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ABSTRACT 

The Impact of Error on Offender Risk Classification 

By Aaron K.T. Ho 

 
Dissertation Director: Todd Clear 

 

In criminal justice, offender risk classification seeks to divide individuals into 

different groups, normally so that varying levels of program treatment, custody, or 

supervision can be effectively and optimally allocated.  The goal of effectively separating 

offenders based on prearranged criteria, however, is often thwarted by error problems, 

resulting in the misclassification of individuals.  How the initial error problems 

eventually translate into final misclassification is not completely understood.  Thus, the 

dissertation attempts to model the effects of error on the tolerance of offender risk 

classification instruments.  Specifically, different properties and characteristics of 

classification devices are analyzed to understand their impact on the transfer of error 

from initial to final classification phases.   

Suitable risk data and instruments that would facilitate the testing of all proposed 

research questions and hypotheses in the current study are not readily available.  This is 

because, in order to explore the different facets of the proposed inquiries, specific 

situations are requisite- and these particular situations may be easier tailored into a 

fabricated data than to be found in the real world.  Thus, relying on both conceptual data 

and actual risk data, random and systematic error are simulated and injected into each 
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risk instrument to gain insight onto how unreliability and invalidity statistically impact 

classification.  

The risk data are engineered using Monte Carlo Simulation: construction methods 

making use of random draws from an error distribution and multiple replications over a 

set of known parameters. This methodology is particularly relevant in situations where 

the only analytical findings involve asymptotic, large-sample results.   Monte Carlo 

Simulations enables the construction of multiple datasets in a “laboratory setting” that 

would simulate data in the real world.  This allows evaluations concerning the impact of 

different risk properties on the transfer of error to be made.  

For the current study, two main questions are asked: 1) what is the impact of error 

in risk data on overall classification outcomes; and 2) how does such error impact validity.  

The study found that risk tools generally have a low tolerance for error.  The injection of 

10 percent error into risk assessment information produced 25 to 40 percent error in 

classification outcomes.  However, the injection of random error only minimally reduces 

classification validity by causing the subgroup recidivism/base rates for each category to 

mildly shrink towards the mean.  Different risk tools and factors play a critical role in 

determining an instrument’s sensitivity to error.  Specific risk properties such as 

dichotomous risk items, having fewer risk categories, risk items with lower weights, and 

having more risk items reduce the sensitivity of error in risk tools. A risk tool’s tolerance 

for error is, thereby, controlled by a confluence of factors.  

This dissertation facilitates a better understanding of the interplay between error 

in risk information and error in classification outcomes.  The findings improve 
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knowledge of the sensitivity of error in offender risk classification instruments.  

Furthermore, it explains how the sensitivity of error is aggravated or mitigated by the 

inclusion of different common risk device properties.   
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Chapter 1 

Introduction 

 In biology, classification refers to the arrangement of living organisms into 

different groups due to their similarities and differences.  Separating organisms into 

different classes or families helps scientists understand what different species have in 

common with one another.  The classification of offenders is similar.  In criminal justice, 

offender classification refers to the disaggregating of offenders into groups of individuals 

with similar attributes.  Classification helps criminologists divide offenders into 

meaningful groups to serve a specific purpose, which will depend on the goals of 

agencies (Champion, 1994).  Based on a scientific model, it allows offenders to be treated 

as members of groups for which there is an experience base (Clear, 1988).  The actions of 

other members of the group to which they belong form this experience.  Without the 

ability to group offenders, science in the use of classification is of no help to practitioners 

in structuring decisions (Clear, 1988).    

 Misclassifications or the incorrect placement of individuals can occur if sufficient 

error enters to distort classification.  However, initial error does not necessarily translate 

into final misclassification- this will greatly depend on the sensitivity of the classification 

instrument to error.  In other words, the initial quantity of error may or may not be 

commensurate of the amount of error that is experienced in the final classification phase.  

Many factors such as base rate, distribution of data, numbers of classification categories, 

and number of classification items are speculated to have an impact on the sensitivity of 
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classification instruments.  Hence, a primary purpose of the dissertation is to model the 

differential effects of such factors on the sensitivity of error in classification devices. 

 The next chapter will discuss the potential sources of error that may disrupt the 

function of classification outcomes.  There are generally two sources of error: validity 

and reliability.  Validity involves the low correlation found between measures and events, 

while reliability involves the consistency to which information is accurately reported 

(Gabrill & Shlonsky, 2000).  In particular, error issues are comprised of inaccuracy of 

offender information, staff bias, definitional dilemmas, inability to identify risk factors, 

etc.  These errors will cause the increase or decrease in an individual’s risk score.  

However, the change in risk score, consequent of the error’s initial impact, may or may 

not necessarily affect the individual’s final placement in a risk category.  The relationship 

between initial error and final impact on classification outcome is called sensitivity.   

Importance 

 With the growing amount of research on high-rate chronic offending, many states 

began to develop and use classification systems with some degree of regularity 

(Champion, 1994).  The idea that a sizeable portion of criminal activity can be attributed 

to a small portion of offenders encouraged the proliferation of preventative measures and 

early identification (Jennings, 2006).  Research has also shown that the increased 

monitoring and surveillance of high-risk offenders by law enforcement can increase rule 

compliance by enhancing the certainty of punishment (Hagenbucher, 2003).  Fueled by 

this reality and the paucity of resources, classification quickly grew to become a 

cornerstone in corrections and the criminal justice system.   
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Classification is of fundamental importance in almost every aspect of the criminal 

justice system.  Whether it is conscious (manifest) or unconscious (latent), criminal 

justice practitioners constantly form decisions about individuals using classification 

(Champion, 1994).  In a technical sense, local law enforcement heavily relies on 

classification that is based on some preconceived notions about what combination of 

attributes offenders typically have.  The decision to arrest or to initiate investigation 

during a routine patrol is fueled by some calculation of risk that classifies an individual or 

a particular situation.  And in a much more formal sense, courts and practitioners 

regularly use classification instruments to inform decisions about: 1) whether to set a bail 

bond, release offender based on recognizance, or deny b; 2) prosecutorial decision 

making; 3) inmate management; 4) periodic reassessments of inmates to understand the 

change in dangerousness; and 5) early release decision or parole (Champion, 1994).  

Thus, offender classification is a cornerstone to our criminal justice system that which 

ensures efficiency in every step of criminal justice decision-making. 

 Due to the paucity in resources, the use of offender classification is necessary for 

an efficient criminal justice system.   The need to objectively identify future risk among 

offenders emerged from the incapacity of the criminal justice system to adequately 

provide correctional supervision to the entire criminal population (Champion, 1994; 

Lowenkamp et al., 2001).  The criminal justice system supervises over 7 million 

offenders each year (Glaze & Bonzcar, 2006).  However, notwithstanding the system’s 

ability to accommodate prison spaces for such a large population, there aren’t enough 

prison cells.  As a result, the individual differences across offenders and their individual 
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propensity for future offending make it imprudent to take a “one-size-fits-all” approach to 

correctional treatment.   

Furthermore, assigning a uniform punishment to different offenders irrespective 

of crime severity or individual risk is against the principle of justice and fairness (Clear, 

1988).  Thus, the criminal justice system has a daunting task of identifying the risk of 

every offender in order to determine the appropriate correctional supervision each 

offender needs.  And perhaps more importantly, individuals will benefit little or even be 

harmed when program treatment is a poor fit, such as when “low risk” offenders are sent 

to boot camp.  In meta-analytic studies of the effectiveness of various crime policies, 

Cullen and Gendreau (2000), Sherman et al. (1997), and MacKenzie (2000, 2006) 

consistently found that mistakenly placing low risk individuals into   
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high-risk treatment programs will increase propensity for offending.  If one of the 

primary goals of offender classification is to reduce future offending, such mismatch in 

supervision will have the opposite effect on crime.  Therefore, agencies greatly benefit 

from using classification systems because they allow resources and staff hours to be 

allocated more effectively and optimally (Holsinger et al., 2003; Clear & Gallagher, 

1985). 

Purpose 

 Offender classification has many functions and purposes; such purposes 

determine how the individuals are divided.  Thus, the criteria used to divide the groups 

will vary much depending on the context in which the classification device is used.  

Champion (1994) describes twelve specific functions of risk classification used in 

criminal justice, which include: program placement of sentenced offenders, identify 

offender needs for specialized treatment, early release or selective incapacitation, to 

determine initial custody level or type of supervision, to evaluate behavioral change in 

inmates, and to evaluate the need for more prison construction.  Thus, based on the 

specific goals and functions set forth by an agency, classification instruments will contain 

different criteria for separating groups.  For instance, offender classification systems 

contain items related to risk if their purpose is to place individuals into different levels of 

custody.  If the purpose is rehabilitative, the classification instrument will include needs 

items that could sort individuals based on their needs.  
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Classification for Risk 

One of the most common forms of classification, especially in correctional 

contexts, is to group people based on “risk.”  Offender risk classification is based on risk 

measurement, but the purpose of risk classification is not to predict individual behavior 

but to use prediction devices to sort people into risk groups.  The distinction is key. 

Many definitions exist for the term offender risk classification, but generally, 

classification identifies individuals for grouping.  In attempting to define the term, some 

scholars have placed emphasis on the procedural aspect of classification.  Gottfredson 

(1987) stated that classification refers to the separation of groups based on some system 

or rules that have already been determined, and similarly, Champion (1994) defines 

classification as the procedure of grouping persons based on their specific characteristics.  

Yet others have embraced a definition that emphasizes more on the purpose and goals of 

risk classification within the correctional system.  Sechrest (1987) argues that the 

definition of risk classification is often vague about the goals of classification.  

Concomitantly, Andrews and Bonta (2003) and Brenan (1987) argue that classification is 

a means of maintaining institutional safety and a means to effectively implement 

correctional interventions.  Despite the variety and subtlety in the interpretations of the 

term offender risk classification, there is no universal definition. 

Function and Classification Characteristics 

The properties of a classification device vary depending on the purpose set forth 

by the agency using it.  The designer of the instrument will attempt to “tailor in” specific 

properties to regulate or manipulate stipulations for each group, subgroup base 
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rate/selection ratio, group sizes, number of groups, number of classification items, etc., 

depending on the context and goals.  This section explains how the manipulation of these 

properties is directly related to the intended purpose of the agency.  It is equally 

important to understand how these properties affect the utility of classification 

instruments and the sensitivity of error.   

Classification devices, depending on their goals and purposes, contain different 

discerning attributes for dividing offenders into subgroups, often called “factors.”  Such 

discerning attributes or factors that form the points of comparison and contrast among the 

groups are not randomly chosen.  Instead, the factors used to sort offenders into groups 

are linked to a purpose, dependent of the context in which it is used.  The group 

characteristics can tell us why and how individuals are classified.  As an obvious example, 

the age of an offender will constitute the discerning attribute used to sort individuals if 

the classification system seeks to create age groups (i.e. juveniles, adult, elderly) for the 

purpose of differentially allocating resources based on the unique needs of each age 

group.   

In criminal justice, the primary purpose of offender risk classification is to 

classify offenders so that varying level of supervision or program intensity can be 

effectively and appropriately assigned (Holsinger et al., 2003).  Offenders are divided 

into groups based on risk or the propensity for future reoffending.  The attributes used to 

form the criteria for these groups are characteristics found to have some correlation to 

risk, called “risk factors.”  Thus, a classification instrument used in a criminal justice 

situation is usually comprised of variables that are statistically related to a criterion such 

as re-arrest (Glaser, 1987).  More recent classification systems have evolved to include 
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other sets of discerning attributes, such as need and responsivity (Andrews and Bonta, 

2006).  They are meant to group people according to need for supervision, one aspect of 

which is risk.  Such classification devices are designed to fulfill a wider variety of 

specified purposes than mere risk grouping.  Despite this theoretical departure from 

earlier risk devices to include other purposes in offender classification, the basic purpose 

remains the same; offender classification devices attempt to classify and divide large 

groups of offenders based on some prearranged set of discerning attributes, whether it is 

risk, need, or responsivity. 

It is common, especially with risk instruments, to use a combination of risk 

factors that are added up into a single risk score.  Each person being classified gets a risk 

score.  The risk grouping is determined by “cut-off” scores.  Thus, a hypothetical 

population’s risk scores may range from 0-50; cut-offs may create the following risk 

groups: 0-12= Low, 13-30= Moderate, 31-50= High.  

The population will have a “risk” base rate, which is the frequency of the 

occurrence in a population (Gottfredson & Moriarty, 2006).  For example, if it is being 

assessed for risk of a new arrest, and 40% of the group experiences a new arrest, the base 

rate is 40%.  When grouped by risk, each group will have a subgroup base rate.  For 

example, those scoring “low” on risk might have a base rate of 20%, for experiencing a 

new arrest, “moderate” 40%, and “high” 60%. 

The determination of cutoff scores and subgroup base rates is contingent on the 

purpose.  After identifying a criterion such as parole violation, re-arrest, or reconviction, 

the base rate for the criterion is ascertained.  The base rate will then aid the device 
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designer in dividing the group.  Taking into consideration of the totality of the 

circumstances, the designer will then draw artificial lines or cutoff scores, which set the 

stipulations for each classification category.  Typically, the cut-offs will be chosen to 

ensure that the sub-base rates for each subgroup are vastly and meaningfully different so 

that different program treatment can be assigned.  The overall base rate, thus, has a strong 

influence on how the categories will be created and how the offenders will be divided.   

However, the base rate is not the sole determinant of cutoffs as many other factors 

are considered.  For instance, if the cutoff scores in the example above create a deep 

positive skew, where most individuals are pushed into the high risk category, this could 

be problematic if there are not enough program treatment slots for the high risk group.  

Here, the group sizes created by the cutoff scores do not match the program capacity.  To 

alter the cutoff scores in a way that maximizes the efficiency of treatment of individuals 

in this agency would mean that less weight should be given to the actual subgroup base 

rates so that more focus can be given to group sizes.  Thus, in this situation, the designer 

would have to consider the availability of resources in the agency, in addition to the base 

rates, before drawing the cutoff scores.   

Classification device designers also have to consider the number of categories to 

be created.  It is not uncommon to see classification devices divide individuals into five 

or more categories (Baird, 2009).  The question is whether it is necessary and whether it 

is circumstantially beneficial.  If more effective therapeutic program treatment options 

are available, then the formation of more groups is warranted.  However, Baird (2009) 

cautions that most agencies that utilize classification devices to classify offenders into a 

large variety of categories do not necessarily have enough treatment options that 
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correspond with every individual group.  Thus, the number of groups a classification 

device seeks to create is dependent on the resources available in the agency.   

The number of factors in a risk instrument is another classification property that is 

flexible.  There is some disagreement about the added utility of incorporating multiple 

interconnected risk items into risk classification devices.  Historically, the earlier 

classification devices were concise, typically consisting of fewer than a dozen factors 

(Baird, 2009).  However, recent classification instruments have been comprised of many 

more items.  The LSI-R (Andrews & Bonta, 1995) and YASI (Orbis Partners, 2008), for 

example, contain 54 factors and 117 factors respectively.  The multitude of factors in 

recent instruments represents a sharp departure from the content, format, and goals of 

earlier instruments. 

The creators of the LSI-R justified the inclusion of many more variables by 

arguing that classification devices should be competent in “risk reduction” (Andrews & 

Bonta, 1995).  Traditionally, risk assessment instruments relied solely on static (i.e., 

historical, unchangeable) factors such as criminal history, which can be useful for 

classification purposes but were constrained by an inability to contribute to the effective 

treatment planning and ongoing evaluation of offenders (Bonta and Andrews, 2007).  

More recent risk assessments (e.g., Psychopathy Checklist-Revised or PCL-R, Violent 

Risk Appraisal Guide or VRAG, Self-Appraisal Questionnaire or SAQ; Loza & Loza-

Fanous, 2001) are risk/needs assessments that include both dynamic risk factors (e.g., 

criminal attitudes and companions) and static factors.  Dynamic questions assess 

offenders’ current needs (e.g., present employment, criminal friends, family relationships, 

etc.) to help decision makers gain insights on the offenders’ current and ever changing 
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situation, which is particularly useful in guiding the delivery of rehabilitation service, and 

is specifically aligned with the goals of “risk reduction” (Andrews & Robinson, 1984; 

Motiuk, Bonta & Andrews, 1990).	
  	
  	
  

However, there is sufficient evidence available to suggest that relatively brief risk 

indices outperform longer models (Wagner, 2008).  Similarly, Austin, Coleman, Peyton, 

and Johnson (2003) found that relatively few of the LSI-R factors are significantly 

correlated with outcomes.  When comparing the 42-factor LC/CMI with the 11-factor 

risk assessment instrument used in Nevada (Onifade, Davidson, Campbell, Turke, 

Malinowski, & Turner, 2008), Baird (2009) found that shorter devices were able to sort 

individuals into groups with larger differences in subgroup base rates and better divided 

individuals into more useful and meaningful groups by significantly shifting individuals 

away from high risk level.  Even studies done by proponents of the LSI-R models 

frequently determined that most risk factors demonstrate little or no relationship to 

recidivism (Flores, Travis, & Latessa, 2004).  Therefore, it is evident that the purposes 

for the use of classification instruments affect the number of factors that are used.  For 

the LSI-R, the inclusion of “risk reduction” into the goals of classification systems 

increases the number of factors, even when its ability to effectively classify individuals 

can be undermined.   

Classification and Prediction 

Prediction research in the field of criminology is primarily conducted to aid 

criminal justice practitioners in the use of risk classification systems (Jennings, 2006).  

By understanding the “future state of behavior” (Gottfredson, 1987, p.2), prediction 
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research provides parole boards and correctional staff with the likelihood that an offender 

will re-offend, as well as supplying information about the likelihood that the offender will 

abscond or jump bail (Farrington & Tarling, 1985).  Therefore, risk classification is 

constructed based upon research and principles in prediction (Jennings, 2006).  When 

making a prediction, there are four possible outcomes.  They are: 1) true positives or 

cases that are correctly predicted to succeed, 2) true negatives or cases that are correctly 

predicted to fail, 3) false positives or cases predicted to succeed but do not, and 4) false 

negatives or cases predicted to fail, but do not.  Together, these four categories comprise 

all the possible prediction outcomes. 

Traditionally, validity in offender risk assessment was measured by the degree to 

which “predictions” about individuals are correctly made.  The proportionality of true 

positives and true negatives against false positives and false negatives is measured to 

evaluate the validity in “predictions” (Ruscio, 1998).  When more cases fall into the true 

positive/true negative categories, the instrument is deemed more valid.   

On the other hand,” classification” is not “prediction.”  Rather, classification is 

grouping of people based upon risk.  In a high risk group, it is known that some people 

will not fail.  But this group is also known to have a higher rate of failure than any other 

risk groups.  Thus, it gives a clear indication that certain individuals need more attention 

and services, because cases in this designation are inclined to “fail” at higher rates than 

individuals in other categories (Baird & Wagner, 2000).  Therefore, while “classification” 

seeks to divide individuals, the “prediction” aims to forecast human behavior with 

precision (Baird & Wagner, 2000).   
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It is fundamentally important to understand that the dissimilarities between 

“prediction” and “classification” should not overshadow their shared commonalities.  

“Risk Classification” is supported and built upon prediction research and methods (Clear, 

1988); that is, classification variables or factors are carefully selected based on research 

in risk prediction.  However, the process of dividing offenders has grown to be known as 

“classification” rather than “prediction” in part because of our inability to accurately 

identify individuals who will reoffend.  Because “risk prediction” intimates a steadfast 

ability to see into the future and because human behavior is inexplicable, unpredictable, 

and complicated, Clear (1988) cautions us not to map rules onto the whole range of 

human behavior in some hard and fast manner, such as in “prediction”.  The science is 

not wrong, but the quality of science of human behavior is so limited that human 

behavior remains too much a mystery (Clear, 1988).  Thus, the concepts underlying 

classification represent a sharp departure from the traditional sense of prediction (Baird & 

Wagner, 2000).   

Risk instruments are not precise, and their ability to identify individuals who will 

fail is somewhat weak.  Validity can be measured by the “hit rate” or the correct 

identification of failure (true positive) and non-failures (true negatives) (Ruscio, 1998).  

For example, Schlager (2005) who validated the LSI-R in New Jersey found that the 

accuracy of correctly identifying true positives and true negatives was slightly better than 

pure chance.  Also, Zhang et al. (2007) used the Area under the ROC Curve to assess 

predictive validity of risk instruments.  AUC varies between .50 (pure chance) and 1.00 

(perfect prediction).  AUC less than .60 is considered weak, .70 moderate, .80 strong 

(Tape, 2003).  Zhang et al. (2007) confirmed that most validated risk models are only 
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weakly to moderately accurate (.60-.70 AUC).  Similarly, Gendreau et al. (1996) 

conducted a meta-analysis using Pearson r to measure effect sizes in popular risk 

selection devices and found the following mean r: .35 (LSI-R), .29 (SFS), .27 (.08), .28 

(PCL), and .16 (MMPI Based).  This shows that these instruments provide only weak to 

moderate predictors of recidivism.  Therefore, objective offender risk assessments, 

though deemed much more accurate and predictive than clinical judgment, are only weak 

to moderate predictors of failure (Gottfredson, 1987).   

The problem of accuracy in prediction is even more pronounced for rare events.  

This is the case because when events are rare in the population, even those who are of 

high risk will be unlikely to experience the event.  For example, if a base rate is 5%, 

those of high risk of that event will still be unlikely to experience it.  Thus, there will be a 

great deal of false-positive prediction.   

 “Offender risk classification” is designed to help circumvent the accuracy issue 

posed by predicting rare events in individuals (Baird, 2009).  Risk classification argues 

that the primary purpose of risk devices is to assign individuals to different groups based 

on some identified characteristics so that recommendations for proper program treatment 

can be made.  As long as the risk device can meaningfully form different groups, it will 

have served its intended function.  Based on this definition of risk classification, the 

importance of accurately identifying individuals who will recidivate is downplayed 

dramatically.  When a prediction is wrong, such as when an offender is predicted to fail 

and does not (false positive) or when an offender is predicted to not reoffend and does 

(false negative), the instrument is considered flawed.  But because classification does not 
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predict individuals but rather creates groups, the prediction problem is considered less 

severe.   

A risk device can aptly classify individuals into groups, but it cannot fulfill the 

responsibility of predicting risk.  It is a common mistake to think that risk classification 

devices predict individuals.  They do not.  They merely create groups of people with 

different risk rates.  Together, the function, utility, and purpose of offender risk 

assessment instruments have been misunderstood.  The distinction between classification 

and prediction is important for the dissertation because the measurement of validity for 

risk devices in each context is vastly different.   

Accuracy/Prediction Issue 

In risk assessment, error is unavoidable because it is naturally a part of risk 

instruments.  From an econometric point of view, disturbance can come from three 

sources: from the omission of the influence of innumerable chance events, measurement 

error, and human indeterminancy (Kennedy, 2008).  The omission of the influence of 

innumerable chance events refers to the inability to include in a causal explanation the 

net influence of a large number of small and independent causes.  Measurement error 

refers to the inability to accurately measure a variable that is being explained, either 

because of data collection difficulties or because it is inherently unmeasurable.  Finally, 

human indeterminancy refers to the belief that human behavior is such that actions taken 

under identical circumstances will differ in a random way.  A meticulous researcher may 

be able to minimize error derived from the first two sources, but when it comes to 

randomness, it is unpreventable.  Randomness refers to the notion that the same causes do 
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not always yield the same effect in the real world, and across different settings.  That is, if 

different people are placed in the same situation time and time again, the reactions, 

responses, and outcomes will vary due to randomness.  Thus, error is inevitably 

intertwined with any risk device (Gottfredson, 1987).  This section explains the 

prediction model and its inherent problems as an introduction to other problems that are 

relevant to risk classification.  It is, however, important to remain cognizant of the 

distinction between classification and prediction.  

From “sensitivity” and “specificity” perspectives, error that could undermine the 

integrity of a prediction study has two general effects: false positives and false negatives 

(Gambrill & Shlonsky, 2000).  In criminal justice these two types of error are commonly 

known as 1) risks to the individual and 2) risk to the community (Wilkins, 1985).  

False negatives (FNs) result in costs to the victims of crime and the community.  

By wrongfully categorizing an as a non-recidivist, this error would come at the cost of 

having more victimization.  Not only are victims directly impacted, but the community as 

a whole has to pay for false negative errors.  Clear (1988) explains, as communities 

experience more crime, the quality of life is diminished, neighborhoods become less 

wholesome, and people begin to fear each other.   Because of the political and social 

costs of false negatives, many prediction instruments would rather minimize their 

occurrence, even though there will be tradeoffs or consequences that directly result in the 

increase in false positives.   

False positives (FPs) are equally deleterious to the fabric of society- their cost 

affects other citizens.   Erroneously categorizing someone as a recidivist forces 
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unwarranted levels of control.  This, in part, is what contributed to the spike in prison 

population in the 1990s when legislature passed laws that applied a higher level of risk 

assignment to convicted drug dealers (Sherman, 1997).  The social and economic costs 

are great.  Tax-payers must share the burden of paying for expensive correctional control 

( VanVoorhis & Brown, 1996).  Moreover, unnecessary controls are a social cost to the 

individuals whose freedom is being taken.  More recent research indicates that a 

mismatch between an individual’s risk and level of program treatment can also have 

negative effects.  For example, many meta-analytic studies on the effectiveness of 

different crime policies found that assigning first time offenders to boot camp increases 

future offending (MacKenzie, 2000; Sherman, L. 1997).   

Clearly there should be every attempt to minimize the proportions of both false 

positives and false negative.  But no matter how small the percentage of risk of incorrect 

classification, there will always be an issue of trade-off of false positives against false 

negatives.  For example, if we over insure against recidivism, we generally tolerate more 

false positive error and the community will be saved some crime.  However, this comes 

at the price of increased risk of individual offending.  If, on the other hand, we are more 

willing to tolerate crime in the community, there would be more risk to individual 

freedom.  Therefore, the admittance of error is inescapable- the researcher must deal with 

error and decide on an acceptable level of FNs and FPs (Clear, 1988).  

The relationship between false negatives and false positives is complex.  In 

Statistical Prediction in Corrections, Clear (1988) puts these concepts in perspective for 

us.  Drawing from a hypothetical scenario where 1,000 offenders are subjected to a 

prediction of future risk in felony arrests, Clear (1988) estimates the distribution of error.  
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Based on a 20 percent base rate, meaning that absent intervention, there will be 200 

offenders rearrested for a felony.  The following figure illustrates this distribution. 

Table 1: Prediction Outcomes 

 
 
Predicted 
Outcome 

                                            Actual Outcome 
 Failure Success Total 

200 
800 

Failure (A) 100 (B) 100 
Success (C) 100 (D) 700 
Total                       200                           800 

 

If we assume that our prediction instrument can accurately identify one-half of 

failures in the group, we will have 200 erroneous predictions divided evenly between 

false positives and false negatives.  According to Gottfredson (1987), a 50 percent true 

positive rate is considered good for most prediction devices.  Within a criminal justice 

context, the judge would have erroneously incarcerated half of the 200 offenders with a 

predicted outcome of failure.  Moreover, another 100 offenders would have been 

erroneously released.  Thus, the inherent problem with risk devices is that error is 

unavoidable. 

Both types of error are not weighed the same.  One difference between false 

negative and false positives is that the former is more visible to the public.  The public is 

especially sensitive to false negatives because these are the types of error they can see 

and fear the most.  On the other hand, false positives, which result in erroneous 

incarcerations, are a severe intrusion into someone’s life, but because the public does not 

see the prevalence of it, they don’t appreciate the magnitude of the problem.  Thus, there 

is constant pressure on the criminal justice system to over-predict risk in offenders or to 

reduce false negatives at the cost of increasing false positives.  This is the problem that 
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confronts risk device designers- they must balance out the two types of error while 

attempting to assuage the public’s sentiments towards false negatives because of their 

lack of objective knowledge about crime.    

 The level of error can be altered to fulfill a particular goal, but it also comes with 

a high price tag.  For example, if we were to reduce false negatives by 50 percent in the 

above scenario, it can be accomplished, but it would increase false positives by 450 

percent.  The error distribution is drastically altered by the mildest attempt to reduce false 

negatives by 50 percent.  Stated differently, category (B) has now increased by 450 

percent.  The figure below illustrates the problem.  The numbers alone make the problem 

seem mild and acceptable, but if we put them into context, the criminal justice system 

will have to infringe upon the freedom of that many more people in order to insure a 

modicum of reduction in false negatives.  Whether a 50 percent decrease in false 

negatives outweighs the cost of increasing false positives by 450 percent is a separate 

philosophical debate.  Clear (1988) shows that it is statistically imprudent.   

Table 2: Prediction Outcomes (Continued) 

 
 
Predicted 
Outcome 

                                            Actual Outcome 
 Failure Success Total 

600 
400 

Failure (A) 150 (B) 450 
Success (C) 50 (D) 350 
Total                       200                           800 

  

Thus, practitioners must determine the extent and type of error they are willing to tolerate, 

given the instrument’s proclivity for false positive and false negative error.  The 

frequency of each type of error will dictate the amount and extent to which funding is 

allocated for programming and supervision.  Determining the proportions of the two 
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types of risk is paramount to ensuring that proper resources are allocated in keeping with 

the goals set forth by the criminal justice system.    

Validity within the context of risk prediction is typically measured with predictive 

validity tests.  As mentioned earlier, the true positive rates that are identified by such 

validity tests give an incomplete description of the problem of validity.  As important is 

the investigation of the true negative, false positives and false negatives that make up all 

the prediction outcomes.  In an ideal situation where an instrument is perfectly valid, 

there are zero cases for false negatives and false positives.  The increase in cases in these 

two categories will signify a gradual increase of invalidity in the instrument.  Though the 

prediction model and its related problems discussed here are not directly related to 

classification, it sets the stage for our understanding of other problems relevant to risk 

classification, such as the problem of base rate.   

Base Rates 

 The base rate for any given event is the frequency of the occurrence in a 

population, which is usually expressed in percentages or proportions (Gottfredson & 

Moriarty, 2006).  For instance, if we were to create a prediction device for parole 

revocation, the criterion would be parole revocation.  The base rate would be the number 

of failures compared to the entire parole population.  There are two major problems 

related to the base rate problem. 

 First, most statistical methods for measuring predictive accuracy in risk devices 

are sensitive to the base rate (Gottfredson & Moriarty, 2006).   This is the true offending 

rate for a specific criterion within the entire population.   Clear (1988) explains that 
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knowing the subgroup base rate is important because it lets us know “how high is high?” 

(p.21).   An instrument’s ability to accurately classify is of limited utility unless we know 

how often the event of interest (base rate) occurs for the subgroups.  He suggests that 

most selection devices are constructed independent of the actual base rate.   

 Gottfredson and Moriarty (2006) explain that knowing the true base rate is not 

possible.  In predictive analyses, researchers attempt to construct, validate, and assess the 

accuracy of risk instruments predetermined selections.  In other words, risk assessment 

instruments depend largely on actual offending statistics to find appropriate cutoff scores, 

selection ratios, etc.  The small differences between actual offending and the known 

offending rates could cause large margins of error in the instrument.  The current study 

acknowledges that there may be great discrepancies between such offending rates.  This 

notion is a primary justification for the study.    

The problem is that it is difficult to assess the true base rate for an event such as 

reoffending because the only offending rates that can be quantified are the ones that are 

known and visible.  Unreported crime itself produces a large discrepancy between the 

known base rate and the true base rate, thereby compromising accuracy in predictions.   

Second, the difficulty of predicting outcomes increases as the base rate diverges 

from .5 (Meehl, 1954).  That is, as the base rate increases or decreases from 50 percent, 

there tends to be more prediction error.   Borrowing from Gottfredson’s (1987) 

explanation of the problem, suppose that the base rate of parole failure is 20 percent.   

Given this information, if we make a risk prediction that no one will fail, we will be 

correct 80 percent of the time.  We will also be wrong 20 percent of the time- there is no 
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way of telling which 20 percent will fail.  Thus, by simply over-classifying all the 

offenders as non-failures, the error will be 20 percent, based on a 20 percent base rate. 

Now, if we assume that a strong prediction device was developed and has the 

ability to accurately predict parole revocation with 78% accuracy, which is far higher 

than the accuracy of most classification instruments, the issue becomes clearer.  Despite 

the superior accuracy in this hypothetical risk device, we would still be better off in 

expecting that no one will fail on parole if the base rate for the outcome is low.  In fact, 

there would be far less error in this case, if a risk device wasn’t used at all (Gottfredson, 

1987).  If the base rate is 5 percent, the blanket assumption that no offender will fail will 

be correct 95 percent of the time.  The predictive accuracy of not using any instrument 

will be 17% higher than the hypothetical risk device.  Thus, the base rate is an important 

mathematical component to consider, especially when the predicted events occur 

infrequently (Meehl, 1954).  Nonetheless, most contemporary research reporting neglects 

the base rate factor (Gottfredson & Moriarty, 2006).    

The base rate is an important component to risk prediction, but it also has 

important implications for risk classification.  Jenning (2006) says that the benefits from 

the expansion of prediction research directly enhance the effectiveness of classification 

devices because risk classification instruments are developed based on research and 

principles in prediction.  Thus, increasing our understanding of prediction problems will 

directly benefit the effectiveness of risk classification.    
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Selection Ratios  

The selection ratio is the proportion of people in a given population who are 

predicted to participate in an event of interest (Gottfredson, 1987).  If the criterion is 

parole revocation, for instance, the people who are identified to fail will make up the 

selection ratio.  The error associated with selection ratios is dependent on the base rate.  

Farrington and Tarling (1985) argue that the greater the discrepancy between selection 

ratios and base rates, the greater the problem with error.  Put differently, if a base rate for 

a criterion in the entire population is 5 percent and the selection ratio for a specific group 

is 50 percent, there would be higher levels of error than if both of these percentages were 

roughly equal.  This is similar to the low base rate problem that was discussed earlier.  

The divergence between these two ratios constitutes the problem associated with low 

base rates.   

This becomes a problem because more false positives will occur when the 

selection ratio is disproportionately higher than the base rate.  For example, as more 

offenders are predicted to belong to a high risk group, the probability that a greater 

number of offenders will be identified as posing risk when they actually do not will 

increase.  On the other hand, as the base rate increases, it is more likely that someone 

who was identified to be low risk will pose a risk- false negative.     

Cutoff Scores 

The cutoff score is important because it determines the selection ratio.  In other 

words, they are superficial cutoff points determined by the instrument designer to serve a 

particular purpose.  This score is used to create risk categories and will influence the 
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number of false negatives and false positives (Clear, 1988).  Social and political goals 

usually guide instrument designers in setting such thresholds for risk.  For example, if 

prisons are overcrowded, one could manipulate cutoff scores such that more offenders 

will be classified to low risk categories.  Conversely, a “get tough” policy may precipitate 

change in these scores such that more offenders are identified as high risk. 

Ideally, the rate of recidivism for each risk category should be substantially 

different from each other.  In other words, the cutoff scores determined by the device 

designer should partition the risk level categories so that high risk groups have higher 

recidivism rates than medium and low risk categories.  Though the creation of groups 

with distinctly different base rates is the commonly accepted goal, there is not a steadfast 

rule as to what numerical representation in the cutoff scores constitutes validity or 

invalidity.  The general rule for drawing cutoffs is that the subgroup base rates should be 

sharply different.  For example, validation studies in Nevada confirm that the LS/CMI 

risk instruments is valid when the base rate from the high risk level quadrupled the 

recidivism rates in the low risk categories, i.e. 9% in low, 24% in medium, and 45% in 

high risk level (Onifade et al., 2008).  Though a strict standard does not exist, cutoff 

scores that achieve such sharply different recidivism rates in risk levels are considered 

good.   

Invisible lines between risk categories are artificially drawn by selecting cutoff 

scores.  Device designers have much discretion in deciding where cutoffs between risk 

levels are drawn.  Thus, risk devices do not objectively identify risk, but instead, are 

influenced by a multitude of issues that may or may not have anything to do with actual 

risk.  Different cut-offs could be considered acceptable as long as different risk groups 
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contain starkly different levels of propensity.  However, the instrument would begin to 

lose its classification merits when cutoff produce sub-base rates that are not different 

(Van Voorhis & Brown, 1996).   To avoid this problem, Clear (1988) encourages 

systematic evaluations of cutoff scores and propensity for each risk group.  As mentioned 

earlier, budget limits, “get tough” policies, and social pressures can influence the criminal 

justice system.  These forces can also influence risk instrument designers, and thereby 

undermine the objectivity of cutoffs.   

Most risk devices seek to divide individuals into 3 or more levels of risk, but there 

is little practical utility for systems that divide individuals into, for instance, 8 categories 

of risk.  There are two reasons.  First, the levels of risk within a classification system are, 

sometimes, not aligned with any programmatic or service delivery feature (Baird, 2009).  

From a practice perspective, Baird (2009) suggests that we ask: what prediction is being 

made at mid-range risk levels?  In fact, employing a risk tool with multiple mid-range 

categories is disconcerting and irrational when an agency does not have varying levels of 

supervision to match the different risk groups.  Such disparities between an instrument’s 

classification and its actual application create a conundrum.  One could, however, make 

the argument that middle categories are designed to deal with the potentiality of error.  

The creation of multiple mid-range risk categories could be a ploy to circumvent blame 

for misclassifications.  Without the buffer category, a one point difference may cause an 

offender’s classification to go from high risk to low risk or vice versa, and thereby 

increasing the instrument’s sensitivity to error.  Classification systems may be much 

more sensitive to error once middle classification categories are removed. 
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Second, it may be more judicious and beneficial for agencies to ensure parsimony 

and limit the division of individuals into no more than 3 categories of risk.  Assuming 

that proper supervision could be matched to each risk group, the differences between the 

various levels of supervision may not be meaningfully different enough to justify having 

so many risk categories (Todd Clear, personal communications, 2013).  Beyond the basic 

requirement that risk classification and supervision should be matched, the type of 

supervision needs to have a direct link to risk reduction.  As such, it is a waste of 

resources to allocate different levels of supervision if there is no crime reducing impact.  

Assuming that, for instance, a low risk individual would receive no supervision, a 

moderate risk individual would receive supervision once a month, and a high risk 

individual would receive supervision twice a month, the classification system would only 

be useful if the “twice a month supervision” will have an actual impact on an individual’s 

proclivity for reoffending.  In reality, there only exist a handful of pragmatic responses 

that would effect any positive change.  Thus, one needs to ask two basic questions when 

considering the number of risk categories for a risk device.  They are: 1) is there a 

sufficient amount of varying levels of supervisions to which the different groups can be 

matched, and 2) Are the varying levels of supervision meaningfully different in their 

ability to reduce the likelihood of reoffending?       

Validity in Context 

On the most basic level, validity refers to the extent to which a concept, 

conclusion, or measurement is well-founded.  The threshold for validity, perhaps, is 

whether a classification device serves the intended purpose.  Holsinger et al. (2003) aptly 

show that many different classification instruments exist, and each is different in terms of 
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fulfilling certain needs of agencies.  It is strongly recommended that the instrument be 

compatible with the needs and goals of the agencies that use it (Holsinger et al., (2003).  

For instance, if there are budgetary cutbacks in a department where program treatment for 

high risk groups are lacking, a classification device that places the majority of offenders 

into this high risk group would no longer be valid.  Instead, the classification device 

should seek to shift offenders from high risk to lower risk categories (Clear, 1988).  This 

will reduce the constraint caused by the financial insolvency of the agency.  Thus, at the 

fundamental level, the capacity to fulfill an intended responsibility constitutes validity.   

Constructing Classification Devices 

 In order to better understand risk assessments and error, it is critical to understand 

how such instruments are designed.  Risk assessment instruments are created by using 

one of several standard statistical methods (Brennan, 1987), usually some form of linear 

regression analysis.  And though different statistical methods have been adopted, they 

appear to have roughly equivalent effectiveness in practice (Gottfredson and Gottfredson, 

1979).  Similar series of steps are followed in all competent design strategies for 

constructing risk classification (Clear and Baird, 1987).  The following is a summary of 

these steps. 

Steps in Design of risk Assessment Devices 

Step 1: Development of a Study Sample.  Using some type of official record, a 

representative sample of closed cases is taken to construct the risk instrument.  From 

these cases, the variables that are most commonly associated with the failure criteria (e.g., 
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reoffending) are coded (Gottfredson and Gottfredson, 1986).   The sample size should be 

large enough to create reliable estimates.  

Step 2: Dividing the Sample.  The cases that form the sample are then randomly divided 

into two groups, a “construction” subsample and a “validation” subsample.  The 

“construction” subsample will be used to develop the prediction model, where as the 

“validation” subsample is used to test the reliability of its estimates.  The validation 

process allows the designer to see whether the prediction outcomes are a product of 

“chance correlations”, which occur in the construction analysis (Clear, 1988). 

Step 3: Constructing the Model.  Using some statistical model such as a multiple 

regression, the variables that were previously selected from the cases are added together.  

The factors that are sufficiently correlated to the criterion variable are included in the 

“statistical model”, while the other variables are discarded. 

Step 4: Validating the Model.  Here, the newly formed “statistical model” is tested on the 

“validation” subsample for the purpose of ensuring validity.  This provides another 

opportunity to see whether the model is sufficiently correlated with the failure criterion.   

Step 5: Monitoring and Revalidation.  Steps 1 through 4 are periodically repeated to 

ensure that the model is updated to reflect the changes in the offender population profiles.  

Clear (1988) warns that monitoring and revalidation are critical to determine whether the 

instrument needs to be updated.  However, jurisdictions seldom revalidate these models, 

which can lead to invalidity.   

The process outlined above is a standard procedure for constructing risk 

assessment instruments.  Though its construction seems straightforward, statistical 
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models are fraught with error and mistakes that are both known and unknown to the 

model designer- the next chapter will discuss the sources of such error.  

 It is not yet known how much error is can be tolerated without reducing a risk 

device’s ability to effectively classify.  As a result, the literature suggests that a risk 

device should be frequently revalidated by the agency using it (Van Voorhis & Brown, 

1996; Clear, 1988).  The general assumption is that when enough time has elapsed, error 

and misclassification will increase- this is discussed in the next chapter.  Despite the 

many cautionary tales about how classification effectiveness reduces as time elapses, it is 

not yet fully known how time specifically impacts classification outcomes.  But still, 

there is not a steadfast rule for determining the amount of time that is required to effect 

enough change/misclassification in a risk device that would render it invalid.   

This Study   

How validity is conceptualized for each risk device is contingent on its stated goal.  

For offender risk classification, validity is represented by a combination of elements such 

as base rates, group sizes, and the capacity to serve an intended purpose.   It will be 

argued that there are known and unknown error issues that create invalidity and 

misclassifications.  Furthermore, these error issues can be intensified or mitigated by the 

properties in classification devices.  How such properties impact the transfer of error into 

final misclassification and how error can render a risk device invalid are defined as the 

sensitivity of error. 

This dissertation will model the effects of error on offender risk classification 

devices.  Using Monte Carlo Simulations to replicate multiple datasets that represent real 
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data, different levels of error will be forced into different models with varying properties 

and characteristics.  In each scenario, two general variables that are tested: 1) the level of 

error necessary to soften the validity of classification devices, and 2) the combination of 

risk device characteristics that would impact the transfer of error.  For each situation, the 

validity of risk instruments will be measured by the base rates, subgroup base rates, 

number of cases in groups, and their theoretical connection to intended purposes of 

classification. 

 Currently, risk assessment instruments are seldom revalidated.  Revalidation is 

needed when an instrument is transported from one jurisdiction to another; when much 

time has elapsed since the last revalidation; when the demographics of the offender 

population have changed significantly; or when a practitioner recommends so, because a 

high level of misclassification is experienced (Clear, 1988).   

By understanding the tolerance of error in these devices, one can begin to 

understand when and why risk devices should be revalidated.  More specifically, 

practitioners will benefit from the knowledge of knowing how invalidity affects offender 

risk classification.  The need for revalidation will no longer be born out of whim and 

conjecture.  Furthermore, device designers will directly benefit from the knowledge of 

how different device properties affect the transfer of error.    
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Chapter 2- Theoretical Framework 

This section concerns issues in predicting and classifying offender risk as a 

justification for the current study.  Since risk classification devices are constructed using 

prediction methods, the problems that plague prediction devices would invariably affect 

validity in classification.  For both risk prediction and risk classification, the different 

types of error can never be fully circumvented; researchers can only attempt to minimize 

known errors (Clear, 1988).  As was mentioned earlier, error problems generally fall 

under two categories: invalidity and unreliability.  This chapter will take a better look at 

the various sources of error by which risk assessment information are affected.  The 

distinction between initial and classification error needs to be elucidated.  The study 

argues that all sorts of mistakes and error are intertwined with the information that goes 

into such risk assessments.  On the other hand, classification error refers to the incorrect 

placement of individuals into a risk designation due to the existence of initial error. The 

impact of initial error problems may be so enormous that final misclassification of 

individuals may be disproportionately greater than initial error, or the impact may be so 

mild that virtually no misclassifications will result- this will depend greatly on the 

sensitivity of error.  To date, no research has been conducted to ascertain this.  To better 

understand the origin of initial errors, this section will review the existent literature on 

potential sources from which error is born.  

Data Problems 

Risk devices are constructed typically by using some form of official data (Baird 

& Wagner, 2000).  Thus, the validity of official records is paramount to the validity of 
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classification devices.  This section concerns the more prominent problems within the 

data from which risk devices are constructed.  However, Baird & Wagner (2000) offer 

comfort in saying that “there is no evidence to suggest that the patterns derived would 

change significantly if every event was detected, recorded accurately, and responded to in 

a consistent fashion by all decision makers” (p.847).  In other words, given that it is 

possible to reduce error in the official data, the actual rate of failure in offenders may be 

higher (or lower) for each known subgroup base rate, but error should proportionally 

affect all categories.  Thus, Baird and Wagner (2000) suggest that “error” bears a 

proportional relationship to the reported rate for each risk group, thereby duly canceling 

out the effects of data error when the problem is looked at as a whole.  However, the 

notion that such data problem will cancel-out error remains speculative.  This section 

discusses the measurement of outcomes and related definitional dilemmas.      

 The outcome for selection designs is often called the criterion.  Nearly all 

prediction studies utilize some form of offending record (e.g., arrest, conviction, 

incarceration, or parole revocation) as the criterion (Baird, 1991; Farrington & Tarling, 

1985).  According to a review of 47 studies that explored the predictive validity of the 

LSI, LSI-R, LSI-OR, LSI-CMI, LSI-R:SR, and YO-LSI, the three most commonly used 

criterion variables are re-incarceration, re-arrest, and reconviction (Vose et al., 2008).    

Clear (1988) warns that many common criteria are statistically only marginally related to 

each other.  In addition, Van Voorhis and Brown (1996) aptly says that the importance of 

a criterion is commonly overlooked, but the criterion has specific effects on the base rate 

and can have a bearing on the types of predictors used.  Thus, a selection design using a 

specific criterion can only be used to predict that specific outcome.   
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Generalizing outcomes onto dissimilar circumstances can threaten the external 

validity of a risk device.  In risk prediction studies, it can happen in one of two ways: 1) 

methodological issues in collecting criterion variable information and 2) over-

generalization of findings.   

First, there are real issues in finding a proxy that most represents actual offending.  

As was mentioned, the purpose of any offender risk classification is so that a person’s 

risk of offending can be evaluated.  However, the common criterion variables (e.g. arrest, 

conviction, and parole revocation) are only crude estimations of offending (Baird, 1991).  

Not all criminals are apprehended and officially processed into the criminal justice 

system.  For most crimes known to the police, nobody gets arrested, let alone getting 

convicted.  Thus, all existing official records of offending are a gross under-estimation of 

the problem.  For instance, of some 3.6 million household burglaries in the United States 

in 1999 (Felson, 2002), only 200,000 arrests resulted.  Only about 2% of burglaries lead 

to a conviction, and fewer still to incarceration (Felson, 2002).   For more common 

crimes, such as drug offenses, the chance of being punished is much smaller.  Thus, there 

is weak connection between what the data used express (i.e. police efficiency) and what 

the data are supposed to measure (offending).  If what Felson (2002) suggests has any 

merits, then using arrest data as a criterion variable for risk assessment instruments is 

flawed because it only captures roughly 5% of all offenses. This affects generalizing 

because so much error and disturbance exists in the criterion variable.   

Second, a viable way to quantify true offending rates of individuals does not exist.   

Researchers must work with what is available to them.  Arrest rates, convictions, and 

parole revocation are the most widely collected, consistent, and useable data the criminal 
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justice system has on offending (Farrington & Tarling, 1985).  The scholarship has found 

that arrests and convictions represent most actual law-violating behavior- the correlation 

between them is so high (r=.80) that either is a viable principal outcome measure (Baird, 

1991).  Maltz (1984) seems to agree that arrest charges are generally more descriptive of 

offender behavior than other charges levied by the prosecutor.  Maltz (1984) argues that 

arrest data are more useful than prosecutorial, court, and correctional data because the 

latter are harder to obtain, sometimes unavailable, and generally, less accurate. 

Convictions and parole revocations also make good indicators of predictive 

outcome.  Many researchers prefer the use of convictions to parole violations.   Of all the 

studies conducted on the predictive validity of the LSI during 1982-2008, 20 percent used 

reconviction data and 3 percent used parole violations.  Despite the different criterion 

variables, the majority of validation studies on the LSI conclude that the instrument is a 

valid predictor of recidivism (Gendreau et al., 1997; Barnoski & Aos, 2003; Simourd, 

2004; Holsinger et al., 2003).   

However, aside from the obvious disparity between the true offending rate and 

estimations of it, there are other limitations associated with these outcome variables.  

Baird (1991) cautions that arrests are only allegations that may have a limited 

relationship to actual behavior- especially in groups that are frequently profiled, 

questioned, arrested and scrutinized more, such as minorities and parolees.  Similarly, for 

convictions and parole revocations the limitations stem from their tendency to measure 

criminal justice behavior.  For example, the lack of funding during some economic 

downturn can increase caseloads for parole officers, which subsequently reduces their 

ability to effectively follow-up and detect violations in parolees.  Even though these 
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criterion variables are supposed to reflect offending, they are also dependent on criminal 

justice policies and behavior.  Thus, how offending is operationalized and measured 

affects the external validity of the design, especially if the findings are generalized to 

other outcomes.  Here, the source of external validity threat is, by default, inherent in 

faulty data collection and faulty operationalization of the criterion. 

The second source of external validity threat comes from over-generalizing across 

different offense types.  For example, the LSI-R poorly predicts violence, spousal abuse, 

sexual violence, etc. In the recent past, the validity of the LSI-R for offenders with 

specific offense types has been studied.  Manchak et al. (2007) expressed concerns about 

the utility of generic risk assessments for specific populations such as violent offenders, 

suggesting that more specific tools should be tailored to this population.  The traditional 

risk factors for general recidivism are, at best, loosely correlated with violent recidivism 

(Manchak et al., 2007).  Scholarship exploring this has shown that other risk factors are 

better in predicting violent offending, such as: nature of the current complaint, childhood 

abuse of the parent, number of prior complaints, alcoholism of father, impulse control, 

etc. (Van Voorhis, Cullen, & Applegate, 1995).  Correctional institutions can employ 

instruments with known utility in predicting violence recidivism, such as the Michigan 

Family risk Assessment of Abuse/Neglect, the Psychopathy Checklist, or the Level of 

Service Inventory-Ontario Revision.  The latter instrument (LSI-OR) has produced 

acceptable predictive correlations among subgroups of sexual offenders, domestic 

violence offenders, and offenders with mental health problems (Girard & Wormith, 2004).  

Thus, risk assessment instruments developed in one interim may not be transferrable to 

different types of risk. 



36	
  
	
  

	
   	
   	
   	
  
	
  

Finally, outcomes are very important and specific to selection designs.  Even 

more important is how they are operationalized (Gambrill & Shlonsky, 2000).  Prediction 

and classification are made more difficult as a result of vague definitions of outcome 

measures.  In some cases, the outcome measures, such as recidivism, are not sufficiently 

defined to build accurate prediction models. 

The obvious problem with risk assessment is that there is no universal or perfect 

measurement of offending.  Various criterion variables (e.g. arrest, conviction, and parole 

violation) are commonly used, but they merely represent feeble attempts to estimate the 

problem of offending.  The actual offending rates of individuals, however, are not 

completely visible to criminal justice agencies and researchers.  Thus, there will always 

be an immeasurable margin of error inherent to selections designs due to the inability in 

finding a proxy that will reflect on actual offending.   

Data and Omission 

 The effectiveness of offender risk classification can also be significantly 

undermined by our tendency to omit important variables.  In a recent newspaper article 

from The Atlantic on the research of Richard Berk, a new wave of offender risk 

classification devices is developing (Labi, 2012).  Richard Berk and colleagues (Sherman, 

Barnes, Kurtz, and Lindsay) identified new predictors to risk that, in combination, are 

reported to be more accurate and predictive than existing risk devices (Berk et al., 2009).  

Berk et al. (2009) uses “statistical learning approach that makes no assumptions about 

how predictors are related to the outcome” (p.1).  And despite their orientation, variables 

of all sorts are mined from large databases.  From racially biased to irrelevant factors 
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such as “shoe size”, every possible factor is explored.  As a result, Berk et al. (2009) has 

uncovered a myriad of variables that are more predictive, and that have been traditionally 

ignored. 

 The work of Berk and colleagues (2009) illustrates an inherent problem with 

research in offender risk classification; that is, relevant variables are often omitted based 

on superficiality.  Normally, predictors are chosen based on certain procedures that are 

limited by appeal, its logical relevance to the outcome, convenience and cost (Tarling & 

Farrington, 1985; Loza & Loza-Fanouys, 2001), theoretical loyalty (Baird, 2009), 

political and ethical rectitude such as the inclusion of race biased factors (Tonry, 1987), 

ease of staff interpretation (Flores et al., 2004; Lowenkamp et al., 2004), and social 

acceptance by staff (Haas & Detardo-Bora, 2009), etc.  Thus, the effectiveness of 

classification is sometimes hampered by our inability to account for the net influence of a 

large number of small and independent causes.  The work of Berk and colleagues (2009) 

sheds light on the tendency of researchers to disregard irrelevant variables in risk 

classification studies, which Kennedy (2008) argues is one of the three sources of error 

for research in the social sciences.  Thus, the findings are evidence that many variables 

are systematically overlooked, thereby contributing to error and disturbance in offender 

risk classification.  This is a major limitation of the science behind risk assessments.   

Transporting Risk Devices 

The transferability of risk screening devices across jurisdictions is problematic 

and is a potential source of error.  For example, a risk classification system that works 

well in Newark, New Jersey may not be predictive in a smaller city with dissimilar 
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characteristics and demographics, or vice versa.   Though major risk factors such as 

criminal history and peer associates change little from jurisdiction to jurisdiction, 

frequent revalidation has many benefits (Holsinger et al., 2003).  Transporting risk 

devices creates validity issues; they can come from two areas: population variance and 

difference in external attributes.  Population variance refers to the collective profile 

exhibited in a group while difference in external attributes refers to the difference in 

neighborhood context.  The former has already been discussed in the section about data 

problems.   

The overall demographics and characteristics of a population in one jurisdiction 

may be starkly different from those of another.  For example, much research has shown 

that offenders who return to disadvantaged and downtrodden neighborhoods recidivate at 

a greater rate than those who return to “resource-rich” or affluent communities, after 

controlling for individual-level factors (Kubrin & Stewart, 2006).  Thus, a risk 

assessment instrument that works well in one jurisdiction may do poorly on another, 

depending on the neighborhood context. 

The idea that offenders with similar individual risk profiles (based on criminal 

history, employment and residential history, etc.) are more likely to fail if they return to 

disadvantaged high risk communities represents a potential challenge when a risk 

instrument is transported from one jurisdiction to another.  Failure seems inevitable, 

especially when released offenders are returned to the neighborhoods with the highest 

crime rates in the nation (Travis, 2005).  Unfortunately, these are the cities to which most 

offenders are released (Travis, 2005).  Thus, the base rate for reoffending could vary 

greatly across different locations, and if caution is not exercised (Clear, 1988), 
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researchers can run the mistake of assessing risk with an instrument that has no validity 

for a particular setting.  Different neighborhoods could also vary in their propensity for 

crime by offering more opportunities.  Felson (2002) has identified a clear nexus between 

opportunity and crime.  For example, there tends to be more property crime and theft in 

areas where there are viable avenues to dispose of stolen goods via pawn shops, car junk 

yards, used-appliance stores.   Thus, the neighborhood and the immediate environment 

can be a powerful determining factor for crime.  Holsinger et al. (2001) aptly suggest that 

revalidation research will permit benchmarking or “create risk categories that are 

germane to specific jurisdictions or correctional strategies” (p.5).   

  Areas can also differ in their resources to released offenders (Kubrin & Stewart, 

2006), social exclusion from invisible punishments (Travis, 2002), political stance 

towards offending and penalty, police culture, law, and over or under crowding in prison 

(Petersilia, 1999).  Therefore, cross-validation is an important process that needs to be 

undertaken whenever a risk instrument is borrowed from another jurisdiction 

(Gottfredson & Moriarty, 2006)- a different base rate will affect cutoff scores, which will 

compromise the overall effectiveness in classification.  Wright, Clear, and Dickson (1984) 

illustrate that consequences of the wholesale adoption in several jurisdictions of devices 

developed in one locale can be severe.  It is, unfortunately, common practice today 

(Gottfredson & Moriarty, 2006). 

Error in Application 

Finally, there are error issues related to the administration of risk devices by staff.  

Even with perfect validity in risk devices, where measures are directly correlated to 
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outcomes, error can emerge from unreliability, which involves the consistency to which 

information is accurately reported (Gabrill & Shlonsky, 2000).  Currently, studies on the 

use of risk assessment have shown that certain risk instruments are less reliable, 

suggesting that human error during the administration phase is problematic.    

Most risk models are designed with efficiency in mind.  Cross-referencing an 

offender’s intake profile will typically give all the information necessary to complete the 

various items (Van Voohris, 1996).  For example, the Ohio Department of Rehabilitation 

and Correction put forward the following requirements for risk classifications to help 

guide agencies and to facilitate efficiency: 1) the information needed to complete the 

instrument is consistently and readily available, 2) the variables are easy to be coded by 

different users, 3) variables are consistently correlated to the outcome, 4) the variables 

have face validity or seem to be relevant, 5) the instrument is statistically accurate, and 6) 

the system is efficient to administer (Van Dine, 1993).  This simple guideline set forth by 

the Ohio Department of Rehabilitation and Correction shows the importance of 

parsimony and simplicity in instruments.  Therefore, sophisticated instruments may be 

more thorough and accurate, but they run the critical risk of overburdening staff and 

reducing efficiency. 

Efficiency during the use of the instrument can be impeded by implementation 

issues, staff training, interpreting responses, staff attitudes, and administrative overrides.   

Most actuarial risk devices were first designed to eliminate human decision-making 

because discretion leads to subjectivity and error.  In particular, this is what initiated the 

departure from clinical assessments to actuarial based assessments (Champion, 1994).  

Risk assessment gained increased effectiveness when it excluded clinical judgments 
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because it directly reduced unreliability.  However, this method is not perfect, because 

despite the rigid structure afforded by actuarial assessments, humans are ultimately 

responsible for the task of administering these instruments- allowing subjectivity to enter.  

Therefore, reliability issues still exist, but arguably to a lesser extent.   

Negative attitudes of staff towards a particular risk instrument may have an 

unfavorable impact on the implementation process.  For example, Haas and DeTardo-

Bora (2009) found that a large proportion of correctional staff did not favor the use of the 

LSI-R.  Only fifty percent of case managers and counselors, and 1 out of 17 parole 

officers were supportive of it.  And as a result of this widespread negativity, only 4 out of 

10 staff charged with the implementation of the initiative said they had used the results of 

the LSI-R to develop reentry case plans for their caseloads.  The other six out of ten staff 

followed their own personal assessment when forming decisions about an offender’s risk 

level, which defeats the primary purpose of using actuarial methods.  With all things 

equal, 60% is an unusually high rate of administrative override that warrants inquiry.  

“Overriding” refers to allowing the human decisionmaker to decide how to weigh 

contingencies or special circumstances that requires special attention.  Clear (1988) 

suggests that 15-20 percent of administrative overrides are acceptable.  If there are very 

infrequent overrides, the staff may be over-reliant on the instrument to help them form 

decisions.  And if there are too many overrides, it can be taken that staff are not finding 

the system useful, as is in the case in Haas and DeTardo-Bora’s study (2009).   It brings 

into question of whether expensive risk instruments should even be administered when 

staff routinely dismisses the instrument’s recommendations.  General distrust of a risk 
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instrument can further engender indifference in staff, which may increase unreliable 

classifications in offenders.   

Error can also enter when staff training and experience are insufficient.  

Lowenkamp, Latessa, and Holsinger (2004) found that the number of years of experience 

in working with a particular risk device was positively related to predictive validity.  

Non-professionalism in the staff was synonymous with more mistakes and 

inconsistencies when administering assessments.  Similarly, the Washington State 

Institute of Public Policy (2004) found classification was more effective in reducing 

recidivism when it was properly implemented.  Some assessments are more sophisticated 

than others, which require skill and experience to administer properly.  For instance, the 

LSI-R item “prosocial values” rely on their own experience and expertise to determine 

whether an individual is criminally inclined. Thus, training and experience in using a 

specific instrument is critically important in risk classification.    

Interpretation reliability is another area of concern.  Reliability refers to the 

degree to which the placement decisions of offenders will be consistent across different 

staff.  Many recent and more sophisticated risk assessment instruments, such as the LSI-

R or COMPAS, use both static and dynamic variables.  As previously mentioned, 

dynamic variables are assessed via interviews with the offender, which requires careful 

staff interpretation.  Austin et al. (2003) found that variables with the highest inter-rater 

reliability were static variables, such as criminal history and education/employment 

variables.  Conversely, many dynamic variables in the LSI-R were less than 80% reliable, 

with some variables having less than 60% agreement.  Thus, there is a high error rate in 

placement decisions that comes from unreliability (Gambrill & Sholonsky, 2000).  This 
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illustration goes to show how the tendency for mistakes tends to increase when the task is 

more difficult, such as when the staff needs to use his/her discretion to discern or evaluate 

a situation.   

Though the findings generally favor less complicated static variables over 

dynamic variables because of their simplicity and reliability, Van Voorhis and 

Brown(1996) cautions about this.  She argues that simplicity can lead to inaccuracy and 

reliability issues, especially when the instrument is so quick and efficient that it doesn’t 

require enough thought.  Such risk items tend to get answered in a cursory manner 

because they are deceptively easy, which contributes to the reliability problem.  Similarly, 

Gottfredson and Gottfredson (1980) warn that it is not as easy as it seems because 

criminal justice records used in the course of completing static variables are difficult 

because they are generally unreliable.  Thus, both static and dynamic risk variables pose 

difficulties for staff, which can reduce classification accuracy.  

Problems Focused in Study 

 In offender risk classification, error in measuring predictor and outcome variables 

can come from: 1) unreliable information from official records; 2) staff distrust, non-

professionalism, mistakes, and subjectivity; and 3) transporting risk devices to different 

settings.  Each of these potential sources of error can directly impact the independent 

and/or outcome variables, thereby distorting the risk information from which risk tools 

are constructed.  Thus, the current study will assume that different levels of error are 

derived from these places.   
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Conclusion 

 Error finds its way into offender risk classification, and will continue to impact 

the effectiveness of classification despite efforts to abate it.  The literature has 

demonstrated that there are multiple sources of error, though it is not completely clear 

how much error enters into these instruments.  Shortcomings in the methods for 

quantifying error will ineluctably pose a credible obstacle.  Therefore, notions about how 

much error exists remain largely speculative.  The primary objective of the dissertation is 

not to determine the level of error that transpires because error is expected and inevitable.  

However, the dissertation aims to understand how such error problems affect final 

misclassification, which is influenced by an instrument’s sensitivity to error.     
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Chapter 3- Standard for Construction and Evaluation 

Today, the goodness of a risk assessment instrument can be judged by its validity, 

reliability, equity and cost-effectiveness (Baird et al., 2012).  The construction of such 

instruments is fundamentally useless if the instrument does not judiciously take into 

account all of these competing requirements. The best-case scenario, obviously, is to 

construct an instrument for which each of these requirements is maximized.  

Unfortunately, in the real world of risk assessment, risk devices are neither built nor 

applied in a vacuum, and such requirements are often in fierce competition with one 

another.  For example, the validity of a risk assessment instrument would be significantly 

enhanced if we could avail staff with more time and resources, so that the full 

circumstances for an individual could be weighed and factored into the determination of 

his/her risk.  Yet despite this reality, there are real pressures to restrict such assessments 

and limit them to 20 minutes, for example.  Striking a healthy balance between these 

requirements in a risk device is a complex task for which risk device designers are 

responsible. 

 The daunting task of building “good” risk assessment instruments is admittedly 

worsened by the need to balance and consider validity, reliability, equity, and cost-

effectiveness.  But on a brighter note, such goals help structure, guide, and standardize 

decision-making during the construction of risk devices.  In fact, these established goals 

help abate the arbitrariness involved in the construction process.  Anyone who is familiar 

with the construction process knows that it involves a variety of decision points for which 

there is a lacking standard.  For instance, the number and type of risk items to be included, 

different cutoff points, or the number of risk categories that which comprise an 
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instrument, are some aspects that require much subjective judgment, mainly because 

there lacks a clear standard for what a risk instrument should look like.  As such, these 

instruments are more an art, than it is a science.  In many cases, risk devices are the end 

result of multiple layers of arbitrary decisions.  Thus, these goals and requirements are 

helpful in guiding some of the decision points, but it only provides mild levels of relief to 

risk designers.  By linking decisions with established goals, some of the arbitrariness of 

their decisions is reduced by being able to justify and attribute decisions to goals, which 

would otherwise be considered capricious.   

 This section seeks to better understand the different standards by which risk 

devices are constructed and/or evaluated.  It further argues that it is not enough, 

underlying the importance of the current study and its finding on sensitivity.  The 

understanding of how different risk device properties impact the sensitivity of error will 

hopefully establish another requirement based on which selections and decisions could be 

made.    

Informal Construction Process 

 The process of constructing risk devices is not as specific as is hoped.  Clear 

(1988) outlines the formal procedure from which risk devices are constructed, which was 

discussed in chapter 1.  But, this was merely an attempt to explain a complex procedure 

to general readers who are fascinated by the mysteriousness of the formation of risk 

devices.  In reality, such process is much less formal, prompting designers to make many 

choices that may be based on research, personal expertise and/or hunches.  This section 
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will seek to unveil the mysteriousness of the construction process while exposing the 

capriciousness behind many decisions. 

 The construction of any risk assessment device begins with the availability of 

large risk data for a specific population from which a wide range of variables and 

information is collected.  Such datasets could contain over 100,000 cases and over a 

hundred variables.  The next step requires the designer to identify the criterion or 

outcome variable, usually re-arrest, reconviction, or violation of conditions.  Because the 

criterion is usually a dichotomy, pass or fail, a logistic regression with the different 

variables would be initiated.  With hundreds of variables and tons of cases, almost every 

variable significantly contributes to the variance in the outcome criterion, and the 

designer must decide on a feasible strategy to reduce the number of predictors included in 

the risk function.  Clearly, a risk assessment instrument with over a hundred predictors 

would not bode well in the real world where the risk tool would be used.  To overcome 

this obstacle, risk designers would attempt to minimize the size of these risk tools by 

either selecting risk factors based on prior research or running a regression on all such 

factors (Baird et al., 2012).  In some other instances, the selection of risk factors could be 

based on whims, some statistical justification, or preference, but, in the end, there is no 

hard and fast standard to guide the process. 

 The process of shaving down the number of variables would continue until an 

acceptable number of factors are removed.  The next major decision point involves the 

determination of the number of risk variables to be included.  Again, there is no clear 

standard that stipulates a specific number of risk variables.  It is, however, hoped that the 

risk tool is practical so that the assessments used with these instruments are not too time 
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consuming.  Others, in an attempt to justify their size preference have argued for 

parsimony (Flores et al., 2004), while designers of more comprehensive risk tools, such 

as the LSI, YLS/CMI, COMPAS, or YASI, justify the inclusion of larger numbers of risk 

items to include both static and dynamic risk factors.  Regardless of differences in 

orientation and preference in the tool’s size, designers are confronted with many options.  

 Next, the selected variables also require a wide range of decisions to determine 

how each risk item is divided and weighed in the final risk function.  A simple perusal of 

different risk instruments will tell us that risk items could differ by the number of 

categories into which the information is coded.  The designer decides between dividing 

the information into a dichotomy or into multiple levels.  Again, there are different 

viewpoints regarding this area of decision-making.  While dichotomies reduce the 

amount of time in which assessment staff will spend, increase inter-rater reliability 

(Austin et al., 2003) and convenience, having variables that partition information into 

multiple categories also has its benefits.  The generic interpretation of standardized 

coefficients for an independent variable in a logistic regression usually goes something 

like: for a one-unit increase in “independent variable A”, the expected change in log odds 

is .1563404.  What this means is that the relationship rests on a continuum, and additional 

changes in the “Independent Variable A” would continue to effect changes in the 

outcome.  The benefit, thus, for dividing information into multiple categories is that it 

will more accurately capture this relationship.  Again, the risk device designer must 

decide on the format that will be embraced.   

 The score point contribution of each risk item to the total risk function also 

requires some level of subjective judgment.  There are primarily two ways to handle the 
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problem of weights.  First, each risk item has a unique score point contribution to the 

overall risk function, and the regression computation helps determine the individual 

weights of each independent variable.  Second, some designers have embraced the 

Burgess Method where risk items are coded either as 0 or 1.  The Burgess Method offers 

convenience to staff, allowing offender’s risk scores to be easily computed.  The scoring 

of risk using the actual weights of the risk variables offers increased statistical validity to 

the risk model, yet it is more time consuming because the summation of scores require 

more sophisticated levels of addition.  The method selected for assigning scores to risk 

items have enormous implications for the risk model, yet for the purpose now, it is 

another important decision making point in the construction process. 

 Finally, risk designers are confronted with the task of determining cutoffs for the 

different risk categories, which is a two-pronged process.  First, the number of risk 

categories that comprises a risk instrument needs to be determined.  Such task should, of 

course, take into account the different levels of supervision or treatment that are available 

(Baird, 2009).  It would be fundamentally meaningless to divide offenders into five 

categories of risk, for example, if the agency employing such tool does not offer five 

levels of supervision that would correspond to the specific needs of each risk group.  

Despite this reality, many risk designers continue to divide individuals into a range of 

risk levels irrespective of available supervision or treatment.  On the other hand, some 

experts have also argued for more parsimonious models.  For example, Clear makes the 

argument that risk devices should divide individual into no more than three categories of 

risk since the different levels of supervisions, even if they were available, may not be 

meaningfully different (Clear, personal communication, February 28, 2013).  Thus, the 
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number of risk categories to which individuals are assigned, is a task that requires some 

decision-making.   

 Second, the cutoffs by which risk groups are delineated needs to be determined.  

The risk groups should ideally be divided in a manner that maximizes the disparity in 

their recidivism rate while accounting for group size.  The cutoffs points are invisible 

bounds on the scale score by which groups are separated.  Unfortunately, the task of 

finding suitable and appropriate cutoff points is completely discretionary.  Furthermore, 

this conundrum is often compounded with the lack of a clear and specific standard for 

determining cutoffs.  Once the cutoffs are drawn, the instrument is complete.  A final step 

is to revalidate the risk instrument onto the same population to ensure that the cutoffs are 

applicable to a different set of cases.   

The construction process is based on layers and layers of decisions that may 

sometimes be informed by good reasons, prior research and sound theories while some 

are clearly a product of capriciousness.   The end result is that many arbitrary decisions 

eventually amount to a risk device that may have significant consequences for the 

individual whose risk will be evaluated by the instrument.   The difference in cutoff 

points, though seemingly unimportant in the construction process, may be the fulcrum 

that determines whether the same individual would have his/her liberty revoked. 

   

Measures of Validity 

To date, there exists a wide range of available statistical measures of validity in 

classification systems (Baird, 2009).  Statistical measures of association between 
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outcomes and risk scores are typically reported using measures of specificity and 

sensitivity (i.e. receiver operating characteristic (ROC) curve).  The ROC curve assesses 

the accuracy of risk instruments by plotting the true positive rate (sensitivity) and true 

negative rate (1-specifictiy) for each risk score (Zweig & Campbell, 1993).  Thus, the 

ROC curve represents the range of sensitivities and specificities for a test score (Baird et 

al., 2012).  The Area under the curve (AUC) allows comparisons to be made between 

ROC curves by using a single measure (Liu et al., 2005).   

When three or more risk classifications are defined, the Dispersion Index for Risk 

(DIFR) is a more suitable measure of risk assessment accuracy then measures that focus 

on sensitivity and specificity (Silver & Banks, 1988).  This is because the DIFR measures 

potency of a risk assessment by assessing how different risk cohorts are divided by group 

size and the extent to which group outcomes differ from the base rate for the entire cohort 

(Baird et al., 2012).  

While multiple measures of validity exist for risk assessments, the best overall 

measure of validity, as identified by Snyder and Gottfredson in The Mathematics of 

Classification, is the level of separation attained in recidivism by risk level when 

offenders are grouped into risk classifications of meaningful size.  Since then, many risk 

device designers have reiterated the value and practical utility of such measure in 

measuring validity.  Thus, borrowing from the work of Baird and Wagner (2000) and 

Flores et al. (2006), the current dissertation will measure validity in classification systems 

by comparing outcome rates for each risk level.  Baird (2009) explains that the simple 

analysis of recidivism rates by risk level should be the standard for evaluating risk 

classification systems for two specific reasons.  First, the plain representation of risk by 
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subgroup base rates provides clarity to those who use the system; it “conveys more useful 

information than a correlation coefficient of .25 or an AUC of .70” (p.6).  Second, most 

traditional measures of “predictive validity” place individuals into a yes/no prediction, 

while classification devices produce a range of risk categories, not just two.  It is 

impractical to use a classification instrument to divide individuals into a dichotomy, 

especially when decisions in the real world involve a continuum of options (i.e. low, 

medium, high).  Silver and Banks (1998) aptly say, “traditional measures of predictive 

accuracy, such as sensitivity and specificity, are not the proper way to evaluate the 

potency of a risk classification model” (p.3).  The primary utility of a risk device is in 

providing a continuum of risk estimates to help guide decision-making.  Thus, because 

the “sensitivity” and “specificity” model only divides offenders into dichotomous 

categories, its utility is limited in the context of risk classification. 

Prior to the discussion about base-rates, it is crucial to make clear that validity in 

classification is usually not “black or white”, but instead stretches across a continuum.  

Thus, there is not a specific cutoff for what constitutes validity or invalidity; a valid 

cutoff is therefore context dependent.   

Validity in the context of offender risk classification primarily concerns the base-

rate estimates of each subclass.  To be considered valid, scores should be linearly 

correlated with the criterion.  Ideally, the judicious selection of cutoff scores that define 

each class (risk level) should produce very different subclass base-rates (Baird, 2009).  

For example, in an instrument that partitions offenders into three categories of risk (e.g. 

low, medium, high), the propensity for offending should be starkly different for each 



53	
  
	
  

	
   	
   	
   	
  
	
  

group.  Thus, an instrument is deemed invalid when the creation of subclasses does not 

create large differences in sub-rates.   

Table 1 shows validity in the context of cutoff scores and base-rates.  The cutoff 

base rate for each category (i.e. 7%, 17%, and 38%) represents the average propensity for 

each classification of offender.  This risk instrument may be considered more valid 

because it has achieved meaningful subgroup base rates for each risk category.  In other 

words, the difference among the base rates is large enough to demonstrate that the groups 

are significantly different for the purposes of programming.   
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Table 3: RESULTS	
  OF	
  A	
  HYPOTHETICAL	
  VALIDATION OF	
  A	
  RISK	
  SCREENING	
  DEVICE 

Scale	
  
Score	
  

N	
   Number	
  of	
  
Failures	
  

Number	
  in	
  
Cutoff	
  

Cutoff	
  
Base	
  

Rate	
  (%)	
  
0	
   18	
   0	
   	
  

	
  
	
  

123	
  
(37%)	
  

	
  
	
  
	
  
7	
  

1	
   16	
   0	
  
2	
   13	
   1	
  
3	
   14	
   2	
  
4	
   16	
   0	
  
5	
   17	
   2	
  
6	
   16	
   1	
  
7	
   13	
   2	
  
8	
   14	
   3	
   	
  

	
  
105	
  
(32%)	
  

	
  
	
  
	
  

17	
  

9	
   14	
   3	
  
10	
   16	
   2	
  
11	
   15	
   1	
  
12	
   16	
   2	
  
13	
   14	
   3	
  
14	
   16	
   4	
  
15	
   13	
   5	
   	
  

	
  
105	
  
(32%)	
  

	
  
	
  

38	
  
16	
   14	
   4	
  
17	
   18	
   5	
  
18	
   17	
   5	
  
19	
   16	
   7	
  
20	
   14	
   8	
  
21	
   13	
   6	
  

Total	
   333	
   66	
   333	
   	
  
	
  

 (Adapted from Clear (1988), p. 14) 

Next, the propensity for each group (in base-rates) needs to be linearly related to 

the risk categories in order for it to be considered valid.  For example, if the subgroup 

base-rate for a medium risk category is lesser than the subgroup base-rate for the low risk 

category, then the instrument is considered invalid because it creates incorrect risk groups.  

Another indication of invalidity is reversals- i.e., people with a score of 3 failed at twice 

the rate of those with a score of 11.  It is not uncommon for individual risk scores to 

experience reversals, but it becomes a serious validity issue when the entire risk category 
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experiences a reversal.  For example, if medium risk offenders as a whole failed 7% of 

the time and low risk offenders failed 17% of the time, the instrument is invalid because 

the identified low risk group is recidivating at twice the rate of its medium group 

counterpart.  

Validity could also be defined as the ability of a classification instrument to 

divide groups into manageable sizes for program treatment.  The group sizes could be 

measured by the number of individuals that are assigned to each group.  As explained 

earlier, the fundamental function of classification is to identify low risk individuals and 

place them under lower cost/lower level of custody for the purpose of relieving fiscal 

pressures.   However, the utility of a classification instrument can be undermined when a 

large majority of cases are pushed to high risk.  When this happens, the agencies may or 

may not have the proper resources to administer program treatment to this group.  Table 2 

illustrates the subtle difference in validity between two individual validation studies 

conducted on Pennsylvania parolees (Austin et al., 2003).  To demonstrate that a more 

concise classification device (Eight Factors from LSI-R) can be more valid, Austin and 

his colleagues compared the differences in subgroup base rates as well as subgroup sizes.  

From the study, the “Eight Factors” was declared as a more valid instrument than the 

LSI-R because of its ability to minimize the number of cases in the high risk category, in 

addition to having a higher difference in subgroup base rates among the groups.  Thus, 

validity can also be gauged by the sizes of the subgroups that are created, which are fluid 

depending on the goals of the agency.  
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Table 4: Outcome comparisons by Risk Level: Pennsylvania Parolees 

 Full LSI-R Eight Factors From LSI-R 

Risk level 

Low 

Moderate  

High 

N 

86 (9%) 

398 (40%) 

522 (52%) 

Rate of 

Recidivism 

43% 

51% 

58% 

N 

146 (15%) 

614 (65%) 

186 (20%) 

Rate of 

Recidivism 

34% 

53% 

69% 

(Adapted from Austin, Coleman, Peyton, & Johnson (2003). 

                                                           

Validity in classification devices can be measured by comparing subgroup base 

rates and number of cases assigned to each risk category, and whether classification 

outcomes suit the intended goals.  The difficulty in gauging validity comes from the lack 

of a clear definition for what constitutes validity (Baird & Wagner, 2000).   Validity is 

measured on a continuum, where a precise standard is often non-existent.  Furthermore, 

this range in validity should be reflected in a healthy balance between base rates and 

number of cases with the intended goals, to optimize each without undermining the other.  

As such, the determination of validity and the construction of classification devices are an 

art, rather than a perfect science.    
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Evolution and Validity 

 Historically, the emergence and evolution of risk assessment transpired alongside 

the needs of our criminal justice system.  This is because the development of the criminal 

justice system is heavily intertwined with risk assessment to ensure that the system as a 

whole functions efficiently (Brenan, 1987).  The origin of risk assessment can be dated 

back to 1870 to Cesare Lombroso’s time when he tried to identify and categorize 

people’s propensity for crime based on physical attributes that resembled the primitive 

man (Lombroso, 1876).  Similarly, in the 1900s, Goring studied the physical and 

psychological attributes of people with known predisposition to crime (Gottfredson, 

1987).  Though these methods were both unscientific and atheoretical, they represent 

some of the earliest attempts to classify people.   

1st Generation 

  Although risk assessment technology was first introduced 80 years ago (Burgess, 

1928), it expanded most rapidly over the recent decades.  Bonta and Andrews (2007) 

described these advances in terms of four generations of risk assessments.  The first 

generation of risk assessments was known as clinical judgments; they were based on 

assessor’s intuitive judgment or gut feeling.  On the basis of clinical judgment formed 

through their knowledge of the case, their understanding of criminal behavior and their 

experiences with similar offenders, correctional specialists would attempt to predict 

problem behaviors (e.g., Historical, Clinical, Risk Management, HCR-20; Andrews, 

Bonta, & Wormith, 2006).   This generation of prediction represents the earliest attempts 

to classify offenders for criminal justice purposes- the first recorded endeavors towards 
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offender classification and placement can be traced back to France in the mid 1700’s.  

Contrary to the overcrowded prisons elsewhere, in Maison de Force (House of 

Enforcement), inmates were lodged in separate quarters, adequately clothed, and well 

fed- all made possible because they had implemented their own classification system 

(Champion, 1996).  However crude these early classification schemes were, at the time, it 

represented pioneering events and had auspicious consequences for inmates.    

  Today, clinical predictions are deemed outdated, primitive, and unscientific 

because it relies on the objectivity and skill of the specialist making the risk predictions. 

Concomitantly, meta-analyses consistently find them to be inferior to newer mechanical 

methods in the prediction of clinical outcome and dangerousness (Bonta, Law, & Hanson, 

1998; Mossman, 1994).   Averaged across six 1st generation mean estimates, the overall 

mean r was .12, meaning that predicting failure or recidivism was only accurate 12 

percent of the time (Andrews, Bonta, & Wormith, 2006).  Because of its inaccuracy, 

today most correction facilities use more modern and mechanical prediction techniques 

that have proven reliability and superiority over clinical judgment.  However, this does 

not mean that clinical judgment is completely obsolete.  In some instances today, 

psychiatrists and psychologists with extensive clinical training and experience with 

deviant conduct and criminal behavior still prefer clinical predictions (Champion, 1994).  

Yet despite their best attempts to clinically predict, accuracy remains an issue.  Moreover, 

clinical predictions are costly compared to more advanced methods since each clinical 

prediction is individualized (Clear, 1988).  However inferior to future methods of 

prediction, fundamental clinical judgments spurred decades of research that allowed for 

major advancement in risk prediction. 
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2nd Generation 

 Beginning in the 1970’s, there was a specific aim to increase accuracy of risk 

prediction- a new era was borne.  It revolutionized risk prediction by attacking the 

problem elements of clinical prediction.  Humans are subjective, unreliable, and highly 

susceptible to blundering.  Thus, this new era of risk prediction eradicated the human 

calculation of risk.  Second generation risk assessments (e.g., Salient Factor Score or SFS; 

Farrington & Tarling, 1985) were actuarial based and considered socio-demographic 

factors (e.g., age at first arrest, employment, and drug history) and criminal variables (e.g., 

number of convictions, parole history, and types of offenses) that have been demonstrated 

to increase the risk of reoffending.  It assigns these items quantitative scores which can be 

summed- the higher the score, the higher the risk that the offender will reoffend.  Meta-

analytic studies show 2nd generation assessment instruments outperform 1st generation 

clinical prediction; overall mean r were.42 and .12 respectively (Andrews, Bonta & 

Wormith, 2006).    

The biggest aspect of change in actuarial instruments is that it specifically limits 

the discretion of decision-makers by stipulating that evaluations be made based on the 

risk variables that are proven to be significantly correlated to risk or recidivism.  

However, despite this attempt to remove human discretion from this equation, some 

discretion is still necessitated by the instrument.  When the information obtained from the 

interviews with inmate and past history records are transcribed onto the actuarial risk 

assessment instrument, human discretion is inevitably needed.  
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Second generation risk assessment relies solely on static (i.e., historical, 

unchangeable) factors such as criminal history, which some criminologists argue does not 

align with the rehabilitative goals of corrections.  Criminal history and other factors that 

sample past behavior are treated as static risk factors.  According to Bonta and Andrews 

(2007), this poses a major shortcoming for second generation risk assessment because the 

scales do not account for offenders changing.  Future advancement in risk prediction 

technology incorporates needs factors to account for change in offender’s predisposition 

towards reoffending (to be discussed).  However, there is much debate as to whether its 

refined successors (3rd generation and 4th generation) can achieve higher accuracy in 

prediction when using more technologically advanced instruments.  Interestingly, meta-

analysis shows that 2nd generation risk assessment instruments predict better than 3rd and 

4th generation risk assessment instruments; overall mean r are .42, .38, and .41 

respectively (Andrews, Bonta, and Wormith, 2006).  This begs the question of why 

corrections are willing to adopt more advanced risk assessment instruments when their 

reliability is known to be less.  

3rd Generation 

 Static risk assessment can be useful for classification purposes but are constrained 

by an inability to contribute to the effective treatment planning and ongoing evaluation of 

offenders.  Third generation risk assessments (e.g., Psychopathy Checklist-Revised or 

PCL-R, Violent Risk Appraisal Guide or VRAG, Self-Appraisal Questionnaire or SAQ; 

Loza & Loza-Fanous, 2001) are risk/needs assessments that include dynamic risk factors 

(e.g., criminal attitudes and companions) and static factors from 2G instruments.  

Dynamic questions were asked about present employment, criminal friends, family 
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relationships, etc. to help decision makers gain insights on the offenders’ current and ever 

changing situation. Evidence suggests that changes in the scores on some of these risk-

need instruments correlate with changes in recidivism (Andrews & Robinson, 1984; 

Motiuk, Bonta & Andrews, 1990).   

Third generation risk instruments are sensitive to changes in an offender’s 

immediate circumstances.  It also provides correctional staff with information as to what 

needs should be targeted in their interventions/incarceration.  One decisive advantage 3G 

assessments have over its predecessors is that they are particularly useful in guiding the 

delivery of rehabilitation services and measuring change, which is often a major focus of 

correctional agencies (Bonta & Andrews, 2007).  

However, multiple meta-analytic studies have shown that 3rd generation risk 

instruments are weaker in predicting recidivism than 2nd generation risk instruments 

(Gredreau, Goggin & Smith, 2002; Hemphill & Hare, 2004; Andrews, Bonta, & Wormith, 

2006). The most widely used 3G instrument, the Level of Service-Revised (LSI-R), 

achieves an overall r of .36, which is less than the mean r for 2G risk instruments 

(Gredreau, Goggin, & Smith, 2002) .  The best predictors of recidivism are static 

variables, which are comprised of criminal history and sociodemographic variables.  

Adding dynamic variables to actuarial instruments is a valiant effort to assess and treat 

the needs of offenders, but from a prediction perspective, it provides noise that weakens 

the instrument’s ability to predict risk (Austin et al, 2003).   

Despite this knowledge that 3G instruments are less accurate that its predecessors, 

virtually all correctional facilities have supplanted the older static tools with 3G 
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instruments.  This conflict of interests illuminates on the public’s willingness to have risk 

instruments align with rehabilitative ideals, even when it goes against a fundamental goal 

of risk prediction, which is to accurately classify inmates.  This is a clear sign that the 

goal of corrections has shifted from accurately classifying inmates to attending to the 

needs of inmates.    

4th Generation  

Finally, the last few years have seen the introduction of fourth generation risk 

assessments, which place more emphasis on rehabilitation.  This new assessment 

instrument integrates systematic intervention and monitoring with the assessment of a 

broader range of offender risk factors (e.g., Level of Service/Case Management Inventory 

or LS/CM).  Andrews et al. (2006) showed that the LS/CM outperforms 3G instruments, 

overall r were .41 and .36 respectively.  However, the validity of 4G risk assessment 

instruments is understudied; literature and evaluations of LS/CM are still lacking and the 

use of it is in its fledgling stage.   

The one study by Andrews, Bonta, and Wormith (2006) should not be taken as 

anything conclusive.  Research methodologists argue that results obtained in this study 

could have been confounded in ways that did not exist for earlier instruments (2006).  For 

example, because there is a constant interaction between treatment outcome and 

risk/needs assessment, the training, experience, and clinical supervision of users are 

important moderators of predictive criterion validity.  Fourth generation risk instruments 

requires more human discretion than 3G instruments to function properly, which, as 

discussed earlier, increases risk of subjectivity and bias. Furthermore, in research 
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methods, confidence in treatment effect is a function of knowing the exact pre-treatment 

and post-treatment scores.   The simultaneous treatment and evaluation of risk/needs may 

greatly reduce the risk/needs scores if offenders were appropriately treated, which might 

potentially confound treatment effects.  Thus, until more evaluative studies are conducted, 

further analysis is needed to know how the new 4G instruments compare against older 

instruments.      

Rationale/Validity for Each Generation 

 The popularity for each of the four generations of risk assessment was caused by a 

confluence of factors.  While the notion of redesigning risk devices to increase validity 

and accuracy has always been the propelling force from which change is wielded, there 

have been times when agencies lose sight of this ideal, allowing evolutionary takeovers 

and shifts to be precipitated by ancillary goals.  This section will seek to understand the 

rationale for the shifts by objectively analyzing the multitude of factors that play a strong 

role in molding such ideological shifts.   

1Gs and 2Gs 

  First generation risk assessment or clinical judgment was born solely out of the 

necessity to sort masses of inmates with varying degrees of risk in a humane manner.  In 

England prior to the introduction of clinical risk assessment, prisons often celled large 

numbers of inmates, including males, females, and children in deplorable conditions 

(Champion, 1994).  Similar conditions were found in prisons in the United States, France, 

Scottland, and countries throughout most parts of Europe (1994).  The discovery of risk 

assessment paved the road for major prison reforms, which transformed large 
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unmanageable masses into groups of inmates with varying needs and proclivity towards 

violence.   

Today, meta-analytic studies tell us that 1G instruments were crude attempts to 

estimate risk; their overall ability to accurately assess risk is low, average mean r is .12 

(Bonta, Low, & Hanson, 1998; Hanson & Morton-bourgon, 1998).  Despite the fact that 

estimating risk with clinical risk assessment methods were only slightly better than 

chance, it was the only alternative available at the time.   

 Two primary philosophical orientations, science and utility, helped push for 

changes in risk prediction technology in corrections.  Science ensures objectivity.  Instead 

of treating offenders as individuals, a scientific model treats offenders as members of 

groups based on experiences of other members of the group to which they belong (Clear, 

1988).  It asks questions of how an offender is similar to others that have been 

experienced in the past.  Thus, science allows decision-makers to objectively treat people 

based on classes of past experiences; predicting future incidences of crime is no longer an 

intuitive judgment based on a decision-makers whimsical prognosis.  The increased 

certainty of 2G predictions come from the ability to systematically and scientifically 

objectify risk based on decisions on what is known about human behavior.   

 Another important aspect of science is certainty.  By employing methods that are 

derived from statistical analysis of the past predictors of risk or recidivism, 2G 

instruments significantly improved over 1G clinical methods (Farrington & Tarling, 

1985).  Actuarial/mechanical strategies improved the predictive validity of 2G 

instruments over its predecessors by more than fourfold, from mean r = .10 to r =.40.   
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Clinical predictions from 1G instruments were proven to be inferior because it did not 

take into account the predictors of risk on an aggregate level- the experiences of a 

decision-maker is limited to only his/her own experiences.  Thus, increasing certainty is a 

major scientific goal of risk instruments. 

Of course, to say that any risk assessment instrument can be completely confident 

in predicting future human behavior is a lie.  It is not that the values of science are wrong, 

but the quality of the science of human behavior is very limited (Clear, 1988).  Science 

has been extremely instrumental in improving risk assessment validity.  It however 

cannot predict human behavior with 100 percent certainty.  And this is the heart of the 

problem that needs to be considered when important decisions about a person’s liberty 

are at stake.   

The second philosophical assumption is that it is appropriate to make decisions 

based on what offenders will do in the future.  The use of prediction methods in 

correctional decision-making is considered utilitarian because its aim is the design of a 

punishment level or type that is best able to reduce the incidence of future crime.  

Prescribing a severe punishment for someone who will never commit another crime is 

excessive and prescribing a “slap of the wrist” type punishment to a high-risk individual 

undermines justice, especially when the individual quickly commits another crime upon 

release.  Through the widespread use of more accurate prediction tools, there will be a 

greater reduction in harm, pain, and suffering in a system that is predicated towards 

treatment, incapacitation, and specific deterrence. Thus, the underlying purpose for 

making punishments more utilitarian is justice, which is the foundation of the United 

States criminal justice system.   
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Science and utilitarian punishments are the philosophical basis that fueled the 

popularity of actuarial risk assessment.  However, other events transpired at around the 

same that helped actuarial risk assessment instruments grow in pandemic proportions.  

During the late 1970’s, 1980’s, and into the 1990’s, the prison population mushroomed in 

the United States, mainly due to stricter laws (Voorhis & Brown, 1996).  According to 

Blumstein and Wallman (2006), the incarceration rate by 1999 was over 4.3 times the 

rate that had prevailed for the earlier fifty years. Coupled with the ebb in correctional 

spending, the criminal justice system faced very serious issues (2004).  Criminologists 

searched for practical solutions and found relief from risk prediction- the use of prisoner 

classification helped free up resources by allocating intensive treatment only to the most 

serious offenders (Clear, 1988).  Inmates who posed less threat to others and society 

either made early release from prison or were lodged in minimum security facilities, 

which cost significantly less than their more secure counterparts.  Maximum security 

prisons could cost up to $70,000 dollars for each inmate, while minimum security 

facilities cost only a fraction of that (Rhodes, 2004).   Thus, risk prediction provided an 

equitable and fair way to alleviate fiscal pressures during a time when alternative 

solutions were lacking.  The popularity of 2G risk assessment instruments was caused by 

the prison climate at the time along with the philosophical basis of science and utilitarian 

punishments.     

3G and 4G 

 Over the last two decades, offender rehabilitation made a powerful comeback.  

Large scale meta-analytic studies from Canadian Corrections, Tong and Farrington 

(2006), and Sherman et al (1997), consistently found a strong link between rehabilitation 
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and effective reduction in reoffending.  Following this trend in corrections, logically, 

criminologists began to align policies with rehabilitation.  Risk prediction was not an 

exception.  Criminologists quickly attacked 2G risk instruments for failing to account for 

the personal needs of each inmate.  The static factors from 2G instruments focused on 

demographics, prior arrest records, and other background characteristics that did not 

change, meaning an offender’s predisposition towards offending would never decrease 

(Bonta & Andrews, 2007).  On the other hand, 3G risk instruments or risk/needs 

assessments included dynamic variables such as substance abuse, employment, and 

criminal companions.  Changes in risk scores signal changes in the likelihood of 

committing a new offense, unlike static factors.  This is important for correctional 

programs and the staff charged with managing offender risk.   

 However, there is much evidence suggesting that the creators of 3G risk 

instruments have forsaken the fundamental principle of risk assessment, which was to 

validly divide individuals into risk categories.  The goal to couple risk assessment with 

needs evaluation has added to the length and complexity of many risk assessment 

instruments (Baird, et al., 2012).  The inclusion of dynamic risk factors weakens the 

ability to predict risk because such risk factors are statistically irrelevant to most outcome 

criterion (Baird, 2009).  Recent meta-analyses supported the allegation that 3G risk tools 

make weak predictors of risk.  In evaluating 47 studies of LSI validity, Vose, Cullen, and 

Smith, (2008) found that there was substantial variance in the correlations obtained, and 

coefficients as low as .137 were cited.  In another meta-analysis that evaluated 22 LSI 

validation studies, Campbell, French, and Gendreau (2007) noted that the average 

correlation between LSI scores and recidivism was .24.  Hence, instead of trying to 
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increase certainty and accuracy in prediction, 3G instruments detract from such goals.  

Furthermore, the addition of dynamic variables injects noise in the instrument because it 

requires more human involvement, which opens up more opportunities for bias and 

subjectivity to take center role.  By making risk assessment instruments more “needs” 

focused, it came with heavy heavy tradeoffs and consequences, it dismissed decades of 

research and advancement in accurate risk classification. This dilemma begs the question 

of whether following a “needs” trend in rehabilitation is more important than justice and 

fairness, because, essentially, less accurate risk assessment instruments will produce 

more erroneous classifications of inmates.     

 In retrospect, 3Gs represented a shift from the scientific risk prediction model to 

one that fused rehabilitative ideals with risk reduction.   The rationale for 4G risk 

instruments is to bridge this disjuncture between risk assessment and intervention.  The 

idea to align risk/needs instruments with intervention is not new, and had existed long 

since 3G.  Until 4G tools were conceptualized, however, they remained separate entities 

without a shared unified goal.  The strength and rationale of 4G instruments come from 

the fact that both historically detached systems were now merged to serve one purpose.  

Furthermore, fourth-generation tools added the concept of responsivity, which was 

intended to measure both an individual’s readiness for change and the offender’s ability 

to respond to particular treatment programs (Baird et al., 2012).  The evolution of risk 

assessment demonstrates how rehabilitation has regained its footing in contemporary 

American corrections.   

   Punishment based on needs is a problem associated with the 4th generation risk 

paradigm.   As explained by Clear (1988), punishment based on risk is justified by which 
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actual crime reduction is experienced.  Ideally, a potential offender will be less harmful to 

society if he is confined- the benefits here are obvious.  However, as risk instruments 

incorporate more needs variables, the reason for punishment in corrections becomes 

synonymous with punishment based on needs.  For example, early release in parole may 

be revoked if an offender has no stable housing, job, or supportive family members 

awaiting his release.  Traditionally, this decision to revoke parole would be based on 

offender’s proclivity towards reoffending, but now, it may be revoked based on lack of 

support in the community.   

 Third and fourth generation risk tools were based on several developing 

ideologies, and were no longer predicated on increasing validity.   In other words, unlike 

their earlier counterparts (e.g. 1G and 2G), whose technological advancements were born 

primarily out of creating valid, effective, and accurate classification systems, 3G and 4G 

risk tools aspired towards other ideologies.  Third generation instruments were based on 

measuring needs, while 4G instruments were based on aligning case management with 

risk designation.  As such, 3G and 4G risk instruments, such as YLS/CMI YASI, Positive 

Achievement Change Tool (PACT), SAVRY, and COMPAS, did not employ standard 

actuarial methods of development.  There is no construction sample from which the tools 

were built, but instead, these risk tools incorporate risk factors identified in prior research 

studies and are based on one or more theories of criminal or deviant behavior (Baird et al. 

2012).  The standard method of risk device construction (described in chapter 1) ensures 

that the risk factors selected are optimally related to risk.  Without this procedure, the risk 

factors would not be selected based on their statistical relationship to the outcome.  Baird 
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and colleagues (2012) argues that 3G and 4G instruments have lower validity because 

they don’t employ this standard method of risk device construction.   

Furthermore, it appears that the selection of risk factors was based very loosely on 

prior research, which would also explain the reduced validity in 3G and 4G risk 

instruments.  Baird and colleagues (2012) attribute this reliance on theories to the result 

of tying development to a particular type of crime.  They found that “many of the factors 

added to generation 3 or 4 models have little statistical relationship to recidivism” (Baird 

et al., 2012, p.4).  This fact is not fully appreciated because relatively few published 

studies of these risk tools included individual item analysis.  Recently, however, some 

experts suggested that the removal of statistically irrelevant variables would drastically 

increase the validity of these risk tools (Flores et al., 2004; Austin et al., 2003).  The 

general pursuit to incorporate 3G and 4G ideologies decreases an assessment system’s 

ability to accurately identify high-risk offenders while simultaneously compromising all 

other assessment objectives.   

So why are these risk instruments ubiquitously adopted by so many agencies?  

Baird and colleagues (2012) explain that the widespread adoption of 3G and 4G 

instruments has to do with: 1) overselling of the evidence behind these risk models, 2) 

improper comparison of validation studies to undermine 2nd generation risk tools, 3) 

misrepresenting various revised models of the Wisconsin system as a “static” risk tool to 

justify the need for change, and 4) employing questionable methods of comparison.  Thus, 

the combined effects of misrepresentation and research blunders launched the widespread 

use of 3rd and 4th generation risk tools.    
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Reliability 

All studies in risk assessment emphasize the need for reliability/consistency 

among decision makers.  Without consistency, decision-making is inevitably weakened.  

Such disparities are a good indicator that human subjectivity and bias are subverting the 

goals of structured risk assessments.  Thus, it is important for risk assessment tools to 

demonstrate high levels of inter-rater reliability.  In other words, given the same 

information and facts about an individual, decision makers should make the same 

decision consistently, irrespective of their differences, subjectivity, and preferences.      

 Studies on risk assessment instruments found that different risk properties and 

different social elements are critically important for ensuring inter-reliability.  Reliability 

is particularly critical when models include 25 or more risk items, which often require 

subjective judgment (Baird et al., 2012).  Static variables, compared with dynamic ones, 

are more consistently rated because they require less subjective judgment (Austin et al., 

2003; Baird, Heinz, & Bemus, 1979).  This is because static variable are often found 

from an individual’s official record.  Dynamic risk variables seek to measure family 

relations, residential stability, and criminal friends, which require greater levels of 

subjective judgment.  Risk tools that embrace the risk/needs model, such as the PACT, 

YASI, and LSI include many more dynamic variables, making them more susceptible to 

reliability problems.  Thus, the surest way to ensure reliability is to increase consistency 

among staff completing risk assessments. 

 A multitude of social factors have also been found to impact reliability.   If staff 

members administering the risk assessment instrument take on a particular liking towards 
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a risk tool, there would be higher levels of inter-rater reliability.   Haas and DeTardo-

Bora (2009) found that staff’s negative attitude towards a risk tool will increase 

tendencies to override the tool’s classification decisions with their own decision.  Also, 

Lowenkamp and colleagues (2004) found that higher levels of staff training are critical in 

augmenting reliability.  Hence, many social factors also affect an instrument’s reliability. 

 Given the vast knowledge and understanding that exist, the issue of employing 

risk assessment tools with low reliability is completely preventable.  Unfortunately, in 

some instances, risk assessment models are marketed before any reliability analyses are 

conducted (Baird et al., 2012).  In other instances, inappropriate measures of reliability 

are used.  For example, simple correlations were used to estimate inter-rater reliability 

(Andrews, 1982; Andrews & Robinson, 1984; Rettinger, 1998) despite strong evidence 

suggesting that correlations only measure patterns between raters and not necessarily 

agreement.  Baird and colleagues (2012) posit that it is theoretically possible to have high 

levels of correlations even when two raters never agree.   

To remedy this problem, intra-class correlation (ICC), which accounts for the 

difference in magnitude for different ratings, can be used.  However, the problem that 

plagues this measure is that it fails to be an accurate estimator of reliability when 

different actions and decisions result.  As such, Baird (2009) argues that reliability 

analyses should only be conducted using percent agreement because it is more accurate 

and it more clearly conveys information that is important to case decision-making.  

In more extreme cases where inappropriate measures of reliability are used, the 

focus on the level of “internal consistency” has been cited.  Such measure is adopted 



73	
  
	
  

	
   	
   	
   	
  
	
  

from the psychology field, and makes a better measure of constructs, rather then 

reliability in risk assessment instruments.  Cronbach’s alpha, which is the measure used 

to evaluate internal consistency, is a competent estimator of how well responses correlate 

with each other (Garson, 2003).  This measure is valuable when measuring psychological 

constructs like depression, happiness, or emptiness, for which there is no litmus test.  As 

for evaluating the reliability of risk tools, recidivism is not a construct, and can be 

measured directly.   

Equity 

 It is critical for any risk assessment processes to treat all subpopulations equitably, 

as well as reduce the inequities that plaque the criminal justice system to the extent 

possible.  In a narrower sense, equity in offender risk assessments refers to the judicious 

selection of variables that would otherwise pointedly discriminate against specific groups.  

Thus, specific variables that pertain to race/ethnicity, gender, jurisdiction, and 

socioeconomic status are typically excluded from risk tools.  The pursuit for more 

equitable risk tools, often times, involves the removal of valid and robust predictors 

unfortunately.    

 The goal to ensure equity in risk assessment processes presents a dilemma.  

Especially, risk tool designers are torn between including inequitable risk variables and 

omitting strong yet, discriminatory predictors.  On the one hand, such risk variables 

would vastly augment the capacity to classify individuals, but on the other hand, issues 

regarding ethics are raised when risk tools begin to focus on specific demographic 

characteristics that border between right and wrong.    The inclusion of such variables can 
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significantly enhance an instrument’s ability to classify risky individuals.  For example, 

Van Voorhis, Salisbury, Wright, & Bauman (2008) suggest that separate instruments may 

be required to optimize classification results for girls, mainly because gender has such a 

strong relationship with risk.  Similarly, offenders from different racial/ethnic 

backgrounds often have very different recidivism rates (Tonry, 1987).  In other words, 

race variables make a strong and robust predictor of reoffending outcomes.   

The locations in which offenders are caught and arrested are also strongly linked 

to risk and recidivism.  In fact, it is common knowledge among risk tool designers to 

control for locations when constructing risk assessment instruments.  Any risk 

construction process that does not control for jurisdictional disparities would inevitably 

create risk devices that are biased against specific locales.  Furthermore, such differential 

impact on an individual’s risk level is suggestive that social factors, such as police 

efficiency, play a pivotal role in determining risk.  The inclusion of geographical 

variables would be inherently wrong because such forces are beyond the control of 

individuals.  Thus, the risk of recidivating, with all things being equal, can change starkly 

from one location to another, supporting the perspective that geographical variables 

should not be used in determining risk.   

The need to treat all subpopulations equitably seems obvious.  However, there is 

also overwhelming evidence suggesting that the inclusion of such demographic 

characteristics would greatly enhance the validity of risk tools.  Berk and colleagues 

(2009), who used “random forest modeling” to build hundreds of different risk models 

that utilized all available offender information, were able to augment validity of risk tools 

by suspending the restrictions that were typically levied against risk designers during risk 
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tool construction processes.  In including every potential predictor variable in their risk 

analysis and tool construction process such as geographical locations, specific personal 

characteristics, and even “shoe size”, one of the most robust classification instruments the 

risk world has ever witnessed was built.  Of course, much contention has once emerged 

due to the nature of these variables, the applicability of such tools, and whether it is 

ethical to target specific subpopulations.   

Risk designers are ultimately torn apart by such competing standards, presenting a 

major paradoxical complication.  Specific demographic variables are extremely 

predictive of future risk, but the inclusion of such information in risk tools often borders 

between right and wrong.  However, Baird et al. (2012) cautions that the problem of 

equity is not typically addressed in validations or evaluations, and that risk instruments 

should not be implemented before equity is firmly established.  

Cost and Efficiency 

 It is completely necessary for risk tools to be cost effective and efficient.  There 

are two types of cost/benefit analyses associated with risk tools.  First, there are costs 

related to development time, staff training, and technical assistance, all of which could 

substantially drive up the cost of implementation (Baird et al., 2012).  Such analysis 

should also consider training costs, staff time, and travel expenses incurred in attending 

training.  And finally, the cost analysis should include an estimate of agency staff time 

required to fully implement the model, and the information technology costs incurred.  

The best risk models would not be deemed useful if their implementation costs are 

exorbitantly high and unaffordable.   
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 Risk tools could vary greatly by their implementation costs.  However, it is 

difficult to objectively compare such costs across different risk tools because the size of 

the agency and facility employing such tool plays a big role in determining cost. For 

example, a recent evaluation of implementation costs by the Baird and colleagues (2012) 

found that the implementation of the PACT in Florida and Georgia cost roughly 1.2 

million dollars over seven years.  And the YASI implemented in Virginia cost 

considerably less, roughly 100,000 dollars.  The criminal justice field will have to 

determine if the additional time required to complete different risk models produces 

enough added benefit to justify the cost incurred.  

 Second, the length of time required for risk staff to complete and perform a risk 

assessment on an individual is another critical factor related to cost and efficiency.  Some 

risk assessment procedures could require two or more hours to complete.  Spending such 

lengthy time on risk assessment would be justified if the assessment leads to better 

classification, better decisions regarding placement and services and better outcomes 

(Baird et al., 2012).  One could make the argument that if staff were given unlimited 

resources and time to conduct a full-blown investigation about an individual’s past and 

risk factors, the validity would be greatly enhanced.  Clearly, that wouldn’t be feasible in 

a correctional setting where thousands of assessments are routinely made.  However, if a 

risk model’s capacity to classify is not substantially enhanced, then the time required to 

complete these systems would not be warranted, especially if the agency is already under-

resourced.   

 This chapter was an attempt to explain the competing standards used to guide the 

construction and evaluation processes of risk tools.  The difficulty in building a working 
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risk model is therefore complicated as risk designers are pulled into different directions, 

trying to satisfy different requirements in validity, reliability, equity, and cost.  The 

decision making processes and reasoning used to reconcile these opposing ideologies 

have much impact in shaping a risk assessment instrument.   
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             Chapter 4- Methodology 

Statement of the Problem 

Few attempts to evaluate the sensitivity of error in risk devices have been made.  

In particular, the problem of how errors from: official records, staff, and the misuse of 

instruments impact the effectiveness of offender risk classification is understudied.  

Furthermore, it is not known how different risk device properties can increase or decrease 

the sensitivity of error in risk instruments.  Thus, the study models the impact of errors in 

risk data and information on the overall validity of classification instruments.  The 

sensitivity of error for every risk device is different depending on specific risk instrument 

properties such as case distribution, cutoffs, number of risk categories.  Such properties 

directly impact the tolerance and sensitivity of error in risk instruments.  This dissertation 

argues that the number of final misplacement of individuals will depend on two essential 

elements: quantity of error and sensitivity.    

 This research inquiry is answered by using both conceptual and actual data.  Risk 

data and instruments that would facilitate the testing of all the proposed research 

questions and hypotheses are not readily available.  This is because, in order to explore 

the different facets of the proposed inquiry, specific situations are requisite- and these 

particular situations may be easier tailored into a fabricated data than to be found in the 

real world.  The sample is  engineered using Monte Carlo Studies: simulation methods 

making use of random draws from an error distribution and multiple replications over a 

set of known parameters. This methodology is particularly relevant in situations where 

the only analytical findings involve asymptotic, large-sample results (Mooney, 1997).  
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Many sophisticated statistical software today such as STATA, SAS, and SPSS come 

standard with the “random number generator” function.  STATA is used for the 

construction of data, and is generally preferred over other similar programs for 

completing the desired tasks.  For each possible statistical scenario in question, the 

random number generator function will be used to draw the necessary random numbers to 

create sets of risk data that would be similar to those found in the real world of offender 

risk assessments.   

 Datasets 

 To answer every proposed research question, several risk assessment instruments 

are used.  Two main datasets, Risk Device X and Oregon JCP FIRE, provide the 

necessary tools to test many of the hypotheses.  While Risk Device X is based on 

conceptual data, Oregon JCP FIRE is an actual risk tool currently used to classify risk in 

Juveniles.  Both of these datasets are manipulated to form additional subsets that would 

facilitate answering all of the other research questions.  Deriving from Risk Device X, 

Risk Device 5 Cat is created.  Also, various versions of the Oregon JCP FIRE are built, 

which includes: Oregon JCP 3 Cat, Oregon JCP-Burgess, and Oregon JCP-Coefficients.  

Their method of construction, as well as their strengths and weaknesses are discussed in 

their respective sections.  

 Risk Device X- Dataset Construction 

One of the two main risk datasets/instruments, Risk Device X, is engineered using 

Monte Carlo Studies: simulation methods making use of random draws from an error 

distribution and multiple replications over a set of known parameters. The cutoff scores 
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are determined before implementing Monte Carlo simulations.  In reality, the cutoff 

scores for each risk category depends largely on 1) the instrument, 2) the number of items 

it has, 3) number of risk classification categories there are, and 4) the discretion of local 

jurisdictions and agencies, who are encouraged to develop their own cut-off scores which 

conform to local norms and needs (Andrews & Bonta, 2003).  Once the numeric 

boundaries for the cutoff scores are determined, the random number generator function 

can be used.  The cutoff scores are an important prerequisite because it will provide the 

lower and upper limits for each random number draw.  For example, the cut-off scores 

developed for the original offender population on which the LSI-R was validated were 0-

13 for low risk/need, 14-23 for low-moderate risk/need, 24-33 for moderate risk/need, 

34-40 for medium-high risk/need, and 41-47 for high risk/need.  Thus, the boundaries for 

the random number draws will follow this set of cut-off scores.  For simplicity, the 

numbers from which the random draws will be taken will range from 0 and 100 and the 

subgroup cut-off scores will be created by dividing 100 by the number of risk categories.  

Thus, if there are 5 risk categories, respectively, the cutoff scores will be 1-20, 21-40, 41-

60, 61-80, and 81-100.  

For the purpose of manageability, 1,000 hypothetical cases were generated and 

forced into various distributions in question- into normal, positively skewed, negatively 

skewed, platykurtic and leptokurtic frequency distributions.  The specific characteristics 

for each individual case, here, are not very meaningful, but analyzed collectively, the 

cases will offer a chance to visualize and understand the interplay of error in the risk data 

and error in classification outcomes.  Thus, the construction of each case on the 

individual level is ancillary to the construction of collective distributions within these 
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samples.  The primary objective is to understand how the combined differences and 

similarities within the 1000 cases will influence sensitivity.  Thus, minute differences 

among the individual cases, particularly variables like gender and race, are ignored.  As 

well, the type of risk items or the kind of risk information that would normally set the 

distinction between risk variables is ignored.  As such, Risk Device X contains only 11 

risk items that are essential to the overall risk function.  Table 1 shows the distributions 

of the cases on an aggregate level for all 11 risk items including: dichotomous risk items, 

3 leveled risk items, and 4 leveled risk items, which are specifically designed to facilitate 

the testing of many of the study’s hypotheses.   

Next, the specific procedure for constructing Risk Device X is explained.  Prior to 

implementing this procedure, several key elements were considered.  The risk device 

contains 11 risk items with different distributions and categories (see table 1), and there 

are 1000 individual cases altogether.  The steps are outlined below.   

Step 1: Create 1,000 cases with 11 variables or items.  At this point the seed 

should be set so that the same random number draws can be replicated in the 

future.    

Step 2: Next, random numbers between 0 and 1 are generated for each variable 

and case.   

Step 3: Before executing this step, it is important to understand the general 

distribution of cases across all the variables so that the upper and lower limits for 

each risk category can be determined. The numbers for each variable are then 

recoded from a continuous variable (0 to 1.0) to an ordinal one (1, 2, 3) based on 
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the cutoffs.    In terms of the actual risk instrument, this step seeks to replicate the 

creation of different options for a risk item.  

Step 4: A critical attribute of this simulation is to replicate different statistical 

scenarios that were posed in “research questions.”  This step will re-execute step 3 

so that different research scenarios are properly imposed onto each variable.  For 

example, if “item H” is being replicated, the 1,000 random cases need to be 

divided so that it follows the desired schematic (100, 200, and 700).  In other 

words, the upper and lower limits for the three options need to be set based on the 

desired distribution.  For the creation of each risk item, these steps will be taken. 

Step 5: Once the 11 risk items or variables are created using steps 1-3, the risk 

classification designation for each individual can be determined.  If a risk 

instrument has three risk levels or categories, the scores for the individuals can be 

combined to form the following schematic: (0 1 2 3 = 1) (4 5 = 2) (6 7 8 = 3).    

From this step, all the specific properties are built into each scenario to answer the 

proposed research questions.     

Step 6: The final step relates each individual case to their respective base rate.  To 

accomplish this, first, a new variable needs to be created.  Because the targeted 

base rate for the group is 40 percent, 400 of the 1000 cases are set to fail.  

However, unlike many of the earlier steps where the random number generator is 

used, the cases to which a failure status is assigned cannot be randomly generated, 

because a linear relationship between the risk scores and recidivism is expected.  

Specific steps are taken to insure that these parameters are met.  First, the cases 
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need to be placed in a numeric order based on their total risk score, with the cases 

in the earlier segment having a lower risk score than latter cases.  The base rate is 

then assigned to each case based on its alignment with risk scores.  As we go 

down the list of cases, risk scores generally exhibit increasing patterns.  The base 

rate or the number of failures should also progressively increase while going 

down the list.  After 400 cases of failure have been completely assigned to the 

1000 cases, a logistic regression is run on all the risk items against the criterion 

variable.  When the pseudo r square is .40, we would have met our mark.  In 

addition, the researcher must check to confirm that too much multi-collinearity 

doesn’t exist between any two risk items, or exceed an r of .2.   

 The construction phase is complete when all the following distributions with 

different risk categories are imposed onto the dataset.   

The full description of how the individuals in Risk Device X are divided into risk 

categories and into their respective subgroup base rates can be seen in the following table.   

Table 5: Description of Risk Device X 

Items Example Categories Distributions 
A Criminal History 0, 1, 2, 3 50 150 250 550 
B First Arrest 0, 1, 2, 3 550 250 150 50 
C Attitude 2, 4, 6, 8 250 250 250 250 
D Residential stability 0, 1, 2, 4 150 350 350 150 
E Criminal Friends 0, 1 500 500 
F Last Job- Duration 0, 1 800 200 
G Education 0, 1 200 800 
H Marriage 0, 1, 2 100 200 700 
I Substance Use 0, 1, 2 333 333 333 
J Family Poverty 2,4,6 600 300 100 
K Need 0,1,2 800 100 100 
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Table 6: Scale Score for Risk Device X 

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

Critique	
  

	
   To facilitate the testing of various hypotheses, Risk Device X is specifically 

engineered to be eclectic and free-ranging.   It contains risk items with very different 

skews, i.e. platykurtic, positive, negative, and normal.  Also, the instrument is comprised 

of risk items that are dichotomous, three-leveled, and four-leveled.  However, in reality, 

risk assessment instruments are prosaic and made up of uniform risk items that are only 

narrowly dissimilar.  For example, the Oregon JCP FIRE contains 30 risk dichotomous 

risk items, most of which are positively skewed.  Likewise, the LSI-R is comprised of 54 

Scale	
  Score	
   N	
   Number	
  of	
  
Failures	
  

Number	
  in	
  
Cutoff	
  

Failure	
  Rate	
  
(%)	
  

7	
   2	
   0	
   	
  
	
  
	
  
	
  

276	
  
(27.6%)	
  

	
  
	
  
	
  
	
  

330	
  
(33%)	
  

	
  
	
  
	
  
	
  

394	
  
(39.4%)	
  

	
  
	
  
	
  
	
  
	
  
(7.2%)	
   	
  
	
  
	
  
	
  
	
  
	
  
(13.9%)	
  
	
  
	
  
	
  
	
  
	
  
(84%)	
  	
  

8	
   2	
   0	
  
9	
   3	
   0	
  
10	
   14	
   1	
  
11	
   31	
   2	
  
12	
   57	
   2	
  
13	
   74	
   5	
  
14	
   93	
   10	
  
15	
   102	
   12	
  
16	
   119	
   12	
  
17	
   109	
   22	
  
18	
   105	
   75	
  
19	
   90	
   80	
  
20	
   74	
   64	
  
21	
   43	
   37	
  
22	
   39	
   36	
  
23	
   23	
   21	
  
24	
   13	
   11	
  
25	
   6	
   6	
  
26	
   0	
   0	
  
27	
   1	
   1	
  
Total	
   1000	
   397	
   1000	
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risk items that are mostly dichotomous.  Thus, one downside of creating a risk tool that 

could potentially answer all of the research questions is that is lacks generalizeability.  

 Risk Device X contains cases that are strongly correlated to risk, which is 

generally not found in the real world of risk assessments.  Simply put, Risk Device X is 

an outstandingly valid risk classification instrument.  The separation in subgroup base-

rates achieved among the three risk groups is exceedingly high.  For instance, the low 

risk group recidivates at a rate of 7.2%, the moderate risk group recidivates at a rate of 

13.9% and the high risk group recidivates at a rate of 84%, rendering it one of the best 

classification instruments in existence.  Thus, the interpretation of any analytical findings 

using Risk Device X requires some level of discretion.   

The strength of using Risk Device X is that it shows an enormous capacity to 

separate individuals into groups with substantially different subgroup recidivism/base 

rates.  In fact, it was the specific goal of the construction process to build a close-to-

perfect risk model to which, then, error could be injected.  The need to construct a 

conceptual model that demonstrates such capacity to classify individuals is born out of 

the fact that any actual risk instrument/dataset is already tainted with error in the risk 

information.  Risk Device X, in this sense, is the complete opposite because it is arguably 

uncorrupted by error; it epitomizes the best risk assessment instrument that currently 

exists.  Its greatest strength is however also its greatest weakness- this risk tool with 

unsurpassed validity is, unfortunately, unreal.     
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Oregon	
  JCP	
  FIRE	
  Validation	
  Dataset	
  

	
   The	
  Oregon	
  JCP	
  FIRE	
  Validation	
  Dataset	
  is	
  a	
  risk	
  dataset	
  that	
  contains	
  the	
  records	
  

of	
  12,730	
  juveniles.	
  	
  However,	
  to	
  facilitate	
  manageability,	
  the	
  original	
  data	
  are	
  truncated	
  

to	
  a	
  smaller	
  size	
  of	
  1,000	
  cases	
  using	
  random	
  selection.	
  	
  Its	
  final	
  size	
  is	
  significant	
  in	
  two	
  

ways.	
  	
  First,	
  reducing	
  the	
  size	
  of	
  the	
  data	
  makes	
  the	
  manipulation	
  and	
  injection	
  of	
  error	
  

more	
  tractable.	
  	
  Second,	
  the	
  master	
  dataset	
  “Risk	
  Device	
  X”,	
  to	
  which	
  the	
  results	
  of	
  

Oregon	
  JCP	
  FIRE	
  are	
  compared,	
  also	
  contains	
  1,000	
  cases.	
  	
  Matching	
  the	
  size	
  of	
  the	
  two	
  

datasets	
  makes	
  the	
  results	
  more	
  interpretable.	
  	
  	
  

The	
  risk	
  device	
  is	
  comprised	
  of	
  30	
  risk	
  items,	
  all	
  of	
  which	
  or	
  dichotomous	
  (see	
  

table	
  for	
  distributions).	
  	
  The	
  criterion	
  variable	
  that	
  sets	
  the	
  base	
  rate	
  for	
  this	
  population	
  

is	
  a	
  variable	
  designated	
  as	
  “follow-­‐up	
  referral.”	
  	
  Generally,	
  failure	
  within	
  this	
  population	
  

is	
  comprised	
  of	
  juveniles	
  who	
  are	
  referred	
  for	
  follow-­‐up	
  action.	
  	
  The	
  base	
  rate	
  for	
  this	
  

population	
  is	
  .3,	
  meaning	
  that	
  30	
  percent	
  of	
  the	
  juveniles	
  fail	
  within	
  a	
  follow-­‐up	
  period	
  

of	
  12	
  months.	
  	
  This	
  risk	
  device	
  divides	
  the	
  population	
  into	
  four	
  categories	
  of	
  risk:	
  low,	
  

low/moderate,	
  moderate,	
  and	
  high.	
  	
  The	
  failure	
  rate	
  for	
  each	
  group	
  is	
  16.7%,	
  28.9%,	
  

37.27%,	
  and	
  47.7%	
  respectively.	
  	
  The	
  scale	
  score	
  ranges	
  from	
  0	
  to	
  28.	
  	
  The	
  full	
  

description	
  of	
  the	
  Oregon	
  JCP	
  FIRE	
  Validation	
  dataset	
  can	
  be	
  found	
  in	
  the	
  following	
  

table.	
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Table	
  7:	
  Scale	
  Score	
  for	
  Oregon	
  JCP	
  Fire	
  Risk	
  Instrument	
   	
  

Scale	
  Score	
   N	
   Number	
  of	
  
Failures	
  

Number	
  in	
  
Cutoff	
  

Cutoff	
  Base	
  
Rate	
  (%)	
  

Failure	
  
Rate	
  

0	
   705	
   73	
   	
  
	
  

4872	
  
(39.39%)	
  

	
  
	
  

3179	
  
(25.7%)	
  

	
  
	
  
	
  

2401	
  
(19.41%)	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

1918	
  
(15.51%)	
  

	
  
Low	
  
788	
  
(22.41%)	
  	
  
	
  
	
  
Low/Moderate	
  
919	
  
(26.13%)	
  
	
  
	
  
Moderate	
  
895	
  
(25.45%)	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
High	
  
915	
  
(26.02%)	
  

	
  
	
  
16.17%	
  
	
  
	
  
	
  
	
  
28.9%	
  
	
  
	
  
	
  
	
  
37.27%	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
47.7%	
  

1	
   989	
   120	
  
2	
   1124	
   204	
  
3	
   1094	
   205	
  
4	
   960	
   186	
  
5	
   902	
   225	
  
6	
   817	
   221	
  
7	
   755	
   225	
  
8	
   705	
   248	
  
9	
   627	
   221	
  
10	
   532	
   169	
  
11	
   474	
   182	
  
12	
   393	
   159	
  
13	
   375	
   164	
  
14	
   365	
   155	
  
15	
   328	
   158	
  
16	
   285	
   142	
  
17	
   219	
   101	
  
18	
   172	
   72	
  
19	
   163	
   84	
  
20	
   117	
   61	
  
21	
   96	
   51	
  
22	
   63	
   30	
  
23	
   49	
   24	
  
24	
   30	
   17	
  
25	
   14	
   10	
  
26	
   10	
   6	
  
27	
   6	
   4	
  
28	
   1	
   0	
  
Total	
   12370	
   3517	
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Table 8: Description of Oregon JCP Fire Instrument 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Critique 

 The Oregon JCP FIRE makes up an important part of the analytical process.  

Because it is a real dataset, it provides the researcher with a realistic glimpse of the 

relationships between the many elements in a risk dataset and instrument.  For example, it 

Item	
   Risk	
  Item	
   Categories	
   Distributions	
  (Percent)	
  
1	
   School	
  attach	
   0,1	
   7751	
  (62.66%)	
   4619	
  (37.34%)	
  
2	
   Truancy	
   0,1	
   9291	
  (75.11%)	
   3079	
  (24.88%)	
  
3	
   Academic	
  fail	
   0,1	
   7702	
  (62.26%)	
   4668	
  (37.74%)	
  
4	
   Drop	
  out	
   0,1	
   10991	
  (88.85%)	
   1379	
  (11.15%)	
  
5	
   Friends	
  bad	
  behave	
   0,1	
   6119	
  (49.47%)	
   6251	
  (50.53%)	
  
6	
   Friends	
  drop	
  out	
   0,1	
   5908	
  (47.76%)	
   6462	
  (52.24%)	
  
7	
   Friends	
  disapprove	
   0,1	
   7446	
  (60.19%)	
   4924	
  (39.81%)	
  
8	
   Friends	
  good	
  academic	
   0,1	
   9973	
  (80.62%)	
  	
   2397	
  (19.38%)	
  
9	
   Adults	
  friend	
   0,1	
   10654	
  (86.13%)	
   1716	
  (13.87%)	
  
10	
   Behave	
  before	
  13	
   0,1	
   9718	
  (78.65%)	
   2652	
  (21.44%)	
  
11	
   Behave	
  last	
  month	
   0,1	
   10655	
  (86.14%)	
   1715	
  (13.86%)	
  
12	
   Crim	
  refs	
  3	
   0,1	
   9903	
  (80.06%)	
   2467	
  (19.94%)	
  
13	
   Constructive	
  school	
  act	
   0,1	
   5455	
  (44.10%)	
   6915	
  (55.90%)	
  
14	
   Runaway	
   0,1	
   11116	
  (89.86%)	
   1254	
  (10.14%)	
  
15	
   Runaway	
  recent	
   0,1	
   11405	
  (92.20%)	
   965	
  (7.8%)	
  
16	
   Behave	
  hurts	
  others	
  

recent	
  
0,1	
   10429	
  (84.31%)	
   1941	
  (15.69%)	
  

17	
   Behave	
  hurts	
  self	
   0,1	
   8964	
  (72.47%)	
   3406	
  (27.53%)	
  
18	
   Impulse	
  aggression	
   0,1	
   9676	
  (78.22%)	
   2694	
  (21.78%)	
  
19	
   Harms	
  animals	
   0,1	
   12164	
  (98.33%)	
   206	
  (1.67%)	
  
20	
   Weapons	
   0,1	
   11687	
  (94.43%)	
   689	
  (5.57%)	
  
21	
   Fam	
  communication	
   0,1	
   8985	
  (72.64%)	
   3385	
  (27.36%)	
  
22	
   Poor	
  fam	
  supervision	
   0,1	
   8853	
  (71.57%)	
   3517	
  (28.43%)	
  
23	
   Fam	
  conflict	
   0,1	
   9289	
  (75.09%)	
   3081	
  (24.91%)	
  
24	
   Cps	
  cv	
   0,1	
   9390	
  (75.91%)	
   2980	
  (24.09%)	
  
25	
   Crim	
  family	
  member	
   0,1	
   9675	
  (78.21%)	
   2695	
  (21.79%)	
  
26	
   Sub	
  use	
   0,1	
   8894	
  (71.90%)	
   3476	
  (28.1%)	
  
27	
   Sub	
  use	
  prob	
   0,1	
   9240	
  (74.40%)	
   3130	
  (25.3%)	
  
28	
   Sub	
  use	
  13	
   0,1	
   10021	
  (81.01%)	
   2349	
  (18.99%)	
  
29	
   Sub	
  use	
  school	
   0,1	
   10713	
  (86.60%)	
   1657	
  (13.40%)	
  
30	
   Anti	
  social	
   0,1	
   9680	
  (78.25%)	
   2690	
  (21.75%)	
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is evident that the Oregon JCP FIRE, which Baird et al (2012) claims to be one of the 

best juvenile risk assessment instruments, is not a better risk assessment instrument then 

then Risk Device X.  Another interesting relationship found in the Oregon JCP FIRE is 

that it contains highly intercorrelated risk items.  Nonetheless, the use of the Oregon JCP 

FIRE to test the hypotheses, where possible, would lend great support to findings found 

from Risk Device X. 

 The primary reason that the Oregon JCP FIRE could not be used as the sole 

dataset from which hypotheses tests are made is because it lacks the variety needed to test 

the different hypotheses.  For instance, such risk instrument contains 30 dichotomous risk 

variables that are largely uniform, of which most are positively skewed.  It, thereby, does 

not offer the opportunity to compare the sensitivity of error impacted by different types of 

risk items, such as those with three or more categories or those that are negatively or 

normally skewed.  Thus, the inherent design of the Oregon JCP FIRE does not make it a 

good fit to answer most of the current study’s research questions.   

Oregon JCP FIRE 3 Categories 

          To help test several hypotheses, the risk categories in Oregon JCP FIRE was 

reduced from the original four categories to three.  In every aspect, this instrument and 

dataset are similar to the original Oregon JCP FIRE.  The rationale behind shrinking the 

number of risk categories for this risk tool comes from the arguments made by Baird 

(2009) and Todd Clear (personal communications, 2013).  Having three categories of risk 

is more beneficial under most circumstance because: 1) most agencies do not match risk 

tools with sufficient levels of supervision, and 2) most levels of supervision are not 
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meaningfully different to differentially impact an individual’s actual likelihood of 

reoffending.  As well, matching the number of risk categories across the risk tools 

facilitates the comparison of results.  The distribution and scale score for this instrument 

is shown below. 
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Table 9: Scale score of Oregon JCP FIRE with 3 Categories 

 

 

 

 

 

 

 

 

 

 

 

 

Oregon JCP FIRE 3 Categories- 11 items (Burgess Method) 

          This version of the JCP FIRE is made up of 11 items, as opposed to the 30 items in 

the original instrument.  To create this instrument, the same data from the Oregon JCP 

FIRE were entered into a logistic regression, and only 11 of the most robust variables are 

Scale	
  
Score	
  

N	
   Number	
  of	
  
Failures	
  

Cases	
  in	
  Cutoff	
   Cutoff	
  Base-­‐Rate	
  
(%)	
  

0	
   70	
  	
   6	
   	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  409	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  
	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  293	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  298	
  
	
  
	
  
	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

	
  
	
  	
  	
  	
  69	
  
(16.8%)	
  
	
  
	
  
	
  

	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  81	
  
	
  	
  	
  	
  	
  (27.6%)	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  	
  179	
  
(50%)	
  

1	
   104	
  	
   14	
  
2	
   78	
  	
   16	
  
3	
   84	
  	
   15	
  
4	
   73	
  	
   19	
  
5	
   70	
  	
   16	
  
6	
   60	
  	
   18	
  
7	
   63	
  	
   23	
  
8	
   49	
  	
   15	
  
9	
   51	
  	
   19	
  
10	
   38	
  	
   12	
  
11	
   33	
  	
   13	
  
12	
   34	
  	
   16	
  
13	
   30	
  	
   12	
  
14	
   37	
  	
   21	
  
15	
   25	
  	
   14	
  
16	
   22	
  	
   11	
  
17	
   23	
  	
   10	
  
18	
   12	
  	
   8	
  
19	
   16	
  	
   4	
  
20	
   9	
  	
   5	
  
21	
   4	
  	
   1	
  
22	
   7	
  	
   4	
  
23	
   3	
  	
   2	
  
24	
   3	
  	
   3	
  
26	
   2	
  	
   2	
  
	
   	
   	
   	
  
Total	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  1,000	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  299	
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retained.  Several researchers have cited the importance of parsimony (Austin et al., 2003; 

Flores et al., 2004).  Eliminating excesses in risk items significantly augmented validity.  

In addition, this instrument codes each of the 11 risk item using the Burgess Method, 

where each item dichotomy is coded as 0 or 1 to form the total risk score.   

Table 10: Scale score for Oregon JCP-Burgess  

Scale	
  
Score	
  

N	
   Number	
  of	
  
Failures	
  

Cases	
  in	
  Cutoff	
   Cutoff	
  Base-­‐Rate	
  
(%)	
  

0	
   215	
   34	
   	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  426	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  343	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  
	
  	
  	
  	
  	
  	
  	
  232	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  
	
  
	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

	
  
	
  	
  	
  	
  86	
  
(20.1%)	
  

	
  
	
  	
  	
  	
  	
  114	
  
	
  	
  	
  	
  	
  (33.2%)	
  
	
  
	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  100	
  
	
  	
  	
  (43.1%)	
  

1	
   211	
  	
   52	
  
2	
   198	
  	
   62	
  
3	
   145	
   52	
  
4	
   95	
   41	
  
5	
   64	
  	
   21	
  
6	
   38	
   19	
  
7	
   19	
  	
   8	
  
8	
   10	
   8	
  
9	
   3	
  	
   2	
  
10	
   	
  	
  	
  	
  	
  3	
  	
   1	
  

	
   	
   	
   	
  
Total	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  1,000	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  300	
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Oregon JCP FIRE 3 Categories – 11 items (Coefficients) 

        This version of the JCP FIRE is also made up of 11 risk items.  It is different from 

the “Oregon JCP FIRE -11 items (Burgess Method) because it scores individuals by the 

actual weight contribution of each risk item.  After adding the 11 risk items into a logistic 

regression with the outcome variable, it is learned that each item varies greatly on its 

individual contribution to the risk function.  Thus, in this version of the Oregon JCP 

FIRE, the individuals are scored by the actual weights or coefficients of each item.  As a 

result of scoring the variables by their individual coefficients, the range of scale score 

expanded enormously, from 0 to 35.     
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Table 11: Scale score for Oregon JCP-Coefficients 

Scale	
  
Score	
  

N	
   Number	
  of	
  
Failures	
  

Cases	
  in	
  Cutoff	
   Cutoff	
  Base-­‐Rate	
  
(%)	
  

0	
   215	
  	
   34	
   	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  394	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  
	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  351	
  
	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  255	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

	
  
	
  	
  	
  	
  77	
  
(19.5%)	
  
	
  
	
  
	
  

	
  	
  	
  	
  	
  107	
  
	
  	
  	
  	
  	
  (30.4%)	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
116	
  
(45.4%)	
  

2	
   85	
  	
   16	
  
3	
   94	
  	
   27	
  
4	
   25	
  	
   6	
  
5	
   105	
  	
   31	
  
6	
   37	
  	
   12	
  
7	
   35	
  	
   6	
  
8	
   72	
  	
   25	
  
9	
   21	
  	
   12	
  
10	
   56	
  	
   15	
  
11	
   42	
  	
   20	
  
12	
   18	
  	
   7	
  
13	
   45	
  	
   16	
  
14	
   15	
  	
   8	
  
15	
   21	
  	
   12	
  
16	
   27	
  	
   11	
  
17	
   4	
  	
   1	
  
18	
   13	
  	
   5	
  
19	
   14	
  	
   8	
  
20	
   5	
  	
   1	
  
21	
   13	
  	
   6	
  
22	
   4	
  	
   2	
  
23	
   8	
  	
   1	
  
24	
   9	
  	
   6	
  
25	
   3	
  	
   2	
  
26	
   1	
  	
   1	
  
27	
   7	
  	
   5	
  
28	
   1	
  	
   1	
  
30	
   2	
  	
   1	
  
33	
   1	
  	
   1	
  
35	
   3	
  	
   1	
  
	
   	
   	
   	
  
Total	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  1,001	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  300	
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Risk Device X- Version 5 Categories 

      To understand how differences in the number of risk categories impact the sensitivity 

of error, another version of Risk Device X with 5 risk categories is created.  Here, “Risk 

Device X Version 5 Categories” is an exact copy of the original Risk Device X.  The only 

difference is that the individuals are divided into 5 risk groups as opposed to 3.  The 

construction of this instrument is accomplished by recoding the original scores into ones 

that divide the offenders into more groups.  The following table explains the scale scores 

and different properties found in the new version of Risk Device X.   
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Table 12: Scale Score for Risk Device X- Version 5 Categories 

  

Scale	
  Score	
   N	
   Number	
  of	
  
Failures	
  

Number	
  in	
  
Cutoff	
  

Failure	
  rate	
  
(%)	
  

7	
   2	
   0	
   	
  
	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  183	
  

(18.3%)	
  
	
  
	
  
	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  195	
  
(19.5%)	
  

	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  228	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
(22.8%)	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  195	
  
(19.5%)	
  
	
  

	
  
	
  

199	
  
(19.9%)	
  

	
  
	
  
	
  
	
  
(2.5%)	
   	
  
	
  
	
  
	
  
(5.5%)	
  
	
  
(8.5%)	
  
	
  
(39.1%)	
  
	
  
	
  
	
  
	
  
(44.3%)	
  	
  

8	
   2	
   0	
  
9	
   3	
   0	
  
10	
   14	
   1	
  
11	
   31	
   2	
  
12	
   57	
   2	
  
13	
   74	
   5	
  
14	
   93	
   10	
  
15	
   102	
   12	
  
16	
   119	
   12	
  
17	
   109	
   22	
  
18	
   105	
   75	
  
19	
   90	
   80	
  
20	
   74	
   64	
  
21	
   43	
   37	
  
22	
   39	
   36	
  
23	
   23	
   21	
  
24	
   13	
   11	
  
25	
   6	
   6	
  
26	
   0	
   0	
  
27	
   1	
   1	
  
Total	
   1000	
   397	
   1000	
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Procedure for Injecting Error 

 The next step involves the injection of error into the dataset.  There are two types 

of error of interest in the current study: random error and systematic error.  Random error 

conveys a sense of randomness in how the numbers are corrupted.  In other words, an 

individual could belong to a higher or lower risk option if he is incorrectly placed in a 

medium risk category for a risk item.  Systematic error, on the other hand, constitutes 

incorrect placements that are consistently made towards a specific direction. 

The difference between random and systematic error have deep implications for 

how error is defined and created in the study.  The study increases the level of error by 

intervals of 10 (ie. 10 percent, 20 percent, and 30 percent) to understand how different 

quantities of error impact the risk items.  Before assigning error to the cases, one must 

identify the cases to which error is assigned.  This can be accomplished by using the 

random number generator to assign numbers to the 1,000 cases.  If 10 percent error is 

desired, then 100 cases for each risk item with the lowest number (randomly created) can 

be selected for the injection of error.  For each risk item, randomization is used to select 

the cases.  As such, it is possible for the same individual to experience changes in more 

than one risk item.  As well, it is possible that portions of individuals will never be 

subject to receiving any injected error.  The same method can be repeated to test the 

impact of injecting 20 percent or 30 percent error.  

Random error is replicated by shifting a case to a different category.  For example, 

if a case for a risk item is assigned to one of three risk categories (i.e. low, medium, high), 

error would mean that the case actually belongs to one of the other two categories.  And 
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if 10 percent error is expected for one risk item, then 10 percent of the cases are expect to 

belong to one of the other two options instead.  On the other hand, systematic error is 

replicated by shifting cases towards a desired direction.  For example, 10 percent 

systematic error towards the direction of underestimation translates into a shift of 10 

percent of the cases towards a higher risk category.    This same general procedure for 

injecting error should be repeated for each risk item.    

Research Hypothesis 

 The primary research question is: how do different classification instrument 

properties affect the transfer of error.  This research inquiry can be answered by focusing 

on more specific inquiries outlined below.  Each research question can be addressed by 

testing its respective hypotheses.  

1) What is the impact of error on risk assessment instruments? H1-H4 

2) How do different distributions of cases across categories impact sensitivity? 

H5-H6 

3) How do different distributions of cases across risk variables affect the 

sensitivity of error? H7-H11 

4) Does the expansion of scale scores in risk instruments increase the 

sensitivity of error? H12 

Based on these research questions, the proposed study examines the sensitivity of 

error in offender risk assessment instruments by using both conceptual data and actual 

data.  After exploring the effects of random error and systematic error on four risk 

devices, the study will examine the impact of different distributions of cases across 



99	
  
	
  

	
   	
   	
   	
  
	
  

categories on sensitivity.  Next, the impact of distributions of cases across risk variables 

on sensitivity is examined.  Finally, the study will explore the interplay between range of 

scores and sensitivity.  The following hypotheses are proposed: 

H1: After injecting random error into entire risk models, the level of classification 

error is equal to the level of error that is injected into the risk items. 

After injecting different levels of random error into the risk items, final 

classification of offenders should experience a level of error that is commensurate of the 

percentage of error that was initially injected into risk items.  The effect of random error 

is impartial to any particular risk category.  It affects all segments of a risk item equally.  

Thus, if we assume that there is a 10 percent error in the variables, we could also assume 

that the error is split evenly among all the possible outcomes.  In the final classification 

phase, an equal amount of classification error should be seen.   

H2: After injecting systematic error (up and down) into entire risk models, the 

level of classification error is equal to the level of error that is injected into the risk items. 

Since the injection of systematic error effects unidirectional changes in the scores, 

the magnitude of misclassification should be greater.  On the other hand, random error 

creates changes that could either increase or decrease a risk score, moderating the 

magnitude of misclassification. 

H3: After injecting random error into each risk model, the subgroup base-rates 

for high-risk groups will decrease and the subgroup base-rates for low risk groups will 

increase, showing a pattern of regression towards the mean in such rates. 
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    It is logical to assume that error will reduce the instrument’s ability to classify 

individuals.  As such, the injection of error should cause subgroup base-rates from high 

and low categories to shrinks towards the mean.  As the shrinkage of the subgroup base-

rates continues, the validity or the capacity of the risk instrument to divide individuals 

into groups with meaningfully different recidivism rates would be compromised.    

 H4: After injecting systematic (up and down) error into each risk model, the 

subgroup base-rates for high-risk groups will decrease and the subgroup base-rates for 

low risk groups will increase, showing a pattern of regression towards the mean in such 

rates. 

H5: Risk instruments that over-classify high risk individuals will be more 

sensitive to random error. 

Risk instruments, depending on a myriad of factors, can distribute the majority of 

the cases to several risk categories, causing disproportionate clusters of cases in certain 

risk groups.  As such, different skews can be formed.  It is argued that negatively skewed 

cases in the outcomes of the entire risk classification instrument will have the greatest 

impact on increasing sensitivity.  Here, it is important not to confuse the individual 

distribution of risk items (mentioned in hypothesis #7) with the distribution of the 

collective classification of cases.   

H6: Increasing the number of categories to which offenders are classified will 

increase misclassification and the sensitivity of error. 

 Increasing the number of risk items in risk devices will reduce the tendency for 

misclassification error, thereby reducing sensitivity.  The logic behind such supposition 
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comes from the natural expansion of scores that will comprise a function, ensuing the 

addition of risk items.  The expansion of scores will increase the range of scores that 

form each risk category.  Thus, risk instruments with more risk variables are prone to 

have less misclassification.   

 H7:   Negatively skewed risk items will have the greatest impact on increasing the 

sensitivity of error, when compared to normally and positively skewed risk items. 

Of the three general types of distributions that can exist in the scores for each case, 

negative skews are speculated to have the gravest impact on misclassification.  To fully 

understand the implications of distributions, the trajectory of error for each distribution 

type requires individual analysis and explanation.   

Normal Distributions: Error in normally distributed items will push the majority 

of cases to the outer ends or into more extreme risk categories.  Normal distributions are 

symmetrical and usually experience a cluster of cases in the middle categories (Field, 

2005).  If error is injected into such distributions, the effect will be that most of the error 

will be experienced by the category under which most cases will fall.  Thus, if all the risk 

times in an offender risk assessment instrument are normally distributed, most of the 

error in the final classification phase will be in the medium risk categories.  Logically 

then, the error will cause the cases to displace outwards to the more extreme categories. 

Skewness: is often associated with the lack of symmetry in frequency 

distributions.  If it is positively or negatively skewed, the majority of cases is clustered on 

either end, thereby yielding more errors in these extremes.  Thus, the skewness of a 
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distribution should significantly alter final classification outcomes if random error is 

injected.    

Positive skew:  When random error is combined with positively skewed 

distributions in risk categories, the direction of impact will be towards higher risk 

categories. A positive skew clusters cases on the right side of the distribution and tails off 

to the right (Field, 2005).  Thus, random error will more likely affect these categories and 

reduce the skew of the distribution; that is, random error will push the cases to the right 

or higher risk categories during final risk classification. 

 Negative Skew: The injection of random error into negatively skewed 

distributions in risk categories will have the gravest impact on misclassification.  A 

negative skew illustrates that a cluster of cases are on the right side of the distribution.  In 

this situation, random error will likely push the cases towards the left or the lower risk 

categories.  The final classification outcome will likely be significantly pushed towards 

the left, falsely identifying higher amounts of low risk offenders.    

 The assumption that negatively skewed items will have the greatest impact on 

sensitivity is primarily warranted by the understanding that the subgroup base-rate 

progressively increases from low leveled to higher leveled risk categories.  In other words, 

a valid risk device should show a positive relationship between risk and number of 

failures within the subgroups.  And for this reason, anytime a significant amount of cases 

move from a higher-level category to a lower level category, the sub-group base rate will 

increase in lower level categories.  When sufficient changes to the subgroup base-rate are 

induced so that subgroup base rates are no longer commensurate with risk, the entire risk 
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instrument would be rendered invalid.  Negative skews would invariably provoke this 

outcome and displace failed cases to lower leveled risk categories.   

 Though the magnitude of displacement should not vary from one type of 

distribution to another, error in negatively skewed items will have the most significant 

impact on the validity of the risk device.  This is because most other distributions only 

superficially move cases around, while error in negative distributions shifts cases that 

directly impact the base rates.  

Error in dichotomous variables is unidirectional.  If it doesn’t belong to the existing 

category, then it belongs to the other category.  The destination to which cases are 

displaced is absolute.   However, the injection of error into risk items with more 

categories has more places to go.  Thus, error in dichotomous variables displaces cases 

more aggressively because the shift of all of the erroneous cases can only go towards one 

direction.   

 H8:   Increasing the peakness of distributions in risk items will increase the 

amount of error or misclassifications towards a particular direction. 

  According to Fields (2005), the kurtosis of a distribution refers to the pointyness 

of a distribution.  In terms of kurtosis, a distribution can either be leptokurtic or 

platykurtic.  If it is normal or average in peakness, it is called mesokurtic.  Leptokurtic 

distributions are more peaked, whereas platykurtic distributions are flatter.  It is 

hypothesized that the direction of misclassified cases is largely determined by the 

variable’s kurtosis.  For instance, the injection of error into flatly distributed variables 

should mean that misclassification can go in any direction.  However, as the peakness 
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increases, more cases are moving towards one direction, thereby dictating the magnitude 

of such shifts.    

H9: Dichotomous risk items will have a greater impact on the sensitivity of error 

than will risk items with more category options. 

Today, most risk tools are comprised of mostly dichotomies for the purpose of 

simplicity.  It is the contention of this study that dichotomies, as compared to risk 

variables with three or four categories, worsen the problem of misclassification.   

H10: Increasing the weight of individual risk items will increase the sensitivity of 

error.   

Risk items can vary greatly in terms of the score points they individually 

contribute to the overall risk function.  Though some instruments, for the purpose of 

increased manageability, are strictly designed so that every risk item contributes the same 

score to the entire function, other instruments may contain an array of risk items that 

would differentially contribute to the risk function.  It is hypothesized that the injection of 

error into such risk items, whose score-point contribution is greater than the score-point 

contribution of its counterparts, will have a greater impact on misclassification. 

H11: Random error will produce less misclassification than will systematic error. 

This hypothesis will examine the impact of random and systematic error on 

individual risk items.  It is hypothesized that random error, which is directionless, will 

produce lower levels of misclassifications.  Conversely, systematic error will increase 

misclassifications because it pushes error towards the same direction.   
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 H12: Adding more risk items to a risk tool will decrease the sensitivity of error.  

 Offender risk classification instruments could vary greatly on the number of risk 

items they contain.  While some risk designers have argued for the need of longer and 

more comprehensive instruments, some have argued for parsimony.  To reconcile this 

debate, the issue about the appropriate number of risk items that should comprise a risk 

tool is analyzed from a sensitivity perspective.  It is hypothesized that increasing the 

number of risk variables would subsequently expand an instrument’s range of score, and 

the range of score will provide a buffer for error.     

After understanding the impact of error on risk tools, the next objective is to 

identify risk properties that would increase the sensitivity of error.  It is hoped that by 

increasing the understanding of the interplay between various risk properties and the 

sensitivity of error, more efficient risk tools could be constructed.   

Analytical Plan 

Each hypothesis is specifically designed to answer its respective research question.  

Hence, the hypotheses are different and require different types of analyses to answer 

them.  The course of action for answering the hypotheses is outlined below. 

Hypothesis #1 & #2: 

 After random error is injected into the four risk tools, the misclassifications are 

calculated.  To answer this hypothesis, the original error that is injected into each 

instrument is compared to the level of misclassification that yields.  For example, if 10 

percent of cases are misclassified following the injection of 10 percent error, then the 
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levels of error are considered equal.  For hypothesis #2, the general procedure is followed.  

After systematic (up and down) errors are injected into the four risk tools, the 

misclassifications are calculated and compared to the systematic error that is injected into 

the risk data.   

Hypothesis #3 & #4: 

 To understand the change in subgroup base-rates, the new subgroup base-rates are 

subtracted from the original subgroup base-rates.  The level of change is, thus, measured 

by the magnitude of such differences.  If the direction of change for low and high risk 

groups is towards the middle, then it fails to reject hypotheses #3 and #4. 

Hypothesis #5: 

 To test hypothesis #5, new cutoffs are drawn for Risk Device X.  Three versions 

of Risk Device X are constructed, each with a tendency to over-classify individuals into 

low, moderate, or high risk.  The process of injecting error into each version is 

implemented.  The number of misclassified cases is calculated for each version of Risk 

Device X to see how over-classification of individuals into specific categories would 

impact sensitivity.    

Hypothesis #6:  

 Misclassifications produced from the injection of error into Risk Device X and 

Risk Device X-5 Cats are compared.  Risk Device X-5 Cats is different because it 

contains cutoffs that divide individuals into five categories of risk.   
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Hypothesis #7: 

 Risk Device X contains variables with different skews.  Variables A, G, and H are 

negatively skewed.  Variables B, F, J, and K are positively skewed.  And Variables C, D, 

E, and I are normally skewed.  Misclassifications following the injection of error are 

calculated for each individual item to understand the relationship between skew and 

sensitivity.   

Hypothesis #8: 

 Oregon JCP FIRE is used to test this hypothesis.  To ensure that the levels of 

change is not a function of probability, 5 pointiest risk items with a positive skew are 

selected.  As well 5 flattest risk items with a positive are selected.  After injecting random 

error into Oregon JCP FIRE, two types of changes are expected, misclassifications 

toward a higher risk level and misclassifications toward a lower risk level.  The total 

misclassifications going towards each direction (high and low) are then calculated to 

form two averages.  A ratio is then formed by comparing the cases that are misclassified 

to a higher risk level to cases that are misclassified to a lower risk level.  The greater the 

disproportionality in this ratio, the greater the magnitude of misclassification towards a 

direction is indicated.   

Hypothesis #9: 

 Items E, F, and G from Risk Device X are dichotomous.  The misclassifications 

resulting from the injection of error into such risk items can be compared to the ones 

resulting from the injection of error into the other risk items.   
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Hypothesis #10: 

 Items C and J from Risk Device X are weighed disproportionately more than their 

counterparts.  The misclassifications for these items can be compared to their 

counterparts to understand how the increase of weights contributes to sensitivity. 

Hypothesis #11: 

 To test answer hypotheses #7, #8, #9, and #10, random error was injected into 

relevant risk items.  For hypothesis #11, the same analyses can be done.  But this time, 

systematic error is injected into the items instead. 

Hypothesis #12: 

 Misclassifications for Oregon JCP FIRE and Oregon JCP-Burgess are compared.  

Since Oregon JCP-Burgess is simply a truncated version of Oregon JCP FIRE, a simple 

comparison of classification error for each risk tool would be adequate to answer 

hypothesis #12. 

Analytical Procedure 

 Finally, the analysis segment of the study needs to be explained in further detail.  

Prior to injecting error into the cases, reasonable cutoffs that define the upper and lower 

limits for each category are set.  In other words, the number of individuals who constitute 

each risk category needs to be determined immediately after the cases are randomly 

generated.  The analysis is conducted primarily by comparing the group sizes of each risk 

category before the injection of error to the new group sizes for each risk group after the 

injection of error.  Many statistical methods can be used to measure the differences in 
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group sizes.  Cross tabs, in particular, are appropriate for this kind of analysis.  The 

injection of error is expected to significantly alter the sizes of each risk group.  The cross 

tabs test for significance in the differences.  The specific procedure is as follows: 

 Step 1: Determine the risk classification designation for each individual by adding 

up their score from all 11 risk items.   

 Step 2: Once the classification of all the individuals are set, the injection of error 

can be implemented on the variables by following the procedure for injecting error.   

 Step 3: For each time that error is injected into a variable, the resulting shift in 

cases may or may not impact the risk classification designation for an individual.   

 Step 4: A simple comparison can be done between the risk classification 

designations of individuals before and after the injection of error.  Some classification 

experts suggest that a simple comparison of group sizes of each risk category will give 

the clearest indication of validity.  However, cross tabs can be used to give us a better 

idea of differences and their significance.     

 To cross check, one can compare the change in base rates resulting after the 

injection of error across the items.  Relative to base-rate changes in other items, 

significant changes in a particular item will provide comparative value and a clear 

indication of heightened sensitivity within the item.    

 Comparing the group sizes for each risk category before and after the injection of 

error for a single risk item tells us very little about the impact of error on risk devices.  

However, we hope to recognize a pattern in the risk devices by comparing the before and 
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after effect of error for multiple risk item.  By the end, it is hoped that the analysis will 

give us a clearer idea on what properties in risk devices increases the sensitivity of error. 

The steps described above are for one single distribution.  To understand how 

error affects other distributional scenarios, the steps need to be repeated for each 

statistical distribution in question.  Also, a major premise of the study is to measure the 

tolerance for each statistical distribution.  This means that different levels of error need to 

be injected into the distributions.  This will allow the researcher to see change on a 

continuum. 

Measurement 

The current study relies on three specific methods to measure the impact of error 

on sensitivity.  They are: 1) individual case displacements, 2) subgroup base-rate change, 

and 3) significance.   

First, individual case displacements refer to the change in individual’s risk 

designation subsequent the injection of error.  The study is premised on the idea that 

increases or decreases in an individual’s risk score does not necessarily translate into 

changes in the classification of risk.  Thus, for example, the level of initial error should 

not be tantamount to classification error.  The case shifts look at how a person’s risk 

designation is changed by the injection of error.  For example, an individual was 

classified as low risk when he should had been classified as moderate or high risk.  Thus, 

a change in risk designation for an individual will count as one displacement.   

Second, subgroup base –rate change refers to how the base rate is altered after the 

injection of error.  This type of measurement directly taps into the core of study because 
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it examines the elements that make an instrument valid, the subgroup base rate.  The 

subgroup base rate is calculated by dividing the N by the number of failures in its 

respective category.  For example, if there were 100 individuals and 10 failures in the low 

risk category, then the subgroup base-rate or recidivism rate would be 10%.  This 

measurement will examine the change in base rate for each risk category after error is 

injected, which translates to subtracting the original subgroup base rate with the new 

subgroup base-rate.  Using the same scenario, for example, if the injection of error 

produces a new base rate of 14 percent, we would have a change of 4 percent in the base 

rate for the low risk group.  And to standardize this measurement for an entire model, a 

net change calculation can be created, where the change in base-rates across the different 

categories of risk are summed.   

Finally, significance tests are administered to the subgroup base-rate changes.  

The formula for the significance test is: Z= (p-P)/ sqrt((PQ/N)), where p = failure rate for 

item with error, P = true failure rate, Q = 1 - true failure rate, and N = number of cases.  

Though this significance test empowers the study because it provides a popularly 

recognized and standardized way to measure the impact of error, it needs to be 

interpreted with some level of caution, especially when we are comparing the validity of 

entire models.  For example, if there are three risk categories that which constitute a 

classification instrument, having significance in the changes of base-rates for all three 

categories may not necessarily mean that the model is less tolerant of error, though 

generally it would be so suggested.  An unforeseen circumstance might have emerged 

where the majority of change is heavily clustered in one category.  Thus, the 
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interpretation of significance needs to be complemented with the equally important 

interpretation of effect sizes.   

These three methods by which the sensitivity of error is measured are equally 

important. Each is adept and appropriate to answer different research questions, 

depending on the specific circumstances.      
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Chapter 5- Assessing the Sensitivity of Error in Risk Devices- Analyses and Results 

 This chapter assesses the hypotheses described in the previous chapter to 

determine the relationship between different risk properties and the sensitivity of error in 

order to address the proposed research questions.  This chapter is organized as follows.  

The first section examines the overall impact of initial error, both random and systematic, 

on classification error.  The second section describes the results that looked at the 

distribution of cases across risk categories.  In the third section, the impact of 

distributions of cases for individual variables on sensitivity is discussed.  Finally, the last 

section will look at the relationship between the range of score and sensitivity, as well as, 

looking at specific circumstances where the range of score is augmented.      

Research	
  Question	
  #1:	
   What	
  is	
  the	
  impact	
  of	
  error	
  on	
  misclassifications	
  in	
  Risk	
  Device	
  X?	
  	
  	
  	
  
 

The first phase of this research explores the overall transfer of error in offender 

risk classification instruments.  That is, it examines the relationship between errors in risk 

information and errors in classification outcomes.  A primary reason pushing forth the 

current study has to do with the paucity of knowledge about the impact of error.  As such, 

the sensitivity of error and classification effectiveness of risk tools has been critically 

understudied.  It is generally assumed that if we were to inject an identifiable quantity of 

error in the risk items, a similar proportion of error will take place in the classification 

outcomes.  However, such supposition has not been empirically supported.  The answer 

to this question is, unfortunately, complicated as well.    

 Research Question #1 can be broken down into two segments.  The first section 

concerns the number of misclassified cases that yields after the injection of 10 percent 
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random error, 20 percent random error, 10 percent systematic (up) error, and 10 percent 

systematic (down) error.  Section two will examine the impact of such errors by looking 

at the changes in subgroup recidivism/base rates.   

Results- Hypothesis #1:    

• After injecting random error into entire risk models, the level of classification 

error is equal to the level of error that is injected into the risk items.    

The study rejects hypothesis #1, which states that the level of error injected into 

the risk items is equal to the level of misclassifications that occur.  Table 1A shows that 

10 percent random error does not cause an equal amount of classification error.  Instead, 

10 percent random error in the risk items causes 24.4% misclassification in Risk Device 

X, 26.3% misclassification in Oregon JCP-3 Cat, 33.7% misclassification in Oregon JCP-

Burgess, and 35.2% misclassification in Oregon JCP-Coefficients (see table 1A).  Thus, 

small levels of error across the risk items in a risk tool yield high levels of classification 

error.  Similar results are found after injecting 20 percent random error into the same risk 

tools.  Twenty percent random error causes 35.9% misclassifications in Risk Device X, 

48.3% misclassifications in Oregon JCP-3 Cats, 52.7% misclassifications in Oregon JCP-

Burgess, and 53.7% misclassifications in Oregon JCP-Coefficients (see table 1B).  Hence, 

random error does not cause equal levels of classification error, it causes 

disproportionately more.  Such exorbitant levels of classification error that yield, warrant 

much doubt and questioning about the criminal justice system’s over dependence on 

classification systems.   
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Next, it is visible that different risk tools are consistently more tolerant of error.  

Of the 4 risk instruments tested in the study, Risk Device X fared the best in tolerating 

error, while Oregon JCP-Coefficients fared the worst.  That is, injecting 10 percent 

random error into its risk items caused 24.4% misclassification in Risk Device X, while 

causing 35.2% misclassifications in Oregon JCP-Coefficients.  Compared to these 

instruments, Oregon JCP FIRE and Oregon JCP-Burgess are in the middle in terms of 

demonstrating the capacity to tolerate error.    

Comparing Burgess method and Coefficient method 

There are two popular methods of calculating scores in a risk model.  The Burgess 

method is boasted for its simplicity in determining offender risk scores.  Dichotomies are 

coded either 0 for not displaying a risk trait or 1 for displaying a risk trait.  The total score 

is calculated by summing such individual scores.  The Coefficient Method utilizes the 

weights of individual variables that are obtained from regressions to calculate offender 

risk.  Each of these methods has a profound impact on an instrument’s range of score.  

The Burgess method creates smaller scales scores, while the Coefficient Method creates 

vaster scale scores.  

In terms of reducing the sensitivity of error, the study suggests that the Burgess 

Method of risk score construction is superior to the Coefficient Method.  For instance, the 

injection of 10 percent random error produces 337 misclassified cases in Oregon JCP-

Burgess and 352 misclassified cases in Oregon JCP-Coefficients.   Similarly, 20 percent 

random error produces 527 misclassified cases in Oregon JCP-Burgess and 537 

misclassified cases in Oregon JCP-Coefficients.   Thus, Oregon JCP-Burgess, which was 
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constructed using the Burgess method, has a lower tendency for misclassification after 

the injection of random error    

Random Error and Direction of Misclassifications 

Random error causes misclassifications of cases to go in both directions.  In other 

words, fair amounts of cases are displaced towards higher risk levels, while fair amounts 

of cases are displaced down towards lower risk levels.  Thus, random error causes 

random misclassifications, or cases to displace up (towards high risk) and down (towards 

low risk).  For instance, of the 244 cases that are displaced in Risk Device X, 133 cases 

moved to a higher risk level and 111 moved to a lower risk level.  The amount of cases 

that displaced upwards is roughly equal to the amount of cases that displaced downwards.   

However, equal proportions of misclassifications are not seen for the other risk 

tools, i.e. Oregon JCP FIRE, Oregon JCP-Burgess, and Oregon JCP-Coefficients.  For 

such risk devices, random error causes many more misclassified cases to displace 

towards higher risk levels, instead of displacing towards lower risk levels.  Take Oregon 

JCP FIRE for instance.  Of the 263 cases that are misclassified after injecting 10 percent 

error, a significant portion of those moved up (245 cases), compared to those that moved 

down (18 cases). Similar disproportions in misclassified cases are seen for Oregon JCP-

Burgess and Oregon JCP-Coefficients.   

Proportionality- Error in risk information and error in classification outcomes 

Increases in the level of error that is injected into the risk information also 

increase the level of misclassification error.  Across all four risk tools, similar patterns of 

displacement are experienced after increasing random error from 10 percent to 20 percent, 
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suggestive of proportionality.  For instance, the injection of 10 percent error into the 

instrument Oregon JCP FIRE causes 26.3% of the cases to be misclassified (see Table 

1A).  Injecting 20 percent random error into the same risk tool caused 48.3% of the cases 

to be misclassified (see Table 1B).  Thus, the overall number of misclassified cases 

increases when the level of error in the risk information is increased.  Similar patterns of 

change are seen for other risk tools.  Increasing the level of error from 10 to 20 percent 

produced: 115 more misclassified cases in Risk Device X (359- 244); 190 more 

misclassified cases in Oregon JCP FIRE- Version 11 Items: Burgess Method (527-337); 

and 185 more misclassified cases in Oregon JCP FIRE- Version 11 Items: Coefficients 

(537-352).  Hence, increasing the initial error by two-folds, from 10 percent to 20 percent, 

creates a proportionate increase in misclassification error in all four risk tools, which 

generally shows a net increase of two-folds.   
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Table 1A: Number of Misclassifications after Injection of 10% Random Error 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

	
  
Risk	
  Tool	
   Low	
  to	
  

Moderate	
  
Moderate	
  
to	
  High	
  

Low	
  
to	
  
High	
  

High	
  to	
  
Moderate	
  

Moderate	
  
to	
  Low	
  

High	
  
to	
  
Low	
  

Total	
  

	
   	
   	
   	
   	
   	
   	
   	
  
Risk	
  Device	
  

X	
  
56	
   64	
   13	
   57	
   50	
   4	
   244	
  

Oregon	
  JCP	
  
FIRE	
  (3	
  
cats)	
  

187	
   58	
   0	
   14	
   4	
   0	
   263	
  

Oregon	
  
JCP-­‐	
  

Burgess	
  	
  

187	
   92	
   13	
   28	
   17	
   0	
   337	
  

Oregon	
  JCP	
  
Coefficients	
  

164	
   99	
   43	
   29	
   17	
   0	
   352	
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    Table 1B: Number of Misclassifications after Injecting 20% Random Error 
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e	
  X	
  

85	
   109	
   26	
   65	
   62	
   12	
   359	
  

Oreg
on	
  
JCP	
  
FIRE	
  
(3	
  

cats)	
  

333	
   116	
   18	
   13	
   3	
   0	
   483	
  

Oreg
on	
  
JCP-­‐	
  
Burge
ss	
  	
  

211	
   171	
   103	
   27	
   14	
   1	
   527	
  

Oreg
on	
  
JCP	
  
Coeff
icient
s	
  

176	
   194	
   128	
   26	
   13	
   0	
   537	
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Results- Hypothesis #2: 

• After injecting systematic error (up and down) into entire risk models, the level of 

classification error is equal to the level of error that is injected into the risk items.    

Systematic Upward Error 

The injection of systematic (up) error into the risk instruments has resulted in 

dissimilar patterns of misclassifications.  Hypothesis #2 is rejected.  The quantity of 

misclassifications is not equal to the level of systematic error that was injection into the 

risk tools.  Specifically, 10 percent systematic (up) error causes 18.4% misclassifications 

in Risk Device X, 29.8% misclassifications in Oregon JCP FIRE (3 cats), 33.2% 

misclassifications in Oregon JCP-Burgess, and 33.1% misclassifications in Oregon JCP-

Coefficients (see table 2A).  In all four of the risk tools, low levels of error causes great 

levels of classification error.    

 Different risk tools have different levels of tolerance for systematic (up) error.  

Risk Device X fared the best, while the Oregon JCP-Burgess fared the worst.  Oregon 

JCP-Burgess misclassifies individuals 18% more than Risk Device X.  Oregon JCP and 

Oregon JCP-Coefficients are in the middle in terms of their ability to tolerate systematic 

(up) error. 

 Systematic (up) error causes the misclassification of cases to go to a higher risk 

level.  Hence, none of the cases are displaced to lower risk levels after the injection of 

such error.  Table 1C shows the impact of systematic (up) error across the four risk tools.   
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Table 2A: Number of Misclassifications after Injection of 10% Systematic (Up) Error 

 

 

 

  

 

 

 

  

	
  
Risk	
  Tool	
   Low	
  to	
  

Moderate	
  
Moderate	
  
to	
  High	
  

Low	
  to	
  
High	
  

High	
  to	
  
Moderate	
  

Moderate	
  
to	
  Low	
  

High	
  
to	
  
Low	
  

Total	
  
(N=	
  
1000)	
  

	
   	
   	
   	
   	
   	
   	
   	
  
Risk	
  Device	
  

X	
  
73	
   104	
   7	
   0	
   0	
   0	
   184	
  

Oregon	
  JCP	
  
FIRE	
  (3	
  
cats)	
  

206	
   92	
   0	
   0	
   0	
   0	
   298	
  

Oregon	
  
JCP-­‐	
  

Burgess	
  	
  

197	
   120	
   15	
   0	
   0	
   0	
   332	
  

Oregon	
  JCP	
  
Coefficients	
  

172	
   115	
   44	
   0	
   0	
   0	
   331	
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Table 2B: Number of Misclassifications after Injection of 10% Systematic (Down) Error 

  

	
  
Risk	
  Tool	
   Low	
  to	
  

Moderate	
  
Moderate	
  
to	
  High	
  

Low	
  
to	
  
High	
  

High	
  to	
  
Moderate	
  

Moderate	
  
to	
  Low	
  

High	
  
to	
  
Low	
  

Total	
  
(N=	
  
1000)	
  

	
   	
   	
   	
   	
   	
   	
   	
  
Risk	
  Device	
  

X	
  
0	
   0	
   0	
   79	
   70	
   2	
   151	
  

Oregon	
  JCP	
  
FIRE	
  (3	
  
cats)	
  

0	
   0	
   0	
   41	
   39	
   0	
   80	
  

Oregon	
  
JCP-­‐	
  

Burgess	
  	
  

0	
   0	
   0	
   41	
   44	
   1	
   86	
  

Oregon	
  JCP	
  
Coefficients	
  

0	
   0	
   0	
   40	
   41	
   1	
   82	
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Systematic Downward Error 

 The study rejects hypothesis #2.  Systematic downward error does not produce 

equal levels of misclassifications.  The injection of 10 percent systematic downward error 

causes 15.1% of the original cases to be misclassified in Risk Device X, 8% in Oregon 

JCP FIRE, 8.6% in Oregon JCP-Burgess, and 8.2% in Oregon JCP-Coefficients (see table 

2B).  Of the four risk tools, Oregon JCP FIRE has the biggest capacity to tolerate error, 

followed by Oregon JCP-Coefficients, Oregon JCP-Burgess, and Risk Device X.  

Systematic downward error, in all three Oregon JCP instruments, causes lower levels of 

misclassifications.  Finally, systematic downward error also causes the misclassification 

of cases to go in one direction, towards lower risk levels.   

Results- Hypothesis #3: 

• After injecting random error into each risk model, the subgroup base-rates for 

high risk groups will decrease and the subgroup base-rates for low risk groups 

will increase, showing a pattern of regression towards the mean in such rates.       

Hypothesis #3 states that increases in initial error will cause recidivism rates to 

regress towards the mean.  In other words, the injection of error will cause the recidivism 

rate in high-risk categories to shrink towards the average recidivism rate, cause the 

recidivism rate in low risk group to increase, and cause little change for the recidivism 

rate for mid-range risk categories.  As was mentioned in chapter one, the measurement of 

sensitivity using subgroup base rates is tremendously useful.  Clear (1988) suggests that 

validity should be measured by how well an instrument divides a population based on its 

recidivism rate.  Thus, the summation of total shifts for each risk tool, as shown in Table 
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1A and 1B, communicates about the quantity of classification error, which is not a 

particularly useful measure to answer about a risk tools overall validity.   

On the other hand, the changes in subgroup base rates, as shown in Table 3A 

speak to the significance of the shifts, and whether validity for the instrument has been 

compromised.  In Table 3A, it is clear that the base rate for each risk group gravitates 

towards the mean after random error is injected into the risk instruments.  For example, 

Risk Device X, JCP Burgess, and JCP Coefficients, all experienced movements in their 

recidivism rate that is towards the mean, which can be interpreted as the diminution of 

the level of validity for these risk tools.  When recidivism rates move towards the middle, 

such rates become numerically closer to each other.  As such, the risk tools lose the 

power to discern individuals based on their propensity for future reoffending.  The result 

is an invalid risk instrument.    The best-case scenario, obviously, would be the 

divergence of such recidivism rates, indicating increases in validity.   

The interpretation of the changes in subgroup base-rates is complicated as well.  

There is some difficulty in comparing such changes across different risk tools.  Unless 

the initial subgroup base rates are nearly identical for every category, a direct comparison 

would not be accurate.  For instance, the changes experienced by both risk tools, Risk 

Device X and Oregon JCP FIRE, could not be directly compared due to their stark 

disparity in the original subgroup base rates (see Table 3A).  Risk Device X is a better 

risk instrument by far; its ability to separate individuals into risk groups with 

meaningfully different subgroup recidivism rates is exceedingly superior to the one of 

Oregon JCP FIRE.  In particular, for Risk Device X, the contrast between the recidivism 

rates for the high risk (84%) and low risk (7.4%) groups is roughly 78%, while the 
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contrast between the recidivism rates for the high risk (49.7%) and low risk groups 

(17.1%) in the Oregon JCP FIRE is roughly 32% (see Table 3A).  This initial disparity 

makes a simple comparison between risk tools with varying levels of subgroup 

recidivism rates a difficult task. 

The findings fail to reject hypothesis #3.  The injection of error into the risk tools 

causes the convergence of subgroup base-rates, and increases to the level of such error 

(i.e. 10% to 20%) cause greater levels of convergences.  In other words, the subgroup 

base rates will progressively shrink towards the mean as the level of random error 

increases, thereby reducing the validity of the risk tools.  After injecting different levels 

of random error, such shrinkage is seen for three of the four risk tools (Risk Device X, 

Oregon JCP-Burgess, Oregon JCP-Coefficients).  For example, the original low (20.1%), 

moderate (33.2%), and high risk (43.1%) groups in Oregon JCP-Burgess became 21.8%, 

28%, and 39.1% following the injection of 10 percent random error, and 22%, 25.2%, 

and 45.9% following the injection of 20 percent random error, respectively.  In each of 

these risk tools, the injection of random error caused the high-risk recidivism rate to drop 

while causing the low-risk recidivism rate to go up (see Table 3A). 

The subgroup base-rates for one risk tool, however, did exhibit a different type of 

change in the subgroup base-rates.  Following the injection of 10 and 20 percent random 

error into Oregon JCP FIRE, the low-risk group’s recidivism rate diverged away from the 

mean, instead of moving towards it.  The change in the recidivism rate for the high-risk 

group is consistent with those in the other risk tools.  The high-risk group’s recidivism 

rate change is towards the mean, similar to those changes experienced in other risk tools.  

For example, the original low (17.1%), moderate (31.8%), and high risk (47.9) groups in 
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Oregon JCP FIRE became 15%, 29%, and 44% following the injection of 10 percent 

random error, and 14.7%, 23.8%, and 42.8% following the injection of 20 percent 

random error, respectively (see table 3A).  Thus, some more investigation of the Oregon 

JCP FIRE is warranted because it has shown that the injection of both 10 and 20 percent 

error creates higher levels of validity.  This aberration in the change of subgroup 

recidivism rates is speculated to be either caused by randomness and chance or the 

uniquely uniform skews of the risk items.  
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Table 3A: Subgroup Base-rate Changes after Injecting Random Error in Four Risk Tools 

Risk Tool Level of 
Random 
Error 

Low (Base-
rate) 

Moderate  High  

Risk Device X None 7.2% (20) 
 

13.9% (46) 84% (331) 

After 10 
Percent 
Random 
Error 

10.8% (30) 22.1% (70) 71.7% (294) 

After 20 
Percent 
Random 
Error 

11.2% (27) 25.5% (79) 64.3% (291) 

Oregon JCP 
FIRE (3 
CATS) 

None 17.1% (70) 31.8% (116) 49.7% (113) 
After 10 
Percent 
Random 
Error 

15% (34) 29% (146) 44% (119) 

After 20 
Percent 
Random 
Error 

14.7% (9) 23.8% (141) 42.8% (149) 

Oregon JCP 
FIRE- 
Version (11 
Items- 
Burgess 
Method) 

None 20.1% (86) 33.2% (114) 43.1% (100) 
After 10 
Percent 
Random 
Error 

21.8% (53) 28% (126) 39.1% (121) 

After 20 
Percent 
Random 
Error 

22% (28) 25.2% (100) 35.9% (172) 

Oregon JCP 
FIRE- 
Version (11 
Items- 
Coefficients) 

None 19.5% (77) 30.4% (107) 45.3% (116) 
After 10 
Percent 
Random 
Error 

21% (43) 26.1% (112) 39.2% (145) 

After 20 
Percent 
Random 
Error 

20.3% (21) 25.4% (88) 34.6% (191) 
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Results- Hypothesis #4: 

• After injecting systematic (up and down) error into each risk model, the subgroup 

base-rates for high-risk groups will decrease and the subgroup base-rates for low 

risk groups will increase, showing a pattern of regression towards the mean in 

such rates.       

Two types of systematic error are tested in the study, and each is very different.  Thus, 

the impacts of systematic (up) error and systematic (down) error on risk tools are 

analyzed separately.   

Systematic (up) Error and Subgroup Base-rates 

 The study rejects hypothesis #4.  The subgroup base-rates, following the injection 

of systematic (up) error into the risk items, have some tendency to shift towards the mean.  

This is especially true for the subgroup base-rates belonging to the high-risk group.  In all 

four-risk tools, the injection of systematic (up) error causes the high-risk groups’ 

subgroup base-rate to decrease.  For the subgroup base-rates in the low risk groups, 

however, this pattern is not definitive.  In other words, only two of the four risk tools, 

Risk Device X and Oregon JCP FIRE, exhibited shifts towards the mean in the low risk 

groups’ subgroup base-rates.  For instance, systematic (up) error caused the subgroup 

base-rate for the low risk group to decrease to 7.1% in Risk Device X, and 13.7% in 

Oregon JCP FIRE (see table 4A).  Thus, the study rejects hypothesis #4. 

Systematic (down) Error and Subgroup Base-rates 
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    Systematic (down) error is the only type of error that increases a risk 

instrument’s ability to classify its high-risk individuals.  So far, the injection of random 

and systematic (up) error into the risk tools, have been shown to compromise the systems’ 

general capacity to separate individuals into groups with substantially different subgroup 

base rates.  This is demonstrated by the convergence of subgroup base-rates.  Conversely, 

systematic (down) error seems to maximize the validity of risk tools for high-risk groups, 

by increasing their subgroup base-rates.  Instead of forcing the subgroup base rates to 

shrink towards the middle, systematic (down) error causes the subgroup base-rate in the 

high-risk group to increase.  However, for the low risk groups, systematic (down) error 

seem to increase the subgroup base-rates, thereby reducing its ability to identify 

individuals that are truly low risk. Table 4A clearly shows that the subgroup base-rates 

increase for both the high risk groups and low risk groups when systematic (down) error 

is injected into the risk tools.   
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Table 4A: Subgroup Base-rate Changes after Injecting Systematic Error in Four Risk 

Tools 

Risk Tool Type	
  of	
  
Systematic	
  Error	
  

Low (N) Moderate (N) High (N) 

Risk Device X None 
 

7.2% (20) 13.9% (46) 84% (331) 

Upward 7.1% (14) 
 

11.7% (35) 
 

68.9% (348) 
 

Downward 10% (35) 
 

27.4% (93) 
 

85.9% (269) 
 

Oregon	
  JCP	
  FIRE	
  
(3	
  CATS)	
  

None 17.1% (70) 31.8% (116) 49.7% (113) 

Upward 13.7% (28) 27.6% (132) 43.5% (139) 

Downward 18.3% (82) 33.6% (123) 50.5% (94) 

Oregon	
  JCP	
  
FIRE-­‐	
  Version	
  
(11	
  Items-­‐	
  
Burgess	
  
Method)	
  

None 20.1% (86) 33.2% (114) 43.1% (100) 

Upward 20.5% (44) 26.4% (111) 39.5% (145) 

Downward 21.4% (101) 34.4% (117) 43.1% (82) 

Oregon	
  JCP	
  
FIRE-­‐	
  Version	
  
(11	
  Items-­‐	
  
Coefficients)	
  

None 19.5% (77) 30.4% (107) 45.3% (116) 

Upward 20.2% (36) 25.4% (104) 38.5% (408) 

Downward 20.6% (90) 31.4% (110) 46.5% (100) 
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Summary 

The impact of error on misclassification in Risk Device X can be measured in two 

ways.  First, the summation of total displacements in Table 1A and 1B shows the number 

of shifts that transpired after 10 percent and 20 percent error.  However, the shift in cases 

tells a very superficial story because it doesn’t directly explain how validity is affected.  

It only shows the number of cases that are erroneously misclassified.  Second, the impact 

of error can be measured by comparing the failure rate for each group before and after the 

injection of error.  This second method is preferred over the first because not only will it 

allow us to measure the impact of error on misclassification, but it would also allow for 

us to measure the impact of error on the risk instrument’s overall validity.  The failure 

rate for each group is generated by dividing the subgroup base-rate by the total number of 

individuals belonging to that risk group.   

The impact of error is represented by both the magnitude of shift and the direction 

of shift.  Table 2A shows that Risk Device X, Oregon JCP FIRE, Oregon JCP-Burgess, 

and Oregon JCP-Coefficients have a high tolerance for error.  After 10 and even 20 

percent of initial error into all of its items, these instruments remain valid and robust in 

dividing individuals into varying levels of subgroup base-rates.  Though the significance 

tests suggest that the changes across the three categories of risk were significant at least 

at the .05 level, the effect sizes as evidenced by the change in subgroup base-rates 

suggest that the changes were inconsequential.  The risk devices, thus, tolerated the 

injection of 10 and 20 percent error rather well.   The magnitude of impact was generally 

mild.  The subgroup base-rates for each risk group will tend to regress towards the mean 

after the injection of random error.  That is, the recidivism rate for the low risk group will 
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increase, the recidivism rate for the medium risk group will stay roughly the same if it 

isn’t already proximate to the mean, and the recidivism rate for the high risk group will 

decrease after the injection of random error.  For instance, in Oregon JCP-Coefficients, 

the high risk group’s failure rate experienced a minor reduction of 10.7% and the low risk 

group’s failure rate experienced an even smaller increase of .8% after the injection of 20 

percent random error.  Thus, the direction of shifts resulting from the injection of error 

for the subgroup base rates displaces towards the mean.  Also, though higher levels of 

error were not tested, it is generally assumed that higher levels of random error will 

produce greater shifts towards the mean.   

The two measures used give very different estimates about the impact of error.  

On the one hand, small levels of error yield great levels of classification error.  And on 

the other hand, the change in subgroup base-rates conveys that such error is 

inconsequential to the validity of risk tools.  The new subgroup base-rates were 

significantly (p<.05) different from those of the original population after the injection of 

10 percent and 20 percent random error.  However, despite the enormity of the individual 

case displacements and the significant changes to subgroup recidivism rates, the model 

retains its validity in the sense that it is still able to divide individual into groups with 

meaningfully different base rates.  The model’s validity diminishes after the injection of 

error, as evidenced by the convergence of subgroup base rates towards the mean, and the 

significance of subgroup base-rate shifts, but nonetheless, the model remains a valid 

classification device.  As such, it is learned that risk instruments generally have a high 

tolerance for random error.       
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Research	
  Question	
  #2:	
  How	
  do	
  different	
  distributions	
  of	
  cases	
  across	
  categories	
  impact	
  
sensitivity?	
  

This section examines the impact of random error on risk instruments with 

different distribution of cases across categories.  Two hypotheses (#5 and #6) are tested 

to better understand the interplay between random error and the distributions of cases in 

categories, and their impact on the overall sensitivity of error.  Thus, the first section, 

which concerns hypothesis #5, will look at the overall consequences of over-classifying 

individuals into low risk, moderate risk, and high risk.  Section two compares the impact 

of random error on a risk instrument with three categories of risk classification and five 

categories of classification.  This will facilitate a better understanding of how increases in 

risk categories impact the sensitivity of error.   

Results- Hypothesis #5: 

• Risk instruments that over-classify high risk individuals will be more sensitive to 

random error. 

Risk devices may vary greatly by disproportionately assigning individuals into 

different risk groups, i.e. low, moderate, and high.  It is thus quite important to 

understand how the over-classification of individuals into particular categories impact 

sensitivity. Three general types of distributions of cases across categories are tested: 

normal or the over-classification of individuals into moderate risk (see table 5A), positive 

or the over-classification of individuals into low risk (see table 5C), and negative or the 

over-classification of individuals into high risk (see table 5E).  Hypothesis #5 looks at the 

distributions of cases across three different risk categories.  For example, a normal 

distribution of cases in a risk instrument containing 3 risk categories will have a 
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significant cluster of cases in the moderate risk level, with significantly fewer cases in the 

low and high-risk categories (see 5A).  

The study rejects hypothesis #5.  Negatively skewed cases in the outcomes of the 

entire risk instrument do not cause the greatest increase in sensitivity.  Of the three types 

of distributions tested, positively skewed cases produce the greatest change in net 

recidivism rates.  After injecting 10 percent random error into the positively skewed 

version of Risk Device X, the recidivism rate for low, moderate, and high risk group 

changed 6.6%, 17.4%, and 6.6% respectively, totaling a net change of 30.6% (see Table 

5D).  On the other hand, the normally distributed model of Risk Device X experienced 

changes of 6.5%, 2.4%, and 6.6% in the low, moderate, and high-risk categories after the 

injection of 10 percent random error, totaling a net change of 15.5% (see Table 5B).  

Similarly, the injection of 10 percent random error into the negatively skewed model of 

risk Device X only yielded changes of 5.5%, 3.5%, and 3.4%, totaling a net change of 

12.4% (see Table 5F).  Thus, injecting 10 percent random error into each of the versions 

of Risk Device X shows that positively skewed cases in the outcomes of the entire risk 

device come with the highest disadvantage because it causes the highest change in 

subgroup base-rates. 

The injection of 20 percent random error into the same three models mentioned 

above produces a familiar pattern, which further supports the rejection of hypothesis # 12.  

After imposing 20 percent error into the positively skewed model of Risk Device X, 

changes of 8.8%, 27.2%, and 9.4% were seen for the recidivism rates of low, moderate, 

and high-risk groups, with a net change totaling 45.4% (see Table 5D).  The second 

highest change in recidivism rates was seen in normally distributed cases, with changes 
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of 3.5%, 1.9%, and 9.4% in low, moderate, and high risk recidivism rates, totaling 14.8% 

(see Table 5B).  Finally, a negative distribution yields the lowest change in recidivism 

rates, 3.5%, 5.5%, and 5.7% respectively, totaling 14.7% (see Table 5F).  Thus, 

positively skewed cases continue to effect the greatest change in recidivism rates.   
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Table 5A: Scale Score of Risk Device X (Normal Distribution of N) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5B: Recidivism Rates in Normal Distribution of N (Risk Device X) 

Type of Error Low 
(N) 

Med High 

Original 4.5% 
(109) 

36.5% 
(766) 

89.6% 
(125) 

10% Random 11%* 
(109) 

34.1% 
(726) 

83%* 
(165) 

20% Random 7.5%* 
(106) 

34.6% 
(722) 

80.8%* 
(172) 

  

Scale	
  Score	
   N	
   Number	
  of	
  
Failures	
  

Number	
  in	
  
Cutoff	
  

Cutoff	
  Base	
  
Rate	
  (%)	
  

7	
   2	
   0	
   	
  
	
  
	
  

109	
  
(10.9%)	
  

	
  
	
  
	
  
	
  
	
  

766	
  
(76.6%)	
  

	
  
	
  
	
  
	
  

125	
  
(12.5%)	
  

	
  
	
  
	
  
5	
  
(4.5%)	
   	
  
	
  
	
  
	
  
	
  
	
  
280	
  
(36.5%)	
  
	
  
	
  
	
  
	
  
112	
  
(89.6%)	
  	
  

8	
   2	
   0	
  
9	
   3	
   0	
  
10	
   14	
   1	
  
11	
   31	
   2	
  
12	
   57	
   2	
  
13	
   74	
   5	
  
14	
   93	
   10	
  
15	
   102	
   12	
  
16	
   119	
   12	
  
17	
   109	
   22	
  
18	
   105	
   75	
  
19	
   90	
   80	
  
20	
   74	
   64	
  
21	
   43	
   37	
  
22	
   39	
   36	
  
23	
   23	
   21	
  
24	
   13	
   11	
  
25	
   6	
   6	
  
26	
   0	
   0	
  
27	
   1	
   1	
  
Total	
   1000	
   397	
   1000	
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Table 5C: Scale Score of Risk Device X (Positive Distribution of N) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5D: Recidivism Rates in Positive Distribution of N (Risk Device X) 

 

  

Scale	
  Score	
   N	
   Number	
  of	
  
Failures	
  

Number	
  in	
  
Cutoff	
  

Cutoff	
  Base	
  
Rate	
  (%)	
  

7	
   2	
   0	
   	
  
	
  
	
  
	
  

606	
  
(60.6%)	
  

	
  
	
  
	
  
	
  
	
  

	
  
269	
  

(26.9%)	
  
	
  
	
  

125	
  
(12.5%)	
  

	
  
	
  
	
  
	
  
66	
  
(10.8%)	
   	
  
	
  
	
  
	
  
	
  
	
  
	
  
219	
  
(81.4%)	
  
	
  
	
  
112	
  
(89.6%)	
  	
  

8	
   2	
   0	
  
9	
   3	
   0	
  
10	
   14	
   1	
  
11	
   31	
   2	
  
12	
   57	
   2	
  
13	
   74	
   5	
  
14	
   93	
   10	
  
15	
   102	
   12	
  
16	
   119	
   12	
  
17	
   109	
   22	
  
18	
   105	
   75	
  
19	
   90	
   80	
  
20	
   74	
   64	
  
21	
   43	
   37	
  
22	
   39	
   36	
  
23	
   23	
   21	
  
24	
   13	
   11	
  
25	
   6	
   6	
  
26	
   0	
   0	
  
27	
   1	
   1	
  
Total	
   1000	
   397	
   1000	
  

Type of Error Low 
(N) 

Med High 

Original 10.8% 
(606) 

81.4% 
(269) 

89.6% 
(125) 

10% Random 17.4%* 
(590) 

64%* 
(245) 

83%* 
(165) 

20% Random 19.3%* 
(548) 

54.2%* 
(280) 

80.8%* 
(172) 
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Table 5E: Scale Score of Risk Device X (Negative Distribution of N) 

 

 

     Table 5F: Recidivism Rates in Negative Skew of Cases (Risk Device X) 

Scale	
  Score	
   N	
   Number	
  of	
  
Failures	
  

Number	
  in	
  
Cutoff	
  

Cutoff	
  Base	
  
Rate	
  (%)	
  

7	
   2	
   0	
   	
  
	
  
	
  

109	
  
(10.9%)	
  

	
  
	
  

269	
  
(26.9%)	
  

	
  
	
  

	
  
	
  
	
  

622	
  
(62.2%)	
  

	
  
	
  
	
  
5	
  
(4.5%)	
   	
  
	
  
	
  
27	
  
(10%)	
  
	
  
	
  
	
  
	
  
	
  
365	
  
(58.6%)	
  	
  

8	
   2	
   0	
  
9	
   3	
   0	
  
10	
   14	
   1	
  
11	
   31	
   2	
  
12	
   57	
   2	
  
13	
   74	
   5	
  
14	
   93	
   10	
  
15	
   102	
   12	
  
16	
   119	
   12	
  
17	
   109	
   22	
  
18	
   105	
   75	
  
19	
   90	
   80	
  
20	
   74	
   64	
  
21	
   43	
   37	
  
22	
   39	
   36	
  
23	
   23	
   21	
  
24	
   13	
   11	
  
25	
   6	
   6	
  
26	
   0	
   0	
  
27	
   1	
   1	
  
Total	
   1000	
   397	
   1000	
  

Type of Error Low 
(Base-rate) 

Med High 

Original 4.5% 
(109) 

10% 
(269) 

58.6% 
(622) 

10% Random 11%* 
(109) 

13.5% 
(258) 

55.2% 
(633) 

20% Random 7.5% 
(106) 

15.5%* 
(225) 

52.9%* 
(669) 
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Results- Hypothesis #6: 

• Increasing the number of categories to which offenders are classified will increase 

misclassification and the sensitivity of error. 

 The probability that an individual is misclassified increases when a risk 

assessment instrument divides individuals into more risk categories.   In increasing the 

number of risk categories, the same range of score is partitioned into more categories of 

classification, thereby shrinking the range of scores that form each category of risk.  As 

such, it is expected that marginal changes to individuals’ risk scores will yield more 

misclassifications.  To test hypothesis #6, a different version of Risk Device X, where 

individuals are divided into 5 categories of risk as opposed to 3, was devised.  Hence, 

“Risk Device 5 Cat” is identical to Risk Device X in every aspect except for the number 

of risk categories to which individuals are assigned.     

 The sensitivity of error is invariably increased in risk instruments that seek to 

divide offenders into more category options.  The study fails to reject hypothesis #6.  As 

the number of categories to which individuals are assigned increases, the sensitivity of 

error also increases.  Table 8A and 8B illustrate the disparity in displacements after the 

injection of random error into both Risk Device X with 3 categories of risk and Risk 

Device 5 Cat with 5 categories of risk.  The aggregate displacements experienced by all 

11 risk items are reported in column “Total”.  There are more displacements following 

the injecting of error experienced by Risk Device 5 Cat.  While 10% random error 

yielded 133 upward case shifts in Risk Device X, the same error yielded 218 case shifts 

in Risk Device 5 Cat.  And for downward case shifts, there were 111 and 174 shifts, 
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respectively.  Likewise, 20% random error yielded 218 upward case shifts in Risk Device 

X and 331 upward case shifts in Risk Device 5 Cat.  The same pattern is seen for 

downward case shifts following the injection of 20% random error, 174 and 217 

respectively.  Increases in the number of categories comprising a classification instrument 

will increase the sensitivity of error. 
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Table 6A: Misclassifications (up) after Injecting Random Error into Risk Device X and 
Risk Device 5 Categories 

 

	
    1	
  to	
  
2 

2	
  to	
  
3 

3	
  to	
  
4 

4	
  to	
  
5 

1	
  to	
  
3 

1	
  to	
  
4 

1	
  to	
  
5 

2	
  to	
  
4 

2	
  to	
  
5 

3	
  to	
  
5 

Total 

A 56 64 N/A N/A 13 N/A N/A N/A N/A N/A 133 
B 85 109 N/A N/A 26 N/A N/A N/A N/A N/A 220 
C 40 41 35 48 12 8 1 7 6 20 218 
D 44 69 50 56 27 13 3 25 12 32 331 

Note: Table H8A describes cases that were shifted to a higher risk level.   
Row A: case shifts following 10% random error in Risk Device X.  
Row B: case shifts following 20% random error in Risk Device X   
Row C: case shifts following 10% random error in Risk Device 5 Cat   
Row D: case shifts following 20% random error in Risk Device 5 Cat   
	
  
 

   Table 6B: Misclassifications (Down) after Injecting Random Error into Risk Device X    
and Risk Device 5 Categories 

 

Note: Table H8B describes cases that were shifted to a lower risk level.  
Row A: case shifts following 10% random error in Risk Device X.  
Row B: case shifts following 20% random error in Risk Device X   
Row C: case shifts following 10% random error in Risk Device 5 Cat   
Row D: case shifts following 20% random error in Risk Device 5 Cat   
  

 5	
  to	
  
4 

4	
  to	
  
3 

3	
  to	
  
2 

2	
  to	
  
1 

5	
  to	
  
3 

5	
  to	
  
2 

5	
  to	
  
1 

4	
  to	
  
2 

4	
  to	
  
1 

3	
  to	
  
1 

Total 

A N/A N/A 57 50 N/A N/A N/A N/A N/A 4 111 
B N/A N/A 65 62 N/A N/A N/A N/A N/A 12 139 
C 26 39 37 39 6 1 1 11 3 11 174 
D 42 47 35 49 7 4 5 11 3 14 217 
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The findings are consistent with hypothesis #6.  Instruments that seek to assign 

individuals to more risk categories will have a lower tolerance for error.  The range of 

scores comprising each risk category will condense as the number of risk categories 

increase.  And as the range of scores shrink, each score point difference will yield a more 

robust impact.  Put differently, one point of change in a broad score scale would most 

likely not yield any significant changes.  However, when additional categories are 

included, the range of score for each classification also shrinks to make room for the new 

categories.  The total range of scores does not increase or adjust to the added categories.  

In effect, the range of scores for each individual category will shrink to accommodate 

more categories of risk.  For example, Table 14 (see p. 94), which shows the distribution 

of scores for Risk Device 5 Cat, shows how the scale score comprising each category is 

reduced following the inclusion of more classification categories.  It is evident, thus, that 

the reduction in the range of scores that form a risk category is negatively correlated with 

the sensitivity of error.  The likelihood that initial error will materialize into classification 

error can be minimized by reducing the number of risk categories to which individuals 

are assigned in a risk instrument, thereby expanding the range of scores for each risk 

group.  So far, several separate analyses in the study have suggested that the range of 

scores is critical to the issue of sensitivity.    

	
   Up to this point, the discussion about hypothesis #6 is based primarily on 

comparisons between the collective displacements of cases before and after the injection 

of error.  However, such discussions about case displacements are peripheral at best 

because it does not tap into the issue of validity.  The following table will explain how 

the results are in support of hypothesis #6 by reviewing base-rate relationships.  As was 
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discussed in the literature review, Baird (2009) recommends that the validity of risk 

instruments should be evaluated based on their relevant subgroup base rates.  The 

individual risk groups discerned by a particular risk instrument should have demonstrated 

relationship to recidivism.  In other words, the failure rate for each group should be 

commensurate of the group’s designated propensity (e.g., low risk has low failure rate, 

high risk has higher failure rate).  Proportionality is the key to obtaining validity.  Thus, 

in this section, the discussion of hypothesis #6 will be based on the impact that the 

number of categories has on subgroup base-rates.  

 The risk instruments, whether it has three or five risk categories, seem to aptly 

retain their validity after the injection of error.  Movement of cases from one risk 

category to another is inevitable, as was shown in Tables 6A and 6B.  However, the 

validity does not seem to be reduced much after reviewing their respective subgroup 

base-rates.  Table 6C displays the subgroup base-rates for each risk category before and 

after the insertion of random error into Risk Device 5 Cat.  Risk Device X, which has 

three categories of risk classification, seems to retain its validity quite well, despite the 

injection of 10 and 20 percent random error (see Table 3A on p.122).  The general 

direction of the shift of the base rate is towards the lower end.  And the magnitude of 

impact seems to not affect the instrument’s ability to effectively separate individuals into 

groups with varying fail rates.  Subsequent the injection of 10 percent error, the base rates 

in some instances drops 15 percent, as in the high-risk category.  However, despite this 

drastic shift in subgroup base rates, the instrument withstands error well and continues to 

effectively divide individuals into groups with meaningfully proportional subgroup base-

rates. 
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Next, looking at Table 6C, which displays the subgroup base-rates for Risk 

Device 5 Cat, it is evident that the transfer of error is similarly resisted.  After 10 and 20 

percent of error, the subgroup base-rate shifted towards the lower end, just as it did in 

Risk Device X.  Similarly, the cases belonging to the lower end of the spectrum will 

increase.  In other words, the subgroup base-rates for each group will regress towards the 

median in a proportionate manner.  Since the change is proportionate and affects all 

categories equally, much of the instrument’s validity will be retained, even upon higher 

levels of injected error.  The analysis does not test the impact of higher levels of error, 

but it is speculated that higher dosages of error will only bring the collective subgroup 

base-rates closer to the median.  

The next logical question is: at what point does the injection of error begin to 

adversely affect the validity of the risk instrument.  The analytic procedure used in the 

current study does not allow us to directly answer this question.  Higher levels of error 

will need to be tested to understand exactly how much error is required to bring the 

instrument over its tipping point.  The tipping point is the moment when a moderate risk 

group begins to experience a failure that is higher than high risk group or lower than the 

low risk group.  However, such goal to ascertain the tipping point of any specific 

instrument is senseless and unnecessary because such point will vary greatly depending 

on a multitude of properties, such as range of scores, number of risk categories, cut-offs, 

subgroup base-rates, etc.  What could be inferred from the study, however, is that the 

increase of risk categories in a risk instrument will hasten the tipping point.  Thus, risk 

devices with more risk categories will have a positive relationship with the sensitivity of 

error.   
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Table 6C: Subgroup Base-rates for Risk Device 5 Cat 

 Low 
(Base-
rate) 

Low/Mod Moderate Mod/High High 

Original  5.4% 
(183) 

11.2% 
(195) 

14.9% 
(228) 

 86.5% 
(195) 

 88.4% 
(199) 

10% Random 
Error 

11.3%* 
(176) 

14.1% 
(191) 

25.1%* 
(223) 

60%* 
(170) 

80%* 
(240) 

20% Random 
Error 

10.7%* 
(167) 

15.2%* 
(164) 

29%* 
(217) 

51.4%* 
(208) 

75.4%* 
(244) 
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Research Question #3: How do different distributions of cases across risk variables 
affect the sensitivity of error? 

 This section is an attempt to explore the different types of risk variables and their 

impact on sensitivity.  Five hypotheses that make up this section: H7) skews, H8) kurtosis, 

H9) number of categories, and H10) weights are answered by focusing primarily on the 

findings obtained from the injection of error into Risk Device X.  Finally, hypothesis #11 

examines the impact of systematic error across these four types of variables.    

Results- Hypothesis #7: 

• Negatively skewed risk items will have the greatest impact on increasing the 

sensitivity of error, when compared to normally and positively skewed risk items.   

The study rejects hypothesis #3, which states that negatively skewed risk items will 

have the greatest impact on increasing the sensitivity of error.  Quite the opposite, the 

injection of random error into positively skewed items increases more misclassification 

then the injection of random error into normally and negatively skewed items.  The 

measurement of classification error can be calculated by counting the net shifts, as shown 

in Table 7A.  However, the measurement of impact is better accomplished by calculating 

the net change in sub-group base rates (see Table 7C).  The reason subgroup base-rate 

changes are preferred over simple case shifts is because the validity of a risk device is 

predominantly determined by its competence in dividing groups with varying subgroup 

base-rates.  The quantifying of case shifts is a superficial method of measurement that is 

irrelevant to the overall validity of the risk instrument.   
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In explaining the results for hypothesis #7, it is important to speak about the 

impact of error on each type of skew, respective to each other.  As was mentioned earlier, 

the injection of error across risk items with varying skews roughly produces the same 

number of misclassified cases.  For example, Item A (negatively skewed), Item B 

(positively skewed), and Item D (normally skewed) in Table 7A shows 

displacements/misclassifications of 34 cases, 34 cases, and 35 cases respectively, after 

the injection of random error into Risk Device X.  Thus, the difference in the number of 

misclassifications across different skews is inconsequential.  However, different skews 

create noticeable differences in the subgroup base-rates.  

Table 7C, which displays the subgroup base-rate changes for risk items 1, 3, and 4, 

before and after the injection of 10 percent random error, provides support that the 

inclusion of positively skewed items has the greatest impact on increasing the sensitivity 

of error.  Using row 1 in Table 7E and 7F as a baseline for comparison, which displays 

the actual subgroup base-rates in Risk Device X prior to the injection of error, it can be 

seen that Item B produces the greatest subgroup base-rate changes.  But before we start 

calculating the net change in subgroup base rates across the columns in the following 

tables (7C and 7D), it is important to first understand how the measurement of sensitivity 

is conveyed numerically.  The diminution of sensitivity is operationalized as the reduced 

ability to separate individuals into groups with meaningfully different subgroup base-

rates.  As such, reduced sensitivity is measured by the degree to which subgroup base-

rates from extreme ends converge towards the middle.  We can, thus, measure decreased 

validity or increased sensitivity of error by calculating the total subgroup base-rate 

changes for the high-risk group and low risk group, leaving out the middle category.  The 
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subgroup base-rate change for the middle categories can be ignored in this calculation 

since it is a neutral category.   

Using the method of measurement mentioned above, the findings suggest that 

positively skewed items are the most sensitive to error and that negatively skewed items 

are the least sensitive to error.  After injecting 10 percent random error into each item in 

Risk Device X, item B, which is positively skewed, experiences the greatest degree of 

convergence towards the middle (see table 7C).  That is, the combined subgroup base-

rate changes for both the low-risk and high-risk groups are greatest, roughly 3.5 percent.  

As for Item A and Item D, the total percentage of convergence is .9 percent and 2.5 

percent, respectively (see Table 7C).   A similar pattern is seen after the injection of 20 

percent random error in to Risk Device X.  The net change for Items A, B, and D is .6 

percent, 5.9 percent, and 2.9 percent (see Table 7D).  Once again, Item B experiences the 

greatest level of convergence in terms of subgroup base-rate change.  Note, item C is 

removed from the table and analysis because it belongs to a different family of risk items 

that which is weighed disproportionately more.   

The differential impact caused by different skews on base-rates is analyzed.  The 

logic behind the construction of a valid risk device is premised on creating risk 

classification categories with subgroup base-rates that would progressively increase with 

the level of risk.  Naturally, the majority of failures would cluster towards the high-risk 

end.  Given this general distribution of failures, displacements towards the lower-risk end 

will have the biggest impact on altering the subgroup base-rates in a way that would 

detrimentally affect the validity of risk devices.  Following this same line of logic, 

negatively skewed items, which create clusters on the right hand side or high-risk group, 
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pushes cases towards the lower end.  In essence, the skew of the risk items determines 

both the general shift of cases and the general shift in subgroup base-rates.   

The inclusion of positively skewed and normally distributed risk items reduces 

the sensitivity of error.  For mostly the same reason, positively skewed risk items will do 

the opposite and reduce sensitivity because it pushes the majority of cases and base-rates 

toward the high-risk end, where failures rightfully belong.  Though there is a tipping 

point to which the exodus of cases to the high-risk end will yield unsalvageable changes, 

generally, risk instruments are much more tolerable of displacements towards the high-

risk end.  As for normally distributed risk items, the shifts are multi-directional, thereby 

creating somewhat of a canceling out effect within risk items.  For these reasons, it is 

evident that negatively skewed items are more potent than its positive and normal 

counterparts in increasing sensitivity.  
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Table 7A: Number of Misclassifications After Injecting 10% Random Error  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

Note:	
  Table	
  7A	
  illustrates	
  the	
  direction	
  and	
  magnitude	
  of	
  shifts	
  after	
  10	
  percent	
  random	
  error	
  was	
  injected,	
  while	
  
Table	
  7B	
  illustrates	
  the	
  same	
  properties	
  of	
  the	
  same	
  dataset	
  after	
  the	
  injection	
  of	
  20	
  percent	
  error.	
  	
  	
  The	
  items	
  on	
  the	
  
far	
  left	
  column	
  represent	
  the	
  number	
  of	
  risk	
  items	
  contained	
  in	
  the	
  risk	
  instrument.	
  	
  Both	
  tables	
  (7A	
  and	
  7B)	
  are	
  
describing	
  the	
  same	
  risk	
  instrument	
  and	
  set	
  of	
  data.	
  	
  The	
  primary	
  difference	
  between	
  the	
  two	
  tables	
  is	
  their	
  disparity	
  
in	
  terms	
  of	
  the	
  level	
  of	
  error	
  that	
  was	
  injected.	
  	
    

Risk	
  Tool	
   Low	
  to	
  
Moderate	
  

Moderate	
  
to	
  High	
  

Low	
  to	
  
High	
  

High	
  to	
  
Moderate	
  

Moderate	
  
to	
  Low	
  

High	
  
to	
  
Low	
  

Total	
  

	
   	
   	
   	
   	
   	
   	
   	
  
Item	
  1	
   6	
   3	
   0	
   14	
   11	
   0	
   34	
  
Item	
  2	
   14	
   16	
   0	
   2	
   2	
   0	
   34	
  
Item	
  3	
   9	
   16	
   7	
   14	
   16	
   4	
   56	
  
Item	
  4	
   6	
   12	
   0	
   6	
   11	
   0	
   35	
  
Item	
  5	
   4	
   4	
   0	
   5	
   5	
   0	
   18	
  
Item	
  6	
   11	
   7	
   0	
   2	
   3	
   0	
   24	
  
Item	
  7	
   4	
   2	
   0	
   12	
   5	
   0	
   23	
  
Item	
  8	
   0	
   1	
   0	
   10	
   10	
   0	
   21	
  
Item	
  9	
   5	
   6	
   0	
   12	
   5	
   0	
   28	
  
Item	
  10	
   11	
   19	
   2	
   6	
   7	
   0	
   45	
  
Item	
  11	
   15	
   15	
   0	
   1	
   3	
   0	
   34	
  

Items	
  Total	
   56	
   64	
   13	
   57	
   50	
   4	
   244	
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Table 7B: Number of Misclassifications After Injecting 20% Random Error in Risk 

Device X 

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

Note:	
  Table	
  7A	
  illustrates	
  the	
  direction	
  and	
  magnitude	
  of	
  shifts	
  after	
  10	
  percent	
  random	
  error	
  was	
  injected,	
  while	
  
Table	
  7B	
  illustrates	
  the	
  same	
  properties	
  of	
  the	
  same	
  dataset	
  after	
  the	
  injection	
  of	
  20	
  percent	
  error.	
  	
  	
  The	
  items	
  on	
  the	
  
far	
  left	
  column	
  represent	
  the	
  number	
  of	
  risk	
  items	
  contained	
  in	
  the	
  risk	
  instrument.	
  	
  Both	
  tables	
  (7A	
  and	
  7B)	
  are	
  
describing	
  the	
  same	
  risk	
  instrument	
  and	
  set	
  of	
  data.	
  	
  The	
  primary	
  difference	
  between	
  the	
  two	
  tables	
  is	
  their	
  disparity	
  
in	
  terms	
  of	
  the	
  level	
  of	
  error	
  that	
  was	
  injected.	
  	
  	
   	
  

Items	
  
to	
  

which	
  
error	
  is	
  
injected	
  

Low	
  to	
  
Moderate	
  

Moderate	
  
to	
  High	
  

Low	
  to	
  
High	
  

High	
  to	
  
Moderate	
  

Moderate	
  
to	
  Low	
  

High	
  to	
  
Low	
  

Total	
  

	
   	
   	
   	
   	
   	
   	
   	
  
Item	
  1	
   11	
   3	
   0	
   32	
   23	
   0	
   69	
  
Item	
  2	
   24	
   31	
   0	
   6	
   4	
   0	
   65	
  
Item	
  3	
   12	
   17	
   10	
   17	
   8	
   2	
   66	
  
Item	
  4	
   9	
   22	
   0	
   12	
   21	
   0	
   64	
  
Item	
  5	
   6	
   7	
   0	
   13	
   9	
   0	
   35	
  
Item	
  6	
   25	
   17	
   0	
   6	
   4	
   0	
   52	
  
Item	
  7	
   4	
   3	
   0	
   21	
   11	
   0	
   39	
  
Item	
  8	
   4	
   3	
   0	
   22	
   26	
   0	
   55	
  
Item	
  9	
   13	
   16	
   0	
   20	
   8	
   0	
   57	
  
Item	
  10	
   19	
   45	
   5	
   11	
   10	
   0	
   90	
  
Item	
  11	
   23	
   29	
   0	
   4	
   4	
   0	
   60	
  
Items	
  
Total	
  

85	
   109	
   26	
   65	
   62	
   12	
   359	
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Table 7C: Subgroup Base-rate Change in Items 1,2,4 after Injecting 10% Random Error 
in Risk Device X 

 

Note: Row “Original” provides the baseline for comparison.  It shows the subgroup base-rates prior to any disruption 
by error.     *The asterisks indicate significance of .05 or smaller in the change in subgroup base-rate. The percentages 
are obtained by finding the difference between the new subgroup base-rate (after injecting error into specified risk item) 
and the original subgroup base-rate.  For the purpose of this analysis, Item 1 is negatively skewed, Item 2 is positively 
skewed, and Item 3 is normally distributed.   

 

Table 7D: Subgroup Base-rate Change in Items 1,2,4 after Injecting 20% Random Error 

Item to which 
Error is 
injected 

Low 
(Base-rate) 

Moderate High Total Change 
(Low + High) 

Original 7.2% 
(20) 

13.9% 
(46) 

84% 
(331) 

N/A 

Item 1 0% 5.4%* .6% .6% 
Item 2 .6% .5% 5.3%* 5.9% 
Item 4 0% 1.6% 2.9% 2.9% 

 

Note: Row “Original” provides the baseline for comparison.  It shows the subgroup base-rates prior to any disruption 
by error.     *The asterisks indicate significance of .05 or smaller in the change in subgroup base-rate. The percentages 
are obtained by finding the difference between the new subgroup base-rate (after injecting error into specified risk item) 
and the original subgroup base-rate.  For the purpose of this analysis, Item 1 is negatively skewed, Item 2 is positively 
skewed, and Item 3 is normally distributed.   

 

 

 

 

Item to 
which Error 
is injected 

Low 
(Base-rate) 

Moderate High Total Change 
(Low + High) 

Original 7.2% 
(20) 

13.9% 
(46) 

84% 
(331) 

N/A 

Item 1 .6% 1.5% .3% .9% 
Item 2 .3% .3% 3.2%* 3.5% 
Item 4 .2% 1.4% 2.3% 2.5% 
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Table 7E: Subgroup Base-rates by Risk Category and Risk Item after injecting 10% 

Random Error Risk Device X  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Row “Original” provides the baseline for comparison.  It shows the subgroup base-rates prior to any disruption 
by error     *The asterisks indicate significance of .05 or smaller in the change in subgroup base-rate. The numerator 
represents the new subgroup base-rate.  The denominator represents the number of individuals that fall into each 
category.  The percentages are obtained by finding the quotient.    

  

Item to 
which Error 
is injected 

Low 
Base-rate% 

(N) 

Moderate High 

Original 7.2% 
(276) 

13.9% 
(330) 

84% 
(394) 

Item 1 7.8% 
(281) 

15.4% 
(336) 

84.3% 
(383) 

Item 2 7.5% 
(264) 

14.2% 
(330) 

80.8%* 
(408) 

Item 3 9.2% 
(280) 

15.8% 
(321) 

80.2%* 
(399) 

Item 4 7.4% 
(281) 

15.3% 
(319) 

 81.75% 
(400) 

Item 5 7.5% 
(277) 

15.1% 
(330) 

82.9% 
(393) 

Item 6 6.7% 
(268) 

14.4% 
(333) 

82.9% 
(399) 

Item 7 7.5% 
(277) 

15.6% 
(339) 

84.1% 
(384) 

Item 8 6.9% 
(286) 

16.1% 
(329) 

84.1% 
(385) 

Item 9 6.5% 
(276) 

16.3% 
(336) 

83.5% 
(388) 

Item 10 8.8% 
(270) 

12.4% 
(321) 

81.4% 
(409) 

Item 11 6.8% 
(264) 

14.3% 
(328) 

81.3% 
(408) 

Items Total 10.8%* 
(276) 

 

22.1%* 
(329) 

71.7%* 
(410) 



154	
  
	
  

	
   	
   	
   	
  
	
  

Table 7F: Subgroup Base-rates by Risk Category and Risk Item after Injecting 20% 
Random Error in Risk Device X 

Item	
  to	
  which	
  
Error	
  is	
  
injected	
  

Low	
  
Base-­‐rate%	
  

(N)	
  

Moderate	
   High	
  

Original	
   7.2%	
  
(276)	
  

13.9%	
  
(330)	
  

	
  84%	
  
(394)	
  

Item	
  1	
   7.2%	
  
(288)	
  

19.3%*	
  
(347)	
  

84.6%	
  
(365)	
  

Item	
  2	
   7.8%	
  
(256)	
  

14.4%	
  
(325)	
  

78.7%*	
  
(419)	
  

Item	
  3	
   7.1%	
  
(264)	
  

17%	
  
(334)	
  

79.8%*	
  
(402)	
  

Item	
  4	
   7.2%	
  
(288)	
  

15.5%	
  
(308)	
  

81.1%	
  
(404)	
  

Item	
  5	
   7.5%	
  
(279)	
  

16.2%	
  
(333)	
  

82.9%	
  
(388)	
  

Item	
  6	
   6.2%	
  
(255)	
  

14.7%	
  
(344)	
  

81.7%	
  
(405)	
  

Item	
  7	
   8.1%	
  
(283)	
  

17.5%	
  
(341)	
  

83.5%	
  
(376)	
  

Item	
  8	
   6.3%	
  
(298)	
  

18.9%*	
  
(327)	
  

	
  84.2%	
  
(375)	
  

Item	
  9	
   6.2%	
  
(271)	
  

17.9%*	
  
(339)	
  

81.7%	
  
(390)	
  

Item	
  10	
   8.7%	
  
(262)	
  

14%	
  
(305)	
  

76.4%*	
  
(433)	
  

Item	
  11	
   5.9%	
  
(287)	
  

15.4%	
  
(324)	
  

78.7%*	
  
(419)	
  

Item	
  All	
   11.2%*	
  
(239)	
  

25.5%*	
  
(309)	
  

64.3%*	
  
(452)	
  

Note: Row “Original” provides the baseline for comparison.  It shows the subgroup base-rates prior to any disruption 
by error     *The asterisks indicate significance of .05 or smaller in the change in subgroup base-rate. The numerator 
represents the new subgroup base-rate.  The denominator represents the number of individuals that fall into each 
category.  The percentages are obtained by finding the quotient.    
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Results- Hypothesis #8: 

• Increasing the pointiness of distributions in risk items will increase the amount of 

error or misclassifications towards a particular direction. 

Asides from the different types of skews (negative, positive, normal) that impact 

sensitivity, variables may differ on their pointiness.  Pointiness refers to the height of the 

skews, which could either be leptokurtic or platykurtic.  It is speculated that the peakness 

of a distribution has a major impact on the magnitude of shifts or the number of cases that 

will be displaced.  The study fails to reject Hypothesis #8, which posits that increases in 

any skew’s kurtosis will create increases in displacements towards a direction. 

To test hypothesis #8, the number of misclassifications that is produced after the 

injection of error is compared between pointy and flat risk items.  Five pointiest and 

flattest risk items that are also positively skewed are selected from Oregon JCP FIRE for 

comparison, and their displacements are averaged.  Table 8 (see p.85) shows the 

distributions of risk items that together comprise the Oregon Risk Instrument.  Items 1, 3, 

7, 22, and 26 are selected to represent those that are platykurtic, while items 4, 14, 15, 19, 

and 20 are selected to represent those that are most peaked.  In Table 8A, the number of 

misclassifications for the selected risk items is shown.  The study fails to reject 

hypothesis #8.  Increases in the kurtosis of a skew do not produce more misclassifications, 

but rather, it dictates the magnitude of the direction of the displacements.  In other words, 

10 percent random error will create similar quantities of misclassifications across all risk 

items.  The direction of the misclassifications is determined by the direction of a skew, 

and the degree of change towards a direction is determined by the kurtosis.    
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As illustrated in Table 8A, five pointy risk items selected exhibit a higher level of 

disproportionality.  The higher the disproportionality of the ratios, the greater the 

direction of misclassification is shown.  For example, pointy risk item #4 has a ratio of 

47:5.  This means that 47 of the misclassified cases shifted to a higher risk category and 

only 5 cases shifted to a lower risk category.  Conversely, risk item #1, which has a flatter 

distribution, exhibits a much lower ratio of 25:16 for cases that shifted to a higher risk 

designation and for cases that shifted to a lower risk designation.  The same patterns are 

seen for the other selected risk items, giving support to hypothesis #4.  Large 

discrepancies between these two numbers (case shift up and case shift down) indicate that 

the magnitude of the shifts is also very large.  Thus, the injection of random error into 

pointy risk items will produce greater levels of shifts towards a specific direction, while 

the injection of random error into flatter risk items will create milder shifts.     

The injection of random error into such items lends support to the hypothesis that 

a high kurtosis in the distributions of the cases for individual risk items will increase the 

magnitude of displacements.  The total displacements experienced by both pointy and flat 

risk items are roughly similar.  The main difference is in how the kurtosis impacts the 

direction of shift.     
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Table 8A: Number of Misclassifications (for select items) after 10% Random Error into 
Oregon JCP FIRE 

 

 

 

 

Note: Items 1, 3, 7, 22, and 26 are selected to represent those that are platykurtic.  Items 4, 14, 15, 19, and 
20 are selected to represent those that are most peaked.   

 

 

 

 

 

 

 

 

 

 

Items	
  to	
  
which	
  
Error	
  is	
  
Injected	
  

Low	
  to	
  
Low	
  
Moderate	
  

Low	
  
Moderate	
  
to	
  
Moderate	
  

Moderate	
  
to	
  High	
  

High	
  to	
  
Moderate	
  

Moderate	
  
to	
  Low	
  
Moderate	
  

Low	
  
Moderate	
  
to	
  Low	
  

	
  Shift	
  
Up	
  
(total)	
  

Shift	
  
Down	
  
(total)	
  

	
   	
   	
   	
   	
   	
  
Item	
  1	
  	
  	
   7	
   12	
   6	
   11	
   4	
   1	
   25	
   16	
  
Item	
  3	
   16	
   11	
   8	
   8	
   4	
   1	
   35	
   13	
  
Item	
  7	
   7	
   6	
   10	
   7	
   2	
   3	
   23	
   12	
  
Item	
  22	
   9	
   20	
   6	
   3	
   6	
   1	
   35	
   10	
  
Item	
  26	
   12	
   0	
   0	
   5	
   3	
   5	
   12	
   13	
  
Item	
  4	
   14	
   14	
   19	
   1	
   4	
   0	
   47	
   5	
  
Item	
  14	
   17	
   18	
   14	
   2	
   0	
   1	
   49	
   3	
  
Item	
  15	
   15	
   14	
   14	
   1	
   3	
   3	
   43	
   7	
  
Item	
  19	
   13	
   20	
   11	
   0	
   2	
   2	
   44	
   4	
  
Item	
  20	
   12	
   13	
   11	
   2	
   3	
   0	
   36	
   5	
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Results- Hypothesis #9: 

• Dichotomous risk items will have a greater impact on the sensitivity of error that 

will risk items with more category options. 

 The inclusion of dichotomous risk items moderates the sensitivity of error, 

thereby the study fails to reject hypothesis #7.  In fact, an opposite trend occurs when 

dichotomous variables are injected with error.  Fewer displacements are seen from 

dichotomies after the injection of random error, compared to 3-leveled and 4-leveled risk 

items.  Rows 5, 6, and 7 from Table 7A (see p.144) display the direction and magnitude 

of the case shifts following the injection of 10 percent random error.  Item 5 is normally 

distributed.  Item 6 is negatively distributed.  And finally, Item 7 is positively distributed.  

The net shifts in Items 5, 6, and 7 following the injection of 10 percent random error are 

18, 24, and 23, respectively (see table 7A).  These numbers, which represent the total 

misclassified cases, are much smaller than those displayed for 4-leveled risk items (1-4) 

and 3-leveled risk items (8-11).  Similar patterns are seen in Table 7B (see p. 145), which 

displays the displacements of cases following the injection of 20% random error.  

Likewise, Items 5, 6, and 7 experienced minimal levels of displacements, 35, 52, and 39 

respectively.  These numbers are much smaller than those of any other risk item, and 

suggest that the transfer of error is significantly reduced by the inclusion of dichotomous 

risk items.    

 Since dichotomous risk items yield the fewest displacements, it can be logically 

assumed that risk items that are made up of more categories will yield the greatest 

number of displacements.  Increases in the number of risk options available in a risk item 



159	
  
	
  

	
   	
   	
   	
  
	
  

will increase the likelihood and sensitivity of error.  The findings as displayed in Tables 

7A and 7B (p. 144-145) are suggestive of a positive relationship between number of risk 

options and level of sensitivity.  Sensitivity could be measured by the magnitude of 

displacements following the injection of error.  Clearly, four leveled risk options generate 

the greatest number of case shifts when compared with those of dichotomous and 3-

leveled risk items.  Four-leveled risk items 1, 2, 3, and 4 consistently display higher 

numbers than their counterparts, 34, 34, 64 and 35 relatively.  The findings are generally 

consistent with the rejection of hypothesis #9, which states that dichotomous risk items or 

items with fewer risk options will have a greater impact on sensitivity than will risk items 

with more category options.   

The subgroup base-rates, however, do not offer conclusive evidence, neither 

supporting nor rejecting hypothesis #9.  Risk items 5, 6, and 7 in Tables 7E (see p. 147) 

and 7F (see p.148) display the subgroup base-rate change within the dichotomous risk 

items.  From these tables, there isn’t sufficient indication pointing to either support or 

rejection of the hypothesis #7, which states dichotomous risk items produce more error 

than 4-leveled and 3-leveled risk items.  This is largely because no visible pattern among 

the subgroup base rates emerged as being definitive.  If dichotomous risk variables 

consistently yielded more or less change in subgroup base-rates, inferences could be 

made about its impact on sensitivity.  But instead, the base-rates oscillate and adhere to 

no particular pattern, rendering the interpretations based solely on Tables 7E and 7F (p. 

147-148) inadequate.       

The lack of significant patterns and findings in the subgroup base-rates, however, 

is not completely uninformative.  Several meaningful inferences could be drawn.  First, it 
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is plausible that the impact of risk options is relatively small when compared with other 

factors, causing no visibly significant patterns in the subgroup base-rates.  In other words, 

comparing shifts in base rates may not be a robust enough test to detect small changes.  

This makes much sense because subgroup base rates are much more tolerable of error 

than are individual case shifts.  Thus, interpreting subgroup base rates from Tables 7E 

and 7F is not a suitable method to measure sensitivity because the impact of risk options 

is too small to be detected using such method.   

Second, the risk instrument might be constructed in such as way that specific 

variables could not be isolated or controlled.  There exist both aggravating (increases 

sensitivity) and mitigating (decrease sensitivity) factors that, ideally, should be measured 

individually.  However, Risk Device X is constructed in a way that does not allow for the 

individual manipulation of variables.  Thus, it is possible that dichotomous risk items, 

which are considered mitigating factors, are inextricably intertwined with aggravating 

factors such as negative skews.  In such a scenario, the more dominant of the two 

opposing factors will likely overshadow the impact produced by the less dominant factor, 

thereby lending itself to the appearance that effects were small or nonexistent at all.  Thus, 

there may be cancel-out effects that the analysis fails to identify due to its inability to 

effectively separate different variables, allowing variables to be confounded.  

Third, the effects of dichotomous risk items may be so small that it becomes 

overshadowed by the discrepancy that which random draws create.  The process of 

selecting cases to which error is injected relies heavily on random draws to insure 

objectivity.  However, it is possible that the difference caused by such random draws will 

dwarf the effect caused by dichotomous risk items.  Thus, the effects of dichotomous risk 
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items may be weak or the difference caused by random draws is too big.  More likely 

than not, the effects of dichotomous risk items do not produce strong enough effects to 

surpass the effects of random distortions.  In conclusion, the lack of visibly significant 

impact on the subgroup base-rates could be more insightful and meaningful than it 

appears.  

Dichotomous risk variables are least sensitive to random error due to their 

simplicity and the mildness of alternatives.  Since the possible outcomes for dichotomies 

in Risk Device X are coded either 0 or 1, the severity of an actual mistake or error is 

minimal.  Error in dichotomies, thus, only alter total risk scores by increments of one, 

either 1 point up or 1 point down.  On the other hand, the impact of mistakes and error in 

items with four categories could potentially alter individual risk scores in a drastic way.  

For instance, item 4 (see table 7A, p. 144) contains four categories, and they are attached 

to scores of 0, 1, 2, and 3.  In situations where random error would change an individual’s 

placement from 0 to 3, the impact of the error would have caused a four-point difference.  

For this reason, dichotomies can better tolerate random error.  The severity of potential 

mistakes is much smaller in these situations.  

Results- Hypothesis #10: 

• Increasing the weight of individual risk items will increase the sensitivity of error. 

Risk items can vary greatly in terms of the score points they individually 

contribute to the overall risk function.  Though some instruments, for the purpose of 

increased manageability, are strictly designed so that every risk item contributes the same 

score to the entire function (as in most instruments scored base on the Burgess Method), 
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some other instruments may contain an array of risk items that would differentially 

contribute to the risk function.  It is hypothesized that the injection of error into such risk 

items, whose score-point contribution is greater than the score-point contribution of its 

counterparts, will have a greater impact on misclassification by increasing the sensitivity 

of error.  

Items 3 and 4 from Risk Device X are specifically designed to test this hypothesis; 

the weight of the risk items and their options is much higher than that of other risk items.  

The Categories column from the Table 5 (see p. 81) displays the weight distributions 

across all 11 risk items.  To test hypothesis #5, we need to pay particular attention to the 

relative weight distributional schematic of items 3 and 10, which is much higher than that 

of other risk items.  While the generic schematic of the risk items follow the “0,1,2,3” 

pattern and categories moving from low to high increases by increments of 1, Item 3 and 

10 follow the schematic of “2,4,6,8” with increments of 2.  This intended disparity in 

their weight distributions will tell us the weights of items impact sensitivity.  

The results show that the point score comprising each risk item will greatly 

impact the sensitivity of error.  Table 7A (see p. 149) and 7B (see p.150) show that Item 

3 and Item 10 continuously produce more displacements than all other risk items, after 

the injection of 10% and 20% random error into all items evenly.  Ten percent random 

error into Items 3 and 10 produced 56 and 45 case displacements, while twenty percent 

random error into the same risk items produced 60 and 90 case displacements, 

respectively.   
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Tables 7A and 7B further suggest that raising the point score of a single risk item 

will have an impact on sensitivity that far surpasses those of other risk properties.  For 

example, the type of skew, peakness of the skew, or the number of risk options in the 

items all affects the sensitivity of error.  But, the displacement of cases from these factors 

is much smaller than the displacement of cases caused by increasing the point score of a 

risk item.  The number of cases displaced in items 3 and 10 far exceeds those of any other 

risk item.  This strongly indicates that the number of points making up individual risk 

items has the greatest impact on sensitivity.      

 The impact of score points on the subgroup base-rates tells a similar story.  In 

particular, Items 3 and 10 from Tables 7E (see p. 147) and 7F (see p.148) show that 

increases in the weight of risk items have the biggest impact on sensitivity, followed by 

deep positive skews.  To help examine the relationship of the weight of risk items and 

sensitivity, the weight of two risk items are increased.  Risk items 3 and 10 contain 

options that increases by two points while all other risk items go up in increments of one.  

After the injection of 10 percent and 20 percent error, both of these risk items produced 

more changes in base-rates than all other risk items.   

The changes are better realized after some further explanation of the instrument 

and the analytical procedure.  For all the risk items, the general tendency of shifts in 

subgroup base-rate, after the injection of error, is one that regresses towards the mean.  

For instance, the recidivism rate for the low-risk group will increase, the middle group 

will remain unchanged, and the high-risk group will experience decreases in recidivism 

rates.  The best way to compare risk items and their impact, thus, is to examine the drops 

in high-risk recidivism rate, increases in low-risk recidivism rate, and change in mod-risk 
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recidivism rate.  Measuring the change in each risk category and summing them up will 

give a clear indication in the total magnitude of change.  Next, comparisons should only 

be made between items falling under the same category.  Again, looking at the Risk 

Device X Description Table 5 (see p. 81), items 1 to 4 are similar in terms of risk 

categories and should be grouped together.  The same grouping should be applied to 

items 5 to 7 and also items 8 to 11.  Comparing items to similar items have two major 

benefits.  First, it provides some baseline for comparison.  Second, it will naturally 

control for variables, giving us more confidence that disparities are caused by known 

differences.  

Now, the Tables 7E and 7F (p.147-148) can be interpreted.  Subtracting from the 

original base-rates in Row 1, the magnitude of change can be calculated.  Note, Row 1 

with the original base-rates is important because it lets us know the respective base rates 

prior to the injection of error.  After subtracting subgroup base-rates in Item 3 from the 

original base-rates, we can see that there was a 2 percent increase in the failure rate for 

the low-risk group, 1.9 percent increase in the failure rate for the mod-risk group, and a 4 

percent decrease in the failure rate for the high-risk group, totaling 7.9 percent change in 

the recidivism rate after injecting 10 percent error.  We can see that the total change in 

recidivism rate for similar items 1, 2, and 4 is much smaller, 2.4 percent, 4.6 percent, and 

3.9 percent respectively.   

Next, changes in the recidivism rate for item 10, with similar weight distributions 

as item 3, should be analyzed to confirm findings.  Again, risk items should only be 

compared to similar risk items, and in this case, Item 10 should only be compared to 

Items 8, 9, and 11.  Item 10 experienced 1.6 percent change in the recidivism rate in the 
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low-risk group, 1.5 percent change in the recidivism rate in the mod-risk group, and 2.6 

percent change in the recidivism rate in the high-risk group, totaling 5.7 percent change 

after the injection of 10 percent error.  The total changes experienced by Risk Items 8, 9, 

and 11 are 2.8 percent, 3.8 percent and 1.5 percent respectively.  This is another clear 

indication that the weight of the risk items strongly impacts the sensitivity of error in risk 

instruments. 

 The same general pattern is seen after the injection of 20 percent error.  From 

Table 3A (p. 122), we can see that the total change in subgroup base-rates for Item 3 was 

8.4 percent, compared to 6 percent, 5.6 percent, and 4.5 percent change in Items 1, 2, and 

4.  The comparison between the total subgroup base-rate change of Item 3 and that of its 

counterparts, Items 1, 2, and 4, indicates that doubling the increment of points in the 

options will increase the sensitivity of error.  Similarly, for Item 10, the total change in 

subgroup base-rates was 9.2 percent, compared to 6.1 percent, 8.3 percent, and 8.1 

percent in Items 8, 9, and 11.  Item 10 is another risk item that contains increments of two 

points in its options.  After the injection of 20 percent error, Item 10 produced more 

changes in base-rates than did other similar risk items.  Thus, the study fails to reject 

hypothesis # 10.  The weight of risk items has a positive relationship with sensitivity of 

error in the instrument.    

Results- Hypothesis #11: 

• Random error will have a smaller impact on misclassification than would 

systematic error. 
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There are generally two types of error, systematic and random.  Though the study 

focuses on both types, it is assumed that most error within risk classification instruments 

is random.  Unfortunately, the current state of knowledge is lacking in this area of 

research.  The existence of random error and its prevalence are speculative at best.  The 

influence of systematic error should not be completely dismissed, however.  The current 

study assumes that both random error and systematic error are equally important.  Thus, 

despite their prevalence or lack there of in the real world, equal attention is paid to each 

in the current study.     

Hypothesis #11, which states that random error will have a smaller impact on 

misclassification than would systematic error, is rejected.  Though the impact of 

systematic and random error can be mitigated or aggravated by contextual factors, 

systematic error, in general, creates less classification error.  However, without knowing 

the specific circumstances or specific properties contained in a risk device to which 

systematic and random are injected, the relative impact of each error type cannot be 

determined definitively.   

Adding random error into individual risk items with varying distributions yields 

consistently similar results.  For example, when comparing the number of shifted cases in 

Risk Device X following the injection of random and systematic error, it is evident that 

random error produces more misclassifications in all eleven risk items, both individually 

and collectively.  Table 11A, which shows the impact of systematically upward error in 

Risk Device X, and Table 11B (p. 145), which shows the impact of systematically 

downward error in the same Risk Device X, show that fewer case shifts are consistently 

recorded when compared with the impact of random error (see Table 7A, p.144).  
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Furthermore, the total displacements collectively experienced by all risk items are higher 

following the injection of random error.  Thus, random error has a greater impact on 

classification error across the eleven risk items despite their differences in with 

distributions and risk options.  Regardless of the type of distribution (positive, negative, 

or normal) or risk options contained in each risk item (dichotomous, 3 and 4 options), 

systematic error, whether up or down, causes smaller classification error. 

 Systematic error causes lower levels of misclassifications because it affects 

smaller portions of cases.  When random error is injected into Item E (see Risk Device X), 

for example, cases from lower options could move up and cases from upper options could 

move down.  Thus, all of the selected cases are affect by random error.  However, 

systematic error could only affect a portion of the cases.  If systematic (up) error is 

injected, cases in upper levels remain the same because there is no place to which these 

cases could displace.  Thus, only cases in the lower options are affected by such error.  In 

essence, systematic error, whether it is up or down, effects change only in a portion of the 

cases.  Random error, on the other hand, affects all of the selected cases, causing more 

changes to individual risk scores, thereby increasing the number of misclassified cases.   
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Table 11A: Number of Misclassifications After Injecting 10% Systematic Error (up) in 
Risk Device X 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Table 2A displays case shifts after 10 percent of systematically upward error is injected.  No cases were recorded 
for downward displacement due to the nature of the impact of this type of error. 

  

Items	
  
Error	
  	
  

Injected	
  
In	
  

Low	
  to	
  
Moderate	
  

Moderate	
  
to	
  High	
  

Low	
  
to	
  
High	
  

High	
  to	
  
Moderate	
  

Moderate	
  
to	
  Low	
  

High	
  
to	
  
Low	
  

Total	
  

	
   	
   	
   	
   	
   	
   	
   	
  
Item	
  1	
   4	
   5	
   0	
   0	
   0	
   0	
   9	
  
Item	
  2	
   13	
   8	
   0	
   0	
   0	
   0	
   21	
  
Item	
  3	
   18	
   16	
   0	
   0	
   0	
   0	
   34	
  
Item	
  4	
   12	
   9	
   0	
   0	
   0	
   0	
   21	
  
Item	
  5	
   3	
   8	
   0	
   0	
   0	
   0	
   11	
  
Item	
  6	
   6	
   7	
   0	
   0	
   0	
   0	
   13	
  
Item	
  7	
   1	
   2	
   0	
   0	
   0	
   0	
   3	
  
Item	
  8	
   4	
   1	
   0	
   0	
   0	
   0	
   5	
  
Item	
  9	
   8	
   7	
   0	
   0	
   0	
   0	
   15	
  
Item	
  10	
   12	
   22	
   0	
   0	
   0	
   0	
   26	
  
Item	
  11	
   10	
   9	
   0	
   0	
   0	
   0	
   19	
  
Items	
  
Total	
  

73	
   104	
   7	
   0	
   0	
   0	
   184	
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Table 11B: Number of Misclassifications after Injecting 10% Systematic Error (down) 
into Risk Device X  

 

 

 

 

 

 

 

 

 

 

 

Note: Table 2B displays case shifts for Risk Device X after 10 percent of systematically downward error is injected.  
No cases were recorded for upward displacement due to the nature of the impact of this type of error.   

 	
  

Items	
  
Error	
  	
  

Injected	
  
In	
  

Low	
  to	
  
Moderate	
  

Moderate	
  
to	
  High	
  

Low	
  to	
  
High	
  

High	
  to	
  
Moderate	
  

Moderate	
  
to	
  Low	
  

High	
  to	
  
Low	
  

Total	
  

Item	
  1	
   0	
   0	
   0	
   14	
   5	
   0	
   19	
  
Item	
  2	
   0	
   0	
   0	
   6	
   2	
   0	
   8	
  
Item	
  3	
   0	
   0	
   0	
   15	
   16	
   0	
   31	
  
Item	
  4	
   0	
   0	
   0	
   10	
   7	
   0	
   17	
  
Item	
  5	
   0	
   0	
   0	
   1	
   8	
   0	
   9	
  
Item	
  6	
   0	
   0	
   0	
   2	
   0	
   0	
   2	
  
Item	
  7	
   0	
   0	
   0	
   7	
   7	
   0	
   14	
  
Item	
  8	
   0	
   0	
   0	
   10	
   8	
   0	
   18	
  
Item	
  9	
   0	
   0	
   0	
   11	
   6	
   0	
   17	
  
Item	
  10	
   0	
   0	
   0	
   8	
   6	
   0	
   14	
  
Item	
  11	
   0	
   0	
   0	
   0	
   2	
   0	
   2	
  
Items	
  
Total	
  

0	
   0	
   0	
   79	
   70	
   2	
   151	
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Research Question #4: Does the expansion of scale scores in risk instruments 

increase the sensitivity of error? 

 The scale score is the range of scores from which risk categories are formed.  This 

section seeks to understand the relationship between the scale score range and the 

sensitivity of error.  This analysis focuses on the (H12) number of risk variables in risk 

tools and its relationship to the vastness of the range of score. This research question can 

be addressed by better understanding the factors that play a pivotal role in determining 

the vastness of scale scores.   

Results- Hypothesis #12: 

• Adding more risk items to a risk tool will decrease the sensitivity of error. 

 Increasing the number of risk items in risk devices will reduce the tendency for 

misclassification error, thereby reducing sensitivity.  The underlying rationale in support 

of this assumption comes from the natural expansion of scores that would occur due to 

the addition of risk items.  The expansion of scores will increase the vastness of the range 

of scores, thereby decreasing the risk instrument’s proclivity for misclassification.   

 The findings fail to reject hypothesis #6.  To explain the differential impact of 

error on risk tools with different numbers of risk items, the attention could be turned 

towards Oregon JCP FIRE and Oregon JCP-Burgess.  In this situation, Oregon JCP FIRE 

represents a risk tool with more items (30 risk items), and Oregon JCP-Burgess 

represents a risk tool with fewer items (11 risk items).  Since these two risk tools are 

nearly identical in every other aspect, their differences in misclassification can easily be 

attributed to their disparity in the number of risk items contained in each risk tool.  Tables 
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1A and 1B (p.115) show such disparities.  In fact, when random error is injected into 

Oregon JCP FIRE, it causes 26.3% misclassification (after 10% error) and 48.3% 

misclassification (after 20% error).  For Oregon JCP-Burgess, the level of 

misclassification was 33.7% and 52.7% respectively.  This means that Oregon JCP FIRE 

(30 items) significantly reduces the transfer of error, by 7.4% and 5.4% respectively.   

The number of scores for each category is determined by the cut-offs.  Increases 

in a category’s range of scores reduce the potential misplacement of individuals caused 

by error because there would be more room for error.  This means that each score point 

difference would have a lower likelihood of causing classification error.   

Before discussing the study’s findings on the relationship between “range of 

scores” and sensitivity, it is important to explain the different circumstances that directly 

influence the range of scores.  Several conditions are directly linked to the broadness of 

the range of scores in a risk instrument.  First, increases in the number of risk items will 

typically cause an increase in the range of scores.  Take, for example, the Oregon Risk 

instrument that contains 31 dichotomous risk items, with each individual item varying 

from a score of 0 and 1.  Here, the range of score for the entire Oregon Risk instrument is 

0-31, with 31 being the highest possible total.  Thus, there is a clear connection between 

the number of risk items and the range of score.  Second, the inclusion of risk items with 

multiple options typically increases the range of score for a risk instrument.  For instance, 

if a risk item divides individuals into five categories, and each category is coded in 

increments of 1 (ex. 0, 1, 2, 3, 4), that particular risk item could contribute up to 4 points 

to the total risk function score, thereby substantially expanding the score.   
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To test hypothesis #12, error is injected into both Oregon JCP FIRE and Oregon 

JCP-Burgess.  Both instruments are identical and differ on one relevant component, their 

scale score.  While the Oregon JCP FIRE contains a range of 0 to 28 (see table 7, p. 85), 

the Oregon JCP-Burgess contains a range of score of 0 to 11 (see table 9, p. 90).  This 

disparity in the two instruments will give us confidence that their unique range of score 

directly causes the differences in changes. 

The study fails to reject hypothesis #12.  Increasing the range of score for a risk 

instrument reduces its sensitivity to error.  Of all the different risk device properties that 

have been tested to assay their impact on sensitivity, range of score seems to be most 

robustly linked to sensitivity.  Table 1A and 1B (see p. 122) compares the number of 

misclassified cases in Oregon JCP FIRE and Oregon JCP-Burgess.  Whether it is 

injecting 10% or 20% random and systematic error, Oregon JCP-Burgess consistently 

produces greater levels of misclassifications.  For instance, after 10 and 20 percent 

random error, Oregon JCP-Burgess experiences 263 and 483 total case shifts while 

Oregon JCP FIRE experiences 337 and 527 shifts.  The differences as measured by the 

number of individual shifts draw a very vivid picture about Oregon JCP FIRE’s ability to 

resist classification error. 

The same disparities are found after systematic error is injected into these two 

models.  Whether it is upward systematic error or downward systematic error, greater 

levels of displacements are seen in the Oregon Simulation model.  For instance, injecting 

10 percent upward systematic error yields 298 total misclassification in the Oregon JCP 

FIRE, and 332 total misclassifications in Oregon JCP-Burgess (see Table 2A, p. 117).  

Similarly, 10 percent downward systematic error yields 80 total misclassifications in 
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Oregon JCP FIRE, and 86 total misclassifications in the Oregon JCP-Burgess (see Table 

2B, p. 118).  In every scenario described above, the instrument with the narrower range 

of score (Oregon Risk Instrument) consistently produces less case shifts following the 

injection of error.   

Summary 

 The current chapter focused on the statistical analysis to address research 

questions with regard to the sensitivity of error in offender risk classification based on 

risk device characteristics such as distribution of data, risk categories, and range of score.  

Thus, twelve hypotheses were tested by measuring case displacements, change in 

subgroup base-rates, and significance.  Each statistical method of analysis is adept in 

answering different specific questions.  At times, one specific type of method would be 

superior, while others analyses would be conducted as supplemental analyses.  However, 

the order of importance would quickly change from one research hypothesis to the next.  

The analyses can be divided into three domains: 1) overall impact of error on validity, 

both random and systematic; 2) the impact of distribution of cases in categories on 

sensitivity; and 3) the impact of distribution of cases in variables on sensitivity.  

 H1 tested the impact of random error on validity across four risk tools: Risk 

Device X, Oregon JCP FIRE, Oregon JCP-Burgess, and Oregon JCP-Coefficients.  It 

showed that small level of errors typically contribute to high levels of misclassifications.  

H2 tested the impact of systematic (up and down) error on risk models.  Systematic 

(down) error caused the least number of misclassifications, which was consistent across 

all four risk tools.  H3 tested the impact of random error on the validity of risk models by 

examining changes to subgroup base-rates.  The risk instruments retained its ability to 
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form groups of individuals whose subgroup base-rates were distinctively and 

meaningfully different.  Next, (H4) looking at the impact of systematic error on validity 

by examining subgroup base-rates, the validity of the risk tools did not decrease much.  

Thus, risk tools are said to be highly tolerant of random and systematic error. 

 The second section examined the impact of distributions of cases in risk 

categories on sensitivity.  H5 tested the different skews in the risk categories.  

Specifically, it tested whether instruments that over-classify high risk individuals were 

more sensitivity to error.  The study found that such instruments would reduce the 

sensitivity of error.  Finally, looking at the number of categories to which individuals are 

assigned, H6 tested the impact of instruments with more risk categories on sensitivity.  

The study found that more misclassifications resulted, thereby increasing the sensitivity 

of error in risk tools with more risk categories. 

 Finally, some risk device properties that pertain to the distribution of cases in risk 

variables were found to have an ameliorative effect on sensitivity.  The properties that 

were found to abate the transfer of error are: dichotomies (H9); items with relatively 

lower weights (H10); and instruments with many risk items (H11); and increased range 

of scores (H12).  The study found that changes to the skews (H7) and kurtosis (H8) 

neither increases nor decreases the tendency for misclassifications.  However, changes to 

the skews and kurtosis does impact the subgroup base-rates, thereby affecting the validity 

of risk tools. In sum, risk properties can directly influence the level of sensitivity of error 

in risk classification instruments.   
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 The following chapter discusses the significant research findings, interpretation of 

such findings, theoretical and practical implications, the limitations of the study, and 

recommendations for further research.  
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Hypotheses Summary 

Research Question #1: What is the impact of error on risk assessment instruments?    
  

Hypothesis #1: After injecting random error into entire risk models, the level of 
classification error is equal to the level of error that is injected into the risk items.   

Rejects- Table 1A and 1B 
  
Hypothesis #2: After injecting systematic error (up and down) into entire risk models, the 
level of classification error is equal to the level of error that is injected into the risk items. 
 Rejects- Table 2A and 2B 
 
Hypothesis #3: After injecting random error into each risk model, the subgroup base-rates 
for high risk groups will decrease and the subgroup base-rates for low risk groups will 
increase, showing a pattern of regression towards the mean in such rates. 
 Fails to Reject- Table 3A 
 
Hypothesis #4: After injecting systematic (up and down) error into each risk model, the 
subgroup base-rates for high risk groups will decrease and the subgroup base-rates for 
low risk groups will increase, showing a pattern of regression towards the mean in such 
rates. 
 Fails to Reject- Table 4A 
 
Research Question #2: How do different distributions of cases across categories impact 
sensitivity? 
 
Hypothesis #5: Risk instruments that over-classify high risk individuals will be more 
sensitive to random error. 
 Rejects- Table 5B, 5D, 5F 
 
Hypothesis #6: Increasing the number of categories to which offenders are classified will 
increase misclassification and the sensitivity of error. 
 Fails to Reject- Table 6A, 6B, 6C 
 
Research Question #3: How do different distributions of cases across risk variables affect 
the sensitivity of error? 
 
Hypothesis #7: Negatively skewed risk items will have the greatest impact on increasing 
the sensitivity of error, when compared to normally and positively skewed risk items. 
 Rejects- Table 7A, 7B, 7C, 7D, 7E 
 
Hypothesis #8: Increasing the peakness of distributions in risk items will increase the 
amount of error or misclassifications towards a particular direction. 
 Fails to Reject- Table 8A 
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Hypothesis #9: Dichotomous risk items will have a greater impact on the sensitivity of 
error than will risk items with more category options. 
 Rejects- Table 7A, 7b, 7E, 7F 
  
 
Hypothesis #10: Increasing the weight of individual risk items will increase the 
sensitivity of error.   
 Fails to Reject- Table 7A and 7B 
 
Hypothesis #11: Random error will produce less misclassification than will systematic 
error. 
 Rejects- Table 11A and 11B 
 
Research Question #4: Does the expansion of scale scores in risk instruments increase the 
sensitivity of error? 
 
Hypothesis #12: Adding more risk items to a risk tool will decrease the sensitivity of 
error. 
 Fails to Reject- Table 1A and 1B 
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Chapter 6 

Discussion and Conclusions 

 The primary purpose of this dissertation was to explore the relationship between 

initial error in risk assessment information and final classification error through the use of 

an experimental design.  Since research on the topic of sensitivity of error in offender risk 

classification instruments is virtually non-existent, there is no ongoing framework from 

which the current study could follow.  Being the first to break ground on this type of 

research was greatly auspicious as it is debilitating.  The pioneering nature of the study 

makes the study and its findings unique, interesting, and momentous.  However, the lack 

of an existing structure, on which the study could piggyback, renders the study 

exploratory.    

 To address this issue, the study started with a very small set of general questions.  

From there, more detailed questions and hypothesis were generated as more information 

unfolded throughout the study.  This chapter provides a careful examination of the 

significant findings of the research in light of the little knowledge that currently exists for 

the sensitivity of error in offender risk classification.  Also, this discussion addresses 

implications of the research findings, limitations of the study, and recommendations for 

further research. 
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Overview of Research Findings 

Sensitivity and Classification Validity 

 Without having any prior knowledge on the sensitivity problem, the first question 

asks about the general impact of error on risk classification outcomes.  In other words, 

how sensitive are risk assessment instruments?  The study found that while many factors 

affect the sensitivity of error most risk assessment instruments could tolerate high levels 

of error.  Specifically, the study found that the injection of 10 and 20 percent random and 

systematic error caused large levels of movement.  Moreover, when looking at the 

subgroup base-rate changes subsequent the injections of such errors, the rates were 

significantly impacted at a statistical level of .05 or lower.  However, turning to the 

comparison of subgroup base-rates, which Baird (2009) and Gottfredson and Snyder 

(2005) consider the best measure of validity, the injection of such errors did not 

significantly undermine the validity of the risk assessment instruments.  Put differently, 

the risk assessment instruments continued to effectively divide individuals into groups 

with meaningfully different subgroup base-rates.  Thus, risk assessment instruments 

generally are not very sensitive to error. 

 Research question #1 also distinguishes systematic error and random error by 

separately examining their impact on classification outcomes.  Briefly, random error 

refers to the random distortion of information, where the displacement of cases is 

directionless.  Conversely, systematic error refers to the distortion of cases that repeatedly 

goes towards one direction, either to the right or left.  The study found that, under most 

circumstances, random error causes more case displacements than would systematic error.  
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There is one situation, however, that would reverse this relationship.  When a high-

leveled skew in cases is matched with a particular type of systematic error, an interactive 

effect may take place to magnify the impact of error.  This was seen when upward 

systematic error was injected into each of the 30 risk items in the Oregon Instrument, 

which coincidentally contained very skewed items.  Thus, the impact of systematic and 

random error could be mitigated or aggravated by the distributions.  In other scenarios, 

however, random error produces greater levels of misclassification than would systematic 

error.   

 After understanding the general sensitivity of risk instruments and the differential 

impact of systematic and random error, the next step was to inquire about the distribution 

of cases across categories and its impact on sensitivity.  The majority of cases can fall 

under: low risk; moderate risk; or high risk.  Hypothesis #5 seeks to understand how the 

distribution of cases in the entire risk instrument affects the sensitivity of error.  It was 

speculated that the skews of cases for an entire risk device would differentially impact the 

sensitivity of error.   Specifically, negative skews in the cases of risk categories were 

hypothesized to have the gravest impact on increasing the sensitivity of error.    However, 

upon further analysis, it was learned that positive distributions are most sensitive to error.  

 Hypothesis #6 tested the impact of increasing the number of risk categories in risk 

tools.  The study found that increases to the number of risk categories also increase the 

number of misclassified cases. The manner in which risk device designers choose the 

number of categories for dividing individuals are sometimes arbitrary.  It makes logical 

sense when a correctional facility has enough resources to deal with multiple levels of 

risky offenders.  If so, a risk instrument with corresponding risk levels would be ideal, as 
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it would compliment the department’s goals and budget.  However, Baird (2009) argues 

that under most correctional circumstances, fiscal budgets are restrictive, and the 

facilities don’t have sufficient resources to allocate to the individuals who fall into 

different risk designations.  In this sense, the dividing of individuals as a function of most 

risk designs is capricious.  Hypothesis #9 seeks to analyze this problem from a sensitivity 

perspective.  The results fail to reject hypothesis #9; they also lend validity to the notion 

that increasing the number of risk categories will increase the sensitivity of error.  The 

findings give additional support to the argument that unnecessary partitioning of 

individuals into more risk categories reduces efficiency.   

 Question 3 was comprised of 4 hypotheses, each examining the impact of 

different types of variables on the overall sensitivity of risk classification instruments.   

Hypothesis #7, which posited that negatively skewed risk items would have the greatest 

impact in increasing sensitivity, was confirmed.  Item A from Risk Device X created the 

largest net change in subgroup base-rates, far greater than those from normally skewed 

(Item B) and positively skewed (Item D) risk items.  Findings from the testing of 

hypothesis #7 much attention should be paid towards the skew of individual variables.  

 Next, risk variables could differ on their kurtosis.  Hypothesis #8 was confirmed.  

Risk items that were more peaked displaced significantly more individuals to a different 

risk designation.  Furthermore, the kurtosis seems to dictate the size and magnitude of the 

direction of displaced cases.  In other words, having more peaked variables does not 

impact the quantity of misclassifications, rather it serves as an indicator of the magnitude 

of shifts towards a particular direction.  
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 Dichotomous risk items are increasingly more popular in current risk instruments, 

and for good reasons.  Reliability studies show that there is much higher inter-rater 

reliability when risk items are simple (Austin et al., 2003).  Dichotomous risk variables 

minimize the discretion necessitated in the staff, thereby increasing reliability.  In 

addition, such simple risk items make administering of risk assessments easier, more 

convenient, and manageable.  Hypothesis #9 seeks to evaluate whether the inclusion of 

dichotomous variables is judicious from a sensitivity perspective.  The hypothesis, which 

argues that dichotomous risk variables will have the greatest impact in increasing 

sensitivity of error, was rejected.  In fact, the opposite relationship was discovered.  

Compared to risk items with three or more categories, dichotomous risk items displaced 

significantly less cases to other risk designations.  Thus, dichotomous risk items reduce 

the sensitivity of error.  Risk device designers are recommended to employ dichotomous 

risk items over other risk items with more options. 

Hypothesis #10 argues that the weight of a risk item, relative to those of other risk 

items, have a direct and positive relationship to sensitivity.  This supposition was 

supported.  It is not uncommon to see certain risk devices include a variety of risk items 

that differentially contribute to the risk function.  For instance, the LSI-R heavily relies 

on dichotomous risk items, but it also includes several risk items that contain a range of 

options that follow the score point schematic of 0, 1, 2, 3.  Such items inadvertently alter 

the sensitivity of error, where the injection of error into them would produce greater 

levels of misclassifications.  Thus, for the strict argument of ameliorating sensitivity, 

such items should be obviated and excluded from the risk function. 
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There has been an ongoing debate about the types of risk items that should go into 

a risk assessment instrument.  For instance, the creators of the LSI argue that both needs 

and risk variables are both essential to the design of efficient risk assessment instruments 

(Andrews et al., 2006).  One unintended side effect of this is that such risk/needs 

assessment instruments tend to contain many more variables.  The LSI-R, for example, 

contains 54 risk/needs items in a single risk assessment instrument.  On the other hand, 

Baird (2009) offers empirically supported arguments that the inclusion of needs variables 

or variables that do not explain enough variance in a risk function produces noise, 

undermining the efficiency of the instruments.  Thus, following Baird’s (2009) 

recommendation to remove unnecessary variables, risk devices should contain no more 

than six to eight essential risk items.  Hypothesis #11 seeks to reconcile these opposing 

views by offering an argument about sensitivity.  The sensitivity analyses offer support 

for the design of risk instruments with larger varieties of risk items.  That is, as the 

number of risk items increases, the range of score will expand, offering a buffer for error.  

Thus hypothesis #11, which argues that the number of risk items will have a negative 

relationship with sensitivity, is supported.   

The number of scores for each category is determined by the cut-offs.  Increases 

in a category’s range of scores should reduce the misplacement of individuals caused by 

error because there would be more room for error.  This means that each score point 

difference would have a lower likelihood of causing classification error.   

The range of scores refers to the spectrum of score points that comprise a risk 

function.  The range of scores is affected by a multitude of variables such as: number of 

risk items; weight of items; risk item options; and inter-correlations of risk items.  
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Hypothesis #12, which states that a negative relationship exists between the range of 

scores and sensitivity, is supported.  Like most other risk characteristics discussed, risk 

device designers are given a broad range of discretion and decision making power to 

select properties he/she sees suitable.  It is hoped that the findings from the sensitivity 

analyses could provide designers with increased levels of guidance due to their increased 

knowledge of the problem of sensitivity.  

This dissertation’s findings suggest that more research should focus on the 

sensitivity of error in risk assessment instruments.  Being that this is the first study to 

explore the impact of error on classification outcomes, the findings reported only 

represent the tip of an iceberg.  Additional research and further in-depth analyses in risk 

assessment and sensitivity will greatly benefit risk devices.  Specifically, risk device 

designers will gain a better understanding of the risk device properties that would 

moderate or aggravate the transfer of error.  

Limitations 

 Especially in the world of social sciences, there exist real limits that could plague 

a study, often reducing or completely decimating the validity of findings when proper 

precautions aren’t carefully considered, planned, and executed.  The key, however, is to 

comb through the research methodology for such weaknesses, and to either preemptively 

remove the identified culprit or use this knowledge to guide the interpretations of the 

findings.  The current study has three relevant limitations that are thought to have a real 

impact on the validity of the study.  First, the selected methodology used to generate the 

data does not allow the user to manipulate changes in the correlations between risk items.  
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Second, there are real limitations in replicating correlated error.  Third, the distribution of 

failed cases that are linked to the base-rate is unrealistic.  Together, these three limitations 

threaten the internal and external validity of the study in ways that may undermine the 

findings.     

 Looking in from a purely statistical orientation, it would be ideal if individual risk 

items were independent and uncorrelated.  There are a multitude of consequences related 

to multicollinearity, including the corruption of coefficient estimates and matrix inversion 

(Fields, 2005).  Since these risk items are translated into independent variables that 

belong to a risk function, typically a logistical regression equation, high levels of inter-

correlation would weaken the validity of the statistical model.  Thus, one of the gravest 

violations that could be committed against regression models is when little is done about 

multicollinearity.  Conversely, the best-case scenario would be such that the variables are 

completely independent.  But, despite a conscious effort to reduce the inter-correlations 

among variables during the instrument design phase, inter-correlated items irrevocably 

find its way into risk instruments in the real world.   

Thus, from a statistical standpoint, inter-correlations in variables cause invalidity 

in regressions because they explain the same variance in the dependent variable.  

Unfortunately, risk classification instruments often contain risk items with high levels of 

multicollinearity that which creates another problem.  The existence of inter-correlations 

in variables in the real world present a redoubtable threat to the validity of the current 

study because the data construction method employed does not allow the researcher to 

create correlated risk data.  In other words, we know that inter-correlations exist in risk 
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items, but unfortunately for the study, there does not exist a viable way to simulate inter-

correlated data.   

 The inability to create correlated data in the current study translates into a credible 

external validity threat.  Because of the over reliance on simulations to test the 

hypotheses posed, careful steps were taken to ensure that risk data, risk instruments, and 

multiple other scenarios are representative of real situations.  Unfortunately, the STATA 

program and simulation method used do not allow the researcher to manipulate 

correlation levels among the items.  Thus, simulated risk items are minimally correlated, 

and are much more random than real data.  The results that are generated from the study 

will arguably lack representativeness because the simulated data does not fully reflect 

most actual data.   

 Next, the inability to create correlated error could contribute to threats to internal 

validity.  A primary reason for the heavy focus on correlations is because we understand 

that correlated risk items would have profound impacts.  For instance, if two risk items 

were highly correlated, then error in the information for one risk item would translate into 

error for the correlated item as well.  Now, if multicollinearity exists across all risk items, 

the consequence would be devastating because error in one item could have serious 

implications for all other risk items with which it is correlated.  The current study, 

unfortunately, only examines the impact of systematic and random error, but neglects to 

measure the impact of correlated error.  Systematic and random errors affect individual 

cases, and thereby assume little or no multicollinearity in the risk items.  However, it is 

likely that correlated error is more prevalent in the real world.  As such, the inability to 

create correlated error could pose a potential threat to the internal validity of the study.  
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 Finally, the base-rate distribution is unrealistic.  In an attempt to construct a 

perfect risk data, the distribution of failed cases were assigned to the sample in a manner 

that caused an unusually high correlation between the risk score and criterion.  In other 

words, there were too many actual failures in the high-risk group, and too many non-

failures in the low-risk group.  Risk scores from real risk data are, unfortunately, more 

loosely correlated with the outcome variable.  As a result, Risk Device X demonstrates an 

atypically and unrealistically high capacity to divide individuals into groups with varying 

subgroup recidivism rates.   
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Policy/Future	
  Research	
  Implications	
  	
  

	
   	
  The research findings of this dissertation suggest several courses of action for 

risk assessment and future research.  First, risk device designers should be more 

cognizant of the sensitivity issue associated with their risk instruments.  It is seen that the 

right combination of aggravating factors could have a profound and detrimental impact 

on the sensitivity of error, where low levels of error could yield disproportionately high 

levels of misclassifications.  Currently, risk assessments are evaluated based on validity, 

cost-effectiveness, equity and reliability, but little attention is given to the sensitivity of 

error.  The findings offer support that sensitivity is equally important and its impact 

should be routinely evaluated.   

 Second, it could be argued that the manner by which risk properties are chosen is 

often arbitrary.  With the exception of some general guidelines that exist to limit full 

subjective judgment, risk designers are free to choose risk items/properties as they deem 

fit.  Such guidelines normally pertain to ensuring validity, reliability, equity, and cost 

effectiveness (Baird, 2009).  However, the sensitivity problem is routinely neglected.  In 

fact, a review of the past evaluations of risk assessment instruments indicates that no such 

research on sensitivity exists, and the focus of such evaluations typically focus on validity, 

reliability, and cost effectiveness.  Thus, the understanding of how error is transferred 

through a risk device could help give risk designers some additional standard and criteria, 

by which the goodness of a risk instrument could be measured.    

 Third, using a classification system with a high sensitivity to error can 

substantially increase misclassification of individuals.  By understanding specifically how 
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risk device properties affect transferred error and misclassifications, designers can better 

construct risk devices that are more tolerant of error.  Also, by increasing the tolerance of 

error in risk classification, we reduce the need to frequently revalidate a risk device, 

which will save time and state resources.   

  The dissertation adds on to classification research that has not yet been directly 

studied.  The knowledge we gain from the dissertation helps understand the way risk 

classification devices are designed.  As a result, classification instrument designers will 

benefit by being able to remove properties that increase error and include properties that 

will reduce the transfer of error.  Moreover, the criminal justice system will directly 

benefit from having more effective classification systems after knowing which specific 

factors will increase the sensitivity of error in offender risk classification instruments.  

The dissertation will make a true contribution to offender risk classification.  

Finally, the findings of this study have a number of important implications for 

future research.  The majority of the datasets was constructed using Monte Carlo 

Simulations.  There are both strengths and weaknesses to this methodology, which was 

discussed earlier.  However, research in classification outcomes and sensitivity would be 

better enhanced if such study received more access to different actual risk instruments 

and risk data.  This would further allow for a better understanding of the different risk 

properties that differentially impact sensitivity, and by which risk instruments are set 

apart. 

Next, research in sensitivity and risk classification should explore the different 

facets of correlated data, and how to effectively replicate it.  Little understanding of the 
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impact of inter-correlated risk items on sensitivity was learned from the current study 

because it was unable to simulate correlated data and correlated error.  Thus, newer and 

more effective methods of data simulation would allow us to construct data that are more 

reflective of real data.  Future research should attempt to confirm the current study’s 

theoretical findings by testing them on a wider range of datasets, whether simulated using 

alternative methods or borrowed from correctional agencies.        
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