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Abstract

A Recognition Theorem for Polynomially Growing Outer

Automorphisms of the Free Group

By Gregory MacLean Schinke Fein

Dissertation Director: Professor Mark E. Feighn

Feighn and Handel’s recognition theorem for Out(Fn) provides in-

variants that canonically determine any forward rotationless outer au-

tomorphism of the free group. We ask to what extent those invariants

can be extended to outer automorphisms with some periodic behavior.

Many of the same constructions do not have natural analogs, in par-

ticular because of the possible lack of principal representatives in this

setting. However, by restricting our attention to polynomial growth

outer automorphisms and using train track technology, we are able to

find a special set of lines in the free group that encode all the dynamical

information of these non-forward rotationless maps.
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1 Introduction

There is a strong analogy between Out(Fn) and another gem of geometric

group theory: the mapping class group of a surface. Mapping class groups are

groups of self maps in which one ignores differences via homotopy, and much

greater detail on these groups can be found in Farb and Margalit’s book on

the subject [FaM11]. The analogy with Out(Fn) is also explored in a survey

paper by Bestvina [B02]. The close relationship between these two collections

of groups has resulted in many theorems in one inspiring searches for analogs

in the other.

In “The Recognition Theorem for Out(Fn)” [FH11], Feighn and Handel drew

on Nielsen’s approach to the mapping class group [HT85] to provide a set

of qualitative and quantitative invariants that, taken together, uniquely and

canonically determine an outer automorphism. Their theorem applies only to

forward rotationless outer automorphisms; these are, roughly, outer automor-

phisms which have no periodic behavior. Our is goal to generalize this result

to all of Out(Fn).

In the study of Out(Fn), it is often useful to categorize elements based on their

growth rates under iteration. Any φ in Out(Fn) can be described as either of

at most polynomial growth (PG) or exponential growth (EG), depending on

how quickly word lengths in the free group grow under an automorphism Φ

of Fn that represents the class φ. By focusing on PG outer automorphisms,

we find a φ-invariant set of lines, known as annular FixN -lines, so that φ is

canonically determined by its action on this set.
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2 Organization

The organization of this work is as follows. In Section 3 we review the necessary

background, including free groups, automorphisms, fixed sets, the forward

rotationless recognition theorem, and train track maps. It ends by describing

a special class of graphs called Stallings graphs. Much of this background can

be found in [FH11], though [BFH00] and [BH92] were also used as resources.

The only exception is Section 3.11, where some of the definitions are new,

and so we needed to prove a few facts about these new objects. In Section 4,

we suggest two fairly reasonable guesses as to what the general recognition

theorem might look like, and we provide counterexamples to show that both of

these guesses are incorrect. The counterexamples will be analyzed via Stallings

graphs. In Section 5, we define the main construction of this thesis: the set of

annular FixN -lines of a forward rotationless PG outer automorphism. As we

did with the counterexamples, we will visualize these lines using Stallings graph

machinery. In the final section, Section 6, we will prove our main theorem:

that any PG outer automorphism is uniquely determined by its action on the

set of annular FixN -lines of a forward rotationless power.

3 Definitions and Preliminaries

3.1 Free Groups and Automorphisms

Let Fn be the free group on n generators, with basis denoted {a, b, c, ...}. An

element w of the free group is a finite reduced word w in these generators and
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their inverses, for instance a, b2, or a3b−1c6bcba. The word reduced means that

w contains no basis element adjacent to its own inverse, and the word finite

refers to the finitely many appearances of the generators and their inversess.

The group operation on these words is concatenation, followed by the reduction

of adjacent pairs of generators and inverses. For convenience, the inverse w−1

of a word w will sometimes be denoted w̄ and sometimes W .

Let Aut(Fn) be the group of automorphisms of the free group. An auto-

morphism of the free group can be described by listing the images under the

automorphism of a set of generators. For example, the following is a fairly

simple element of Aut(F2).

Example 3.1.

Φ : a 7→ a b 7→ ba

An inner automorphism is an automorphism ix that conjugates every element

of the free group by some fixed element x; i.e. for all w ∈ Fn, ix(w) = xwX.

The set of all inner automorphisms forms a normal subgroup of Aut(Fn), de-

noted Inn(Fn). The resultant quotient group Aut(Fn)/Inn(Fn) is called the

outer automorphism group of the free group and is denoted Out(Fn). Because

we are modding out by conjugations to form Out(Fn), individual outer auto-

morphisms (as they are called) act not on elements of Fn but on conjugacy

classes of elements of Fn.

The boundary of Fn, ∂Fn, is the set of reduced infinite words P = y1y2y3 . . .

where each yi is an element of the chosen basis or the inverse of a basis ele-

ment. This is equivalent to the definition of the Gromov boundary of Fn as
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a hyperbolic group, where boundary points are given by geodesic rays in the

Cayley graph of Fn. Full details on the construction of the boundary can be

found in [BrH99, Chapter III.H] and [BK02].

Figure 1: The Cayley graph of F2

A boundary point is called periodic if it takes the form wyyy... for some w, y ∈

Fn. The free group acts on its own boundary in the following way: for any

x ∈ Fn, x sends y1y2y3 . . . to the reduced infinite word that results from

reducing xy1y2y3 . . . The quotient of ∂Fn by this action is denoted Fn\∂Fn,

and elements of this set are called classes of rays. We will usually denote a

class of rays by ρ.

The boundary of the free group can be topologized in the following way: for

P = y1y2y3 . . . a reduced infinite word in ∂Fn and t > 0, define V (P, t) to be

the set of all Q = z1z2z3 . . . so that zi = yi for all i ≤ t. The collection of sets

V (P, t) as P ranges over ∂Fn and t ranges over N form a basis for the compact-

open topology on ∂Fn. Any automorphism Φ of Fn induces a homeomorphism
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∂Φ of ∂Fn with this topology [F80]. The homeomorphism ∂ix induced by

an inner automorphism ix is the one that sends y1y2y3 . . . to the reduction of

(xy1x
−1)(xy2x

−1)(xy3x
−1) . . ., which is the same as the reduction of xy1y2y3 . . .

In other words, Inn(Fn)’s action on ∂Fn is the same as Fn’s action, and so

there is an induced action of Out(Fn) on Fn\∂Fn.

Lemma 3.2. Let P ∈ ∂Fn be non-periodic, let ρ ∈ Fn\∂Fn be the class of P ,

and let φ ∈ Out(Fn) so that φ(ρ) = ρ. Then there is a unique representative

Φ of φ so that ∂Φ(P ) = P .

Proof. If Φ is any representative of φ, then by assumption, ∂Φ(P ) = xP for

some x ∈ Fn. Under the action of Fn on its own boundary, xP can only be

equal to P if P = xxx . . . or x−1x−1x−1 . . ., and both of these possibilities are

ruled out by P being non-periodic. But ∂i−1
x Φ(P ) is equal to P (as x−1xP

reduces to P ), and so i−1
x Φ is the only representative of φ whose induced

homeomorphism of ∂Fn fixes P .

3.2 Growth Rates

One useful way to classify outer automorphisms is by their growth rates. For

any Φ ∈ Aut(Fn), any x ∈ Fn, and any integer j, the growth function of Φ

with respect to x, gΦ,x(j), is defined to be the word length of Φj(x).

When gΦ,x(j) can be bounded below by an exponential function in j, we say

that x is exponentially growing, or EG, under Φ. When gΦ,x(j) can be bounded

above by a polynomial in j, we say that x is polynomially growing, or PG,
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under Φ. If gΦ,x(j) can be bounded above by a linear function in j, we say

x is is linearly growing, or LG, under Φ. Finally, if gΦ,x(j) can be bounded

above by a constant function M , then we say that x has zero growth under Φ,

or is ZG. Because there are only finitely many words of length at most M , x

is ZG under Φ if and only if it is periodic under Φ.

Each of these terms can be extended to apply to automorphisms of Fn rather

than elements of Fn. In particular, if gΦ,x(j) can be bounded by a constant

for every choice of x, then we say that Φ has zero growth, or is ZG. This is

of course equivalent to Φ being a finite order map by what we said above.

Similarly, one can define what it means for Φ to be linearly growing (LG) or

more generally polynomially growing (PG). If there exists an element of the free

group that grows exponentially under Φ, then we say that Φ has exponential

growth (EG), though in general an automorphism Φ may have mixed growth,

meaning that there are elements of the free group of all different growth rates

under Φ.

We say a conjugacy class α is ZG (respectively LG, PG, EG) under an outer

automorphism φ if a cyclically reduced representative a of α is ZG (respec-

tively LG, PG, EG) under some representative Φ of φ. Lastly, we say that

φ ∈ Out(Fn) is ZG (respectively LG, PG, EG) if any (or equivalently, every)

representative of φ is ZG (respectively LG, PG, EG).

Going forward, we will focus on PG outer automorphisms, particularly when

we reach the statement of our main theorem. Much of what follows applies to

all of Out(Fn), but when it is convenient for simplicity, we will give definitions
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and background lemmas in the PG case only.

3.3 Fixed Sets

For any Φ ∈ Aut(Fn), we define Fix(Φ) to be the subgroup of elements of Fn

that are fixed by Φ. For instance, the fixed subgroup of the automorphism in

Example 3.1 is 〈a, baB〉. But we can go even further: we define Fix(∂Φ) to be

the subset of ∂Fn fixed by the homeomorphism ∂Φ induced by Φ. We say P ∈

Fix(∂Φ) is attracting for Φ or is an attractor for Φ if there is a neighborhood

V = V (P, t) of P such that ∂Φ(V ) ⊂ V and such that
∞⋂
k=1

∂Φk(V ) = {P}. A

repeller for Φ is an attractor for Φ−1. We define FixN(∂Φ) to be the subset

of Fix(∂Φ) consisting of all fixed points that are not repelling, and we define

Fix+(∂Φ) to be the set of attracting fixed points for ∂Φ. Every element of

Fix+(∂Φ) is isolated in Fix(∂Φ) [BFH04, Lemma 2.5].

3.4 Marked Graphs and Topological Representatives

While these fixed boundary points and subgroups are useful tools, throughout

much of the history of the study of Out(Fn), individual outer automorphisms

have been analyzed not directly by their action on the free group, but by

thinking of them in a more topological light. In particular, we replace Fn by

a rank n graph, and we represent the outer automorphism by a homotopy

equivalence of this graph. Of course, there are many ways to identify the

fundamental group of a graph with Fn, and this choice will impact the outer

automorphism represented.
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A graph is a one-dimensional CW complex, composed of 0-cells called vertices

which are connected by 1-cells called edges. Any connected graph has free

fundamental group, and for any finite, connected graph G, the rank of G,

rk(G), is the rank of π1(G). If rk(G) = 0 (meaning that G is contractible),

then we say that G is a tree. For example, the universal cover of any connected

graph is a tree. A forest is a disjoint union of trees.

Each edge E in G is oriented from one vertex to another. Its initial vertex is

denoted ι(E), and its terminal vertex is denoted τ(E). The same edge with the

opposite orientation is denoted Ē, though sometimes to avoid conflicting with

other notation, we will denote it by E−1. For any vertex v of G, a direction at

v is the germ of an initial segment of an oriented edge E with ι(E) = v. The

set of directions at v is denoted Tv(G).

Let Rn be the rose with n petals, meaning a graph with a single vertex v and

n edges. Assume that Fn has been identified with π1(Rn, v). A marked graph

is a pairing (G,m), where G is a rank n graph with every vertex of valence at

least two, and m : Rn → G is a homotopy equivalence. If we let b = m(v),

then m gives an identification between Fn and π1(G, b). We will often suppress

the marking map m, and say that G is a marked graph. The universal cover

G̃ of G is often called a marked tree, and we can equivalently think of the

marking as a continuous function m̃ : R̃n → G̃ that forms a commutative

diagram with m and the two covering maps. For any marked tree T and any

finitely generated subgroup A of Fn, there is a subtree TA of T that represents

A.
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Once a particular marked graph G is chosen, any homotopy equivalence f :

G → G induces an outer automorphism φ of the free group. We will say

that f represents φ. Choosing a basepoint ∗ in G and a path from ∗ to

f(∗) induces an automorphism Φ in the class φ. For every φ ∈ Out(Fn), one

can find an f representing it that maps vertices to vertices and restricts to

an immersion on any edge [BH92]. Such a homotopy equivalence is called a

topological representative. If v is a vertex of G and f(v) is a vertex w, then f

maps Tv(G) to Tw(G).

Let G̃ be the universal cover of G. A path in G̃ is a proper map σ̃ : I → G̃

with domain a (possibly infinite) closed interval I such that either: σ̃ is an

embedding, or I is finite and the image of σ̃ is a single point. In the latter case

we say that σ̃ is a trivial path. If I is finite and σ̃ : I → G̃ is any continuous

map, then σ̃ is homotopic rel endpoints to a unique (possibly trivial) path [σ̃].

We say that [σ̃] is obtained from σ̃ by tightening. A map σ̃ that satisfies [σ̃] = σ̃

is called tight. If f̃ : G̃ → G̃ is a lift of a homotopy equivalence f : G → G,

we denote [f̃(σ̃)] by f̃#(σ̃). When talking of paths, we will often suppress the

map from an interval and think of σ̃ as the image of this map.

Any path with finite domain can be expressed as a concatenation Ẽ1Ẽ2...Ẽj,

where Ẽ2, ..., Ẽj−1 are edges of G̃, and Ẽ1 and Ẽj may be edges or segments

of edges. We call Ẽ1Ẽ2...Ẽj the edge path associated to σ̃. We can extend this

notion to paths with infinite domains by allowing for infinite concatenations

of edges.

A path in G is the image of a path in G̃ under the covering map from G̃ to G.
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Equivalently, a path in G is a map σ from a closed interval to G which is an

immersion (or possibly has image a point if the interval is finite.) The notions

of tightening and edge paths associated to paths can likewise be transferred

from G̃ to G by considering images under the covering map. A circuit in G

is an immersion σ : S1 → G. For any finite graph G, the core of G is the

subgraph of G consisting of edges that are crossed by some circuit in G.

If f : G → G is a topological representative, then a path σ in G is called a

periodic Nielsen path for f if fk#(σ) = σ for some k ≥ 1. If we can take k = 1

(meaning that f#(σ) = σ), then we call σ a Nielsen path. A (periodic) Nielsen

path is indivisible if it does not decompose as a concatenation of non-trivial

(periodic) Nielsen subpaths.

The set of periodic points of f is denoted Per(f) ⊂ G; the set of fixed points

of f is denoted Fix(f). Two points x and y in Fix(f) are called Nielsen

equivalent if they are the endpoints of the Nielsen path for f , and the resulting

equivalence classes are called Nielsen classes. These fixed paths and classes

will be exceedingly important later on, as they carry information about the

fixed subgroups of the outer automorphism that f represents.

When considering such fixed paths, we may also ask about the fixed paths

of a lift f̃ : G̃ → G̃. In the universal cover, however, these fixed paths may

be infinite in length, limiting toward points in the boundary of the tree G̃,

denoted ∂G̃. As is true of automorphisms representing φ, any lift f̃ of a

topological representative induces a homeomorphism ∂f̃ : ∂G̃ → ∂G̃ [F80].

We define Fix(∂f̃) to be the subset of ∂G̃ fixed by this homeomorphism, and
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define FixN(∂f̃) to be the set of non-repelling fixed points of f̃ .

Given a choice of basepoint, the boundary of G̃ is naturally identified with ∂Fn,

where a based, tight infinite ray in G̃ is identified with the reduced infinite

word in ∂Fn that it carries under the marking map from R̃n. There is, in

addition, an identification between representatives of φ and lifts of a topological

representative f of φ such that, if Φ corresponds to f̃ , then ∂Φ and ∂f̃ are

the same homeomorphism of ∂G̃ = ∂Fn with the same fixed sets [BFH04,

Lemma 2.1][F80]. Under this identification between automorphisms and maps

of G̃, an inner automorphism ic is identified with a covering translation Tc, and

FixN(∂ic) = FixN(∂Tc) consists of two points T+
c and T−c , and the bi-infinite

edge path that connects these two points, denoted Ãc, is called the axis of c

in G̃.

3.5 Lines in the Free Group

The axis of an element of the free group is one example of a line in the free

group, meaning an object represented by a bi-infinite path in either G or G̃.

More formally, we define the space of directed lines in Fn, to be B̃ = B̃(Fn) =

∂Fn× ∂Fn, where an element (P,Q) is the line from P to Q, and (P, P ) is the

trivial line at P ∈ ∂Fn. (All other pairings are referred to as nontrivial lines.)

The point P is called the initial endpoint of the directed line (P,Q), and Q is

its terminal endpoint. For any two directed lines of the form (P,Q) and (Q,R),

their product is defined as follows: (P,Q)||(Q,R) = (P,R). This operation

endows B̃ with the structure of a groupoid. Under the operation, (Q,P ) is the
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inverse of (P,Q). With the exception of Lemma 3.3, the definitions and facts

given in this section can be found in [BFH00, Section 2.2], though there the

lines utilized are unoriented.

For any marked graph G, define B̃(G̃) to be the set of bi-infinite directed paths

in G̃ ∪ ∂G̃, called the space of directed lines in G̃. There is an identification

between B̃(Fn) and B̃(G̃) induced by the identification between ∂Fn and ∂G̃,

and so B̃(G̃) carries the same groupoid structure. On B̃(G̃), this structure

takes the following form: for any two directed lines λ and λ′ in B̃ such that

the terminal end of λ is the initial end of λ′, their product λ||λ′ is obtained

by concatenating the two lines via their common end and reducing, thereby

yielding the unique directed line which runs from the initial end of λ to the

terminal end of λ′. As before, there is a trivial line at every point of ∂G̃, and

the inverse of a directed line is the same line with the opposite direction.

There is a natural action of Fn on B̃(Fn) = B̃(G̃) induced by its action on its

own boundary. Namely, for any x ∈ Fn and (P,Q) in B̃, x(P,Q) = (xP, xQ).

If we take the quotient by this action, then we obtain the sets B(Fn) and B(G),

with an induced identification between them. We call any element of B̃(G̃) the

realization in G̃ of the corresponding element of B̃(Fn); likewise, any element

of B(G) is called the realization in G of the corresponding element of B(Fn).

Under the quotient from B̃(G̃) to B(G), every nontrivial line in B̃(G̃) has

image a bi-infinite directed path in G. By the marking on G, every such path

yields an element of B(Fn) represented by a bi-infinite string of generators and

their inverses. Any automorphism acts on such a word, and the action of an
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inner automorphism is trivial. And so, we have a natural action of Out(Fn) on

B(Fn) and (by extension) on B(G). Equivalently, this action of Out(Fn) on B

can be induced by the action of Aut(Fn) on B̃ by Φ(P,Q) = (∂Φ(P ), ∂Φ(Q)).

In this notation, we can now view the axis Ãc of c ∈ Fn from Section 3.4 as an

element of B̃(G̃) = B̃(Fn). We denote by Ac the image of Ãc in B(G) = B(Fn),

and we call it the axis of the conjugacy class of c. The axis of of a conjugacy

class is also sometimes referred to as a periodic line, and it is represented by

the bi-infinite word ...ccc....

We will now prove a line analog of Lemma 3.2. The argument will be similar.

Lemma 3.3. Let ˜̀ = (P,Q) ∈ B̃(Fn) be a lift of a non-periodic directed line

` ∈ B(Fn), and let φ ∈ Out(Fn) so that φ(`) = `. Then there is a unique

representative Φ of φ so that Φ(˜̀) = ˜̀.

Proof. If Φ is any representative of φ, then Φ must send (P,Q) to another

ordered pair of boundary points in the same equivalence class `. In other

words, Φ(P,Q) = (xP, xQ) for some x ∈ Fn. The line (xP, xQ) cannot be

equal to (P,Q) unless it is a lift of the axis of the conjugacy class of x. Because

` is non-periodic, it cannot be this axis, and so i−1
x Φ is the only representative

of φ whose induced map of B̃(Fn) will fix ˜̀.

The space B̃(G̃) can be topologized in the following way: for any finite path α̃

in G̃, define the neighborhood of α̃, N(α̃), to be the subset of B̃(G̃) consisting of

all lines that contain α̃. The collection of neighborhoods N(α̃), with α̃ ranging
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over all finite paths in G̃, forms a basis for a topology. We use the natural

quotient map from B̃(G̃) to B(G) to define the quotient topology on B(G),

and we extend the topologies to B̃(Fn) and B(Fn) via their identifications

with B̃(G̃) and B(G). The induced actions of Aut(Fn) on B̃(Fn) and Out(Fn)

on B(Fn) are by homeomorphisms. Any closed subset Λ of B(Fn) = B(G)

is called a lamination. This name is also applied to any closed Fn-invariant

subset of B̃(F̃n) = B̃(G̃).

For any subset Y of ∂Fn, define the set of lines carried by Y , B̃(Y ), to be the

subset of B̃(Fn) consisting of all directed lines both of whose endpoints are in

Y . This subset is equal to the product Y × Y . We say a subgroup A of Fn is

root closed if, whenever a ∈ A and b = aj for some j ∈ Z, b is in A as well. For

any root closed subgroup A of Fn, define the set of lines carried by A, B̃(A),

to be B̃(∂A), where ∂A ⊂ ∂Fn is the boundary of A.

Finally, For [A] the conjugacy class of a root closed subgroup of Fn, define

the set of lifted lines carried by [A], B̃([A]), to be the subset of B̃(Fn) given

by taking the union of the sets B̃(A′) as A′ ranges over representatives of [A],

and let B([A]) (called the set of lines carried by [A]) be their image under the

quotient from B̃ to B.

3.6 Principal Representatives

It is clear from the definition of Out(Fn) that every outer automorphism has

infinitely many choices of representative automorphism, just as any topological

representative has infinitely many possible lifts. We will restrict to a special set
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of representatives that will be distinguished by the size of their fixed sets. We

say that Φ representing φ is a principal representative if FixN(∂Φ) contains

at least three points, or if it contains two points that are not the endpoints of

the axis of some element of Fn.1 The set of all principal representatives of φ is

denoted P (φ). Any lift of a topological representative that corresponds to an

element of P (φ) is called a principal lift.

Intuitively, in choosing principal representatives, we select the automorphisms

with the largest fixed sets, so as to rule out those that do not carry much

information about the outer automorphism. To see why this is necessary,

consider the following two automorphisms of F2.

Φ1 : a 7→ a b 7→ b Φ2 : a 7→ baB b 7→ babAB

The automorphism Φ2 is the conjugation iba, and so both Φ1 and Φ2 represent

the identity in Out(F2). However, while Φ1 fixes every element of F2, Φ2

fixes only the subgroup generated by ba. Which of these is a more accurate

description of the identity outer automorphism: that it fixes a small subgroup,

or that it fixes everything? The map Φ1 carries more information about the

identity, and so we say Φ1 is principal, while Φ2 is not.

Given two representatives Φ and Φ′ of an outer automorphism φ, we say they

are isogredient if there is some x ∈ Fn so that Φ = ixΦ
′i−1
x . Isogredience

1In [FH11], the definition of principal is slightly different; it also rules out possibility that
the two points are the endpoints of a certain line associated to an EG outer automorphism.
As we will be restricting our attention to PG maps for the main results of this paper, I have
left out this case for simplicity.
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defines an equivalence relation on representatives of φ. In the language of

marked graphs, if f : G → G is a topological representative of φ, we say

that lifts f̃ and f̃ ′ are isogredient if f̃ = Txf̃
′T−1
x for some x. Isogredient

lifts correspond to isogredient automorphisms, and the equivalence classes of

either automorphisms or lifts are called isogredience classes. It is easy to see

that, for any Φ and Φ′ in the same isogredience class, Fix(Φ′) = ixFix(Φ)

and FixN(∂Φ′) = ∂ixFixN(∂Φ), where ix is the inner automorphism that

conjugates Φ′ to Φ, and likewise for isogredient lifts of f . This also shows that

the elements of an isogredience class are either all principal or all non-principal.

When f is a particular kind of topological representative of φ called a relative

train track map (defined in Section 3.10), the isogredience classes of principal

lifts of f (and by extension principal representatives of φ) are in one-to-one

correspondence with the Nielsen classes of f . And, as there can only be finitely

many such Nielsen classes, it follows that there are only finitely many isogre-

dience classes of principal representatives of any φ ∈ Out(Fn). This fact is

shown in Lemma 3.8, Remark 3.9, and Corollary 3.17 of [FH11], and it implies

that, for any φ ∈ Out(Fn), the set of all FixN ’s of its principal representatives

is finite when considered up to conjugacy.

3.7 Linear Growth

At this point, it might be helpful to discuss how some of the definitions given

above can be simplified in the case that φ is of at most linear growth (LG). For

example, LG maps have no isolated fixed points [CL99, Corollary 7.7], and so,
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by the remark at the end of Section 3.3, if φ is LG, then for any Φ representing

φ, FixN(∂Φ) = ∂Fix(Φ), where ∂Fix(Φ) is the boundary of Fix(Φ) as a

subset of ∂Fn. This means that, in defining principal representatives of LG

outer automorphisms, we can ignore the case that |FixN(∂Φ)| = 2 and those

two points are not the endpoints of an axis. Every point in ∂Fix(Φ) is the

endpoint of some axis, and so, if |∂Fix(Φ)| = 2, then those two points are

necessarily the endpoints of the axis of the element generating this rank one

subgroup. Therefore, in the case that φ is LG, we may define a principal

representative of φ to be any Φ so that the rank of Fix(Φ) is at least two.

We are nearing the point where we can state Feighn and Handel’s recognition

theorem for Out(Fn). First, we need to describe one more aspect of linear

growth: twisting. We say that a root-free conjugacy class α in Fn is an axis

for φ ∈ Out(Fn) if there is a Φ ∈ P (φ) and an element a in α such that

a ∈ Fix(Φ) and ijaΦ ∈ P (φ) for some j ∈ Z. The number j is referred to as

the twist coefficient of the ordered pair (Φ, ijaΦ) with respect to a. Intuitively, a

is the element of Fn by which Φ performs a “twist” that gives it linear growth.

This can be seen clearly by returning to Example 3.1.

Example 3.4.

Φ : a 7→ a b 7→ ba iaΦ : a 7→ a b 7→ ab

Both Φ and iaΦ are principal for the outer automorphism φ that they represent.

The conjugacy class of the element a is an axis for φ, and we can see that the

element b grows linearly under either map by “twisting” in a. If instead we
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looked at the outer automorphism φ2 represented by Φ2, then iaΦ
2 is not

principal for φ2; instead, i2aΦ
2 is; the twist coefficient with respect to a is two,

as can be seen in Example 3.5.

Example 3.5.

Φ2 : a 7→ a b 7→ ba2 iaΦ
2 : a 7→ a b 7→ aba i2aΦ

2 : a 7→ a b 7→ a2b

The use of the word “twisting” here has its origins in the world of the map-

ping class group of a surface S, where the homeomorphisms that induce linear

growth on word lengths in the fundamental group are roots of Dehn multitwists

on S. This analogy can be further visualized and understood through the fol-

lowing surface example. Note that, because the surface depicted has nontrivial

boundary, the homeomorphisms described induce elements of Out(Fn).

Example 3.6.

Figure 2: A Linear Growth Mapping Class

Let Dα be the homeomorphism of S given by performing a Dehn Twist in the

curve α. (This means to cut an annular neighborhood of α out of S and glue it

back with a 360 degree twist at one end.) If we choose as basepoint the point

marked in the right half of S in Figure 2, Dα determines an automorphism ∆α
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of π1(S) = F4 that is the identity on the subgroup of F4 represented by the

right half of S and is a conjugation by a on the subgroup of F4 represented

by left half of S (where a is the element of F4 represented by the curve based

at the chosen basepoint in the homotopy class of α.) This automorphism is

principal for the outer automorphism it represents, as it fixes the rank two

fundamental group of the right side of S. A representative given by placing

the basepoint on the left side of S is also principal, and the automorphism

of π1(S) it induces is equal to i−1
a ∆α. The curve α that defines the twisting

(or equivalently the conjugacy class in Fn that it represents) is an axis for the

element δα of Out(F4) represented by both ∆α and i−1
a ∆α.

A fuller exploration of LG outer automorphisms from the perspective of graphs

of groups is available in [CL95], [CL99], and [KLV01]. In those papers, every

axis of φ is an edge stabilizer in a graph of groups decomposition of Fn cor-

responding to φ. As we’ll see shortly, these axes go on a short list of very

important invariants that uniquely determine a PG outer automorphism of

the free group.

3.8 The Forward Rotationless Recognition Theorem

The recognition theorem of Feighn and Handel applies only to forward rota-

tionless outer automorphisms, those with no periodic behavior. More pre-

cisely, we say φ ∈ Out(Fn) is forward rotationless if, for all k > 0 and for all

Φ ∈ P (φ), the map that sends Φ to Φk defines a bijection bk between P (φ)

and P (φk) such that FixN(∂bk(Φ)) = FixN(∂Φ). This requirement on FixN

shows that all periodic elements of Φ are in fact fixed. We are now able to
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state the forward rotationless version of recognition theorem in the PG case.

Theorem. [FH11] Let φ, ψ ∈ Out(Fn) be forward rotationless and PG. If

there exists a bijection B : P (φ)→ P (ψ) such that:

(a) FixN(∂Φ) = FixN(∂B(Φ))

(b) If w ∈ Fix(Φ) and Φ, iwΦ ∈ P (φ), then B(iwΦ) = iwB(Φ).

Then φ = ψ.

Note that the colloquial version of this theorem might be, “If φ and ψ have

the same fixed sets, axes, and twist coefficients, then they are equal,” as those

are the rough statements contained in hypotheses (a) and (b), given in terms

of principal automorphisms representing φ and ψ.

Instead of working with individual representatives of φ and ψ, one might try to

speak in more global terms. As was explained in Section 3.6, for any Φ1,Φ2 ∈

P (φ) that are isogredient, Fix(Φ1) and Fix(Φ2) are conjugate subgroups of

Fn. And so, if we consider set of the conjugacy classes of the fixed subgroups

of principal representatives of φ, this is a finite set. We call the disjoint union

of this set Fix(φ). However, as the recognition theorem shows, conjugacy

classes of fixed subgroups are not enough. When higher-than-linear polynomial

growth occurs, we must include attracting fixed points on the boundary.

Let X be a subset of ∂Fn which is invariant under the action of some subgroup

H of Fn; X is called an H-subset. The pairing (H,X) is considered conjugate

to another such pairing (H ′, X ′) if there is an element a ∈ Fn so that H ′ = Ha
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and X ′ = aX. The conjugacy class of (H,X) is defined to be
⋃
a∈Fn

(Ha, aX)

and is denoted [H,X]. The following lemma allows us to to think of the fixed

set of an automorphism of the free group in this notation.

Lemma 3.7. For any Φ ∈ Aut(Fn), FixN(∂Φ) and Fix+(∂Φ) are both Fix(Φ)-

subsets of ∂Fn.

Proof. Let P ∈ ∂Fn be an element of FixN(∂Φ), and let w ∈ Fn be in Fix(Φ).

Then ∂Φ(wP ) = Φ(w)∂Φ(P ) = wP , meaning that wP is in Fix(∂Φ).

Assume that P is an attractor for Φ. By the definition in Section 3.3, this

means there is a neighborhood V of P such that ∂Φ(V ) ⊂ V and
∞⋂
k=1

∂Φk(V ) =

{P}. And so

∂Φ(wV ) = Φ(w)∂Φ(V ) = w∂Φ(V ) ⊂ wV,

and

∞⋂
k=1

∂Φk(wV ) =
∞⋂
k=1

Φk(w)∂Φk(V ) =
∞⋂
k=1

w∂Φk(V ) = w
∞⋂
k=1

∂Φk(V ) = {wP}.

In other words, wP is an attractor for Φ with attracting neighborhood wV . If

we instead assume that P is a repeller for Φ, then the same argument above

with Φ−1 in place of Φ shows that wP is a repeller for Φ. This shows the

invariance under Fix(Φ) of both FixN(∂Φ) and Fix+(∂Φ).

With this in mind, for any Φ ∈ Aut(Fn), consider the conjugacy class

[Fix(Φ), F ixN(∂Φ)] of the pair (Fix(Φ), F ixN(Φ)), and for any forward rota-

tionless φ ∈ Out(Fn), define FixN(φ) to be the disjoint union of the pairings
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[Fix(Φ), F ixN(Φ)] as Φ ranges over all principal representatives of φ. Be-

cause we are only considering pairings up to conjugacy, this is a finite union.

Similarly, define the set of eigenrays for Φ, R̃(Φ), to be the conjugacy class

[Fix(Φ), F ix+(∂Φ)] of the pair (Fix(Φ), F ix+(Φ)), and define the set of eigen-

rays for φ to be the disjoint union of these sets over P (φ).

To prove their forward rotationless recognition theorem, Feighn and Han-

del made use of certain topological representatives of outer automorphisms

with added structure. These representatives, called relative train tracks, have

played a crucial role in the proofs of many important results in the study of

Out(Fn). We will also require them to prove of the main results in this thesis.

3.9 Free Factor Systems and Filtrations

We say that a subgroup F < Fn is a free factor if there is another subgroup

F ′ so that Fn is equal to the free product of F and F ′. A subgroup system

is a collection S = {[A1], ..., [Aj]} of the conjugacy classes of finitely many

nontrivial, finite rank, root-free subgroups of Fn. If there are subgroups A′i

representing [Ai] so that every A′i and their free product A′1 ∗ ... ∗ A′j are free

factors, then we call S a free factor system. We will often denote a free factor

system by F . A good reference for free factor systems is [BFH00, Section 2.6],

and many of the definitions we quote below can be found in that section.

For [F ] the conjugacy class of a free factor F , the conjugacy class [x] of x ∈ Fn

is carried by [F ] if F contains a representative of [x]. We will sometimes abuse

notation and say that x is carried by F . We say that an abstract directed line
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` ∈ B(Fn) is carried by [F ] if it is a limit of axes of conjugacy classes carried

by [F ].

If G is a marked graph and GF is a connected subgraph of G so that [π1(GF )] =

[F ], then a conjugacy class [x] is carried by [F ] if and only if the circuit

representing [x] in G is contained in GF . We can equivalently say ` is carried

by [F ] if its realization in G is contained in such a GF . When such a GF is

chosen for every free factor in F in the same graph G, we call their disjoint

union GF . We say GF is a realization of F in G. Finally, if F = {[F 1], ..., [F j]}

is a free factor system and W is a collection of abstract directed lines and

conjugacy classes of elements, then we say W is carried by F if every element

of W is carried by some [F i].

Following the notation of Section 3.5, for S a subgroup system in Fn, define

the set of lifted lines carried by S, B̃(S), to be the disjoint union of the sets

B̃([A]) as [A] ranges over the conjugacy classes of subgroups in S, and define

the set of lines carried by S, B(S), to be the disjoint union of the B([A])’s.

Note that the subgroup system in question may be a free factor system.

For free factors F 1 and F 2, we say [F 1] @ [F 2] if F 1 is conjugate to a free

factor of F 2. And for free factor systems F1 and F2, we say F1 @ F2 if for

every [F i] ∈ F1 there exists [F j] ∈ F2 so that [F i] @ [F j]. This defines a

partial order on the set of all free factor systems in Fn. The complexity of

a free factor system F = {[F 1], ..., [F j]}, is defined to be the non-increasing

sequence of numbers given by cx(F) = rank(F 1), ..., rank(F j) after possibly

reordering the F i’s. By Grushko’s Theorem [G40], the sum of the numbers in
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the complexity of any free factor system is less than or equal to n, the rank

of the ambient free group, and so there are only finitely many such possible

complexities for a fixed n. We can order these complexities lexicographically,

meaning that, for example, 7, 6 > 3, 3, 3, 2 > 2 > 1, 1. Each number in the

complexity of a free factor system is called a digit.

It is clear from the definitions that F1 @ F2 implies cx(F1) ≤ cx(F2). We call

F2 a one edge extension of F1 if one of the following two situations occurs:

• F1 and F2 contain the same number of free factors, one digit of cx(F2)

is one more than the corresponding digit of cx(F1), and all other digits

are equal.

• F2 has one fewer free factor than F1, one digit of cx(F2) is equal to the

sum of two digits of cx(F1), and all other digits of cx(F2) are the same

as the other digits of cx(F1).

Equivalently, F2 is a one edge extension of F1 if G1 and G2 are core subgraphs

of a marked graph G realizing F1 and F2 and if F2 is equal to the union of

F1 with a single edge or the concatenation of edges in which every vertex of

G2 − G1 is valence two in G2. We also sometimes say that G2 is a one edge

extension of G1.

Lemma 3.8. If S is a subgroup system and Λ is a lamination that contains

every periodic line in B(S), then Λ contains B(S).

Proof. Let ` ∈ B(S). By definition, B(S) is equal to the disjoint union of the

sets B([A]) for [A] the conjugacy class of a subgroup in S, and so ` is in B([A])
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for some [A] ∈ S. Let A′ be a subgroup representing [A], and choose a basis for

A′ denoted by the letters a, b, c and so on up to the rank of A′. Then ` can be

represented by a reduced bi-infinite word . . . a−3a−2a−1a0a1a2a3 . . ., where each

ai is a basis element or the inverse of a basis element. Consider the sequence

of bi-infinite words `j = . . . (a−j...a0...aj)(a−j...a0...aj)(a−j...a0...aj) . . . If each

of these bi-infinite words is reduced (meaning that a−j is never equal to a−1
j ),

then `j represents a sequence of periodic elements of B([A]) ⊂ B(S) whose

limit is `, and as Λ is closed by definition, it must therefore contain `, and we

are done.

If there is at least one j so that a−j = a−1
j , but if there exists a subsequence `ji

of `j so that a−ji never equals aji , then again we are done because ` is the limit

of this subsequence of periodic lines. If there does not exist such a subsequence,

then there is some J > 0 such that for all j ≥ J , a−j = a−1
j . In this case, we de-

fine `′j to be the sequence of bi-infinite words . . . a′ja
′
ja
′
j(a−j...a0...aj)a

′
ja
′
ja
′
j . . .,

where a′j = b if aj = a or a−1, and a′j = a otherwise. The lines `′j are reduced

by construction; they therefore represent elements of B(S), and their limit as

j goes to infinity is `.

To finish the proof, we need only check that each `′j can be approximated by

a periodic lines in B([A]). The sequence of periodic lines represented by the

reduced bi-infinite words

`j,k = . . . ((a′j)
ka−j...a0...aj(a

′
j)
k)((a′j)

ka−j...a0...aj(a
′
j)
k)((a′j)

ka−j...a0...aj(a
′
j)
k) . . .
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gives this approximation. Their limit as k goes to infinity is `′j.

Lemma 3.9. If S is a subgroup system, then B(S) is a lamination.

Proof. Let [A] be one of the conjugacy classes of nontrivial, finite rank, root

free subgroups in S. Let ` be a line in the closure B([A]) of B([A]), the space

of lines carried by [A]. Then there is a sequence of lines `k ∈ B([A]) so that

the limit as i goes to infinity of `i is `. Let G be a marked graph, and think

of ` and `k as elements of B(G).

Let ˜̀ be a lift of ` to G̃. Then we may choose lifts ˜̀
k of the `k that converge to

˜̀ and that are contained in the subtree TA of G̃ determined by some subgroup

A′ in [A]. Assume for the purposes of this proof that G̃ has been given a metric

where each edge is assigned length one. Then by the definition of convergence

in B̃(G̃), for every M there exists a K so that for all k ≥ K, ˜̀
k and ˜̀ share

a common segment of length at least M . Therefore, arbitrarily long segments

of ˜̀ are contained in TA, and so ˜̀ is contained in TA as well. This means that

` is contained in B([A]), and so B([A]) is closed as a subset of B(G) = B(Fn).

The set B(S) is the finite union of the sets B([A]) for [A] ∈ S and so is closed

itself. Therefore, by definition, B(S) is a lamination.

Suppose that G is a marked graph and that f : G→ G is a homotopy equiv-

alence representing φ ∈ Out(Fn). A filtration of G is an increasing sequence

∅ = G0 ⊂ G1 ⊂ ... ⊂ GN = G of subgraphs, each of whose components con-

tains at least one edge. If f(Gi) ⊂ Gi for all i then we say that f : G → G
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respects the filtration or that the filtration is f -invariant. A path or circuit

has height r if it is contained in Gr but not Gr−1. A lamination has height

r if each directed line in its realization in G has height at most r and some

directed line has height r.

The rth stratum Hr is defined to be the closure of Gr−Gr−1. To each stratum

Hr there is an associated square matrixMr, called the transition matrix for Hr,

whose ijth entry is the number of times that the ith edge (in some ordering

of the edges of Hr) crosses the jth edge in either direction. By enlarging

the filtration, we may assume that each Mr is either irreducible or the zero

matrix. A filtration with this property is called maximal. We say that Hr is

an irreducible stratum if Mr is irreducible and is a zero stratum if Mr is the

zero matrix.

There is a transition matrix associated to any topological representative of a

graph f : G → G defined similarly to the transition matrix of a stratum in

a filtration of G. Namely, put some ordering on all of the edges of G, and

set the ijth entry mij of the matrix Mf to be the number of times that the

ith edge of G crosses the jth edge in either direction. This matrix induces a

unique maximal filtration of G associated to f by reordering the edges of G

so that an edge e precedes an edge e′ whenever there is a sequence of edges

e = e0, e1, ..., eK = e′ such that mi,i+1 is non-zero. This filtration is f -invariant,

and full details of its construction can be found in [BH92, Section 5].

In the case that φ ∈ Out(Fn) represented by f is PG, by subdividing edges or

splitting filtration elements in two, we may assume that each stratumHr in this
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maximal filtration is a cycle of edges E1, ..., Eq satisfying that f(Ei) = Ei+1ui

for all i, where ui ⊂ Gr−1 and where indices are taken mod q [FH11, Section

2.6].

Recall that every connected subgraph C of a marked graph G represents the

conjugacy class of the free factor that is C’s fundamental group, and that

a disconnected subgraph of G represents the free factor system composed of

the fundamental groups of each of its connected components. In particular, if

∅ = G0 ⊂ G1 ⊂ ... ⊂ GN = G is a filtration of G, then each Gr represents a

free factor system F(Gr), and if f : G → G is a topological representative of

φ that respects the filtration, then φ leaves each F(Gr) invariant. We say the

nested sequence of free factor systems C = F(G0) @ F(G1) @ ... @ F(GN) is

realized by the filtration of G.

3.10 Relative Train Track Maps

In [BH92], Bestvina and Handel defined special topological representatives

called train track maps for irreducible outer automorphisms, a special class

of maps that are either finite order or EG. They also developed relative train

track maps to handle outer automorphisms that leave invariant certain free

factors, possibly mixing some EG and lower growth behavior. However, as

we are currently only working with PG outer automorphisms, the definition

of a relative train track simplifies considerably, and this is the definition I’ll

give here. For φ ∈ Out(Fn) of at most polynomial growth, a relative train

track map is a topological representative f : G→ G of a marked graph where
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the induced maximal filtration corresponding to f satisfies that the transition

matrix of every stratum is an irreducible matrix. Every definition that follows

in this section will assume that φ ∈ Out(Fn) is PG, and many of them are

significantly more complicated in their most general form.

In [FH11], Feighn and Handel prove the following theorem that gives relative

train tracks even more structure.

Theorem 3.10. [Theorem 2.19 of [FH11]] For every φ ∈ Out(Fn) there is a

relative train track map f : G→ G and filtration that represents φ and satisfies

the following properties.

(V) The endpoints of all indivisible periodic Nielsen paths are vertices.

(P) If a stratum Hm ⊂ Per(f) is a forest then there exists a filtration element

Gj such F(Gj) 6= F(Gl ∪Hm) for any Gl.

(NEG) The terminal endpoint of an edge in a non-periodic stratum Hi is periodic

and is contained in a filtration element of height less than i that is its

own core.

(F) The core of each filtration element is a filtration element.

(FFS) If C is a nested sequence of non-trivial φ-invariant free factor systems

then we may choose f : G→ G to realize C.

When working with forward rotationless outer automorphisms, one can modify

these homotopy equivalences further still. We say that x ∈ Per(f) is principal

if x is not contained in a component C of Per(f) that is topologically a circle
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where each point in C has exactly two periodic directions. Lifts to G̃ of

principal periodic points in G are also said to be principal. If each principal

vertex and each periodic direction at a principal vertex has period one then

we say that f : G→ G is rotationless.

Recall from the end of Section 3.9 that we may assume every stratum Hr

takes the form {E1, ..., Eq}, where f(Ei) = Ei+1ui for some ui ⊂ Gr−1. The

initial endpoint of each Ei is a principal periodic point for f , and so, if f is

rotationless, then we may assume each stratum Hr is a single edge E with

f(E) = Eu for u ⊂ Gr−1 [FH11, Section 3.3].

The following statement from [FH11] gives the correspondence between for-

ward rotationless outer automorphisms and rotationless relative train track

maps.

Proposition 3.11. [Proposition 3.29 of [FH11]] Suppose that f : G → G

represents φ and satisfies the conclusions of Theorem 3.10. Then f : G → G

is rotationless if and only φ is forward rotationless.

But we can modify f even further to our advantage. We need only a few more

definitions to describe a special kind of train track known as a CT.

If Ei and Ej are linear edges and if there are mi,mj > 0 and a closed root-free

Nielsen path w such that f(Ei) = Eiw
mi and f(Ej) = Ejw

mj , then a path of

the form Eiw
pĒj with p ∈ Z is called an exceptional path.

A filtration ∅ = G0 ⊂ G1 ⊂ ... ⊂ GN = G is said to be reduced (with respect

to φ) if, whenever a free factor system F ′ is φk-invariant for some k > 0 and
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F(Gr−1) @ F ′ @ F(Gr), it follows that either F ′ = F(Gr−1) or F ′ = F(Gr).

Roughly, this tells us that the filtration encodes every φk-invariant free factor

system for all k.

A non-trivial path or circuit σ in G is completely split if it has a splitting,

called a complete splitting, into subpaths, each of which is a single edge in an

irreducible stratum, an indivisible Nielsen path, or an exceptional path. A

relative train track map is completely split if f(E) is completely split for each

edge E in each irreducible stratum.

Definition 3.12. A relative train track map f : G → G and filtration ∅ =

G0 ⊂ G1 ⊂ ... ⊂ GN = G is said to be a CT (for completely split improved

relative train track map) if it satisfies the following properties.

1. (Rotationless) f : G→ G is rotationless.

2. (Completely Split) f : G→ G is completely split.

3. (Filtration) The filtration is reduced. The core of each filtration ele-

ment is a filtration element.

4. (Vertices) The endpoints of all indivisible periodic (necessarily fixed)

Nielsen paths are (necessarily principal) vertices. The terminal endpoint

of each non-fixed edge is principal (and hence fixed).

5. (Periodic Edges) Each periodic edge is fixed and each endpoint of a

fixed edge is principal. If the unique edge Er in a fixed stratum Hr is

not a loop then Gr−1 is a core graph and both ends of Er are contained

in Gr−1.
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6. (Zero Strata) There are no zero strata.

7. (Linear Edges) For each linear Ei there is a closed root-free Nielsen

path wi such that f(Ei) = Eiw
di
i for some di 6= 0. If Ei and Ej are

distinct linear edges with the same axes then wi = wj and di 6= dj.

8. (Indivisible Nielsen Paths) For every indivisible Nielsen path σ, there

is a linear edge Ei with wi as in (Linear Edges) and there exists k 6= 0

such that σ = Eiw
k
i Ēi.

For an edge Ei as in (Linear Edges), we call the conjugacy class [wi] represented

by the Nielsen path wi the axis of Ei.

Theorem 3.13. [Theorem 4.29 of [FH11]] Suppose that φ ∈ Out(Fn) is for-

ward rotationless and that F = {F1,F2, ...,F t} is a nested sequence of φ-

invariant free factor systems. Then φ is represented by a CT f : G→ G with

a filtration that realizes F .

Some important properties follow directly from the definition of a CT, for

example the following result of Feighn and Handel.

Lemma 3.14. [Lemma 4.37 of [FH11]] Assume that f : G→ G is a CT. The

following properties hold for every principal lift f̃ : G̃→ G̃.

1. If ṽ ∈ Fix(f̃) and a non-fixed edge Ẽ determines a fixed direction at

ṽ, then Ẽ ⊂ f̃#(Ẽ) ⊂ f̃ 2
#(Ẽ) ⊂ . . . is an increasing sequence of paths

whose union is a ray R̃ that converges to some P ∈ FixN(∂f̃) and whose

interior is fixed point free.
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2. For every isolated P ∈ FixN(∂f̃) there exists Ẽ and R̃ as in (1) that

converges to P . The edge E is non-linear.

For f : G → G a CT representing φ, set K0 = K0(f) to be the subgraph of

G consisting of all fixed and linear growth edges. We say an edge E of G is a

growing edge if it is not contained in K0. Let Ef be the set of all growing edges

of G. Then Lemma 3.14 sets up a correspondence between growing edges for

f and eigenrays for φ.

We can define a partial order on Ef by E < F if E is an term of the complete

splitting of fN(E) for some N ≥ 0. This in turn induces a partial order on

R(φ). Extend these partial orders to total orders so that R(φ) = {ρ1, ..., ρt}

and Ef = {E1, ..., Et}, where each set is listed in increasing order and ρi

corresponds to Ei.

Set Kj = Kj(f) = K0(f)∪
j⋃
i=1

Ej. Then the (possibly disconnected) subgraphs

Kj determine free factor systems F j = F(Kj). It is clear from the definition

that F j @ F j′ if j ≤ j′. We call F0 @ F1 @ ... @ F t = Fn the sequence of free

factor systems determined by φ,G, and the total order on Ef , and sometimes

we write the sequence as F = {F1, ...,F t}. The choice of how to obtain a

total order from the partial order on Ef is a finite one. If we take the union of

the sets F over all possible choices of finite order, we get the partially ordered

hierarchy of free factor systems associated to φ and G.

Note 1. If we let F0(φ) equal the smallest free factor system that carries

every conjugacy class that grows at most linearly under φ, then for any CT

f : G → G representing φ, F(K0(f)) = F0(φ), as by definition every edge of
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K0 grows at most linearly under f (and so does every circuit in K0), and, in

the other direction, every conjugacy class carried by F0(φ) can be represented

by a circuit in K0(f).

3.11 Stallings Graphs

In [S83], Stallings gave an algorithm that, for any subgroup H of Fn, provides

a core graph Γ(H) carrying a marking by H. This graph is called the Stallings

graph of H. The Stallings graph represents the conjugacy class of H, and

choosing a basepoint gives a representative subgroup in that conjugacy class.

Given any automorphism Φ of Fn, the Stallings graph of Fix(Φ) could be a

useful topological stand-in for the conjugacy class of this fixed subgroup, an

algebraic invariant. However, Γ(Fix(Φ)) does not keep track of the isolated

fixed points of ∂Φ in ∂Fn, points that were essential in the forward rotationless

recognition theorem. And so, we will need a more general notion of Stallings

graphs.

Definition 3.15. Following the notation of Section 3.8, (H,X) is a pairing

of a subgroup H of Fn and a subset X of ∂Fn that is H-invariant, and [H,X]

is the conjugacy class of (H,X). Let G be any marked graph and define

the Stallings graph of [H,X] with respect to G to be the graph ΓG([H,X])

obtained as follows: let Ḡ be G̃ compactified by adding its set of ends. The

graph ΓG([H,X]) is equal to the quotient by the action of H of the convex

hull of X in Ḡ.

As the convex hull of X is the union of X with a subtree of G̃, it follows that
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ΓG([H,X]) is the union of a subgraph of the cover Ĝ of G corresponding to H

with a set of boundary points of Ĝ. In particular, the core of the Stallings graph

core(ΓG([H,X])) has fundamental group H, and we can think of ΓG([H,X])

as the core of Ĝ union any infinite embedded rays that limit toward isolated

points of X mod H. These isolated points make up what we call the boundary

of ΓG([H,X]).

Let Φ in Aut(Fn) be a representative of a forward rotationless φ, and let

f : G → G be any CT representing φ. Then we define the Stallings graph of

Φ with respect to G to be ΓG(Φ) = ΓG([Fix(Φ), F ixN(∂Φ)]).

Lemma 3.16. If Φ1 and Φ2 are isogredient representatives of a forward rota-

tionless map φ, then ΓG(Φ1) and ΓG(Φ2) are isomorphic as marked graphs.

Proof. Suppose Φ2 = ixΦ1ı−1
x for x ∈ Fn. Then Fix(Φ2) = ix(Fix(Φ1)) and

FixN(∂Φ2) = ∂ix(FixN(∂Φ1)). Therefore [Fix(Φ2), F ixN(∂Φ2)] =

[Fix(Φ1), F ixN(∂Φ1)], and so ΓG(Φ1) = ΓG(Φ2)

As is explained in Section 3.6, any outer automorphism φ has only finitely

many isogredience classes of principal representatives, and so there are only

finitely many such Stallings graphs associated to P (φ).

Definition 3.17. The Stallings graph of φ with respect to G, ΓG(φ) is the

disjoint union of ΓG(Φ) as Φ ranges over P (φ). The boundary of the Stallings

graph, ∂ΓG(φ), is the disjoint union of the boundaries of the ΓG(Φ).
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The following lemmas describe what the Stallings graph of a forward rotation-

less PG outer automorphism looks like. We know from the definition that each

component C of ΓG(φ) corresponds to the fixed sets of one isogredience class of

principal representatives of φ (or equivalently, to Nielsen classes of fixed points

of f). We will now discuss the different pieces that can occur in one of those

components by examining the roles played by the growing and non-growing

edges of G.

Lemma 3.18. 1. Every point of the boundary of ΓG(φ) corresponds to an

eigenray for φ.

2. For every growing edge E ∈ Ef , the component CE of ΓG(φ) correspond-

ing to the Nielsen class ι(E) contains lift Ê that is the initial endpoint

of a ray R̂E toward the boundary of CE in which every vertex but ι(Ê)

is valence two in ΓG(φ). There are lifts Ẽ of E and R̃E of R̂E and a

principal lift f̃ of f to G̃ so that R̃E is obtained as the union of the

increasing sequence of paths Ẽ ⊂ f̃#(Ẽ) ⊂ f̃ 2
#(Ẽ) ⊂ . . .

3. For every point P̂ in the boundary of ΓG(φ), there is a growing edge E

as in (2) so that P̂ is the endpoint of the corresponding ray R̂E.

Proof. To prove (1), recall that any component C of ΓG(φ) corresponds to an

isogredience class of a principal representative Φ of φ by definition. The bound-

ary points of C are the images under the quotient by the action of Fix(Φ) of

points in FixN(∂Φ) that are not in ∂Fix(Φ). Because FixN(∂Φ) contains

only elements of ∂Fix(Φ) and isolated attractors, it follows that the bound-
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ary points of C must be the images of isolated attractors, which naturally

correspond to eigenrays for φ.

Statements (2) and (3) are just the translations to Stallings graph language of

the statements in Lemma 3.14.

Lemma 3.19. Every loop in core(ΓG(φ)) is a lift of a closed Nielsen path for

p. Moreover, if γ is a circuit in G composed of fixed edges, then the component

Cγ of ΓG(φ) corresponding to the Nielsen class of γ contains a circuit γ̂ that

is a lift of γ.

Proof. By definition, the core of each component of a Stallings graph has fun-

damental group the conjugacy class [Fix(Φ)] for some principal representative

Φ of φ. Every conjugacy class [x] carried by [Fix(Φ)] is fixed by φ, and so is

realized in G by a closed Nielsen path of f .

If γ is composed of fixed edges, then it represents a conjugacy class carried

by the subgroup system Fix(φ), and that conjugacy class is represented by a

circuit in ΓG(φ).

Lemma 3.20. Every edge in core(ΓG(φ)) is a lift of an edge that grows at

most linearly under p.

Proof. Let E be an edge of G that does not grow at most linearly under f .

In other words, E ∈ Ef . Item (Indivisible Nielsen Paths) of the definition of a

CT states that any indivisible Nielsen path of f takes the form σ = Eiw
k
i Ēi,
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where Ei is a linear edge, and [wi] is the axis of Ei. Thus, E cannot be an edge

in an indivisible Nielsen path. And as E is not fixed pointwise, it cannot be an

edge in a divisible Nielsen path. Therefore, by Lemma 3.19, no lift of E can be

contained core(ΓG(φ)). The lemma is the contrapositive of this statement.

Recall item (Linear Edges) of the definition of a CT: for every linear edge Ei

there is a closed root-free Nielsen path wi so that f(Ei) = Eiw
di
i for some

di 6= 0. Note that, because of this property, the initial vertex of Ei is always

fixed by f .

Lemma 3.21. For Ei a linear edge of G, the component Ci corresponding to

the Nielsen class of ι(Ei) contains a lift Êi of Ei with a closed lift ŵi of wi at

its terminal endpoint.

Proof. If f(Ei) = Eiw
di
i , then the edge path EiwiĒi is an indivisible Nielsen

path for f , and any automorphism Φ in the isogredience class corresponding

to the Nielsen class of ι(E) will fix the element of Fn represented by EiwiĒi

up to conjugacy. Therefore, there must be a path ÊiŵiÊi
−1

in Ci based at a

lift ˆι(Ei) of ι(Ei), exactly as described.

The union of Êi and ŵi is referred to as a lollipop.

Because of the above lemmas, given any CT G, we can construct the Stallings

graph with respect to G by gluing together closed lifts of circuits composed of

fixed edges, lollipops coming from linear edges, and infinite rays corresponding

to growing edges. We will see this in action in the examples of Section 4.
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4 Guesses and Counterexamples

In trying to find a recognition theorem for general PG outer automorphisms,

the following fact is a good starting point: for any n, there is a universal K

such that, for every element φ of Out(Fn), φK is forward rotationless [FH11,

Lemma 4.43]. Because of this, if we are given any two non-forward rotationless

outer automorphisms φ and ψ, we may first ask whether φK and ψK are equal

via the forward rotationless recognition theorem. If φK and ψK are different,

then φ and ψ must be as well. And so, if we assume φk = ψk = π is forward

rotationless, then we can use invariants of π to try to recognize φ and ψ.

As a first attempt, one might hope that, because φ and ψ have a common

power, if they agree on their shared periodic subgroups and boundary points

(namely, the fixed subgroups and boundary points of π), then φ and ψ will be

the same outer automorphism. This is the intuition that inspires the following

guess at a recognition theorem.

Guess 1. Let φ, ψ ∈ Out(Fn) be such that φk = ψk = π is forward rotationless.

If φ|FixN (π) = φ|FixN (π), then φ = ψ.

However, things aren’t quite so simple, as the following counterexample to this

statement shows.

Counterexample 1. Let φ and ψ be elements of Out(F4) represented by Φ

and Ψ as follows:

Φ :
a 7→ c

b 7→ dc

c 7→ a

d 7→ ba
Ψ :

a 7→ c

b 7→ d

c 7→ a

d 7→ ba2
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Then φ2 = ψ2 = π can be represented by the rotationless map Π as follows:

Π :
a 7→ a

b 7→ ba2

c 7→ c

d 7→ dc2

In this case, because all the automorphisms are linear growth, FixN(π) =

Fix(π), which is the conjugacy class of the fixed subgroup < a, baB, c, dcD >

of Π. And indeed, on this set, Φ and Ψ agree. (Both switch a with c and baB

with dcD.) However, it is clear that φ is not equal to ψ: for example, ψ sends

the conjugacy class [b] to the conjugacy class [d], while φ([b]) = [dc], and dc is

not conjugate to d by any element of the free group.

If we think of Π as a CT acting on the rose R4 with the edges marked by

a, b, c, and d, the Stallings graph ΓG(π) has a single component in the form of

a two-petaled rose marked by a and c, and two lollipops representing baB and

dcD. Both φ and ψ act by switching the two petals of the rose and the two

corresponding lollipops.

Figure 3: The Stallings graph ΓR4(π) of Counterexample 1

The reason this counterexample is possible is that FixN(π) does not keep
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track of the twisting numbers associated to the edges b and d, and so we can

choose to distribute the twisting in two different ways over these edges. This

twisting issue becomes even more apparent if we realize all three automor-

phisms as homeomorphisms of a surface S of genus two with one puncture.

This example and the associated surface picture are inspired by an example

in [KLV01] that was used to illustrate conjugacy between two roots of an LG

outer automorphism.

Figure 4: A homeomorphism of a surface inducing Counterexample 1

The automorphisms Φ and Ψ of π1(S) are induced by homeomorphisms that

switch the two sides of S and perform the appropriate number of Dehn Twists

in the simple closed curves on S representing [a] and [c]. Meanwhile, Π is

induced by the double Dehn twist in both curves.

However, this twisting issue is a linear phenomenon, and one might hope that,

at least in the PG case, if you force φ and ψ to agree on their LG conjugacy

classes, then any twisting will have to agree. This inspires our next guess.
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Guess 2. Let φ, ψ ∈ Out(Fn) be PG, with φk = ψk = π forward rotationless.

If φ|FixN (π) = φ|FixN (π) and φ|F0(π) = φ|F0(π) , then φ = ψ.

Unfortunately, this guess is also false. What follows is a counterexample to

this statement.

Counterexample 2. Let G be the rose R6 with a looped marked by each of

the generators of F6 =< a, b, c, d, e, f >, but with the edges marked c and f

each subdivided into two edges by a vertex, so that c = c̄1c2 and f = f̄1f2 as

depicted.

Figure 5: A graph G for Counterexample 2

Let h and s as follows be homotopy equivalences representing φ and ψ respec-

tively.

h :

a 7→ d

b 7→ ed

c1 7→ f1d
2

c2 7→ f2e

d 7→ a

e 7→ ba

f1 7→ c1a
2

f2 7→ c2b

s :

a 7→ d

b 7→ ed

c1 7→ f1

c2 7→ f2e

d 7→ a

e 7→ ba

f1 7→ c1a
4

f2 7→ c2b

Then h2 = s2 = p is a CT representing φ’s and ψ’s common power as follows:
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p :

a 7→ a

b 7→ ba2

c1 7→ c1a
4

c2 7→ c2bba

d 7→ d

e 7→ ed2

f1 7→ f1d
4

f2 7→ f2eed

This CT has three distinct Nielsen classes of fixed points. The Nielsen class of

the central vertex includes the loops a and c, and the corresponding component

of ΓG(π) is similar to the Stallings graph of Counterexample 1, with loops

representing a and d and lollipops representing baB and edE. The component

of ΓG(π) corresponding to the Nielsen class of the common initial vertex of c1

and c2 has a lollipop representing the loop c1aC1 because of the linear growth

of c1 and an infinite ray because of the quadratic growth of c2. The same is

true for the Nielsen class of the common initial vertex of f1 and f2.

Figure 6: The stallings graph ΓG(π) of Counterexample 2

Here, F0(π) is the conjugacy class of the free factor < a, b, d, e >, and φ and
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ψ agree on this free factor. They also agree on FixN(π), both switching the

two isolated points c+ and f+. And yet, once again, we can see that they are

not the same outer automorphism. The key here is that the edges c1 and f1

exhibit linear growth, and so we can distribute twisting along edges a and d

over c1 and f1, just as in Counterexample 1 we distributed twisting by a and

c over the edges b and d. However, c1 and f1 are not closed paths, and they

are not contained in any closed paths in G that represent linearly growing

conjugacy classes. This is why the difference between φ and ψ is not picked

up by F0(π).

However, this example also gives a hint at how we might find a recognition

theorem that works. Consider the directed line ` in B(G) represented by

. . . aaaBc̄1c2bbaba
2ba3 . . . You can visualize this line in the Stallings graph

above as a path that begins by winding around the lower lift of a in the center

component, runs up the edge marked b, jumps to the left component, and runs

down the infinite ray toward c+. Note that h(`) = . . . dddEDf̄1f2eeded
2ed3 . . .,

while s(`) = . . . dddEf̄1f2eeded
2ed3 . . . The fact that these are not the same

image line in B(G) gives us a way to differentiate φ from ψ. This is the idea

that we will describe in more generality in the next section.

5 Annular FixN-Lines

Lemma 5.1. Let π, χ ∈ Out(Fn) so that [π, χ] = 1. Then χ(FixN(π)) =

FixN(π).

Proof. Because χ commutes with π, χ−1 does as well. Therefore, it is enough to
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show that χ(FixN(π)) ⊂ FixN(π), because if this is true, then χ−1(FixN(π)) ⊂

FixN(π), and applying χ to this containment shows that FixN(π) =

χχ−1(FixN(π) ⊂ χ(FixN(π)).

If P (π) is trivial, then FixN(π) is trivial, and the statement is vacuously true.

Therefore, we may assume that π has principal representatives and call one

such representative Π. If X is any representative of χ, then because π and χ

commute, Π and X will commute up to conjugacy, meaning that XΠ = icΠX

for some c ∈ Fn. Meanwhile, X and Π induce homeomorphisms ∂Π and

∂X of ∂Fn with the property that ∂X(FixN(∂Π)) = FixN(∂XΠX−1). It

follows that XΠX−1 is principal for the outer automorphism χπχ−1, because

Π is principal for π, and because FixN(∂XΠX−1) is a homeomorphic image

of FixN(∂Π). But by assumption, π and χ commute, and so XΠX−1 is a

principal representative of π. Therefore, the conjugacy class of ∂X(FixN(∂Π))

is contained in FixN(π). As FixN(π) is the finite union of the conjugacy

classes of these FixN(∂Π)’s, we have that χ(FixN(π)) ⊂ FixN(π) as desired.

We are now able to define the main object of study for this section, which is

also the invariant in use in the main theorem of this thesis.

Definition 5.2. Let π ∈ Out(Fn) be forward rotationless and PG. We wish to

associate to π a particular set of lines in Fn which will carry much of π’s dy-

namic information. To do this, let Π be any principal representative of π, and

consider the set B̃(FixN(∂Π)) ⊂ B̃(Fn) of lines carried by FixN(∂Π) ⊂ ∂Fn.
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Note that if Π′ is any other principal representative of π which is isogredient to

Π, then B̃(FixN(∂Π′)) and B̃(FixN(∂Π)) have the same image in B. We wish

to consider all possible principal representatives and their fixed sets, so we

define B̃(FixN(π)) to be disjoint union of the sets B̃(FixN(∂Π)) as Π ranges

over P (π), and define B(FixN(π)) to be the image of B̃(FixN(π)) under the

quotient to B.

However, as we saw in Counterexample 2 in Section 4, FixN(π) is not a strong

enough invariant to uniquely determine π’s roots; we need a slightly larger set

of lines. Define L̃N(π) to be the subgroupoid of B̃ generated by the union of

the sets B̃(FixN(∂Π)) as Π ranges over P (π). Finally, let LN(π) be the image

of L̃N(π) under the natural quotient to B. Each element ` of LN(π) will be

called an annular FixN -line for π. Those directed lines that are contained in

B(FixN(π)) ⊂ LN(π) are simply called FixN -lines for π.

Note that B(Fix(π)), the set of lines carried by the subgroup system Fix(π), is

contained in LN(π) by definition. We will also find it helpful to use B(Fix(π))

to define one further set of lines in B. Following the notation of Section 3.5,

for any Π ∈ P (π), B̃(Fix(Π)) = ∂Fix(Π) × ∂Fix(Π). Let L̃0(π) be the

subgroupoid of B̃ generated by the sets B̃(Fix(Π)) as Π ranges over P (π), and

define L0(π) to be the image of L̃0(π) under the quotient to B. We call any

` ∈ L0(π) an annular Fix-line for π. Any line in B(Fix(π)) is a Fix-line for

π.

While the sets of annular FixN - and Fix-lines may seem like unwieldy objects,

the concatenations that yield them are actually quite simple in nature, as the
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following lemma shows.

Lemma 5.3. If (P,Q) ∈ B̃(FixN(∂Π1)) (respectively B̃(Fix(Π1))) and (Q,R) ∈

B̃(FixN(∂Π2)) (respectively B̃(Fix(Π2))) for Π1 6= Π2 ∈ P (π), then Q ∈ ∂Fn

is periodic and represented by an infinite word of the form xxx . . ., where

x ∈ Fn is a representative of an axis for π.

Proof. By assumption, Q ∈ ∂Fn is fixed by both ∂Π1 and ∂Π2. Because Π1

and Π2 both represent π, Π2 = ijxΠ1 for some root-free x ∈ Fn and some j ∈ Z,

meaning that Q = ∂Π2(Q) = ∂ijx∂Π1(Q) = xjQ. This cannot happen unless Q

is equal to xxx . . . or x−1x−1x−1 . . . This means that x is in both Fix(Π1) and

Fix(Π2), and an axis is by definition a conjugacy class with a representative

that is fixed by two different principal representatives. Therefore, x represents

an axis for π.

And so, to construct L̃N(π) from B̃(FixN(π)), we need only consider concate-

nations that occur at endpoints of lifts of the finitely many axes of π, as these

are the only concatenations that result in a reduced line not already carried

by FixN(π).

If LN(π) is to be a useful object, however, we will need to know that it is invari-

ant under not only π but under any other map which commutes with π (and

in particular under π’s roots.) The following lemma checks this invariance.

Lemma 5.4. Let π ∈ Out(Fn) be forward rotationless and PG, and let χ ∈

Out(Fn) so that [π, χ] = 1. Then χ(LN(π)) = LN(π).
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Proof. By Lemma 5.1, χ(FixN(π)) = FixN(π). Or, equivalently, in the

language of directed lines, we can say that χ(B(FixN(π))) = B(FixN(π)).

Any ` ∈ LN(π) is obtained as the quotient of a concatenation of the form

˜̀
1||˜̀2||...||˜̀j, where each ˜̀

i is a lift of a line `i ∈ B(FixN(π)), and each adja-

cent pair of lifts has an endpoint in common. Therefore, because χ acts on

B by a homeomorphism, (or equivalently, because any representative X of χ

acts on B̃ by a homeomorphism) it follows that χ(`) may also be realized as

such a concatenation in B̃, and so is also contained in LN(π).

The set of annular FixN -lines is by its nature an algebraic object. It requires

some topology on the space of abstract lines to define it, but the lines them-

selves can be thought of as pairs of boundary points or even as bi-infinite

strings of letters in the free group. However, in proving our main results, we

will find it useful to represent elements of LN(π) in a more topological manner:

namely as bi-infinite paths in a CT for π.

Definition 5.5. Let p : G → G be any CT representing π. Consider a

component C of ΓG(π) and define B(C) to be the set of directed lines in B(G)

that lift to C. Define B̃(C) to be the set of all lifts of elements of B(C) to B̃(G̃),

let B̃(FixN(p)) be the union of the sets B̃(C) as C ranges over the finitely many

components of ΓG(π), and set L̃N(p) to be the subgroupoid of B̃(G̃) generated

by this union. Finally, define the set of annular FixN -lines for p, LN(p), to

be the image of L̃N(p) under the quotient back to B(G).
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As we did for LN(π), we can define a subset of LN(p) that ignores isolated fixed

rays. To do this, we define B0(C) to be the set of directed lines in B(G) that lift

to the core of C. Take the set of all lifts of these lines to B̃(G̃) to be B̃0(C). The

union of all the B̃0(C)’s is denoted B̃0(Fix(p)), and the subgroupoid generated

by this union is L̃0(p). Finally, L0(p), the set of annular Fix-lines for p is the

image of L̃0(p) under the quotient to B(G).

Lemma 5.6. Let π ∈ Out(Fn) be forward rotationless and PG. Then for any

choice of CT p : G→ G representing π, LN(p) = LN(π) and L0(p) = L0(π).

Proof. By the definitions of the Stallings graphs of π and any representative

Π (Definitions 3.15 and 3.17) and by Lemma 3.16, there is a one-to-one cor-

respondence between connected components of ΓG(π) and isogredience classes

of principal representatives of π. And for any such component C, the set

B̃(C) ⊂ B̃(G̃) is equal to the union of the sets B̃(FixN(∂Π)), as Π ranges over

the principal representatives of π in the isogredience class corresponding to C.

Therefore, we have the following equality of unions:

⋃
C a component

of ΓG(π)

B̃(C) =
⋃

Π∈P (π)

B̃(FixN(∂Π)) ⊂ B̃(G̃)

Thus, the subgroupoids of B̃(G̃) generated by these two unions are equal as

well. Or, in other words, L̃N(p) = L̃N(π), and so LN(p) = LN(π).

Similarly, the core of each C represents the conjugacy class of the fixed sub-

group of an isogredience class of principal representatives of π, and the set
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B̃0(C) is equal to the union of the sets B̃(∂Fix(Π)) for Π in that isogredi-

ence class. Therefore, we once again have equality of the unions of these sets,

and that equality carries through to the subgroupoid generated, and to the

quotients L0(p) and L0(π).

Because of this lemma, we can think of LN(π) as either an abstract alge-

braic object or as a more concrete topological one. We will use this to our

advantage in later proofs, often suppressing the difference in order to switch

between abstract annular FixN -lines and those associated to a particular CT

representative.

We will now prove a few results that more precisely describe which lines LN(π)

and L0(π) do and do not include. For example, L0(p) does not contain the axis

of every linearly growing conjugacy class. However, as the following lemmas

show, it contains sequences of lines that approximate those axes. Recall that,

for π forward rotationless and PG, F0(π) is the smallest free factor system

that carries every conjugacy class that grows at most linearly under π.

Lemma 5.7. Let π ∈ Out(Fn) be forward rotationless and PG. Then L0(π) ⊂

B(F0(π)).

Proof. Let p : G → G be a CT representing π. Then, by Lemma 3.20, if ˆ̀ is

a bi-infinite edge path in core(ΓG(π)), then every edge of ˆ̀ is a lift of an edge

of G that is either fixed or linearly growing under p. If we take a lift ˜̀ of ˆ̀

to G̃, then this is still true. And if we concatenate finitely many such ˜̀, then
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the line in G̃ that we get after reducing still has this property. And so, if we

consider the annular Fix-line in B(G) corresponding to this concatenation, it

will be composed of edges of at most linear growth, meaning it represents an

abstract directed lined that is contained in B(F0(π)).

Lemma 5.8. For F a free factor system, the set B̃(F) of lifted lines carried by

F is closed under the groupoid operation on B̃, meaning that is a subgroupoid.

Proof. Let G be a marked graph so that there is a unique, possibly disjoint

core subgraph GF of G with fundamental group F . Let ` be a directed line

in B(F), let ˜̀ be a lift of ` to B̃(F), and let `G and ˜̀
G be the corresponding

tight directed lines in B(G̃) and B̃(G̃). Then `G is contained in GF , and ˜̀
G is

contained in the preimage G̃F of GF in G̃.

If `′ is any other element of B(F) with representative `′G and lifts ˜̀′ and ˜̀′
G

so that τ(˜̀
G) = ι(˜̀

G), then the product ˜̀′′
G = ˜̀

G||˜̀′G is still contained in G̃F .

And so the abstract directed line ˜̀′′ ∈ B̃(Fn) represented by ˜̀′′
G is in B̃(F),

and B̃(F) is closed under the groupoid operation.

In particular, this means that, for π ∈ Out(Fn) forward rotationless, the set

B̃(F0(π)) of lifted linear lines for π is a subgroupoid of B̃. The following lemma

gives another description of B(F0(π)) in terms of annular Fix-lines.

Lemma 5.9. Let π ∈ Out(Fn) be forward rotationless and PG. Then the

closure L0(π) of L0(π) in B is equal to B(F0(π)).
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Proof. Because F0(π) is a subgroup system, B(F0(π)) is closed by Lemma 3.9.

By Lemma 5.7, L0(π) ⊂ B(F0(π)), and so the closure of L0(π) is also contained

in B(F0(π)).

To prove the opposite containment, by Lemma 3.8, ` contains B(F0) if it

contains every periodic line in B(F0), and so, it suffices to show that, for any

conjugacy class γ that is carried by F0, the axis `γ of γ is in L0(π). Let γ be

such a conjugacy class and let p : G → G be a CT representing π chosen so

that there is a core subgraph G0 of G with fundamental group F0.

Then there is a loop g in G that represents γ and is entirely contained in

G0. Choosing a basepoint for G in g, we may write g as a concatenation

g = g1E1g2E2...gmEm, where each gi is a concatenation of fixed edges for p,

each Ei is a non-fixed linear edge for p, and some of the gi or Ei may be trivial.

By item (Linear Edges) of the definition of a CT (Definition 3.12), for each

i, there is a root-free closed Nielsen path wi so that either p(Ei) = Eiw
ti
i or

p(Ei) = wtii Ei. Assume for now that p(Ei) = Eiw
ti
i for all i.

Let ∗i be the initial vertex of Ei. Then ∗i is fixed by p, and we may con-

sider the component Ci of ΓG(π) corresponding to the Nielsen class of ∗i. By

Lemma 3.21, Ci must contain a lift ∗̂i of ∗i with an adjacent lollipop consisting

of a lift Êi of Ei and a closed lift ŵi of wi. In addition, because gi is a Nielsen

path with terminal vertex ∗i, Ci must also contain a lift ĝi of gi with terminal

endpoint ∗̂i. But the initial vertex of gi is also the terminal vertex of Ei−1

(where indices are taken mod m), and so there is also a closed lift ŵi−1 of wi−1

based at the initial endpoint of ĝi (which may in fact be ∗̂i if gi is closed or
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trivial.)

Figure 7: A sequence of components of the Stallings graph of π

This enables us to find a Fix-line in B(Ci) represented by the bi-infinite path

. . . ŵ−1
i−1ŵ

−1
i−1ŵ

−1
i−1ĝiÊiŵiŵiŵi . . . Similarly, if we consider the fixed point ∗i+1 at

the initial endpoint of Ei+1 and the corresponding component Ci+1 of ΓG(π), we

see a Fix-line in B(Ci+1) represented by . . . ŵ−1
i ŵ−1

i ŵ−1
i ĝi+1Êi+1ŵi+1ŵi+1ŵi+1 . . .

(See Figure 7.)

Figure 8: A line of the form . . . w̃−1
1 w̃−1

1 w̃−1
1 g̃w̃1w̃1w̃1 . . . in G̃

There are lifts of these lines to B̃(G̃) that can be concatenated and reduced via
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the groupoid operation to yield an annular Fix-line for π represented by a line

. . . w̃−1
i−1w̃

−1
i−1w̃

−1
i−1g̃iẼig̃i+1Ẽi+1w̃i+1w̃i+1w̃i+1 . . . in G̃. Continuing this operation

through each Ci, we can concatenate and reduce m− 1 times to obtain a lift

of an annular Fix-line given by . . . w̃−1
m w̃−1

m w̃−1
m g̃1Ẽ1g̃2Ẽ2 . . . g̃mẼmw̃mw̃mw̃m . . .

This line has the form . . . w̃−1
m w̃−1

m w̃−1
m g̃w̃mw̃mw̃m . . ., where g̃ is a lift of the

loop g. And so, the line . . . w−1
m w−1

m w−1
m gwmwmwm . . . is in L0(p) = L0(π).

If we concatenate j appropriate lifts of this same line, then we find that

. . . w−1
1 w−1

m w−1
m gjwmwmwm . . . is an annular Fix-line for p as well. The limit

of this sequence as j goes to infinity is the line . . . ggg . . ., a representative of

the axis of the conjugacy class γ. Therefore, the axis of γ is in L0(p).

We must now extend the above argument to the general situation, where for

each i, either p(Ei) = Eiw
ti
i or p(Ei) = wtii Ei. Note that there are precisely 2m

possibilities. Following the construction above, it suffices to show that in any

such arrangement, for each i, we can find components of ΓG(π) yielding an

`i ∈ L0(π) that contains gi−1Ei−1giEi as a subpath, as we may then combine

those `i via the groupoid operation to obtain the sequence of annular Fix-lines

. . . w−1
1 w−1

m w−1
m gjwmwmwm . . . whose limit is the axis of g.

The proof of the existence of `i requires considering a few cases. In each case,

Lemma 3.21 assigns a lollipop in ΓG(π) to each Ei, with a lift ŵi of wi at either

the initial or terminal vertex of a lift Êi of Ei. The Stallings graph pictures

below are obtained by gluing together these lollipops using the p-fixed gi. For

simplicity, we choose not to depict any pieces of ΓG(π) that are not lifts of gi,

Ei, wi, gi−1, Ei−1, or wi−1.
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Case A: p(Ei−1) = Ei−1w
ti−1

i−1 and p(Ei) = Eiw
ti
i

Figure 9: A sequence of components of the Stallings graph of π when p(Ei−1) =
Ei−1w

ti−1

i−1 and p(Ei) = Eiw
ti
i

In this case, the Nielsen class of ∗i contains gi and wi−1, while the Nielsen class

of ∗i−1 contains gi−1. (See Figure 9.) An annular Fix-line `i with gi−1Ei−1giEi

as a subpath can be obtained by concatenating and reducing two Fix-lines

whose common endpoint is an endpoint of an axis for wi−1.

Case B: p(Ei−1) = w
ti−1

i−1 Ei−1 and p(Ei) = wtii Ei

Figure 10: A sequence of components of the Stallings graph of π when
p(Ei−1) = w

ti−1

i−1 Ei−1 and p(Ei) = wtii Ei

Here, the Nielsen class of ∗i contains all of gi and wi, while the Nielsen class of
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∗i−1 contains gi−1 and wi−1. (See Figure 10.) Two concatenations at endpoints

of axes of wi−1 and wi yield the desired `i.

Case C: p(Ei−1) = w
ti−1

i−1 Ei−1 and p(Ei) = Eiw
ti
i

Figure 11: A sequence of components of the Stallings graph of π when
p(Ei−1) = w

ti−1

i−1 Ei−1 and p(Ei) = Eiw
ti
i

As described in Figure 11, the concatenation of two Fix-lines at an endpoint

of an axis of wi−1 gives the desired annular Fix-line `i.

Case D: p(Ei−1) = Ei−1w
ti−1

i−1 and p(Ei) = wtii Ei

Figure 12: A sequence of components of the Stallings graph of π when
p(Ei−1) = Ei−1w

ti−1

i−1 and p(Ei) = wtii Ei
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Here again two concatenations are necessary, as the Nielsen class of ∗i contains

gi, wi and wi−1, but ∗i−1 = ι(Ei−1) and τ(Ei) are each in another Nielsen class.

(See Figure 12.)

Thus, in any arrangement of the Ei, we can find the sequence of annular

Fix-lines . . . w−1
1 w−1

m w−1
m gjwmwmwm . . . that shows L0(π) = B(F0(π)).

Now that we know this fact about L0(π), we can use it to deduce some facts

about how roots of π act on LN(π). If φ and ψ are two roots of π, then by

Lemma 5.4, they both leave LN(π) invariant. If φ and ψ induce the same

action on LN(π), then it turns out they have the same action on some other

invariants of π as well. The next lemma make this precise.

Lemma 5.10. Let φ, ψ ∈ Out(Fn), with φk = ψk = π forward rotationless

and PG. If φ|LN (π) = ψ|LN (π), then φ|F0(π) = ψ|F0(π) and φ|R(π) = ψ|R(π).

Proof. By Lemma 5.9, B(F0(π)) is contained in the closure of L0(π). As L0(π)

is contained in LN(π), it follows that B(F0(π)) ⊂ LN(π) as well. Therefore,

by the continuity of the action of φ and ψ on B, we have that φ and ψ agree

on B(F0(π)), and so on F0(π) itself.

The agreement on eigenrays is also next to immediate. Set φ−1ψ = δ and

suppose there is an element ρ of R(π) such that δ(ρ) 6= ρ. Then if `ρ is any

FixN -line that lifts to a directed line in B̃ with terminal endpoint a lift of the

endpoint of ρ, then δ cannot fix `ρ, a contradiction.
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For ease of reference, the relationships between the various sets of directed lines

we’ve defined are summarized below. As usual, let π be a forward rotationless

PG outer automorphism and p a CT representing it. The sets in the middle

column are obtained by taking the subgroupoids generated by lifts of the sets

on the left. The set on the right is obtained by taking the closure in B of the

set in the middle.

B(FixN(π)) ⊂ LN(π) = LN(p)

⋃ ⋃

B(Fix(π)) ⊂ L0(π) = L0(p) ⊂ B(F0(π))

Before we can get to the main theorem, we need two more lemmas. One is a

result on free factor systems that will allow us to organize an inductive proof of

the main theorem, and the other is a corollary from work of Bestvina, Feighn,

and Handel [BFH00] that will restrict what can happen in each step of the

induction.

Lemma 5.11. Let φ, ψ ∈ Out(Fn), with φk = ψk = π forward rotationless

and PG, let p : G → G be a CT representing π, and let F = {F0, ...,Ft} be

a choice of totally ordered sequence extracted from the hierarchy of free factor

systems associated to π and G so that for each i, F i+1 is a one edge extension

of F i. If φ|LN (π) = ψ|LN (π), then δ = φ−1ψ leaves invariant the conjugacy class

of every free factor in each of the Fi’s.
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Proof. By the definition of the hierarchy of free factor systems in Section 3.10,

there is a sequence of core subgraphs G0 ⊂ G1 ⊂ ... ⊂ Gt of G such that Gi

has a marking by Fi, and each Gi is a filtration element Gr for some r. By the

correspondence between filtration elements and free factor systems outlined in

that same section, each Gi+1 is a one edge extension of Gi, and Gt = G.

Set δ = φ−1ψ. Because φ|F0(π) = ψ|F0(π) by Lemma 5.10, it follows that

δ([F i]) = [F i] for each of the conjugacy classes of subgroups [F i] which make

up F0(π), and moreover, that δ|[F i] = Id[F i]. And so any topological represen-

tative d : G→ G of δ is homotopic to a map which leaves G0 invariant and is

the identity when restricted to this subgraph. This will form the base case of

an inductive argument.

Assume that δ leaves invariant the conjugacy class of every free factor in each

of F0, ...,FJ for some J between 0 and t. We will show that δ leaves invariant

the conjugacy class of every free factor in FJ+1.

Because we are assuming that the first J+1 free factor systems are δ-invariant,

any topological representative d : G → G of δ must leave each of G0, ..., GJ

invariant up to homotopy. And because F is a sequence of one edge extensions,

it follows that GJ+1 − GJ is a single edge ε with ι(ε) and τ(ε) contained in

GJ , and with p(ε) = u ε v for circuits u and v in GJ . When u and v are

both nontrivial, one subdivides ε into two edges E and F so that ε = ĒF ,

p(E) = Eū, and p(F ) = Fv. In the case that ε is subdivided, there is one

filtration element Gr in between GJ and GJ+1 given by the union of GJ with

either E or F . However, in this case, note that F(Gr) = F(GJ). If ε is not
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subdivided, then GJ and GJ+1 are adjacent in the filtration of G.

Let Lε be the set of all annular FixN -lines ` for p of the form R̄1 εR2, where

R1 and R2 are infinite rays entirely contained in GJ . It is possible to find such

lines because ι(ε), τ(ε) ⊂ GJ . In particular, if an endpoint of ε is contained G0,

then we may choose the ray based at that endpoint to be of the form σσσ...

for some closed Nielsen path σ. And if an endpoint of ε is not contained in

G0, then we can choose the ray to represent some eigenray carried by GJ .

Let F ε be the smallest free factor system so that F ε carries Lε and so that

FJ @ F ε. Note that FJ+1 is a free factor system that satisfies these last two

properties, and so we have F ε @ FJ+1.

Because δ(`) = ` for every ` ∈ Lε and δ(FJ) = FJ by assumption, it follows

that δ(F ε) = F ε as well. Similarly, because GJ is a filtration element for p, we

know that π(FJ) = FJ . This fact paired with the fact that p(ε) = u ε v with

u, v ⊂ GJ shows that Lε is π-invariant also. Therefore, π(F ε) = F ε.

However, by item (Filtration) of the definition of a CT (Definition 3.12), the

filtration of G must be reduced with respect to π, meaning that, because F ε

is π-invariant, it must be equal to either FJ or FJ+1. Because FJ does not

carry every (or in fact, any) element of Lε, it must be that F ε = FJ+1, and so

δ(FJ+1) = FJ+1 as desired.

Lemma 5.12. (Corollary 3.2.2 of [BFH00]) If f : G → G is a topological
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representative and Hi is a stratum that consists of a single edge ε, then f(ε)

crosses ε, in either direction, at most once.

6 The Main Theorem

Theorem 6.1. Let φ, ψ ∈ Out(Fn) be PG, with φk = ψk = π forward rota-

tionless. If φ|LN (π) = ψ|LN (π), then φ = ψ.

Proof. Let p : G → G be a CT representing π, and from the hierarchy of

free factor systems associated to π and G, extract a totally ordered sequence

F = {F0, ...,Ft} so that Fi+1 is a one edge extension of Fi. By the definition

of this hierarchy in Section 3.10, there is a sequence of core subgraphs G0 ⊂

G1 ⊂ ... ⊂ Gt of G such that Gi has a marking by Fi, and each Gi is a filtration

element Gr for some r. Note that each Gi+1 is a one edge extension of Gi, and

that Gt = G.

Set δ = φ−1ψ. Because φ|F0(π) = ψ|F0(π) by Lemma 5.10, it follows that

δ([F i]) = [F i] for each of the conjugacy classes of subgroups [F i] that make up

F0(π), and moreover, that δ|[F i] = Id[F i]. And so any homotopy equivalence

d : G→ G of δ must be homotopic to a map which leaves G0 invariant and is

the identity when restricted to this subgraph. We will construct a homotopy

equivalence d, beginning with the requirement that no homotopy is necessary,

namely that d(G0) = G0 and d|G0 = IdG0 . This will form the base case of an

inductive argument.

Up until this point, the proof has mimicked the opening steps of the proof



62

of Lemma 5.11. Here is where it diverges. Let Gi be any of our sequence of

core subgraphs such that d(Gi) = Gi and d|Gi = IdGi . We will show that we

can homotope d so that d is a topological representative of δ whose induced

maximal filtration contains G0, .., Gt as a subfiltration. In particular, we will

show that the resulting map d satisfies d(Gj) = Gj for all j > i. Afterwards,

we will show that d|Gi+1 = IdGi+1 , thus completing the induction. Because we

are now trying to show we can find such a d that leaves Gi+1 not only invariant

up to homotopy as we did in Lemma 5.11, but fixed, the argument is longer

and more difficult, and it requires being broken into several cases below.

Because we chose F to be a sequence of one edge extensions, it follows that

Gi+1 − Gi consists of a single edge ε with ι(ε) and τ(ε) contained in Gi, and

with p(ε) = uεv for circuits u and v contained in Gi. When u and v are

both nontrivial, one subdivides ε into two edges E and F so that ε = ĒF ,

p(E) = Eū, and p(F ) = Fv.

Let Ci+1 be the connected component of Gi+1 that contains ε, and let [F i+1]

be the conjugacy class of a free factor in F i+1 represented by Ci+1. By

Lemma 5.11, [F i+1] is δ-invariant, and so d leaves the graph Ci+1 invariant

up to homotopy. Let Ci be the connected component or union of connected

components of Gi contained in Ci+1; then Ci+1 = Ci∪ε. By inductive assump-

tion d(Ci) = Ci, but, a priori, d(ε) may include edges outside Ci+1. However,

by the invariance of Ci+1 up to homotopy, it is possible to deform d through

continuous maps, each of which is the identity when restricted to Ci, until the

resulting homotopy equivalence (which we shall still call d) leaves Ci+1 invari-
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ant. We can consider the restriction d|Ci+1 of d to Ci+1, which is a homotopy

equivalence representing δ|[F i+1] ∈ Out(F i+1).

We will now find additional homotopies that will transform d|Ci+1 into a topo-

logical representative of δ|[F i+1]. We must first check that d|Ci+1 sends vertices

to vertices. This is trivially true for every vertex in Ci, where d|Ci+1 is the

identity. Every vertex of Ci+1 is contained in Ci except for the vertex that

appears in the interior of ε after subdivision in the case that both u and v

are nontrivial. By choosing a homotopy of d which is the identity everywhere

except for on the interior of ε, we can assure that this vertex is sent to a vertex

as well.

By the definition of a topological representative in Section 3.4 we must now

check that d|Ci+1 can be made locally injective on every edge. Again, we need

only worry about ε. The current d|Ci+1 may not be locally injective on ε but we

can make it so by once again choosing a homotopy through continuous maps

that differ only on ε and remain the identity on Ci. The resulting homotopy

equivalence (which we shall still call d|Ci+1) is a topological representative of

δ|[F i+1].

The transition matrix of this topological representative is the identity on an m

by m block, where m is the number of edges in Ci, and the entries in its final

column corresponding to the image of ε. Therefore, in the maximal filtration

of Ci+1 induced by this topological representative (as defined near the end of

Section 3.9), each edge of Ci+1 is a single stratum. In particular, both Ci and

Ci+1 are filtration elements.
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We are now in the situation where we can apply Lemma 5.12 to show that

d|Ci+1(ε) crosses ε at most once. However, if d|Ci+1(ε) were to cross ε zero

times, then δ|[F i+1] would not be an onto map, an impossibility. Therefore,

d(ε) must cross ε exactly once. However, by assumption, the endpoints of ε

are fixed by d (as they are contained in Ci), and so either d|Ci+1(ε) = xεy or

d|Ci+1(ε) = xε̄y for loops x and y in Ci. We can now extend all the homotopies

we chose on d|Ci+1 to homotopies of G by leaving d unchanged on G − Ci+1,

so that we have d the identity on Gi, with d(ε) = x ε y or xε̄y.

We seek to show that the topological representative d that we’ve constructed

can be modified so that both x and y are trivial and so that ε is not flipped to

ε̄, meaning d(ε) = ε. We’ll begin with a couple of claims. The first will provide

us the with machinery to make that modification, and the second will greatly

reduce the number of cases we need to consider. Recall from Section 3.4 that,

for any continuous function σ : I → G from an interval into a marked graph,

[σ] is the path obtained by tightening σ.

Claim 1. Assume there is an annular FixN -line `ε represented by a directed

line R̄1 εR2 in G, where R1 and R2 are infinite paths entirely contained in Gi.

Then d(ε) = x ε y, and not xε̄y.

Further, if `ε can be chosen so that R1 is not equal to either [xxx . . .] or

[x̄x̄x̄ . . .], then x may be assumed trivial. If there is such an `ε so that R2 is

not equal to either [yyy . . .] or [ȳȳȳ . . .], then y may be assumed trivial.

Note: If x and y are circuits in G, meaning that [x] = x and [y] = y, then
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the brackets can be dropped from xxx . . . , x̄x̄x̄ . . . , yyy . . ., and ȳȳȳ . . . in the

statement of Claim 1. In the case that x and y are not circuits, the addition

of the brackets ensures that `ε is a path, and hence is an element of B(G).

We will prove this claim by considering a lift of `ε to the universal cover G̃

of G. Let ˜̀
ε = R̃−1

1 ε̃R̃2 be such a lift, and let r̃1 and r̃2 be the initial and

terminal endpoints of ˜̀
ε. Because R1 and R2 are contained in Gi, they never

cross the edge ε, and so ` is a non-periodic line. Therefore, by Lemma 3.3,

there is a unique representative ∆ of δ that fixes (r̃1, r̃2) ∈ B̃(Fn). If we let d̃

be the lift of d to G̃ corresponding to ∆, then ∂d̃(r̃1) = r̃1 and ∂d̃(r̃2) = r̃2 by

assumption. And so d̃(˜̀
ε) must tighten to ˜̀

ε. But even further, because R1

and R2 are contained in Gi (where d is the identity), these two rays will be

fixed pointwise by d.

If either of the Ri is a non-periodic ray, then d̃ will fix the corresponding R̃i

pointwise. If Ri is a periodic ray www... for some root-free loop w in Gi, then

d̃(R̃i) = w̃1 . . . w̃jR̃i, where w̃1, ..., w̃j are lifts of w or w−1, or else d would not

fix Ri pointwise. Therefore, in any event, d̃(R̃i) never crosses ε̃ or ε̃−1.

Assume that d(ε) = xε̄y. Then d̃(˜̀
ε) = d̃(R̃−1

1 )d̃(ε̃)d̃(R̃2) = d̃(R̃−1
1 )x̃ε̃−1ỹd̃(R̃2),

where x̃ and ỹ are lifts of x and y. As this line crosses ε̃−1 once and never

crosses ε̃, it cannot tighten to ˜̀
ε, a contradiction. Therefore, d(ε) = x ε y, and

not xε̄y.

We now have that d̃(˜̀
ε) = d̃(R̃−1

1 )x̃ε̃ỹd̃(R̃2). This line can only tighten to ˜̀
ε if

x̃−1d̃(R̃1) tightens to R̃1 and ỹd̃(R̃2) tightens to R̃2. Consider the tightening
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of ỹd̃(R̃2) to R̃2: it can occur in one of three ways. The first case is that R̃2

is a lift of the ray [ȳȳȳ . . .] in G, and the action of d̃ shifts this ray by one

ȳ along this lift of the axis of the conjugacy class represented by y so that ỹ

may cancel with this extra lift. The second case is that R̃2 is a lift of the ray

[yyy] . . . and d̃’s action shifts R̃2 by one y along this lift of an axis toward r̃2,

making room for the lift ỹ. Therefore, if we rule out both of those possibilities

for R2, the third and only remaining case is that ỹ tightens to the trivial path

based at τ(ε̃). This means that y tightens to the trivial path at τ(ε), and we

may choose this tightening homotopy so that it does not change the fact that

d is the identity when restricted to Gi.

Similarly, we may force x to be trivial by ruling out the possibility that R1 is

contained in an axis for the conjugacy class represented by x. The only re-

maining possibility is that x tightens to the trivial path at ι(ε). This completes

the proof of Claim 1.

Claim 2.

• If u is a non-Nielsen path for p or if ι(ε) is not contained in G0, then x

may be assumed trivial.

• If v is a non-Nielsen path for p or if τ(ε) is not contained in G0, then y

may be assumed trivial.

Note that, if u or v is trivial, then it is a Nielsen path, as p fixes both end-

points of ε. Therefore, we do not need to specify that the non-Nielsen path is

nontrivial. The same will be true in Cases 2 and 4 below.
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We need only prove the first item of the claim, as the second item is the

same fact with a change of notation. Our strategy will be to find an annular

FixN -line of the type described in Claim 1 by which we can tighten away x.

To begin with, there is at least one point of ε which is fixed by p. If u and v

are nontrivial, it is the common initial endpoint of E and F after subdivision.

If one of them is trivial, it is an endpoint of ε, and if both are trivial, all points

of ε are fixed. In any event, call such a fixed point ∗, consider the component

C∗ of ΓG(π) determined by the Nielsen class of ∗, and let Ĝ the covering space

of G in which C∗ embeds. This component contains a lift ∗̂ of ∗ which is

contained in a lift ε̂ of ε.

Assume that u is a non-Nielsen path. Then the initial direction of ε determines

an eigenray ρ ∈ R(π), represented by a point r̂ ∈ ∂C∗ that is the endpoint of

a ray R̂ in C∗ beginning at ι(ε̂) and following the direction of û. Let R be the

image of R̂ under the covering projection to G. Because u is contained in Gi

and because R is formed from u and its images under p, it follows that R is

contained in Gi as well.

If τ(ε) is contained in G0, then because G0 is a core graph by definition, τ(ε)

is contained in at least one closed path σ in G0. If σ is composed entirely of

p-fixed edges, then it is a closed Nielsen path for p. If there is no such σ, then

every closed path in G0 containing τ(ε) contains at least one non-fixed linear

edge Eσ, with p(Eσ) = Eσuσ for some closed Nielsen path uσ. Moreover, there

is such an Eσ and a path σ′ of fixed edges so that σ′Eσ is contained in σ, and

so that ι(σ′) = τ(ε). In this case, the edge path σ′EσuσĒσσ̄′ is a closed Nielsen
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path for p. Therefore, in any event, there is a closed Nielsen path based at

τ(ε); call this Nielsen path γ.

This path γ is contained in G0 by assumption, and so is contained in Gi. It

follows that the line in G given by R̄ ε γγγ . . . satisfies all the requirements of

Claim 1 to show that x may be assumed trivial. If instead τ(ε) is contained

not in G0, then there will be no such Nielsen path γ. However, if v is also a

non-Nielsen path, then the terminal direction of ε determines a second eigenray

ρv under iteration by p, this one represented by a ray Rv contained in Gi. In

this case, we can use the line R̄ εRv and Claim 1 to show that d does not flip

the edge ε and that we may assume x to be trivial.

We may assume that v is not a nontrivial Nielsen path, or else it could have

played the role of γ in the previous paragraph. Therefore, we need only worry

about the case that τ(ε) * G0 and v is trivial. This means that each of the

outward directions at τ(ε) determines a growing edge for p. If none of these

edges were to be contained in Gi, it would follow that τ(ε) is not contained

in Gi, a contradiction. Therefore, there is some other growing edge ε′ that is

contained in Gi and has initial vertex τ(ε). Under iteration by p, ε′ determines

an infinite ray R′ in G that represents an eigenray ρ′ for π. Therefore, in C∗ we

see an embedded line of the form R̂−1ε̂ε̂′R̂′, where ε̂′ and R̂′ are lifts of ε′ and

R′. Once again, this line can be used with Claim 1 to show that d does not

flip the edge ε and that x may be assumed trivial by tightening. This finishes

the proof in the case that u is a non-Nielsen path.

Now assume instead that ι(ε) * G0. This means there can be no nontrivial,
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closed Nielsen paths for p based at ι(ε), and so each of the outgoing directions

at ι(ε) determines a growing edge for p. If none of these edges is contained in

Gi, then ι(ε) is not contained in Gi, a contradiction. Therefore, one of these

edges (and its resulting eigenray representative) is contained in Gi. Meanwhile,

if τ(ε) is contained in G0, then we find a ray of the form γγγ . . . contained

in Gi, where γ is a closed Nielsen path for p. If τ(ε) is not contained in G0,

then we find a growing and associated ray contained in Gi, or else face the

contradiction that τ(ε) * Gi. In any event, we find rays based at both ι(ε)

and τ(ε) that enable us to form a line satisfying the requirements of Claim 1.

Therefore, once again, d does not flip the edge ε, and x may be assumed trivial.

This completes the proof of Claim 2.

From here, the argument breaks into several cases based on the nontriviality

and growth rates of u and v. Because of Claim 2, we need only consider cases

in which at least one of u and v is trivial or fixed by p, ruling out the case that

both u and v are nontrivial non-Nielsen paths. As we go through each case, it

will be important to recall the argument that we used to prove Claim 2 above,

as we will use similar tools below, often seeking to find an annular FixN -line

to which we can apply Claim 1.

Case 1: The circuits u and v are both nontrivial Nielsen paths.

If so, then both ι(ε) and τ(ε) must be contained in G0. Therefore ε is a linear

edge and is contained in G0 as well. This means ε is fixed by d by assumption.
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Case 2: One of u and v is a nontrivial Nielsen path, and the other is a non-

Nielsen path.

Without loss of generality, we may assume that u is the Nielsen path, as the

argument in the other case is symmetric. By Claim 2, y is trivial, and so

we only need worry about x. As in the proof of Claim 2, consider the p-

fixed point ∗ and the corresponding component C∗ of ΓG(π) containing lifts

∗̂, Ê, F̂ , û, and v̂. There is also an infinite embedded ray R̂ε based at τ(ε̂),

following the direction of v̂, and representing an eigenray for π. In addition,

because u is a Nielsen path, we know that û is a loop.

Now assume that x is nontrivial. Because u is a Nielsen path, we can consider

the component Cu of ΓG(π) corresponding to the Nielsen class of u. This

component contains another lift û′ of u. And, because any lift p̃u of p to G̃

that correseponds to Cu must be principal, Cu must also contain one of the

following:

(a) a closed lift γ̂u of a loop γu in G that is not homotopic to any root, power,

or power of a root of x.

(b) a lift ε̂u of a growing edge εu with corresponding infinite ray R̂u at its

terminal vertex.

In case (a), consider the directed line in B(C∗) represented by the infinite path

R̂−1
ε F̂−1Êûûû... and the directed line in B(Cu) represented by . . . û′û′û′γ̂uγ̂uγ̂u . . ..

Choose lifts of these lines to G̃ of the form R̃−1
ε F̃−1Ẽũ1ũ2ũ3 . . . and

. . . ũ−1
3 ũ−1

2 ũ−1
1 γ̃u,1γ̃u,2γ̃u,3 . . ., where the ũi are all lifts of u, and the γ̃u,j are
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Figure 13: Two components of ΓG(π) with lifts of the Nielsen path u

all lifts of γu. These particular lifts can be concatenated and reduced to ob-

tain a directed line of the form ˜̀
a = R̃−1

ε F̃−1Ẽγ̃u,1γ̃u,2γ̃u,3 . . . which is a lift of

an annular FixN -line `a for π.

Figure 14: A lift of an annular FixN -line to G̃ in case (a)

Let Rε and γu be the images of R̂ε and γ̂u under the covering map to G. The

loop γu is contained in G0 as it is a Nielsen path, and the ray Rε is contained
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in Gi because u is. Therefore `a satisfies the requirements of Claim 1, and so

d does not flip the edge ε and x may be assumed trivial.

Similarly, in case (b), we will concatenate lifts of the lines R̂−1
ε F̂−1Êûûû . . . and

. . . û′û′û′ε̂uR̂u in ΓG(π) to obtain the FixN -line `b represented by R̂−1
ε F̂−1Êε̂uR̂u

and find a contradiction by considering its image under δ. In this case, choose

a lift ˜̀
b of `b of the form R̃−1

ε F̃−1Ẽε̃uR̃u, and let Rε, εu, and Ru be the corre-

sponding edge and rays in G.

Before moving on, note that the line represented by R̂−1
ε F̂−1Êûûû . . . satisfies

the requirements of Claim 1 to show that ε is not flipped by d. We will rely

on this fact to complete the proof in this case.

Figure 15: A lift of an annular FixN -line to G̃ in case (a)

By assumption, Rε is contained in Gi. If εu is contained in Gi, then Ru is as

well, and we can apply Claim 1 to `b to show that d does not flip the edge

ε and x may be assumed trivial. If εu * Gi, then we may choose a different
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such edge and ray in Cu to serve as εu and Ru. If none of the edges leaving

ι(ε) is contained in Gi, then this means that in the component C of Gi+1

that contains ε and u, no other edges emanate from ι(ε) = ι(u) = ι(ε), and so,

because ε is not flipped by d, x is a power or root of u. The fundamental group

of C is a free factor FC , and d’s restriction to C represents δ’s restriction to

the conjugacy class of FC . But d is homotopic to the identity map on Gi+1, a

homotopy given by unwinding the twisting of ε around x. Choose a homotopy

of G that performs this unwinding while leaving all other components of Gi+1

fixed, so that we may assume x to be trivial.

This completes the proof that d(ε) = ε in Case 2.

Note: When performing the unwinding homotopy at the end of Case 2, twisting

may be added to edges that are higher up in the filtration of G. That twisting

will in turn be taken care of later in the induction. This point is illustrated

by the following example.

Figure 16: A graph G on which to demonstrate the unwinding homotopy

Example 6.2.
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Let G be the graph above, and let p : G → G be the CT described below,

representting a forward rotationless PG π ∈ Out(Fn). Suppose d below is a

representative of δ. In its current state, d is the identity when restricted to

G0(p) = a∪ b∪ c, but we assume that d has not been shown or homotoped to

be the identity on the edges ε or ε′. However, for simplicity, we will assume

that d does not append any suffix to ε or ε′. In other words, assume that y

and y′ (in the language of this proof) have already been shown trivial.

p :

a 7→ a

b 7→ b

c 7→ cb

ε 7→ a ε c

ε′ 7→ a2 ε′ c2

d :

a 7→ a

b 7→ b

c 7→ c

ε 7→ a3 ε

ε 7→ a−5 ε′

We must make a choice whether to homotope d to be the identity on ε first or

on ε′. Choose to work with ε first and perform the unwinding homotopy on the

graph G1 = a∪b∪c∪ε to force d to be the identity on this subgraph. However,

this homotopy affects d’s action on ε′, resulting in the modified version of d

below.

d :

a 7→ a

b 7→ b

c 7→ c

ε 7→ ε

ε 7→ a−8 ε′
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In this example, when we move up the induction to ε′, we do not need to

use such an unwinding: we can show δ trivial using the annular FixN -line

represented by R̄′ε̄′ εR, where R and R′ are the eigenray representatives given

by iterating the edges ε and ε′ under p.

Case 3: One of u and v is trivial, and the other is a nontrivial Nielsen path.

Assume that u is the trivial one; again, the other possibility is symmetric. If

ι(ε) is contained in G0, then we are done, as ε is then also contained in G0 and

so is fixed by assumption. If ι(ε) is not contained in G0, then by Claim 2, we

know that x is trivial, and we may focus on y.

Because u is trivial, ε is not subdivided for the CT structure of p, and we will

consider the p-fixed vertex ∗ = ι(ε), and the component C∗ of ΓG(π) corre-

sponding to its Nielsen class. Because ε is a linear edge of G, by Lemma 3.21,

C∗ must contain a lollipop consisting of a lift ε̂ of ε with a closed lift v̂ of v

at its terminal endpoint and a lift ∗̂ of ∗ as its initial endpoint. Because ∗

is not contained in G0, there cannot be any tight loop based at ∗̂ other than

roots and powers of ε̂v̂ε̂−1. However, because the lifts of π corresponding to

this component of ΓG(π) must be principal, it follows that there is at least

one growing edge ε∗ and corresponding eigenray representative R∗ based at ∗.

This edge and ray lift to an edge ε̂∗ and R̂∗ based at ∗̂ in C∗. If none of the

growing edges based at ∗ is contained in Gi, then ∗ = ι(ε) is not contained in

Gi, a contradiction. So we may assume we have such an edge ε∗ so that it and
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R∗ are contained in Gi.

From here, the argument is much the same as in Case 2. Consider the com-

ponent Cv of ΓG(π) corresponding to the Nielsen class of v. If Cv contains

any loop γ̂v that is not homotopic to a lift of any root or power of y, then we

may use the annular FixN -line represented by R−1
∗ ε γvγvγv . . . and Claim 1 to

show that ε is not flipped by d and that y may be assumed trivial. If there is

no such γ̂v, then there must be a collection of growing edges iterating out to

representatives. If any of these growing edges is contained in Gi, then we have

an annular FixN -line with which we can apply Claim 1. If none of the edges

is contained in Gi, then d’s restriction to this Gi+1 is homotopically trivial. In

any case, we may assume d does not flip ε and that y is trivial, and so we have

that d(ε) = ε.

Case 4: One of u and v is trivial, and the other is a non-Nielsen path.

Here again, we assume u is trivial without loss of generality. Then by Claim 2,

y is trivial. To show x is trivial, once more consider the component C∗ of

ΓG(π) corresponding to the Nielsen class of the fixed initial vertex ∗ of ε. In

this case, C∗ must contain an eigenray representative R̂ε based at the terminal

endpoint of a lift ε̂ of ε.

If there is based at ∗̂ = ι(ε̂) a loop γ̂ that is not homotopic to a lift of any root

or power of x, then the FixN -line represented by . . . γ̂γ̂γ̂ε̂R̂ε can be used to

show that ε is not flipped by d and that x may be assumed trivial by Claim 1.
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If no such γ̂ exists, then either there is a growing edge in Gi with which we

can apply Claim 1, or there is no such edge and we can unwind the twisting

as in other cases.

Case 5: Both u and v are trivial.

In this case, we will need to take note of the locations of the initial and

terminal endpoints of ε. For instance, if both ι(ε) and τ(ε) are contained in

G0, then ε is in G0 as well, and our job is done. Similarly, if neither ι(ε) nor

τ(ε) is contained in G0, then both are trivial by Claim 2. Therefore, the only

remaining possibility is that one is in G0 and the other is not.

Assume that ι(ε) ⊆ G0 and τ(ε) * G0, as once more, the other case is sym-

metric. By Claim 2, we know that y is trivial, so we must only check x. Once

again, consider the component C∗ corresponding to the Nielsen class of any

point ∗ of ε. (Every point of ε is fixed by p.) In this case, all we know a priori

is that C∗ contains a lift ε̂ of ε.

Because of the positions of the two endpoints, based at ι(ε̂) we have only loops,

while based at τ(ε̂) there are only infinite rays. As in the proof of Claim 2

and in Case 3, there must be a growing edge ε∗ and corresponding eigenray

representative R∗ based at τ(ε) that are contained in Gi, or else τ(ε) would

not be contained in Gi. Let ε̂∗ and R̂∗ be the lifts of ε∗ and R∗ to C∗.

If there is any loop σ̂ based at ι(ε̂) that is not homotopic to a lift of any root or

power of x, then Claim 1 applied to the FixN -line represented by . . . σ̂σ̂σ̂ε̂ε̂∗R̂∗
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shows that we may assume ε is not flipped and x is trivial. If there is any other

component Cx of ΓG(π) which contains a closed lift of x, then we can follow

the argument of Case 2 and check if Cx also contains any loops or rays which

will be carried by Gi and so enable us to apply Claim 1. If there exist no

such loops or rays in either C∗ or in another component Cx, then the lollipop

composed of the edge ε and the loop x are isolated in Gi+1, and we can use

our unwinding trick once more. Therefore, we may assume that both x and y

are trivial in any case.

This completes the proof that we can construct d representing δ so that d(ε) = ε

in all possible cases, and so we have that d is the identity when restricted to the

subgraph Gi+1. Applying induction shows that d as constructed is the identity

on each of our subgraphs in turn, and in particular on Gt = G. Therefore, δ

is the identity outer automorphism.
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