people often
rely upon information stored in categories to fill in for the information that is
missing. This is a rational strategy for minds to use because categories contain rich
information that can be used to fill in those aspects of an individual memory that are
impoverished or entirely missing.

The category adjustment model (Huttenlocher, Hedges, & Vevea, 2000) is a
Bayesian model of memory that posits that an estimate of an inexactly encoded
stimulus is a combination of the fine-grain but imprecise recollection of the stimulus’
value on a dimension with category-level information about the typical value that
category members tend to exhibit along that value. For example, imagine you meet a

new colleague at a conference whom you have never encountered previously. You



remember a variety of things along a number of dimensions about this colleague,
such as his height, weight, or skin tone. Later, you may be asked to recall his value
along one of these dimensions, such as his height. But your memory of his height
may be foggy; it is unlikely that you measured him or specifically asked him for his
height. Now imagine his actual height is 72 inches, and the average male is 68 inches.
You will likely remember his height to be intermediate between his actual height
and the category prototype, for instance, as 70 inches. Figure 1 presents a visual
depiction of the model.

There have been a number of empirical studies that have tested the
robustness of the category adjustment model (Huttenlocher et al., 2000; Crawford,
Huttenlocher, & Engebretson, 2000; Duffy, Huttenlocher, & Crawford, 2010). Most
use a task known as the sequential stimulus estimation task. In this paradigm,
participants view and reproduce a series of lines that vary in length. Over time, they
develop a transient category of line lengths and begin adjusting responses toward
the prototypical stimulus value, shortening long line lengths and lengthening short
line lengths. Yet across these experiments, conducted in a variety of laboratories,
there are some inconsistencies in the experimental methodologies used that might
affect the comparison of results. The aim of the present study is to determine
whether two aspects of the design of these experiments affect results: the starting
length of response lines and the length of delay between target presentation and

response.

Background of the Category Adjustment Model



The origin of the model used in the present study has its origin in helping to
explain a series of memory distortions in time and space that later became adopted
for the kinds of categories we learn through inductive experience. The category
adjustment model was first formally defined in a paper on memory for temporal
events to explain what was known as "forward telescoping” (Huttenlocher, Hedges,
& Prohaska, 1988, 1992; Huttenlocher, Hedges, & Bradburn, 1990). Forward
telescoping is a phenomenon in which people tend to remember discrete events as
having happened more recently than they actually occurred. So in February, one will
remember having gone to a party in August that actually was held in July. This bias
in memory was explained due to the fact that the present moment serves as a strong
category boundary while the past has very few salient boundaries. Given the
inexactness surrounding the true memory for the date of an event, the fact that it is
memorable at all would suggest that it occurred more recently than it actually
occurred relative to days in which no memorable events occurred. Huttenlocher et
al. used a clever task to explore these temporal biases by exploiting the trimester
system used at the University of Chicago and the popularity of a campus film
organization known as Documentary Films, which featured films at a steep discount
($2 in 1990) on a daily basis that most Chicago students took advantage of (Duffy,
personal communication, 2013).

In most studies of forward telescoping, participants are asked about events
in the past in which the past was relatively unbounded. However, in the lives of
college students, their temporality is bounded by the beginning and ends of

semesters. In their study, Huttenlocher et al. took advantage of this aspect of college



life, as well as the popularity of the documentary film group, by asking students in a
phone interview which films they remembered seeing in the past year and when
they remembered seeing them. They found that close to semester boundaries,
people were accurate at reporting their memories for when they saw a given film,
yet toward the middle half of semesters, people tended to bias their reports toward
the mid-point of the semester (see Figure 2). Hence, semesters served as temporal
categories with discrete boundaries yet inexact central regions, and so the effect of
forward telescoping that was found previously showed a different pattern for
individuals whose lives were temporally bounded into categories.

Later, Huttenlocher and her colleagues extended the category adjustment
model to spatial categories. Huttenlocher, Hedges, and Duncan (1991) explain a
series of biases in reporting memories of location within a circle. In their studies,
they found that people tended to bias their memories of the location of stimuli
toward the center of the Cartesian quadrants of a circle but not at locations near the
X or Y axes that subdivide the circle (see Figure 3). This was explained by the fact
that points close to the X or Y axis are able to be coded more exactly than those that
are near the diagonals. So when coding location, people code location as an inexact
fine grain memory as well as a category (the quadrant in which the dot appeared).
People combine those two levels of information on estimation resulting in
responses that are biased toward the center of the quadrants for points that are not
near the X or Y axis. Those near the quadrant boundaries, since they are coded more

precisely, are biased less. This was explored in greater depth in a series of follow up



studies (Engebretson & Huttenlocher, 1996; Huttenlocher & Hedges, 1994;
Sandberg, Huttenlocher, & Newcombe, 1996; Tversky & Schiano, 1997).

Most germane to the present study, Huttenlocher and her colleagues
extended the model from temporal and spatial categories to explain distortions in
memory found in estimating stimuli from a category whose members vary along
some dimension. There is a well-known finding in the memory and psychophysical
literature that people tend to remember stimuli as being more typical of the
category of which they are members than they actually are. Hollingworth (1910)
first described this central tendency bias in stimulus estimation, in which people
tend to exhibit a ‘regression to the mean’ in responding to stimuli that vary along a
continuum, lengthening short stimuli and shortening long stimuli. Over the course of
the 20t century, a variety of proposals were offered to explain such biases, most of
them attributing this phenomenon to a memory or perceptual distortion (Goldstron,
1994; Parducci, 1965) or attributed the bias to adaptation level theory (Helson,
1964). For instance, Petzold & Haubensak (2004) and Sailor and Antoine (2005)
explain the central tendency bias in estimation as influence exerted by an
immediately preceding stimulus that interferes with the memory of the current
stimulus. So for many years, such distortions in memory were explained as flawed
processing.

Rather than conceptualizing the central tendency bias as a distortion,
Huttenlocher and her colleagues (Huttenlocher et al., 2000; Crawford and
Huttenlocher, 1996; Duffy, Huttenlocher, Hedges, & Crawford, 2008; Duffy &

Crawford, 2010) have explained the central tendency bias as an adaptive



mechanism that over time increases the accuracy of stimulus estimation. In the
category adjustment model, category is defined as clusters of relevant stimuli
dimensions that consist of a cognitive structure, and stimulus is considered as a
value along the relevant set of dimensions (Huttenlocher et al., 2000). Categories
typically have lower and upper boundaries that represent the smallest or largest
possible stimulus size (i.e., the smallest and tallest building within a city), and the
center of the category being the most typical member of the category. For most
categories, this is the average value of the category (see Duffy, et al.,, 2008 for a
discussion of categories that do not exhibit symmetric frequency distributions).
Stimuli are encoded as a fine-grain memory along the relevant stimulus dimension
(x is about 35 feet tall), and as a member of a category (x is a tree).

Upon recall, information from both levels is combined to create an estimate
of the stimulus (x is about 35 feet tall; trees are on average about 25 feet tall, hence
to be safe I will estimate x as 30 feet). To illustrate, consider figure 1. It depicts a
category of instances that vary along a continuous dimension, such as tree heights.
The category average (p) is the typical height of trees. Imagine we need to recall tree
x, which was actually 35 feet (M), but since it was encoded imprecisely, has a
distribution of inexactness surrounding its true value. Given this inexactness, it is
more rational to select a value to the left of M since the vast majority of category
members fall in that direction as opposed to the right, where there are very few.

The model is Bayesian in that it uses a prior distribution (a category) to

adjust the inexactness of a present distribution (the error surrounding the fine grain



memory). It is a precisely specified yet elegantly simple model, described by the
following equation:

R=AM + (1 - A)p,
Where R is the stimulus response, M represents the average of a set of values in
memory for the stimulus, p is the central value of the category, and 4 is a weighting
parameter that ranges from 1 to 0 (Huttenlocher et al., 2000; Sailor et al., 2005). In
the model, 4 is a function of the variability of the category itself as well as the
variability of the error surrounding the inexact memory. It too is precisely specified,
and is defined as:

A =02,/ (0%+ o%m),
Where o2, represents the variability of the category and o?v represents the degree
of inexactness in the memory. So when o2y is small when the fine grain memory is
precise, A is close to 1, and response is closer to the fine grain memory. Yet when
o?w approaches infinity, when nothing is known about the stimulus’ size, A is close
to 0, and only the category average is used.

The model has an additional level concerning the kurtosis or shape of the
distribution. When categories have many instances at the center of a category yet
few at the edges (i.e., a leptokurtic distribution), the extent to which people bias
responses toward the center of the category decreases relative to a category in
which the members vary widely (i.e., a platykurtic distribution). This is possibly
because people intuitively assume that extreme members of a category must be
members of some adjacent category, so biasing toward the average of the wrong

category would lead to extreme inaccuracy in estimation. Alternatively, extreme



category instances might garner more attentional resources because they are
unusual category exemplars, and hence are encoded more precisely. Thus, the bias
curve takes on a curvilinear shape, resembling a sideways S. This is a similar
phenomenon to what happens with the encoding of location in a circle near the X
and Y axis; their proximity to these oblique axes of symmetry allows them to be
encoded with greater precision. This issue is explored in greater depth in an article
by Huttenlocher, Hedges, Lourenco, Crawford, and Corrigan (2007) but is somewhat
unrelated to the present investigation.

An important aspect of the model is that bias arises at the point of
reconstruction as opposed to at the time of encoding, as has been suggested by
Goldstone (1994). This was investigated in depth in a research article by Crawford
and her colleagues (2000) which addressed when the central-tendency bias occurs.
The focus of this investigation was under two different conditions. Capitalizing on
the Mueller-Lyer illusion, the study compared the effect of a perceptual illusion with
the central-tendency bias through using three different shapes of line -no
arrowheads, arrowheads pointing in, and arrowheads pointing out- under the two
conditions - perceptual learning account and stimulus reconstruction account
(Crawford et al., 2000). It was hypothesized that if the central-tendency bias occurs
only at encoding stage, it should not affect any different stages of memory such as
whether or not the stimulus is held in memory before being adjusted. In contrast, if
the central-tendency bias arises after encoding the stimulus, it should increase with
added memory strategy (Crawford et al., 2000). The participants consisted of 70

undergraduate students. They were asked to reproduce the lines shown with two



conditions: whether the stimulus remained in-view condition while estimating it, or
whether it disappeared and needed to be reconstructed based on the memory
(memory condition). The result in this study indicated that the central-tendency
bias is happened only at a later stage of processing the stimulus. The difference in
central-tendency bias between in-view and the memory conditions supports that
stimulus reconstruction uses the category-level knowledge, in the long run, this
produces the bias in response. In keeping with previous study about the effect of
category adjustment (Huttenlocher et al.,, 2000), this result suggests that central-
tendency bias arises at a reconstruction stage of stimuli estimation to maximize the
accuracy even though it causes bias in estimation.

Many of the studies on the category adjustment model rely upon
experimental studies conducted in a laboratory, however, a number of studies now
examine the category adjustment model using ecologically valid contexts. There
have been questions as to whether the category adjustment model applies in more
naturalistic contexts outside of laboratory experiments (Spencer & Hund, 2002;
Engebretson & Huttenlocher, 1996; Huttenlocher et al., 1991). Typically,
participants are asked to put a dot in the blank frame after exposing a dot inside a
geometric frame in a location memory tasks (Huttenlocher et al.,, 1991; Sandberg,
Huttenlocher, & Newcombe, 1996). The results of these studies show that biases
toward the centers of spatial categories formed when individuals impose category
boundaries within a geometric figure (Engebretson & Huttenlocher, 1996;
Huttenlocher et al,, 1991) and people are likely to be biased away for the midline

and away from the edges of the perceptual frame (Huttenlocher et al., 1994). In
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addition, the greater uncertainty of fine-grained information, the larger biases
(Huttenlocher et al,, 1991; Huttenlocher et al., 1994). That is, in terms of spatial
location, the category adjustment model suggests that individuals remembering a
given location combine stimuli from different levels of the hierarchical structure of
space. Therefore, the final estimate of location is hypothesized to be an optimal
blending of a fine-grained metric estimate and coarser categorical information,
represented by a category prototype (Holden, Curby, Newcombe, & Shipley, 2010).

As discussed previously, many researchers investigated biases toward the
centers of spatial regions in the location memory tasks (e.g., Huttenlocher et al.,
1994). However, it is unclear whether category adjustment model apply to memory
of the natural locations, which contain irregularities in categories. Complex
naturalistic environments are filled with semantic content as well as perceptual
information (Holden, Curby, Newcombe, & Shipley, 2010). Research by Holden et al.
support the validity of the category adjustment model in complex natural locations
as well. The results clearly show that memory for locations within visually rich
images is biased and that this bias tends to be in the direction of the category center,
as predicted by the category adjustment model.

Although it is difficult to prove experimentally, it has been hypothesized that
the cognitive processes underlying the category adjustment model may be part of
the cognitive architecture and evolved, over time, as an adaptive strategy for
increasing accuracy in estimation. Suggestive evidence for this possibility can be
found in a study by Duffy, Huttenlocher and Crawford (2006), who examined

whether the category adjustment model could also increase the accuracy in
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estimating among children. In this study, the authors investigated how categories
affect stimulus estimation among 5- and 7-year-old children by exploring memory
distortions that arose when they reconstructed tasks exhibiting in either peaked or
uniform distribution condition (Duffy et al., 2006). This study was addressed three
questions: (1) whether children use categories in estimation, (2) whether the shape
or the bias curve vary by stimulus distribution and age, (3) whether response
variability vary by distribution and age. Consistent with the predictions of the
category adjustment model (Huttenlocher et al., 2000), both 5- and 7-year-old
children constructed and used inductive categories when estimating stimuli (Duffy
et al.,, 2006). Also, both age groups of children presented greater level of uncertainty
in the peaked distribution than uniform distribution condition, because the stimuli
near the region of average value were shown more frequently than the stimuli in the
region of the extreme value. In addition, when it comes to the age in category
adjustment model, 5-year-olds exhibited more bias and variability in their
responses than 7-year-olds because younger children’s memory is less precise than
older children.

Taken together, the category adjustment model provides better
understanding of the role categories perform in increasing the accuracy of memory
and decrease the variability of estimates, providing a rational and adaptive process

for maximizing the precision of memory under conditions of uncertainty.

Methodological issues involved in the category adjustment model
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In order to explore category effects in memory, researchers have developed
an experimental methodology known as the sequential stimulus reproduction task.
Because everyone’s experience with natural objects differs (i.e., you have a different
set of exemplars of the category dog than, say, I do) it is useful to use artificial,
transient categories that are produced in the laboratory. Much of the literature uses
lines that vary in length, but others have used squares that vary in size or fish that
vary in fatness. In these experiments, participants view and reproduce a series of
stimuli randomly selected from a distribution of lines. On each trial, participants see
a target line then after a delay see an adjustable reproduction lines that they shrink
and expand to be the same length as their memory of the target line. In quite a short
period of time, participants begin biasing responses toward the central value of the
distribution they have seen (the formation of categories occurs rapidly). Over the
course of the experiment, participants reproduce the entire distribution of lines.
Although the number of lines used varies from experiment to experiment, most
studies use between 100 and 200 lines, as having fewer leads to vague effects and
more becomes too taxing for participants (Duffy, 2013, personal communication).

After collecting data from each trial on many subjects, the data is processed
by subtracting the subject’s response line, which is the measure of bias in responses.
When examining experimental results of studies that use the category adjustment
model, researchers generally look at the bias curve of responses. Figure 4 depicts a
hypothetical bias curve. On the X-axis is stimulus values, going from, for instance,

small to large or light to dark. On the Y-axis is bias, the extent to which people over



13

or underestimate the stimulus value. Across many experiments, researchers find
overestimation of small stimuli and underestimation of large stimuli.

Different studies have also varied in the way they present that adjustable line.
Some studies always have the reproduction line have a starting length that is short,
and other studies have the starting length that is long. It is unclear whether the
starting length of the reproduction line influences responses. One hypothesis is that
when the starting length is small, people’s responses are underestimated, while
when long, they are overestimated. This may be due to the starting length of the
reproduction line interfering with the memory of the stimulus. If this hypothesis is
true, then there should be a difference in intercept (but not slope) when the starting
length is small as opposed to long, as depicted in Figure 5. This is the basis of
Experiment 1a.

Another difference between studies concerns the velocity that the response
stimulus expands or contracts. Some studies use reproduction stimuli that slowly
expand and contract, others use stimuli that rapidly do so, and still others simply do
not contain this information (including the original Huttenlocher, et al. (2000)
study). It is unclear whether this factor could have an effect on resulting responses,
although the category adjustment model would make a prediction about the speed
of the response line. Specifically, when the response line moves slowly, it takes more
time for participants to reach the desired length. With more time, the fine grain
memory may degrade, and so people may rely more upon the category when the

line moves slowly. If this hypothesis is true, then the slope (and intercept) of the
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bias curve should be steeper when the line moves slowly as opposed to quickly, as
depicted in Figure 6.

The second experiment is related more directly to this issue of timing. Prior
studies vary in the amount of time between the presentation of the target and the
response line. Some studies use interstimulus response times of 1 second, others as
long as 5 seconds. The effects of these differences are currently unknown, although
the category adjustment model would predict that the longer the delay between
target presentation and response, the greater the bias, for the same reason

discussed previously.

Experiment 1

Participants: 43 undergraduates at Rutgers University in Camden
participated to fulfill a course requirement.

Procedure and Design: In this and the following experiments, stimuli were
horizontal lines that varied in length from 80 - 368 pixels in length and were 5
pixels wide, presented on a Windows desktop computer running E-Prime software.
The distributions were 190 lines of 10 lines of each of 19 stimulus values starting at
80 pixels up to 368 pixels in 16 pixel increments. The lines were presented for 1.5
seconds, with a delay of 1.5 seconds, when the response line appeared. In the
current experiment, there were four conditions. In the slow velocity/ small starting
length condition, the response line started at 60 pixels and expanded and contracted
at a rate of 16 pixels per second. In the slow velocity/ long starting length condition,

the response line started at 388 pixels and expanded and contracted at a rate of 16
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pixels per second. In the fast velocity/ long starting length condition, the response
line started at 388 pixels and expanded and contracted at a rate of 32 pixels per
second. In the fast velocity/ short starting length condition, the response line
started at 60 pixels and expanded and contracted at a rate of 32 pixels per second.

After estimating the 190 lines, participants were debriefed and thanked.

Results

[ first performed an analysis on the data combined to determine if there was
an interaction between starting length and velocity. I first analyzed the data at the
individual level by performing separate ordinary least squares (OLS) regressions
with bias as the dependent variable and actual stimulus size as the independent
variable. For every participant, actual size significantly predicted bias, suggesting
that every participant had a negatively sloped bias curve. The individual t statistic
for actual size predicting bias ranged from -1.4 through -22.02 with an average
value of -9.70, suggesting that every subject showed the pattern of bias predicted by
the category adjustment model.

[ then performed two omnibus analyses of variance on the intercept and
slope. This yielded a non-significant effect for condition F (3, 39) =.025, p = .32 for
the intercept and F (3, 39) = 1.6, p =.199 for the slope. However, since the numbers
of participants in each cell was quite small (approximately 10) I decided to perform
separate analyses on the data collapsed across the two conditions and consider
starting length and velocity separately.

Starting length analysis
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To test at the individual level whether starting length influenced responses,
the slopes and intercepts obtained by the individual regressions mentioned before
were submitted to ¢ tests. Neither the estimates of the slopes or the intercepts of the
regressions showed a significant difference t (41) = -0.296 and 0.006, respectively,
suggesting that the starting length of the reproduction line did not affect
performance.

However, the analysis outlined above is atypical of those done by studies on
the category adjustment model. More commonly, data is averaged across
participants within a condition and then compared using multiple regression with
dummy variables. To conduct this analysis, multiple regression using dummy
variables was used, with bias as the dependent variable and actual size, a dummy
variable for condition that tests for differences in the intercept, a dummy variable
that tests for differences in slope, and with the small condition arbitrarily chosen as
the reference category (coded 0). This analysis yielded a significant ANOVA F (3, 37)
=487.93, p <.001, R? =.99. There was a significant effect for the coefficient for the
intercept ( =53.12, t = 22.50, p <.001) actual size (f =-.272,t=-27.66, p <.001),
but not the dummy variable intercept (3 =.06, t =.018, p <.98) and neither for the
dummy variable for the slope (3 = 0.13, t =.964, p <.34). The fact that the slope and
the intercept dummy variables were not significant suggests that the slope of the
bias curve (i.e. the extent to which people adjust responses toward the center of the
distribution) does not vary as a function of the starting length of the response line.
These results are presented in Figure 7.

Velocity results:
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[ analyzed the velocity data at the participant level in the same manner as the
starting length analysis. T tests compared the slope and intercept of those in the fast
and slow moving line condition. This analysis yielded a marginally significant
difference for the intercept t (41) = -1.95, p = .06 and a significant effect for the slope
t (41) = 2.21, p = .03. This suggests that velocity had an effect on both the slope and
the intercept of the regression lines.

To explore this finding further, I conducted an analogous analysis using
group-level data. Multiple regression using dummy variables was used to analyze
the data, with bias as the dependent variable, and actual size and dummy variables
for the intercept and slope included, with the fast condition as the reference
category (i.e., coded zero). This analysis yielded a significant ANOVAF (3, 37) =
467.70, p <.001, R? = .988. There was a significant effect for the coefficient for the
intercept (B =41.88,t=17.49, p <.001) actual size ( =-.218,t=-21.91, p <.001),
and the dummy variable intercept (8 = 20.19, t = 5.94, p <.001) and for the dummy
variable for the slope (3 =-.084, t =-5.97, p <.001). The fact that the slope and the
intercept dummy variables re significant suggests that the slope of the bias curve
(i.e. the extent to which people adjust responses toward the center of the
distribution) varied as a function of the velocity of the response line. Specifically the
fact that the coefficient for the slope dummy variable was negative and the intercept
dummy variable positive given that the fast condition was the reference category
suggests that in the slow condition, the slope is even more negative, resulting in an
intercept that intersects the y axis at a higher point. These results are presented in

Figure 8.
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Furthermore, one of the reasons why there was a difference in slope for the
slow moving condition could be the length of the delay caused by the slowness of
the velocity. I did the T test analyzing the length of time took the response for the
slow versus fast condition. The average response time was for 4.4 seconds in the
slow condition and 2.3 seconds in the fast condition. I did analysis and suggested
that there is highly significant difference in response times (¢ (8168) = 36.17, p
<.000) and this is because of the length of delay that may cause this changing bias.

This investigated this Experiment 2 by altering the delay.

Experiment 2

Participants: 65 undergraduates at Rutgers University in Camden
participated to fulfill a course requirement.

Procedure and Design: In this and the following experiments, stimuli were
horizontal lines that varied in length from 80 - 368 pixels in length and were 5
pixels wide, presented on a Windows desktop computer running E-Prime software.
The distributions were 190 lines of 10 lines of each of 19 stimulus values starting at
80 pixels up to 368 pixels in 16 pixel increments. The lines were presented for 1.5
seconds. After target presentation, there was a delay that varied with experimental
condition. In the short delay condition, the delay between target presentation and
response line generation was 1.5 seconds. In the long delay condition, the delay was
8 seconds. The starting length of the response line varied between 60 and 380
pixels in starting length (although the results of Experiment 1 suggest that this is not

an important factor in influencing the results).
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After estimating the 190 lines, participants were debriefed and thanked.
Results

Bias was calculated as in Experiment 1.

[ first analyzed the data at the individual level by performing separate OLS
regressions with bias as the dependent variable and actual stimulus size as the
independent variable. For every participant, actual size significantly predicted bias,
suggesting that every participant had a negatively sloped bias curve. The individual
t statistic for actual size predicting bias ranged from -6.25 through -20.20 with an
average value of -9.27, suggesting that every subject showed the pattern of bias
predicted by the category adjustment model. I then compared whether the slopes
for the two conditions (short delay / long delay) differed significantly by comparing
the slopes and the intercepts of the regressions between the two groups using t tests.
This analysis yielded a significant difference in the slope t (63) = -3.78 as well as the
intercept t (63) = 3.7 between the two groups.

These data were submitted to a multiple regression analysis averaged across
the group with dummy variables with bias as the dependent variable and a dummy
variable coding for condition for both the slope and intercept of the regression line,
with the short delay condition as reference category. (Although this analysis is
redundant with the individual level analysis described above, this is the more
common approach in the literature using the category adjustment model). This is
how previous studies have the regression yielded a significant ANOVA, F (3, 37) =
501.97, p <.001, R? =.99. The coefficient for the intercept was = 62.56,t=19.88, p

<.001, the coefficient for the stimulus size was § =-.29, t =-22.33, p <.001, the
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coefficient for the dummy variable coding for condition for the intercept was f§ =
28.40,t=6.38, p <.001, and the coefficient for the dummy variable coding for
condition for the slope was 3 =-.123, t =-6.39, p <.001. The significance of these last
two coefficients suggests that delay affects the degree to which people introduce
bias into their responses, with greater bias with the longer delay given that the
short delay was the reference category in the regression and the coefficient was
negative for the slope coefficient and positive for the intercept, suggesting a steeper

curve in the long delay condition. These results are presented in Figure 9.

General Discussion

The present study addresses several methodological issues concerning
aspects of the experimental design of tasks that explore category effects in stimulus
estimation. The experimental method of sequential stimulus estimation has been
used by a number of researchers across several laboratories, yet there has been
little exploration of aspects of the procedure that might affect performance. The
present study examines three of these aspects that from the perspective of the
category adjustment model might affect performance: the starting length of the
reproduction stimulus, the velocity of reproduction stimulus, and the length of delay
between target presentation and response.

For the starting length of reproduction line, the category adjustment model
makes no prediction, and the present study found no effect of this aspect of the
design. Hence, future studies that test the category adjustment do not need to

control for this aspect of the design of their experiments. However, the velocity of
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the reproduction stimulus, as well as the delay between presentation and response,
do have an effect on resulting estimates. Specifically, for the slowly
expanding/contracting reproduction stimuli line results in greater bias in the
estimation of stimuli than the condition of fast expanding/contracting response
stimuli. It is unclear whether it is the slow velocity of the line, or the increased
length of time causes the increased bias, so Experiment 2 directly tested timing,
finding that indeed, the delay between target presentation and response leads to a
similar increase in bias. Hence, experimenters should be careful to have consistent
timing in such studies, and should take care to use similar programs and set ups that
maintain consistency.

In addition, for the longer the delay between presentation and response,
participants appear to bias responses toward the center of the category to a larger
extent than when there are shorter delays. This follows a prediction of the category
adjustment model in that when the fine grain memory for a stimulus is imprecise
(i.e., greater delay in the representation due to a longer delay) people would rely
more upon the category prototype in constructing estimates of the stimulus.

Overall, longer delay and slow moving condition of response line exhibited
greater variability in participants’ responses than did shorter delay and fast moving
conditions, suggesting greater memory inexactness for each stimuli. Recall that the
model predicts that bias increases as a function of decreasing exactness in the fine-
grain memories. Therefore, the pattern of bias observed across the two conditions
suggests that participants are more likely to adjust their responses to a greater

extent toward the prototype in order to compensate for the inexactness in their
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fine-grain memories for stimuli in longer delay and slow moving condition; on the
contrary, participants introduce less bias into their response in shorter delay and
fast moving condition because of their memory for individual stimuli is more
accurate.

There are several directions for future research. The present study concern
estimates of simple perceptual stimuli that vary along the different conditions.
Different types of stimuli (e.g., spatial or social category) exhibit unique
psychophysical properties that may influence the category value subjectively
experienced as the distributions’ center. The present study used lines that varied in
length; future work on the estimation may explore how psychophysical properties
of various stimuli affect estimation processes, particularly for stimuli with different
Steven's Law exponent (Stevens, 1957). Furthermore, future researchers may be to
explore whether the observed effect varies as a function of the delay between
category induction and reconstructive judgment.

These findings are important in that many researchers rely upon sequential
estimation tasks like the ones investigated in the present study, yet across
laboratories there is very little systematic control over aspects of the design. Indeed,
many studies even omit information about the factors explored in this study. These
results suggest that certain aspects of the experimental design (delay and velocity)
should be better controlled in future studies, or at least described in the
methodology in order to better replicate the experiments in future investigations.
Given the attention that replication has garnered in recent literature (Pashler &

Wagenmakers, 2012; Pashler & Harris, 2012; Makel, Plucker, & Hegarty, 2012;
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Bakker, Dijk, & Wicherts, 2012; Ferguson & Moiritz, 2012; Francis, 2012; Galak &
Meyvis, 2012) it may be useful to include such information in order to improve upon
psychological science.

In conclusion, studies using the serial estimation task need to take care to
keep consistent timing and stimulus velocity in order to paint a clearer picture of

how categories truly influence the estimates of inexactly encoded stimuli.
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