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ABSTRACT OF THE DISSERTATION

Linking and Discreteness in Hyperbolic 4-space

by Andrew Ebitner Silverio

Dissertation Director: Professor Jane P. Gilman

A pair of isometries of the 4-dimensional hyperbolic space is called linked if they can be

expressed as compositions of two involutions, one of which is common to both isome-

tries. While every pair of isometries of hyperbolic space in dimensions 2 and 3 is

linked, not all pairs of isometries of hyperbolic 4-space are linked. One type of such

an involution is called half-turn which is an orientation preserving elliptic isometry

with a 2-dimensional fixed point set. We provide some geometric conditions for such

a pair to be linked by half-turns. Here we develop a theory of pencils, twisting planes

and half-turn banks that gives results about each of the pair-types of isometries and

their simultaneous factorization. In order to provide conditions under which a given

pair is linked via a half-turn, sets of hyperplanes in hyperbolic 4-space are defined for

each orientation preserving isometry that enables one to locate the half-turns for which

linking is possible. Once a pair is linked, known conditions about discreteness of the

group, generated by a pair of isometries, in lower dimensional hyperbolic spaces can

be generalized to some linked pairs in dimension 4. If a pair has a common invariant

hyperplane or plane, the known conditions such as compact-core-geodesic-intersection

and non-separating-disjoint-circles apply.
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Chapter 1

Introduction

A pair of isometries A,B of the hyperbolic space Hn is said to be linked if there are

involutions α, β and γ such that A = αβ and B = βγ. If furthermore α, β and γ

have (n − 2)-dimensional fixed point set, then the pair is called linked by a half-turn.

In dimensions 2 and 3, every pair of isometries are linked. This type of factoring

is used to determine the discreteness of the group 〈A,B〉 using the Gilman-Maskit

algorithm in dimension 2, the non-separating-disjoint-circles condition and the compact-

core-geodesic-intersection condition in dimension 3. Unfortunately in dimension 4, not

all pairs are linked. If a pair has this property, procedures and conditions that are

known in lower dimensions work with minor modifications. One of the goals here is

to find conditions for which a pair of isometries of H4 is linked. Furthermore, some of

these conditions imply that the group generated by the pair leave a lower dimensional

subspace invariant, answering the discreteness question with a known results in lower

dimension. The deeper motivation is to determine the discreteness of two-generator

subgroup of the isometry group of H4 by the intersections of axes of non-parabolic

palindromes with a fixed plane or line.

The first step in approaching this problem is to break the pair of isometries into

compositions of orientation preserving involutions.

In particular, the concept of pencils derived from hyperbolic 3-space or conformal

2-sphere is reformulated to find a space of reflections that factorize an atomic type isom-

etry (type I elliptic, pure hyperbolic or pure parabolic). The other types of isometries

can be factored into two half-turns but can be broken canonically into other factors of

atomic type. More definitions of pencils (invariant and twisting) are formed in addition

to classical ones. The pencils have several indispensable properties that enable one to
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find a common half-turn factor of certain pairs of isometries.

The pencils contain and locate the planes in which a half-turn factoring is possible.

The planes with these properties are bounded by the circles of the half-turn bank of an

isometry. There is a geometric criterion for a plane to be located in a half-turn bank

related to the fixed point set and other invariants of an isometry, and this criterion

along with the properties of the pencils is exploited to state geometric conditions for

which a pair of isometries are linked by half-turns. From a far perspective, a plane is in

the half-turn bank of an isometry γ if it is orthogonal to the axis, direction and twisting

plane of γ whichever are applicable. Equivalently, a plane is in the half-turn bank of

γ if it is the intersection of an element in the permuted pencil and and element of the

invariant/twisting pencil of γ.

The pencils and hence the half-turn bank of an isometry can be parametrized by

real numbers so finding a common element in the half-turn banks of isometries A and

B is enough for the pair (A,B) to be linked by a half-turn. Moreover every half-turn

factorization of an isometry comes from its half-turn bank. Therefore, the linking of a

pair by a half-turn is a matter of studying their half-turn banks.

Theorem 1.0.1. A pair of orientation preserving isometries of H4 is linked by half-

turns if and only if they have a common element in their half-turn banks.

The geometric conditions for linking thus reduce to finding a common element in

the half-turn banks. The fixed points, axes, directions, invariant planes and pencils

help locating the common element that links a pair.

While the main topic of this thesis is linking, we also include a chapter on the

enumeration of primitive words in a rank two free group and make some modifications in

different well known enumeration schemes. We produce a faster enumeration algorithm

for primitive words. We apply results from the modified enumeration schemes to modify

the Gilman-Maskit discreteness algorithm.
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1.1 Organization

The outline of this thesis is as follows. In Chapter 2 we review necessary information

about hyperbolic 4-space including classifications of orientation preserving isometries,

reflections, hyperplanes and intersections of varying dimensions of subplanes. The

importance of orthogonal subplanes, complements and correspondence to Euclidean

space are emphasized.

In Chapter 3 the permuted, invariant, dual and twisting pencils are used to construct

the so-called half-turn banks. In the elliptic case, the half-turn is defined and used

in other cases. For each case, sufficient conditions are stated for a circle or a plane

to be in a half-turn bank. The properties of pencils used in linking and factoring

are enumerated. In the isometries with rotational parts, the definition, existence and

uniqueness of twisting planes are stated and proved.

The results in Chapter 3 imply some results in [2,16] and [1] but stronger statements

are necessary for proving results in Chapter 4. The pencils defined in Chapter 3 can

be generalized to higher dimensions but are not stated in a general manner since the

chapter is only intended to be a machinery for Chapter 4.

The main theorems about linking are stated in Chapter 4. Like in Chapter 3, the

conditions are shown in a case-by-case basis. The pairs considered do not have elliptic

elements in them but can have rotational parts. There are a total of ten cases listed

but each case may have a few conditions for a pair to be linked. Some conditions imply

that the pair has invariant plane or hyperplane where the discreteness question can be

passed to lower dimensions with known results.

In Chapter 5, discreteness conditions found in [6] and [8] are extended to hyperbolic

4-space. For pairs that can be linked, the non-separating-disjoint-spheres condition

found in [2,16] can be reduced to three spheres containing the elements half-turn banks

of the pair of isometries that links it. For the compact-core-geodesic-intersection con-

dition to extend immediately to dimension 4, the pair has to have an invariant lower

dimensional plane implied by some of the conditions in Chapter 4. The rest of the

conditions need further investigations for answering the discreteness question.
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Finally in Chapter 6 we discuss enumeration schemes for primitive words in a rank

two free group and apply this very detailed discussion to produce a faster algorithm for

enumerating the primitive words and a modification of the Gilman-Maskit discreteness

algorithm.
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Chapter 2

Expository Background for Hyperbolic Space

In this chapter, the construction of the hyperbolic space of different models are covered.

Lines, planes, angles and distances are defined from one model, and the maps among

other models carry the geometric structures along the spaces. In section 2.1, the Lorentz

space is introduced and how the hyperboloid model is embedded. The Lorentz inner

product relate with lengths and dihedral angles in the hyperboloid. Its comparison

with the Euclidean inner product shows common properties of Euclidean and hyperbolic

geometries. Lorentz orthogonal matrices form a group as a subset of the endomorphisms

of Lorentz vector space.

In section 2.2, the inversive geometry of the Euclidean space is extended from re-

flections across spheres and planes into Möbius maps of the compactified space. The

Möbius maps extend to a map of one higher dimension, and the result is called Poincaré

extension that serve as an isometry of the upper-half space model of hyperbolic space.

A special Möbius map called stereographic projection conjugates the isometries of the

upper-half space model into isometries of the conformal ball model.

In section 2.3, the isometries of hyperbolic space are classified using the properties

of Möbius transformations of the conformal ball model. In section 2.4, the formulas of

some maps among the hyperboloid, upper-half and conformal ball models are shown.

In section 2.5 the metric, Riemannian structure, and subplanes are described and com-

pared.

In section 2.6, hyperbolic geometry is restricted to dimensions 2 and 3 to highlight

the connection to complex analysis and holomorphic maps. The field structure of

the complex plane is utilized to define a different cross-ratio which provides a way to

construct the common perpendicular line between ultra-parallel lines.
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In section 2.7, isometries of hyperbolic space in dimension 4 are further classified

into type I elliptic, type II elliptic, pure parabolic, screw parabolic, pure hyperbolic

and pure loxodromic. The details of the special classification is deferred to the next

chapter. This chapter serve as background information about hyperbolic geometry.

2.1 The Hyperboloid Model

Consider the Lorentz space Rn,1 which is the set Rn+1 equipped with a pseudo-Riemannian

inner product defined by

〈x, y〉L = x1y1 + x2y2 + · · ·+ xnyn − xn+1yn+1.

From the inner product comes the classification of vectors: time-like; space-like; and

light-like. The norm ‖x‖L of a vector x ∈ Rn,1 is the principal square root of 〈x, x〉L.

A time-like vector is an element with negative norm squared. The vectors with positive

norm are called space-like, and those with zero norm are called light-like.

The Lorentz space inherits the vector space structure of Rn+1 which is finite di-

mensional. A vector subspace with a time-like vector is called a time-like subspace.

A subspace whose all nontrivial vectors are space-like is called space-like. The rest of

the subspaces are called light-like. The set of light-like vectors does not form a vector

subspace but is called the light cone. It separates the set of time-like vectors into two:

those with positive (n+ 1)th coordinate; and those with negative (n+ 1)th coordinate.

The hyperbolic space Hn embeds in the Lorentz space as the vectors with norm squared

equal to −1 but positive (n+1)th coordinate. This embedding is called the hyperboloid

model.

A pair of vectors x, y ∈ Rn,1 are called Lorentz orthogonal or in this section, simply

orthogonal if 〈x, y〉L = 0. The orthogonal complement 〈x〉L of x is the set of vectors

orthogonal to x. If V is a subspace of Rn,1, then the Lorentz orthogonal complement

V L is the set of vectors that are orthogonal to every x ∈ V .
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2.1.1 Relating Euclidean and Lorentzian inner products

The Euclidean inner product of x, y ∈ Rn+1 is denoted 〈x, y〉E and defined

〈x, y〉E = x1y1 + x2y2 + · · ·+ xnyn + xn+1yn+1

where x = (x1, x2, . . . , xn+1) and y = (y1, y2, . . . , yn+1). It is similar to the Lorentzian

inner product in Rn,1 but the orthogonal complements are related by the (n+1)×(n+1)

diagonal matrix J with entries (1, 1, . . . , 1,−1). For any x, y ∈ Rn+1 = Rn,1, the inner

products are related by

〈x, y〉L = 〈Jx, y〉E = 〈x, Jy〉E . (2.1)

Denote the Euclidean orthogonal complement of a vector subspace V of Rn+1 with V E .

Then V can be a subspace of both Rn+1 and Rn,1. The matrix J is a linear isomorphism

from any vector subspace V onto JV . Since J2 = Idn+1, it is also an isomorphism from

JV to V . Equation (2.1) implies that V L = (JV )E .

To show that J
(
V E
)

= (JV )E , let x ∈ (JV )E . Then 〈x, y〉E = 0 for all y ∈ JV . Let

vy = Jy ∈ V so Jvy = y. Then 〈x, y〉E = 〈x, Jvy〉E = 〈Jx, vy〉E = 0 for each y ∈ JV .

This shows that Jx ∈ J(V E) and so (JV )E ⊆ J(V E). Conversely, let x ∈ J(V E).

Then x = Jw for some w ∈ V E . By definition, 〈w, v〉E = 0 for all v ∈ V . But w = Jx

so 〈Jx, v〉E = 〈x, Jv〉E = 0 for all v ∈ V . It follows that x ∈ (JV )E . In conclusion,

V L = (JV )E = J(V E).

From these, we have

(
V L
)L

= J
((
V L
)E)

= J
((
J
(
V E
))E)

=
(
J
(
J
(
V E
)))E

=
(
(JJ)

(
V E
))E

=
(
V E
)E

= V.

Now that
(
V L
)L

= V and V L = J
(
V E
)
, the properties of Euclidean orthog-

onal complements of subspaces of Rn+1 are inherited by the Lorentzian orthogonal

complements of subspaces of Rn,1. In particular, the dimension of V L is equal to

(n+ 1)− dim(V ).
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2.1.2 Orthonormal bases and orthogonal transformations

A basis {v1, v2, . . . , vn+1} for Rn,1 is called Lorentz orthonormal if ‖vn+1‖2L = −1,

〈vi, vj〉L = 0 for i 6= j and 〈vi, vi〉L = 1 for i = 1, 2, . . . , n. The standard basis

{e1, e2, . . . , en+1} is an example of a Lorentz orthonormal basis. A subspace V of Rn,1

has a basis but if it is space-like, any basis fails to be Lorentz orthonormal as it lacks

a time-like vector. If V is time-like, it is possible to construct a Lorentz orthonormal

basis and it is a goal of this section.

A linear transformation or endomorphism f of Rn,1 is called a Lorentz transforma-

tion if it preserves the Lorentz inner product. That is, 〈v, w〉L = 〈f(v), f(w)〉L for

all pairs v, w ∈ Rn,1. From this definition, a Lorentz transformation maps a Lorentz

orthonormal basis into another. Conversely, a linear transformation that maps the stan-

dard basis into a Lorentz orthonormal basis is a Lorentz transformation [17, Theorem

3.1.3]. It follows that f is bijective and so the set of Lorentz transformations forms a

group under composition called the Lorentz group. This group is denoted O(n, 1).

Using the standard basis, an endomorphism of Rn,1 can be expressed as an (n+1)×

(n + 1) matrix. Other equivalent definitions of a Lorentz transformation are stated in

terms of its matrix form.

Theorem 2.1.1 ([17, Theorem 3.1.4]). Let A be an (n+ 1)× (n+ 1) matrix with real

coefficients and J be the (n+ 1)× (n+ 1) diagonal matrix with entries (1, 1, . . . , 1,−1).

Then the following are equivalent.

1. As an endomorphism, A is Lorentzian.

2. The columns of A form a Lorentz orthonormal basis for Rn,1.

3. The matrix A satisfies the equation AtJA = J .

4. The matrix A satisfies the equation AJAt = J .

5. The rows of A form a Lorentz orthonormal basis for Rn,1.

A subgroup of O(n, 1) that preserves the sign of the (n + 1)th coordinate of each

time-like vector is called positive Lorentz group and is denoted PO(n, 1). Since a Lorentz
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transformation preserves Lorentz orthonormal bases, a time-like subspace is mapped

onto another time-like subspace. Moreover for every pair of time-like subspaces V , W

of the same dimension, there is a positive Lorentz transformation that restricts to an

isomorphism from V to W .

Theorem 2.1.2 ([17, Theorem 3.1.5]). For each dimension m, the natural action of

PO(n, 1) on the set of m-dimensional time-like subspaces of Rn,1 is transitive.

2.1.3 Orthogonal Complements

By combining subsets of the standard basis, their spans form time-like subspaces of

varying dimensions. Define the following subspaces of R4,1.

V0 = span{e5} V23 = span{e3, e4, e5}

V1 = span{e1, e5} V31 = span{e1, e2, e3, e5}

V21 = span{e1, e2, e5} V32 = span{e2, e3, e4, e5}

Then their corresponding orthogonal complements are as follows.

V L
0 = span{e1, e2, e3, e4} V L

23 = span{e1, e2}

V L
1 = span{e2, e3, e4} V L

31 = span{e4}

V L
21 = span{e3, e4} V L

32 = span{e1}

Notice that the orthogonal complement of a time-like subspace is space-like or trivial.

When pairing two time-like subspaces V,W in the examples above, the span of V L∪WL

is space-like. Furthermore, V ∩W is still time-like. The following theorem states the

more general results.

Theorem 2.1.3 ([17, Theorem 3.2.6]). Let x and y be linearly independent space-like

vectors in Rn,1. Then span{x, y} is space-like if and only if (span{x})L ∩ (span{y})L

is a time-like subspace.

While this theorem deals with n-dimensional subspaces of Rn,1, the examples above

suggest that a similar statement works for lower and varying dimension subspaces.
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The following lemma is immediate from previous theorems but are necessary here

and not stated in the references.

Lemma 2.1.1. Let V be a time-like subspace of Rn,1 and v ∈ V be a time-like vector.

Then there is an orthonormal basis {v1, v2, . . . , vk, vk+1} for V where k + 1 = dim(V )

and vk+1 is linearly dependent with v.

Proof. The span of e1, e2, . . . , ek and en+1 is isomorphic to Rk,1 in both vector space

and Lorentz structures. The group PO(k, 1) embeds into PO(n, 1) by filling an (n +

1)× (n+ 1) matrix with a (k + 1)× (k + 1) matrix from an element of PO(k, 1) to the

lower right entries, the upper right entries with In−k identity matrix, and the rest with

zeros. If σ ∈ PO(k, 1), denote its extension to PO(n, 1) with σ̂.

There is an fv ∈ PO(n, 1) that maps V onto span{e1, e2, . . . , ek, en+1}. The vector

fv(v) must be time-like so there is σv ∈ PO(k, 1) that maps span{fv(v)} to span{en+1}.

Then (σ̂v ◦ fv)−1 ∈ PO(n, 1) sends the set {e1, e2, . . . , ek, en+1} into an orthonormal

basis of V , one vector of which is linearly dependent with v.

The following lemma is necessary here but not stated in the references.

Lemma 2.1.2. Let P be a time-like subspace of a time-like subspace V of Rn,1. Sup-

pose k = dim(P ) and m = dim(V ). Then there is a Lorentz orthonormal basis

{v1, v2, . . . , vm} for V such that {v1, v2, . . . , vk−1, vm} is an orthonormal basis for P .

Proof. Let {u1, u2, . . . , uk−1, um} be an orthonormal basis of V where um ∈ P . Then

there is f ∈ PO(n, 1) that sends P to span{u1, u2, . . . , uk−1, um} while leaving V

invariant. The existence of f is implied by the proof the lemma above. Let vi =

f−1(ui) for i = 1, 2, . . . ,m. Then {v1, v2, . . . , vm} is an orthonormal basis for V while

{v1, v2, . . . , vk−1, vm} is an orthonormal basis for P .

The following is used in succeeding sections to show that intersecting subplanes of

the hyperbolic space behave much like Euclidean subplanes. Specifically the subplanes

can intersect orthogonally although the intersections can be of different dimensions.
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Theorem 2.1.4. Let P be a time-like proper vector subspace of another time-like proper

subspace V of Rn,1. Then there is a unique time-like vector subspace V ⊥ containing P

such that

1. (V ⊥)L is Lorentz orthogonal to V L,

2. dim(V ⊥) = n− dim(V ) + dim(P ) + 1,

3. span
(
V ⊥ ∪ V

)
= Rn,1 and

4. P = V ⊥ ∩ V .

Proof. Let {v1, v2, . . . , vn+1} be a Lorentz orthonormal basis of Rn,1 where P is the span

of {v1, v2, . . . , vk−1, vn+1} and V = span{v1, v2, . . . , vm−1, vn+1}. Define V ⊥ to be the

span of {v1, v2, . . . , vk−1, vm, vm+1, . . . , vn, vn+1}. Then V L = span{vm, vm+1, . . . , vn}

and (V ⊥)L = span{vk, vk+1, . . . , vm−1}.

From construction, V L is Lorentz orthogonal to (V ⊥)L. Since V ⊥ has the maximum

dimension that contains P , it is unique.

2.1.4 Metric and subplanes of Hn

The subset Hn is equipped with a metric induced by the Lorentz inner product. The

metric on Hn is given by dHn(x, y) = cosh−1
(
−〈x, y〉L

)
for x, y ∈ Hn. Every isometry

of Hn extends uniquely into an element of PO(n, 1), and every element of PO(n, 1)

restricts to an isometry of Hn. Hence Isom
(
Hn
)

is isomorphic to PO(n, 1). A geodesic

line R → Hn is an isometry between R onto its image. A function λ : R → Hn is a

geodesic line if and only if there are x ∈ Hn and y ∈ Rn,1 with 〈x, y〉L = 0 and ‖y‖L = 1

such that λ(t) = (cosh t)x + (sinh t)y for all t ∈ R [17, Theorem 3.2.5]. The span of

{x, y} from the formula is a 2-dimensional time-like vector subspace so geodesics in Hn

are intersections of 2-dimensional time-like subspaces with Hn.

The subplanes of Hn inside Rn,1 are the intersections of time-like subspaces with

Hn [17]. More precisely, V ∩ Hn is an m-dimensional subplane of Hn if and only if V

is an (m+ 1)-dimensional time-like vector subspace of Rn,1. A 1-dimensional subplane

is called a hyperbolic line or simply line. A point is also called 0-dimensional subplane.
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An (n − 1)-dimensional subplane is called a hyperplane. Using the Lorentz space, the

dihedral angles between intersecting hyperplanes can be described without dealing with

the geodesics passing through the intersections. Furthermore the minimum distance

between hyperplanes and the common perpendicular line can be computed or located.

Translating Theorem 2.1.4 to Hn, it follows that the hyperbolic subplanes passing

through a given point behave much like the Euclidean space.

The following corollary is essential for the succeeding chapters. It is not found in

references so the statement and proof are provided.

Corollary 2.1.1. Let h be a proper subplane of Hn of dimension m and P a proper

subplane of h with dimension k. Allow P to be a single point in h which has dimension

0. Then there is a unique subplane h⊥P (hyperbolic) orthogonal to h through P and of

dimension n−m+ k.

Proof. Embed Hn into Rn,1 so the image is the hyperboloid model. Then h = Hn ∩ V

and P = Hn ∩W for some time-like subspaces V and W . Since P ⊂ h, then W ⊂ V .

The hypothesis shows that W ⊂ V ⊂ Rn,1 are proper subsets so there is a unique V ⊥W

containing W so that (V ⊥W )L and is Lorentz orthogonal to V L. The Lorentz orthogonal

relation between (V ⊥W )L and V L translates to hyperbolic orthogonal relation between

Hn ∩ V L and Hn ∩ (V ⊥W )L.

2.1.5 Dropping a perpendicular

Let h be an n-dimensional time-like subspace of Rn,1. Let v be time-like vector not

in h. Then hL is 1-dimensional space-like subspace of Rn,1. Let P = span
(
{v} ∪ hL

)
,

so the dimension of P is 2. By dimension count, span(h ∪ P ) = Rn,1 and h ∩ P is a

1-dimensional subspace. Moreover, it is interesting to show that h∩P is time-like. Let

x be a nontrivial vector in hL. Then for each t ∈ R, the linear combination tx+ v is in

P .

Since (span{x})L = h, one can solve the equation 〈tx + v, x〉L = 0 for t and the

resulting solution t0 makes t0x + v a vector in h. The equation yields to a unique
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solution

t0 = −〈v, x〉L
〈x, x〉L

.

To check that t0x+ v is time-like, we can compute ‖t0x+ v‖2L.

‖t0x+ v‖2L = 〈t0x+ v, t0x+ v〉L

= t20‖x‖2L + 2t0〈v, x〉L + ‖v‖2L

=

(
−〈v, x〉L
〈x, x〉L

)2

‖x‖2L + 2

(
−〈v, x〉L
〈x, x〉L

)
〈v, x〉L + ‖v‖2L

=
〈v, x〉2L
〈x, x〉L

−
2〈v, x〉2L
〈x, x〉L

+ ‖v‖2L

= −
〈v, x〉2L
〈x, x〉L

+ ‖v‖2L.

Since x is space-like and v is time-like, ‖t0x+ v‖2 is negative so both t0x+ v and h∩P

are time-like. The angular relation between h and P is likewise an important property

of the construction of P . In particular, h and P project to Hn as orthogonal hyperplane

and line.

Theorem 2.1.5 ([17, Theorem 3.2.7]). Let h be an n-dimensional time-like subspace

of Rn,1and v a time-like vector not in h. Then there exists a unique 2-dimensional

time-like subspace P such that

1. P contains v,

2. h ∩ P is 1-dimensional and time-like, and

3. PL and hL are Lorentz orthogonal.

Proof. The construction of P is described above. It is the span of hL ∪ {v}. What is

left to show is that PL and hL are Lorentz orthogonal.

By definition, hL ⊂ P . Let w ∈ hL. Then w ∈ P . For each y ∈ PL, the equation

〈w, y〉L = 0 follows. Likewise if w1 ∈ PL, then 〈w1, y1〉L = 0 for all y1 ∈ P which

includes hL. Hence hL is Lorentz orthogonal to PL.

The following corollary allows dropping a perpendicular line from a point to a dis-

joint subplane of any dimension. It is immediate from the well-known theorem that
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drops a perpendicular line from a point to a hyperplane. It is used several times in the

next chapters so the statement and proof are provided.

Corollary 2.1.2. For each subplane H of Hn and each p ∈ Hn \H, there is a unique

line P passing through p such that P is (hyperbolic) orthogonal to H.

Proof. Let k = dim(H). Embed Hn into Rn,1. Then H and p can be extended uniquely

into time-like vector subspaces WH and Vp respectively. The span of WH ∪Vp is isomor-

phic to Rk+1,1 so there is a unique 2-dimensional subspace Q in span (WH ∪ Vp) that

contains Vp such that QL is Lorentz orthogonal to WL
H . Let P = Q ∩ Hn. Then P is

the unique line orthogonal to H and passing through p.

If v and w are linearly independent space-like vectors then span{v, w} is time-like

if and only if span{v}L ∩ span{w}L is space-like. The intersections of Hn with either

span{v}L or span{w}L is an (n− 1)-dimensional subplane of Hn called hyperplane. It

follows that Hn ∩ span{v}L and Hn ∩ span{w}L are disjoint if span{v, w} is time-like.

Conversely, if Hn∩span{v}L and Hn∩span{w}L are disjoint, then either span{v, w}

is time-like or light-like.

Definition 1. Let P and Q be suplanes of Hn with possibly different or equal dimen-

sions. Then P and Q are called ultra-parallel if span(P )∩span(Q) ⊂ Rn,1 is space-like.

If span(P ) ∩ span(Q) is light-like, then P and Q are said to be tangent at infinity.

Theorem 2.1.6 ([17, Theorem 2.3.7]). If P and Q are ultra-parallel hyperplanes of

Hn, then there is a unique line orthogonal to both P and Q.

2.2 Reflections across spheres and planes

The vector space Rn can be equipped with the Euclidean inner product structure de-

noted in this section as dot-product. If x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) ∈

Rn, the Euclidean inner product of x and y is

x · y = x1y1 + x2y2 + · · ·+ xnyn.
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This inner product induces a norm and a distance structures of Rn given by

‖x‖ =
√
x · x and dE(x, y) = ‖x− y‖.

A sphere S(a, r) where a ∈ Rn, r > 0 is the set of points equidistant to a of length r.

If a ∈ Rn has ‖a‖ = 1 and t ∈ R, a Euclidean plane P (b, t) can be uniquely determined

by a and t. Specifically, S(a, r) and P (b, t) are defined as follows.

S(a, r) = {x ∈ Rn : ‖x− a‖ = r}

P (b, t) = {x ∈ Rn : b · x = t}

Note that a in S(a, r) can be of any norm whereas b in P (b, t) is assumed to be of unit

length. From the definition, P (b, t) = P (−b,−t). The reflections across P (b, t) and

S(a, r) are defined as follows.

σ(x) = a+

(
r

‖x− a‖

)2

(x− a)

ρ(x) = x+ 2(t− b · x)b

By computing their compositions, σσ and ρρ are identity map on Rn. The fixed point

set of σ is S(a, r) and that of ρ is P (b, t) [17, Theorem 4.1.3]. These reflections preserve

the Euclidean inner product, that is ρ(x) · ρ(y) = σ(x) · σ(y) = x · y for all x, y ∈ Rn

not equal to a for σ. They also reverse the orientation of Rn.

By extending Rn into R̂n defined as Rn t {∞}, R̂n is a one point compactification

of Rn. The reflections σ and ρ also extend to R̂n via σ(a) =∞, σ(∞) = a and ρ(∞) =

∞. A hyperplane P (b, t) naturally extends into a topological sphere by adjoining ∞.

Henceforth, a reflection in R̂n is considered to be across a sphere, whether it is a

Euclidean sphere of an extended Euclidean plane. The composition of a finite number

of reflections is called a Möbius transformation. The set of Möbius transformations

forms a group under composition called the Möbius group and is denoted Möb
(
R̂n
)
.

Let en be the point in Rn whose nth coordinate is 1 and other coordinates are

0. Let Bn be the set {x ∈ Rn : ‖x‖ < 1} and Un be the set {x ∈ Rn : x · en > 0} ∪

{∞}. The reflection across the sphere S(en,
√

2) maps the lower half space −Un =

{−x : x ∈ Un} ontoBn. It can be precomposed with the reflection across the hyperplane
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Rn−1 × {0} ∪ {∞} and the resulting Möbius transformation maps Un onto Bn. This

composition sπ, called stereographic projection, restricts to a homeomorphism from

R̂n−1 = Rn−1×{0}∪{∞} onto Sn−1 = {x ∈ Rn : ‖x‖ = 1}, and has an explicit formula

sπ(x) =


en if x =∞ ;(

2x1
‖x‖2+1

, 2x2
‖x‖2+1

, . . . , 2xn−1

‖x‖2+1
, ‖x‖

2−1
‖x‖2+1

)
if x 6=∞.

The inverse of the restriction has a formula expressed as

s−1π (y) =

(
y1

1− yn
,

y2
1− yn

, . . . ,
yn−1

1− yn
, 0

)
.

A reflection within R̂n can be extended to a reflection in R̂n+1 using the same

formula. The extension leaves the upper half-space Un+1 invariant, and hence any

Möbius transformation of R̂n extends to a unique Möbius transformation of R̂n+1

called Poincaré extension. It can be shown that a Möbius transformation of R̂n+1

is a Poincaré extension if and only if it leaves Un+1 invariant. The set of Poincaré

extensions of Möb
(
R̂n
)

forms a subgroup of Möb
(
R̂n+1

)
and is denoted Möb

(
Un+1

)
. It

follows that Möb
(
Un+1

)
is isomorphic to Möb

(
R̂n
)
. The stereographic projection there-

fore conjugates Möb
(
Un+1

)
into a subgroup of Möb

(
R̂n+1

)
that leaves Sn and Bn+1

invariant. This subgroup is denoted Möb
(
Sn
)

and is also isomorphic to Möb
(
Un+1

)
and Möb

(
R̂n
)
.

2.2.1 Cross Ratio

Let u, v, x, y ∈ R̂n with u 6= v and x 6= y. The cross ratio of an ordered quadruple

(u, v, x, y) denoted by [u, v, x, y] is defined given by

[u, v, x, y] =
‖sπ(u)− sπ(x)‖‖sπ(v)− sπ(y)‖
‖sπ(u)− sπ(v)‖‖sπ(x)− sπ(y)‖

.

If one of {u, v} and one of {x, y} are ∞, then the factors of the numerator and

denominator equal to ∞ in the definition can be ignored. If one of {u, v} but none of

{x, y} is ∞, the cross ratio is 0. It can be shown that a function from R̂n to R̂n is a

Möbius transformation if and only if it preserves cross ratios of all qualified quadruples.
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Then a Möbius transformation preserves (extended) spheres of R̂n of any dimension

lower than n. Moreover, Möb
(
R̂n
)

is transitive on the set of k-dimensional spheres of

R̂n. If a Möbius transformation fixes (n−1)-dimensional sphere, it is either a reflection

or the identity map.

2.2.2 Boundaries at infinity

The upper-half and conformal ball models are subsets of Rn. They have natural bound-

aries in R̂n that are homeomorphic to Sn−1. Their Möbius groups actions extend to R̂n

and leave their respective boundaries invariant. The boundary of Un is Rn−1×{0}∪{∞}

and that of Bn is Sn−1. As models of hyperbolic space, Un and Bn are compactified

by their boundaries called boundary at infinity, visual boundary or conformal sphere at

infinity. These boundaries inherit the conformal structure of R̂n and the Möbius groups

act on them as conformal bijections.

The hyperboloid model Hn does not have a boundary within Rn,1 but its boundary

at infinity correspond to the set of nontrivial light-like vectors of Rn,1. Hence a pair

of subplanes P and Q of Bn extend to Sn−1 and they are tangent at infinity if and

only if their extensions in Sn−1 intersect at a unique point. Likewise P and Q are

ultra-parallel if and only if their extensions to Sn−1 have empty intersection. In the

succeeding chapters, the boundary at infinity is denoted ∂Hn or R̂n−1.

2.3 Classification of Möbius transformations

The homeomorphism property from Sn to R̂n and the Brouwer fixed point theorem

[10] force a Möbius transformation of Sn or R̂n to have a fixed point. Therefore the

classification of Möbius transformations can be determined by the function’s number

of fixed points. Let f ∈ Möb (Sn) so that f restricts to a function from Bn+1 ∪ Sn to

Bn+1 ∪ Sn ⊂ R̂n+1. Then f is

1. elliptic if f fixes a point of Bn+1;

2. parabolic if f fixes a no point of Bn+1 but fixes a unique point in Sn;



18

3. hyperbolic if f fixes no point of Bn+1 but fixes two points on Sn.

By extending f to a function R̂n+1 → R̂n+1 and conjugating it within Möb
(
R̂n+1

)
,

a hyperbolic Möbius transformation f is conjugate to an element of Möb
(
R̂n+1

)
with

the form x 7→ kAx where k > 1 and A ∈ O(n+ 1) which has exactly two fixed points,

namely the origin and ∞. Hence a hyperbolic transformation has exactly two fixed

points.

2.4 Maps between models of hyperbolic space

Let Hn be the hyperboloid model of the n-dimensional hyperbolic space. That is, Hn

is the subset of Rn,1 consisting of vectors with Lorentz norm equal to i, the “imaginary

number.” A homeomorphism ζ : Bn → Hn is defined given by

x 7→
(

2x1
1− ‖x‖2

,
2x2

1− ‖x‖2
, . . . ,

2xn
1− ‖x‖2

,
1 + ‖x‖2

1− ‖x‖2

)
.

The inverse of ζ has a formula given by

y 7→
(

y1
1 + yn+1

,
y2

1 + yn+1
, . . . ,

yn
1 + yn+1

)
.

Recall that the stereographic projection sπ is a homeomorphism from R̂n−1 onto

Sn−1. It extends uniquely to a Möbius transformation of R̂n that sends Un to Bn.

Thus the composition ζsπ is a homeomorphism from Un to Hn. Using these homeo-

morphisms, Un and Bn inherit the metric structure of Hn that is compatible with their

inherent conformal structure. Moreover, these homeomorphisms conjugate the groups

Möb
(
Sn−1

)
and Möb (Un) into PO(n, 1), the set of positive Lorentz transformations of

Rn,1.

The set Un is called the upper-half space model and the set Bn is called the conformal

ball model. There is another model called the Klein disc model but it is covered in a

separate document.
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2.5 Comparison of models

The conformal maps sπ, ζsπ, ζ among the models of hyperbolic space inherit the metric

structure of Hn. The metric on Bn is explicitly given by

dBn(x, y) = cosh−1

(
1 +

2‖x− y‖2E(
1− ‖x‖2E

) (
1− ‖y‖2E

))

whereas the metric on on Un is given by

dUn(x, y) = cosh−1
(

1 +
2‖x− y‖2E

2xnyn

)
.

The Riemannian structure on Bn is

dx1 ⊗ dy1 + dx2 ⊗ dy2 + · · ·+ dxn ⊗ dyn
(1− 〈x, y〉E)

while that of Un is

dx1 ⊗ dy1 + dx2 ⊗ dy2 + · · ·+ dxn ⊗ dyn
xnyn

.

The m-dimensional subplanes of Hn are the intersections of Hn with (m + 1)-

dimensional time-like subspaces of Rn,1. Those of Bn are the intersections of Bn with

m-dimensional Euclidean spheres or planes of Rn orthogonal to Sn−1. In the upper-half

space model Un, the m-dimensional subplanes are the intersections of Un with Euclidean

spheres or planes of Rn orthogonal to Rn−1 × {0}.

The isometry space ofHn is PO(n, 1) with a subgroup of orientation preserving maps

denoted PSO(n, 1) consisting of matrices of positive determinant. The isometry space

of Un and Bn are Möb
(
Un
)

and Möb
(
Sn−1

)
respectively. Their orientation preserving

subgroups consist of those compositions of even number of reflections.

2.6 Dimensions 2 and 3

The Euclidean plane modeled with R2 has a natural identification with the field of

complex numbers C. Adjoining ∞ to C yields to Ĉ called the Riemann sphere. The

calculus of complex numbers show that holomorphic functions give rise to conformal

functions. In particular, the set of conformal automorphisms of Ĉ can be expressed by
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fractional linear transformations which are functions of the form

z 7→ az + b

cz + d

where a, b, c, d ∈ C with ac − bd 6= 0 extending to Ĉ via ∞ 7→ a/c and −d/c 7→ ∞.

This set, denoted Aut
(
Ĉ
)
, has the same defining properties as the set of orientation

preserving subgroup of Möb
(
R̂2
)
, namely cross ratio preservation and unique determi-

nation by its action on 3 distinct points. The rest of Möb
(
R̂2
)

can be identified with

the complex maps of the form

z 7→ az̄ + b

cz̄ + d
.

The group Aut
(
Ĉ
)

is homomorphic to a 2 × 2 matrix multiplication but changing

the coefficients a, b, c, d into −a,−b,−c,−d yields to the same function so Aut
(
Ĉ
)

is

isomorphic to PGL2C. Hence Möb(U3), Möb(S2) and PO(3, 1) are isomorphic to the

two copies of PGL2C.

Restricting the group Aut
(
Ĉ
)

to those that preserve R̂ = R ∪ {∞}, called the ex-

tended real line, defines a subgroup isomorphic to the group of orientation preserving

Möbius transformation of U2 and B2. An element of Aut
(
Ĉ
)

of the form z 7→ az+b
cz+d pre-

serves the extended real line if and only if a, b, c, d ∈ R ⊂ C so the group of orientation

preserving Möbius transformations of U2 and PSO(2, 1) are isomorphic to PGL2R.

The cross ratio in R̂2 can be modified to encode the field structure of C, defined as

follows. Let a, b, c, d ∈ Ĉ where no three of them coincide. The (complex) cross-ratio

of the ordered quadruple (a, b, c, d) is /R(a, b, c, d) defined given by

/R(a, b, c, d) =
(c− a)(d− b)
(c− b)(d− a)

.

The case where one or two of them are ∞ is handled similarly as the previous cross

ratio.

One advantage of using this complex cross-ratio /R is the possibility of having a

negative or non-real value. In particular, having a −1 complex cross-ratio corresponds

to perpendicular lines described as follows.

Definition 2 ([3]). Let a, b, c, d ∈ Ĉ. The pair of pairs (a, b), (c, d) is called harmonic if

either exactly three of {a, b, c, d} coincide or a, b, c and d are distinct and /R(a, b, c, d) =
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−1.

Theorem 2.6.1 ([3]). For every two non-ordered pairs of points (a, b) and (c, d) which

do not consist of the same points and such that no three of {a, b, c, d} coincide, there is

a unique pair of non-ordered points (x, y) which is harmonic with both (a, b) and (c, d).

Proof. The points a, b with a 6= b bound a unique hyperbolic line in U3. Use the

transitivity of PGL2C acting on U3 on hyperbolic lines to assume that a = ∞ and

b = 0. Let x = −
√
cd and y =

√
cd. Then,

/R(c, d, x, y) =
(−
√
cd− c)(

√
cd− d)

(−
√
cd− d)(

√
cd− c)

/R(a, b, x, y) =
(x−∞)(y − 0)

(x− 0)(y −∞)

=
(
√
cd+ c)(

√
cd− d)

(
√
cd+ d)(

√
cd− c)

=
y

x

=
cd− d

√
cd+ c

√
cd− cd

cd+ d
√
cd− c

√
cd− cd

=

√
cd

−
√
cd

=

√
cd(c− d)√
cd(d− c)

= −1 = −1

The theorem can be stated in a more geometric terms: Given two ultra-parallel lines

in H3, there is a unique line perpendicular to both of them. The points a, b, c, d ∈ C

serve as boundary points of the lines joining a to b and c to d. The line bounded by

x and y is their common perpendicular. By alternately switching between upper-half

and hyperboloid models, the theorem can be generalized into higher dimensions.

The following corollary is well-known in hyperbolic geometry but the proofs are not

stated in the references.

Corollary 2.6.1. For every two ultra-parallel lines in Hn, there is a unique line or-

thogonal to both of them.

Proof. Let `1 and `2 be ultra-parallel lines in Hn. Using the hyperboloid model Hn,

`1 and `2 span a vector space V in Rn,1. If V is 3-dimensional, then `1 and `2 are

hyperplanes of V so there is a unique line in Hn ∩ V perpendicular to both of them.
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If V is 4-dimensional, then Hn ∩ V is isometric to H3 that can be modeled with the

upper-half space U3. Then `1 and `2 are bounded by 4 distinct points a, b, c, d ∈ Ĉ.

Suppose ∂`1 = {a, b} and `2 = {c, d}. Then there is a unique line N perpendicular to

both `1 and `2. Any other line connecting a point from `1 to `2 must be a subset of

Hn ∩ V so N is the unique in all Hn.

2.7 Subclassifications in dimension 4

The Möbius transformations acting as isometries of hyperbolic space are classified into

elliptic, parabolic and hyperbolic in dimensions 2 or higher. An elliptic isometry has

a set of fixed points with a dimension that can range from 0 to n. The dimension of

the fixed point set is one way to classify elliptic elements further. In dimension 4, an

orientation preserving elliptic isometry has either one point, a plane or the whole H4

of fixed point set. If it fixes a plane pointwise, it is called type I elliptic isometry or

Möbius transformation. If it fixes only one point, it is called type II elliptic.

A parabolic Möbius transformation, acting on R̂3 via x 7→ Ax+b whereA ∈ O(3) and

b ∈ R3 \ {0}, either has A = Id3 or A nontrivial. Any orientation preserving parabolic

isometry is conjugate to this form so orientation preserving parabolic isometries can be

classified further into whether A is trivial or not. If A is trivial, the parabolic isometry

is called pure parabolic or screw parabolic if A is nontrivial.

A hyperbolic Möbius transformation acting on R̂3 is conjugate to another that is

of the form x 7→ λAx where 1 6= λ > 0 and A ∈ O(3). Thus an orientation preserving

hyperbolic isometry is classified into pure hyperbolic if A is trivial or pure loxodromic

if A nontrivial.

More information about subclassification of isometries of H4 are provided in Chapter

3. The classes are listed as follows.

1. elliptic (see section 3.1)

(a) type I elliptic

(b) type II elliptic (see section 3.1.2)
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The type II elliptic is further classified into two: those with unique pair of

invariant planes; and involutions.

(c) identity map

2. parabolic

(a) pure parabolic or parabolic translation (see section 3.3)

(b) screw parabolic (see section 3.5)

3. hyperbolic

(a) pure hyperbolic or hyperbolic translation (see section 3.2)

(b) pure loxodromic or loxodromic transformation (see section 3.4)
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Chapter 3

Pencils and Half-Turn Banks

In this chapter, pencils, half-turn, half-turn banks and twisting planes are defined. It

is shown that isometries that can be expressed as a composition of two reflections have

an invariant pencil; those with twisting planes have a twisting pencil instead. All types

have half-turn banks. Hyperbolic, parabolic and type I elliptic types have permuted

pencils. Detailed definitions are given for each type of isometry. Theorems about half-

turn factoring are exactly the same for all types, but their proofs, while similar to each

other, differ in details.

The pencils have a few properties that can be used for constructing half-turn banks,

factoring isometries and linking pairs of them. These properties are also utilized for

constructing and proving the uniqueness of a twisting plane which is a feature of dimen-

sion 4. The pencils and half-turn banks saturate the hyperbolic space and its boundary,

reducing the difficulty in finding a common orthogonal plane essential for linking. Suf-

ficient conditions for a plane or circle to be in a half-turn bank are stated for each type

of isometry.

With the exception of type-II elliptic isometry, the model of H4 used in this chapter

is the upper-half space embedded in the ambient space R4. The boundary at infinity is

therefore R3 × {0} ∪ {∞} but denoted simply with R̂3.

Theorems 3.1.4, 3.2.5, 3.3.4, 3.4.3, and 3.5.3 serve as geometric classification for

a plane to be involved in a half-turn factoring. In dimension 3, the analog of these

planes are the lines perpendicular to the axis, which is extended by Fenchel [3] to allow

“improper lines.” In dimension 4, these planes are also described as intersections of

special hyperplanes. Theorems 3.1.5, 3.1.4, 3.2.6, 3.3.5, 3.4.4 and 3.5.4 are statements

with the same conclusion that differ only on the isometry types or classes. They allow
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linking of pairs of isometries to be unordered in cases where the involutions are half-

turns.

In section 3.6, the half-turn bank is proven to be the only source of half-turn fac-

torization of an isometry. The conclusion is that two isometries of H4 have a common

half-turn factor if and only if their half-turn banks have an element in common.

3.1 Elliptic

Let h and h′ be hyperplanes in H4. If they intersect in a point they automatically

intersect in a plane P . Denote the reflections across h and h′ by Rh and Rh′ respectively.

The compositions RhRh′ and Rh′Rh fix P pointwise so they are elliptic isometries of

H4. Suppose further that h and h′ are orthogonal. Then both Rh′(h) and h are

orthogonal to h′ through P since Rh′ is conformal. There is only one hyperplane

orthogonal to h′ through P so Rh′(h) = h. Conjugating Rh with Rh′ yield to another

reflection Rh′RhRh′ . Both Rh and Rh′ are involutions so for each x ∈ h, it follows that

Rh′(x) ∈ h and Rh′RhRh′(x)= Rh′Rh′(x) = x. Hence Rh′RhRh′ is the reflection across

h. It follows that Rh′ and Rh commute and their composition is both elliptic and an

involution. There is only one elliptic isometry fixing P and of angle π so RhRh′ is the

unique elliptic involution that fixes P .

Definition 3. Let P be a plane in H4. The half-turn about P is the elliptic isometry

HP that is a composition of reflections across an orthogonal pair of hyperplanes that

intersect in P .

If h and h′ do not meet orthogonally, then Rh and Rh′ do not commute. However

if g is another hyperplane that contains h ∩ h′, it can be shown that RgRhRh′ and

RhRh′Rg are reflections across hyperplanes that also contain h ∩ h′. To see this fact,

consider first the hyperplanes bounded by Euclidean planes P,Q ⊂ R3 × {0} ⊂ ∂H4

such that the origin is both in P and Q. Let a, b ∈ R3 be unit vectors normal to P and

Q respectively. Suppose P 6= Q so that a 6= b. Then the span of a and b is a Euclidean

plane orthogonal to both P and Q. Hence RP , RQ and RPRQ leave span{a, b} invariant.

If P ′ is another Euclidean plane containing P ∩Q, then RP ′ , RP ′RPRQ and RPRQRP ′



26

also leave span{a, b} invariant. The action of reflections across planes containing P ∩Q

is therefore completely determined by reflections across Euclidean lines in span{a, b}.

As a result, the stabilizer of a point of S2 in O(3) is isomorphic to O(2).

Consider R2 and the reflections across Euclidean lines through the origin. The

formula for reflections in Rn still works so if a is a unit vector normal to the line P ,

then

RP (x) = x+ 2(0− a · x)a

= x− 2(a · x)a.

By identifying R2 with C which has multiplication and complex conjugation, the formula

for RP can be simpler.

RP (x) = −a2x̄

Let Q be another Euclidean line through (0, 0) in R2. If b is a unit vector normal to Q,

then RPRQ can be expressed as

RPRQ = a2b̄2x.

Let P ′ be another Euclidean line through (0, 0) which has a unit normal vector c. Then,

RP ′RPRQ = −c2ā2b2x̄

= −(cāb)2x̄

RPRQRP ′ = a2b̄2(−c2x̄)

= −(ab̄c)2x̄.

Since cāb and ab̄c are both unit vectors, RP ′RPRQ and RPRQRP ′ are reflections across

the orthogonal complements of cāb and ab̄c respectively. Thus the composition of an

odd number of reflections across lines that meet at one point is another reflection

across another line that passes through the same point. By extension to R3, it is true

for reflections across planes meeting in a line. It can be extended further to reflections

in H4 except that reflections across spheres need to be investigated. However one does

not worry about them as any circle in R̂n can be mapped by a Möbius transformation

into a Euclidean line passing through the origin, and the following theorem can be used.
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Theorem 3.1.1 ([17, Theorem 4.7.1]). A Möbius transformation φ of R̂n is elliptic if

and only if φ is conjugate to an orthogonal transformation of the Euclidean space Rn.

Here, this theorem is used when n = 4. A Möbius transformation of R̂4 extends to

an isometry of H5 but the main idea is that the stabilizer of a point in H4 is isomorphic

to O(4).

Corollary 3.1.1. The composition of an odd number of reflections across hyperplanes

in H4 intersecting in a common plane P is also a reflection across a hyperplane that

contain P .

Definition 4. A type I elliptic isometry of H4 is a composition of two reflections across

distinct hyperplanes that intersect in a plane.

Let ρ = RhRh′ for some distinct hyperplanes h, h′ ∈ H4 that intersect in a plane P .

Then P is fixed pointwise by ρ. Since h 6= h′, ρ does not fix any point outside of P .

Thus the fixed point set of ρ forms a plane.

Definition 5. Let ρ be a type I elliptic isometry of H4. The twisting plane of ρ is the

set of fixed points of ρ in H4.

Remark 3.1.1. In [2,16], it is called axial plane. However axial planes are defined only

for a type I elliptic isometry. Here, twisting planes are defined also for pure loxodromic

and screw parabolic.

Definition 6. Let ρ be a type I elliptic isometry of H4 with a twisting plane P . The

(elliptic) permuted pencil of ρ is the set

Fρ =
{
∂h ⊂ ∂H4 : h is a hyperplane containing P

}
.

The elements of Fρ fill up ∂H4 and the hyperplanes they bound fill up H4.

Theorem 3.1.2. Let ρ be a type I elliptic isometry of H4 with twisting plane P . Then

for each x ∈
(
∂H4

)
\ (∂P ), there is a unique tx ∈ Fρ such that x ∈ tx.

Proof. There is a Möbius transformation g of R̂4 so that gρg−1 ∈ O(4). Since ρ is

orientation preserving, gρg−1 ∈ SO(4). By precomposition, we may assume that g
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sends P to a plane bounded by ∞ and 0. Then gρg−1 ∈ SO(3) that fixes g(∂P )

pointwise. Since x /∈ ∂P , g(x) /∈ g(∂P ) there is a unique Euclidean plane Px spanned

by g(x) and g(∂P ). Then g−1(Px) contains ∂P so g−1(Px) ∈ Fρ.

Corollary 3.1.2. Let ρ be a type I elliptic isometry of H4 with a twisting plane P . Then

for each x ∈ H4 \ P there is a unique hyperplane hx containing x such that ∂hx ∈ Fρ

Proof. There is a line ` connecting x and HP (x). It is orthogonal to P through a point

since HP leaves ` invariant. Then P ∪ ` spans a unique hyperplane hx. Since P ⊂ hx,

∂hx ∈ Fρ.

Definition 7. Let ρ be a type I elliptic isometry of H4 with a twisting plane P . The

(elliptic) invariant pencil of ρ is the set

Tρ =
{
∂h ⊂ ∂H4 : h is a hyperplane orthogonal to P

}
.

Definition 8. Let ρ be a type I elliptic isometry of H4 with a twisting plane P . The

dual pencil of ρ is the set

Dρ =
{
∂Q ⊂ ∂H4 : Q is a plane orthogonally intersecting

P in a unique point} .

The set Fρ serves as a source for reflection factoring of ρ. If s is a sphere in ∂H4, let

Rs denote the reflection across the hyperplane bounded by s. Likewise, if c is a circle

in ∂H4, Hc denotes the half-turn about the plane bounded by c.

Definition 9. Let s be a sphere in ∂H4. The reflection across the hyperplane bounded

by s is denoted Rs. If c is a circle in ∂H4, the half-turn about the plane bounded by c

is denoted Hc.

Theorem 3.1.3. Let ρ be a type I elliptic isometry of H4. Then for every h ∈ Fρ,

there exist h1, h2 ∈ Fρ such that ρ = Rh1Rh and ρ = RhRh2.

Proof. If ρ is type I elliptic, there are hyperplanes P and P ′ such that ρ = RPRP ′ . Then

P ∩P ′ must be the twisting plane of ρ since otherwise ρ would fix two different planes.
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It follows that ρRh = RPRP ′Rh and Rhρ = RhRPRP ′ are both reflections across some

hyperplanes h1 and h2 respectively such that P ∩ P ′ ⊂ h, h′. Then ∂h1, ∂h2 ∈ Fρ and

ρRh = Rh1 Rhρ = Rh2 .

They imply that

ρ = Rh1Rh ρ = RhRh2 .

3.1.1 Properties of the invariant pencil

Let ρ be a type I elliptic isometry.

1. For each t ∈ Tρ, ρ(t) = t and t is orthogonal to each s ∈ Fρ.

2. If t, u ∈ Tρ such that u ∩ t has more than one point but u 6= t, then u ∩ t ∈ Dρ.

3. If a sphere s ⊂ R̂3 contains some c ∈ Dρ, then s ∈ Tρ.

4. For each d ∈ Dρ, there are t, u ∈ Tρ such that d = t ∩ u.

5. For each pair p, q ∈ Dρ with p 6= q, there is a unique t ∈ Tρ containing p ∪ q.

Definition 10. Let ρ be a type I elliptic isometry of H4. The half-turn bank of ρ is

the set

Kρ =
{
s ∩ t ⊂ ∂H4 : s ∈ Fρ and t ∈ Tρ

}
.

The half-turn bank of the identity map of H4 is the set Kid consisting of all 2-planes

in H4.

Recall that if two planes P andQ intersect in a line `, P∪Q form a unique hyperplane

h in H4. If for each x ∈ ` the line `Px ⊂ P perpendicular to ` through x and the line

`Qx ⊂ Q perpendicular to ` through x are perpendicular (i.e. `Px ⊥ `, `Qx ⊥ ` and

`Px ⊥ `Qx ), then P and Q are called orthogonal through `. Alternatively, if (spanP )L

and (spanQ)L are Lorentz orthogonal in h, then P and Q are orthogonal in H4.
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Theorem 3.1.4. Let ρ be a type I elliptic isometry of H4 with twisting plane P . Then

Q is a plane orthogonal to P through a line if and only if ∂Q ∈ Kρ.

Proof. If Q intersects P in a line `, P ∪ Q forms a unique hyperplane h. There is a

hyperplane t orthogonal to h through Q. Then P is orthogonal to t through ` since

P ⊂ h. It follows that ∂t ∈ Tρ and ∂h ∈ Fρ. Since Q = t ∩ h, ∂Q ∈ Kρ.

Conversely if ∂Q ∈ Kρ, let h ∈ Fρ and t ∈ Tρ such that ∂Q = h ∩ t. Let ĥ and t̂ be

the hyperplane bounded by h and t respectively. The hyperplane t̂ and the plane P are

orthogonal through a line. Then (∂P ) ∩ t is a set of two points contained in ∂Q since

∂P ⊂ h. Both P and Q are planes in the hyperplane bounded by h; they intersect in

the line P ∩ t̂. Since t̂ is orthogonal to P and Q ⊂ ĥ, then P and Q are orthogonal

through the line P ∩ t̂.

Theorem 3.1.5. Let ρ be a type I elliptic isometry of H4. Then for each k ∈ Kρ, there

exist k1, k2 ∈ Kρ such that ρ = Hk1Hk = HkHk2.

Proof. If k ∈ Kρ, there are s ∈ Fρ and t ∈ Tρ such that k = s ∩ t. Then there are

s1, s2 ∈ Fρ such that ρ = Rs1Rs = RsRs2 . Let k1 = s1 ∩ t and k2 = s2 ∩ t. Since s, s1

and s2 are orthogonal to t, Hk1 = Rs1Rt = RtRs1 and Hk2 = Rs2Rt = RtRs2 . Then,

ρ = Rs1Rs ρ = RsRs2

= Rs1RtRtRs = RsRtRtRs2

= Hk1Hk = HkHk2 .

3.1.2 Miscellaneous Elliptic Results

Let ρ1 = Rh11Rh12 and ρ2 = Rh21Rh22 be type I elliptic isometries so that h11 ∩ h12

and h21 ∩ h22 are orthogonal planes intersecting in a unique point x. Then both ρ1

and ρ2 leave h11 ∩ h12 and h21 ∩ h22 invariant. The composition ρ1ρ2 also leaves them

invariant, but it can be shown that it fixes only x (See Lemma 3.6.4). Hence ρ1ρ2 is an

elliptic isometry fixing only x.
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Definition 11. An elliptic isometry ρ of H4 is called of type II if ρ fixes a unique point

in H4.

A type II elliptic isometry can be orientation reversing and hence can not be ex-

pressed as a composition of two type I elliptic isometries. However, it can be shown that

an orientation preserving type II elliptic isometry is a composition of two commuting

type I elliptic isometries whose twisting planes intersect orthogonally in the fixed point.

In order to prove it, we give definitions and theorems about maximal tori of GLnR.

The next two definitions and two theorems can be found in a book [18] of Kristoffer

Tapp.

Definition 12 ([18, Definition 9.7]). Let Γ be a subgroup of GLnR. A torus in Γ is a

subgroup of Γ that is isomorphic to a torus group Rk/Zk for some k ≤ n. A torus in Γ

is maximal if it is not contained in a higher dimensional torus in Γ.

Definition 13. The standard maximal torus of SO(4) is

MSO(4) =





cosα − sinα 0 0

sinα cosα 0 0

0 0 cosβ − sinβ

0 0 sinβ cosβ


: α, β ∈ [0, 2π)


.

Theorem 3.1.6 ([18, Theorem 9.7]). The defined MSO(4) above is a maximal torus of

SO(4).

Theorem 3.1.7 ([18, Theorem 9.18]). For each ρ ∈ SO(4), there exists g ∈ SO(4) such

that gρg−1 ∈MSO(4).

This theorem shows that for each ρ ∈ SO(4), there is an unordered pair of angles α

and β associated to ρ. These angles identify 2-dimensional planes that are left invariant

by ρ. If one of them, say α, is not an integer multiple of π, then the plane Pα associated

to α has no lines left invariant by ρ. Then the orthogonal complement of Pα is the plane

Pβ associated to β. Although β can be an integer multiple of π, the plane Pβ is uniquely

identified by α. Hence, if either α or β is not an integer multiple of π, there are unique

unordered pair of planes Pα and Pβ that is left invariant by ρ.
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If α is an integer multiple of 2π but β is an odd multiple of π, then planes Pα and

Pβ can still be associated to α and β canonically. Furthermore, Pα is fixed pointwise by

ρ and is its corresponding twisting plane, which is a canonical choice for an invariant

plane of ρ. There are other planes left invariant by ρ but ρ reverses their orientation.

If both α and β are odd multiples of π, then ρ is an involution with four linearly

independent eigenvectors. The span of any two linearly independent vectors is rotated

and left invariant by ρ. Thus the angles α and β do not determine a canonical pair of

orthogonal planes left invariant by ρ. This can happen if and only if ρ is conjugate to

a diagonal matrix with −1 in its entries.

In summary, a ρ ∈ SO(4) either has associated pairs of angles and planes or is an

involution. Going back to hyperbolic geometry, a type II elliptic isometry either has a

canonical pair of invariant planes or reflects every line passing through its fixed point

into opposite direction. Then an orientation preserving type II elliptic isometry can be

classified further into those with canonical pair of invariant planes and those that are

involutions.

Corollary 3.1.3. If ρ is an orientation preserving type II elliptic isometry of H4 with

fixed point x and an associated angle that is not an integer multiple of π, then there are

unique planes up to order P1, P2 ⊂ H4 orthogonally intersecting at the single point x

and a unique pair up to order of type I elliptic isometries ρ1, ρ2 with respective twisting

planes P1, P2 such that ρ = ρ1ρ2.

Proof. Using Theorem 3.1.1, there is a Möbius transformation s of R̂4 that conjugates ρ

into an orthogonal 4× 4 matrix with s(0, 0, 0, 0) = x. Since ρ is orientation preserving,

sρs−1 ∈ SO(4). By a theorem of Tapp, it is further conjugate to an element

ραβ =



cosα − sinα 0 0

sinα cosα 0 0

0 0 cosβ − sinβ

0 0 sinβ cosβ


of MSO(4) via an element g ∈ SO(4). Since ρ fixes only one point, neither α nor β is an
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integer multiple of 2π. Let ρα and ρβ be defined as follows.

ρα =



cosα − sinα 0 0

sinα cosα 0 0

0 0 1 0

0 0 0 1


ρβ =



1 0 0 0

0 1 0 0

0 0 cosβ − sinβ

0 0 sinβ cosβ


Then ρα and ρβ are rotations about orthogonal planes Pα and Pβ respectively inter-

secting in the origin. Since they fix their respective planes pointwise, they are products

of reflections across 3-dimensional subspaces. Define ρ1, ρ2, P1 and P2 as follows.

ρ1 = g−1s−1ραsg ρ2 = g−1s−1ρβsg

P1 = g−1s−1(Pα) P2 = g−1s−1(Pβ)

Then ρ1 and ρ2 are type I elliptic isometries and ρ = ρ1ρ2. Suppose α is not an integer

multiple of π. Then the choice of P1 is unique to ρ. The orthogonal complement of

P1 through x is also unique and is equal to P2. Hence P1 and P2 are the canonical

invariant planes of ρ.

Definition 14. Let ρ = ρ1ρ2 be an orientation preserving type II elliptic isometry of

H4 with an associated angle not an integer multiple of π so that ρ1 and ρ2 are the unique

type I elliptic elements whose twisting planes intersect orthogonally in the fixed point.

The half-turn bank of ρ is the set

Kρ =
{
s ∩ t ⊂ ∂H4 : s ∈ Fρ1 and t ∈ Fρ2

}
.

Definition 15. Let ρ be an orientation preserving type II elliptic isometry of H4 such

that ρ2 is the identity map. The half-turn bank of ρ is the set

Kρ =
{
P ⊂ ∂H4 : P is a plane containing x

}
.

Corollary 3.1.4. Let ρ be an orientation preserving type II elliptic isometry of H4.

Then for each k ∈ Kρ, there are k1, k2 ∈ Kρ such that ρ = Hk1Hk = HkHk2.

Proof. Suppose first that ρ is an involution with fixed point x. Then there is a unique

plane k1 orthogonal to k through only x. Since k1 and k are orthogonal, they are left
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invariant by both Hk and Hk1 . The action of these half-turns on k ∪ k1 is therefore

an involution and so do HkHk1 and Hk1Hk. The compositions Hk1Hk and HkHk1 are

conjugate to elements of SO(4) where x correspond to the origin and (k, k1) is a pair of

orthogonal discs that can contain a basis for R4. An element x ∈ B4 = H4 outside k∪k1

can be expressed as a linear combination of this basis, so
(
Hk1Hk

)2
and

(
HkHk1

)2
map

x back to itself (See Corollary 3.6.1).

As matrices in SO(4), Hk1 , Hk and ρ are involutions with inverses equal to their

transpose. They are thus diagonalizable with −1 entries since they all fix x (See Lemma

3.6.4). Therefore ρ, Hk1Hk and HkHk1 are equal isometries.

Suppose next that ρ has an associated angle not an integer multiple of π. Then there

are unique type I elliptic elements ρ1 and ρ2 whose twisting planes are left invariant

by ρ. If k ∈ Kρ, there are h1 ∈ Fρ1 and h2 ∈ Fρ2 such that k = h1 ∩ h2. Then

there are h11, h12 ∈ Fρ1 and h21, h22 ∈ Fρ2 such that ρ1 = Rh11Rh1 = Rh1Rh12 and

ρ2 = Rh21Rh2 = Rh2Rh22 . Let P1 and P2 be the twisting planes of ρ1 and ρ2 respectively.

Since P1 and P2 are orthogonal in a unique point, ∂P2 ∈ Dρ1 and ∂P1 ∈ Dρ2 . Then h1,

h11 and h12 are orthogonal to ∂P2 since they contain ∂P1. It follows that h1, h11, h12 ∈

Tρ2 and similarly, h2, h21, h22 ∈ Tρ1 . Each sphere of {h1, h11, h12} is orthogonal to every

sphere of {h2, h21, h22}. The following relations hold.

Rh1Rh21 = Rh21Rh1 Hk = Rh2Rh1

Rh2Rh12 = Rh12Rh2 Hk = Rh1Rh2

Let k1 = h11 ∩ h21 and k2 = h12 ∩ h22 so that Hk1 = Rh11Rh21 and Hk2 = Rh12Rh22 .

The desired conclusion can be computed as follows.

ρ1ρ2 = Rh11Rh1Rh21Rh2 ρ1ρ2 = Rh1Rh12Rh2Rh22

= Rh11Rh21Rh1Rh2 = Rh1Rh2Rh12Rh22

= Hk1Hk = HkHk2

Since h11, h12 ∈ Fρ1 and h21, h22 ∈ Fρ2 , k1, k2 ∈ Kρ.
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3.2 Pure hyperbolic

Let δ be a pure hyperbolic isometry of H4. It fixes two points a1, a2 ∈ ∂H4 which bound

a unique line L. The image of L under δ is also L so it is the unique line that is left

invariant of δ. Define L as the axis of δ. For each x ∈ L, there is a unique hyperplane

hx orthogonal to L through x. If y ∈ L is not equal to x ∈ L, hx and hy are disjoint and

the minimum distance between them is equal to the distance between x and y. Since

δ preserves angles, δ sends hx to hδ(x) for every x ∈ L. The action of δ extends to ∂H4

so ∂hx ∩ ∂hδ(x) = ∅ for all x ∈ L.

The following results help in simplifying the succeeding theorems.

Theorem 3.2.1 ([17, Theorem 4.7.5]). An isometry φ of H4 is hyperbolic if and only

if φ is conjugate in IsomHn to an isometry of the form ψ(x) = kAx where k > 1 and

A is an orthogonal transformation of Rn−1.

Corollary 3.2.1. A pure hyperbolic isometry of H4 is conjugate in IsomH4 to an isom-

etry of the form ψ(x) = kx where k > 1.

Definition 16. Let γ be a hyperbolic isometry of H4 with axis L. The permuted pencil

Fγ of γ is the set

Fγ =
{
∂hx ⊂ ∂H4 : x ∈ L and hx is the orthogonal

complement of L through x} .

For example, define δ : H4 → H4 given by

(x1, x2, x3, t) 7→ (λx1, λx2, λx3, λt)

for a positive λ not equal to 1. The extension δ̂ of δ to ∂H4 is expressed as follows.

δ̂(x1, x2, x3, 0) = (λx1, λx2, λx3, 0)

δ̂(∞) =∞

Then δ does not fix any point in H4, but δ̂ fixes only the points (0, 0, 0, 0) and ∞. The

axis of δ is

L =
{

(0, 0, 0, t) ∈ R4 : t > 0
}
.
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For each (0, 0, 0, t) ∈ L, the orthogonal complement of L through (0, 0, 0, t) is

ht =
{

(x1, x2, x3, u) ∈ R4 : x21 + x22 + x23 + u2 = t2
}
.

To show that δ is pure hyperbolic, one must express δ as a composition of two

reflections. Consider the reflections across h1 and h√t. Define σ1 and σ2 as follows.

σ1(x) =
λ

‖x‖2
x σ2(x) =

1

‖x‖2
x

Then σ2 is the reflection across h1, and σ1 is the reflection across h√λ. The compo-

sition σ1 ◦ σ2 simplifies to the formula of δ.

σ1 ◦ σ2 =
λ

‖σ2(x)‖2
σ2(x)

=
λ∥∥∥ 1

‖x‖2x
∥∥∥2
(

1

‖x‖2
x

)

= λx

= δ(x)

Notice that the hyperplanes in which reflection-factoring of δ are bounded by ele-

ments of Fδ. Moreover, Fδ serves as a reflection bank for factoring δ. The following

theorem states it more precisely.

If h is a hyperplane, let Rh be the reflection across h. By abuse of notation, let R∂h

be equal to Rh.

Theorem 3.2.2. Let δ be pure hyperbolic isometry of H4. Then for every h ∈ Fδ, there

exist h1, h2 ∈ Fδ such that δ = Rh1Rh and δ = RhRh2.

Proof. Let L be the axis of δ and x be the intersection of h and L. The midpoint m1

of x and δ(x) must be along L. Then there is a hyperplane bounded by h1 ∈ Fδ that

intersects L through m1. We must show δ = Rh1Rh. The common orthogonal line

between h1 and h is L so δ and Rh1Rh have the same axis. Since δ is pure hyperbolic,

it is enough to show that Rh1Rh sends x to δ(x) since δ is conjugate to a Möbius map

of the form x 7→ λx, (λ > 0).

Rh1 ◦Rh(x) = Rh1(x)

= δ(x)
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Let ĥ be the hyperplane bounded by h. By construction, x ∈ ĥ so Rh fixes it. Since L

is orthogonal to ĥ, Rh(x) ∈ L. The midpoint between Rh1(x) and x is m1 ∈ h1 ∩ L. It

follows that δ(x) = Rh1(x) since they both sit in L.

There is also a hyperplane bounded by h2 ∈ Fδ that intersects L through Rh(m1).

Then the composition RhRh2 sends x to δ(x) since x is the midpoint between m1 and

Rh(m1). Similarly, δ = RhRh2 .

It is important to note that the elements of Fδ fill up most of ∂H4. Moreover, the

hyperplanes bounded by them fill up H4.

Theorem 3.2.3. Let γ be a hyperbolic isometry of H4 with fixed points v, w ∈ ∂H4.

Then for each x ∈ ∂H4 \ {v, w}, there is a unique hx ∈ Fγ containing x.

Proof. If x is neither v nor w, there is a unique line L perpendicular to the axis of γ

and bounded by x. Let p be the intersection point of L with the axis of γ. There is

a unique hx ∈ Fγ that bounds a hyperplane hp containing p. Then L ⊂ hp since it

is orthogonal to the axis of γ. Consequently, x ∈ hx for it bounds L. If there were

two elements h, g ∈ Fγ containing x, the hyperplanes they bound would be tangent

or equal. The former case would contradict that the hyperplanes bounded by g and h

have the axis as their common perpendicular line.

Corollary 3.2.2. Let γ be a hyperbolic isometry of H4 with axis L. Then,

H4 =
⋃
x∈L

hx

where hx is the hyperplane bounded by sx ∈ Fγ and containing x.

Proof. Let p be a point in H4. If p ∈ L, there is a unique hyperplane hp orthogonal to

L through p. The boundary of hp at infinity is an element of Fγ . If p /∈ L, there is a

unique line Lp perpendicular to L through p. The intersection point pr ∈ Lp ∩L and p

are contained in the hyperplane hpr that is orthogonal to L through pr. The boundary

of hpr at infinity is in Fγ .
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Going back to the previous example, let δ be a pure hyperbolic isometry of H4

defined by

δ(x1, x2, x3, t) = (λx1, λx2, λx3, λt)

where λ is a positive real number not equal to 1. The axis is L = {(0, 0, 0, t) ∈ R4 : t >

0}. Recall that if (0, 0, 0, t) ∈ L, the orthogonal complement of L through (0, 0, 0, t) is

ht =
{

(x1, x2, x3, u) ∈ R4 : x21 + x22 + x23 + u2 = t2
}
.

The boundary of ht at infinity is st defined by

st =
{

(x1, x2, x3, 0) ∈ R4 : x21 + x22 + x23 = t2
}
.

Hence, Fδ is parametrized by positive real numbers.

For the moment, concentrate on the boundary of H4 at infinity. Identify the sub-

plane {(x1, x2, x3, 0) : x1, x2, x3 ∈ R} of R4 with R3 so that the boundary of H4 is also

identified with R̂3 = R3 ∪ {∞}.

Consider the Euclidean lines through 0 ∈ R3 ⊂ R̂3. They contain the radii of every

st ∈ Fδ so they are orthogonal to every st. If ` is a Euclidean line through 0, it intersects

each st in two points v,−v ∈ ` where v is one of the two points in ` with Euclidean

norm equal to t. By adjoining ∞ to `, ` ∪ {∞} forms a circle that bound a plane P`

in H4. This plane contains the axis L of δ since ` passes through 0. Let ht be the

hyperplane bounded by st. Then ht ∩P` is a line bounded by v and −v. Hence, ht and

P` intersect orthogonally through a line.

Definition 17. Let γ be a hyperbolic isometry of H4 with axis L. The dual pencil of δ

or pencil dual to Fγ is the set

Dγ =
{
∂P ⊂ R̂3 : P is a plane containing L

}
.

Similar to Fγ , the elements of Dγ fill up R̂3 and the planes they bound fill up H4.

Theorem 3.2.4. Let γ be a hyperbolic isometry of H4 with fixed points v, w ∈ R̂3.

Then for each x ∈ R̂3 \ {v, w}, there is a unique px ∈ Dγ containing x.
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Proof. Let L be the axis of γ. Since x does not bound L, there is a unique line `x

perpendicular to L and bounded by x. Both L and `x are contained in a unique plane

Px. Let px be the boundary of Px at infinity. Then px ∈ Dγ . Since `x ⊂ Px and x

bounds `x, x ∈ px. If there were another m ∈ Dγ containing x, then x, v and w would

uniquely determine m so m = px.

Corollary 3.2.3. Let γ be a hyperbolic isometry of H4 with axis L. Then for each

x ∈ H4 \ L, there is a unique px ∈ Dγ such that the plane bounded by px contains x.

Proof. If x /∈ L, there is a unique line `x perpendicular to L through x. There is a

unique plane Px containing L and `x. The boundary px of Px is therefore an element

of Dγ . It is unique since `x and Px are unique.

Combining a pair of distinct elements of Dγ forms a sphere in R̂3. In the example

where δ sends (x1, x2, x3, t) to (λx1, λx2, λx3, λt), the elements of Dδ are exactly the

Euclidean lines through the origin. Any two distinct elements of Dδ span a Euclidean

plane. Let P be a Euclidean plane in R̂3 through the origin. The image of P under

δ is itself so δ leaves the hyperplane bounded by P invariant. For each s ∈ Fδ, s is

orthogonal to P through the circle s∩P . It is interesting to collect the spheres P ⊂ R̂3

containing the fixed points of δ.

Definition 18. Let δ be a pure hyperbolic isometry of H4 with axis L. The invariant

pencil of δ is the set

Tδ =
{
∂t ⊂ R̂3 : t is a hyperplane containing L

}
.

It follows that any sphere in R̂3 containing the fixed points of δ is an element of

Tδ. Any hyperbolic isometry γ has both Fγ and Dγ ; hence it is possible to define a Tγ .

However, γ does not necessarily leave every element of Tγ invariant.

3.2.1 Properties of the invariant pencil

Let δ be a pure hyperbolic isometry fixing v and w in R̂3.

1. For each t ∈ Tδ, δ(t) = t and t is orthogonal to each s ∈ Fδ.
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2. If t, u ∈ Tδ with u 6= t, then u ∩ t ∈ Dδ.

3. If a sphere s ⊂ R̂3 contains some c ∈ Dδ, then s ∈ Tδ.

4. For each pair p, q ∈ Dδ with p 6= q, there is a unique t ∈ Tδ containing p ∪ q.

5. For each d ∈ Dδ, there are t, u ∈ Tδ such that d = t ∩ u.

Also interesting to collect are the intersections of elements of Fδ with those of Tδ.

Definition 19. Let δ be a pure hyperbolic isometry of H4. The half-turn bank of δ is

the set

Kδ =
{
s ∩ t ⊂ R̂3 : s ∈ Fδ and t ∈ Tδ

}
.

Theorem 3.2.5. Let δ be a pure hyperbolic isometry of H4 with axis L. Then P is a

plane orthogonal to L if and only if ∂P ∈ Kδ.

Proof. Suppose P is a plane orthogonal to L. Let b be the intersection point of P

and L. There are orthogonal lines vP , wP ⊂ P through b. Let y be the unique line

orthogonal to vP , wP and L through b. There is a unique hyperplane hb orthogonal to

L through b. Then y ⊂ hb. Let t̂ be the unique hyperplane spanned by y, wP and vP .

Then hb ∩ t̂ = P since wP , vP ⊂ hb ∩ t̂. Let t = ∂t̂ and s = ∂hb. Then t∩ s = ∂P . Since

hb is orthogonal to L, s ∈ Fδ. Similarly, the fact that t̂ contains L implies that t ∈ Tδ.

Conversely if ∂P ∈ Kδ, there are h ∈ Fδ and t ∈ Tδ such that ∂P = h ∩ t. Let

ĥ and t̂ be the hyperplanes bounded by h and t respectively. Then ĥ is orthogonal to

L through a point x. Since t̂ contains L and P , then x ∈ L ∩ P . As a subset of ĥ

containing x, P is orthogonal to L.

Theorem 3.2.6. Let δ be a pure hyperbolic isometry of H4. Then for each k ∈ Kδ,

there exist k1, k2 ∈ Kδ such that δ = Hk1Hk = HkHk2.

Proof. If k ∈ Kδ, there are s ∈ Fδ and t ∈ Tδ such that k = s ∩ t. Then there are

s1, s2 ∈ Fδ such that δ = Rs1Rs = RsRs2 . Let k1 = s1 ∩ t and k2 = s2 ∩ t. Since s, s1
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and s2 are orthogonal to t, Hk1 = Rs1Rt = RtRs1 and Hk2 = Rs2Rt = RtRs2 . Then,

δ = Rs1Rs δ = RsRs2

= Rs1RtRtRs = RsRtRtRs2

= Hk1Hk = HkHk2 .

3.3 Pure parabolic

A pure parabolic isometry τ of H4 is a composition of exactly two reflections across

spheres that are tangent to a unique point. One way to locate the invariant planes and

hyperplanes of τ is to study the properties of a reflection. Henceforth, the boundary of

H4 at infinity is identified with R̂3 using the upper-half space model.

A hyperplane P bounded by a Euclidean plane can be defined using a point b ∈ R3

with Euclidean norm 1 and a real number t, so that

P =
{
x ∈ H4 : b · x = t

}
.

Then the reflection RP across P is given by the formula

RP (x) = x+ 2(t− b · x)b.

Using the same formula, RP extends to R̂4 with RP (∞) = ∞ and ∂P is a Euclidean

plane fixed pointwise by RP . Consider a Euclidean line ` ⊂ R3 orthogonal to ∂P . Since

RP is a conformal map of R̂3 fixing a point of `, RP (`) is equal to `.

If a hyperplane S is bounded by a sphere, it can be uniquely defined using a point

a ∈ R3 and a radius r > 0 so that

S =
{
x ∈ H4 : ‖x− a‖ = r

}
.

the reflection RS across S is given by the formula

RS(x) = a+
r2

‖x− a‖2
(x− a).

It also extends to R̂4, with the same formula and still switching a and ∞.
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A Euclidean line L ⊂ R3 passing through a is orthogonal to S and is left invariant

by RS .

Let P and Q be Euclidean planes in R3. If P and Q are not parallel, they meet in

a Euclidean line that has more than one point. Otherwise, there is a unique Euclidean

line ` orthogonal to P and Q passing through the origin. The composition RPRQ

then leaves ` invariant and is a pure parabolic isometry of H4 fixing ∞. Not all pure

parabolic isometries fixing ∞ leave ` invariant so ` has a valuable information about

RPRQ. Specifically, there are λ > 0 and b ∈ ` such that ‖b‖ = 1 and

RPRQ(x) = x+ λb for all x ∈ H4 ∪ R̂3.

This formula can be verified by computing the composition RPRQ directly. The planes

P and Q uniquely determine λ and b but b can be determined solely by RPRQ since the

computation of RPRQ recorded the common normal vector of P and Q without their

exact locations.

Lemma 3.3.1. Let τ be a pure parabolic isometry of H4 fixing ∞ of R̂3. Then there

is a unit vector b ∈ R3 such that the Euclidean span of b is left invariant by τ . It is

unique up to taking signs.

Let S be a sphere in R3 centered at a. If T is another sphere of Euclidean plane in

R3 tangent to a point c in S, then the composition RSRT is a pure parabolic isometry

fixing c. There is a unique Euclidean line L connecting c to a. If T is also a sphere, L

passes through the center of T as well. Therefore L is orthogonal to both S and T . It

follows that RSRT leave L ∪ {∞} invariant.

If RSRT can be expressed as another composition RS′RT ′ , S
′∩T ′ must contain only

c. Both spheres or planes S′ and T ′ must be orthogonal to L through c. Otherwise,

there would be another Euclidean line L′ such that RSRT leave L′∪{∞} invariant. This

implies that RSRT (∞) are both in L and L′. But L ∩ L′ = {c} so RSRT (∞) = c con-

tradicts the assumption that RSRT fixes c. Thus, the construction of L is independent

of S or T and it depends only on the pure parabolic isometry RSRT .

Definition 20. Let τ be a pure parabolic isometry of H4 with fixed point v ∈ R̂3. Then
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the direction of τ is the Euclidean line

Lτ =


span{τ(0)} if v =∞

{λbτ + v : λ ∈ R} if v 6=∞

where

bτ =
1

‖τ(∞)− v‖
(
τ(∞)− v

)
.

The direction Lτ of τ , by construction, is left invariant by τ . If v is the fixed point

of τ and S is a sphere in R̂3 orthogonal to Lτ through v, then τ(S) is also a sphere in

R̂3 that is orthogonal to Lτ through v. It is interesting to collect such a sphere.

Definition 21. Let τ be pure parabolic isometry of H4 with fixed point v ∈ R̂3 and

direction Lτ . The (parabolic) permuted pencil of τ is the set

Fτ =
{
S ⊂ R̂3 : S is a sphere orthogonal to Lτ through v

}
.

If v = ∞, Fτ consists of parallel Euclidean planes orthogonal to Lτ . For each

s ∈ Fτ , s ∩ Lτ has two points; one of which is v. Since τ is parabolic, τ(s) 6= s and

τ(s) ∩ s = {v}. Similar to that of a pure hyperbolic isometry, the permuted pencils of

τ serves as a reflection bank for factoring τ .

Theorem 3.3.1. Let τ be a pure parabolic isometry of H4. Then for each h ∈ Fτ there

exist h1, h2 ∈ Fτ such that

τ = Rh1Rh = RhRh2 .

Proof. Suppose ∞ is the fixed point of τ . Then τ has a simple formula x 7→ x + b

by computing two reflections across parallel Euclidean planes. The point b ∈ R3 is in

the direction Lτ of τ by definition. There is a λ ∈ R such that λb is the intersection

of h and Lτ . Then there are also h1, h2 ∈ Fτ passing through (λ + 1
2)b and (λ − 1

2)b

respectively. Computing the compositions Rh1Rh and RhRh2 yield to a map that sends

x to x+ b.

If τ fixes v ∈ R3, it does not have a nice formula but still leaves Lτ ∪{∞} invariant.

Let bτ be the point in Lτ with ‖bτ − v‖ = 1 in the side of τ(∞). Specifically, bτ is the

same point defined previously. Then there is an affine homeomorphism R↔ Lτ so that
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each point in Lτ can be expressed as λbτ + v for some λ ∈ R. Since τ is pure parabolic,

the composition λ 7→ (λbτ + v) 7→ τ(λbτ + v) has a nice formula.

λ 7→ ‖τ(∞)− v‖λ
λ+ ‖τ(∞)− v‖

bτ + v

The coefficient of bτ can be extended to a Möbius map of R̂.

If h ∈ Fτ , it intersects Lτ through v and another point that can be expressed as

2λhbτ + v, unless h is a Euclidean plane. Suppose first that h is a sphere. Then the

reflection Rh across h sends a point λbτ + v ∈ Lτ to

λhλ

λ− λh
bτ + v.

Let h1 be the sphere centered at ‖τ(∞)−v‖λh
‖τ(∞)−v‖+λh bτ + v with radius equal to its center’s

distance to v. If this center is undefined, let h1 be the Euclidean orthogonal complement

of Lτ in R3. Let h2 be the sphere centered at ‖τ(∞)−v‖λh
‖τ(∞)−v‖−λh bτ + v with radius radius

equal to its distance to v. If λh = ‖τ(∞) − v‖, let h2 be the Euclidean plane in R3

orthogonal to Lτ at v. Then both Rh1Rh and RhRh2 have the same action on Lτ ∪{∞}

as τ . It follows that τ = Rh1Rh = RhRh2 since their formulas are equal.

If h is a Euclidean plane, let h1 be the sphere centered at ‖τ(∞)−v‖ with the same

radius and let h2 be the sphere centered at −‖τ(∞)−v‖ with the same radius as that of

h1. Then both Rh1Rh and RhRh2 are equal to τ since their formulas are also equal.

Remark 3.3.1. The coefficient of bτ is a parabolic element of PSL2R that fixes 0. It

is well known that elements of PSL2R can be factored into reflections across intervals.

Hence the details of the computations above are omitted.

The next theorem shows that the elements of Fτ fill up R̂3. Thus the hyperplanes

they bound fill up H4.

Theorem 3.3.2. Let τ be a pure parabolic isometry of H4 with fixed point v ∈ R̂3.

Then for each x ∈ R̂3 \ {v} there is a unique hx ∈ Fτ containing x.

Proof. Let Lτ be the direction of τ . If v =∞, pick a unit vector bτ in Lτ . The Euclidean

plane Px = {y ∈ R3 : y · bτ = bτ · x} ⊂ R3 is orthogonal to Lτ . Then Px ∪ {∞} ∈ Fτ .

It is unique as Px is the only plane that passes through (bτ · x)bτ ∈ Lτ .
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If v 6= ∞, the point in cx ∈ Lτ Euclidean-equidistant to x and v can be solved

uniquely using Euclidean geometry.

cx =
‖v − x‖2

4bτ · (x− v)
bτ + v

Then the sphere in R3 centered at cx with radius ‖x− cx‖ is the unique element of Fτ

containing x.

Corollary 3.3.1. Let τ be a pure parabolic isometry of H4. Then for each x ∈ H4,

there is a unique hyperplane hx containing x such that ∂hx ∈ Fτ .

Proof. Using Poincaré extension, the arguments above work for H4. Let v be the fixed

point and Lτ be the direction of τ . Since x ∈ H4, x 6= v. Let

Px =
{
y ∈ R4 : y · bτ = x · bτ

}
∩H4

where bτ is a unit vector in the direction of τ . If v =∞, then ∂Px is orthogonal to Lτ so

∂Px ∈ Fτ . If v 6=∞ then either x is in the orthogonal complement Pv of Lτ through v

in R4 or one can find a cx ∈ Lτ so that ‖cx− v‖ = ‖cx−x‖. Since Lτ ⊂ R3×{0} ⊂ R4,

Pv∩H4 is a hyperplane and its boundary in R̂3 is an element of Fτ . If x /∈ Pv, the sphere

sx ⊂ R4 centered at cx is orthogonal to Lτ . Then sx ∩H4 is a hyperplane containing x

and its boundary in R̂3 is an element of Fτ .

Similar to a hyperbolic isometry, τ has a natural dual pencil. However the lack of

a second fixed point makes it a bit an obstacle to define its dual pencil. Intuitively, if

τ fixes ∞, the dual pencil consists of Euclidean lines in the visual boundary parallel

to its direction. If τ fixes a finite point, the dual pencil of τ are circles tangent to its

direction at v. Moreover the concepts of tangency and parallel lines must be defined.

Definition 22. Let τ be a pure parabolic isometry of H4 with fixed point v ∈ R̂3 and

direction Lτ . The farm of τ is the Euclidean plane Gτ ⊂ R3 × {0} orthogonal to Lτ

through the origin if v =∞ or through v if v 6=∞.

If Gτ is the farm of τ , then Gτ ∪ {∞} ∈ Fτ . It is used here only as an index for

defining the dual pencil.
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Definition 23. Let τ be a pure parabolic isometry of H4 with fixed point v and farm

Gτ . The dual pencil of τ is the set

Dτ =


{{
λτ(∞) + x : λ ∈ R

}
∪ {∞} : x ∈ Gτ

}
if v =∞

{cx : x ∈ Gτ} if v 6=∞

where cx is{
cos θ

2
(x− v) +

sin θ

2

‖v − x‖
‖τ(∞)− v‖

(
τ(∞)− v

)
+

1

2
(v + x)

}
θ∈[0,2π)

.

The elements of Dτ are orthogonal to Gτ . If v =∞, they are in the same direction

as τ(0) in a vector space manner. If v 6= ∞, then cx has a formula that can be

differentiated with respect to θ and one can see that the derivative at v, i.e. θ = −π, is

along Lτ . For each dx ∈ Dτ indexed by x ∈ Gτ , dx ∩Gτ = {v, x}.

Any two distinct elements of Dτ intersect only at v and form a unique sphere or

Euclidean plane. If v = ∞, distinct elements dx, dy ∈ Dτ intersecting Gτ at x and y

respectively form a Euclidean plane orthogonal to Gτ at the Euclidean line connecting

x and y. If v 6= ∞, dx ∈ Dτ paired with Lτ ∪ {∞} ∈ Dτ where x 6= v form a unique

Euclidean plane orthogonal to Gτ through the Euclidean line connecting v and x. If

dx, dy ∈ Dτ have x 6= y ∈ Gτ \ {v}, the points v, x and y form a unique circle that

extends to a unique sphere in R3 that is orthogonal to Gτ .

Similar to those of Fτ , the elements of Dτ fill up R̂3 and the planes they bound fill

up H4.

Theorem 3.3.3. Let τ be a pure parabolic isometry of H4 with fixed point v. Then,

for each x ∈ R̂3 \ {v} there is a unique dx ∈ Dτ that contain x.

Proof. Let Gτ be the farm of τ . If v =∞, there is a unique Euclidean line Lx orthogonal

to Gτ through x. Then Lx ∪ {∞} ∈ Dτ . If v 6= ∞, either x is in the direction Lτ

of τ which extends to a unique element Lτ ∪ {∞} ∈ Dτ or x is in a unique plane

Px containing {x} ∪ Lτ . Using Euclidean geometry, one can find the unique point

zx ∈ Gτ ∩Px equidistant to x and v. A circle cx can be formed in Px with center zx and

passing through v and x. Then cx ∈ Dτ . It is unique since zx and Px are unique.
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Corollary 3.3.2. Let τ be a pure parabolic isometry of H4. Then for each x ∈ H4,

there is a unique plane Px ⊂ H4 such that ∂Px ∈ Dτ .

Proof. Let v, Lτ and Gτ be the fixed point, direction and farm of τ respectively. If

x ∈ H4 then it projects to a unique x∞ ∈ R3 ⊂ ∂H4 by ignoring the last coordinate.

If x∞ ∈ Lτ , then Lτ ∪ {∞} bounds a plane containing x. If v = ∞, there is a unique

dx ∈ Dτ containing x∞. Then the plane bounded by dx contains x. If v 6= ∞, either

x∞ ∈ Lτ or not.

If x∞ /∈ Lτ , then x∞ can be further projected to Gτ by subtracting ‖τ(∞) −

v‖−1
(
τ(∞) − v

)
· (x∞ − v) from x∞. Let xGτ be this projection of xτ into Gτ . Then

there is a unique r > 0 such that r(xGτ − v) + v is Euclidean-equidistant to v and x.

A circle cx ⊂ R̂3 can be constructed so that cx is centered at r(xGτ − v) + v passing

through v and tangent to Lτ . Then cx ∈ Dτ and the plane it bounds in H4 contains

x since x has Euclidean distance to the center of cx equal to the radius of cx. The

uniqueness of cx comes from the uniqueness of the projection of x to Gτ and r.

It seems that the definitions of pencils, farm and direction of τ depend on whether

τ fixes ∞ or not. However a pure parabolic isometry τ fixing ∞ can be conjugated to

fix v ∈ R3 by a reflection R(v,1) so that R(v,1)τR(v,1) has pencils equal to the images of

the pencil elements of τ under R(v,1). In particular, R(v,1) is the reflection across the

sphere with radius 1 centered at v.

R(v,1)(x) = v +
1

‖x− v‖2
(x− v)

By using R(v,1) we may now assume a pure parabolic isometry τ fixes ∞ and the

claims about τ involving its pencils are true for any parabolic isometry with fixed point

other than ∞. This is useful particularly on the properties of the invariant pencil

defined as follows.

Definition 24. Let τ be a pure parabolic isometry of τ fixing v ∈ R̂3 and with farm

Gτ . The invariant pencil of τ is the set

Tτ =
{
s ⊂ R̂3 : s is a sphere orthogonal to Gτ and v ∈ s

}
.
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If τ fixes ∞, every t ∈ Tτ consists of extended Euclidean lines that belong to Dτ .

Since τ leaves elements of Dτ invariant, it also leaves elements of Tτ invariant. Any

other pure parabolic isometry is conjugate to one that fixes∞ so it is true for any pure

parabolic isometry.

3.3.1 Properties of the invariant pencil

Let τ be a pure parabolic isometry fixing v in R̂3.

1. For each t ∈ Tτ , τ(t) = t and t is orthogonal to each s ∈ Fτ .

2. If t, u ∈ Tτ such that u ∩ t has more than one point but u 6= t, then u ∩ t ∈ Dτ .

3. If a sphere s ⊂ R̂3 contains some c ∈ Dτ , then s ∈ Tτ .

4. For each pair p, q ∈ Dτ with p 6= q, there is a unique t ∈ Tτ containing p ∪ q.

5. For each d ∈ Dτ , there are t, u ∈ Tτ such that t ∩ u = d.

The next objects to collect are the intersections of elements of Fτ with those of Tτ .

Definition 25. Let τ be a pure parabolic isometry of H4. The half-turn bank of τ is

the set

Kτ =
{
s ∩ t ⊂ R̂3 : s ∈ Fτ and t ∈ Tτ

}
.

Theorem 3.3.4. Let τ be a pure parabolic isometry of H4 with fixed point v ∈ R̂3.

Then c is a circle in R̂3 such that v ∈ c ⊂ h for some h ∈ Fτ if and only if c ∈ Kτ .

Proof. Let c be a circle in R̂3 such that v ∈ c ⊂ h for some h ∈ Fτ . It suffices to show

that c ∈ Kτ in the case where v =∞. Then h is a Euclidean plane and c is a Euclidean

line. Let t be the set
{
x+ λτ(0) : x ∈ c \ {∞}, λ ∈ R

}
∪ {∞}. Then t is orthogonal to

h through c so t ∈ Tτ and c = h ∩ t. Hence, c ∈ Kτ .

Conversely if c ∈ Kτ , there are h ∈ Fτ and t ∈ Tτ such that c = h ∩ t. Then c ⊂ h.

Both h and t contain v so v ∈ c.

Theorem 3.3.5. Let τ be a pure parabolic isometry of H4. Then for each k ∈ Kτ ,

there exist k1, k2 ∈ Kτ such that τ = Hk1Hk = HkHk2.
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Proof. The argument for the pure hyperbolic case works exactly for the pure parabolic

case. There are s ∈ Fτ and t ∈ Tτ such that k = s ∩ t. Then there are s1, s2 ∈ Fτ

such that τ = Rs1Rs = RsRs2 . Let k1 = s1 ∩ t and k2 = s2 ∩ t. Since s, s1 and s2 are

orthogonal to t, Hk1 = Rs1Rt = RtRs1 and Hk2 = Rs2Rt = RtRs2 . Then,

τ = Rs1Rs τ = RsRs2

= Rs1RtRtRs = RsRtRtRs2

= Hk1Hk = HkHk2 .

3.4 Pure loxodromic

Let δ be a pure hyperbolic isometry of H4. One can pick a pair a distinct hyperplanes

t1 and t2 bounded by some elements of Tδ so that Rt1Rt2 is a type I elliptic isometry.

Let ρ = Rt1Rt2 and P = t1 ∩ t2. Then P is the twisting plane of ρ and ∂P ∈ Dδ. It

follows that Fρ ⊂ Tδ and Fδ ⊂ Tρ by definition. Since P contains the axis of δ, then ρ

leaves it invariant. The composition δρ is therefore a hyperbolic isometry that leaves

the axis of δ invariant. Moreover ρ and δ commute. To see this, express δ as Rh1Rh2

for some h1, h2 ∈ Fδ. Then every element of {h1, h2} is orthogonal to every element of

{∂t1, ∂t2} so each reflection in {Rh1 , Rh2} commutes with each reflection in {Rt1 , Rt2}.

These imply the following computations.

δρ = Rh1Rh2Rt1Rt2

= Rh1Rt1Rh2Rt2

= Rt1Rh1Rt2Rh2

= Rt1Rt2Rh1Rh2

= ρδ

Two things can be observed from the computation. First, δρ is a composition of

four reflections. Second, the expression Rh1Rt1Rh2Rt2 is a composition of half-turns

about h1 ∩ t1 and h2 ∩ t2 so δρ can be expressed as such. If a hyperbolic isometry can
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be expressed as a composition of exactly four reflections, it is interesting to show that

it can be expressed as a composition of two half-turns. In this section, we construct a

set of possible planes in which δρ can be factored into half-turns about planes within

the same set.

Definition 26. A pure loxodromic isometry γ is a hyperbolic isometry of H4 that can

be expressed as δρ where δ is a pure hyperbolic isometry leaving the axis of γ invariant

and ρ is a type I elliptic isometry whose twisting plane contains the axis of γ.

Using the same arguments above, it follows that if γ = δρ from the definition, then

δρ = ρδ. Furthermore such decompositions of γ into δρ is unique.

Theorem 3.4.1. Let γ be a pure loxodromic isometry of H4. If γ = δ1ρ1 = δ2ρ2 where

δ1, δ2 are pure hyperbolic isometries leaving the axis of γ invariant and ρ1, ρ2 are type I

elliptic isometries whose twisting planes contain the axis of γ, then δ1 = δ2 and ρ1 = ρ2.

Proof. Since the axes of δ1 and δ2 are equal, they must have the same pencils. In

particular, Fδ1 = Fδ2 and Tδ1 = Tδ2 . Express δ = Rh1Rh2 for some h1, h2 ∈ Fδ1 .

Then there is h3 ∈ Fδ2 such that δ2 = Rh1Rh3 . The twisting planes of ρ1 and ρ2

intersect in at least a line so there is a hyperplane t1 that contain both twisting planes.

Then ∂t1 ∈ Fρ1 ∩ Fρ2 so there are t2 ∈ Fρ1 and t3 ∈ Fρ2 such that ρ1 = Rt2Rt1

and ρ2 = Rt3Rt1 . Then γ can be expressed as Rh1Rh2Rt2Rt1 or Rh1Rh3Rt3Rt1 . It

implies that Rh2Rt2 = Rh3Rt3 . Since t2 and t3 contain the fixed points of γ, then

t2, t3 ∈ Tδ1 = Tδ2 . Each element of {h2, h3} is orthogonal to every element of {t2, t3}

so Rh2Rt2 and Rh3Rt3 are half-turns about the same plane. Then h2 ∩ t2 = h3 ∩ t3

but since Fδ1 has pairwise disjoint elements, h1 = h3. The equation Rh2Rt2 = Rh3Rt3

implies that Rt2 = Rt3 . Thus δ1 = δ2 and ρ1 = ρ2.

Let δρ be the unique decomposition of a pure loxodromic isometry γ. Since Fρ ⊂ Tδ,

the boundary of the twisting plane of ρ must be in Dδ. Hence δ leaves the twisting

plane of ρ invariant together with the axis of γ. It follows that γ also leave the twisting

plane of ρ invariant. The pure loxodromic isometry γ share both an axis with δ and an
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invariant plane with ρ. The uniqueness of ρ allows γ to have its own unique invariant

plane.

Definition 27. Let γ be a pure loxodromic isometry of H4. Let δ be the unique pure

hyperbolic isometry and ρ be the unique type I elliptic isometry so that γ = δρ = ρδ.

Then δ is called the dilation part of γ and ρ is called the rotational part of γ. The

twisting plane of γ is the set of fixed points of ρ.

The pencils of γ are ready to be defined. They are derived from the pencils of its

dilation and rotational parts.

Definition 28. Let γ be a pure loxodromic isometry of H4 with dilation part δ and

rotational part ρ. The permuted pencil of γ is defined to be the permuted pencil of δ.

The twisting pencil of γ is defined to be the permuted pencil of ρ. The dual pencil of γ

is defined as the dual pencil of δ. The twisting pencil of γ is denoted Rγ.

In the pure hyperbolic section, Fγ and Dγ are already defined even if γ is pure lox-

odromic. The new pencil here is Rγ which depends of the rotational part. Nonetheless

the definitions above are consistent with those of pure hyperbolic.

3.4.1 Properties of the pencils of a pure loxodromic isometry

Let γ be a pure loxodromic isometry of H4 with twisting plane P .

1. For each t ∈ Rγ , then γ(t) ∈ Rγ , γ(t)∩t = ∂P and t is orthogonal to each s ∈ Fγ .

2. If t, u ∈ Rγ with u 6= t, then u ∩ t = ∂P .

3. If a sphere s ⊂ R̂3 contains some ∂P , then s ∈ Rγ .

4. For each d ∈ Dγ \ {∂P}, there is a unique t ∈ Rγ containing d ∪ (∂P ).

Similar to Fγ and Dγ , the elements of Rγ fill up R̂3 and the hyperplanes they bound

fill up H4.

Theorem 3.4.2. Let γ be a pure loxodromic isometry of H4 with twisting plane P .

Then for each x ∈ R̂3 \ (∂P ), there is a unique hx ∈ Rγ containing x.
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Proof. Let ρ be the rotational part of γ. Then there is a unique hx ∈ Fρ containing x.

Since Fρ = Rγ , then hx ∈ Rγ .

Corollary 3.4.1. Let γ be a pure loxodromic isometry of H4 with twisting plane P .

Then for each x ∈ H4 \ P , there is a unique hyperplane hx containing x such that

∂hx ∈ Rγ.

Proof. Let ρ be the rotational part of γ. Then there is a unique hx ∈ Fρ so that the

hyperplane it bounds contains x. Since Fρ = Rγ , hx ∈ Rγ .

The importance of Rγ is highlighted by the need to collect the planes in which γ

can be factored into half-turns.

Definition 29. Let γ be a pure loxodromic isometry of H4. The half-turn bank of γ is

the set

Kγ =
{
s ∩ t ⊂ R̂3 : s ∈ Fγ and t ∈ Rγ

}
.

Corollary 3.4.2. Let γ be a pure loxodromic isometry of H4 with twisting plane P .

For each x ∈ H4 \ P , there is a unique plane kx containing x such that ∂kx ∈ Kγ. For

each y ∈ R̂3 \ (∂P ), there is a unique ky ∈ Kγ containing y.

Proof. Let L be the axis of γ. Let ρ be the rotational part and δ the dilation part of

γ. Since x /∈ P implying x /∈ L, there are unique hx ∈ Fδ and tx ∈ Fρ such that the

hyperplanes they bound contain x. Let kx = hx ∩ tx; then ∂kx ∈ Kγ .

Since y /∈ ∂P , there are unique hy ∈ Fδ and ty ∈ Fρ containing y. Let ky = hy ∩ ty;

then ky ∈ Kγ .

Theorem 3.4.3. Let γ be a pure loxodromic isometry of H4 with axis L and twisting

plane P . Then Q ⊂ H4 is a plane orthogonal to both P and L through a line in P if

and only if ∂Q ∈ Kγ.

Proof. Suppose Q is a plane orthogonal to both P and L such that Q∩P is a line. Let

` = Q ∩ P . Since Q is orthogonal to L, then ` and L are perpendicular lines in P . Let

x be the intersection point Q and L. Let `′ be the unique line in Q perpendicular to `

through x. Likewise `′ is perpendicular to L. There is a unique line `4 perpendicular to
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all L, ` and `′. In particular, `4 is the unique line orthogonal to the hyperplane spanned

by P and Q passing through x. Let h be the hyperplane spanned by `, `′ and `4. Since

L is perpendicular to all `, `′ and `4, h is the orthogonal complement of L through x.

Then ∂h ∈ Fγ . Let t be the hyperplane spanned by L, ` and `′. Therefore P ⊂ t and

t ∩ h = Q. Hence ∂t ∈ Rγ and ∂Q ∈ Kγ .

Conversely if ∂Q ∈ Kγ , there are h ∈ Fγ and t ∈ Rγ such that ∂Q = h ∩ t. Let ĥ

and t̂ be the hyperplanes bounded by h and t respectively. Then ĥ is orthogonal to to

P through a line since ∂P is orthogonal to every element of Fγ . Whereas t̂ contains

P so Q = ĥ ∩ t̂ must also intersect P in the line P ∩ ĥ since Q ∩ P =
(
ĥ ∩ t̂

)
∩ P =

ĥ ∩
(
t̂ ∩ P

)
= ĥ ∩ P . Then P is orthogonal to ĥ through P ∩Q, so Q ⊂ ĥ implies that

P is also orthogonal to Q through the line P ∩Q.

Since L is a subset of t̂ and L is orthogonal to ĥ through x, then Q intersect L at

x. But Q ⊂ ĥ so Q is orthogonal to L.

Theorem 3.4.4. Let γ be a pure loxodromic isometry of H4. Then for each k ∈ Kγ

there exist k1, k2 ∈ Kγ such that γ = Hk1Hk = HkHk2.

Proof. Let δ be the dilation part of γ and ρ be the rotational part of γ. If k ∈ Kγ , there

are s ∈ Fγ and t ∈ Rγ such that k = s ∩ t. Then there are s1, s2 ∈ Fδ = Fγ such that

δ = Rs1Rs = RsRs2 and there are t1, t2 ∈ Fρ = Rγ such that ρ = Rt1Rt = RtRt2 . Each

sphere of {s, s1, s2} is orthogonal to each sphere in {t, t1, t2}. The following relations

hold.

RsRt1 = Rt1Rs Hk = RsRt

Rt2Rs = RsRt2 Hk = RtRs

Let k1 = s1 ∩ t1 and k2 = s2 ∩ t2. Then Hk1 = Rs1Rt1 = Rt1Rs1 and Hk2 = Rs2Rt2 =
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Rt2Rs2 . Since γ = δρ = ρδ,

γ = δρ γ = ρδ

= Rs1RsRt1Rt = RtRt2RsRs2

= Rs1Rt1RsRt = RtRsRt2Rs2

= Hk1Hk = HkHk2

3.4.2 Twisting hyperplane

If γ is a pure loxodromic isometry of H4 with axis L and twisting plane P , then there

is a unique hyperplane h that is orthogonal to P through L. Since γ leave both P

and L invariant, the image of h is also a hyperplane orthogonal to P through L. The

uniqueness of h makes it an invariant hyperplane of γ. Hence, h is called the twisting

hyperplane of γ. In the boundary, the twisting hyperplane can be found by locating the

sphere orthogonal to the boundary of the twisting plane through the fixed points of γ.

Let δ and ρ be the respective dilation and rotational parts of γ. For each point x ∈ L,

there is a unique plane dx orthogonal to P through x. Then ∂dx ∈ Dρ, and the union

of all these planes for all x ∈ L is h. Since h contains L and some dx, then ∂h ∈ Tδ ∩Tρ.

This is another way to show that γ = δρ leave h invariant.

3.5 Screw parabolic

Let τ be a pure parabolic isometry of H4. Let P be a plane bounded by an element

in Dτ . If t1 and t2 are distinct hyperplanes intersecting at P , then ∂t1, ∂t2 ∈ Tτ . The

composition ρ = Rt1Rt2 is a type I elliptic isometry fixing P pointwise. Both τ and ρ

leave P invariant and so does τρ. Since every t ∈ Fρ contain ∂P which is in Dτ , then

Fρ ⊂ Tτ . Likewise, every h ∈ Fτ is orthogonal to ∂P so Fτ ⊂ Tρ. The composition τρ

can be shown to be parabolic with the same fixed point as that of τ .

Let x ∈
(
H4 \ P

)
∪
(
R̂3 \ (∂P )

)
. Then there is a unique hyperplane t such that

x ∈ t ∪ (∂t) and ∂t ∈ Fρ. Since x /∈ P and ρ(t) ∩ t = P , then ρ(x) 6= x. But
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ρ(∂t) ∈ Fρ ⊂ Tτ so τρ(x) ∈ ρ(t) ∪ ∂(ρ(t)). Also ρ(∂t) 6= ∂t so τρ(x) /∈ t ∪ (∂t). Hence,

τρ(x) 6= x.

If x ∈ P ∪ (∂P ), then τρ(x) = τ(x) which is equal to x if and only if x is the fixed

point of τ . Hence τρ is a parabolic isometry sharing the fixed point with τ .

Furthermore, τ and ρ commute. Let h1, h2 ∈ Fτ so that τ = Rh1Rh2 . Since Fτ ⊂ Tρ

and Fρ ⊂ Tτ , every element of {h1, h2} is orthogonal to every element of {∂t1, ∂t2}.

The argument is similar to the decomposition of a pure loxodromic isometry.

τρ = Rh1Rh2Rt1Rt2

= Rh1Rt1Rh2Rt2

= Rt1Rh1Rt2Rh2

= Rt1Rt2Rh1Rh2

= ρτ

Definition 30. A screw parabolic isometry γ is a parabolic isometry of H4 that can be

expressed as τρ where τ is a pure parabolic isometry fixing the fixed point of γ, and ρ

is a type I elliptic isometry whose twisting plane is bounded by an element of Dτ .

If such a γ can be decomposed into τρ, then τρ = ρτ . Moreover, such a decompo-

sition is unique.

Theorem 3.5.1. Let γ be a screw parabolic isometry of H4 with fixed point v. If

γ = τ1ρ1 = τ2ρ2 where τ1, τ2 are pure parabolic isometries fixing v and ρ1, ρ2 are

type I elliptic isometries whose twisting plane are bounded by elements of Dτ1 and Dτ2

respectively, then τ1 = τ2 and ρ1 = ρ2.

Proof. It is enough to show when v = ∞. Let E1 and E2 be the respective farms of

τ1 and τ2; let P1 ∈ Dτ1 and P2 ∈ Dτ2 be the boundaries of the twisting planes of ρ1

and ρ2 respectively. Then each Ei ∩ Pi has two points. Let c1 ∈ E1 ∩ P1 \ {v} and

c2 ∈ E2 ∩ P2 \ {v}. Since v =∞, there are A,B ∈ SO(3) and a, b ∈ R3 \ {0} such that

τ1(x) = x+ a ρ1(x) = A(x− c1) + c1

τ2(x) = x+ b ρ2(x) = B(x− c2) + c2
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for all x ∈ R3 with c1 · a = 0 = c2 · b, ρ1(a+ c1) = a+ c1 and ρ2(b+ c2) = b+ c2. Thus

Aa = a; Bb = b. If γ = τ1ρ1 = τ2ρ2, then

A(x− c1) + c1 + a = B(x− c2) + c2 + b (3.1)

for all x ∈ R3. For x = 0,

−Ac1 + c1 + a = −Bc2 + c2 + b. (3.2)

Subtracting equation (3.2) from (3.1) yields A(x) = B(x). Hence A = B.

Since A ∈ SO(3) is nontrivial, its fixed points are 1-dimensional so b = λa for some

λ ∈ R. Then c1 · b = 0 = c2 · a. The equation (3.2) implies

Ac2 −Ac1 = c2 − c1 + b− a.

Taking the Euclidean norms of both sides follows that ‖b− a‖ = 0 so b = a. But that

also means E1 = E2 and is left invariant by A. Since A fixes only the origin in E1, then

A(c2 − c1) = c2 − c1 implies that c2 = c1.

Let τρ be the unique decomposition of a screw parabolic isometry γ. Since Fρ ⊂ Tτ ,

the boundary of the twisting plane of ρ must be in Dτ . Hence τ leaves the twisting

plane of ρ invariant. It follows that γ also leave the twisting plane of ρ invariant. The

screw parabolic isometry γ share both a fixed point with τ and an invariant plane with

ρ. The uniqueness of ρ allows γ to have its own unique invariant plane.

Definition 31. Let γ be a screw parabolic isometry of H4. Let τ be the unique pure

parabolic isometry and ρ be the unique type I elliptic isometry so that γ = τρ = ρτ .

Then τ is called the translation part of γ and ρ is called the rotational part of γ. The

twisting plane of γ is the set of fixed points of ρ.

Definition 32. Let γ be a screw parabolic isometry of H4 with translation part τ and

rotational part ρ. The permuted pencil of γ is defined to be the permuted pencil of τ .

The twisting pencil of γ is defined to be the permuted pencil of ρ. The dual pencil of γ

is defined as the dual pencil of τ . The twisting pencil of γ is denoted Rγ.



57

3.5.1 Properties of the pencils of a screw parabolic isometry

Let γ be a screw parabolic isometry of H4 with twisting plane P .

1. For each t ∈ Rγ , then γ(t) ∈ Rγ , γ(t)∩t = ∂P and t is orthogonal to each s ∈ Fγ .

2. If t, u ∈ Rγ with u 6= t, then u ∩ t = ∂P .

3. If a sphere s ⊂ R̂3 contains some ∂P , then s ∈ Rγ .

4. For each d ∈ Dγ \ {∂P}, there is a unique t ∈ Rγ containing d ∪ (∂P ).

The elements of Rγ fill up R̂3 and the hyperplanes they bound fill up H4.

Theorem 3.5.2. Let γ be a screw parabolic isometry of H4 with twisting plane P . Then

for each x ∈ R̂3 \ (∂P ), there is a unique hx ∈ Rγ containing x.

Proof. Let ρ be the rotational part of γ. Then there is a unique hx ∈ Fρ containing x.

Since Fρ = Rγ , then hx ∈ Rγ .

Corollary 3.5.1. Let γ be a screw parabolic isometry of H4 with twisting plane P .

Then for each x ∈ H4 \ P , there is a unique hyperplane hx containing x such that

∂hx ∈ Rγ.

Proof. Let ρ be the rotational part of γ. Then there is a unique hx ∈ Fρ so that the

hyperplane it bounds contains x. Since Fρ = Rγ , hx ∈ Rγ .

Definition 33. Let γ be a screw parabolic isometry of H4. The half-turn bank of γ is

the set

Kγ =
{
s ∩ t ⊂ R̂3 : s ∈ Fγ and t ∈ Rγ

}
.

Corollary 3.5.2. Let γ be a screw parabolic isometry of H4 with twisting plane P . For

each x ∈ H4 \P , there is a unique plane kx containing x such that ∂kx ∈ Kγ. For each

y ∈ R̂3 \ (∂P ), there is a unique ky ∈ Kγ containing y.

Proof. Let L be the direction of γ. Let ρ be the rotational part and τ the translation

part of γ. Since x /∈ P , there are unique hx ∈ Fτ and tx ∈ Fρ such that the hyperplanes

they bound contain x. Let kx = hx ∩ tx; then ∂kx ∈ Kγ .
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Since y /∈ ∂P , there are unique hy ∈ Fτ and ty ∈ Fρ containing y. Let ky = hy ∩ ty;

then ky ∈ Kγ .

Theorem 3.5.3. Let γ be a screw parabolic isometry of H4 with fixed point v and

twisting plane P . Then Q ⊂ H4 is a plane orthogonal to P through a line bounded by

v if and only if ∂Q ∈ Kγ.

Proof. Suppose Q is a plane orthogonal to P through a line bounded by v. There is

a hyperplane t contaning Q ∪ P since they intersect in a line. Let ` = Q ∩ P . There

is a point x ∈ ∂` \ {v}. Then there is a unique hx ∈ Fγ that contain x. Since Q is

orthogonal to P , then Q is contained in the hyperplane bounded by hx. But Q,P ⊂ t

so ∂t ∈ Rγ and ∂Q = (∂t) ∩ hx. Hence ∂Q ∈ Kγ .

Conversely if ∂Q ∈ Kγ , there are h ∈ Fγ and t ∈ Rγ such that ∂Q = h ∩ t. Let

ĥ and t̂ be the hyperplane bounded by h and t respectively. Then ĥ is orthogonal to

P through a line bounded by v. Also t̂ contains P , so Q = ĥ ∩ t̂ implies Q ∩ P =(
ĥ∩ t

)
∩P = ĥ∩

(
t̂∩P

)
= ĥ∩P . Then P is orthogonal to ĥ through P ∩Q and hence

to Q. Since v ∈ h ∩ t, then v ∈ ∂Q; v ∈ ∂P implies that v bounds the line P ∩Q.

Theorem 3.5.4. Let γ be a screw parabolic isometry of H4. Then for each k ∈ Kγ

there exist k1, k2 ∈ Kγ such that γ = Hk1Hk = HkHk2.

Proof. Let τ be the translation part of γ and ρ be the rotational part of γ. If k ∈ Kγ ,

there are s ∈ Fγ and t ∈ Rγ such that k = s ∩ t. Then there are s1, s2 ∈ Fτ = Fγ such

that τ = Rs1Rs = RsRs2 and there are t1, t2 ∈ Fρ = Rγ such that ρ = Rt1Rt = RtRt2 .

Each sphere of {s, s1, s2} is orthogonal to each sphere in {t, t1, t2}. The following

relations hold.

RsRt1 = Rt1Rs Hk = RsRt

Rt2Rs = RsRt2 Hk = RtRs

Let k1 = s1 ∩ t1 and k2 = s2 ∩ t2. Then Hk1 = Rs1Rt1 = Rt1Rs1 and Hk2 = Rs2Rt2 =
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Rt2Rs2 . Since γ = τρ = ρτ ,

γ = τρ γ = ργ

= Rs1RsRt1Rt = RtRt2RsRs2

= Rs1Rt1RsRt = RtRsRt2Rs2

= Hk1Hk = HkHk2

3.6 More on Half-Turn Banks

The half-turn bank of an isometry of hyperbolic space serves as a collection of planes

in which the isometry can be factored into a product of two half-turns. In this section,

we show that any half-turn factorization of an orientation preserving isometry comes

from the defined set called half-turn bank.

The half-turn bank Kγ of an isometry γ of H4 is a collection of circles with a property

that for each P ∈ Kγ , there are Q,R ∈ Kγ such that γ = HQHP = HPHR where HP ,

HQ and HR are half-turns about their respective planes. It is defined as intersections

of hyperplanes in the permuted pencil and invariant/twisting pencils of γ.

In section 3.6.1, the common perpendicular line across a pair of ultra-parallel (n−2)-

dimensional planes is constructed. In section 3.6.2 all possible combinations of pairs of

planes in H4 are enumerated to show the result of composing half-turns about the planes.

Together with classification of isometries, the combinations tell how the involved planes

intersect whenever an isometry is factored into a product of two half-turns. Section 3.6.3

has the details of proving that all half-turn factorizations come from half-turn banks.

The theorem implies that a pair of isometries is linked by a half-turn if and only if they

have a common circle in their half-turn banks.

3.6.1 Codimension-2 version of common perpendicular

If P and Q are ultra-parallel hyperplanes in H4, there is a unique line perpendicular to

them. If P and Q are ultra-parallel lines in H4, there is also a unique line perpendicular
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to them. In this section, the same result is shown for a pair of ultra-parallel (n − 2)-

dimensional subplanes of Hn.

Theorem 3.6.1. For each pair of ultra-parallel planes α, β ∈ H4, there is a unique line

orthogonal to both α and β.

More generally, the definitions of half-turn banks can be extended to orientation

preserving isometries of Hn, but to justify its name, a more general statement can be

used.

Theorem 3.6.2. Let n ≥ 2 be an integer. For each pair of ultra-parallel (n − 2)-

dimensional planes α, β ∈ Hn, there is a unique line orthogonal to both α and β.

Proof. Theorem 3.6.2 implies Theorem 3.6.1, so constructing the common orthogonal

line in a general setting is enough for a case in Theorem 3.6.3. Let P and Q be ultra-

parallel (n− 2)-dimensional planes of Hn. If n = 2, then P and Q are distinct points,

and the unique line connecting them are vacuously orthogonal to P and Q. If n = 3,

then P and Q are ultra-parallel lines so there is a unique line perpendicular to both

of them. If n ≥ 4, we use the hyperboloid model of Hn embedded in the Lorentzian

space Rn,1. Then P and Q extend to (n − 1)-dimensional vector subspaces P ′ and Q′

respectively. Since P and Q are ultra-parallel, the span of P ′ ∪ Q′ is the whole Rn,1.

However, its dimension can not add up to 2n− 2 but only a maximum of n+ 1.

Therefore, the dimension of the space-like subspace P ′∩Q′ is either n−2 or n−3. If

it is n−2, then span(P ′∪Q′) is n-dimensional and has P ′ and Q′ as its hyperplanes with

a unique common perpendicular line. If dim(P ′∩Q′) is n−3, then N =
(
P ′∩Q′

)L
is a

4-dimensional time-like vector subspace nontrivially intersecting both P ′ and Q′ due to

their large dimensions. Since N contains P ′L and Q′L, which respectively intersect P ′

and Q′ trivially, N ∩ P ′ and N ∩Q′ are 2-dimensional subspaces. If they are time-like,

then there is a unique line in Hn perpendicular to both Hn ∩N ∩ P ′ and Hn ∩N ∩Q′.

We must show that N ∩ P ′ and N ∩Q′ are time-like vector subspaces.

Pick a time-like vector vector x ∈ N . Then x /∈ P ′L ∪ Q′L since P ′L and Q′L

are space-like. Let w ∈ P ′L and v ∈ Q′L be nontrivial elements so they are linearly



61

independent with x. Since P ′L and Q′L are subsets of N , the spans of {x,w} and {x, v}

are subspaces of N . Then the vector − 〈x,w〉L〈w,w〉Lw + x is an element of both N and P ′

since it is Lorentz orthogonal to w ∈ P ′L, and is a linear combination of w and x. Then

its Lorentz norm can be completed as follows.

∥∥∥∥− 〈x,w〉L〈w,w〉L
w + x

∥∥∥∥2
L

=
〈x,w〉2L
‖w‖2L

− 2
〈x,w〉2L
‖w‖2L

+ ‖x‖2L

= −
〈x,w〉2L
‖w‖2L

+ ‖x‖2L

Since x is time-like and w is space-like, the quantity above is negative, making the vector

time-like. Hence, N ∩ P ′ is a 2-dimensional time-like subspace of P ′. By replacing the

vector w with v, the same arguments show that N ∩Q′ is also a 2-dimensional time-like

subspace of Q′.

3.6.2 Combinations of a pair of planes

There are a few ways for two planes in H4 to intersect. They can intersect in a line,

a point, or in a point at infinity. The last case is not technically an intersection but

points in the two planes can be arbitrarily near.

Let P , Q be distinct planes in H4. There are four ways they can intersect or not

intersect.

1. P and Q are ultra-parallel.

2. P and Q are tangent to a unique point x at infinity.

3. P ∩Q is a line.

4. P ∩Q consists of a single point p.

Let h be a half-turn of H4 about some plane α. Then h is a type-I elliptic isometry

with a well-defined permuted pencil Fh and invariant pencil Th. Recall that Fh con-

sists of spheres that contain the boundary of α at infinity while Th consists of spheres



62

orthogonal to the boundary of α through two points. For each c ∈ Th, the image of c

under h is also c. For each s ∈ Fh, then h(s) must also be in Fh; but h is an involution

so h(s) = s. Equivalently h leaves all spheres in both Fh and Th invariant.

In this section, the model of H4 being used is the upper half space of R4 so that

the boundary at infinity is R̂3. Going back to P and Q, let P ′ be the boundary of P

in R̂3 and Q′ be that of Q. By conjugation, assume P ′ is a straight Euclidean line in

R̂3 and Q′ is a Euclidean circle, except in the second case where we may assume that

x =∞. Then the elements of KHP are precisely the circles in planes orthogonal to P ′

and centered in points of P ′. We investigate the composition HPHQ and its invariant

subplanes based on the combination of P and Q.

P and Q are ultra-parallel

If P and Q are ultra-parallel, then there is a unique line N in H4 that is orthogonal

to both P and Q. Both HP and HQ leave N invariant so HPHQ must also leave N

invariant. That leaves two options for HPHQ: either hyperbolic or elliptic. Suppose

HPHQ has a fixed point y inside H4. Then HP (y) = HQ(y), so the midpoint between

y and HP (y) is an element of both P and Q. This contradicts the hypothesis that P

and Q are ultra-parallel.

Lemma 3.6.1. Let P and Q be ultra-parallel planes in H4. Then HPHQ is a hyperbolic

isometry.

P and Q are tangent to a unique point x at infinity

Let P and Q be distinct planes in H4 so that their boundaries meet at one point

x at infinity. By conjugation, we may assume x = ∞ of R̂3. Then P ′ and Q′ are

Euclidean lines. If P ′ and Q′ form a Euclidean plane, there are several Euclidean lines

perpendicular to both P ′ and Q′ but all of them identify a unique direction or vector

v ∈ R3. If they do not form a plane, there is a unique Euclidean line N orthogonal to P ′

and Q′, which identifies a direction v ∈ R3. In either case, all Euclidean lines with same

direction as v is left invariant by HPHQ. Futhermore, HPHQ is a parabolic translation
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(x 7→ x + 2v, x ∈ R3) if P ′ and Q′ are coplanar or a screw parabolic isometry with

twisting plane bounded by N if not. So if P and Q are tangent, HPHQ is definitely

parabolic.

Lemma 3.6.2. Let P and Q be tangent planes in H4. Then HPHQ is a parabolic

isometry.

P ∩Q is a line

Let P and Q be planes of H4 intersecting in a line L. Then they form a unique

hyperplane h and it is an element of both permuted pencils of HP and HQ. It follows

that h is left invariant, and L is fixed pointwise by HPHQ. The plane τ orthogonal to

h through L is also left by HPHQ, but since L is fixed pointwise, HPHQ also fixes τ

pointwise. To illustrate it with the model R̂3 as the boundary at infinity, assume P ′

is a Euclidean line and Q′ is a circle intersecting P ′ in two points y1 and y2 . Then

Q′ ∪ P ′ forms a unique Euclidean plane ĥ. There is a unique circle τ̂ passing through

y1 and y2 centered at their midpoint, and inside the Euclidean plane orthogonal to ĥ

through P ′. Then τ̂ is orthogonal to both P ′ and Q′ through P ′ ∩Q′. Both half-turns

HP and HQ flip τ̂ across P ′ ∩Q′ so the composition HPHQ fixes τ̂ pointwise. Since τ̂

is the unique plane orthogonal to h through P ∩Q, then τ̂ is the only fixed point set of

HPHQ. It follows that HPHQ is a type-I elliptic isometry. Moreover, its twisting plane

is orthogonal to ĥ.

Lemma 3.6.3. Let P and Q be distinct planes in H4 intersecting in a line. Then

HPHQ is a type-I elliptic isometry whose twisting plane is orthogonal to the hyperplane

containing P ∪Q through P ∩Q.

P ∩Q consists of a single point p

Suppose P and Q are planes H4 intersecting in a unique point p. Then for each x ∈ H4\

{p}, we show that HPHQ(x) 6= x. Suppose first that x ∈ Q. Then HPHQ(x) = HP (x)

which is not equal to x since x /∈ P . For the rest of this combination of P and Q,

assume that x ∈ H4 \Q. If it happens that HQ(x) ∈ P , then HPHQ(x) = HQ(x) 6= x.
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If HQ(x) /∈ P but x ∈ P , then HPHQ(x) /∈ P so HPHQ(x) 6= x.

The last possibility is when both HQ(x) and x are outside Q∪P . We prove that HP

can not map HQ(x) back to x. Suppose HPHQ(x) = x. Let m be the midpoint between

HP (x) and x, and let L be the line connecting x to HQ(x). Then m is in Q since it is

the midpoint between x and HQ(x). Likewise m must also be in P as HP (x) = HQ(x).

There is only one point in P ∩ Q so this midpoint must be p. Furthermore, L is

orthogonal to both P and Q through p. It follows that the hyperplane orthogonal to L

through p contains both P and Q. Since intersecting planes within a hyperplane must

meet in at least a line, P ∩ Q must have at least a line which has more points other

than p. This contradicts that P and Q intersect only in a point.

Lemma 3.6.4. Let P and Q be distinct planes in H4 intersecting in a single point.

Then HPHQ is a type-II orientation preserving elliptic isometry.

Since HPHQ is type II elliptic, one might wonder where the invariant planes or lines

are located. If P and Q are orthogonal complements of each other, then HQ and HP

respectively rotate them half-way around. Otherwise, HPHQ has a canonical pair of

invariant planes. To locate these invariant planes, we can use the ball model of H4

embedded in R4 which is conformal to both the Euclidean geometry and the spherical

geometry of S3. The problem simplifies further if P and Q are conjugated to intersect

at the origin. The following lemma locates the canonical invariant planes relative to P

and Q.

Lemma 3.6.5. Let P and Q be 2-dimensional vector subspaces of R4 intersecting triv-

ially. Then there are 2-dimensional vector subspaces τ1 and τ2 orthogonal complements

of each other such that τ1 and τ2 are orthogonal to P and Q through two separate lines.

Proof. Let UP = S3 ∩ P and UQ = S3 ∩Q be unit (Euclidean) circles. The Euclidean

inner product restricted to UP × UQ has a maximum value realized by a pair (vP , vQ)

since UP ×UQ is compact and the inner product is continuous. The vectors vP , vQ can

be augmented by wP ∈ P and wQ ∈ Q so that the sets {vP , wP } and {vQ, wQ} are

orthonormal bases. Let τ1 = span{vP , vQ} and τ2 = span{wP , wQ}. The dimension of

τi is 2 since vP 6= vQ. It follows that τ1 ∩ τ2 = {0} and they intersect P and Q through
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two separate lines. What is left to show is that τ1 and τ2 are orthogonal to P , Q and

each other. It is sufficient to show that 〈vP , wQ〉 = 〈vQ, wP 〉 = 0.

The function θ 7→ 〈(cos θ)vP + (sin θ)wP , vQ〉 is continuous and smooth with a

maximum at θ = 0. Its derivative θ 7→ 〈−(sin θ)vP + (cos θ)wP , vQ〉 therefore has a

zero value at θ = 0. Hence 〈vQ, wP 〉 = 0. Similarly the function θ 7→ 〈(cos θ)vQ +

(sin θ)wQ, vP 〉 has derivative θ 7→ 〈−(sin θ)vQ + (cos θ)wQ, vP 〉 with a zero value at

θ = 0, implying that 〈wQ, vP 〉 = 0.

Corollary 3.6.1. Let P and Q be orthogonal planes in H4 intersecting in a unique

point. Then HPHQ is a type II elliptic involution that leaves every line through P ∩Q

invariant.

Proof. Since P and Q are orthogonal, they are left invariant by both HP and HQ. The

half-turns are involutions themselves so applying HPHQ twice to P ∪Q is the identity

map on P ∪ Q. The conformal ball model can be used to conjugate HPHQ into an

element of SO(4), with p corresponding to the origin. Then P and Q form vector

spaces that are orthogonal complements of each other. Any Euclidean orthonormal

bases of them can be combined into an orthonormal basis B of R4. If x ∈ H4 = B4 is

outside P ∪Q, it can be expressed as a linear combination of vectors in B ⊂ ∂(P ∪Q).

The composition (HPHQ)2 as an element of SO(4) therefore maps x back to itself.

Hence HPHQ is an involution.

A matrix of SO(n) has its inverse and transpose equal, but if it is also an involution,

then HPHQ as a matrix is also symmetric and thus diagonalizable (Spectral Theorem).

There are four linearly independent eigenvectors that correspond to lines in H4 that are

pairwise perpendicular through p. The diagonal entries are all −1 since a 1 value would

make HPHQ have more than one fixed point and other values would make the matrix

not in SO(4). Each vector is hence mapped into its opposite. In the conformal ball

model of hyperbolic space, the action of HPHQ on lines passing through p is reflection

across p.

Corollary 3.6.2. Let P and Q be non-orthogonal planes in H4 intersecting in a unique
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point. Then HPHQ is a type II elliptic isometry with a unique unordered pair of in-

variant planes orthogonal to each other through the fixed point of HPHQ.

Proof. If P and Q intersect only in one point, then HPHQ is type II elliptic isometry.

There are planes τ1 and τ2 that are orthogonal to each other through the fixed point of

HPHQ and also orthogonal to both P and Q through separate lines. Both HP and HQ

leave τ1 and τ2 invariant since they are orthogonal to the half-turns’ fixed point sets.

Then τ1 and τ2 are also left invariant by HPHQ.

It must be shown that τ1 and τ2 are the unique invariant planes. In order to show

their uniqueness, HPHQ can be conjugated to a 4 × 4 matrix in SO(4) so that the

upper-left and lower-right 2 × 2 blocks are elements of SO(2) (Theorem 3.1.7). Since

HPHQ has only one fixed point, either both these blocks are diagonal matrices with −1

in its entries or one of these blocks is non-diagonalizable.

Recall that the construction of τ1 allows it to have vP ∈ P and vQ ∈ Q so that

the angle between vP and vQ is at minimum. If P and Q are not orthogonal, this

angle is less than π/2. The action of HPHQ on τ1 is a composition of reflections across

span{vP } and span{vQ}. Thus, one of the non-diagonalizable block correspond to the

rotation of τ1 in an angle other than 0 and π. Then τ1 is the unique invariant plane of

HPHQ with minimum angle or rotation. The orthogonal complement of τ1 is τ2 which

is also unique.

3.6.3 The half-turn bank is exhaustive

In this section, we show that every half-turn factorization of an orientation preserving

isometry comes from its half-turn bank. The proof still uses cases but the lemmas from

section 3.6.2 restrict the possibilities for how a pair of planes intersect.

Theorem 3.6.3. Let γ be an orientation preserving isometry of H4. Then for every

half-turn factorization HPHQ of γ, the circles ∂P and ∂Q are elements of Kγ.

Proof. The proofs depend on the class of isometry of γ.

• γ is hyperbolic.
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If γ is hyperbolic, let L be its axis. The only combination for P and Q is that they

are ultra-parallel. The common perpendicular line of P and Q is left invariant by

HPHQ so it must be L. Then both P and Q are orthogonal to the axis of γ. Let

hP be the hyperplane spanned by L and P . Similarly, let hQ be the hyperplane

spanned by L and Q. Then ∂hP ∈ FHP and ∂hQ ∈ FHQ with P ⊂ hP ; Q ⊂ hQ.

If hP = hQ, there are fP ∈ FHP and fQ ∈ FHQ such that HP = RfPRhP and

HQ = RhQRfQ are reflection factorizations. If hP = hQ, then γ = HPHQ =

RfPRfQ is a pure hyperbolic isometry with ∂fP , ∂fQ ∈ Fγ and ∂hP = ∂hQ ∈ Tγ .

So ∂P = ∂(hP ∩ fP ) ∈ Kγ and ∂Q = ∂(hQ ∩ hQ) ∈ Kγ .

If hP ∩ hQ is a plane τ , then τ intersects P and Q in two different lines. The

half-turns HP and HQ reflect τ across these lines and thus leave τ invariant. If γ

is pure loxodromic, then hP 6= hQ, so the twisting plane of γ matches τ . Still, the

hyperplanes h⊥Q orthogonal to hQ through Q and h⊥P orthogonal to hP through

P are also orthogonal to L so ∂h⊥P , ∂h
⊥
Q ∈ Fγ . Both hP and hQ contain τ so

∂hP , ∂hQ ∈ Rγ . Since P = hP ∩ h⊥P and Q = hQ ∩ h⊥Q, then ∂P, ∂Q ∈ Kγ .

• γ is parabolic.

If γ is parabolic, then P and Q are tangent at infinity. For simpler illustration,

assume that the fixed point of γ is ∞. Then the boundaries (∂P, ∂Q) of P and

Q are straight non-crossing Euclidean lines in R3. Any Euclidean line commonly

perpendicular to the boundaries of P and Q forms the same direction exactly

equal to that of γ. Recall that the direction of the map x 7→ Ax + b is the

Euclidean line spanned by b in R3. Let B the direction of γ. Then B is either

Euclidean-parallel or equal to any common perpendicular between ∂P and ∂Q.

Let hP and hQ be the Euclidean planes orthogonal to B through ∂P and ∂Q

respectively. Let fP be the Euclidean plane orthogonal to hP through ∂P and

let fQ be Euclidean plane orthogonal to hQ through ∂Q. Then hP , fP ∈ FHP

and hQ, fQ ∈ FHQ . Since (hP , fP ) and (hQ, fQ) are pairwise orthogonal, then

HP = RhPRfP and HQ = RfQRhQ are reflection factorizations.

If fP = fQ, then γ = HPHQ = RhPRhQ is pure parabolic, so fP = fQ ∈ Tγ and
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hP , hQ ∈ Fγ . If fP ∩ fQ is a Euclidean line τ , it is left invariant by HP , HQ and

hence by γ. This implies that τ bounds the twisting plane of γ and therefore

fP , fQ ∈ Rγ . Still, ∂P, ∂Q ∈ Kγ .

• γ is type-I elliptic.

If γ is type-I elliptic, then P and Q intersect in a line. Let τ be the twisting

plane of γ. There is also a unique hyperplane h spanned by P and Q. Then τ

is orthogonal to h through P ∩ Q. The planes P , Q and τ pairwise intersect at

P ∩ Q while τ is orthogonal to both P and Q through P ∩ Q. Let hP be the

hyperplane spanned by τ and P ; let hQ be the hyperplane spanned by Q and τ .

It follows that ∂h ∈ Tγ and ∂hP , ∂hQ ∈ Fγ . Since P = hP ∩ h and Q = hQ ∩ h,

then ∂P, ∂Q ∈ Kγ .

• γ is type-II elliptic.

If γ is type-II elliptic, then P and Q intersect in a unique point p. Using the

conformal ball model of H4 inside R4, we may assume that p is the origin. Then

P and Q extend to Euclidean planes that intersect only at the origin. There are

planes τ1 and τ2 that has properties in Lemma 3.6.5. Let hP , hQ, h1 and h2 be

hyperplanes defined as follows.

hP = span(τ1 ∪ P ) hQ = span(τ2 ∪Q)

h1 = span(Q ∪ τ1) h2 = span(P ∪ τ2)

The configuration of planes and hyperplanes yield to τ1 ⊂ hP ∩ h1, τ2 ⊂ hQ ∩ h2,

P = hP ∩ h2 and Q = hQ ∩ h1.

There are two options for γ and the planes τ1, τ2. Either γ has an associated

angle that is not an integer multiple of π (Corollary 3.1.3) or γ is an involution

(Corollary 3.6.1). In the former case, γ has a unique pair of invariant planes that

must match τ1 and τ2. By Corollary 3.1.3, γ = ρ1ρ2 where ρ1 and ρ2 are type

I elliptic isometries whose respective twisting planes are τ1 and τ2. In the latter

case, P and Q are already in Kγ .

In any option for γ, the planes P,Q have their boundaries in as elements of Kγ .
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Corollary 3.6.3. Let A and B be orientation preserving isometries of H4. Then the

pair A,B is linked by half-turns if and only if KA ∩ KB is nonempty.

Proof. If A and B are linked by half-turns, then there are planes α, β and δ such that

A = HαHβ and B = HβHδ. But β is an element of both KA and KB.

If KA ∩ KB is nonempty, let β be one of its elements. Then there are α ∈ KA and

β ∈ KB such that A = HαHβ and B = HβHδ.
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Chapter 4

Conditions for Linking in Dimension 4

In this chapter, some conditions for a pair of isometries in H4 to be linked are stated

and proved. The main idea is to find a geometric or computational requirements for a

given pair to be linked. The conditions are divided into cases depending on which type

of isometry is given. Since the elliptic isometries are not included, there are total of ten

cases. Note that in the definition of linked pairs, the order of the isometries matters.

Whereas in this chapter, the order of the isometries do not matter once they are linked.

This helps in forming an algorithm in the discreteness test of the group generated by

the pair.

The conditions for linking pairs with twisting planes are quite demanding, justifying

the theorem of Basmajian and Maskit [1] that linked pairs are of measure zero. Still,

pencils can be a useful tool for finding a common perpendicular plane to factorize

orientation preserving isometries. In particular, planes in which half-turn factoring are

constructed all fit in the elements of the pencil of an isometry.

4.1 The Ten Cases

The following list is the ten cases for combinations of types of two isometries.

1. Both are pure hyperbolic.

2. Both are pure parabolic.

3. Pure hyperbolic and pure parabolic

4. Pure parabolic and pure loxodromic

5. Screw parabolic and pure hyperbolic
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6. Screw parabolic and pure parabolic

7. Pure loxodromic and pure hyperbolic

8. Both are screw parabolic.

9. Both are pure loxodromic.

10. Screw parabolic and pure loxodromic

4.1.1 Both are pure hyperbolic

Theorem 4.1.1. If A and B are pure hyperbolic isometries of H4 with ultra-parallel

axes, then there is a plane P orthogonal to both axes of A and B. Hence, A and B are

linked.

Proof. Suppose both A and B are pure hyperbolic with ultra-parallel axes. Let L be

the common perpendicular line between the axes of A and B. If the axes of A and

B lie in a plane C, then L ⊂ C and there are plenty of planes that are orthogonal

to C containing L. Pick P to be any of those planes. Then ∂P ∈ KA ∩ KB. If the

axes of A and B do not lie in the same plane, the axis of A and L still lie in a plane

P1. As the axis of B and L intersect in a single point, so does P1 and axis of B and

they are contained is a unique hyperplane C. There is a unique plane P orthogonal to

C through L. Since both axes of A and B lie in the hyperplane C, then P must be

orthogonal to both of them. Then ∂P ∈ KA∩KB. It follows that there are P1, P2 ∈ KA

and P3, P4 ∈ KB such that A = HP1HP = HPHP2 and B = HP3HP = HPHP4 .

4.1.2 Both are pure parabolic

Theorem 4.1.2. Let A and B be pure parabolic isometries of H4. Then A and B are

linked.

Proof. Suppose their fixed points xA and xB are not equal. Then there is a unique line

L = connecting xA to xB. Let hA ∈ FA be the element containing xB and hB ∈ FB the

element containing xA. Then hB ∩ hA contains the line L. Either hA ∩ hB is a circle or
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hA = hB. Let P be a circle in hA∩hB through xA and xB. Thus P is a circle in different

or same spheres in FA and FB. Then P ∈ KA ∩KB. Hence, there are P1, P2 ∈ KA and

P3, P4 ∈ KB such that A = HP1HP = HPHP2 and B = HP3HP = HPHP4 .

If xA = xB, there are still hA ∈ FA and hB ∈ FB that has three possibilities:

hA = hB; P = hA ∩ hB is a circle; or hA ∩ hB = {xA}. In the first case, let t ∈ TA.

Then hB ∩ t ∈ KA ∩ KB and so A and B are linked. In the second case, P ∈ KA ∩ KB

and links A and B. In the last case, let FA = FB which implies that KB = KA whose

elements make A and B linked.

4.1.3 Pure hyperbolic and pure parabolic

Theorem 4.1.3. Let A and B be isometries of H4. Suppose A is pure hyperbolic, and

B is pure parabolic and fix(A) ∩ fix(B) = ∅. Then A and B are linked.

Proof. Let v be the fixed point of B and L be the axis of A. Then there is hx ∈ FA

containing v. If ĥ is the hyperplane bounded by hx, there is a unique point a ∈ ĥ ∩ L.

Then there is a unique ha ∈ FB which bounds a hyperplane that contains a. Since the

hyperplanes bounded by hx and ha intersect in a, their intersection hx∩ha is at least a

plane orthogonal to L and bounded by v. Otherwise hx = ha and one can pick a plane

P ⊆ hx ∩ ha bounded by v and passes through a. Then P ∈ KA ∩ KB so A and B are

linked.

4.1.4 Pure parabolic and pure loxodromic

Let A be a pure parabolic isometry of H4 and B a pure loxodromic isometry of H4.

Suppose the fixed points of A and B in R̂3 are disjoint. The following are conditions

for A and B to be linked.

Theorem 4.1.4 (Condition 1). Suppose there is an h ∈ FA ∩ FB. Then A and B are

linked.

Proof. Let L be the boundary of the twisting plane of B, and let x be the fixed point

A. Since L ∈ DB, h intersects L in two points y and z. If x is equal to either y or
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z, then L is the unique element of DB containing x. It allows any plane of sphere t

in R̂3 containing L to be an element of both TA and RB. Hence, h ∩ t is an element

of both KA and KB that links A and B. If x, y, and z are three distinct points, they

form a unique circle L2 that must be a subset of h. Then L2 is perpendicular to L so

it is in KB. It also passes through x so L2 ∈ KA. Thus L2 ∈ KA ∩ KB so A and B are

linked.

Theorem 4.1.5 (Condition 2). If the fixed point of A is in the boundary of the twisting

plane of B, then A and B are linked.

Proof. Let x be the fixed point of A. Since x is not the fixed point of B, there is a

unique hx ∈ FB containing x. Let L be the boundary of the twisting plane of B. Then

L ∈ DB intersects h in two points, one of which is x. Let m be the other intersection

point. There is also a unique hm ∈ FA containing m. Either hm = hx which is done

in the first condition, or hm ∩ hx is a circle c since both hm and hx contain x and m.

We must show c ∈ KA ∩ KB. The intersection points of c and L are x and m, but

c ⊂ hx ∈ FB so c ∈ KB. As A is pure parabolic, any circle inside any element of FA

and passing through x is an element of KA. Hence, c ∈ KA as x ∈ c ⊂ hm ∈ FA and

x ∈ c. Then other planes can be found so that A and B are linked.

Theorem 4.1.6 (Condition 3). Let L ⊂ R̂3 be the boundary of the twisting plane of B.

If three points in L form a subset of h for some h ∈ FA, then A and B are linked.

Proof. The three points determine L and are sufficient for L to fit inside h. Let x ∈ R̂3

be the fixed point of A. The case where x ∈ L is is handled in the previous condition.

We may assume x /∈ L. Then there is a unique cx ∈ KB containing x. We must show

cx ∈ KA. As cx ∈ KB, it must intersect L in two points which are in h. But h contains

x since A is parabolic, so it has three points in common with cx. They are sufficient

for cx to be a subset of h. A circle or line in h containing x is an intersection of h with

some element of TA. Hence cx having this property, must be in KA. This implies that

A and B are linked.
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4.1.5 Screw parabolic and pure hyperbolic

Let A be screw parabolic and B be pure hyperbolic isometries of H4. Assume they have

disjoint fixed points in the boundary. Throughout this case, let x be the fixed point

of A and let L be the boundary of its twisting plane. Likewise, let dx be the unique

element of DB containing x.

Theorem 4.1.7 (Condition 1). If there is an h ∈ FA ∩ FB, then A and B are linked.

Proof. Let a and b be points in R̂3 so that dx ∩ h = {x, b} and L∩ h = {x, a}. If a = b,

then dx = L so any sphere c containing L is an element of both TB and RA. It follows

that c ∩ h is an element of both KA and KB. If a 6= b, the points a, b, and x form a

unique circle L2 in R̂3. Because a, b, x ∈ h, L2 ⊂ h. We claim that L2 ∈ KA ∩ KB.

First, L2 intersects L in two points, a and x, while sitting in h ∈ FA. Hence, L2 ∈ KA.

Next, L2 intersects dx in two points, b and x while sitting in h ∈ FB. Thus, L2 ∈ KB.

The half-turn around L2 is the desired common factor of A and B linking them.

Theorem 4.1.8 (Condition 2). If L ⊂ h for some h ∈ FB, then A and B are linked.

Proof. The hypothesis implies that h is the unique element of FB containing x. Let b be

the intersection of dx and h in R̂3 other than x. There is a unique hb ∈ FA containing

b. Let a be the intersection of hb and L other than x. Connect a, b and x with the

unique circle L2. Then L2 is a subset of both hb and h. It also connects L and dx in

two distinct points. Hence, L2 ∈ KA ∩ KB so A and B are linked.

Theorem 4.1.9 (Condition 3). If either m ∈ L or dx is orthogonal to km, then A and

B are linked.

The definition of m and km are as follows. There is a unique element hx ∈ FB

containing x, and it is orthogonal to dx through two intersection points, one of which is

x. Let m be the other intersection point. If m /∈ L there are unique elements hm ∈ FA

and km ∈ KA containing m.

Proof. Suppose m ∈ L. It is possible that dx = L which implies that hm = hx reducing

the case to the previous condition. If dx 6= L, hm ∩ hx is a circle c containing m and
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x. It follows that c ⊂ KA ∩ KB since it intersects dx and L orthogonally through two

points. Hence, A and B are linked.

If m /∈ L, the hypothesis requires that dx is orthogonal to km. It follows that

km ⊂ hx since all circles orthogonal to dx at x and m are contained in hx. Therefore,

km ∈ KB so A and B are linked.

Theorem 4.1.10 (Computational Condition). Let A be a screw parabolic isometry of

H4 leaving the z-axis of R̂3 invariant and fixing ∞. Let B be a pure hyperbolic isometry

of H4 fixing v and w in R3. If v and w are equidistant to the z-axis then A and B are

linked.

If v = (v1, v2, v3) and w = (w1, w2, w3) ∈ R3, we say that v and w are equidistant

to the z-axis if v21 + v22 = w2
1 + w2

2.

Proof. The unique element d∞ ∈ DB containing ∞ is the Euclidean line connecting v

and w. On the other hand, the unique element h∞ ∈ FB containing∞ is the orthogonal

complement of d∞ through the midpoint m of v and w. Then

m =

(
v1 + w1

2
,
v2 + w2

2
,
v3 + w3

2

)
.

Let m = (m1,m2,m3); then m1 = v1+w1
2 and m2 = v2+w2

2 . If m1 = 0 = m2, then the

hypothesis implies that v1 = v2 = w1 = w2 = 0 so d∞ is the boundary of the twisting

plane of A. It follows that h∞ is a horizontal Euclidean plane and therefore, h∞ ∈ FA.

Hence, m1 = 0 = m2 implies the first condition which is proven to link A and B.

If one of m1 and m2 is nonzero, m does not lie in z-axis so the unique element km of

KA passing through m is the Euclidean line connecting m and (0, 0,m3). Computing

the angle between d∞ and km may come from the inner product (−m1,−m2, 0)·(v−m),

but the hypothesis imply that v −m =
(
0, 0, v3−w3

2

)
. It follows that km is orthogonal

to d∞ and it satisfies the third condition so A and B are linked.

Proposition 4.1.1. If A is a screw parabolic isometry of H4 fixing ∞, leaving z-axis

invariant, and B a pure hyperbolic isometry of H4 fixing v and w in R3, then conditions

1, 2 and 3 imply the computational condition.
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4.1.6 Screw parabolic and pure parabolic

Let A be screw parabolic and B be a pure parabolic isometries of H4 with different

fixed points. Throughout this case, let x be the fixed point of A and y be the fixed

point of B. Suppose L is the boundary of the twisting plane of A. There are unique

elements dx ∈ DB containing x and dy ∈ DA containing y. If y /∈ L, denote the unique

element of KA containing y by ky.

Theorem 4.1.11 (Condition 1). If there is an h ∈ FA ∩FB, then A and B are linked.

Proof. As A and B are both parabolic, h contains both x and y. Since L ∈ DA, it

intersects h orthogonally in a point a other than x. If a = y, L = dx so any circle in

h connecting x and a is an element of KA ∩ KB making A and B linked. If a 6= y the

points a, x and y form a circle c in h. The circle c intersects L in two points and also

dx in x and y. Hence, c is in both KA and KB so A and B are linked.

Theorem 4.1.12 (Condition 2). If y ∈ L, then A and B are linked.

Proof. There are spheres hx ∈ FB and hy ∈ FA containing both x and y. If hx = hy,

A and B are linked as per previous condition. Otherwise, hx ∩ hy is a circle k passing

through x and y. If y ∈ L, k ∈ KA but k is also in KB so A and B are linked.

Theorem 4.1.13 (Condition 3). If L ⊂ h for some h ∈ FB, then A and B are linked.

Proof. We may assume y /∈ L. Otherwise, the linking of A and B is implied by the

previous condition. Then there is a unique ky ∈ KA containing y. It intersects L in a

point p other than x. The circle ky is uniquely determined by the points x, p, y ∈ h.

Hence, ky ⊂ h so ky ∈ KB since B is pure parabolic. The half-turn about ky links A

and B.

Theorem 4.1.14 (Condition 4). If ky ⊥ dx, then A and B are linked.

If y /∈ L, there is a unique ky ∈ KA containing y. If y ∈ L, there are many choices

for ky ∈ KA but choosing ky ⊥ dx is not necessary.
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Proof. There is a unique hx ∈ FB containing x. It intersects dx in x and y which are

also in ky. Every circle orthogonal to dx through x and y must be a subset of hx so

ky ⊂ hx. The span of ky ∪ dx is an element of TB so ky ∈ KB. Therefore, A and B are

linked.

4.1.7 Pure loxodromic and pure hyperbolic

Linking pairs of hyperbolic isometries are better expressed inside H4. The hyperplanes

and planes in H4 bounded by the pencils have as much interesting properties.

Let A be a pure loxodromic isometry of H4 with axis AxA and twisting plane τA.

Let B be a pure hyperbolic isometry of H4 with axis AxB. Assume AxA and AxB

are disjoint. Then there is a unique line N perpendicular to both AxA and AxB. It

intersects A in a point a and B in a point b. There is a unique hyperplane ha orthogonal

to AxA through a. Likewise, there is a unique hyperplane hb orthogonal to AxB through

b. Since AxA ⊂ τA, there is a unique line La ⊂ τA perpendicular to AxA through a.

Throughout this case, A, B, AxA, AxB, τA, N , a, b and La are used.

Theorem 4.1.15 (Condition 1). If La = N , then A and B are linked.

Proof. The hypothesis implies that τA intersects AxB at least at b. If AxB ⊂ τA, there

are plenty of planes orthogonal to τA through N . Any of them is orthogonal to AxB. If

AxB intersect τA only at b, they span a hyperplane h. There is a plane k orthogonal to

h through N . Since h contains τA and AxB, k is also orthogonal to τa and AxB. (By

dimension count, k ⊂ hb.) Hence, k is an element of both KA and KB, so A and B are

linked.

Theorem 4.1.16 (Condition 2). If La ⊂ hb, Then A and B are linked.

Proof. If La ⊂ hb, it is possible that La = N , which is the previous case. We may

assume that La 6= N . Then La and N span a plane k which sits in ha. It follows that

k ⊂ hb since both La and N lie in hb. Thus k is orthogonal to AxB and τA so k ∈ KB

linking A and B.

Computational procedure for testing the link between A and B.
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1. Compute the common perpendicular N and its endpoints n1, n2 ∈ R̂3.

2. Locate the intersection points a and b with AxA and AxB respectively.

3. Compute the distance between a and b. Build the pure hyperbolic isometry P

with fixed points n1 and n2 (i.e. along N) with translation length equal to that

distance.

4. Compute La which is the perpendicular line to AxA through a and inside the

twisting plane.

5. Compute/Locate Ma which is the image of La under P . Automatically, P (a) = b.

6. Compute the angle between AxB and Ma or check if Ma is perpendicular to AxB.

7. If they are perpendicular, A and B are linked.

4.1.8 Both are screw parabolic

Let A and B be screw parabolic isometries of H4, with disjoint fixed points x and y

respectively. Let τA and τB be their respective twisting planes. Define LA = ∂τA and

LB = ∂τB. As x 6= y, there are unique elements hx ∈ FB and hy ∈ FA such that

x ∈ hx and y ∈ hy. The conditions in which a common orthogonal plane exists are

quite restrictive, so A and B are highly unlikely linked.

Theorem 4.1.17 (Condition 1). If there is h ∈ FA ∩ FB and the points x, y, xh and

yh form a circle, Then A and B are linked.

Any h ∈ FA intersect LA in two points. Let xh be the intersection point other than

x. If h ∈ FB, let yh be the element of h ∩ LB other than y.

Proof. Let c be the circle formed by x, y, xh and yh as allowed by the hypothesis. We

must show c ∈ KA ∩ KB. Since {x, y, xh, yh} ⊂ h, c ⊂ h. Also c is orthogonal to LA

through {x, xh} so c ∈ KA. Similarly, c is orthogonal to LB through {y, yh} so c ∈ KB.

Hence A and B are linked.

Theorem 4.1.18 (Condition 2). If y ∈ LA and x ∈ LB, then A and B are linked.
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Proof. We may assume hx 6= hy; otherwise LA = LB making any circle in hx that

connects x to y an element of KA ∩ KB. Let c be hx ∩ hy which is a circle containing

{x, y}. The hypothesis imply that hy ∩ LA = {x, y} = hx ∩ LB, so c is orthogonal

to both LA and LB. Therefore, c ∈ KA ∩ KB. The existence of c makes A and B

linked.

Theorem 4.1.19 (Condition 3). If hy ∩ LA ⊂ hx, hx ∩ LB ⊂ hy and hx 6= hy, then A

and B are linked.

Proof. Let c be hx ∩ hy. Then c is a circle containing (hy ∩ LA) ∪ (hx ∩ LB). It is

orthogonal to LB and LA through two distinct points each. Hence, c ∈ KA ∩ KB. It

follows that A and B are linked.

Theorem 4.1.20 (Condition 4). If LB ⊂ hy and LA ⊂ hx, then A and B are linked.

Proof. Since LB ⊂ hy, hy ∈ RB. Let c = hy ∩ hx. Then c ∈ KB. Similarly, LA ⊂ hx

implies that hx ∈ RA so c ∈ KA. Thus A and B are linked.

4.1.9 Both are pure loxodromic

Let A and B be pure loxodromic isometries of H4 with axes AxA, AxB and twisting

planes τA, τB respectively. Assume AxA and AxB are disjoint. There is a unique line

N perpendicular to both AxA and AxB. (Similar to case 7,) There are hyperplanes ha

orthogonal to AxA through a, and hb orthogonal to AxB through b. There are also lines

La ⊂ τA perpendicular to AxA through a, and Lb ⊂ τB perpendicular to AxB through

b. Like the previous case, A and B are rarely linked.

Theorem 4.1.21. If La and Lb are coplanar, then A and B are linked.

Proof. Suppose first that N , La and Lb are distinct lines. The plane P containing La

and Lb is unique. Since N connects a and b, N lie in P . Each of τA and τB intersect P

in La and Lb respectively. So unless N coincide with either La or Lb, P is orthogonal

to both τA and τB.
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If only one of La and Lb, say La, is equal to N , τB is orthogonal to P . But

N,Lb ⊂ ha so P ⊂ ha which makes P orthogonal to τA through La. Then P is the

common orthogonal plane τA and τB.

If both La and Lb are equal to N , there are plenty of planes containing La and Lb.

However, either ha ∩ hb is a plane Q of ha = hb which contains planes Q through a and

b. In both cases, Q is orthogonal to τA, τB and the axes AxA,AxA so Q ∈ KA ∩ KB.

Hence A and B are linked.

4.1.10 Screw parabolic and pure loxodromic

Let A be screw parabolic isometry of H4 fixing x and with twisting plane τA. Let B be

a pure loxodromic isometry of H4 with axis AxB and twisting plane τB. Suppose x does

not bound AxB. There is a unique hx ∈ FB that contains x. There is also dx ∈ DB

containing x. Let x2 be the intersection of dx with hx other than x. Since x 6= x2, there

are unique elements d2 ∈ DA and h2 ∈ FA containing x2.

Let LA be the boundary of τA and LB be that of τB. Since LA ∈ DA, LA ∩ h2 has

exactly two points. Let a be the element of LA ∩ h2 other than x. Similarly, let b1 and

b2 be the elements of LB ∩ hx. Throughout this case, A, B, τA, τB, AxB, x, hx, x2, dx,

d2, h2, LA, LB, b1 and b2 are used consistently.

Theorem 4.1.22 (Condition 1). If there is an h ∈ FA ∩ FB and the points of h ∩

(LA ∪ LB) form a circle, then A and B are linked.

Proof. Since x ∈ h, then h is the unique element of FB containing x. That is h = hx.

It follows that x2 ∈ h and h is the unique element of FA containing x2. So h = hx = h2.

Hence,

h ∩ (LA ∪ LB) = (h ∩ LA) ∪ (h ∩ LB)

= (h2 ∩ LA) ∪ (hx ∩ LB)

= {x, a, b1, b2} .

Let c be the circle containing {x, a, b1, b2} according to the hypothesis. Then c ⊂ h since

{x, a, b1, b2} ⊂ h. It is orthogonal to LA through {x, a} and to LB through {b1, b2}.
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Therefore, c ∈ KA ∩ KB. It implies that A and B are linked.

Theorem 4.1.23 (Condition 2). If a ∈ hx, b1, b2 ∈ h2 and hx 6= h2, then A and B are

linked.

Proof. Let c = hx∩h2. Then c is a circle since hx 6= h2. It is orthogonal to LA through

{a, x} and to LB through {b1, b2}. Thus, c ∈ KA ∩ KB so A and B are linked.

Theorem 4.1.24 (Condition 3). If there are pA ∈ FA and pB ∈ FB such that LB ⊂ pA

and LA ⊂ pB, then A and B are linked.

Proof. Since LA ⊂ pB, then pB ∈ RA so pb 6= pA. Let c = pB ∩ pA. Then c ∈ KA as it

is an intersection of a pair in FA ×RA. Likewise, LB ⊂ pA implies that pA ∈ RB, so c

is also in KB. Hence A and B are linked.
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Chapter 5

Discreteness Conditions

The linking of a pair has a few applications to discreteness of 2-generator subgroups of

Isom
(
Hn
)
. If a group leaves a lower dimensional subplane C invariant, its discreteness

can be determined by its restriction to C as long as its action on C is faithful. Section

5.1 shows a known result that extends to dimension 4 once a pair is linked. In section

5.2, some types of pairs in Chapter 4 are guaranteed to have lower dimensional invariant

hyperplanes. Other pairs can have invariant planes if their rotational parts are half-

turns. In section 5.3, the isometries are restricted in order to reduce the discreteness

problem to lower dimensions.

5.1 Results from lower dimension

Determining and classifying discrete groups in hyperbolic geometry has been a hard

problem in any dimension. In dimension 2, there is an algorithm by Gilman-Maskit [4]

that completely determines whether a 2-generator group is discrete or not. This method

does not extend to dimension 3 since it relies in comparing traces in PSL2R either

greater than or less than, which does not work in complex numbers. In dimension 3

however, the linking by factoring allows a 2-generator group to be tested for discreteness

in certain examples.

Definition 34. Let F = {S1, S2, S3} be a set of extended Euclidean spheres in R̂n as

the visual boundary of Hn+1. Then F is called a set of non-separating disjoint spheres

if for each σ ∈ F , the elements of F \ {σ} are in a connected component of R̂3 \ σ.

Definition 35. Let A,B be orientation preserving isometries of Hn that are linked by

half-turns Hα, Hβ, Hδ for some (n − 2)-dimensional planes α, β and δ. Then (A,B)
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has the non-separating disjoint sphere property if there are extended Euclidean spheres

C1, C2 and C3 in the boundary at infinity such that C1 ⊃ α, C2 ⊃ β, C3 ⊂ δ and

{C1, C2, C3} is a set of non-separating disjoint spheres.

Theorem 5.1.1 (Gilman, [6]). If a non-elementary marked group G = 〈A,B〉 ⊂ PSL2C

has the non-separating disjoint circle property, then G is discrete.

Gilman and Keen [8] has another discreteness condition in dimension 3 on 2-generator

elementary subgroups given by defining a core geodesic which is essentially the common

perpendicular line between the axes of the generators. The core geodesic serves as the

axis of a half-turn that links a pair. Every pair of isometries of H3 is linked by half-turns

so requiring them to be linked is superfluous.

Theorem 5.1.2 (Gilman-Keen, [8]). If all palindromes in a non-elementary group

G = 〈A,B〉 ⊂ PSL2C have axes that intersect the core geodesic L in a compact interval

then G is discrete.

In dimension 4 and above, Basmajian and Maskit [1] show that in a measure theo-

retic sense, almost all pairs of isometries are not linked. The linking must be imposed

in order to use the arguments of Theorem 5.1.2 since it depends on the simultaneous

factoring of A and B which is automatic in dimension 3. Fortunately, some conditions

in Chapter 4 imply that certain linked pairs have invariant subplanes of lower dimen-

sion. The discreteness question becomes a lower dimensional problem and linking may

not be necessary.

Meanwhile, linking by half-turns must be imposed in dimensions 4 or higher to

extend Theorem 5.1.1. The conditions in Chapter 4 allow geometric criteria for a pair

to be linked by half-turns.

Corollary 5.1.1 (nsds condition). Let A and B be linked pairs of orientation preserving

isometries of H4 such that 〈A,B〉 is a non-elementary group, A = HPAHP and B =

HPHPB for some planes PA, P, PB ⊂ H4. If there are non-separating and disjoint

spheres SA, S, SB ⊂ R̂3 containing ∂PA, ∂P, ∂PB respectively, then 〈A,B〉 is discrete.

Proof. Let G3 = 〈HPA , HP , HPB 〉. If a sphere σ contains the boundary of the twisting
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plane of a half-turn H, then σ ∈ FH and there is σ′ ∈ FH such that H = RσRσ′ =

Rσ′Rσ. The spheres σ and σ′ are orthogonal so Rσ′ leaves σ invariant.

Going back to G3, there is a side-pairing between the half-turns and F . In particular,

HPA maps SA to itself, HP maps S to itself, and HPB maps SB to itself. Since the

elements of F are non-separating, they bound a polyhedron in H4 that satisfy the

hypothesis of Poincaré Polyhedron Theorem [17]. The conclusion of this theorem shows

that G3 is discrete, but 〈A,B〉 < G3 so 〈A,B〉 is discrete.

5.2 Pairs with Invariant Subplanes

A group of isometries of H4 with an invariant hyperplane or plane C can be tested

for discreteness by restricting its action on C as long as no nontrivial element fixes C

pointwise. If the group is discrete as isometries of C, then the group is discrete as

isometries of H4. The discreteness problem reduces to lower dimension.

5.2.1 Classical Pairs

If A,B are isometries of H4 do not have rotational parts, they have at least one common

invariant hyperplane. They are automatically linked as shown in Chapter 4. Therefore,

the discreteness of 〈A,B〉 can be analyzed by treating its elements as isometries of H3.

Corollary 5.2.1. For any pair of pure parabolic isometries A, B of H4, there is a

hyperplane C ⊂ H4 that is left invariant by the group generated by A and B.

Proof. Suppose first that A and B have a common fixed point x in the boundary. Pick

any y in R̂3 other than x. Then there are planes and hyperplanes bounded by h1 ∈ FA,

p1 ∈ DA, h2 ∈ FB, p2 ∈ DB containing y. As p1 and p2 intersect at y, they are either

equal or they span a sphere Ĉ that contain x and y. If p1 = p2, let Ĉ be any sphere

containing p1. The sphere Ĉ is an element of both TA and TB since it contains both

p1 and p2. Hence, the hyperplane C bounded by Ĉ is left invariant by both A and B.

The rest of the group 〈A,B〉 leave C invariant as well.

Suppose next that A fixes x and B fixes y in the boundary where x 6= y. Then there

are planes and hyperplanes bounded by p1 ∈ DA, h1 ∈ FA containing y and p2 ∈ DB,
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h2 ∈ FB containing x. If p1 = p2, any sphere Ĉ containing p1 belong to TA ∩ TB.

If p1 6= p2, they still intersect at x and y so they span a sphere Ĉ that consequently

belongs to both TA and TB. The hyperplane C bounded by Ĉ is therefore left invariant

by A and B. This suffices to show C is left invariant by 〈A,B〉.

Corollary 5.2.2. Let A be pure hyperbolic and B be pure parabolic isometries of H4.

Then there is a hyperplane in H4 that is left invariant by the group generated by A and

B.

Proof. Suppose first that the fixed points of A and B are three different points. Let

x the fixed point of B and let y and z be those of A. Pick hx ∈ FA and px ∈ DA

containing x. Since px is a circle, px ∩ hx have two points, one of which is x. Let x2 be

the other point. Then there are h2 ∈ FB and p2 ∈ DB containing x2. The circles px

and p2 span a sphere Ĉ which bounds a hyperplane C. Since Ĉ ∈ TA ∩TB, then 〈A,B〉

must leave C invariant.

Suppose the fixed point of B is common with one of the points of A. There is a

t ∈ TB containing the fixed point of A that is not common with B. Then t has the

fixed points of A so t ∈ TA. Thus t is left invariant by A and B.

Corollary 5.2.3. If A and B are pure hyperbolic isometries of H4 with ultra-parallel

axes, then there is a hyperplane C that is left invariant by the group 〈A,B〉.

Proof. If the axes of A and B are subsets of the same plane P , let C be any hyperplane

containing P . Otherwise, let N be the common perpendicular between their axes. The

axis of A and N span a unique plane that intersect the axis of B in one point. Together

AxA ∪ AxB ∪ N span a unique hyperplane C. In both cases, there is a hyperplane C

containing the axes of A and B. Since both A and B are pure hyperbolic, they leave C

invariant. If W is a composition of A, B or their inverses, W also leaves C invariant.

Hence the group 〈A,B〉 leaves C invariant.
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5.2.2 Pairs with Rotational Parts

Let A be an orientation preserving isometry of H4 with a twisting plane P and B

be either a pure parabolic or pure hyperbolic isometry of H4. If ∂P ∈ DB, then B

and therefore 〈A,B〉 leave P invariant. The discreteness of 〈A,B〉 can possibly be

answered by treating A and B as isometries of H2. If A has a twisting hyperplane, it is

possible for its boundary to be an element of TB. In this case, the twisting hyperplane

is left invariant by the group 〈A,B〉 as acting on H3. If both A and B have rotational

parts that are not half-turns, their twisting planes must match to have an invariant

plane. If they both have twisting hyperplanes, those have to match to have an invariant

hyperplane.

The question about how a pair is linked is a different problem. Indeed, one can

impose conditions on a pair for them to be both linked and have an invariant subplane.

Imposing the condition of having an invariant subplane together with linking reduces

the question of discreteness to the known results in lower dimensions. However the

conditions in Chapter 4 may imply that the invariant subplanes do not match. Hence

the idea of finding an invariant subplane for both generators is too restrictive to use.

If the rotational part of an isometry A in a pair is a half-turn, then any hyperplane

containing its twisting plane has its boundary in RA. If B leaves a hyperplane h

invariant in RA, then 〈A,B〉 leaves h invariant but reverses the orientation of h even if

A is orientation preserving in H4. The theorems mentioned here from [8] and [6] assume

that the isometries are orientation preserving although the statements may still hold.

5.3 Restricting the Isometries

If A and B leave a common plane or hyperplane C invariant, the group 〈A,B〉 must

also leave C invariant. Let n = dim(C) so n is either 2 or 3. The action of 〈A,B〉 on

H4 restricts to an action on C which is isometric to Hn. The discreteness of 〈A,B〉 <

Isom+
(
H4
)

reduces to testing the discreteness on its action on Hn. There are non-

separating disjoint circles [2, 4, 6, 16] and core geodesic [8] tests that can be used to

check discreteness.



87

Theorem 5.3.1. Let A and B be pure hyperbolic isometries of H4 with ultra-parallel

axes. Let L be the common perpendicular line through their axes. If all palindromes

have axes that intersect L in a compact subset, then 〈A,B〉 is discrete.

Proof. If A and B are both pure hyperbolic with ultra-parallel axis, then by Theorem

4.1.1, there is a hyperplane C that is left invariant by 〈A,B〉. The action of 〈A,B〉

on H4 restricts to C which is isometric to H3. Let L be the common perpendicular

line between the axes of A and B. By Lemma 5.1 of [8] the palindromes in A and B

have axes intersecting L orthogonally. If these intersections form a compact subset, by

Theorem 6.3 of [8], the group 〈A,B〉 is discrete.

Theorem 5.3.2. Let A and B be pure parabolic isometries of H4 with different fixed

points x and y. If all non-parabolic palindromes have axes that intersect the line [x, y]

connecting x to y in a compact subset, then 〈A,B〉 is discrete.

Proof. By Corollary 5.2.1, there is a hyperplane C that is left invariant by the group

〈A,B〉. The action of this group can be restricted to C ⊃ [x, y] which is isometric to H3.

By Lemma 5.1 of [8] the non-parabolic palindromes in A and B have axes intersecting

[x, y] orthogonally. If these intersections form a compact subset, by Theorem 6.3 of [8],

the group 〈A,B〉 is discrete.

Theorem 5.3.3. Let A be pure hyperbolic and B be pure parabolic isometries of H4

with disjoint fixed points at infinity. If the axes of palindromes in A and B intersect

the core geodesic in a compact subset, then 〈A,B〉 is discrete.

Proof. By Corollary 5.2.2, there is a hyperplane C that is left invariant by the group

〈A,B〉. The action of this group can be restricted to a hyperplane C which contains

the line L perpendicular to AxA and has fix(B) in its horizon. The restriction of the

action of 〈A,B〉 on C has L as its core geodesic. Axes of non-parabolic palindromes

in A and B intersect L orthogonally. If these intersections from a compact subset, by

Theorem 6.3 of [8], the group 〈A,B〉 is discrete.
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Theorem 5.3.4. Let A and B be linked pairs with an invariant plane or hyperplane C

and core geodesic L so that 〈A,B〉 is non-elementary. If all non-parabolic palindromes

have axes that intersect L in a compact interval, then 〈A,B〉 is discrete.
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Chapter 6

Detailed Investigation of Enumeration Schemes

In this chapter we turn to a different topic, the enumeration of primitive words in a

rank two free group. Every primitive word in such a group is conjugate to a unique

palindrome or to a product of two palindromes. One enumeration scheme for primitives

uses what are known as E-words. An E-word is either the unique palindrome in the

conjugacy class of the word or a unique product of two palindromes that have previously

occurred in the enumeration scheme. Here we present two alternative ways of listing or

studying the E-words defined in [9] first by defining rational numbers called “orphans”

and second by defining a new string called an E-sequence that comes from modifying the

Gilman-Maskit algorithm in [4]. Farey words are the words that arise in the Keen-Series

enumeration scheme [11]. Applications of the latter alternative mainly give comparisons

of the Keen-Series Farey words [11] with E-words. Using the former alternative, the

definition of E-words, which is a recursive definition, can also be modified so as to have

an alternative terminating conditions. This gives quicker computations. The main

result here is Theorem 6.1.2. An implementation of the enumeration scheme for E-

words using Theorem 6.1.2 can be found in the webpage https://pegasus.rutgers.

edu/~benjsilv/turboenumerate.html.

By studying the mapping classes of a punctured torus, one concludes that the prim-

itive elements of a rank-2 free group can be indexed, up to conjugacy, by rational

numbers and infinity. Gilman and Keen [9] derived an iteration scheme that takes a

rational number and gives back a primitive element of the rank-2 free group F2 with

the options of providing its primitive associate. This iteration terminates on two con-

ditions, when the argument or input is either 0 or ∞. In section 6.1.4, an alternative
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but equivalent conditions for terminating the recursive iteration is shown. These con-

ditions enable a faster computation of the enumeration scheme whether manually or by

a machine.

The Gilman-Maskit algorithm for determining the discreteness or non-discreteness

of a two-generator subgroup of PSL2R stops with a pair of generators that are Farey

words. The Farey words are primitive words that are indexed by rational numbers

and infinity. The E-words, which are primitive words with either a palindromic form

or a palindromic product form, are also indexed by rational numbers and infinity. In

section 6.2, the Gilman-Maskit algorithm is modified so that the stopping generators

are E-words.

We can view the enumeration scheme and the Gilman-Maskit algorithm as being

reverses of each other in the following sense. The enumeration scheme begins by splitting

a given rational number into the Farey sum of two other rational numbers. It keeps

on splitting the other rational numbers until it ends with the E-word that correspond

to either 0 or ∞. Technical details are given below, but roughly speaking both the

modification of enumeration in section 6.1.4 and as well as the original definition of

the enumeration scheme take a continued fraction expansion [a0; a1, a2, . . . , ak] and

starts with ak and runs down to a0. The difference between these two is that the

alternative procedure that comes out of the first modification terminates the recursion

at [a0; 1] whereas the original one keeps on with the recursion. On the other hand,

the modified Gilman-Maskit algorithm takes the same continued fraction expansion

[a0; a1, a2, . . . , ak] but starts with a0 and ends with ak.

Finally, we apply our investigations of the different iteration schemes to obtain a

theorem, Theorem 6.2.8 about the number of E-words of a given length within an

interval.

6.1 Equivalent Conditions for Terminating Palindromic Primitives

As indicated above, it is well known that the conjugacy classes of the primitive elements

of a rank-2 free group F2 can be indexed by rational numbers and infinity up to taking
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inverses. Moreover, it is also known that for each conjugacy class of primitive elements,

there is a representative that is either a palindrome or product of two palindromes.

Gilman and Keen [9] prove these results by defining a function E : Q ∪ {∞} → F2 =

〈A,B〉. This function is recursive and terminates on conditions 0 7→ A−1 and ∞ 7→ B.

In this section, we give non-recursive formulas for this function E in cases where the

rational number is an integer or reciprocal of an integer. These formulas serve as

an alternative terminating conditions for the original enumerating scheme derived by

Gilman and Keen [9].

The original definition of the enumeration scheme can be implemented and run in

a machine without any modification. However every time a recursion “calls itself,” the

state of the previous “caller” is stored until the recursion stops calling itself. It is often

efficient for a recursion to minimize calling itself in order to avoid wasted resources

such as time and storage space. The non-recursive formulas for special cases reduce the

self-calling of the recursion. An implementation of the enumeration scheme of E-words

using Theorem 6.1.2 can be found in the webpage https://pegasus.rutgers.edu/∼ ben-

jsilv/turboenumerate.html. If the original definition is implemented instead, the ma-

chine can run out of allocated space for saving the state of an iteration and halt without

the desired output. Hence applying Theorem 6.1.2 allows a running implementation to

work on much more range of inputs.

6.1.1 Summary of the Gilman-Keen Enumeration Scheme

The notation used here for elements of Q ∪ {∞} are of the form p/q where p ∈ Z,

q ∈ Z ∩ [0,∞) and gcd(p, q) = 1. The element ∞ is denoted by 1/0. By definition, 1
0

and 0
1 are in lowest terms.

Definition 36. Let p/q, r/s ∈ Q∪ {∞}. The pair p/q and r/s are called Farey neigh-

bors if |ps− rq| = 1.

If p/q and r/s are Farey neighbors, the Farey sum of p/q and r/s is

p

q
⊕ r

s
=
p+ r

q + s
.
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Both p/q and r/s are Farey neighbors of their Farey sum. The Farey neighbors

do not have transitive property. A rational number may have infinitely many Farey

neighbors but the set rational numbers that are its Farey neighbors is certainly bounded.

We give a name for its minimum and maximum.

Definition 37. The smallest and largest Farey neighbors of a nonzero rational number

p/q are called parents of p/q.

The details of the Gilman-Keen enumeration scheme can be found in [9]. The

following is a brief overview. Set E0/1 = A−1 and E1/0 = B. For the rest of Q, take

the parents m/n and r/s of p/q such that m
n < p

q <
r
s . Define Ep/q recursively by

Ep/q =


Er/sEm/n if pq is odd,

Em/nEr/s if pq is even.

Definition 38. The function E : Q∪ {∞} → F2 given by p/q 7→ Ep/q is called the the

Gilman-Keen enumeration scheme or simply enumeration scheme.

The definitions of E0/1 and E1/0 are called terminal conditions since they do not

require breaking a fraction into a Farey sum of their parents. Hence, we call the elements

0 and ∞ of Q ∪ {∞} orphans.

6.1.2 Non-recursive Formulas for Special Cases

In this section, formulas are given for En/1, E1/n, Ep/(p+1), and E(p+1)/p for all n ∈ Z

and nonnegative integers p. Since the enumeration scheme is a recursive definition, the

corresponding words of non-orphans are cumbersome to compute. However, formulas

can be derived on some cases.

Lemma 6.1.1. For n > 1, the parents of 1
n are 0

1 and 1
n−1 . For n > 0, the parents of

n
1 are 1

0 and n−1
1 .

Proof. Since 1
0 = ∞, any other Farey neighbor of n

1 must be finite. Suppose p/q is a

finite Farey neighbor of n. We may assume q ≥ 1; otherwise, pass the negative sign to

p. Then, p
q < n ⇒ p < qn. Since p/q is a Farey neighbor of n, |p − qn| = 1. Hence,
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qn− p = 1, and

q ≥ qn− p =⇒ p ≥ qn− q

=⇒ p ≥ q(n− 1)

=⇒ p

q
≥ n− 1.

Since n− 1 is a Farey neighbor of n, n− 1 must be the lower parent of n.

Next, we show the parents of 1
n . Suppose n > 1 and p

q is a Farey neighbor of 1
n with

p
q >

1
n . Since n > 1, 1

n > 0 so we assume p ≥ 1 and q ≥ 1. Then |pn − q| = 1 and

pn > q ⇒ pn− q = 1. Hence,

p ≥ 1 =⇒ p ≥ pn− q

=⇒ q ≥ pn− p

=⇒ q ≥ p(n− 1)

=⇒ 1

n− 1
≥ p

q
.

Since 1
n−1 is a Farey neighbor of 1

n , it is the greater parent of 1
n . Lastly, if a Farey

neighbor p
q ≤

1
n , then q − pn = 1 ⇒ q − 1 = pn ⇒ p = q−1

n . Since n > 1 and we may

assume that q ≥ 1, it implies p ≥ 0. Hence p
q ≥ 0. Since 0 is a Farey neighbor of 1

n , 0
1

must be lower parent of 1
n .

Corollary 6.1.1. If n is a negative integer, the parents of n are ∞ and n + 1; the

parents of 1
n are 0 and 1

n+1 for n < −1.

Proof. If n < 0, then n + 1 is the greatest Farey neighbor of n other than ∞. Using

similar methods, ∞ is the lowest possible parent of a negative rational number. On

the other hand, if n < −1, then −n > 1, so the parents of 1
−n are 0 and 1

−n−1 =

− 1
n+1 . Hence, the minimum and maximum Farey neighbors of 1

n are −1
−(n+1) and 0

respectively.

Lemma 6.1.2. Let p ∈ N. The parents of p
p+1 are p−1

p and 1
1 . The parents of p+1

p are

p
p−1 and 1

1 .
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Proof. Suppose m
n < p

p+1 is a Farey neighbor with n ≥ 1. Then |mp+m− pn| = 1 and

pn > mp+m⇒ pn−mp−m = 1.

n ≥ 1 =⇒ n ≥ pn−mp−m

=⇒ m+mp ≥ pn− n

=⇒ m(1 + p) ≥ n(p− 1)

=⇒ m

n
≥ p− 1

p+ 1
.

However,

−1 > 1 =⇒ p− 1 > p+ 1

=⇒ p− 1

p+ 1
> 1 > 1− 1

p
=
p− 1

p
.

Since p−1
p is a Farey neighbor of p

p+1 , p−1p is a parent of p
p+1 . In the case where m

n > p
p+1 ,

we have mp+m > np =⇒ mp+m−pn = 1. Assuming n ≥ 1, n ≥ mp+m−pn. Then,

n+ pn ≥ mp+m =⇒ n(1 + p) ≥ m(p+ 1)

=⇒ n ≥ m

=⇒ m

n
≤ 1.

Since 1 is Farey neighbor of of p
p+1 , 1 must be a parent of of p

p+1 .

The following is initially an observation from computations by a machine.

Theorem 6.1.1. For each p ≥ 0, Ep/(p+1) =
(
A−1B

)p
A−1 and E(p+1)/p =

(
BA−1

)p
B.

Proof. For p = 0, E0/(0+1) = E0/1 = A−1 =
(
A−1B

)0
A−1 and E(0+1)/0 = E1/0 = B =(

BA−1
)0
B. Suppose the assertion is true for high enough p. Then,

E p+1
p+2

= E p
p+1

E 1
1

=
(
A−1B

)p
A−1 ·BA−1 =

(
A−1B

)(p+1)
A−1

E p+2
p+1

= E 1
1
E p+1

p
= BA−1

(
BA−1

)p
B =

(
BA−1

)(p+1)
B.

Note that p(p+ 1) is always even, p
p+1 < 1 and p+1

p > 1.

In computing a primitive word in the image of the enumerating scheme, the recursion

eventually runs through the decreasing entries of a continued fraction [a0; a1, . . . , ak].
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The fraction n
1 has the form [n; ] and 1

n has the form [0;n]. Thus, a formula for these

cases saves the iteration several steps. To construct more unified formulas, a function

s : R→ {−1, 1} is defined by

s(x) =


1 for x ∈ (−∞, 0),

−1 for x ∈ [0,∞).

Theorem 6.1.2. Let n ∈ Z. Then,

En
1

= B

⌈
|n|
2

⌉
As(n)B

⌊
|n|
2

⌋

and

E 1
n

= A
s(n)

⌊
|n|
2

⌋
BA

s(n)
⌈
|n|
2

⌉
.

Proof. The cases for n = −2,−1, 0, 1, 2 are given below. The inductive steps are shown

for n+ 2 and n− 2.

Case n = 0:

B

⌈
|0|
2

⌉
As(0)B

⌊
|0|
2

⌋
= B0A−1B0 = A−1 = E0/1

and

A
s(0)

⌊
|0|
2

⌋
BA

s(0)
⌈
|0|
2

⌉
= A0BA0 = B = E1/0.

Case n = 1:

B

⌈
|1|
2

⌉
As(1)B

⌊
|1|
2

⌋
= B1A−1B0 = BA−1 = E1/1

and

A
s(1)

⌊
|1|
2

⌋
BA

s(1)
⌈
|1|
2

⌉
= A−1·0BA−1·1 = BA−1 = E1/1.

Case n = −1:

B

⌈
|−1|
2

⌉
As(−1)B

⌊
|−1|
2

⌋
= B1A1B0 = BA = E−1/1

and

A
s(−1)

⌊
|−1|
2

⌋
BA

s(−1)
⌈
|n|
2

⌉
= A1·0BA1·1 = BA = E1/−1.
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Case n = 2:

B

⌈
|2|
2

⌉
As(2)B

⌊
|2|
2

⌋
= B1A−1B1 = BA−1B

E2/1 = E1/1E1/0 = BA−1 ·B

and

A
s(2)

⌊
|2|
2

⌋
BA

s(2)
⌈
|2|
2

⌉
= A−1BA−1

E1/2 = E0/1E1/1 = A−1 ·BA−1.

Case n = −2:

B

⌈
|−2|
2

⌉
As(−2)B

⌊
|−2|
2

⌋
= B1A1B1 = BAB

E−2/1 = E−1/1E1/0 = BA ·B

and

A
s(−2)

⌊
|−2|
2

⌋
BA

s(−2)
⌈
|−2|
2

⌉
= A1·1BA1·1 = ABA

E1/−2 = E0/1E−1/1 = A ·BA.

The following are the inductive steps. Assume that for n high or low enough, the

assertions are true.

Case n+ 2:

Assume n ≥ 0. Then,

B

⌈
|n+2|

2

⌉
As(n+2)B

⌊
|n+2|

2

⌋
= B

⌈
|n|
2

⌉
+1
As(n)B

⌊
|n|
2

⌋
+1

since |n+2|
2 = n

2 + 1 and s(n) = s(n+ 2).

En+2
1

=


E(n+1)/1E1/0 =

(
E1/0En/1

)
E1/0 if n is even

E1/0E(n+1)/1 = E1/0

(
En/1E1/0

)
if n is odd

= BEn
1
B

= B

(
B

⌈
|n|
2

⌉
As(n)B

⌊
|n|
2

⌋)
B

= B

⌈
|n|
2

⌉
+1
As(n+2)B

⌊
|n|
2

⌋
+1
.
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A
s(n+2)

⌊
|n+2|

2

⌋
BA

s(n+2)
⌈
|n+2|

2

⌉
= A

s(n)
(⌊
|n|
2

⌋
+1
)
BA

s(n)
(⌈
|n|
2

⌉
+1
)

= As(n)A
s(n)

⌊
|n|
2

⌋
BA

s(n)
⌈
|n|
2

⌉
As(n)

= As(n)E 1
n
As(n).

E1/(n+2) =


E0/1E1/(n+1) = E0/1

(
E1/nE0/1

)
if n is even

E1/(n+1)E0/1 =
(
E0/1E1/n

)
E0/1 if n is odd

= E0/1E1/nE0/1

= As(n)E1/nA
s(n)

Case n− 2:

Assume n < 0. Then,

|n− 2|
2

=
|(−1)(−n+ 2)|

2
=
−n+ 2

2
=
−n
2

+ 1

and

s(n− 2) = s(n).

Therefore,

B

⌈
|n−2|

2

⌉
As(n−2)B

⌊
|n−2|

2

⌋
= B

⌈
|n|
2

⌉
+1
As(n)B

⌊
|n|
2

⌋
+1

= BEn/1B

= E1/0En/1E1/0

= E(n−1)/1E1/0

= E(n−2)/1.

And also,

A
s(n−2)

⌊
|n−2|

2

⌋
BA

s(n−2)
⌈
|n−2|

2

⌉
= A

s(n)
(⌊
|n|
2

⌋
+1
)
BA

s(n)
(⌈
|n|
2

⌉
+1
)

= As(n)E1/nA
s(n)

= E0/1E1/nE0/1

= E1/(n−1)E0/1

= E1/(n−2)
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Note that the enumeration scheme terminates the recursion on the condition E0/1 = A

for negative numbers even if 0
1 7→ A−1.

6.1.3 Examples

Some examples are shown in this section. The details below are not exhaustive in

computing the parents of the given fraction, but Theorem 6.1.2 is directly applied.

E17/3 = E6/1E11/2 = E6/1

(
E5/1E6/1

)
= B3A−1B3 ·

(
B2A−1B2 ·B3A−1B3

)
= B3A−1B3 ·B3A−1B5A−1B3

= B3A−1B6A−1B5A−1B3

E2/21 = E1/11E1/10

= A−5BA−6 ·A−5BA−5

= A−5BA−11BA−5

E3/31 = E1/10E2/21 = E1/10

(
E1/11E1/10

)
= A−5BA−5 ·A−5BA−6 ·A−5BA−5

= A−5BA−10BA−11BA−5

E31/9 = E7/2E24/7

= E7/2

(
E17/5E7/2

)
= E7/2

(
E7/2E10/3

)
E7/2

= E7/2E7/2

(
E3/1E7/2

)
E7/2

=
(
E7/2

)2
E3/1

(
E7/2

)2
=
(
E3/1E4/1

)2
E3/1

(
E3/1E4/1

)2
=
(
B2A−1B1 ·B2A−1B2

)2 (
B2A−1B1

) (
B2A−1B1 ·B2A−1B2

)2
= B2A−1B3A−1B4A−1B3A−1B4A−1B3A−1B3A−1B4A−1B3A−1B2
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6.1.4 Alternative Termination Conditions

Since using Theorem 6.1.2 allows the enumeration scheme to terminate the recursion

earlier, we conclude this section with the alternative but equivalent terminating condi-

tions.

Theorem 6.1.3. The Gilman-Keen enumeration scheme can have its recursion termi-

nated using the conditions

En
1

= B

⌈
|n|
2

⌉
A−1B

⌊
|n|
2

⌋
E 1
n

= A
−
⌊
|n|
2

⌋
BA

−
⌈
|n|
2

⌉

for n ∈ Z ∩ [0,∞) ; and

En
1

= B

⌈
|n|
2

⌉
AB

⌊
|n|
2

⌋
E 1
n

= A

⌊
|n|
2

⌋
BA

⌈
|n|
2

⌉

for n ∈ Z ∩ (−∞, 0).

Proof. First we must show that these terminating conditions give the same words as

those of the original enumeration scheme. By Theorem 6.1.2, these conditions give the

same words, but only allows the recursion to terminate early. Next, we show that these

conditions eventually stops the iteration of the enumerations scheme. From [9], the

iteration stops under only two conditions: E0/1 = A−1, A and E1/0. If we have these

two conditions, the iteration must stop. These two conditions are exactly the case

n = 0, as shown in the proof of Theorem 6.1.2. Thus, the conditions above terminate

the iteration.

Remark:

It has been observed initially from machine computations that once the Theorem 6.1.2

is used as a terminating condition, the original ones are not needed anymore.

6.2 The Modified Gilman-Maskit Algorithm

A linear step in the Gilman-Maskit algorithm sends the ordered pair (g, h) to (g, gh).

A Fibonacci step sends the pair (g, h) to (gh, g) [4,13,14]. Which step is used or picked
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depends on the traces of the new generators; the one with lower trace should occupy

the left spot. It comes from the assumption that the old pair has tr2(g) < tr2(h).

The main idea of a ‘step’ is to replace one of the two generators with their product.

By keeping one of the generators, this procedure ensures that the groups generated by

the old and new pairs are the same. The algorithm retains the generator with lower

trace. The following is the proposed new ‘step’ in picking new generators from a given

ordered pair (a, b).

conditions for a and b preserve a preserve b

both a and b are palindromes (a, ba) (ba, b)

a is not a palindrome (a, ab) (ab, b)

b is not a palindrome (a, ab) (ab, b)

Note that there are no assumptions about the traces of a and b, but it assumes a takes

the left spot and both generators are either a palindrome or a product of palindromes.

Since a generator is not usually expressed as product of other generators, there should

be a new definition of a palindrome.

6.2.1 Summary of Gilman-Maskit Algorithm

The Gilman-Maskit algorithm takes two elements A and B of PSL2R and gives a definite

output: either 〈A,B〉 is discrete; or not. The algorithm uses conditions, e.g. Poincaré

polygon theorem or Jorgensen’s inequality, to decide whether the group is discrete or

not using the generators A and B. If it can not decide using A and B, the generators

are combined to construct new generators to use for testing discreteness.

One such combination is the pair (A,AB) and the traces of their matrices are

reduced after the iteration. Eventually the process of changing the generators stop and

the algorithm makes a decision [4].

Other combinations and conditions are also used but the step that changes (A,B)

into (A,AB) called here a Nielsen step is the main modification of this section.
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6.2.2 Redefining Palindromes

Let L be a hyperbolic line or geodesic in H3, the 3-dimensional hyperbolic space. Al-

though a subgroup of PSL2R acts on the upper-half space H2, the action always extend

to H3 ∪ Ĉ. Typically, L is the common perpendicular line of the axes of a fixed pair of

elements a0 and b0. Let HL ∈ PSL2,C be the half-turn around L.

Definition 39. Let g ∈ PSL2C. We say g is a palindrome with respect to L if

g = HLg
−1HL.

If g ∈ 〈A,B〉, the definition does not depend on the factorization of g in terms of

A and B. If L is the common perpendicular non-degenerate line through the axes of

A and B, and g is a palindrome with respect to L, then g as a word in A and B reads

the same forward and backward. The following is a reworded lemma in [8].

Theorem 6.2.1. Let W be a word and in the generators A and B. Let L be the

common perpendicular through the axes of A and B. Then W reads the same forward

and backward if and only if W is a palindrome with respect to L.

This definition allows the modification to be well-defined if a line L is fixed. To do

this, fix the initial pair of generators (a0, b0) and construct their common perpendicular

L as in [4] or [8]. Alternatively, we can keep track of the ‘steps’ and tell which of the

generators or if none is the product of palindromes.

6.2.3 A Second Look at the Original Algorithm

The original Gilman-Maskit algorithm has a few assumptions about the given pair

of generator (a, b). First it assumes that the fixed points are oriented so that the

attracting points are on the opposite sides of the common perpendicular. Second it

assumes tr2(a) < tr2(b). Hence, the generator that needs to be retained is certainly a.

The order of the new generators is the difference between the linear and Fibonacci

steps. The Fibonacci step seems to ‘switch’ the order done by the linear step. The F-

sequence (n1, n2, . . . , nk) in [7] is a notation for recording the iteration in the Gilman-

Maskit algorithm that stores the number of consecutive linear steps before the next
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Fibonacci step. Thus n1 is the number of first consecutive linear steps before the first

Fibonacci step, n2 is the number of second consecutive linear steps, and k−1 (or k) is the

number of all Fibonacci steps. The Fibonacci step is the only time the change-of-order

is tracked in terms of recording the F-sequence.

The first assumption can be assured by replacing the generators by inverses when-

ever appropriate. The second assumption is assured by switching the order. These

assurances are actually elements of Aut(F2) that are usually ignored (on purpose) when

recording the F-sequence and even when defining the algorithm itself.

In ignoring the action of certain elements of Aut(F2), the palindromic and product-

of-palindrome forms of the primitive elements are destroyed. Thus, the elements of

Aut(F2) used in every ‘step’ of the algorithm must be picked carefully to preserve the

palindromic form. In particular, the ‘switching’ automorphism is not used at all.

Switching the generators is not essential to the original algorithm. The important

things are that 1) one of the generators is preserved; and 2) the new generator is

a product of the two previous ones. The proposed modification respects these two

properties.

Remark:

It just turns out that the classification of steps into linear and Fibonacci is compatible

with the Farey words. The winding steps defined in [13,14] are not elements of Aut(F2)

at all but it seems not to be destructive of the palindromic forms [8]. However, it does

not produce the E-words in the p/q form.

6.2.4 New Linear and Fibonacci Steps

The original linear step seems to preserve the left generator and change the other. The

original Fibonacci step turns the left generator into the right generator, and hence seems

to change both generators. The F-sequence in [7] records the consecutive linear steps

before a Fibonacci step. The proposed new steps here always preserve one generator

including its position whether left or right. Instead of classifying the steps, we define

a new sequence [n0;n1, n2, . . . , nk] called E-sequence. Let n0 be the number of steps
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in preserving the initial right generator before changing it. Let n1 be the number of

steps in preserving the initial left generator before changing it. Let n2 be the number

of steps the next right generator is preserved. The rest of the nis alternates between

left and right generators. So for even i, ni steps preserve the right generator; for odd i,

ni steps preserve the left generator. If the algorithm preserves the left generator first,

we let n0 = 0. All nis take positive integers except n0 can take a zero value. Hence,

an E-sequence can take continued fraction expansion values of any positive rational

number p/q.

6.2.5 From E-sequence to E-words

The main purpose of the modification is to end the algorithm with E-words. Since

tr2(ab) = tr2(ba) and the modification uses only Nielsen automorphisms, the proposed

method stops the algorithm with the same number of steps and complexity as the

original one. In section 6.2.7, we prove that this modification produces E-words in the

end. More precisely and more strongly,

Theorem 6.2.2. Let [n0;n1, n2, . . . , nk] be the continued fraction expansion of the non-

negative rational number p/q. Then the last changed generator of the modified Gilman-

Maskit algorithm using the E-sequence [n0;n1, n2, . . . , nk] is the E-word corresponding

the rational number −p/q.

Examples of the Modified Algorithm

The following shows the modified algorithm using the E-sequence [5; 4, 3].

(a, b)→ (ba, b)→ (bab, b)→
(
b2ab, b

)
→
(
b2ab2, b

)
→
(
b3ab2, b

)
→
(
b3ab2, b3ab3

)
→
(
b3ab2, b3ab5ab3

)
→
(
b3ab2, b3ab5ab5ab3

)
→
(
b3ab2, b3ab5ab5ab5ab3

)
→
(
b3ab5ab5ab5ab3, b3ab5ab5ab5ab3

)
→
(
b3ab5ab5ab5ab6ab5ab5ab5ab5ab3, b3ab5ab5ab5ab3

)
→
(
b3ab5ab5ab5ab6ab5ab5ab5ab5ab6ab5ab5ab5ab3, b3ab5ab5ab5ab3

)
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One can observe that the sum of the exponents of a is 13, and that of b is 68. Moreover,

the continued fraction expansion of 68
13 is [5; 4, 3].

The following shows the algorithm using the E-sequence [4; 3, 2].

(a, b)→ (ba, b)→ · · · →
(
b2ab2, b

)
→
(
b2ab2, b3ab2

)
→
(
b2ab2, b2ab5ab2

)
→
(
b2ab2, b2ab5ab4ab2

)
→
(
b2ab4ab5ab4ab2, b2ab5ab4ab2

)
→
(
b2ab4ab5ab4ab4ab5ab4ab2, b2ab5ab4ab2

)
In this example, the sum of the exponents of a is 7, and that of b is 30. Likewise, the

continued fraction expansion of 30
7 is [4; 3, 2].

The following shows the algorithm using the E-sequence [0; 3, 4].

(a, b)→ (a, ba)→ (a, aba)→
(
a, aba2

)
→
(
a2ba2, aba2

)
→
(
a2ba3ba2, aba2

)
→
(
a2ba3ba3ba2, aba2

)
→
(
a2ba3ba3ba3ba2, aba2

)
The fraction for above is 4

13 which has a continued fraction expansion of [0; 3, 4].

Lastly, the example found in [9] is copied to the E-sequence [3; 2, 4].

(a, b)→ (ba, b)→ (bab, b)→
(
b2ab, b

)
→
(
b2ab, b2ab2

)
→
(
b2ab, b2ab3ab2

)
→
(
b2ab3ab3ab2, b2ab3ab2

)
→
(
b2ab3ab4ab3ab3ab2, b2ab3ab2

)
→
(
b2ab3ab4ab3ab3ab4ab3ab2, b2ab3ab2

)
→
(
b2ab3ab4ab3ab4ab3ab3ab4ab3ab2, b2ab3ab2

)
The last modified generator looks like the E-word corresponding to 31

9 .

6.2.6 Reversing the Enumeration Scheme

In this section reversing the process of the Gilman-Keen enumeration scheme is shown.

The definition of the scheme requires taking the parents of a given rational number.
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While the parents exist and are well-defined for most rational numbers, their compu-

tations and ordering are cumbersome. In addition, the parents are broken further into

“grandparents” until orphans are encountered. Every time a parent is not an orphan,

another splitting into two parents must occur; the manual computations get worse.

In theory, one can start with the greatest grandparents of all elements which exactly

are the orphans 0 and ∞. This section explains in detail how this process can be done.

A typical pair of parents are noticeably Farey neighbors. Furthermore, their Farey

sum is equal to their only ‘child’. We prove these observations and show that the

properties of Farey neighbors are also properties of parents. In the process of reversing

the enumeration scheme, the modification of the Gilman-Maskit algorithm is also proven

to stop with E-words.

The following are claims in [9]. The proofs are provided here.

Lemma 6.2.1. Let p
q be Farey neighbors with p

q <
r
s . Assume p

q and r
s are in lowest

terms. Then p
q <

p+r
q+s <

r
s ; and the pairs p

q ,
p+r
q+s and p+r

q+s ,
r
s are Farey neighbors.

Proof. We may assume q ≥ 1 and s ≥ 1 so that q + s ≥ 2. Then,

ps < qr =⇒ ps+ pq < rq + pq

=⇒ p(s+ q) < (r + p)q

=⇒ p

q
<
r + p

s+ q
;

ps < qr =⇒ ps+ rs < qr + rs

=⇒ (p+ r)s < r(q + s)

=⇒ p+ r

q + s
<
r

s
.

Since |ps− qr| = 1, we have

|p(q + s)− q(p+ r)| = |pq + ps− qp− qr|

= |ps− qr| = 1

|(p+ r)s− (q + s)r| = |ps+ rs− qr − qs|

= |ps− qr| = 1
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Corollary 6.2.1. If
p

q
and

r

s
are Farey neighbors, then the fractions

p

q
,
r

s
, and

p+ r

q + s

are in lowest terms.

Lemma 6.2.2. Let p
q and r

s be Farey neighbors expressed in lowest terms. Then p and

q cannot be both even; r and s cannot be both even. Moreover, p, q, r and s cannot be

all odd.

Proof. If p and q are both even, then p
q are not in lowest term since gcd(p, q) ≥ 2. Same

is true with r and s. Suppose all integers p, q, r and s are odd. Then ps and rq are

also odd, but ps− qr is even. In particular |ps− rq| is not 1.

From this point onward, p
q and r

s are Farey neighbors reduced to lowest terms.

Lemma 6.2.3. For each pair of Farey neighbors p
q and r

s , only one of the following

combinations hold.

1. pq is odd; rs is even.

2. pq and rs are even.

3. pq is even rs is odd.

Proof. If pq is odd, both p and q are odd. By the lemma above, r and s cannot be both

odd so one of them must be even. Hence rs is even.

When it comes to listing possibilities, whether even or odd, of the integers p, q, r

and s, two more combinations can be eliminated.

Lemma 6.2.4. For each pair of Farey neighbors p
q and r

s , the following combinations

do not hold.

1. p and r are even; q and s are odd.

2. p and r are odd; q and s are even.

Proof. If the fractions are Farey neighbors, |ps − rq| = 1. If any combinations above

hold, both ps and rq are even. Hence, the difference of even numbers is even. In

particular |ps− rq| cannot equal to 1.
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Initially, odd-even combinations of four integers p, q, r and s add up to 16. However

the preceding lemmas imply that there can be only 6 possibilities.

Theorem 6.2.3. For each pair of Farey neighbors p
q and r

s , only one of the following

combinations hold.

p q r s (p+ r)(q + s)

even odd odd even odd

odd odd even odd even

odd odd odd even even

odd even even odd odd

even odd odd odd even

odd even odd odd even

Proof. The conditions where p and q are both even eliminate four conditions. The

conditions where r and s are both even reduces 3 more. The case where all p, q, r and

s are odd and lemma above make 3 more impossible. The remaining possibilities are 6

out of 16.

The Gilman-Keen enumeration scheme maps each element of Q∪{∞} to a primitive

word in F2 by defining a recursion. Recall that the word Ep/q in F2 corresponding to a

positive rational number p/q.

Ep/q =


Er/sEm/n if pq is odd,

Em/nEr/s if pq is even.

The elements m
n and r

s of Q ∪ {∞} are the parents of p
q . For the orphans 0 and ∞,

E0 = A−1 and E∞ = B. It is also assumed that m
n < r

s ≤ ∞.

It is probably well-known that the Farey sum of the parents of p/q is equal to p/q.

It is also known that for any Farey neighbors m
n and r

s whose Farey sum is p
q , then m

n

and r
s must be the parents of p

q . The proofs of well-known facts are provided here.

Fact 6.2.1. If p
q and r

s are positive and Farey neighbors, then the parents of their Farey

sum are exactly p
q and r

s .
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Proof. Assume p
q <

r
s . The case where r

s = ∞ imply that p
q is an integer. This makes

their Farey sum equal to the integer p+ 1. By Lemma 6.1.1, the parents of p+ 1 are p

and ∞, which are p/q and r/s. So we can assume that r
s <∞.

Suppose m
n is a Farey neighbor with m

n < p+r
q+s . Assume n ≥ 1. Then,

p+ r

q + s
<
r

s
⇒ m

n
<
r

s
⇒ sm < nr ⇒ nr − sm > 0.

Since nr − sm is an integer, nr − sm ≥ 1. By Farey neighbor property,

mq +ms < np+ nr =⇒ np+ nr −mq − sm = 1

=⇒ 1− np+ qm = nr − sm ≥ 1

=⇒ qm− np ≥ 0

=⇒ qm ≥ np

=⇒ m

n
≥ p

q
.

Thus, p/q is a parent of p+r
q+s .

Suppose m
n is a Farey neighbor of p+r

q+s with p+r
q+s <

m
n . Assume n, q, s ≥ 1. Similarly,

p

q
<
p+ r

q + r
⇒ p

q
<
m

n
⇒ qm− pn > 0.

The difference qm− pn must be at least 1. Therefore,

pn+ rn < qm+ sm =⇒ qm+ sm− pn− rn = 1

=⇒ qm− pn = 1 + rn− sm

=⇒ 1 + rn− sm ≥ 1

=⇒ rn− sm ≥ 0

=⇒ r

s
≥ m

n
.

Thus, r/s is the other parent of p+r
q+s .

The theorem above and Lemma 6.2.1 allow one to guess the parents of a given

rational number p/q. This is done by breaking p and q into sums p = m+r and q = n+s,

so that |ms − rn| = 1. On large numerators or denominators, the combinations can

be cumbersome, but the goal is to reverse the process of the recursion defined in the
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enumeration scheme. More precisely, the goal is to determine Ep/q starting from A and

B instead of starting from computing the parents of p/q.

From this point onward, we assume Farey neighbors p
q and r

s have p
q < r

s . The

following theorem derives the E-word corresponding to p+r
q+s .

Theorem 6.2.4. Let p
q and r

s be nonnegative and Farey neighbors with p
q <

r
s . Then,

E(p+r)/(q+s) is a product of Ep/q and Er/s determined by the following table.

p q r s (p+ r)(q + s) E(p+r)/(q+s)

even odd odd even odd Er/sEp/q

odd odd even odd even Ep/qEr/s

odd odd odd even even Ep/qEr/s

odd even even odd odd Er/sEp/q

even odd odd odd even Ep/qEr/s

odd even odd odd even Ep/qEr/s

Proof. Since the parents of p+r
q+s are exactly p

q and r
s , the residue class mod 2 of

(p + r)(q + s) can be determined by the residue class mod 2 of p, q, r, and s. The

possible combinations are fully listed. Since p
q <

r
s , the E-word corresponding to p+r

q+s is

determined in terms of the words corresponding to Ep/q and Er/s.

The image of the enumeration scheme is a set of palindromes or product of palin-

dromes. Gilman and Keen [9] proved that Ep/q is a palindrome if and only if pq is

even. Hence, Ep/q is not a palindrome if and only if pq is odd. Using the table in the

theorem above, E(p+r)/(q+s) is a palindrome if either pq or rs is not a palindrome; and

E(p+r)/(q+s) is not a palindrome if both pq and rs are palindromes.

Let a = A−1 and b = B, where A and B are generators of rank-2 free group. Then

〈a, b〉 = 〈A,B〉 and (a, b) =
(
E0/1, E1/0

)
. This initial condition has the rational number

corresponding to the left generator less than that of the right generator.

Theorem 6.2.5. Let p
q <

r
s be positive Farey neighbors. Let (a1, b1) be the new pair

of generators after applying the modified algorithm step to the generators
(
Ep/q, Er/s

)
.

Then both a1 and b1 are E-words; a1 = Ej/k and b1 = Em/n such that j
k <

m
n . Either

j
k or m

n is equal to p+r
q+s so j

k and m
n are Farey neighbors.
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Proof. Let a0 = Ep/q and b0 = Er/s. Then (a1, b1) is one of the following.

conditions for a0 and b0 preserve a0 preserve b0

both a0 and b0 are palindromes (a0, b0a0) (b0a0, b0)

a0 is not a palindrome (a0, a0b0) (a0b0, b0)

b0 is not a palindrome (a0, a0b0) (a0b0, b0)

Since either a0 or b0 is preserved, we show that a0b0 or b0a0 is the E-word correspond-

ing to p+r
q+s . If a0 and b0 are both palindromes, both pq and rs are even. Using the

table in Theorem 6.2.3, (p + r)(q + s) is odd in any possible combinations of parities

(residue classes mod 2) of p, q, r and s. Also p
q and r

s are the parents of p+r
q+s . Hence,

E(p+r)/(q+s) = Er/sEp/q = b0a0.

If either a0 or b0 is not a palindrome, then either pq or rs is odd, respectively. The

same table shows (p+ r)(q + s) is even so E(p+r)/(q+s) = Er/sEp/q = a0b0.

The only thing left to show is that j
k <

m
n . This is a simple application of Lemma

6.2.1 that says p
q <

p+r
q+s <

r
s . If j

k = p
q , m

n = p+r
q+s so j

k and m
n are Farey neighbors. If

j
k = p+r

q+s , m
n = r

s . In any case j
k <

m
n .

Corollary 6.2.2. The modified algorithm step, applied finitely many times to a pair of

primitive associates
(
Ep/q, Er/s

)
where p

q <
r
s , provides a pair of E-words that generate

the same group
〈
Ep/q, Er/s

〉
= 〈A,B〉.

6.2.7 Proof of Theorem 6.2.2

Theorem 6.2.6. Let [n0;n1, n2, . . . , nk] be the continued fraction expansion of the non-

negative rational number p/q. Then the last changed generator of the modified Gilman-

Maskit algorithm using the E-sequence [n0;n1, n2, . . . , nk] is the E-word corresponding

the rational number −p/q.

Proof. Let [n0;n1, n2, . . . , nk] be an E-sequence. Then the modified algorithm has

outputs of E-words corresponding to the rational numbers pi/qi and ri/si for i =

0, 1, 2, . . . , k in the following recursive formulas.

p0 = 0 q0 = 1 r0 = 1 s0 = 0
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pi = n2i−2ri−1 + pi−1 ri = n2i−1pi + ri−1

qi = n2i−2si−1 + qi−1 si = n2i−1qi + si−1

These recursions seem to work, both for E-sequence and fairy addition. Next thing to

show is that

pi
qi

= [n0;n1, n2, . . . , n2i−2]

and

ri
si

= [n0;n1, n2, . . . , n2i−1] .

There are formulas in [9] where approximants are defined as follows.

g0 = n0 h0 = 1 g1 = n1n0 + 1 h1 = n1

gi = nigi−1 + gi−2

hi = nihi−1 + hi−2

It was claimed in [9] that
gi
hi

= [n0;n1, n2, . . . , ni]. There is a way to relate pi
qi

and ri
si

to gi
hi

. In particular,

pi
qi

=
g2i−2
h2i−2

ri
si

=
g2i−1
h2i−1

for all i ≥ 1. We show it as follows.

p1 = n0r0 + p0 r1 = n1p1 + r0

= n0 = n1n0 + 1

= g0 = g1

q1 = n0s0 + q0 s1 = n1q1 + s0

= n0 · 0 + 1 = n1 · 1 + 0

= 1 = n1

= h0 = h1
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The assertions work for i = 1. To show that the formulas work for all other i, we show

that they work for i+ 1. That is,

pi+1 = g2(i+1)−2 qi+1 = h2i

= g2i+2−2 ri+1 = g2i+1

= g2i hi+1 = h2i+1.

The following are the computations.

pi+1 = n2iri + pi ri+1 = n2i+1pi+1 + ri

= n2ig2i−1 + g2i−2 = n2i+1g2i + g2i−1

= g2i = g2i+1

qi+1 = n2isi + qi si+1 = n2i+1qi+1 + si

= n2ih2i−1 + h2i−2 = n2i+1h2i + h2i−1

= h2i = h2i+1

Now that pi, qi, ri and si are consolidated to two formulas, gi and hi, except p0, q0,

r0 and s0, it follows that

gi
hi

= [n0;n1, n2, . . . , ni] .

Corollary 6.2.3. Let k ∈ N be an even integer. For any continued fraction expansion

[a0; a1, a2, . . . , ak+1],

[a0; a1, a2, . . . , ak] < [a0; a1, a2, . . . , ak+1] .

For any continued fraction expansion [a0; a1, a2, . . . , ak],

[a0; a1, a2, . . . , ak] < [a0; a1, a2, . . . , ak−1] .

Proof. If k = 0, [a0; a1, a2, . . . , ak−1] is defined to be ∞ so the statement is equiv-

alent to the fact that natural numbers are finite. The continued fraction expan-

sion [a0; a1, a2, . . . , ak] can be regarded as an E-sequence that can be applied to the

pair (a, b). The stopping generators correspond to the E-words E ([a0; a1, a2, . . . , ak])
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and E ([a0; a1, a2, . . . , ak+1]). Since k is even, E ([a0; a1, a2, . . . , ak]) is the left gen-

erator. Also since the modification is designed to preserve the order of fractions,

then [a0; a1, a2, . . . , ak] < [a0; a1, a2, . . . , ak−1]. Suppose that the E-sequence is ex-

tended further to [a0; a1, a2, . . . , ak+1]. Then the set of stopping generators still con-

tains E-word corresponding to [a0; a1, a2, . . . , ak] which is still in the left spot. Hence,

[a0; a1, a2, . . . , ak] < [a0; a1, a2, . . . , ak+1].

6.2.8 Consecutive Steps

In the theory of F-sequence, n consecutive linear steps have an simple formula (a, b) 7→

(a, anb). Equivalently, a is preserved in n consecutive steps. In the modified algorithm,

there are more than one formula and not all of them are simple. The formulas depend

on palindromic conditions of the current generators and which generator is preserved.

There are six formulas shown in the following.

Case 1

Suppose a is preserved in n steps; both a and b are palindromes with respect to a fixed

line. The next pair is (a, ba). Using the table in Theorem 6.2.5, ba is not a palindrome so

the step that preserves a should be (g, h) 7→ (g, gh). Hence, the next pair of generators

is (a, aba). Both a and aba are palindromes again so the next new generator is aba2.

Note that aba2 is equal to E1/3. The steps that change the right generator alternates

between palindrome and non-palindrome. If j = bn/2c, n steps preserving a ends in(
a, ajbaj

)
if n is even of

(
a, ajbaja

)
if n is odd. The right generator is exactly the

E-word corresponding to 1
n in the pair (a, b). The formula for this case is

(a, b) 7→
(
a,E1/n(a, b)

)
.

Case 2

Suppose a is preserved in n steps; a is not a palindrome. The next pair of generators

must be (a, ab). Since a is not a palindrome, ab is still a palindrome. The next pair

after a step is
(
a, a2b

)
. Because the right generator is always a palindrome, the formula
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for this case is simple:

(a, b) 7→ (a, anb) .

Case 3

Suppose a is preserved in n steps; b is not a palindrome. Like the second case, the next

pair is (a, ab), but the new generators are both palindromes. The next new generators

are aba, a2ba, a2ba2, a3ba2, etc. For n steps, the right generator is ajbaj if n is even or

aajbj if n is odd (j = bn/2c). This is similar to En but switched a with b. Hence the

formula for the third case is

(a, b) 7→ (a,En(b, a)) .

Case 4

Suppose b is preserved in n steps; both a and b are palindromes. The left generator

becomes ba which is not a palindrome. The next generators are bab, b2ab, b2ab2, b3ab2,

etc. For n steps and j = bn/2c, the last left generator is bjabj if n is even or bbjabj if

n is odd. Thus, the formula for this case is

(a, b) 7→ (En(a, b), b) .

Case 5

Suppose b is preserved in n steps; a not a palindrome. The next left generators are ab,

bab, bab2, b2ab2, b2ab3, etc. Likewise, it is either bjabj or bjabjb which is the E-word

E1/n with switched a and b. So the formula for this case is

(a, b) 7→
(
E1/n(b, a), b

)
.

Case 6

The last case is as simple as the second. Suppose b is preserved in n steps but is not a

palindrome. The left generator for each step is a palindrome so the last left generator

is abn. The formula is

(a, b) 7→ (abn, b) .
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The following table summarizes all the formulas.

preserve a preserve b

both a and b are palindromes
(
a,E 1

n
(a, b)

)
(En(a, b), b)

a is not a palindrome (a, anb)
(
E 1
n

(b, a), b
)

b is not a palindrome (a,En(b, a)) (abn, b)

6.2.9 Length of E-words

Theorem 6.2.7. The length of Em/n in the generators {a, b} is |m| + |n|. Moreover

Em/n has |m| b-factors and |n| a-factors.

Proof. Suppose g, h ∈ F2; g has p b-factors and q a-factors. Suppose h has r b-factors

and s a-factors. The modified algorithm applied to (g, h) replaces one of the generators

with either gh or hg. Both gh and hg have p + r b-factors and q + s a-factors. More

seriously, the algorithm starts with (a, b) and ends with
(
Ep/q, Er/s

)
. The fraction 1/1

correspond to ba which is the very first new E-word of the algorithm. For E1/1 = ba,

the assertion is true. Suppose this assertion is still true after the algorithm stops at

the pair
(
Ep/q, Er/s

)
. Then Ep/q has p b-factors and q a-factors; Er/s has r b-factors

and s a-factors. Continuing the algorithm just one step further yields a new E-word

E(p+r)/(q+s). It is either Ep/qEr/s or Er/sEp/q. In any case, E(p+r)/(q+s) has p + r

b-factors and q + s a-factors.

6.2.10 E-words when k ≤ 2

It is shown in section 6.1.4 what the form of E-words are if k = 0 or precisely p/q ∈ Z.

In this section, we look at E-words up to k = 2 and show what happens to “exponents”

of a and b for any E-word. To alleviate complicated notations, we define mi = bni2 c and

Mi = dni2 e. Then mi+Mi = ni, mi = Mi if ni is even and Mi = mi+1 if ni is odd. This

notation is used as superscripts. For example, Theorem 6.1.2 shows En0 = bMiabmi and

E1/n1
= amibaMi .

For p/q > 1 and k ≥ 2, four possible cases of an E-sequence can be fed to the

modified Gilman-Maskit algorithm. The E-word corresponding to [n0;n1, . . . , nk] is
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also a word in E ([n0;n1, . . . , nk−2]) and E ([n0;n1, . . . , nk−1]) if k ≥ 2. By induction,

E ([n0;n1, . . . , nk]) is a word in E ([n0;n1, n2]) and E ([n0;n1]).

Lemma 6.2.5. Let a,W, b ∈ Fn. Then

(aWb)k = a (Wba)k a−1

for and k ∈ N.

Proof. For k = 0, the statement is true. Suppose for k high enough, the statement is

true. Then,

(aWb)k+1 = (aWb)k aWb = a (Wba)k a−1aWb

= a (Wba)kWbaa−1 = a (Wba)k+1 a−1.

The following are the possible cases for an E-sequence with nonzero first entry and

lengths or k equal to 1 and 2.

Case [odd;n1]

Assume n0 is odd and n1 ≥ 1. The modified algorithm turns the pair (a, b) into (En0 , b).

Since n0 is odd, En0 is not a palindrome. The stopping pair is (En0 , (En0)n1 b).

En0 = bM0abm0

(En0)n1 b =
(
bM0abm0

)n1
b

= bM0
(
abm0bM0

)n1
b−M0b

= bM0 (abn0)n1 b1−M0

= bM0 (abn0)n1−1 abM0

Note that since (En0)n1 b = E ([n0;n1]) and n1 > 1 the highest exponent is n0.
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Case [even;n1]

Assume n0 ≥ 2 is even and n1 ≥ 1. The pair (a, b) becomes the following pairs.

(a, b)→ (En0 , b)→
(
En0 , E

m1
n0
bEM1

n0

)
En0 = bm0abm0

Em1
n0
bEM1

n0
= (bm0abm0)m1 b (bm0abm0)M1

= bm0 (abm0bm0)m1 b−m0bbm0 (abm0bm0)M1 b−m0

= bm0 (abn0)m1 b (abn0)M1 b−m0

= bm0 (abn0)m1−1 abn0b (abn0)M1−1 abn0b−m0

= bm0 (abn0)m1−1 abn0+1 (abn0)M1−1 abm0

Case [odd; 1, n2]

Assume n0 is odd and n2 ≥ 1. The modified algorithm turns (a, b) into the following

pairs.

(a, b)→ (En0 , b)→ (En0 , En0b)

→
(

(En0b)
m2 En0 (En0b)

M2 , En0b
)

En0b = bM0abM0

(En0b)
m2 En0 (En0b)

M2 =
(
bM0abM0

)m2
bM0abm0

(
bM0abM0

)M2

= bM0
(
abM0bM0

)m2
b−M0bM0abm0bM0

(
abM0bM0

)M2
b−M0

= bM0
(
abn0+1

)m2 abn0
(
abn0+1

)M2 b−M0

= bM0
(
abn0+1

)m2 abn0
(
abn0+1

)M2−1 abM0
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Case [even; 1, n2]

Assume n0 is even and n2 ≥ 1. The following pairs are encountered by the modified

algorithm.

(a, b)→ (En0 , b)→ (En0 , bEn0)

→ (En0 (bEn0)n2 , bEn0)

bEn0 = bbm0abm0 = bm0+1abm0

En0 (bEn0)n2 = bm0abm0
(
bm0+1abm0

)n2

= bm0abm0bm0+1
(
abm0bm0+1

)n2 b−m0−1

= bm0abn0+1
(
abn0+1

)n2 b−m0−1

= bm0abn0+1
(
abn0+1

)n2−1 abm0

= bm0
(
abn0+1

)n2 abm0

Note that the highest exponent is n0 + 1.

Summary of cases k ≤ 2:

E-sequence stopping pair

[odd;n1]
(
bM0abm0 , bM0 (abn0)n1−1 abM0

)
[even;n1]

(
bm0abm0 , bm0 (abn0)m1−1 abn0+1 (abn0)M1−1 abm0

)
[odd; 1, n2]

(
bM0

(
abn0+1

)m2 abn0
(
abn0+1

)M2−1 abM0 , bM0abM0

)
[even; 1, n2]

(
bm0

(
abn0+1

)n2 abm0 , bm0+1abm0
)

Note that the formulas above work even if nk = 1.

Corollary 6.2.4. For n0 > 0, k ≥ 3 and p/q = [n0;n1, . . . , nk] Ep/q is a word in a and

b of the form

bk1abk2abk3 · · · abkqabkq+1

where k1, kq+1 ∈ {m0,M0} and {k2, k3, . . . , kq} = {n0, n0 + 1}.

Proof. By Theorem 6.2.2, Ep/q is the last modified generator in running the E-sequence

[n0;n1, . . . , nk]. The modified algorithm has to output the words E ([n0;n1]) and

E ([n0;n1, n2]) in the middle of the process. Hence Ep/q is a word in E ([n0;n1]) and
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E ([n0;n1, n2]). The possibilities of these words are listed in the preceding table. Any

product or powers of them has bm0bm0 , bm0bm0+1, bM0bM0 or bm0bM0 in its substring

which simplifies to either bn0 or bn0+1. The table also shows that Ep/q is of the claimed

form where ki ∈ {n0, n0 + 1} except k1 and kq+1 which are in {M0,m0}.

In the second case in the table, m1 and M1 can possibly equal to 1 so there

might be no b-exponent equal to n0. We show that n0 still appears as an exponent

in E ([n0;n1, . . . , nk]) if k ≥ 3.

Let n1 > 1. Suppose after running the E-sequence [n0;n1] on (a, b), the new pair is

(g, h). If n0 is even, g is a palindrome. Continuing the E-sequence further to [n0;n1, 1]

turns g into either gh or hg.

gh = bm0abn0 (abn0)m1−1 abn0+1 (abn0)M1−1 abm0

= bm0 (abn0)m1 abn0+1 (abn0)M1−1 abm0

hg = bm0 (abn0)m1−1 abn0+1 (abn0)M1−1 abn0abm0

= bm0 (abn0)m1−1 abn0+1 (abn0)M1 abm0

Hence E ([n0;n1, n2]), for n2 > 1, is a word in E ([n0;n1]) and E ([n0;n1, 1]), but

E ([n0;n1, n2, n3]) is a word in E ([n0;n1]) and E ([n0;n1, n2]). Hence, there is i with

2 ≤ i ≤ q so that ki = n0.

The same problem occurs in the last case where both primitive generators do not

have n0 as a b-exponent. We must also show that n0 still appear as an exponent in

E ([n0;n1, . . . , nk]) for k ≥ 3.

Let n2 ≥ 1. Suppose after running the E-sequence [n0; 1, n2] on (a, b), the new pair

is (g, h). If n0 is even, g is a palindrome and h is not. Then the E-sequence [n0; 1, n2, 1]

turns (g, h) into (g, gh). Continuing further, [n0; 1, n2, 2] stops with the pair (g, ghg)

while [n0; 1, n2, 1, 1] stops with the pair (ghg, gh). Thus E ([n0; 1, n2, 1, n4]) is a word
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in gh and ghg for n4 > 1, and E ([n0; 1, n2, n3]) is a word in g and ghg for n3 > 2.

ghg = bm0
(
abn0+1

)n2 abm0bm0+1abm0bm0
(
abn0+1

)n2 abm0

= bm0
(
abn0+1

)n2 abn0+1abn0
(
abn0+1

)n2 abm0

gh = bm0
(
abn0+1

)n2 abm0bm0+1abm0

= bm0
(
abn0+1

)n2 abn0+1abm0

Hence both E ([n0; 1, n2, 1, n4]) and E ([n0; 1, n2, n3]) have b-exponents equal to n0.

Remark: The E-word corresponding to [n0; 1, n2, 1] still has no b-exponent equal to

n0. However, for a continued fraction expansion [n0;n1, . . . , nk], nk is required to be at

least 2.

The case when p/q < 1 is similar but n0 = 0 and the index shifts by 1. For example,

the E-sequence [0;n1, n2, n3] is similar to [n1;n2, n3] which is greater than 1 as a rational

number. In order to see the precise forms of E-words of p/q < 1, we go through the

cases n0 = 0 and k ≤ 3.

Case [0; odd, n2]

Assume n1 is odd and n2 ≥ 1. The modified algorithm runs this E-sequence as follows.

(a, b)→
(
a,E1/n1

)
→
(
a
(
E1/n1

)n2 , E1/n1

)
E1/n1

= am1baM1

a
(
E1/n1

)n2 = a
(
am1baM1

)n2

= aam1
(
baM1am1

)n2
a−m1

= aM1 (ban1)n2 a−m1

= aM1 (ban1)n2−1 ban1−m1

= aM1 (ban1)n2−1 baM1
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Case [0; even, n2]

Assume n1 ≥ 2 is even and n1 ≥ 1. The pair (a, b) becomes the following pairs.

(a, b)→
(
a,E1/n1

)
→
((
E1/n1

)M2 a
(
E1/n1

)m2 , E1/n1

)
E1/n1

= am1bam1(
E1/n1

)M2 a
(
E1/n1

)m2 = (am1bam1)M2 a (am1bam1)m2

= am1 (bam1am1)M2 a−m1aam1 (bam1am1)m2 a−m1

= am1 (ban1)M2−1 ban1+1 (ban1)m2−1 bam1

Case [0; odd, 1, n3]

Assume n1 is odd and n3 ≥ 1. The pair (a, b) turns into the following pairs.

(a, b)→
(
a,E1/n1

)
→
(
aE1/n1

, E1,n1

)
→
(
aE1/n1

,
(
aE1/n1

)M3 E1/n1

(
aE1/n1

)m3
)

aE1/n1
= aam1baM1

= aM1bM1(
aE1/n1

)M3 E1/n1

(
aE1/n1

)m3 =
(
aM1baM1

)M3
am1baM1

(
aM1baM1

)m3

= aM1
(
baM1aM1

)M3
a−M1am1baM1aM1

(
baM1aM1

)m3
a−M1

= aM1
(
ban1+1

)M3 a−1ban1+1
(
ban1+1

)m3 a−M1

= aM1
(
ban1+1

)M3−1 ban1ban1+1
(
ban1+1

)m3−1 baM1

= aM1
(
ban1+1

)M3−1 ban1
(
ban1+1

)m3 baM1
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Case [0; even, 1, n3]

Assume n1 is even and n3 ≥ 1. The pairs encountered by the modified algorithm are

as follows.

(a, b)→
(
a,E1/n1

)
→
(
E1/n1

a,E1/n1

)
→
(
E1/n1

a,
(
E1/n1

a
)n3 E1/n1

)
E1/n1

a = am1bam1a

= am1bam1+1(
E1/n1

a
)n3 E1/n1

=
(
am1bam1+1

)n3 am1bam1

= am1
(
ban1+1

)n3 a−m1am1bam1

= am1
(
ban1+1

)n3 bam1

Summary of cases for n0 = 0 and k ≤ 3:

E-sequence stopping pair

[0; odd;n2]
(
aM1 (ban1)n2−1 baM1 , am1baM1

)
[0; even;n2]

(
am1 (ban1)M2−1 ban1+1 (ban1)m2−1 bam1 , am1bam1

)
[0; odd; 1, n3]

(
aM1baM1 , aM1

(
ban1+1

)M3−1 ban1
(
ban1+1

)m3 baM1

)
[0; even; 1, n3]

(
am1bam1+1, am1

(
ban1+1

)n3 bam1
)

Likewise, the table works for n2 of n3 possibly equal to 1.

Corollary 6.2.5. For n0 = 0, n1 ≥ 1, k ≥ 4 and p/q = [n0;n1, . . . , nk], Ep/q is a word

in a and b of the form

ak1bak2bak3 · · · bakpbakp+1

where k1, kp+1 ∈ {m1,M1} and {k2, k3, . . . , kp} = {n1, n1 + 1}.

Proof. The E-word corresponding to [0;n1, n2, . . . , nk] is a word in the stopping pair

of the E-sequence [0;n1, n2, n3]. By induction, E[0;n1,...,nk] is a word in the stopping

pair of [0;n1, n2]. Looking at the table above, any word in a given stopping pair has

either aM1+M1 , am1+m1 , am1+1+m1 or am1+M1 in its substring which is equal to either
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an1 or an1+1. Hence, E[0;n1,··· ,nk] is of the form ak1bak2b · · · akpbakp+1 where k1, kp+1 ∈

{m1,M1} and k2, k3, . . . , kp ∈ {n1, n1 + 1}. Using similar arguments in 6.2.4, there is

ki = ni if k ≥ 4.

Theorem 6.2.8. Let n ∈ N. There exists a bijection between the set of nonzero integers

relatively prime with n in the interval [−n, n] ⊂ R and the set of E-words of length n.

Proof. Let Φ and Ψ be the sets defined as follows.

Φ = {p ∈ Z : 0 < |p| < n and gcd(p, n) = 1}

Ψ = {(p, q) ∈ Z× N : |p|+ q = n, p 6= 0 and gcd(p, q) = 1}

Define a function f : Φ → Ψ given by f(x) = (x, n− |x|). Let x ∈ Φ. Then

|x| + (n− |x|) = n, gcd(x, n) = 1 and n − |x| > 0. Also gcd (x, n− |x|) = 1 since a

divisor both of x and n−|x| is also a divisor of n. Hence f(x) ∈ Ψ. Let (p, q) ∈ Ψ. Then

q = n− |p| and gcd(p, n) = 1 by a similar argument. Thus, p ∈ Φ and f(p) = (p, q). If

x 6= y ∈ Φ, f(x) = (x, n− |x|) 6= (y, n− |y|) = f(y). The set Ψ is exactly the index set

of all E-words of length n.
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Appendix A

Accompanying Figures

The following figures are aid for visualizing pencils of an isometry or a pir of isometries.

Figures A.1 through A.5 approximates the pencils of various types. The rest, figures

A.6 through A.28, are pictures involving pairs in Chapter 4.
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Figure A.1: Elliptic Permuted Pencil Fixing ∞
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Figure A.2: Elliptic Permuted Pencil Not Fixing ∞
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Figure A.3: Parabolic Permuted Pencil Not Fixing ∞
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Figure A.4: Hyperbolic Permuted Pencil Fixing ∞
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Figure A.5: Hyperbolic Permuted Pencil Not Fixing ∞



130

Figure A.6: Theorem 4.1.4
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Figure A.7: Theorem 4.1.5
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Figure A.8: Theorem 4.1.6
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Figure A.9: Theorem 4.1.7
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Figure A.10: Theorem 4.1.8
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Figure A.11: Theorem 4.1.9: dx is perpendicular to km
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Figure A.12: Theorem 4.1.9: m ∈ L
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Figure A.13: Theorem 4.1.10
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Figure A.14: Theorem 4.1.11
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Figure A.15: Theorem 4.1.12
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Figure A.16: Theorem 4.1.13
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Figure A.17: Theorem 4.1.14
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Figure A.18: Theorem 4.1.15
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Figure A.19: Theorem 4.1.16
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Figure A.20: Theorem 4.1.17
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Figure A.21: Theorem 4.1.18
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Figure A.22: Theorem 4.1.19
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Figure A.23: Theorem 4.1.20
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Figure A.24: Theorem 4.1.21
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Figure A.25: General Figure for Section 4.1.10
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Figure A.26: Theorem 4.1.22
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Figure A.27: Theorem 4.1.23
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Figure A.28: Theorem 4.1.24
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