LINKING AND DISCRETENESS IN HYPERBOLIC 4-SPACE

BY ANDREW EBITNER SILVERIO

A dissertation submitted to the
Graduate School-Newark
Rutgers, The State University of New Jersey
in partial fulfillment of the requirements
for the degree of Doctor of Philosophy Graduate Program in Mathematical Sciences

Written under the direction of
Professor Jane P. Gilman
and approved by
\qquad
\qquad
\qquad
\qquad
\qquad

Newark, New Jersey
May, 2013
(C) 2013

Andrew Ebitner Silverio
ALL RIGHTS RESERVED

ABSTRACT OF THE DISSERTATION

Linking and Discreteness in Hyperbolic 4-space

by Andrew Ebitner Silverio
Dissertation Director: Professor Jane P. Gilman

A pair of isometries of the 4-dimensional hyperbolic space is called linked if they can be expressed as compositions of two involutions, one of which is common to both isometries. While every pair of isometries of hyperbolic space in dimensions 2 and 3 is linked, not all pairs of isometries of hyperbolic 4-space are linked. One type of such an involution is called half-turn which is an orientation preserving elliptic isometry with a 2-dimensional fixed point set. We provide some geometric conditions for such a pair to be linked by half-turns. Here we develop a theory of pencils, twisting planes and half-turn banks that gives results about each of the pair-types of isometries and their simultaneous factorization. In order to provide conditions under which a given pair is linked via a half-turn, sets of hyperplanes in hyperbolic 4-space are defined for each orientation preserving isometry that enables one to locate the half-turns for which linking is possible. Once a pair is linked, known conditions about discreteness of the group, generated by a pair of isometries, in lower dimensional hyperbolic spaces can be generalized to some linked pairs in dimension 4. If a pair has a common invariant hyperplane or plane, the known conditions such as compact-core-geodesic-intersection and non-separating-disjoint-circles apply.

Acknowledgements

I would like to thank Mark Feighn and Diana Shelstad for encouraging me to pursue further studies in mathematics. I am very thankful to Jane Gilman for exposing me to the wonderful math fields that descend from Ahlfors-Bers theory. I am grateful to Ara Basmajian for listening to my ideas, talking to me about recent and interesting problems in hyperbolic geometry and helpful comments. The seminars in CUNY Graduate Center and their participants have also been helpful in keeping me motivated.

Table of Contents

Abstract ii
Acknowledgements iii
List of Figures viii

1. Introduction 1
1.1. Organization 3
2. Expository Background for Hyperbolic Space 5
2.1. The Hyperboloid Model 6
2.1.1. Relating Euclidean and Lorentzian inner products 7
2.1.2. Orthonormal bases and orthogonal transformations 8
2.1.3. Orthogonal Complements 9
2.1.4. Metric and subplanes of \mathbb{H}^{n} 11
2.1.5. Dropping a perpendicular 12
2.2. Reflections across spheres and planes 14
2.2.1. Cross Ratio 16
2.2.2. Boundaries at infinity 17
2.3. Classification of Möbius transformations 17
2.4. Maps between models of hyperbolic space 18
2.5. Comparison of models 19
2.6. Dimensions 2 and 3 19
2.7. Subclassifications in dimension 4 22
3. Pencils and Half-Turn Banks 24
3.1. Elliptic 25
3.1.1. Properties of the invariant pencil 29
3.1.2. Miscellaneous Elliptic Results 30
3.2. Pure hyperbolic 35
3.2.1. Properties of the invariant pencil 39
3.3. Pure parabolic 41
3.3.1. Properties of the invariant pencil 48
3.4. Pure loxodromic 49
3.4.1. Properties of the pencils of a pure loxodromic isometry 51
3.4.2. Twisting hyperplane 54
3.5. Screw parabolic 54
3.5.1. Properties of the pencils of a screw parabolic isometry 57
3.6. More on Half-Turn Banks 59
3.6.1. Codimension-2 version of common perpendicular 59
3.6.2. Combinations of a pair of planes 61
P and Q are ultra-parallel 62
P and Q are tangent to a unique point x at infinity 62
$P \cap Q$ is a line 63
$P \cap Q$ consists of a single point p 63
3.6.3. The half-turn bank is exhaustive 66
4. Conditions for Linking in Dimension 4 70
4.1. The Ten Cases 70
4.1.1. Both are pure hyperbolic 71
4.1.2. Both are pure parabolic 71
4.1.3. Pure hyperbolic and pure parabolic 72
4.1.4. Pure parabolic and pure loxodromic 72
4.1.5. Screw parabolic and pure hyperbolic 74
4.1.6. Screw parabolic and pure parabolic 76
4.1.7. Pure loxodromic and pure hyperbolic 77
4.1.8. Both are screw parabolic 78
4.1.9. Both are pure loxodromic 79
4.1.10. Screw parabolic and pure loxodromic 80
5. Discreteness Conditions 82
5.1. Results from lower dimension 82
5.2. Pairs with Invariant Subplanes 84
5.2.1. Classical Pairs 84
5.2.2. Pairs with Rotational Parts 86
5.3. Restricting the Isometries 86
6. Detailed Investigation of Enumeration Schemes 89
6.1. Equivalent Conditions for Terminating Palindromic Primitives 90
6.1.1. Summary of the Gilman-Keen Enumeration Scheme 91
6.1.2. Non-recursive Formulas for Special Cases 92
Case $n=0$: 95
Case $n=1$: 95
Case $n=-1$: 95
Case $n=2$: 96
Case $n=-2$: 96
Case $n+2$: 96
Case $n-2$: 97
6.1.3. Examples 98
6.1.4. Alternative Termination Conditions 99
Remark: 99
6.2. The Modified Gilman-Maskit Algorithm 99
6.2.1. Summary of Gilman-Maskit Algorithm 100
6.2.2. Redefining Palindromes 101
6.2.3. A Second Look at the Original Algorithm 101
Remark: 102
6.2.4. New Linear and Fibonacci Steps 102
6.2.5. From E-sequence to E-words 103
Examples of the Modified Algorithm 103
6.2.6. Reversing the Enumeration Scheme 104
6.2.7. Proof of Theorem 6.2.2 110
6.2.8. Consecutive Steps 113
Case 1 113
Case 2 113
Case 3 114
Case 4 114
Case 5 114
Case 6 114
6.2.9. Length of E-words 115
6.2.10. E-words when $k \leq 2$ 115
Case [odd; n_{1}] 116
Case [even; n_{1}] 117
Case [odd; $1, n_{2}$] 117
Case [even; $1, n_{2}$] 118
Case [$0 ;$ odd, n_{2}] 120
Case [$0 ;$ even, n_{2}] 121
Case [$0 ;$ odd, $1, n_{3}$] 121
Case $\left[0 ;\right.$ even, $\left.1, n_{3}\right]$ 122
Appendix A. Accompanying Figures 124
Vita 155

List of Figures

A.1. Elliptic Permuted Pencil Fixing ∞ 125
A.2. Elliptic Permuted Pencil Not Fixing ∞ 126
A.3. Parabolic Permuted Pencil Not Fixing ∞ 127
A.4. Hyperbolic Permuted Pencil Fixing ∞ 128
A.5. Hyperbolic Permuted Pencil Not Fixing ∞ 129
A.6. Theorem 4.1.4 130
A.7. Theorem 4.1.5 131
A.8. Theorem 4.1.6 132
A.9. Theorem 4.1.7 133
A.10.Theorem 4.1.8 134
A.11.Theorem 4.1.9: d_{x} is perpendicular to k_{m} 135
A.12.Theorem 4.1.9: $m \in L$ 136
A.13.Theorem 4.1.10 137
A.14.Theorem 4.1.11 138
A.15.Theorem 4.1.12 139
A.16.Theorem 4.1.13 140
A.17.Theorem 4.1.14 141
A.18.Theorem 4.1.15 142
A.19.Theorem 4.1.16 143
A.20.Theorem 4.1.17 144
A.21.Theorem 4.1.18 145
A.22.Theorem 4.1.19 146
A.23.Theorem 4.1.20 147
A.24.Theorem 4.1.21 148
A.25.General Figure for Section 4.1.10 149
A.26.Theorem 4.1.22 150
A.27.Theorem 4.1.23 151
A.28.Theorem 4.1.24 152

Chapter 1

Introduction

A pair of isometries A, B of the hyperbolic space \mathbb{H}^{n} is said to be linked if there are involutions α, β and γ such that $A=\alpha \beta$ and $B=\beta \gamma$. If furthermore α, β and γ have $(n-2)$-dimensional fixed point set, then the pair is called linked by a half-turn. In dimensions 2 and 3, every pair of isometries are linked. This type of factoring is used to determine the discreteness of the group $\langle A, B\rangle$ using the Gilman-Maskit algorithm in dimension 2 , the non-separating-disjoint-circles condition and the compact-core-geodesic-intersection condition in dimension 3. Unfortunately in dimension 4, not all pairs are linked. If a pair has this property, procedures and conditions that are known in lower dimensions work with minor modifications. One of the goals here is to find conditions for which a pair of isometries of \mathbb{H}^{4} is linked. Furthermore, some of these conditions imply that the group generated by the pair leave a lower dimensional subspace invariant, answering the discreteness question with a known results in lower dimension. The deeper motivation is to determine the discreteness of two-generator subgroup of the isometry group of \mathbb{H}^{4} by the intersections of axes of non-parabolic palindromes with a fixed plane or line.

The first step in approaching this problem is to break the pair of isometries into compositions of orientation preserving involutions.

In particular, the concept of pencils derived from hyperbolic 3 -space or conformal 2 -sphere is reformulated to find a space of reflections that factorize an atomic type isometry (type I elliptic, pure hyperbolic or pure parabolic). The other types of isometries can be factored into two half-turns but can be broken canonically into other factors of atomic type. More definitions of pencils (invariant and twisting) are formed in addition to classical ones. The pencils have several indispensable properties that enable one to
find a common half-turn factor of certain pairs of isometries.
The pencils contain and locate the planes in which a half-turn factoring is possible. The planes with these properties are bounded by the circles of the half-turn bank of an isometry. There is a geometric criterion for a plane to be located in a half-turn bank related to the fixed point set and other invariants of an isometry, and this criterion along with the properties of the pencils is exploited to state geometric conditions for which a pair of isometries are linked by half-turns. From a far perspective, a plane is in the half-turn bank of an isometry γ if it is orthogonal to the axis, direction and twisting plane of γ whichever are applicable. Equivalently, a plane is in the half-turn bank of γ if it is the intersection of an element in the permuted pencil and and element of the invariant/twisting pencil of γ.

The pencils and hence the half-turn bank of an isometry can be parametrized by real numbers so finding a common element in the half-turn banks of isometries A and B is enough for the pair (A, B) to be linked by a half-turn. Moreover every half-turn factorization of an isometry comes from its half-turn bank. Therefore, the linking of a pair by a half-turn is a matter of studying their half-turn banks.

Theorem 1.0.1. A pair of orientation preserving isometries of \mathbb{H}^{4} is linked by halfturns if and only if they have a common element in their half-turn banks.

The geometric conditions for linking thus reduce to finding a common element in the half-turn banks. The fixed points, axes, directions, invariant planes and pencils help locating the common element that links a pair.

While the main topic of this thesis is linking, we also include a chapter on the enumeration of primitive words in a rank two free group and make some modifications in different well known enumeration schemes. We produce a faster enumeration algorithm for primitive words. We apply results from the modified enumeration schemes to modify the Gilman-Maskit discreteness algorithm.

1.1 Organization

The outline of this thesis is as follows. In Chapter 2 we review necessary information about hyperbolic 4 -space including classifications of orientation preserving isometries, reflections, hyperplanes and intersections of varying dimensions of subplanes. The importance of orthogonal subplanes, complements and correspondence to Euclidean space are emphasized.

In Chapter 3 the permuted, invariant, dual and twisting pencils are used to construct the so-called half-turn banks. In the elliptic case, the half-turn is defined and used in other cases. For each case, sufficient conditions are stated for a circle or a plane to be in a half-turn bank. The properties of pencils used in linking and factoring are enumerated. In the isometries with rotational parts, the definition, existence and uniqueness of twisting planes are stated and proved.

The results in Chapter 3 imply some results in [2,16] and [1] but stronger statements are necessary for proving results in Chapter 4 . The pencils defined in Chapter 3 can be generalized to higher dimensions but are not stated in a general manner since the chapter is only intended to be a machinery for Chapter 4.

The main theorems about linking are stated in Chapter 4. Like in Chapter 3, the conditions are shown in a case-by-case basis. The pairs considered do not have elliptic elements in them but can have rotational parts. There are a total of ten cases listed but each case may have a few conditions for a pair to be linked. Some conditions imply that the pair has invariant plane or hyperplane where the discreteness question can be passed to lower dimensions with known results.

In Chapter 5, discreteness conditions found in [6] and [8] are extended to hyperbolic 4 -space. For pairs that can be linked, the non-separating-disjoint-spheres condition found in $[2,16]$ can be reduced to three spheres containing the elements half-turn banks of the pair of isometries that links it. For the compact-core-geodesic-intersection condition to extend immediately to dimension 4 , the pair has to have an invariant lower dimensional plane implied by some of the conditions in Chapter 4. The rest of the conditions need further investigations for answering the discreteness question.

Finally in Chapter 6 we discuss enumeration schemes for primitive words in a rank two free group and apply this very detailed discussion to produce a faster algorithm for enumerating the primitive words and a modification of the Gilman-Maskit discreteness algorithm.

Chapter 2

Expository Background for Hyperbolic Space

In this chapter, the construction of the hyperbolic space of different models are covered. Lines, planes, angles and distances are defined from one model, and the maps among other models carry the geometric structures along the spaces. In section 2.1, the Lorentz space is introduced and how the hyperboloid model is embedded. The Lorentz inner product relate with lengths and dihedral angles in the hyperboloid. Its comparison with the Euclidean inner product shows common properties of Euclidean and hyperbolic geometries. Lorentz orthogonal matrices form a group as a subset of the endomorphisms of Lorentz vector space.

In section 2.2, the inversive geometry of the Euclidean space is extended from reflections across spheres and planes into Möbius maps of the compactified space. The Möbius maps extend to a map of one higher dimension, and the result is called Poincaré extension that serve as an isometry of the upper-half space model of hyperbolic space. A special Möbius map called stereographic projection conjugates the isometries of the upper-half space model into isometries of the conformal ball model.

In section 2.3, the isometries of hyperbolic space are classified using the properties of Möbius transformations of the conformal ball model. In section 2.4, the formulas of some maps among the hyperboloid, upper-half and conformal ball models are shown. In section 2.5 the metric, Riemannian structure, and subplanes are described and compared.

In section 2.6, hyperbolic geometry is restricted to dimensions 2 and 3 to highlight the connection to complex analysis and holomorphic maps. The field structure of the complex plane is utilized to define a different cross-ratio which provides a way to construct the common perpendicular line between ultra-parallel lines.

In section 2.7, isometries of hyperbolic space in dimension 4 are further classified into type I elliptic, type II elliptic, pure parabolic, screw parabolic, pure hyperbolic and pure loxodromic. The details of the special classification is deferred to the next chapter. This chapter serve as background information about hyperbolic geometry.

2.1 The Hyperboloid Model

Consider the Lorentz space $\mathbb{R}^{n, 1}$ which is the set \mathbb{R}^{n+1} equipped with a pseudo-Riemannian inner product defined by

$$
\langle x, y\rangle_{L}=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}-x_{n+1} y_{n+1} .
$$

From the inner product comes the classification of vectors: time-like; space-like; and light-like. The norm $\|x\|_{L}$ of a vector $x \in \mathbb{R}^{n, 1}$ is the principal square root of $\langle x, x\rangle_{L}$. A time-like vector is an element with negative norm squared. The vectors with positive norm are called space-like, and those with zero norm are called light-like.

The Lorentz space inherits the vector space structure of \mathbb{R}^{n+1} which is finite dimensional. A vector subspace with a time-like vector is called a time-like subspace. A subspace whose all nontrivial vectors are space-like is called space-like. The rest of the subspaces are called light-like. The set of light-like vectors does not form a vector subspace but is called the light cone. It separates the set of time-like vectors into two: those with positive $(n+1)$ th coordinate; and those with negative $(n+1)$ th coordinate. The hyperbolic space \mathbb{H}^{n} embeds in the Lorentz space as the vectors with norm squared equal to -1 but positive $(n+1)$ th coordinate. This embedding is called the hyperboloid model.

A pair of vectors $x, y \in \mathbb{R}^{n, 1}$ are called Lorentz orthogonal or in this section, simply orthogonal if $\langle x, y\rangle_{L}=0$. The orthogonal complement $\langle x\rangle^{L}$ of x is the set of vectors orthogonal to x. If V is a subspace of $\mathbb{R}^{n, 1}$, then the Lorentz orthogonal complement V^{L} is the set of vectors that are orthogonal to every $x \in V$.

2.1.1 Relating Euclidean and Lorentzian inner products

The Euclidean inner product of $x, y \in \mathbb{R}^{n+1}$ is denoted $\langle x, y\rangle_{E}$ and defined

$$
\langle x, y\rangle_{E}=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}+x_{n+1} y_{n+1}
$$

where $x=\left(x_{1}, x_{2}, \ldots, x_{n+1}\right)$ and $y=\left(y_{1}, y_{2}, \ldots, y_{n+1}\right)$. It is similar to the Lorentzian inner product in $\mathbb{R}^{n, 1}$ but the orthogonal complements are related by the $(n+1) \times(n+1)$ diagonal matrix J with entries $(1,1, \ldots, 1,-1)$. For any $x, y \in \mathbb{R}^{n+1}=\mathbb{R}^{n, 1}$, the inner products are related by

$$
\begin{equation*}
\langle x, y\rangle_{L}=\langle J x, y\rangle_{E}=\langle x, J y\rangle_{E} . \tag{2.1}
\end{equation*}
$$

Denote the Euclidean orthogonal complement of a vector subspace V of \mathbb{R}^{n+1} with V^{E}. Then V can be a subspace of both \mathbb{R}^{n+1} and $\mathbb{R}^{n, 1}$. The matrix J is a linear isomorphism from any vector subspace V onto $J V$. Since $J^{2}=\mathrm{Id}_{n+1}$, it is also an isomorphism from $J V$ to V. Equation (2.1) implies that $V^{L}=(J V)^{E}$.

To show that $J\left(V^{E}\right)=(J V)^{E}$, let $x \in(J V)^{E}$. Then $\langle x, y\rangle_{E}=0$ for all $y \in J V$. Let $v_{y}=J y \in V$ so $J v_{y}=y$. Then $\langle x, y\rangle_{E}=\left\langle x, J v_{y}\right\rangle_{E}=\left\langle J x, v_{y}\right\rangle_{E}=0$ for each $y \in J V$. This shows that $J x \in J\left(V^{E}\right)$ and so $(J V)^{E} \subseteq J\left(V^{E}\right)$. Conversely, let $x \in J\left(V^{E}\right)$. Then $x=J w$ for some $w \in V^{E}$. By definition, $\langle w, v\rangle_{E}=0$ for all $v \in V$. But $w=J x$ so $\langle J x, v\rangle_{E}=\langle x, J v\rangle_{E}=0$ for all $v \in V$. It follows that $x \in(J V)^{E}$. In conclusion, $V^{L}=(J V)^{E}=J\left(V^{E}\right)$.

From these, we have

$$
\begin{aligned}
\left(V^{L}\right)^{L} & =J\left(\left(V^{L}\right)^{E}\right)=J\left(\left(J\left(V^{E}\right)\right)^{E}\right) \\
& =\left(J\left(J\left(V^{E}\right)\right)\right)^{E} \\
& =\left((J J)\left(V^{E}\right)\right)^{E} \\
& =\left(V^{E}\right)^{E}=V
\end{aligned}
$$

Now that $\left(V^{L}\right)^{L}=V$ and $V^{L}=J\left(V^{E}\right)$, the properties of Euclidean orthogonal complements of subspaces of \mathbb{R}^{n+1} are inherited by the Lorentzian orthogonal complements of subspaces of $\mathbb{R}^{n, 1}$. In particular, the dimension of V^{L} is equal to $(n+1)-\operatorname{dim}(V)$.

2.1.2 Orthonormal bases and orthogonal transformations

A basis $\left\{v_{1}, v_{2}, \ldots, v_{n+1}\right\}$ for $\mathbb{R}^{n, 1}$ is called Lorentz orthonormal if $\left\|v_{n+1}\right\|_{L}^{2}=-1$, $\left\langle v_{i}, v_{j}\right\rangle_{L}=0$ for $i \neq j$ and $\left\langle v_{i}, v_{i}\right\rangle_{L}=1$ for $i=1,2, \ldots, n$. The standard basis $\left\{e_{1}, e_{2}, \ldots, e_{n+1}\right\}$ is an example of a Lorentz orthonormal basis. A subspace V of $\mathbb{R}^{n, 1}$ has a basis but if it is space-like, any basis fails to be Lorentz orthonormal as it lacks a time-like vector. If V is time-like, it is possible to construct a Lorentz orthonormal basis and it is a goal of this section.

A linear transformation or endomorphism f of $\mathbb{R}^{n, 1}$ is called a Lorentz transformation if it preserves the Lorentz inner product. That is, $\langle v, w\rangle_{L}=\langle f(v), f(w)\rangle_{L}$ for all pairs $v, w \in \mathbb{R}^{n, 1}$. From this definition, a Lorentz transformation maps a Lorentz orthonormal basis into another. Conversely, a linear transformation that maps the standard basis into a Lorentz orthonormal basis is a Lorentz transformation [17, Theorem 3.1.3]. It follows that f is bijective and so the set of Lorentz transformations forms a group under composition called the Lorentz group. This group is denoted $\mathrm{O}(n, 1)$.

Using the standard basis, an endomorphism of $\mathbb{R}^{n, 1}$ can be expressed as an $(n+1) \times$ $(n+1)$ matrix. Other equivalent definitions of a Lorentz transformation are stated in terms of its matrix form.

Theorem 2.1.1 ([17, Theorem 3.1.4]). Let A be an $(n+1) \times(n+1)$ matrix with real coefficients and J be the $(n+1) \times(n+1)$ diagonal matrix with entries $(1,1, \ldots, 1,-1)$. Then the following are equivalent.

1. As an endomorphism, A is Lorentzian.
2. The columns of A form a Lorentz orthonormal basis for $\mathbb{R}^{n, 1}$.
3. The matrix A satisfies the equation $A^{t} J A=J$.
4. The matrix A satisfies the equation $A J A^{t}=J$.
5. The rows of A form a Lorentz orthonormal basis for $\mathbb{R}^{n, 1}$.

A subgroup of $\mathrm{O}(n, 1)$ that preserves the sign of the $(n+1)$ th coordinate of each time-like vector is called positive Lorentz group and is denoted PO $(n, 1)$. Since a Lorentz
transformation preserves Lorentz orthonormal bases, a time-like subspace is mapped onto another time-like subspace. Moreover for every pair of time-like subspaces V, W of the same dimension, there is a positive Lorentz transformation that restricts to an isomorphism from V to W.

Theorem 2.1.2 ([17, Theorem 3.1.5]). For each dimension m, the natural action of $\mathrm{PO}(n, 1)$ on the set of m-dimensional time-like subspaces of $\mathbb{R}^{n, 1}$ is transitive.

2.1.3 Orthogonal Complements

By combining subsets of the standard basis, their spans form time-like subspaces of varying dimensions. Define the following subspaces of $\mathbb{R}^{4,1}$.

$$
\begin{array}{ll}
V_{0}=\operatorname{span}\left\{e_{5}\right\} & V_{23}=\operatorname{span}\left\{e_{3}, e_{4}, e_{5}\right\} \\
V_{1}=\operatorname{span}\left\{e_{1}, e_{5}\right\} & V_{31}=\operatorname{span}\left\{e_{1}, e_{2}, e_{3}, e_{5}\right\} \\
V_{21}=\operatorname{span}\left\{e_{1}, e_{2}, e_{5}\right\} & V_{32}=\operatorname{span}\left\{e_{2}, e_{3}, e_{4}, e_{5}\right\}
\end{array}
$$

Then their corresponding orthogonal complements are as follows.

$$
\begin{array}{ll}
V_{0}^{L}=\operatorname{span}\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\} & V_{23}^{L}=\operatorname{span}\left\{e_{1}, e_{2}\right\} \\
V_{1}^{L}=\operatorname{span}\left\{e_{2}, e_{3}, e_{4}\right\} & V_{31}^{L}=\operatorname{span}\left\{e_{4}\right\} \\
V_{21}^{L}=\operatorname{span}\left\{e_{3}, e_{4}\right\} & V_{32}^{L}=\operatorname{span}\left\{e_{1}\right\}
\end{array}
$$

Notice that the orthogonal complement of a time-like subspace is space-like or trivial. When pairing two time-like subspaces V, W in the examples above, the span of $V^{L} \cup W^{L}$ is space-like. Furthermore, $V \cap W$ is still time-like. The following theorem states the more general results.

Theorem 2.1.3 ([17, Theorem 3.2.6]). Let x and y be linearly independent space-like vectors in $\mathbb{R}^{n, 1}$. Then $\operatorname{span}\{x, y\}$ is space-like if and only if $(\operatorname{span}\{x\})^{L} \cap(\operatorname{span}\{y\})^{L}$ is a time-like subspace.

While this theorem deals with n-dimensional subspaces of $\mathbb{R}^{n, 1}$, the examples above suggest that a similar statement works for lower and varying dimension subspaces.

The following lemma is immediate from previous theorems but are necessary here and not stated in the references.

Lemma 2.1.1. Let V be a time-like subspace of $\mathbb{R}^{n, 1}$ and $v \in V$ be a time-like vector. Then there is an orthonormal basis $\left\{v_{1}, v_{2}, \ldots, v_{k}, v_{k+1}\right\}$ for V where $k+1=\operatorname{dim}(V)$ and v_{k+1} is linearly dependent with v.

Proof. The span of $e_{1}, e_{2}, \ldots, e_{k}$ and e_{n+1} is isomorphic to $\mathbb{R}^{k, 1}$ in both vector space and Lorentz structures. The group $\mathrm{PO}(k, 1)$ embeds into $\mathrm{PO}(n, 1)$ by filling an $(n+$ 1) $\times(n+1)$ matrix with a $(k+1) \times(k+1)$ matrix from an element of $\mathrm{PO}(k, 1)$ to the lower right entries, the upper right entries with I_{n-k} identity matrix, and the rest with zeros. If $\sigma \in \mathrm{PO}(k, 1)$, denote its extension to $\mathrm{PO}(n, 1)$ with $\hat{\sigma}$.

There is an $f_{v} \in \operatorname{PO}(n, 1)$ that maps V onto $\operatorname{span}\left\{e_{1}, e_{2}, \ldots, e_{k}, e_{n+1}\right\}$. The vector $f_{v}(v)$ must be time-like so there is $\sigma_{v} \in \mathrm{PO}(k, 1)$ that maps $\operatorname{span}\left\{f_{v}(v)\right\}$ to $\operatorname{span}\left\{e_{n+1}\right\}$. Then $\left(\hat{\sigma}_{v} \circ f_{v}\right)^{-1} \in \operatorname{PO}(n, 1)$ sends the set $\left\{e_{1}, e_{2}, \ldots, e_{k}, e_{n+1}\right\}$ into an orthonormal basis of V, one vector of which is linearly dependent with v.

The following lemma is necessary here but not stated in the references.

Lemma 2.1.2. Let P be a time-like subspace of a time-like subspace V of $\mathbb{R}^{n, 1}$. Suppose $k=\operatorname{dim}(P)$ and $m=\operatorname{dim}(V)$. Then there is a Lorentz orthonormal basis $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ for V such that $\left\{v_{1}, v_{2}, \ldots, v_{k-1}, v_{m}\right\}$ is an orthonormal basis for P.

Proof. Let $\left\{u_{1}, u_{2}, \ldots, u_{k-1}, u_{m}\right\}$ be an orthonormal basis of V where $u_{m} \in P$. Then there is $f \in \operatorname{PO}(n, 1)$ that sends P to $\operatorname{span}\left\{u_{1}, u_{2}, \ldots, u_{k-1}, u_{m}\right\}$ while leaving V invariant. The existence of f is implied by the proof the lemma above. Let $v_{i}=$ $f^{-1}\left(u_{i}\right)$ for $i=1,2, \ldots, m$. Then $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ is an orthonormal basis for V while $\left\{v_{1}, v_{2}, \ldots, v_{k-1}, v_{m}\right\}$ is an orthonormal basis for P.

The following is used in succeeding sections to show that intersecting subplanes of the hyperbolic space behave much like Euclidean subplanes. Specifically the subplanes can intersect orthogonally although the intersections can be of different dimensions.

Theorem 2.1.4. Let P be a time-like proper vector subspace of another time-like proper subspace V of $\mathbb{R}^{n, 1}$. Then there is a unique time-like vector subspace V^{\perp} containing P such that

1. $\left(V^{\perp}\right)^{L}$ is Lorentz orthogonal to V^{L},
2. $\operatorname{dim}\left(V^{\perp}\right)=n-\operatorname{dim}(V)+\operatorname{dim}(P)+1$,
3. $\operatorname{span}\left(V^{\perp} \cup V\right)=\mathbb{R}^{n, 1}$ and
4. $P=V^{\perp} \cap V$.

Proof. Let $\left\{v_{1}, v_{2}, \ldots, v_{n+1}\right\}$ be a Lorentz orthonormal basis of $\mathbb{R}^{n, 1}$ where P is the span of $\left\{v_{1}, v_{2}, \ldots, v_{k-1}, v_{n+1}\right\}$ and $V=\operatorname{span}\left\{v_{1}, v_{2}, \ldots, v_{m-1}, v_{n+1}\right\}$. Define V^{\perp} to be the span of $\left\{v_{1}, v_{2}, \ldots, v_{k-1}, v_{m}, v_{m+1}, \ldots, v_{n}, v_{n+1}\right\}$. Then $V^{L}=\operatorname{span}\left\{v_{m}, v_{m+1}, \ldots, v_{n}\right\}$ and $\left(V^{\perp}\right)^{L}=\operatorname{span}\left\{v_{k}, v_{k+1}, \ldots, v_{m-1}\right\}$.

From construction, V^{L} is Lorentz orthogonal to $\left(V^{\perp}\right)^{L}$. Since V^{\perp} has the maximum dimension that contains P, it is unique.

2.1.4 Metric and subplanes of \mathbb{H}^{n}

The subset \mathbb{H}^{n} is equipped with a metric induced by the Lorentz inner product. The metric on \mathbb{H}^{n} is given by $d_{\mathcal{H}^{n}}(x, y)=\cosh ^{-1}\left(-\langle x, y\rangle_{L}\right)$ for $x, y \in \mathbb{H}^{n}$. Every isometry of \mathbb{H}^{n} extends uniquely into an element of $\operatorname{PO}(n, 1)$, and every element of $\operatorname{PO}(n, 1)$ restricts to an isometry of \mathbb{H}^{n}. Hence $\operatorname{Isom}\left(\mathbb{H}^{n}\right)$ is isomorphic to $\operatorname{PO}(n, 1)$. A geodesic line $\mathbb{R} \rightarrow \mathbb{H}^{n}$ is an isometry between \mathbb{R} onto its image. A function $\lambda: \mathbb{R} \rightarrow \mathbb{H}^{n}$ is a geodesic line if and only if there are $x \in \mathbb{H}^{n}$ and $y \in \mathbb{R}^{n, 1}$ with $\langle x, y\rangle_{L}=0$ and $\|y\|_{L}=1$ such that $\lambda(t)=(\cosh t) x+(\sinh t) y$ for all $t \in \mathbb{R}[17$, Theorem 3.2.5]. The span of $\{x, y\}$ from the formula is a 2-dimensional time-like vector subspace so geodesics in \mathbb{H}^{n} are intersections of 2-dimensional time-like subspaces with \mathbb{H}^{n}.

The subplanes of \mathbb{H}^{n} inside $\mathbb{R}^{n, 1}$ are the intersections of time-like subspaces with \mathbb{H}^{n} [17]. More precisely, $V \cap \mathbb{H}^{n}$ is an m-dimensional subplane of \mathbb{H}^{n} if and only if V is an $(m+1)$-dimensional time-like vector subspace of $\mathbb{R}^{n, 1}$. A 1-dimensional subplane is called a hyperbolic line or simply line. A point is also called 0-dimensional subplane.

An ($n-1$)-dimensional subplane is called a hyperplane. Using the Lorentz space, the dihedral angles between intersecting hyperplanes can be described without dealing with the geodesics passing through the intersections. Furthermore the minimum distance between hyperplanes and the common perpendicular line can be computed or located.

Translating Theorem 2.1.4 to \mathbb{H}^{n}, it follows that the hyperbolic subplanes passing through a given point behave much like the Euclidean space.

The following corollary is essential for the succeeding chapters. It is not found in references so the statement and proof are provided.

Corollary 2.1.1. Let h be a proper subplane of \mathbb{H}^{n} of dimension m and P a proper subplane of h with dimension k. Allow P to be a single point in h which has dimension 0 . Then there is a unique subplane h_{P}^{\perp} (hyperbolic) orthogonal to h through P and of dimension $n-m+k$.

Proof. Embed \mathbb{H}^{n} into $\mathbb{R}^{n, 1}$ so the image is the hyperboloid model. Then $h=\mathbb{H}^{n} \cap V$ and $P=\mathbb{H}^{n} \cap W$ for some time-like subspaces V and W. Since $P \subset h$, then $W \subset V$. The hypothesis shows that $W \subset V \subset \mathbb{R}^{n, 1}$ are proper subsets so there is a unique V_{W}^{\perp} containing W so that $\left(V_{W}^{\perp}\right)^{L}$ and is Lorentz orthogonal to V^{L}. The Lorentz orthogonal relation between $\left(V_{W}^{\perp}\right)^{L}$ and V^{L} translates to hyperbolic orthogonal relation between $\mathbb{H}^{n} \cap V^{L}$ and $\mathbb{H}^{n} \cap\left(V_{W}^{\perp}\right)^{L}$.

2.1.5 Dropping a perpendicular

Let h be an n-dimensional time-like subspace of $\mathbb{R}^{n, 1}$. Let v be time-like vector not in h. Then h^{L} is 1 -dimensional space-like subspace of $\mathbb{R}^{n, 1}$. Let $P=\operatorname{span}\left(\{v\} \cup h^{L}\right)$, so the dimension of P is 2. By dimension count, $\operatorname{span}(h \cup P)=\mathbb{R}^{n, 1}$ and $h \cap P$ is a 1-dimensional subspace. Moreover, it is interesting to show that $h \cap P$ is time-like. Let x be a nontrivial vector in h^{L}. Then for each $t \in \mathbb{R}$, the linear combination $t x+v$ is in P.

Since $(\operatorname{span}\{x\})^{L}=h$, one can solve the equation $\langle t x+v, x\rangle_{L}=0$ for t and the resulting solution t_{0} makes $t_{0} x+v$ a vector in h. The equation yields to a unique
solution

$$
t_{0}=-\frac{\langle v, x\rangle_{L}}{\langle x, x\rangle_{L}} .
$$

To check that $t_{0} x+v$ is time-like, we can compute $\left\|t_{0} x+v\right\|_{L}^{2}$.

$$
\begin{aligned}
\left\|t_{0} x+v\right\|_{L}^{2} & =\left\langle t_{0} x+v, t_{0} x+v\right\rangle_{L} \\
& =t_{0}^{2}\|x\|_{L}^{2}+2 t_{0}\langle v, x\rangle_{L}+\|v\|_{L}^{2} \\
& =\left(-\frac{\langle v, x\rangle_{L}}{\langle x, x\rangle_{L}}\right)^{2}\|x\|_{L}^{2}+2\left(-\frac{\langle v, x\rangle_{L}}{\langle x, x\rangle_{L}}\right)\langle v, x\rangle_{L}+\|v\|_{L}^{2} \\
& =\frac{\langle v, x\rangle_{L}^{2}}{\langle x, x\rangle_{L}}-\frac{2\langle v, x\rangle_{L}^{2}}{\langle x, x\rangle_{L}}+\|v\|_{L}^{2} \\
& =-\frac{\langle v, x\rangle_{L}^{2}}{\langle x, x\rangle_{L}}+\|v\|_{L}^{2} .
\end{aligned}
$$

Since x is space-like and v is time-like, $\left\|t_{0} x+v\right\|^{2}$ is negative so both $t_{0} x+v$ and $h \cap P$ are time-like. The angular relation between h and P is likewise an important property of the construction of P. In particular, h and P project to \mathbb{H}^{n} as orthogonal hyperplane and line.

Theorem 2.1.5 ([17, Theorem 3.2.7]). Let h be an n-dimensional time-like subspace of $\mathbb{R}^{n, 1}$ and v a time-like vector not in h. Then there exists a unique 2-dimensional time-like subspace P such that

1. P contains v,
2. $h \cap P$ is 1-dimensional and time-like, and
3. P^{L} and h^{L} are Lorentz orthogonal.

Proof. The construction of P is described above. It is the span of $h^{L} \cup\{v\}$. What is left to show is that P^{L} and h^{L} are Lorentz orthogonal.

By definition, $h^{L} \subset P$. Let $w \in h^{L}$. Then $w \in P$. For each $y \in P^{L}$, the equation $\langle w, y\rangle_{L}=0$ follows. Likewise if $w_{1} \in P^{L}$, then $\left\langle w_{1}, y_{1}\right\rangle_{L}=0$ for all $y_{1} \in P$ which includes h^{L}. Hence h^{L} is Lorentz orthogonal to P^{L}.

The following corollary allows dropping a perpendicular line from a point to a disjoint subplane of any dimension. It is immediate from the well-known theorem that
drops a perpendicular line from a point to a hyperplane. It is used several times in the next chapters so the statement and proof are provided.

Corollary 2.1.2. For each subplane H of \mathbb{H}^{n} and each $p \in \mathbb{H}^{n} \backslash H$, there is a unique line P passing through p such that P is (hyperbolic) orthogonal to H.

Proof. Let $k=\operatorname{dim}(H)$. Embed \mathbb{H}^{n} into $\mathbb{R}^{n, 1}$. Then H and p can be extended uniquely into time-like vector subspaces W_{H} and V_{p} respectively. The span of $W_{H} \cup V_{p}$ is isomorphic to $\mathbb{R}^{k+1,1}$ so there is a unique 2-dimensional subspace Q in $\operatorname{span}\left(W_{H} \cup V_{p}\right)$ that contains V_{p} such that Q^{L} is Lorentz orthogonal to W_{H}^{L}. Let $P=Q \cap \mathbb{H}^{n}$. Then P is the unique line orthogonal to H and passing through p.

If v and w are linearly independent space-like vectors then $\operatorname{span}\{v, w\}$ is time-like if and only if $\operatorname{span}\{v\}^{L} \cap \operatorname{span}\{w\}^{L}$ is space-like. The intersections of \mathbb{H}^{n} with either $\operatorname{span}\{v\}^{L}$ or $\operatorname{span}\{w\}^{L}$ is an $(n-1)$-dimensional subplane of \mathbb{H}^{n} called hyperplane. It follows that $\mathbb{H}^{n} \cap \operatorname{span}\{v\}^{L}$ and $\mathbb{H}^{n} \cap \operatorname{span}\{w\}^{L}$ are disjoint if $\operatorname{span}\{v, w\}$ is time-like.

Conversely, if $\mathbb{H}^{n} \cap \operatorname{span}\{v\}^{L}$ and $\mathbb{H}^{n} \cap \operatorname{span}\{w\}^{L}$ are disjoint, then either span $\{v, w\}$ is time-like or light-like.

Definition 1. Let P and Q be suplanes of \mathbb{H}^{n} with possibly different or equal dimensions. Then P and Q are called ultra-parallel if $\operatorname{span}(P) \cap \operatorname{span}(Q) \subset \mathbb{R}^{n, 1}$ is space-like. If $\operatorname{span}(P) \cap \operatorname{span}(Q)$ is light-like, then P and Q are said to be tangent at infinity.

Theorem 2.1.6 ([17, Theorem 2.3.7]). If P and Q are ultra-parallel hyperplanes of \mathbb{H}^{n}, then there is a unique line orthogonal to both P and Q.

2.2 Reflections across spheres and planes

The vector space \mathbb{R}^{n} can be equipped with the Euclidean inner product structure denoted in this section as dot-product. If $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in$ \mathbb{R}^{n}, the Euclidean inner product of x and y is

$$
x \cdot y=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n} .
$$

This inner product induces a norm and a distance structures of \mathbb{R}^{n} given by

$$
\|x\|=\sqrt{x \cdot x} \text { and } d_{E}(x, y)=\|x-y\| .
$$

A sphere $S(a, r)$ where $a \in \mathbb{R}^{n}, r>0$ is the set of points equidistant to a of length r. If $a \in \mathbb{R}^{n}$ has $\|a\|=1$ and $t \in \mathbb{R}$, a Euclidean plane $P(b, t)$ can be uniquely determined by a and t. Specifically, $S(a, r)$ and $P(b, t)$ are defined as follows.

$$
\begin{aligned}
& S(a, r)=\left\{x \in \mathbb{R}^{n}:\|x-a\|=r\right\} \\
& P(b, t)=\left\{x \in \mathbb{R}^{n}: b \cdot x=t\right\}
\end{aligned}
$$

Note that a in $S(a, r)$ can be of any norm whereas b in $P(b, t)$ is assumed to be of unit length. From the definition, $P(b, t)=P(-b,-t)$. The reflections across $P(b, t)$ and $S(a, r)$ are defined as follows.

$$
\begin{aligned}
& \sigma(x)=a+\left(\frac{r}{\|x-a\|}\right)^{2}(x-a) \\
& \rho(x)=x+2(t-b \cdot x) b
\end{aligned}
$$

By computing their compositions, $\sigma \sigma$ and $\rho \rho$ are identity map on \mathbb{R}^{n}. The fixed point set of σ is $S(a, r)$ and that of ρ is $P(b, t)$ [17, Theorem 4.1.3]. These reflections preserve the Euclidean inner product, that is $\rho(x) \cdot \rho(y)=\sigma(x) \cdot \sigma(y)=x \cdot y$ for all $x, y \in \mathbb{R}^{n}$ not equal to a for σ. They also reverse the orientation of \mathbb{R}^{n}.

By extending \mathbb{R}^{n} into $\widehat{\mathbb{R}^{n}}$ defined as $\mathbb{R}^{n} \sqcup\{\infty\}, \widehat{\mathbb{R}^{n}}$ is a one point compactification of \mathbb{R}^{n}. The reflections σ and ρ also extend to $\widehat{\mathbb{R}^{n}}$ via $\sigma(a)=\infty, \sigma(\infty)=a$ and $\rho(\infty)=$ ∞. A hyperplane $P(b, t)$ naturally extends into a topological sphere by adjoining ∞. Henceforth, a reflection in $\widehat{\mathbb{R}^{n}}$ is considered to be across a sphere, whether it is a Euclidean sphere of an extended Euclidean plane. The composition of a finite number of reflections is called a Möbius transformation. The set of Möbius transformations forms a group under composition called the Möbius group and is denoted Möb $\left(\widehat{\mathbb{R}^{n}}\right)$.

Let e_{n} be the point in \mathbb{R}^{n} whose nth coordinate is 1 and other coordinates are 0 . Let B_{n} be the set $\left\{x \in \mathbb{R}^{n}:\|x\|<1\right\}$ and U_{n} be the set $\left\{x \in \mathbb{R}^{n}: x \cdot e_{n}>0\right\} \cup$ $\{\infty\}$. The reflection across the sphere $S\left(e_{n}, \sqrt{2}\right)$ maps the lower half space $-U_{n}=$ $\left\{-x: x \in U_{n}\right\}$ onto B_{n}. It can be precomposed with the reflection across the hyperplane
$\mathbb{R}^{n-1} \times\{0\} \cup\{\infty\}$ and the resulting Möbius transformation maps U_{n} onto B_{n}. This composition s_{π}, called stereographic projection, restricts to a homeomorphism from $\widehat{\mathbb{R}^{n-1}}=\mathbb{R}^{n-1} \times\{0\} \cup\{\infty\}$ onto $S^{n-1}=\left\{x \in \mathbb{R}^{n}:\|x\|=1\right\}$, and has an explicit formula

$$
s_{\pi}(x)= \begin{cases}e_{n} & \text { if } x=\infty \\ \left(\frac{2 x_{1}}{\|x\|^{2}+1}, \frac{2 x_{2}}{\|x\|^{2}+1}, \ldots, \frac{2 x_{n-1}}{\|x\|^{2}+1}, \frac{\|x\|^{2}-1}{\|x\|^{2}+1}\right) & \text { if } x \neq \infty .\end{cases}
$$

The inverse of the restriction has a formula expressed as

$$
s_{\pi}^{-1}(y)=\left(\frac{y_{1}}{1-y_{n}}, \frac{y_{2}}{1-y_{n}}, \ldots, \frac{y_{n-1}}{1-y_{n}}, 0\right) .
$$

A reflection within $\widehat{\mathbb{R}^{n}}$ can be extended to a reflection in $\widehat{\mathbb{R}^{n+1}}$ using the same formula. The extension leaves the upper half-space U_{n+1} invariant, and hence any Möbius transformation of $\widehat{\mathbb{R}^{n}}$ extends to a unique Möbius transformation of $\widehat{\mathbb{R}^{n+1}}$ called Poincaré extension. It can be shown that a Möbius transformation of $\widehat{\mathbb{R}^{n+1}}$ is a Poincaré extension if and only if it leaves U_{n+1} invariant. The set of Poincaré extensions of $\operatorname{Möb}\left(\widehat{\mathbb{R}^{n}}\right)$ forms a subgroup of $\operatorname{Möb}\left(\widehat{\mathbb{R}^{n+1}}\right)$ and is denoted Möb $\left(U_{n+1}\right)$. It follows that $\operatorname{Möb}\left(U_{n+1}\right)$ is isomorphic to $\operatorname{Möb}\left(\widehat{\mathbb{R}^{n}}\right)$. The stereographic projection therefore conjugates $\operatorname{Möb}\left(U_{n+1}\right)$ into a subgroup of $\operatorname{Möb}\left(\widehat{\mathbb{R}^{n+1}}\right)$ that leaves S^{n} and B_{n+1} invariant. This subgroup is denoted $\operatorname{Möb}\left(S^{n}\right)$ and is also isomorphic to $\operatorname{Möb}\left(U_{n+1}\right)$ and $\operatorname{Möb}\left(\widehat{\mathbb{R}^{n}}\right)$.

2.2.1 Cross Ratio

Let $u, v, x, y \in \widehat{\mathbb{R}^{n}}$ with $u \neq v$ and $x \neq y$. The cross ratio of an ordered quadruple (u, v, x, y) denoted by $[u, v, x, y]$ is defined given by

$$
[u, v, x, y]=\frac{\left\|s_{\pi}(u)-s_{\pi}(x)\right\|\left\|s_{\pi}(v)-s_{\pi}(y)\right\|}{\left\|s_{\pi}(u)-s_{\pi}(v)\right\|\left\|s_{\pi}(x)-s_{\pi}(y)\right\|}
$$

If one of $\{u, v\}$ and one of $\{x, y\}$ are ∞, then the factors of the numerator and denominator equal to ∞ in the definition can be ignored. If one of $\{u, v\}$ but none of $\{x, y\}$ is ∞, the cross ratio is 0 . It can be shown that a function from $\widehat{\mathbb{R}^{n}}$ to $\widehat{\mathbb{R}^{n}}$ is a Möbius transformation if and only if it preserves cross ratios of all qualified quadruples.

Then a Möbius transformation preserves (extended) spheres of $\widehat{\mathbb{R}^{n}}$ of any dimension lower than n. Moreover, $\operatorname{Möb}\left(\widehat{\mathbb{R}^{n}}\right)$ is transitive on the set of k-dimensional spheres of $\widehat{\mathbb{R}^{n}}$. If a Möbius transformation fixes $(n-1)$-dimensional sphere, it is either a reflection or the identity map.

2.2.2 Boundaries at infinity

The upper-half and conformal ball models are subsets of \mathbb{R}^{n}. They have natural boundaries in $\widehat{\mathbb{R}^{n}}$ that are homeomorphic to S^{n-1}. Their Möbius groups actions extend to $\widehat{\mathbb{R}^{n}}$ and leave their respective boundaries invariant. The boundary of U_{n} is $\mathbb{R}^{n-1} \times\{0\} \cup\{\infty\}$ and that of B_{n} is S^{n-1}. As models of hyperbolic space, U_{n} and B_{n} are compactified by their boundaries called boundary at infinity, visual boundary or conformal sphere at infinity. These boundaries inherit the conformal structure of $\widehat{\mathbb{R}^{n}}$ and the Möbius groups act on them as conformal bijections.

The hyperboloid model \mathcal{H}^{n} does not have a boundary within $\mathbb{R}^{n, 1}$ but its boundary at infinity correspond to the set of nontrivial light-like vectors of $\mathbb{R}^{n, 1}$. Hence a pair of subplanes P and Q of B_{n} extend to S^{n-1} and they are tangent at infinity if and only if their extensions in S^{n-1} intersect at a unique point. Likewise P and Q are ultra-parallel if and only if their extensions to S^{n-1} have empty intersection. In the succeeding chapters, the boundary at infinity is denoted $\partial \mathbb{H}^{n}$ or $\widehat{\mathbb{R}^{n-1}}$.

2.3 Classification of Möbius transformations

The homeomorphism property from S^{n} to $\widehat{\mathbb{R}^{n}}$ and the Brouwer fixed point theorem [10] force a Möbius transformation of S^{n} or $\widehat{\mathbb{R}^{n}}$ to have a fixed point. Therefore the classification of Möbius transformations can be determined by the function's number of fixed points. Let $f \in \operatorname{Möb}\left(S^{n}\right)$ so that f restricts to a function from $B_{n+1} \cup S^{n}$ to $B_{n+1} \cup S^{n} \subset \widehat{\mathbb{R}^{n+1}}$. Then f is

1. elliptic if f fixes a point of B_{n+1};
2. parabolic if f fixes a no point of B_{n+1} but fixes a unique point in S^{n};
3. hyperbolic if f fixes no point of B_{n+1} but fixes two points on S^{n}.

By extending f to a function $\widehat{\mathbb{R}^{n+1}} \rightarrow \widehat{\mathbb{R}^{n+1}}$ and conjugating it within Möb $\left(\widehat{\mathbb{R}^{n+1}}\right)$, a hyperbolic Möbius transformation f is conjugate to an element of Möb $\left(\widehat{\mathbb{R}^{n+1}}\right)$ with the form $x \mapsto k A x$ where $k>1$ and $A \in \mathrm{O}(n+1)$ which has exactly two fixed points, namely the origin and ∞. Hence a hyperbolic transformation has exactly two fixed points.

2.4 Maps between models of hyperbolic space

Let \mathcal{H}^{n} be the hyperboloid model of the n-dimensional hyperbolic space. That is, \mathcal{H}^{n} is the subset of $\mathbb{R}^{n, 1}$ consisting of vectors with Lorentz norm equal to i, the "imaginary number." A homeomorphism $\zeta: B_{n} \rightarrow \mathcal{H}^{n}$ is defined given by

$$
x \mapsto\left(\frac{2 x_{1}}{1-\|x\|^{2}}, \frac{2 x_{2}}{1-\|x\|^{2}}, \ldots, \frac{2 x_{n}}{1-\|x\|^{2}}, \frac{1+\|x\|^{2}}{1-\|x\|^{2}}\right) .
$$

The inverse of ζ has a formula given by

$$
y \mapsto\left(\frac{y_{1}}{1+y_{n+1}}, \frac{y_{2}}{1+y_{n+1}}, \ldots, \frac{y_{n}}{1+y_{n+1}}\right)
$$

Recall that the stereographic projection s_{π} is a homeomorphism from $\widehat{\mathbb{R}^{n-1}}$ onto S^{n-1}. It extends uniquely to a Möbius transformation of $\widehat{\mathbb{R}^{n}}$ that sends U_{n} to B_{n}. Thus the composition ζs_{π} is a homeomorphism from U_{n} to \mathcal{H}^{n}. Using these homeomorphisms, U_{n} and B_{n} inherit the metric structure of \mathcal{H}^{n} that is compatible with their inherent conformal structure. Moreover, these homeomorphisms conjugate the groups Möb $\left(S^{n-1}\right)$ and Möb $\left(U_{n}\right)$ into $\mathrm{PO}(n, 1)$, the set of positive Lorentz transformations of $\mathbb{R}^{n, 1}$.

The set U_{n} is called the upper-half space model and the set B_{n} is called the conformal ball model. There is another model called the Klein disc model but it is covered in a separate document.

2.5 Comparison of models

The conformal maps $s_{\pi}, \zeta s_{\pi}, \zeta$ among the models of hyperbolic space inherit the metric structure of \mathcal{H}^{n}. The metric on B_{n} is explicitly given by

$$
d_{B_{n}}(x, y)=\cosh ^{-1}\left(1+\frac{2\|x-y\|_{E}^{2}}{\left(1-\|x\|_{E}^{2}\right)\left(1-\|y\|_{E}^{2}\right)}\right)
$$

whereas the metric on on U_{n} is given by

$$
d_{U_{n}}(x, y)=\cosh ^{-1}\left(1+\frac{2\|x-y\|_{E}^{2}}{2 x_{n} y_{n}}\right) .
$$

The Riemannian structure on B_{n} is

$$
\frac{d x_{1} \otimes d y_{1}+d x_{2} \otimes d y_{2}+\cdots+d x_{n} \otimes d y_{n}}{\left(1-\langle x, y\rangle_{E}\right)}
$$

while that of U_{n} is

$$
\frac{d x_{1} \otimes d y_{1}+d x_{2} \otimes d y_{2}+\cdots+d x_{n} \otimes d y_{n}}{x_{n} y_{n}}
$$

The m-dimensional subplanes of \mathcal{H}^{n} are the intersections of \mathcal{H}^{n} with $(m+1)$ dimensional time-like subspaces of $\mathbb{R}^{n, 1}$. Those of B_{n} are the intersections of B_{n} with m-dimensional Euclidean spheres or planes of \mathbb{R}^{n} orthogonal to S^{n-1}. In the upper-half space model U_{n}, the m-dimensional subplanes are the intersections of U_{n} with Euclidean spheres or planes of \mathbb{R}^{n} orthogonal to $\mathbb{R}^{n-1} \times\{0\}$.

The isometry space of \mathcal{H}^{n} is $\operatorname{PO}(n, 1)$ with a subgroup of orientation preserving maps denoted $\operatorname{PSO}(n, 1)$ consisting of matrices of positive determinant. The isometry space of U_{n} and B_{n} are $\operatorname{Möb}\left(U_{n}\right)$ and $\operatorname{Möb}\left(S^{n-1}\right)$ respectively. Their orientation preserving subgroups consist of those compositions of even number of reflections.

2.6 Dimensions 2 and 3

The Euclidean plane modeled with \mathbb{R}^{2} has a natural identification with the field of complex numbers \mathbb{C}. Adjoining ∞ to \mathbb{C} yields to $\widehat{\mathbb{C}}$ called the Riemann sphere. The calculus of complex numbers show that holomorphic functions give rise to conformal functions. In particular, the set of conformal automorphisms of $\widehat{\mathbb{C}}$ can be expressed by
fractional linear transformations which are functions of the form

$$
z \mapsto \frac{a z+b}{c z+d}
$$

where $a, b, c, d \in \mathbb{C}$ with $a c-b d \neq 0$ extending to $\widehat{\mathbb{C}}$ via $\infty \mapsto a / c$ and $-d / c \mapsto \infty$. This set, denoted $\operatorname{Aut}(\widehat{\mathbb{C}})$, has the same defining properties as the set of orientation preserving subgroup of $\operatorname{Möb}\left(\widehat{\mathbb{R}^{2}}\right)$, namely cross ratio preservation and unique determination by its action on 3 distinct points. The rest of Möb $\left(\widehat{\mathbb{R}^{2}}\right)$ can be identified with the complex maps of the form

$$
z \mapsto \frac{a \bar{z}+b}{c \bar{z}+d} .
$$

The group $\operatorname{Aut}(\widehat{\mathbb{C}})$ is homomorphic to a 2×2 matrix multiplication but changing the coefficients a, b, c, d into $-a,-b,-c,-d$ yields to the same function so $\operatorname{Aut}(\widehat{\mathbb{C}})$ is isomorphic to $\mathrm{PGL}_{2} \mathbb{C}$. Hence $\operatorname{Möb}\left(U_{3}\right), \operatorname{Möb}\left(S^{2}\right)$ and $\mathrm{PO}(3,1)$ are isomorphic to the two copies of $\mathrm{PGL}_{2} \mathbb{C}$.

Restricting the group $\operatorname{Aut}(\widehat{\mathbb{C}})$ to those that preserve $\widehat{\mathbb{R}}=\mathbb{R} \cup\{\infty\}$, called the extended real line, defines a subgroup isomorphic to the group of orientation preserving Möbius transformation of U_{2} and B_{2}. An element of $\operatorname{Aut}(\widehat{\mathbb{C}})$ of the form $z \mapsto \frac{a z+b}{c z+d}$ preserves the extended real line if and only if $a, b, c, d \in \mathbb{R} \subset \mathbb{C}$ so the group of orientation preserving Möbius transformations of U_{2} and $\operatorname{PSO}(2,1)$ are isomorphic to $\mathrm{PGL}_{2} \mathbb{R}$.

The cross ratio in $\widehat{\mathbb{R}^{2}}$ can be modified to encode the field structure of \mathbb{C}, defined as follows. Let $a, b, c, d \in \widehat{\mathbb{C}}$ where no three of them coincide. The (complex) cross-ratio of the ordered quadruple (a, b, c, d) is $\mathbb{R}(a, b, c, d)$ defined given by

$$
\not R(a, b, c, d)=\frac{(c-a)(d-b)}{(c-b)(d-a)} .
$$

The case where one or two of them are ∞ is handled similarly as the previous cross ratio.

One advantage of using this complex cross-ratio $\not \ell$ is the possibility of having a negative or non-real value. In particular, having a -1 complex cross-ratio corresponds to perpendicular lines described as follows.

Definition 2 ([3]). Let $a, b, c, d \in \widehat{\mathbb{C}}$. The pair of pairs $(a, b),(c, d)$ is called harmonic if either exactly three of $\{a, b, c, d\}$ coincide or a, b, c and d are distinct and $\not \subset(a, b, c, d)=$
-1 .

Theorem 2.6.1 ([3]). For every two non-ordered pairs of points (a, b) and (c, d) which do not consist of the same points and such that no three of $\{a, b, c, d\}$ coincide, there is a unique pair of non-ordered points (x, y) which is harmonic with both (a, b) and (c, d).

Proof. The points a, b with $a \neq b$ bound a unique hyperbolic line in U_{3}. Use the transitivity of $\mathrm{PGL}_{2} \mathbb{C}$ acting on U_{3} on hyperbolic lines to assume that $a=\infty$ and $b=0$. Let $x=-\sqrt{c d}$ and $y=\sqrt{c d}$. Then,

\[

\]

The theorem can be stated in a more geometric terms: Given two ultra-parallel lines in \mathbb{H}^{3}, there is a unique line perpendicular to both of them. The points $a, b, c, d \in \mathbb{C}$ serve as boundary points of the lines joining a to b and c to d. The line bounded by x and y is their common perpendicular. By alternately switching between upper-half and hyperboloid models, the theorem can be generalized into higher dimensions.

The following corollary is well-known in hyperbolic geometry but the proofs are not stated in the references.

Corollary 2.6.1. For every two ultra-parallel lines in \mathbb{H}^{n}, there is a unique line orthogonal to both of them.

Proof. Let ℓ_{1} and ℓ_{2} be ultra-parallel lines in \mathbb{H}^{n}. Using the hyperboloid model \mathcal{H}^{n}, ℓ_{1} and ℓ_{2} span a vector space V in $\mathbb{R}^{n, 1}$. If V is 3 -dimensional, then ℓ_{1} and ℓ_{2} are hyperplanes of V so there is a unique line in $\mathcal{H}^{n} \cap V$ perpendicular to both of them.

If V is 4-dimensional, then $\mathcal{H}^{n} \cap V$ is isometric to \mathbb{H}^{3} that can be modeled with the upper-half space U_{3}. Then ℓ_{1} and ℓ_{2} are bounded by 4 distinct points $a, b, c, d \in \widehat{\mathbb{C}}$. Suppose $\partial \ell_{1}=\{a, b\}$ and $\ell_{2}=\{c, d\}$. Then there is a unique line N perpendicular to both ℓ_{1} and ℓ_{2}. Any other line connecting a point from ℓ_{1} to ℓ_{2} must be a subset of $\mathcal{H}^{n} \cap V$ so N is the unique in all \mathcal{H}^{n}.

2.7 Subclassifications in dimension 4

The Möbius transformations acting as isometries of hyperbolic space are classified into elliptic, parabolic and hyperbolic in dimensions 2 or higher. An elliptic isometry has a set of fixed points with a dimension that can range from 0 to n. The dimension of the fixed point set is one way to classify elliptic elements further. In dimension 4 , an orientation preserving elliptic isometry has either one point, a plane or the whole \mathbb{H}^{4} of fixed point set. If it fixes a plane pointwise, it is called type I elliptic isometry or Möbius transformation. If it fixes only one point, it is called type II elliptic.

A parabolic Möbius transformation, acting on $\widehat{\mathbb{R}^{3}}$ via $x \mapsto A x+b$ where $A \in \mathrm{O}(3)$ and $b \in \mathbb{R}^{3} \backslash\{0\}$, either has $A=\mathrm{Id}_{3}$ or A nontrivial. Any orientation preserving parabolic isometry is conjugate to this form so orientation preserving parabolic isometries can be classified further into whether A is trivial or not. If A is trivial, the parabolic isometry is called pure parabolic or screw parabolic if A is nontrivial.

A hyperbolic Möbius transformation acting on $\widehat{\mathbb{R}^{3}}$ is conjugate to another that is of the form $x \mapsto \lambda A x$ where $1 \neq \lambda>0$ and $A \in \mathrm{O}(3)$. Thus an orientation preserving hyperbolic isometry is classified into pure hyperbolic if A is trivial or pure loxodromic if A nontrivial.

More information about subclassification of isometries of \mathbb{H}^{4} are provided in Chapter 3. The classes are listed as follows.

1. elliptic (see section 3.1)
(a) type I elliptic
(b) type II elliptic (see section 3.1.2)

The type II elliptic is further classified into two: those with unique pair of invariant planes; and involutions.
(c) identity map
2. parabolic
(a) pure parabolic or parabolic translation (see section 3.3)
(b) screw parabolic (see section 3.5)
3. hyperbolic
(a) pure hyperbolic or hyperbolic translation (see section 3.2)
(b) pure loxodromic or loxodromic transformation (see section 3.4)

Chapter 3

Pencils and Half-Turn Banks

In this chapter, pencils, half-turn, half-turn banks and twisting planes are defined. It is shown that isometries that can be expressed as a composition of two reflections have an invariant pencil; those with twisting planes have a twisting pencil instead. All types have half-turn banks. Hyperbolic, parabolic and type I elliptic types have permuted pencils. Detailed definitions are given for each type of isometry. Theorems about halfturn factoring are exactly the same for all types, but their proofs, while similar to each other, differ in details.

The pencils have a few properties that can be used for constructing half-turn banks, factoring isometries and linking pairs of them. These properties are also utilized for constructing and proving the uniqueness of a twisting plane which is a feature of dimension 4. The pencils and half-turn banks saturate the hyperbolic space and its boundary, reducing the difficulty in finding a common orthogonal plane essential for linking. Sufficient conditions for a plane or circle to be in a half-turn bank are stated for each type of isometry.

With the exception of type-II elliptic isometry, the model of \mathbb{H}^{4} used in this chapter is the upper-half space embedded in the ambient space \mathbb{R}^{4}. The boundary at infinity is therefore $\mathbb{R}^{3} \times\{0\} \cup\{\infty\}$ but denoted simply with $\widehat{\mathbb{R}^{3}}$.

Theorems 3.1.4, 3.2.5, 3.3.4, 3.4.3, and 3.5.3 serve as geometric classification for a plane to be involved in a half-turn factoring. In dimension 3, the analog of these planes are the lines perpendicular to the axis, which is extended by Fenchel [3] to allow "improper lines." In dimension 4, these planes are also described as intersections of special hyperplanes. Theorems 3.1.5, 3.1.4, 3.2.6, 3.3.5, 3.4.4 and 3.5.4 are statements with the same conclusion that differ only on the isometry types or classes. They allow
linking of pairs of isometries to be unordered in cases where the involutions are halfturns.

In section 3.6, the half-turn bank is proven to be the only source of half-turn factorization of an isometry. The conclusion is that two isometries of \mathbb{H}^{4} have a common half-turn factor if and only if their half-turn banks have an element in common.

3.1 Elliptic

Let h and h^{\prime} be hyperplanes in \mathbb{H}^{4}. If they intersect in a point they automatically intersect in a plane P. Denote the reflections across h and h^{\prime} by R_{h} and $R_{h^{\prime}}$ respectively. The compositions $R_{h} R_{h^{\prime}}$ and $R_{h^{\prime}} R_{h}$ fix P pointwise so they are elliptic isometries of \mathbb{H}^{4}. Suppose further that h and h^{\prime} are orthogonal. Then both $R_{h^{\prime}}(h)$ and h are orthogonal to h^{\prime} through P since $R_{h^{\prime}}$ is conformal. There is only one hyperplane orthogonal to h^{\prime} through P so $R_{h^{\prime}}(h)=h$. Conjugating R_{h} with $R_{h^{\prime}}$ yield to another reflection $R_{h^{\prime}} R_{h} R_{h^{\prime}}$. Both R_{h} and $R_{h^{\prime}}$ are involutions so for each $x \in h$, it follows that $R_{h^{\prime}}(x) \in h$ and $R_{h^{\prime}} R_{h} R_{h^{\prime}}(x)=R_{h^{\prime}} R_{h^{\prime}}(x)=x$. Hence $R_{h^{\prime}} R_{h} R_{h^{\prime}}$ is the reflection across h. It follows that $R_{h^{\prime}}$ and R_{h} commute and their composition is both elliptic and an involution. There is only one elliptic isometry fixing P and of angle π so $R_{h} R_{h^{\prime}}$ is the unique elliptic involution that fixes P.

Definition 3. Let P be a plane in \mathbb{H}^{4}. The half-turn about P is the elliptic isometry H_{P} that is a composition of reflections across an orthogonal pair of hyperplanes that intersect in P.

If h and h^{\prime} do not meet orthogonally, then R_{h} and $R_{h^{\prime}}$ do not commute. However if g is another hyperplane that contains $h \cap h^{\prime}$, it can be shown that $R_{g} R_{h} R_{h^{\prime}}$ and $R_{h} R_{h^{\prime}} R_{g}$ are reflections across hyperplanes that also contain $h \cap h^{\prime}$. To see this fact, consider first the hyperplanes bounded by Euclidean planes $P, Q \subset \mathbb{R}^{3} \times\{0\} \subset \partial \mathbb{H}^{4}$ such that the origin is both in P and Q. Let $a, b \in \mathbb{R}^{3}$ be unit vectors normal to P and Q respectively. Suppose $P \neq Q$ so that $a \neq b$. Then the span of a and b is a Euclidean plane orthogonal to both P and Q. Hence R_{P}, R_{Q} and $R_{P} R_{Q}$ leave $\operatorname{span}\{a, b\}$ invariant. If P^{\prime} is another Euclidean plane containing $P \cap Q$, then $R_{P^{\prime}}, R_{P^{\prime}} R_{P} R_{Q}$ and $R_{P} R_{Q} R_{P^{\prime}}$
also leave span $\{a, b\}$ invariant. The action of reflections across planes containing $P \cap Q$ is therefore completely determined by reflections across Euclidean lines in span $\{a, b\}$. As a result, the stabilizer of a point of S^{2} in $\mathrm{O}(3)$ is isomorphic to $\mathrm{O}(2)$.

Consider \mathbb{R}^{2} and the reflections across Euclidean lines through the origin. The formula for reflections in \mathbb{R}^{n} still works so if a is a unit vector normal to the line P, then

$$
\begin{aligned}
R_{P}(x) & =x+2(0-a \cdot x) a \\
& =x-2(a \cdot x) a .
\end{aligned}
$$

By identifying \mathbb{R}^{2} with \mathbb{C} which has multiplication and complex conjugation, the formula for R_{P} can be simpler.

$$
R_{P}(x)=-a^{2} \bar{x}
$$

Let Q be another Euclidean line through $(0,0)$ in \mathbb{R}^{2}. If b is a unit vector normal to Q, then $R_{P} R_{Q}$ can be expressed as

$$
R_{P} R_{Q}=a^{2} \bar{b}^{2} x
$$

Let P^{\prime} be another Euclidean line through $(0,0)$ which has a unit normal vector c. Then,

$$
\begin{aligned}
R_{P^{\prime}} R_{P} R_{Q} & =-c^{2} \bar{a}^{2} b^{2} \bar{x} \\
& =-(c \bar{a} b)^{2} \bar{x} \\
R_{P} R_{Q} R_{P^{\prime}} & =a^{2} \bar{b}^{2}\left(-c^{2} \bar{x}\right) \\
& =-(a \bar{b} c)^{2} \bar{x} .
\end{aligned}
$$

Since $c \bar{a} b$ and $a \bar{b} c$ are both unit vectors, $R_{P^{\prime}} R_{P} R_{Q}$ and $R_{P} R_{Q} R_{P^{\prime}}$ are reflections across the orthogonal complements of $c \bar{a} b$ and $a \bar{b} c$ respectively. Thus the composition of an odd number of reflections across lines that meet at one point is another reflection across another line that passes through the same point. By extension to \mathbb{R}^{3}, it is true for reflections across planes meeting in a line. It can be extended further to reflections in \mathbb{H}^{4} except that reflections across spheres need to be investigated. However one does not worry about them as any circle in $\widehat{\mathbb{R}^{n}}$ can be mapped by a Möbius transformation into a Euclidean line passing through the origin, and the following theorem can be used.

Theorem 3.1.1 ([17, Theorem 4.7.1]). A Möbius transformation ϕ of $\widehat{\mathbb{R}^{n}}$ is elliptic if and only if ϕ is conjugate to an orthogonal transformation of the Euclidean space \mathbb{R}^{n}.

Here, this theorem is used when $n=4$. A Möbius transformation of $\widehat{\mathbb{R}^{4}}$ extends to an isometry of \mathbb{H}^{5} but the main idea is that the stabilizer of a point in \mathbb{H}^{4} is isomorphic to $\mathrm{O}(4)$.

Corollary 3.1.1. The composition of an odd number of reflections across hyperplanes in \mathbb{H}^{4} intersecting in a common plane P is also a reflection across a hyperplane that contain P.

Definition 4. A type I elliptic isometry of \mathbb{H}^{4} is a composition of two reflections across distinct hyperplanes that intersect in a plane.

Let $\rho=R_{h} R_{h^{\prime}}$ for some distinct hyperplanes $h, h^{\prime} \in \mathbb{H}^{4}$ that intersect in a plane P. Then P is fixed pointwise by ρ. Since $h \neq h^{\prime}, \rho$ does not fix any point outside of P. Thus the fixed point set of ρ forms a plane.

Definition 5. Let ρ be a type I elliptic isometry of \mathbb{H}^{4}. The twisting plane of ρ is the set of fixed points of ρ in \mathbb{H}^{4}.

Remark 3.1.1. In [2,16], it is called axial plane. However axial planes are defined only for a type I elliptic isometry. Here, twisting planes are defined also for pure loxodromic and screw parabolic.

Definition 6. Let ρ be a type I elliptic isometry of \mathbb{H}^{4} with a twisting plane P. The (elliptic) permuted pencil of ρ is the set

$$
\mathcal{F}_{\rho}=\left\{\partial h \subset \partial \mathbb{H}^{4}: h \text { is a hyperplane containing } P\right\} .
$$

The elements of \mathcal{F}_{ρ} fill up $\partial \mathbb{H}^{4}$ and the hyperplanes they bound fill up \mathbb{H}^{4}.

Theorem 3.1.2. Let ρ be a type I elliptic isometry of \mathbb{H}^{4} with twisting plane P. Then for each $x \in\left(\partial \mathbb{H}^{4}\right) \backslash(\partial P)$, there is a unique $t_{x} \in \mathcal{F}_{\rho}$ such that $x \in t_{x}$.

Proof. There is a Möbius transformation g of $\widehat{\mathbb{R}^{4}}$ so that $g \rho g^{-1} \in \mathrm{O}(4)$. Since ρ is orientation preserving, $g \rho g^{-1} \in \mathrm{SO}(4)$. By precomposition, we may assume that g
sends P to a plane bounded by ∞ and 0 . Then $g \rho g^{-1} \in \mathrm{SO}(3)$ that fixes $g(\partial P)$ pointwise. Since $x \notin \partial P, g(x) \notin g(\partial P)$ there is a unique Euclidean plane P_{x} spanned by $g(x)$ and $g(\partial P)$. Then $g^{-1}\left(P_{x}\right)$ contains ∂P so $g^{-1}\left(P_{x}\right) \in \mathcal{F}_{\rho}$.

Corollary 3.1.2. Let ρ be a type I elliptic isometry of \mathbb{H}^{4} with a twisting plane P. Then for each $x \in \mathbb{H}^{4} \backslash P$ there is a unique hyperplane h_{x} containing x such that $\partial h_{x} \in \mathcal{F}_{\rho}$

Proof. There is a line ℓ connecting x and $H_{P}(x)$. It is orthogonal to P through a point since H_{P} leaves ℓ invariant. Then $P \cup \ell$ spans a unique hyperplane h_{x}. Since $P \subset h_{x}$, $\partial h_{x} \in \mathcal{F}_{\rho}$.

Definition 7. Let ρ be a type I elliptic isometry of \mathbb{H}^{4} with a twisting plane P. The (elliptic) invariant pencil of ρ is the set

$$
\mathcal{T}_{\rho}=\left\{\partial h \subset \partial \mathbb{H}^{4}: h \text { is a hyperplane orthogonal to } P\right\} .
$$

Definition 8. Let ρ be a type I elliptic isometry of \mathbb{H}^{4} with a twisting plane P. The dual pencil of ρ is the set

$$
\begin{aligned}
\mathcal{D}_{\rho}= & \left\{\partial Q \subset \partial \mathbb{H}^{4}: Q\right. \text { is a plane orthogonally intersecting } \\
& P \text { in a unique point }\} .
\end{aligned}
$$

The set \mathcal{F}_{ρ} serves as a source for reflection factoring of ρ. If s is a sphere in $\partial \mathbb{H}^{4}$, let R_{s} denote the reflection across the hyperplane bounded by s. Likewise, if c is a circle in $\partial \mathbb{H}^{4}, H_{c}$ denotes the half-turn about the plane bounded by c.

Definition 9. Let s be a sphere in $\partial \mathbb{H}^{4}$. The reflection across the hyperplane bounded by s is denoted R_{s}. If c is a circle in $\partial \mathbb{H}^{4}$, the half-turn about the plane bounded by c is denoted H_{c}.

Theorem 3.1.3. Let ρ be a type I elliptic isometry of \mathbb{H}^{4}. Then for every $h \in \mathcal{F}_{\rho}$, there exist $h_{1}, h_{2} \in \mathcal{F}_{\rho}$ such that $\rho=R_{h_{1}} R_{h}$ and $\rho=R_{h} R_{h_{2}}$.

Proof. If ρ is type I elliptic, there are hyperplanes P and P^{\prime} such that $\rho=R_{P} R_{P^{\prime}}$. Then $P \cap P^{\prime}$ must be the twisting plane of ρ since otherwise ρ would fix two different planes.

It follows that $\rho R_{h}=R_{P} R_{P^{\prime}} R_{h}$ and $R_{h} \rho=R_{h} R_{P} R_{P^{\prime}}$ are both reflections across some hyperplanes h_{1} and h_{2} respectively such that $P \cap P^{\prime} \subset h, h^{\prime}$. Then $\partial h_{1}, \partial h_{2} \in \mathcal{F}_{\rho}$ and

$$
\rho R_{h}=R_{h_{1}} \quad \quad R_{h} \rho=R_{h_{2}} .
$$

They imply that

$$
\rho=R_{h_{1}} R_{h} \quad \rho=R_{h} R_{h_{2}} .
$$

3.1.1 Properties of the invariant pencil

Let ρ be a type I elliptic isometry.

1. For each $t \in \mathcal{T}_{\rho}, \rho(t)=t$ and t is orthogonal to each $s \in \mathcal{F}_{\rho}$.
2. If $t, u \in \mathcal{T}_{\rho}$ such that $u \cap t$ has more than one point but $u \neq t$, then $u \cap t \in \mathcal{D}_{\rho}$.
3. If a sphere $s \subset \widehat{\mathbb{R}^{3}}$ contains some $c \in \mathcal{D}_{\rho}$, then $s \in \mathcal{T}_{\rho}$.
4. For each $d \in \mathcal{D}_{\rho}$, there are $t, u \in \mathcal{T}_{\rho}$ such that $d=t \cap u$.
5. For each pair $p, q \in \mathcal{D}_{\rho}$ with $p \neq q$, there is a unique $t \in \mathcal{T}_{\rho}$ containing $p \cup q$.

Definition 10. Let ρ be a type I elliptic isometry of \mathbb{H}^{4}. The half-turn bank of ρ is the set

$$
\mathcal{K}_{\rho}=\left\{s \cap t \subset \partial \mathbb{H}^{4}: s \in \mathcal{F}_{\rho} \text { and } t \in \mathcal{T}_{\rho}\right\} .
$$

The half-turn bank of the identity map of \mathbb{H}^{4} is the set $\mathcal{K}_{\text {id }}$ consisting of all 2-planes in \mathbb{H}^{4}.

Recall that if two planes P and Q intersect in a line $\ell, P \cup Q$ form a unique hyperplane h in \mathbb{H}^{4}. If for each $x \in \ell$ the line $\ell_{x}^{P} \subset P$ perpendicular to ℓ through x and the line $\ell_{x}^{Q} \subset Q$ perpendicular to ℓ through x are perpendicular (i.e. $\ell_{x}^{P} \perp \ell, \ell_{x}^{Q} \perp \ell$ and $\ell_{x}^{P} \perp \ell_{x}^{Q}$), then P and Q are called orthogonal through ℓ. Alternatively, if $(\operatorname{span} P)^{L}$ and $(\operatorname{span} Q)^{L}$ are Lorentz orthogonal in h, then P and Q are orthogonal in \mathbb{H}^{4}.

Theorem 3.1.4. Let ρ be a type I elliptic isometry of \mathbb{H}^{4} with twisting plane P. Then Q is a plane orthogonal to P through a line if and only if $\partial Q \in \mathcal{K}_{\rho}$.

Proof. If Q intersects P in a line $\ell, P \cup Q$ forms a unique hyperplane h. There is a hyperplane t orthogonal to h through Q. Then P is orthogonal to t through ℓ since $P \subset h$. It follows that $\partial t \in \mathcal{T}_{\rho}$ and $\partial h \in \mathcal{F}_{\rho}$. Since $Q=t \cap h, \partial Q \in \mathcal{K} \rho$.

Conversely if $\partial Q \in \mathcal{K}_{\rho}$, let $h \in \mathcal{F}_{\rho}$ and $t \in \mathcal{T}_{\rho}$ such that $\partial Q=h \cap t$. Let \hat{h} and \hat{t} be the hyperplane bounded by h and t respectively. The hyperplane \hat{t} and the plane P are orthogonal through a line. Then $(\partial P) \cap t$ is a set of two points contained in ∂Q since $\partial P \subset h$. Both P and Q are planes in the hyperplane bounded by h; they intersect in the line $P \cap \hat{t}$. Since \hat{t} is orthogonal to P and $Q \subset \hat{h}$, then P and Q are orthogonal through the line $P \cap \hat{t}$.

Theorem 3.1.5. Let ρ be a type I elliptic isometry of \mathbb{H}^{4}. Then for each $k \in \mathcal{K}_{\rho}$, there exist $k_{1}, k_{2} \in \mathcal{K}_{\rho}$ such that $\rho=H_{k_{1}} H_{k}=H_{k} H_{k_{2}}$.

Proof. If $k \in \mathcal{K}_{\rho}$, there are $s \in \mathcal{F}_{\rho}$ and $t \in \mathcal{T}_{\rho}$ such that $k=s \cap t$. Then there are $s_{1}, s_{2} \in \mathcal{F}_{\rho}$ such that $\rho=R_{s_{1}} R_{s}=R_{s} R_{s_{2}}$. Let $k_{1}=s_{1} \cap t$ and $k_{2}=s_{2} \cap t$. Since s, s_{1} and s_{2} are orthogonal to $t, H_{k_{1}}=R_{s_{1}} R_{t}=R_{t} R_{s_{1}}$ and $H_{k_{2}}=R_{s_{2}} R_{t}=R_{t} R_{s_{2}}$. Then,

$$
\begin{aligned}
\rho & =R_{s_{1}} R_{s} & \rho & =R_{s} R_{s_{2}} \\
& =R_{s_{1}} R_{t} R_{t} R_{s} & & =R_{s} R_{t} R_{t} R_{s_{2}} \\
& =H_{k_{1}} H_{k} & & =H_{k} H_{k_{2}} .
\end{aligned}
$$

3.1.2 Miscellaneous Elliptic Results

Let $\rho_{1}=R_{h_{11}} R_{h_{12}}$ and $\rho_{2}=R_{h_{21}} R_{h_{22}}$ be type I elliptic isometries so that $h_{11} \cap h_{12}$ and $h_{21} \cap h_{22}$ are orthogonal planes intersecting in a unique point x. Then both ρ_{1} and ρ_{2} leave $h_{11} \cap h_{12}$ and $h_{21} \cap h_{22}$ invariant. The composition $\rho_{1} \rho_{2}$ also leaves them invariant, but it can be shown that it fixes only x (See Lemma 3.6.4). Hence $\rho_{1} \rho_{2}$ is an elliptic isometry fixing only x.

Definition 11. An elliptic isometry ρ of \mathbb{H}^{4} is called of type II if ρ fixes a unique point in \mathbb{H}^{4}.

A type II elliptic isometry can be orientation reversing and hence can not be expressed as a composition of two type I elliptic isometries. However, it can be shown that an orientation preserving type II elliptic isometry is a composition of two commuting type I elliptic isometries whose twisting planes intersect orthogonally in the fixed point. In order to prove it, we give definitions and theorems about maximal tori of $\mathrm{GL}_{n} \mathbb{R}$. The next two definitions and two theorems can be found in a book [18] of Kristoffer Tapp.

Definition 12 ([18, Definition 9.7]). Let Γ be a subgroup of $\mathrm{GL}_{n} \mathbb{R}$. A torus in Γ is a subgroup of Γ that is isomorphic to a torus group $\mathbb{R}^{k} / \mathbb{Z}^{k}$ for some $k \leq n$. A torus in Γ is maximal if it is not contained in a higher dimensional torus in Γ.

Definition 13. The standard maximal torus of $\mathrm{SO}(4)$ is

$$
M^{\mathrm{SO}(4)}=\left\{\left(\begin{array}{cccc}
\cos \alpha & -\sin \alpha & 0 & 0 \\
\sin \alpha & \cos \alpha & 0 & 0 \\
0 & 0 & \cos \beta & -\sin \beta \\
0 & 0 & \sin \beta & \cos \beta
\end{array}\right): \alpha, \beta \in[0,2 \pi)\right\} .
$$

Theorem 3.1.6 ([18, Theorem 9.7]). The defined $M^{\mathrm{SO}(4)}$ above is a maximal torus of $\mathrm{SO}(4)$.

Theorem 3.1.7 ([18, Theorem 9.18]). For each $\rho \in \mathrm{SO}(4)$, there exists $g \in \mathrm{SO}(4)$ such that $\mathrm{g} \mathrm{\rho g}^{-1} \in M^{\mathrm{SO}(4)}$.

This theorem shows that for each $\rho \in \mathrm{SO}(4)$, there is an unordered pair of angles α and β associated to ρ. These angles identify 2 -dimensional planes that are left invariant by ρ. If one of them, say α, is not an integer multiple of π, then the plane P_{α} associated to α has no lines left invariant by ρ. Then the orthogonal complement of P_{α} is the plane P_{β} associated to β. Although β can be an integer multiple of π, the plane P_{β} is uniquely identified by α. Hence, if either α or β is not an integer multiple of π, there are unique unordered pair of planes P_{α} and P_{β} that is left invariant by ρ.

If α is an integer multiple of 2π but β is an odd multiple of π, then planes P_{α} and P_{β} can still be associated to α and β canonically. Furthermore, P_{α} is fixed pointwise by ρ and is its corresponding twisting plane, which is a canonical choice for an invariant plane of ρ. There are other planes left invariant by ρ but ρ reverses their orientation.

If both α and β are odd multiples of π, then ρ is an involution with four linearly independent eigenvectors. The span of any two linearly independent vectors is rotated and left invariant by ρ. Thus the angles α and β do not determine a canonical pair of orthogonal planes left invariant by ρ. This can happen if and only if ρ is conjugate to a diagonal matrix with -1 in its entries.

In summary, a $\rho \in \mathrm{SO}(4)$ either has associated pairs of angles and planes or is an involution. Going back to hyperbolic geometry, a type II elliptic isometry either has a canonical pair of invariant planes or reflects every line passing through its fixed point into opposite direction. Then an orientation preserving type II elliptic isometry can be classified further into those with canonical pair of invariant planes and those that are involutions.

Corollary 3.1.3. If ρ is an orientation preserving type II elliptic isometry of \mathbb{H}^{4} with fixed point x and an associated angle that is not an integer multiple of π, then there are unique planes up to order $P_{1}, P_{2} \subset \mathbb{H}^{4}$ orthogonally intersecting at the single point x and a unique pair up to order of type I elliptic isometries ρ_{1}, ρ_{2} with respective twisting planes P_{1}, P_{2} such that $\rho=\rho_{1} \rho_{2}$.

Proof. Using Theorem 3.1.1, there is a Möbius transformation s of $\widehat{\mathbb{R}^{4}}$ that conjugates ρ into an orthogonal 4×4 matrix with $s(0,0,0,0)=x$. Since ρ is orientation preserving, $s \rho s^{-1} \in \mathrm{SO}(4)$. By a theorem of Tapp, it is further conjugate to an element

$$
\rho_{\alpha \beta}=\left(\begin{array}{cccc}
\cos \alpha & -\sin \alpha & 0 & 0 \\
\sin \alpha & \cos \alpha & 0 & 0 \\
0 & 0 & \cos \beta & -\sin \beta \\
0 & 0 & \sin \beta & \cos \beta
\end{array}\right)
$$

of $M^{\mathrm{SO}(4)}$ via an element $g \in \mathrm{SO}(4)$. Since ρ fixes only one point, neither α nor β is an
integer multiple of 2π. Let ρ_{α} and ρ_{β} be defined as follows.

$$
\rho_{\alpha}=\left(\begin{array}{cccc}
\cos \alpha & -\sin \alpha & 0 & 0 \\
\sin \alpha & \cos \alpha & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad \rho_{\beta}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \cos \beta & -\sin \beta \\
0 & 0 & \sin \beta & \cos \beta
\end{array}\right)
$$

Then ρ_{α} and ρ_{β} are rotations about orthogonal planes P_{α} and P_{β} respectively intersecting in the origin. Since they fix their respective planes pointwise, they are products of reflections across 3 -dimensional subspaces. Define $\rho_{1}, \rho_{2}, P_{1}$ and P_{2} as follows.

$$
\begin{array}{ll}
\rho_{1}=g^{-1} s^{-1} \rho_{\alpha} s g & \rho_{2}=g^{-1} s^{-1} \rho_{\beta} s g \\
P_{1}=g^{-1} s^{-1}\left(P_{\alpha}\right) & P_{2}=g^{-1} s^{-1}\left(P_{\beta}\right)
\end{array}
$$

Then ρ_{1} and ρ_{2} are type I elliptic isometries and $\rho=\rho_{1} \rho_{2}$. Suppose α is not an integer multiple of π. Then the choice of P_{1} is unique to ρ. The orthogonal complement of P_{1} through x is also unique and is equal to P_{2}. Hence P_{1} and P_{2} are the canonical invariant planes of ρ.

Definition 14. Let $\rho=\rho_{1} \rho_{2}$ be an orientation preserving type II elliptic isometry of \mathbb{H}^{4} with an associated angle not an integer multiple of π so that ρ_{1} and ρ_{2} are the unique type I elliptic elements whose twisting planes intersect orthogonally in the fixed point. The half-turn bank of ρ is the set

$$
\mathcal{K}_{\rho}=\left\{s \cap t \subset \partial \mathbb{H}^{4}: s \in \mathcal{F}_{\rho_{1}} \text { and } t \in \mathcal{F}_{\rho_{2}}\right\} .
$$

Definition 15. Let ρ be an orientation preserving type II elliptic isometry of \mathbb{H}^{4} such that ρ^{2} is the identity map. The half-turn bank of ρ is the set

$$
\mathcal{K}_{\rho}=\left\{P \subset \partial \mathbb{H}^{4}: P \text { is a plane containing } x\right\} .
$$

Corollary 3.1.4. Let ρ be an orientation preserving type II elliptic isometry of \mathbb{H}^{4}. Then for each $k \in \mathcal{K}_{\rho}$, there are $k_{1}, k_{2} \in \mathcal{K}_{\rho}$ such that $\rho=H_{k_{1}} H_{k}=H_{k} H_{k_{2}}$.

Proof. Suppose first that ρ is an involution with fixed point x. Then there is a unique plane k_{1} orthogonal to k through only x. Since k_{1} and k are orthogonal, they are left
invariant by both H_{k} and $H_{k_{1}}$. The action of these half-turns on $k \cup k_{1}$ is therefore an involution and so do $H_{k} H_{k_{1}}$ and $H_{k_{1}} H_{k}$. The compositions $H_{k_{1}} H_{k}$ and $H_{k} H_{k_{1}}$ are conjugate to elements of $\mathrm{SO}(4)$ where x correspond to the origin and $\left(k, k_{1}\right)$ is a pair of orthogonal discs that can contain a basis for \mathbb{R}^{4}. An element $x \in B_{4}=\mathbb{H}^{4}$ outside $k \cup k_{1}$ can be expressed as a linear combination of this basis, so $\left(H_{k_{1}} H_{k}\right)^{2}$ and $\left(H_{k} H_{k_{1}}\right)^{2}$ map x back to itself (See Corollary 3.6.1).

As matrices in $\mathrm{SO}(4), H_{k_{1}}, H_{k}$ and ρ are involutions with inverses equal to their transpose. They are thus diagonalizable with -1 entries since they all fix x (See Lemma 3.6.4). Therefore $\rho, H_{k_{1}} H_{k}$ and $H_{k} H_{k_{1}}$ are equal isometries.

Suppose next that ρ has an associated angle not an integer multiple of π. Then there are unique type I elliptic elements ρ_{1} and ρ_{2} whose twisting planes are left invariant by ρ. If $k \in \mathcal{K}_{\rho}$, there are $h_{1} \in \mathcal{F}_{\rho_{1}}$ and $h_{2} \in \mathcal{F}_{\rho_{2}}$ such that $k=h_{1} \cap h_{2}$. Then there are $h_{11}, h_{12} \in \mathcal{F}_{\rho_{1}}$ and $h_{21}, h_{22} \in \mathcal{F}_{\rho_{2}}$ such that $\rho_{1}=R_{h_{11}} R_{h_{1}}=R_{h_{1}} R_{h_{12}}$ and $\rho_{2}=R_{h_{21}} R_{h_{2}}=R_{h_{2}} R_{h_{22}}$. Let P_{1} and P_{2} be the twisting planes of ρ_{1} and ρ_{2} respectively. Since P_{1} and P_{2} are orthogonal in a unique point, $\partial P_{2} \in \mathcal{D}_{\rho_{1}}$ and $\partial P_{1} \in \mathcal{D}_{\rho_{2}}$. Then h_{1}, h_{11} and h_{12} are orthogonal to ∂P_{2} since they contain ∂P_{1}. It follows that $h_{1}, h_{11}, h_{12} \in$ $\mathcal{T}_{\rho_{2}}$ and similarly, $h_{2}, h_{21}, h_{22} \in \mathcal{T}_{\rho_{1}}$. Each sphere of $\left\{h_{1}, h_{11}, h_{12}\right\}$ is orthogonal to every sphere of $\left\{h_{2}, h_{21}, h_{22}\right\}$. The following relations hold.

$$
\begin{array}{ll}
R_{h_{1}} R_{h_{21}}=R_{h_{21}} R_{h_{1}} & H_{k}=R_{h_{2}} R_{h_{1}} \\
R_{h_{2}} R_{h_{12}}=R_{h_{12}} R_{h_{2}} & H_{k}=R_{h_{1}} R_{h_{2}}
\end{array}
$$

Let $k_{1}=h_{11} \cap h_{21}$ and $k_{2}=h_{12} \cap h_{22}$ so that $H_{k_{1}}=R_{h_{11}} R_{h_{21}}$ and $H_{k_{2}}=R_{h_{12}} R_{h_{22}}$.
The desired conclusion can be computed as follows.

$$
\begin{aligned}
\rho_{1} \rho_{2} & =R_{h_{11}} R_{h_{1}} R_{h_{21}} R_{h_{2}} & \rho_{1} \rho_{2} & =R_{h_{1}} R_{h_{12}} R_{h_{2}} R_{h_{22}} \\
& =R_{h_{11}} R_{h_{21}} R_{h_{1}} R_{h_{2}} & & =R_{h_{1}} R_{h_{2}} R_{h_{12}} R_{h_{22}} \\
& =H_{k_{1}} H_{k} & & =H_{k} H_{k_{2}}
\end{aligned}
$$

Since $h_{11}, h_{12} \in \mathcal{F}_{\rho_{1}}$ and $h_{21}, h_{22} \in \mathcal{F}_{\rho_{2}}, k_{1}, k_{2} \in \mathcal{K}_{\rho}$.

3.2 Pure hyperbolic

Let δ be a pure hyperbolic isometry of \mathbb{H}^{4}. It fixes two points $a_{1}, a_{2} \in \partial \mathbb{H}^{4}$ which bound a unique line L. The image of L under δ is also L so it is the unique line that is left invariant of δ. Define L as the axis of δ. For each $x \in L$, there is a unique hyperplane h_{x} orthogonal to L through x. If $y \in L$ is not equal to $x \in L, h_{x}$ and h_{y} are disjoint and the minimum distance between them is equal to the distance between x and y. Since δ preserves angles, δ sends h_{x} to $h_{\delta(x)}$ for every $x \in L$. The action of δ extends to $\partial \mathbb{H}^{4}$ so $\partial h_{x} \cap \partial h_{\delta(x)}=\emptyset$ for all $x \in L$.

The following results help in simplifying the succeeding theorems.
Theorem 3.2.1 ([17, Theorem 4.7.5]). An isometry ϕ of \mathbb{H}^{4} is hyperbolic if and only if ϕ is conjugate in Isom \mathbb{H}^{n} to an isometry of the form $\psi(x)=k A x$ where $k>1$ and A is an orthogonal transformation of \mathbb{R}^{n-1}.

Corollary 3.2.1. A pure hyperbolic isometry of \mathbb{H}^{4} is conjugate in Isom $^{4}{ }^{4}$ to an isometry of the form $\psi(x)=k x$ where $k>1$.

Definition 16. Let γ be a hyperbolic isometry of \mathbb{H}^{4} with axis L. The permuted pencil \mathcal{F}_{γ} of γ is the set

$$
\begin{aligned}
\mathcal{F}_{\gamma}=\{ & \left\{\partial h_{x} \subset \partial \mathbb{H}^{4}: x \in L \text { and } h_{x}\right. \text { is the orthogonal } \\
& \text { complement of } L \text { through } x\} .
\end{aligned}
$$

For example, define $\delta: \mathbb{H}^{4} \rightarrow \mathbb{H}^{4}$ given by

$$
\left(x_{1}, x_{2}, x_{3}, t\right) \mapsto\left(\lambda x_{1}, \lambda x_{2}, \lambda x_{3}, \lambda t\right)
$$

for a positive λ not equal to 1 . The extension $\hat{\delta}$ of δ to $\partial \mathbb{H}^{4}$ is expressed as follows.

$$
\begin{aligned}
\hat{\delta}\left(x_{1}, x_{2}, x_{3}, 0\right) & =\left(\lambda x_{1}, \lambda x_{2}, \lambda x_{3}, 0\right) \\
\hat{\delta}(\infty) & =\infty
\end{aligned}
$$

Then δ does not fix any point in \mathbb{H}^{4}, but $\hat{\delta}$ fixes only the points $(0,0,0,0)$ and ∞. The axis of δ is

$$
L=\left\{(0,0,0, t) \in \mathbb{R}^{4}: t>0\right\} .
$$

For each $(0,0,0, t) \in L$, the orthogonal complement of L through $(0,0,0, t)$ is

$$
h_{t}=\left\{\left(x_{1}, x_{2}, x_{3}, u\right) \in \mathbb{R}^{4}: x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+u^{2}=t^{2}\right\} .
$$

To show that δ is pure hyperbolic, one must express δ as a composition of two reflections. Consider the reflections across h_{1} and $h_{\sqrt{t}}$. Define σ_{1} and σ_{2} as follows.

$$
\sigma_{1}(x)=\frac{\lambda}{\|x\|^{2}} x \quad \sigma_{2}(x)=\frac{1}{\|x\|^{2}} x
$$

Then σ_{2} is the reflection across h_{1}, and σ_{1} is the reflection across $h_{\sqrt{\lambda}}$. The composition $\sigma_{1} \circ \sigma_{2}$ simplifies to the formula of δ.

$$
\begin{aligned}
\sigma_{1} \circ \sigma_{2} & =\frac{\lambda}{\left\|\sigma_{2}(x)\right\|^{2}} \sigma_{2}(x) \\
& =\frac{\lambda}{\left\|\frac{1}{\|x\|^{2}} x\right\|^{2}}\left(\frac{1}{\|x\|^{2}} x\right) \\
& =\lambda x \\
& =\delta(x)
\end{aligned}
$$

Notice that the hyperplanes in which reflection-factoring of δ are bounded by elements of \mathcal{F}_{δ}. Moreover, \mathcal{F}_{δ} serves as a reflection bank for factoring δ. The following theorem states it more precisely.

If h is a hyperplane, let R_{h} be the reflection across h. By abuse of notation, let $R_{\partial h}$ be equal to R_{h}.

Theorem 3.2.2. Let δ be pure hyperbolic isometry of \mathbb{H}^{4}. Then for every $h \in \mathcal{F}_{\delta}$, there exist $h_{1}, h_{2} \in \mathcal{F}_{\delta}$ such that $\delta=R_{h_{1}} R_{h}$ and $\delta=R_{h} R_{h_{2}}$.

Proof. Let L be the axis of δ and x be the intersection of h and L. The midpoint m_{1} of x and $\delta(x)$ must be along L. Then there is a hyperplane bounded by $h_{1} \in \mathcal{F}_{\delta}$ that intersects L through m_{1}. We must show $\delta=R_{h_{1}} R_{h}$. The common orthogonal line between h_{1} and h is L so δ and $R_{h_{1}} R_{h}$ have the same axis. Since δ is pure hyperbolic, it is enough to show that $R_{h_{1}} R_{h}$ sends x to $\delta(x)$ since δ is conjugate to a Möbius map of the form $x \mapsto \lambda x,(\lambda>0)$.

$$
\begin{aligned}
R_{h_{1}} \circ R_{h}(x) & =R_{h_{1}}(x) \\
& =\delta(x)
\end{aligned}
$$

Let \hat{h} be the hyperplane bounded by h. By construction, $x \in \hat{h}$ so R_{h} fixes it. Since L is orthogonal to $\hat{h}, R_{h}(x) \in L$. The midpoint between $R_{h_{1}}(x)$ and x is $m_{1} \in h_{1} \cap L$. It follows that $\delta(x)=R_{h_{1}}(x)$ since they both sit in L.

There is also a hyperplane bounded by $h_{2} \in \mathcal{F}_{\delta}$ that intersects L through $R_{h}\left(m_{1}\right)$. Then the composition $R_{h} R_{h_{2}}$ sends x to $\delta(x)$ since x is the midpoint between m_{1} and $R_{h}\left(m_{1}\right)$. Similarly, $\delta=R_{h} R_{h_{2}}$.

It is important to note that the elements of \mathcal{F}_{δ} fill up most of $\partial \mathbb{H}^{4}$. Moreover, the hyperplanes bounded by them fill up \mathbb{H}^{4}.

Theorem 3.2.3. Let γ be a hyperbolic isometry of \mathbb{H}^{4} with fixed points $v, w \in \partial \mathbb{H}^{4}$. Then for each $x \in \partial \mathbb{H}^{4} \backslash\{v, w\}$, there is a unique $h_{x} \in \mathcal{F}_{\gamma}$ containing x.

Proof. If x is neither v nor w, there is a unique line L perpendicular to the axis of γ and bounded by x. Let p be the intersection point of L with the axis of γ. There is a unique $h_{x} \in \mathcal{F}_{\gamma}$ that bounds a hyperplane h_{p} containing p. Then $L \subset h_{p}$ since it is orthogonal to the axis of γ. Consequently, $x \in h_{x}$ for it bounds L. If there were two elements $h, g \in \mathcal{F}_{\gamma}$ containing x, the hyperplanes they bound would be tangent or equal. The former case would contradict that the hyperplanes bounded by g and h have the axis as their common perpendicular line.

Corollary 3.2.2. Let γ be a hyperbolic isometry of \mathbb{H}^{4} with axis L. Then,

$$
\mathbb{H}^{4}=\bigcup_{x \in L} h_{x}
$$

where h_{x} is the hyperplane bounded by $s_{x} \in \mathcal{F}_{\gamma}$ and containing x.
Proof. Let p be a point in \mathbb{H}^{4}. If $p \in L$, there is a unique hyperplane h_{p} orthogonal to L through p. The boundary of h_{p} at infinity is an element of \mathcal{F}_{γ}. If $p \notin L$, there is a unique line L_{p} perpendicular to L through p. The intersection point $p_{r} \in L_{p} \cap L$ and p are contained in the hyperplane $h_{p_{r}}$ that is orthogonal to L through p_{r}. The boundary of $h_{p_{r}}$ at infinity is in \mathcal{F}_{γ}.

Going back to the previous example, let δ be a pure hyperbolic isometry of \mathbb{H}^{4} defined by

$$
\delta\left(x_{1}, x_{2}, x_{3}, t\right)=\left(\lambda x_{1}, \lambda x_{2}, \lambda x_{3}, \lambda t\right)
$$

where λ is a positive real number not equal to 1 . The axis is $L=\left\{(0,0,0, t) \in \mathbb{R}^{4}: t>\right.$ $0\}$. Recall that if $(0,0,0, t) \in L$, the orthogonal complement of L through $(0,0,0, t)$ is

$$
h_{t}=\left\{\left(x_{1}, x_{2}, x_{3}, u\right) \in \mathbb{R}^{4}: x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+u^{2}=t^{2}\right\}
$$

The boundary of h_{t} at infinity is s_{t} defined by

$$
s_{t}=\left\{\left(x_{1}, x_{2}, x_{3}, 0\right) \in \mathbb{R}^{4}: x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=t^{2}\right\}
$$

Hence, \mathcal{F}_{δ} is parametrized by positive real numbers.
For the moment, concentrate on the boundary of \mathbb{H}^{4} at infinity. Identify the subplane $\left\{\left(x_{1}, x_{2}, x_{3}, 0\right): x_{1}, x_{2}, x_{3} \in \mathbb{R}\right\}$ of \mathbb{R}^{4} with \mathbb{R}^{3} so that the boundary of \mathbb{H}^{4} is also identified with $\widehat{\mathbb{R}^{3}}=\mathbb{R}^{3} \cup\{\infty\}$.

Consider the Euclidean lines through $0 \in \mathbb{R}^{3} \subset \widehat{\mathbb{R}^{3}}$. They contain the radii of every $s_{t} \in \mathcal{F}_{\delta}$ so they are orthogonal to every s_{t}. If ℓ is a Euclidean line through 0 , it intersects each s_{t} in two points $v,-v \in \ell$ where v is one of the two points in ℓ with Euclidean norm equal to t. By adjoining ∞ to $\ell, \ell \cup\{\infty\}$ forms a circle that bound a plane P_{ℓ} in \mathbb{H}^{4}. This plane contains the axis L of δ since ℓ passes through 0 . Let h_{t} be the hyperplane bounded by s_{t}. Then $h_{t} \cap P_{\ell}$ is a line bounded by v and $-v$. Hence, h_{t} and P_{ℓ} intersect orthogonally through a line.

Definition 17. Let γ be a hyperbolic isometry of \mathbb{H}^{4} with axis L. The dual pencil of δ or pencil dual to \mathcal{F}_{γ} is the set

$$
\mathcal{D}_{\gamma}=\left\{\partial P \subset \widehat{\mathbb{R}^{3}}: P \text { is a plane containing } L\right\} .
$$

Similar to \mathcal{F}_{γ}, the elements of \mathcal{D}_{γ} fill up $\widehat{\mathbb{R}^{3}}$ and the planes they bound fill up \mathbb{H}^{4}.
Theorem 3.2.4. Let γ be a hyperbolic isometry of \mathbb{H}^{4} with fixed points $v, w \in \widehat{\mathbb{R}^{3}}$.
Then for each $x \in \widehat{\mathbb{R}^{3}} \backslash\{v, w\}$, there is a unique $p_{x} \in \mathcal{D}_{\gamma}$ containing x.

Proof. Let L be the axis of γ. Since x does not bound L, there is a unique line ℓ_{x} perpendicular to L and bounded by x. Both L and ℓ_{x} are contained in a unique plane P_{x}. Let p_{x} be the boundary of P_{x} at infinity. Then $p_{x} \in \mathcal{D}_{\gamma}$. Since $\ell_{x} \subset P_{x}$ and x bounds $\ell_{x}, x \in p_{x}$. If there were another $m \in \mathcal{D}_{\gamma}$ containing x, then x, v and w would uniquely determine m so $m=p_{x}$.

Corollary 3.2.3. Let γ be a hyperbolic isometry of \mathbb{H}^{4} with axis L. Then for each $x \in \mathbb{H}^{4} \backslash L$, there is a unique $p_{x} \in \mathcal{D}_{\gamma}$ such that the plane bounded by p_{x} contains x.

Proof. If $x \notin L$, there is a unique line ℓ_{x} perpendicular to L through x. There is a unique plane P_{x} containing L and ℓ_{x}. The boundary p_{x} of P_{x} is therefore an element of \mathcal{D}_{γ}. It is unique since ℓ_{x} and P_{x} are unique.

Combining a pair of distinct elements of \mathcal{D}_{γ} forms a sphere in $\widehat{\mathbb{R}^{3}}$. In the example where δ sends (x_{1}, x_{2}, x_{3}, t) to ($\lambda x_{1}, \lambda x_{2}, \lambda x_{3}, \lambda t$), the elements of \mathcal{D}_{δ} are exactly the Euclidean lines through the origin. Any two distinct elements of \mathcal{D}_{δ} span a Euclidean plane. Let P be a Euclidean plane in $\widehat{\mathbb{R}^{3}}$ through the origin. The image of P under δ is itself so δ leaves the hyperplane bounded by P invariant. For each $s \in \mathcal{F}_{\delta}$, s is orthogonal to P through the circle $s \cap P$. It is interesting to collect the spheres $P \subset \widehat{\mathbb{R}^{3}}$ containing the fixed points of δ.

Definition 18. Let δ be a pure hyperbolic isometry of \mathbb{H}^{4} with axis L. The invariant pencil of δ is the set

$$
\mathcal{T}_{\delta}=\left\{\partial t \subset \widehat{\mathbb{R}^{3}}: t \text { is a hyperplane containing } L\right\} .
$$

It follows that any sphere in $\widehat{\mathbb{R}^{3}}$ containing the fixed points of δ is an element of \mathcal{T}_{δ}. Any hyperbolic isometry γ has both \mathcal{F}_{γ} and \mathcal{D}_{γ}; hence it is possible to define a \mathcal{T}_{γ}. However, γ does not necessarily leave every element of \mathcal{T}_{γ} invariant.

3.2.1 Properties of the invariant pencil

Let δ be a pure hyperbolic isometry fixing v and w in $\widehat{\mathbb{R}^{3}}$.

1. For each $t \in \mathcal{T}_{\delta}, \delta(t)=t$ and t is orthogonal to each $s \in \mathcal{F}_{\delta}$.
2. If $t, u \in \mathcal{T}_{\delta}$ with $u \neq t$, then $u \cap t \in \mathcal{D}_{\delta}$.
3. If a sphere $s \subset \widehat{\mathbb{R}^{3}}$ contains some $c \in \mathcal{D}_{\delta}$, then $s \in \mathcal{T}_{\delta}$.
4. For each pair $p, q \in \mathcal{D}_{\delta}$ with $p \neq q$, there is a unique $t \in \mathcal{T}_{\delta}$ containing $p \cup q$.
5. For each $d \in \mathcal{D}_{\delta}$, there are $t, u \in \mathcal{T}_{\delta}$ such that $d=t \cap u$.

Also interesting to collect are the intersections of elements of \mathcal{F}_{δ} with those of \mathcal{T}_{δ}.
Definition 19. Let δ be a pure hyperbolic isometry of \mathbb{H}^{4}. The half-turn bank of δ is the set

$$
\mathcal{K}_{\delta}=\left\{s \cap t \subset \widehat{\mathbb{R}^{3}}: s \in \mathcal{F}_{\delta} \text { and } t \in \mathcal{T}_{\delta}\right\} .
$$

Theorem 3.2.5. Let δ be a pure hyperbolic isometry of \mathbb{H}^{4} with axis L. Then P is a plane orthogonal to L if and only if $\partial P \in \mathcal{K}_{\delta}$.

Proof. Suppose P is a plane orthogonal to L. Let b be the intersection point of P and L. There are orthogonal lines $v_{P}, w_{P} \subset P$ through b. Let y be the unique line orthogonal to v_{P}, w_{P} and L through b. There is a unique hyperplane h_{b} orthogonal to L through b. Then $y \subset h_{b}$. Let \hat{t} be the unique hyperplane spanned by y, w_{P} and v_{P}. Then $h_{b} \cap \hat{t}=P$ since $w_{P}, v_{P} \subset h_{b} \cap \hat{t}$. Let $t=\partial \hat{t}$ and $s=\partial h_{b}$. Then $t \cap s=\partial P$. Since h_{b} is orthogonal to $L, s \in \mathcal{F}_{\delta}$. Similarly, the fact that \hat{t} contains L implies that $t \in \mathcal{T}_{\delta}$.

Conversely if $\partial P \in \mathcal{K}_{\delta}$, there are $h \in \mathcal{F}_{\delta}$ and $t \in \mathcal{T}_{\delta}$ such that $\partial P=h \cap t$. Let \hat{h} and \hat{t} be the hyperplanes bounded by h and t respectively. Then \hat{h} is orthogonal to L through a point x. Since \hat{t} contains L and P, then $x \in L \cap P$. As a subset of \hat{h} containing x, P is orthogonal to L.

Theorem 3.2.6. Let δ be a pure hyperbolic isometry of \mathbb{H}^{4}. Then for each $k \in \mathcal{K}_{\delta}$, there exist $k_{1}, k_{2} \in \mathcal{K}_{\delta}$ such that $\delta=H_{k_{1}} H_{k}=H_{k} H_{k_{2}}$.

Proof. If $k \in \mathcal{K}_{\delta}$, there are $s \in \mathcal{F}_{\delta}$ and $t \in \mathcal{T}_{\delta}$ such that $k=s \cap t$. Then there are $s_{1}, s_{2} \in \mathcal{F}_{\delta}$ such that $\delta=R_{s_{1}} R_{s}=R_{s} R_{s_{2}}$. Let $k_{1}=s_{1} \cap t$ and $k_{2}=s_{2} \cap t$. Since s, s_{1}
and s_{2} are orthogonal to $t, H_{k_{1}}=R_{s_{1}} R_{t}=R_{t} R_{s_{1}}$ and $H_{k_{2}}=R_{s_{2}} R_{t}=R_{t} R_{s_{2}}$. Then,

$$
\begin{aligned}
\delta & =R_{s_{1}} R_{s} & \delta & =R_{s} R_{s_{2}} \\
& =R_{s_{1}} R_{t} R_{t} R_{s} & & =R_{s} R_{t} R_{t} \\
& =H_{k_{1}} H_{k} & & =H_{k} H_{k_{2}} .
\end{aligned}
$$

3.3 Pure parabolic

A pure parabolic isometry τ of \mathbb{H}^{4} is a composition of exactly two reflections across spheres that are tangent to a unique point. One way to locate the invariant planes and hyperplanes of τ is to study the properties of a reflection. Henceforth, the boundary of \mathbb{H}^{4} at infinity is identified with $\widehat{\mathbb{R}^{3}}$ using the upper-half space model.

A hyperplane P bounded by a Euclidean plane can be defined using a point $b \in \mathbb{R}^{3}$ with Euclidean norm 1 and a real number t, so that

$$
P=\left\{x \in \mathbb{H}^{4}: b \cdot x=t\right\} .
$$

Then the reflection R_{P} across P is given by the formula

$$
R_{P}(x)=x+2(t-b \cdot x) b .
$$

Using the same formula, R_{P} extends to $\widehat{\mathbb{R}^{4}}$ with $R_{P}(\infty)=\infty$ and ∂P is a Euclidean plane fixed pointwise by R_{P}. Consider a Euclidean line $\ell \subset \mathbb{R}^{3}$ orthogonal to ∂P. Since R_{P} is a conformal map of $\widehat{\mathbb{R}^{3}}$ fixing a point of $\ell, R_{P}(\ell)$ is equal to ℓ.

If a hyperplane S is bounded by a sphere, it can be uniquely defined using a point $a \in \mathbb{R}^{3}$ and a radius $r>0$ so that

$$
S=\left\{x \in \mathbb{H}^{4}:\|x-a\|=r\right\} .
$$

the reflection R_{S} across S is given by the formula

$$
R_{S}(x)=a+\frac{r^{2}}{\|x-a\|^{2}}(x-a) .
$$

It also extends to $\widehat{\mathbb{R}^{4}}$, with the same formula and still switching a and ∞.

A Euclidean line $L \subset \mathbb{R}^{3}$ passing through a is orthogonal to S and is left invariant by R_{S}.

Let P and Q be Euclidean planes in \mathbb{R}^{3}. If P and Q are not parallel, they meet in a Euclidean line that has more than one point. Otherwise, there is a unique Euclidean line ℓ orthogonal to P and Q passing through the origin. The composition $R_{P} R_{Q}$ then leaves ℓ invariant and is a pure parabolic isometry of \mathbb{H}^{4} fixing ∞. Not all pure parabolic isometries fixing ∞ leave ℓ invariant so ℓ has a valuable information about $R_{P} R_{Q}$. Specifically, there are $\lambda>0$ and $b \in \ell$ such that $\|b\|=1$ and

$$
R_{P} R_{Q}(x)=x+\lambda b \quad \text { for all } x \in \mathbb{H}^{4} \cup \widehat{\mathbb{R}^{3}} .
$$

This formula can be verified by computing the composition $R_{P} R_{Q}$ directly. The planes P and Q uniquely determine λ and b but b can be determined solely by $R_{P} R_{Q}$ since the computation of $R_{P} R_{Q}$ recorded the common normal vector of P and Q without their exact locations.

Lemma 3.3.1. Let τ be a pure parabolic isometry of \mathbb{H}^{4} fixing ∞ of $\widehat{\mathbb{R}^{3}}$. Then there is a unit vector $b \in \mathbb{R}^{3}$ such that the Euclidean span of b is left invariant by τ. It is unique up to taking signs.

Let S be a sphere in \mathbb{R}^{3} centered at a. If T is another sphere of Euclidean plane in \mathbb{R}^{3} tangent to a point c in S, then the composition $R_{S} R_{T}$ is a pure parabolic isometry fixing c. There is a unique Euclidean line L connecting c to a. If T is also a sphere, L passes through the center of T as well. Therefore L is orthogonal to both S and T. It follows that $R_{S} R_{T}$ leave $L \cup\{\infty\}$ invariant.

If $R_{S} R_{T}$ can be expressed as another composition $R_{S^{\prime}} R_{T^{\prime}}, S^{\prime} \cap T^{\prime}$ must contain only c. Both spheres or planes S^{\prime} and T^{\prime} must be orthogonal to L through c. Otherwise, there would be another Euclidean line L^{\prime} such that $R_{S} R_{T}$ leave $L^{\prime} \cup\{\infty\}$ invariant. This implies that $R_{S} R_{T}(\infty)$ are both in L and L^{\prime}. But $L \cap L^{\prime}=\{c\}$ so $R_{S} R_{T}(\infty)=c$ contradicts the assumption that $R_{S} R_{T}$ fixes c. Thus, the construction of L is independent of S or T and it depends only on the pure parabolic isometry $R_{S} R_{T}$.

Definition 20. Let τ be a pure parabolic isometry of \mathbb{H}^{4} with fixed point $v \in \widehat{\mathbb{R}^{3}}$. Then
the direction of τ is the Euclidean line

$$
L \tau= \begin{cases}\operatorname{span}\{\tau(0)\} & \text { if } v=\infty \\ \left\{\lambda b_{\tau}+v: \lambda \in \mathbb{R}\right\} & \text { if } v \neq \infty\end{cases}
$$

where

$$
b_{\tau}=\frac{1}{\|\tau(\infty)-v\|}(\tau(\infty)-v) .
$$

The direction L_{τ} of τ, by construction, is left invariant by τ. If v is the fixed point of τ and S is a sphere in $\widehat{\mathbb{R}^{3}}$ orthogonal to L_{τ} through v, then $\tau(S)$ is also a sphere in $\widehat{\mathbb{R}^{3}}$ that is orthogonal to L_{τ} through v. It is interesting to collect such a sphere.

Definition 21. Let τ be pure parabolic isometry of \mathbb{H}^{4} with fixed point $v \in \widehat{\mathbb{R}^{3}}$ and direction L_{τ}. The (parabolic) permuted pencil of τ is the set

$$
\mathcal{F}_{\tau}=\left\{S \subset \widehat{\mathbb{R}^{3}}: S \text { is a sphere orthogonal to } L_{\tau} \text { through } v\right\} .
$$

If $v=\infty, \mathcal{F}_{\tau}$ consists of parallel Euclidean planes orthogonal to L_{τ}. For each $s \in \mathcal{F}_{\tau}, s \cap L_{\tau}$ has two points; one of which is v. Since τ is parabolic, $\tau(s) \neq s$ and $\tau(s) \cap s=\{v\}$. Similar to that of a pure hyperbolic isometry, the permuted pencils of τ serves as a reflection bank for factoring τ.

Theorem 3.3.1. Let τ be a pure parabolic isometry of \mathbb{H}^{4}. Then for each $h \in \mathcal{F}_{\tau}$ there exist $h_{1}, h_{2} \in \mathcal{F}_{\tau}$ such that

$$
\tau=R_{h_{1}} R_{h}=R_{h} R_{h_{2}} .
$$

Proof. Suppose ∞ is the fixed point of τ. Then τ has a simple formula $x \mapsto x+b$ by computing two reflections across parallel Euclidean planes. The point $b \in \mathbb{R}^{3}$ is in the direction L_{τ} of τ by definition. There is a $\lambda \in \mathbb{R}$ such that λb is the intersection of h and L_{τ}. Then there are also $h_{1}, h_{2} \in \mathcal{F}_{\tau}$ passing through $\left(\lambda+\frac{1}{2}\right) b$ and $\left(\lambda-\frac{1}{2}\right) b$ respectively. Computing the compositions $R_{h_{1}} R_{h}$ and $R_{h} R_{h_{2}}$ yield to a map that sends x to $x+b$.

If τ fixes $v \in \mathbb{R}^{3}$, it does not have a nice formula but still leaves $L_{\tau} \cup\{\infty\}$ invariant. Let b_{τ} be the point in L_{τ} with $\left\|b_{\tau}-v\right\|=1$ in the side of $\tau(\infty)$. Specifically, b_{τ} is the same point defined previously. Then there is an affine homeomorphism $\mathbb{R} \leftrightarrow L_{\tau}$ so that
each point in L_{τ} can be expressed as $\lambda b_{\tau}+v$ for some $\lambda \in \mathbb{R}$. Since τ is pure parabolic, the composition $\lambda \mapsto\left(\lambda b_{\tau}+v\right) \mapsto \tau\left(\lambda b_{\tau}+v\right)$ has a nice formula.

$$
\lambda \mapsto \frac{\|\tau(\infty)-v\| \lambda}{\lambda+\|\tau(\infty)-v\|} b_{\tau}+v
$$

The coefficient of b_{τ} can be extended to a Möbius map of $\widehat{\mathbb{R}}$.
If $h \in \mathcal{F}_{\tau}$, it intersects L_{τ} through v and another point that can be expressed as $2 \lambda_{h} b_{\tau}+v$, unless h is a Euclidean plane. Suppose first that h is a sphere. Then the reflection R_{h} across h sends a point $\lambda b_{\tau}+v \in L_{\tau}$ to

$$
\frac{\lambda_{h} \lambda}{\lambda-\lambda_{h}} b_{\tau}+v
$$

Let h_{1} be the sphere centered at $\frac{\|\tau(\infty)-v\| \lambda_{h}}{\|\tau(\infty)-v\|+\lambda_{h}} b_{\tau}+v$ with radius equal to its center's distance to v. If this center is undefined, let h_{1} be the Euclidean orthogonal complement of L_{τ} in \mathbb{R}^{3}. Let h_{2} be the sphere centered at $\frac{\|\tau(\infty)-v\| \lambda_{h}}{\|\tau(\infty)-v\|-\lambda_{h}} b_{\tau}+v$ with radius radius equal to its distance to v. If $\lambda_{h}=\|\tau(\infty)-v\|$, let h_{2} be the Euclidean plane in \mathbb{R}^{3} orthogonal to L_{τ} at v. Then both $R_{h_{1}} R_{h}$ and $R_{h} R_{h_{2}}$ have the same action on $L_{\tau} \cup\{\infty\}$ as τ. It follows that $\tau=R_{h_{1}} R_{h}=R_{h} R_{h_{2}}$ since their formulas are equal.

If h is a Euclidean plane, let h_{1} be the sphere centered at $\|\tau(\infty)-v\|$ with the same radius and let h_{2} be the sphere centered at $-\|\tau(\infty)-v\|$ with the same radius as that of h_{1}. Then both $R_{h_{1}} R_{h}$ and $R_{h} R_{h_{2}}$ are equal to τ since their formulas are also equal.

Remark 3.3.1. The coefficient of b_{τ} is a parabolic element of $\mathrm{PSL}_{2} \mathbb{R}$ that fixes 0 . It is well known that elements of $\mathrm{PSL}_{2} \mathbb{R}$ can be factored into reflections across intervals. Hence the details of the computations above are omitted.

The next theorem shows that the elements of \mathcal{F}_{τ} fill up $\widehat{\mathbb{R}^{3}}$. Thus the hyperplanes they bound fill up \mathbb{H}^{4}.

Theorem 3.3.2. Let τ be a pure parabolic isometry of \mathbb{H}^{4} with fixed point $v \in \widehat{\mathbb{R}^{3}}$. Then for each $x \in \widehat{\mathbb{R}^{3}} \backslash\{v\}$ there is a unique $h_{x} \in \mathcal{F}_{\tau}$ containing x.

Proof. Let L_{τ} be the direction of τ. If $v=\infty$, pick a unit vector b_{τ} in L_{τ}. The Euclidean plane $P_{x}=\left\{y \in \mathbb{R}^{3}: y \cdot b_{\tau}=b_{\tau} \cdot x\right\} \subset \mathbb{R}^{3}$ is orthogonal to $L \tau$. Then $P_{x} \cup\{\infty\} \in \mathcal{F}_{\tau}$. It is unique as P_{x} is the only plane that passes through $\left(b_{\tau} \cdot x\right) b_{\tau} \in L_{\tau}$.

If $v \neq \infty$, the point in $c_{x} \in L_{\tau}$ Euclidean-equidistant to x and v can be solved uniquely using Euclidean geometry.

$$
c_{x}=\frac{\|v-x\|^{2}}{4 b_{\tau} \cdot(x-v)} b_{\tau}+v
$$

Then the sphere in \mathbb{R}^{3} centered at c_{x} with radius $\left\|x-c_{x}\right\|$ is the unique element of \mathcal{F}_{τ} containing x.

Corollary 3.3.1. Let τ be a pure parabolic isometry of \mathbb{H}^{4}. Then for each $x \in \mathbb{H}^{4}$, there is a unique hyperplane h_{x} containing x such that $\partial h_{x} \in \mathcal{F}_{\tau}$.

Proof. Using Poincaré extension, the arguments above work for \mathbb{H}^{4}. Let v be the fixed point and L_{τ} be the direction of τ. Since $x \in \mathbb{H}^{4}, x \neq v$. Let

$$
P_{x}=\left\{y \in \mathbb{R}^{4}: y \cdot b_{\tau}=x \cdot b_{\tau}\right\} \cap \mathbb{H}^{4}
$$

where b_{τ} is a unit vector in the direction of τ. If $v=\infty$, then ∂P_{x} is orthogonal to L_{τ} so $\partial P_{x} \in \mathcal{F}_{\tau}$. If $v \neq \infty$ then either x is in the orthogonal complement P_{v} of L_{τ} through v in \mathbb{R}^{4} or one can find a $c_{x} \in L_{\tau}$ so that $\left\|c_{x}-v\right\|=\left\|c_{x}-x\right\|$. Since $L_{\tau} \subset \mathbb{R}^{3} \times\{0\} \subset \mathbb{R}^{4}$, $P_{v} \cap \mathbb{H}^{4}$ is a hyperplane and its boundary in $\widehat{\mathbb{R}^{3}}$ is an element of \mathcal{F}_{τ}. If $x \notin P_{v}$, the sphere $s_{x} \subset \mathbb{R}^{4}$ centered at c_{x} is orthogonal to L_{τ}. Then $s_{x} \cap \mathbb{H}^{4}$ is a hyperplane containing x and its boundary in $\widehat{\mathbb{R}^{3}}$ is an element of \mathcal{F}_{τ}.

Similar to a hyperbolic isometry, τ has a natural dual pencil. However the lack of a second fixed point makes it a bit an obstacle to define its dual pencil. Intuitively, if τ fixes ∞, the dual pencil consists of Euclidean lines in the visual boundary parallel to its direction. If τ fixes a finite point, the dual pencil of τ are circles tangent to its direction at v. Moreover the concepts of tangency and parallel lines must be defined.

Definition 22. Let τ be a pure parabolic isometry of \mathbb{H}^{4} with fixed point $v \in \widehat{\mathbb{R}^{3}}$ and direction L_{τ}. The farm of τ is the Euclidean plane $G_{\tau} \subset \mathbb{R}^{3} \times\{0\}$ orthogonal to L_{τ} through the origin if $v=\infty$ or through v if $v \neq \infty$.

If G_{τ} is the farm of τ, then $G_{\tau} \cup\{\infty\} \in \mathcal{F}_{\tau}$. It is used here only as an index for defining the dual pencil.

Definition 23. Let τ be a pure parabolic isometry of \mathbb{H}^{4} with fixed point v and farm G_{τ}. The dual pencil of τ is the set

$$
\mathcal{D}_{\tau}= \begin{cases}\left\{\{\lambda \tau(\infty)+x: \lambda \in \mathbb{R}\} \cup\{\infty\}: x \in G_{\tau}\right\} & \text { if } v=\infty \\ \left\{c_{x}: x \in G_{\tau}\right\} & \text { if } v \neq \infty\end{cases}
$$

where c_{x} is

$$
\left\{\frac{\cos \theta}{2}(x-v)+\frac{\sin \theta}{2} \frac{\|v-x\|}{\|\tau(\infty)-v\|}(\tau(\infty)-v)+\frac{1}{2}(v+x)\right\}_{\theta \in[0,2 \pi)} .
$$

The elements of \mathcal{D}_{τ} are orthogonal to G_{τ}. If $v=\infty$, they are in the same direction as $\tau(0)$ in a vector space manner. If $v \neq \infty$, then c_{x} has a formula that can be differentiated with respect to θ and one can see that the derivative at v, i.e. $\theta=-\pi$, is along L_{τ}. For each $d_{x} \in \mathcal{D}_{\tau}$ indexed by $x \in G_{\tau}, d_{x} \cap G_{\tau}=\{v, x\}$.

Any two distinct elements of \mathcal{D}_{τ} intersect only at v and form a unique sphere or Euclidean plane. If $v=\infty$, distinct elements $d_{x}, d_{y} \in \mathcal{D}_{\tau}$ intersecting G_{τ} at x and y respectively form a Euclidean plane orthogonal to G_{τ} at the Euclidean line connecting x and y. If $v \neq \infty, d_{x} \in \mathcal{D}_{\tau}$ paired with $L_{\tau} \cup\{\infty\} \in \mathcal{D}_{\tau}$ where $x \neq v$ form a unique Euclidean plane orthogonal to G_{τ} through the Euclidean line connecting v and x. If $d_{x}, d_{y} \in \mathcal{D}_{\tau}$ have $x \neq y \in G_{\tau} \backslash\{v\}$, the points v, x and y form a unique circle that extends to a unique sphere in \mathbb{R}^{3} that is orthogonal to G_{τ}.

Similar to those of \mathcal{F}_{τ}, the elements of \mathcal{D}_{τ} fill up $\widehat{\mathbb{R}^{3}}$ and the planes they bound fill up \mathbb{H}^{4}.

Theorem 3.3.3. Let τ be a pure parabolic isometry of \mathbb{H}^{4} with fixed point v. Then, for each $x \in \widehat{\mathbb{R}^{3}} \backslash\{v\}$ there is a unique $d_{x} \in \mathcal{D}_{\tau}$ that contain x.

Proof. Let G_{τ} be the farm of τ. If $v=\infty$, there is a unique Euclidean line L_{x} orthogonal to G_{τ} through x. Then $L_{x} \cup\{\infty\} \in \mathcal{D}_{\tau}$. If $v \neq \infty$, either x is in the direction L_{τ} of τ which extends to a unique element $L_{\tau} \cup\{\infty\} \in \mathcal{D}_{\tau}$ or x is in a unique plane P_{x} containing $\{x\} \cup L_{\tau}$. Using Euclidean geometry, one can find the unique point $z_{x} \in G_{\tau} \cap P_{x}$ equidistant to x and v. A circle c_{x} can be formed in P_{x} with center z_{x} and passing through v and x. Then $c_{x} \in \mathcal{D}_{\tau}$. It is unique since z_{x} and P_{x} are unique.

Corollary 3.3.2. Let τ be a pure parabolic isometry of \mathbb{H}^{4}. Then for each $x \in \mathbb{H}^{4}$, there is a unique plane $P_{x} \subset \mathbb{H}^{4}$ such that $\partial P_{x} \in \mathcal{D}_{\tau}$.

Proof. Let v, L_{τ} and G_{τ} be the fixed point, direction and farm of τ respectively. If $x \in \mathbb{H}^{4}$ then it projects to a unique $x_{\infty} \in \mathbb{R}^{3} \subset \partial \mathbb{H}^{4}$ by ignoring the last coordinate. If $x_{\infty} \in L_{\tau}$, then $L_{\tau} \cup\{\infty\}$ bounds a plane containing x. If $v=\infty$, there is a unique $d_{x} \in \mathcal{D}_{\tau}$ containing x_{∞}. Then the plane bounded by d_{x} contains x. If $v \neq \infty$, either $x_{\infty} \in L_{\tau}$ or not.

If $x_{\infty} \notin L_{\tau}$, then x_{∞} can be further projected to G_{τ} by subtracting $\| \tau(\infty)-$ $v \|^{-1}(\tau(\infty)-v) \cdot\left(x_{\infty}-v\right)$ from x_{∞}. Let $x_{G_{\tau}}$ be this projection of x_{τ} into G_{τ}. Then there is a unique $r>0$ such that $r\left(x_{G_{\tau}}-v\right)+v$ is Euclidean-equidistant to v and x. A circle $c_{x} \subset \widehat{\mathbb{R}^{3}}$ can be constructed so that c_{x} is centered at $r\left(x_{G_{\tau}}-v\right)+v$ passing through v and tangent to L_{τ}. Then $c_{x} \in \mathcal{D}_{\tau}$ and the plane it bounds in \mathbb{H}^{4} contains x since x has Euclidean distance to the center of c_{x} equal to the radius of c_{x}. The uniqueness of c_{x} comes from the uniqueness of the projection of x to G_{τ} and r.

It seems that the definitions of pencils, farm and direction of τ depend on whether τ fixes ∞ or not. However a pure parabolic isometry τ fixing ∞ can be conjugated to fix $v \in \mathbb{R}^{3}$ by a reflection $R_{(v, 1)}$ so that $R_{(v, 1)} \tau R_{(v, 1)}$ has pencils equal to the images of the pencil elements of τ under $R_{(v, 1)}$. In particular, $R_{(v, 1)}$ is the reflection across the sphere with radius 1 centered at v.

$$
R_{(v, 1)}(x)=v+\frac{1}{\|x-v\|^{2}}(x-v)
$$

By using $R_{(v, 1)}$ we may now assume a pure parabolic isometry τ fixes ∞ and the claims about τ involving its pencils are true for any parabolic isometry with fixed point other than ∞. This is useful particularly on the properties of the invariant pencil defined as follows.

Definition 24. Let τ be a pure parabolic isometry of τ fixing $v \in \widehat{\mathbb{R}^{3}}$ and with farm G_{τ}. The invariant pencil of τ is the set

$$
\mathcal{T}_{\tau}=\left\{s \subset \widehat{\mathbb{R}^{3}}: s \text { is a sphere orthogonal to } G_{\tau} \text { and } v \in s\right\} .
$$

If τ fixes ∞, every $t \in \mathcal{T}_{\tau}$ consists of extended Euclidean lines that belong to \mathcal{D}_{τ}. Since τ leaves elements of \mathcal{D}_{τ} invariant, it also leaves elements of \mathcal{T}_{τ} invariant. Any other pure parabolic isometry is conjugate to one that fixes ∞ so it is true for any pure parabolic isometry.

3.3.1 Properties of the invariant pencil

Let τ be a pure parabolic isometry fixing v in $\widehat{\mathbb{R}^{3}}$.

1. For each $t \in \mathcal{T}_{\tau}, \tau(t)=t$ and t is orthogonal to each $s \in \mathcal{F}_{\tau}$.
2. If $t, u \in \mathcal{T}_{\tau}$ such that $u \cap t$ has more than one point but $u \neq t$, then $u \cap t \in \mathcal{D}_{\tau}$.
3. If a sphere $s \subset \widehat{\mathbb{R}^{3}}$ contains some $c \in \mathcal{D}_{\tau}$, then $s \in \mathcal{T}_{\tau}$.
4. For each pair $p, q \in \mathcal{D}_{\tau}$ with $p \neq q$, there is a unique $t \in \mathcal{T}_{\tau}$ containing $p \cup q$.
5. For each $d \in \mathcal{D}_{\tau}$, there are $t, u \in \mathcal{T}_{\tau}$ such that $t \cap u=d$.

The next objects to collect are the intersections of elements of \mathcal{F}_{τ} with those of \mathcal{T}_{τ}.
Definition 25. Let τ be a pure parabolic isometry of \mathbb{H}^{4}. The half-turn bank of τ is the set

$$
\mathcal{K}_{\tau}=\left\{s \cap t \subset \widehat{\mathbb{R}^{3}}: s \in \mathcal{F}_{\tau} \text { and } t \in \mathcal{T}_{\tau}\right\}
$$

Theorem 3.3.4. Let τ be a pure parabolic isometry of \mathbb{H}^{4} with fixed point $v \in \widehat{\mathbb{R}^{3}}$. Then c is a circle in $\widehat{\mathbb{R}^{3}}$ such that $v \in c \subset h$ for some $h \in \mathcal{F}_{\tau}$ if and only if $c \in \mathcal{K}_{\tau}$.

Proof. Let c be a circle in $\widehat{\mathbb{R}^{3}}$ such that $v \in c \subset h$ for some $h \in \mathcal{F}_{\tau}$. It suffices to show that $c \in \mathcal{K}_{\tau}$ in the case where $v=\infty$. Then h is a Euclidean plane and c is a Euclidean line. Let t be the set $\{x+\lambda \tau(0): x \in c \backslash\{\infty\}, \lambda \in \mathbb{R}\} \cup\{\infty\}$. Then t is orthogonal to h through c so $t \in \mathcal{T}_{\tau}$ and $c=h \cap t$. Hence, $c \in \mathcal{K}_{\tau}$.

Conversely if $c \in \mathcal{K}_{\tau}$, there are $h \in \mathcal{F}_{\tau}$ and $t \in \mathcal{T}_{\tau}$ such that $c=h \cap t$. Then $c \subset h$. Both h and t contain v so $v \in c$.

Theorem 3.3.5. Let τ be a pure parabolic isometry of \mathbb{H}^{4}. Then for each $k \in \mathcal{K}_{\tau}$, there exist $k_{1}, k_{2} \in \mathcal{K}_{\tau}$ such that $\tau=H_{k_{1}} H_{k}=H_{k} H_{k_{2}}$.

Proof. The argument for the pure hyperbolic case works exactly for the pure parabolic case. There are $s \in \mathcal{F}_{\tau}$ and $t \in \mathcal{T}_{\tau}$ such that $k=s \cap t$. Then there are $s_{1}, s_{2} \in \mathcal{F}_{\tau}$ such that $\tau=R_{s_{1}} R_{s}=R_{s} R_{s_{2}}$. Let $k_{1}=s_{1} \cap t$ and $k_{2}=s_{2} \cap t$. Since s, s_{1} and s_{2} are orthogonal to $t, H_{k_{1}}=R_{s_{1}} R_{t}=R_{t} R_{s_{1}}$ and $H_{k_{2}}=R_{s_{2}} R_{t}=R_{t} R_{s_{2}}$. Then,

$$
\begin{aligned}
\tau & =R_{s_{1}} R_{s} & \tau & =R_{s} R_{s_{2}} \\
& =R_{s_{1}} R_{t} R_{t} R_{s} & & =R_{s} R_{t} R_{t} R_{s_{2}} \\
& =H_{k_{1}} H_{k} & & =H_{k} H_{k_{2}} .
\end{aligned}
$$

3.4 Pure loxodromic

Let δ be a pure hyperbolic isometry of \mathbb{H}^{4}. One can pick a pair a distinct hyperplanes t_{1} and t_{2} bounded by some elements of \mathcal{T}_{δ} so that $R_{t_{1}} R_{t_{2}}$ is a type I elliptic isometry. Let $\rho=R_{t_{1}} R_{t_{2}}$ and $P=t_{1} \cap t_{2}$. Then P is the twisting plane of ρ and $\partial P \in \mathcal{D}_{\delta}$. It follows that $\mathcal{F}_{\rho} \subset \mathcal{T}_{\delta}$ and $\mathcal{F}_{\delta} \subset \mathcal{T}_{\rho}$ by definition. Since P contains the axis of δ, then ρ leaves it invariant. The composition $\delta \rho$ is therefore a hyperbolic isometry that leaves the axis of δ invariant. Moreover ρ and δ commute. To see this, express δ as $R_{h_{1}} R_{h_{2}}$ for some $h_{1}, h_{2} \in \mathcal{F}_{\delta}$. Then every element of $\left\{h_{1}, h_{2}\right\}$ is orthogonal to every element of $\left\{\partial t_{1}, \partial t_{2}\right\}$ so each reflection in $\left\{R_{h_{1}}, R_{h_{2}}\right\}$ commutes with each reflection in $\left\{R_{t_{1}}, R_{t_{2}}\right\}$. These imply the following computations.

$$
\begin{aligned}
\delta \rho & =R_{h_{1}} R_{h_{2}} R_{t_{1}} R_{t_{2}} \\
& =R_{h_{1}} R_{t_{1}} R_{h_{2}} R_{t_{2}} \\
& =R_{t_{1}} R_{h_{1}} R_{t_{2}} R_{h_{2}} \\
& =R_{t_{1}} R_{t_{2}} R_{h_{1}} R_{h_{2}} \\
& =\rho \delta
\end{aligned}
$$

Two things can be observed from the computation. First, $\delta \rho$ is a composition of four reflections. Second, the expression $R_{h_{1}} R_{t_{1}} R_{h_{2}} R_{t_{2}}$ is a composition of half-turns about $h_{1} \cap t_{1}$ and $h_{2} \cap t_{2}$ so $\delta \rho$ can be expressed as such. If a hyperbolic isometry can
be expressed as a composition of exactly four reflections, it is interesting to show that it can be expressed as a composition of two half-turns. In this section, we construct a set of possible planes in which $\delta \rho$ can be factored into half-turns about planes within the same set.

Definition 26. A pure loxodromic isometry γ is a hyperbolic isometry of \mathbb{H}^{4} that can be expressed as $\delta \rho$ where δ is a pure hyperbolic isometry leaving the axis of γ invariant and ρ is a type I elliptic isometry whose twisting plane contains the axis of γ.

Using the same arguments above, it follows that if $\gamma=\delta \rho$ from the definition, then $\delta \rho=\rho \delta$. Furthermore such decompositions of γ into $\delta \rho$ is unique.

Theorem 3.4.1. Let γ be a pure loxodromic isometry of \mathbb{H}^{4}. If $\gamma=\delta_{1} \rho_{1}=\delta_{2} \rho_{2}$ where δ_{1}, δ_{2} are pure hyperbolic isometries leaving the axis of γ invariant and ρ_{1}, ρ_{2} are type I elliptic isometries whose twisting planes contain the axis of γ, then $\delta_{1}=\delta_{2}$ and $\rho_{1}=\rho_{2}$.

Proof. Since the axes of δ_{1} and δ_{2} are equal, they must have the same pencils. In particular, $\mathcal{F}_{\delta_{1}}=\mathcal{F}_{\delta_{2}}$ and $\mathcal{T}_{\delta_{1}}=\mathcal{T}_{\delta_{2}}$. Express $\delta=R_{h_{1}} R_{h_{2}}$ for some $h_{1}, h_{2} \in \mathcal{F}_{\delta_{1}}$. Then there is $h_{3} \in \mathcal{F}_{\delta_{2}}$ such that $\delta_{2}=R_{h_{1}} R_{h_{3}}$. The twisting planes of ρ_{1} and ρ_{2} intersect in at least a line so there is a hyperplane t_{1} that contain both twisting planes. Then $\partial t_{1} \in \mathcal{F}_{\rho_{1}} \cap \mathcal{F}_{\rho_{2}}$ so there are $t_{2} \in \mathcal{F}_{\rho_{1}}$ and $t_{3} \in \mathcal{F}_{\rho_{2}}$ such that $\rho_{1}=R_{t_{2}} R_{t_{1}}$ and $\rho_{2}=R_{t_{3}} R_{t_{1}}$. Then γ can be expressed as $R_{h_{1}} R_{h_{2}} R_{t_{2}} R_{t_{1}}$ or $R_{h_{1}} R_{h_{3}} R_{t_{3}} R_{t_{1}}$. It implies that $R_{h_{2}} R_{t_{2}}=R_{h_{3}} R_{t_{3}}$. Since t_{2} and t_{3} contain the fixed points of γ, then $t_{2}, t_{3} \in \mathcal{T}_{\delta_{1}}=\mathcal{T}_{\delta_{2}}$. Each element of $\left\{h_{2}, h_{3}\right\}$ is orthogonal to every element of $\left\{t_{2}, t_{3}\right\}$ so $R_{h_{2}} R_{t_{2}}$ and $R_{h_{3}} R_{t_{3}}$ are half-turns about the same plane. Then $h_{2} \cap t_{2}=h_{3} \cap t_{3}$ but since $\mathcal{F}_{\delta_{1}}$ has pairwise disjoint elements, $h_{1}=h_{3}$. The equation $R_{h_{2}} R_{t_{2}}=R_{h_{3}} R_{t_{3}}$ implies that $R_{t_{2}}=R_{t_{3}}$. Thus $\delta_{1}=\delta_{2}$ and $\rho_{1}=\rho_{2}$.

Let $\delta \rho$ be the unique decomposition of a pure loxodromic isometry γ. Since $\mathcal{F}_{\rho} \subset \mathcal{T}_{\delta}$, the boundary of the twisting plane of ρ must be in \mathcal{D}_{δ}. Hence δ leaves the twisting plane of ρ invariant together with the axis of γ. It follows that γ also leave the twisting plane of ρ invariant. The pure loxodromic isometry γ share both an axis with δ and an
invariant plane with ρ. The uniqueness of ρ allows γ to have its own unique invariant plane.

Definition 27. Let γ be a pure loxodromic isometry of \mathbb{H}^{4}. Let δ be the unique pure hyperbolic isometry and ρ be the unique type I elliptic isometry so that $\gamma=\delta \rho=\rho \delta$. Then δ is called the dilation part of γ and ρ is called the rotational part of γ. The twisting plane of γ is the set of fixed points of ρ.

The pencils of γ are ready to be defined. They are derived from the pencils of its dilation and rotational parts.

Definition 28. Let γ be a pure loxodromic isometry of \mathbb{H}^{4} with dilation part δ and rotational part ρ. The permuted pencil of γ is defined to be the permuted pencil of δ. The twisting pencil of γ is defined to be the permuted pencil of ρ. The dual pencil of γ is defined as the dual pencil of δ. The twisting pencil of γ is denoted \mathcal{R}_{γ}.

In the pure hyperbolic section, \mathcal{F}_{γ} and \mathcal{D}_{γ} are already defined even if γ is pure loxodromic. The new pencil here is \mathcal{R}_{γ} which depends of the rotational part. Nonetheless the definitions above are consistent with those of pure hyperbolic.

3.4.1 Properties of the pencils of a pure loxodromic isometry

Let γ be a pure loxodromic isometry of \mathbb{H}^{4} with twisting plane P.

1. For each $t \in \mathcal{R}_{\gamma}$, then $\gamma(t) \in \mathcal{R}_{\gamma}, \gamma(t) \cap t=\partial P$ and t is orthogonal to each $s \in \mathcal{F}_{\gamma}$.
2. If $t, u \in \mathcal{R}_{\gamma}$ with $u \neq t$, then $u \cap t=\partial P$.
3. If a sphere $s \subset \widehat{\mathbb{R}^{3}}$ contains some ∂P, then $s \in \mathcal{R}_{\gamma}$.
4. For each $d \in \mathcal{D}_{\gamma} \backslash\{\partial P\}$, there is a unique $t \in \mathcal{R}_{\gamma}$ containing $d \cup(\partial P)$.

Similar to \mathcal{F}_{γ} and \mathcal{D}_{γ}, the elements of \mathcal{R}_{γ} fill up $\widehat{\mathbb{R}^{3}}$ and the hyperplanes they bound fill up \mathbb{H}^{4}.

Theorem 3.4.2. Let γ be a pure loxodromic isometry of \mathbb{H}^{4} with twisting plane P.
Then for each $x \in \widehat{\mathbb{R}^{3}} \backslash(\partial P)$, there is a unique $h_{x} \in \mathcal{R}_{\gamma}$ containing x.

Proof. Let ρ be the rotational part of γ. Then there is a unique $h_{x} \in \mathcal{F}_{\rho}$ containing x. Since $\mathcal{F}_{\rho}=\mathcal{R}_{\gamma}$, then $h_{x} \in \mathcal{R}_{\gamma}$.

Corollary 3.4.1. Let γ be a pure loxodromic isometry of \mathbb{H}^{4} with twisting plane P. Then for each $x \in \mathbb{H}^{4} \backslash P$, there is a unique hyperplane h_{x} containing x such that $\partial h_{x} \in \mathcal{R}_{\gamma}$.

Proof. Let ρ be the rotational part of γ. Then there is a unique $h_{x} \in \mathcal{F}_{\rho}$ so that the hyperplane it bounds contains x. Since $\mathcal{F}_{\rho}=\mathcal{R}_{\gamma}, h_{x} \in \mathcal{R}_{\gamma}$.

The importance of \mathcal{R}_{γ} is highlighted by the need to collect the planes in which γ can be factored into half-turns.

Definition 29. Let γ be a pure loxodromic isometry of \mathbb{H}^{4}. The half-turn bank of γ is the set

$$
\mathcal{K}_{\gamma}=\left\{s \cap t \subset \widehat{\mathbb{R}^{3}}: s \in \mathcal{F}_{\gamma} \text { and } t \in \mathcal{R}_{\gamma}\right\} .
$$

Corollary 3.4.2. Let γ be a pure loxodromic isometry of \mathbb{H}^{4} with twisting plane P. For each $x \in \mathbb{H}^{4} \backslash P$, there is a unique plane k_{x} containing x such that $\partial k_{x} \in \mathcal{K}_{\gamma}$. For each $y \in \widehat{\mathbb{R}^{3}} \backslash(\partial P)$, there is a unique $k_{y} \in \mathcal{K}_{\gamma}$ containing y.

Proof. Let L be the axis of γ. Let ρ be the rotational part and δ the dilation part of γ. Since $x \notin P$ implying $x \notin L$, there are unique $h_{x} \in \mathcal{F}_{\delta}$ and $t_{x} \in \mathcal{F}_{\rho}$ such that the hyperplanes they bound contain x. Let $k_{x}=h_{x} \cap t_{x}$; then $\partial k_{x} \in \mathcal{K}_{\gamma}$.

Since $y \notin \partial P$, there are unique $h_{y} \in \mathcal{F}_{\delta}$ and $t_{y} \in \mathcal{F}_{\rho}$ containing y. Let $k_{y}=h_{y} \cap t_{y}$; then $k_{y} \in \mathcal{K}_{\gamma}$.

Theorem 3.4.3. Let γ be a pure loxodromic isometry of \mathbb{H}^{4} with axis L and twisting plane P. Then $Q \subset \mathbb{H}^{4}$ is a plane orthogonal to both P and L through a line in P if and only if $\partial Q \in \mathcal{K}_{\gamma}$.

Proof. Suppose Q is a plane orthogonal to both P and L such that $Q \cap P$ is a line. Let $\ell=Q \cap P$. Since Q is orthogonal to L, then ℓ and L are perpendicular lines in P. Let x be the intersection point Q and L. Let ℓ^{\prime} be the unique line in Q perpendicular to ℓ through x. Likewise ℓ^{\prime} is perpendicular to L. There is a unique line ℓ_{4} perpendicular to
all L, ℓ and ℓ^{\prime}. In particular, ℓ_{4} is the unique line orthogonal to the hyperplane spanned by P and Q passing through x. Let h be the hyperplane spanned by ℓ, ℓ^{\prime} and ℓ_{4}. Since L is perpendicular to all ℓ, ℓ^{\prime} and ℓ_{4}, h is the orthogonal complement of L through x. Then $\partial h \in \mathcal{F}_{\gamma}$. Let t be the hyperplane spanned by L, ℓ and ℓ^{\prime}. Therefore $P \subset t$ and $t \cap h=Q$. Hence $\partial t \in \mathcal{R}_{\gamma}$ and $\partial Q \in \mathcal{K}_{\gamma}$.

Conversely if $\partial Q \in \mathcal{K}_{\gamma}$, there are $h \in \mathcal{F}_{\gamma}$ and $t \in \mathcal{R}_{\gamma}$ such that $\partial Q=h \cap t$. Let \hat{h} and \hat{t} be the hyperplanes bounded by h and t respectively. Then \hat{h} is orthogonal to to P through a line since ∂P is orthogonal to every element of \mathcal{F}_{γ}. Whereas \hat{t} contains P so $Q=\hat{h} \cap \hat{t}$ must also intersect P in the line $P \cap \hat{h}$ since $Q \cap P=(\hat{h} \cap \hat{t}) \cap P=$ $\hat{h} \cap(\hat{t} \cap P)=\hat{h} \cap P$. Then P is orthogonal to \hat{h} through $P \cap Q$, so $Q \subset \hat{h}$ implies that P is also orthogonal to Q through the line $P \cap Q$.

Since L is a subset of \hat{t} and L is orthogonal to \hat{h} through x, then Q intersect L at x. But $Q \subset \hat{h}$ so Q is orthogonal to L.

Theorem 3.4.4. Let γ be a pure loxodromic isometry of \mathbb{H}^{4}. Then for each $k \in \mathcal{K}_{\gamma}$ there exist $k_{1}, k_{2} \in \mathcal{K}_{\gamma}$ such that $\gamma=H_{k_{1}} H_{k}=H_{k} H_{k_{2}}$.

Proof. Let δ be the dilation part of γ and ρ be the rotational part of γ. If $k \in \mathcal{K}_{\gamma}$, there are $s \in \mathcal{F}_{\gamma}$ and $t \in \mathcal{R}_{\gamma}$ such that $k=s \cap t$. Then there are $s_{1}, s_{2} \in \mathcal{F}_{\delta}=\mathcal{F}_{\gamma}$ such that $\delta=R_{s_{1}} R_{s}=R_{s} R_{s_{2}}$ and there are $t_{1}, t_{2} \in \mathcal{F}_{\rho}=\mathcal{R}_{\gamma}$ such that $\rho=R_{t_{1}} R_{t}=R_{t} R_{t_{2}}$. Each sphere of $\left\{s, s_{1}, s_{2}\right\}$ is orthogonal to each sphere in $\left\{t, t_{1}, t_{2}\right\}$. The following relations hold.

$$
\begin{array}{ll}
R_{s} R_{t_{1}}=R_{t_{1}} R_{s} & H_{k}=R_{s} R_{t} \\
R_{t_{2}} R_{s}=R_{s} R_{t_{2}} & H_{k}=R_{t} R_{s}
\end{array}
$$

Let $k_{1}=s_{1} \cap t_{1}$ and $k_{2}=s_{2} \cap t_{2}$. Then $H_{k_{1}}=R_{s_{1}} R_{t_{1}}=R_{t_{1}} R_{s_{1}}$ and $H_{k_{2}}=R_{s_{2}} R_{t_{2}}=$

$$
\begin{array}{rlrl}
R_{t_{2}} R_{s_{2} .} . \text { Since } \gamma= & \delta \rho=\rho \delta, \\
& =R_{s_{1}} R_{s} R_{t_{1}} R_{t} & & \\
& =R_{s_{1}} R_{t_{1}} R_{s} R_{t} & & =\rho \delta \\
& =H_{k_{1}} H_{k} & & =R_{t} R_{s} R_{s} R_{t_{2}} R_{s_{2}} \\
& & =H_{k} H_{k_{2}}
\end{array}
$$

3.4.2 Twisting hyperplane

If γ is a pure loxodromic isometry of \mathbb{H}^{4} with axis L and twisting plane P, then there is a unique hyperplane h that is orthogonal to P through L. Since γ leave both P and L invariant, the image of h is also a hyperplane orthogonal to P through L. The uniqueness of h makes it an invariant hyperplane of γ. Hence, h is called the twisting hyperplane of γ. In the boundary, the twisting hyperplane can be found by locating the sphere orthogonal to the boundary of the twisting plane through the fixed points of γ. Let δ and ρ be the respective dilation and rotational parts of γ. For each point $x \in L$, there is a unique plane d_{x} orthogonal to P through x. Then $\partial d_{x} \in \mathcal{D}_{\rho}$, and the union of all these planes for all $x \in L$ is h. Since h contains L and some d_{x}, then $\partial h \in \mathcal{T}_{\delta} \cap \mathcal{T}_{\rho}$. This is another way to show that $\gamma=\delta \rho$ leave h invariant.

3.5 Screw parabolic

Let τ be a pure parabolic isometry of \mathbb{H}^{4}. Let P be a plane bounded by an element in \mathcal{D}_{τ}. If t_{1} and t_{2} are distinct hyperplanes intersecting at P, then $\partial t_{1}, \partial t_{2} \in \mathcal{T}_{\tau}$. The composition $\rho=R_{t_{1}} R_{t_{2}}$ is a type I elliptic isometry fixing P pointwise. Both τ and ρ leave P invariant and so does $\tau \rho$. Since every $t \in \mathcal{F}_{\rho}$ contain ∂P which is in \mathcal{D}_{τ}, then $\mathcal{F}_{\rho} \subset \mathcal{T}_{\tau}$. Likewise, every $h \in \mathcal{F}_{\tau}$ is orthogonal to ∂P so $\mathcal{F}_{\tau} \subset \mathcal{T}_{\rho}$. The composition $\tau \rho$ can be shown to be parabolic with the same fixed point as that of τ.

Let $x \in\left(\mathbb{H}^{4} \backslash P\right) \cup\left(\widehat{\mathbb{R}^{3}} \backslash(\partial P)\right)$. Then there is a unique hyperplane t such that $x \in t \cup(\partial t)$ and $\partial t \in \mathcal{F}_{\rho}$. Since $x \notin P$ and $\rho(t) \cap t=P$, then $\rho(x) \neq x$. But
$\rho(\partial t) \in \mathcal{F}_{\rho} \subset \mathcal{T}_{\tau}$ so $\tau \rho(x) \in \rho(t) \cup \partial(\rho(t))$. Also $\rho(\partial t) \neq \partial t$ so $\tau \rho(x) \notin t \cup(\partial t)$. Hence, $\tau \rho(x) \neq x$.

If $x \in P \cup(\partial P)$, then $\tau \rho(x)=\tau(x)$ which is equal to x if and only if x is the fixed point of τ. Hence $\tau \rho$ is a parabolic isometry sharing the fixed point with τ.

Furthermore, τ and ρ commute. Let $h_{1}, h_{2} \in \mathcal{F}_{\tau}$ so that $\tau=R_{h_{1}} R_{h_{2}}$. Since $\mathcal{F}_{\tau} \subset \mathcal{T}_{\rho}$ and $\mathcal{F}_{\rho} \subset \mathcal{T}_{\tau}$, every element of $\left\{h_{1}, h_{2}\right\}$ is orthogonal to every element of $\left\{\partial t_{1}, \partial t_{2}\right\}$. The argument is similar to the decomposition of a pure loxodromic isometry.

$$
\begin{aligned}
\tau \rho & =R_{h_{1}} R_{h_{2}} R_{t_{1}} R_{t_{2}} \\
& =R_{h_{1}} R_{t_{1}} R_{h_{2}} R_{t_{2}} \\
& =R_{t_{1}} R_{h_{1}} R_{t_{2}} R_{h_{2}} \\
& =R_{t_{1}} R_{t_{2}} R_{h_{1}} R_{h_{2}} \\
& =\rho \tau
\end{aligned}
$$

Definition 30. A screw parabolic isometry γ is a parabolic isometry of \mathbb{H}^{4} that can be expressed as $\tau \rho$ where τ is a pure parabolic isometry fixing the fixed point of γ, and ρ is a type I elliptic isometry whose twisting plane is bounded by an element of \mathcal{D}_{τ}.

If such a γ can be decomposed into $\tau \rho$, then $\tau \rho=\rho \tau$. Moreover, such a decomposition is unique.

Theorem 3.5.1. Let γ be a screw parabolic isometry of \mathbb{H}^{4} with fixed point v. If $\gamma=\tau_{1} \rho_{1}=\tau_{2} \rho_{2}$ where τ_{1}, τ_{2} are pure parabolic isometries fixing v and ρ_{1}, ρ_{2} are type I elliptic isometries whose twisting plane are bounded by elements of $\mathcal{D}_{\tau_{1}}$ and $\mathcal{D}_{\tau_{2}}$ respectively, then $\tau_{1}=\tau_{2}$ and $\rho_{1}=\rho_{2}$.

Proof. It is enough to show when $v=\infty$. Let E_{1} and E_{2} be the respective farms of τ_{1} and τ_{2}; let $P_{1} \in \mathcal{D}_{\tau_{1}}$ and $P_{2} \in \mathcal{D}_{\tau_{2}}$ be the boundaries of the twisting planes of ρ_{1} and ρ_{2} respectively. Then each $E_{i} \cap P_{i}$ has two points. Let $c_{1} \in E_{1} \cap P_{1} \backslash\{v\}$ and $c_{2} \in E_{2} \cap P_{2} \backslash\{v\}$. Since $v=\infty$, there are $A, B \in \operatorname{SO}(3)$ and $a, b \in \mathbb{R}^{3} \backslash\{0\}$ such that

$$
\begin{array}{ll}
\tau_{1}(x)=x+a & \rho_{1}(x)=A\left(x-c_{1}\right)+c_{1} \\
\tau_{2}(x)=x+b & \rho_{2}(x)=B\left(x-c_{2}\right)+c_{2}
\end{array}
$$

for all $x \in \mathbb{R}^{3}$ with $c_{1} \cdot a=0=c_{2} \cdot b, \rho_{1}\left(a+c_{1}\right)=a+c_{1}$ and $\rho_{2}\left(b+c_{2}\right)=b+c_{2}$. Thus $A a=a ; B b=b$. If $\gamma=\tau_{1} \rho_{1}=\tau_{2} \rho_{2}$, then

$$
\begin{equation*}
A\left(x-c_{1}\right)+c_{1}+a=B\left(x-c_{2}\right)+c_{2}+b \tag{3.1}
\end{equation*}
$$

for all $x \in \mathbb{R}^{3}$. For $x=0$,

$$
\begin{equation*}
-A c_{1}+c_{1}+a=-B c_{2}+c_{2}+b \tag{3.2}
\end{equation*}
$$

Subtracting equation (3.2) from (3.1) yields $A(x)=B(x)$. Hence $A=B$.
Since $A \in \mathrm{SO}(3)$ is nontrivial, its fixed points are 1-dimensional so $b=\lambda a$ for some $\lambda \in \mathbb{R}$. Then $c_{1} \cdot b=0=c_{2} \cdot a$. The equation (3.2) implies

$$
A c_{2}-A c_{1}=c_{2}-c_{1}+b-a .
$$

Taking the Euclidean norms of both sides follows that $\|b-a\|=0$ so $b=a$. But that also means $E_{1}=E_{2}$ and is left invariant by A. Since A fixes only the origin in E_{1}, then $A\left(c_{2}-c_{1}\right)=c_{2}-c_{1}$ implies that $c_{2}=c_{1}$.

Let $\tau \rho$ be the unique decomposition of a screw parabolic isometry γ. Since $\mathcal{F}_{\rho} \subset \mathcal{T}_{\tau}$, the boundary of the twisting plane of ρ must be in \mathcal{D}_{τ}. Hence τ leaves the twisting plane of ρ invariant. It follows that γ also leave the twisting plane of ρ invariant. The screw parabolic isometry γ share both a fixed point with τ and an invariant plane with ρ. The uniqueness of ρ allows γ to have its own unique invariant plane.

Definition 31. Let γ be a screw parabolic isometry of \mathbb{H}^{4}. Let τ be the unique pure parabolic isometry and ρ be the unique type I elliptic isometry so that $\gamma=\tau \rho=\rho \tau$. Then τ is called the translation part of γ and ρ is called the rotational part of γ. The twisting plane of γ is the set of fixed points of ρ.

Definition 32. Let γ be a screw parabolic isometry of \mathbb{H}^{4} with translation part τ and rotational part ρ. The permuted pencil of γ is defined to be the permuted pencil of τ. The twisting pencil of γ is defined to be the permuted pencil of ρ. The dual pencil of γ is defined as the dual pencil of τ. The twisting pencil of γ is denoted \mathcal{R}_{γ}.

3.5.1 Properties of the pencils of a screw parabolic isometry

Let γ be a screw parabolic isometry of \mathbb{H}^{4} with twisting plane P.

1. For each $t \in \mathcal{R}_{\gamma}$, then $\gamma(t) \in \mathcal{R}_{\gamma}, \gamma(t) \cap t=\partial P$ and t is orthogonal to each $s \in \mathcal{F}_{\gamma}$.
2. If $t, u \in \mathcal{R}_{\gamma}$ with $u \neq t$, then $u \cap t=\partial P$.
3. If a sphere $s \subset \widehat{\mathbb{R}^{3}}$ contains some ∂P, then $s \in \mathcal{R}_{\gamma}$.
4. For each $d \in \mathcal{D}_{\gamma} \backslash\{\partial P\}$, there is a unique $t \in \mathcal{R}_{\gamma}$ containing $d \cup(\partial P)$.

The elements of \mathcal{R}_{γ} fill up $\widehat{\mathbb{R}^{3}}$ and the hyperplanes they bound fill up \mathbb{H}^{4}.

Theorem 3.5.2. Let γ be a screw parabolic isometry of \mathbb{H}^{4} with twisting plane P. Then for each $x \in \widehat{\mathbb{R}^{3}} \backslash(\partial P)$, there is a unique $h_{x} \in \mathcal{R}_{\gamma}$ containing x.

Proof. Let ρ be the rotational part of γ. Then there is a unique $h_{x} \in \mathcal{F}_{\rho}$ containing x. Since $\mathcal{F}_{\rho}=\mathcal{R}_{\gamma}$, then $h_{x} \in \mathcal{R}_{\gamma}$.

Corollary 3.5.1. Let γ be a screw parabolic isometry of \mathbb{H}^{4} with twisting plane P. Then for each $x \in \mathbb{H}^{4} \backslash P$, there is a unique hyperplane h_{x} containing x such that $\partial h_{x} \in \mathcal{R}_{\gamma}$.

Proof. Let ρ be the rotational part of γ. Then there is a unique $h_{x} \in \mathcal{F}_{\rho}$ so that the hyperplane it bounds contains x. Since $\mathcal{F}_{\rho}=\mathcal{R}_{\gamma}, h_{x} \in \mathcal{R}_{\gamma}$.

Definition 33. Let γ be a screw parabolic isometry of \mathbb{H}^{4}. The half-turn bank of γ is the set

$$
\mathcal{K}_{\gamma}=\left\{s \cap t \subset \widehat{\mathbb{R}^{3}}: s \in \mathcal{F}_{\gamma} \text { and } t \in \mathcal{R}_{\gamma}\right\} .
$$

Corollary 3.5.2. Let γ be a screw parabolic isometry of \mathbb{H}^{4} with twisting plane P. For each $x \in \mathbb{H}^{4} \backslash P$, there is a unique plane k_{x} containing x such that $\partial k_{x} \in \mathcal{K}_{\gamma}$. For each $y \in \widehat{\mathbb{R}^{3}} \backslash(\partial P)$, there is a unique $k_{y} \in \mathcal{K}_{\gamma}$ containing y.

Proof. Let L be the direction of γ. Let ρ be the rotational part and τ the translation part of γ. Since $x \notin P$, there are unique $h_{x} \in \mathcal{F}_{\tau}$ and $t_{x} \in \mathcal{F}_{\rho}$ such that the hyperplanes they bound contain x. Let $k_{x}=h_{x} \cap t_{x}$; then $\partial k_{x} \in \mathcal{K}_{\gamma}$.

Since $y \notin \partial P$, there are unique $h_{y} \in \mathcal{F}_{\tau}$ and $t_{y} \in \mathcal{F}_{\rho}$ containing y. Let $k_{y}=h_{y} \cap t_{y}$; then $k_{y} \in \mathcal{K}_{\gamma}$.

Theorem 3.5.3. Let γ be a screw parabolic isometry of \mathbb{H}^{4} with fixed point v and twisting plane P. Then $Q \subset \mathbb{H}^{4}$ is a plane orthogonal to P through a line bounded by v if and only if $\partial Q \in \mathcal{K}_{\gamma}$.

Proof. Suppose Q is a plane orthogonal to P through a line bounded by v. There is a hyperplane t contaning $Q \cup P$ since they intersect in a line. Let $\ell=Q \cap P$. There is a point $x \in \partial \ell \backslash\{v\}$. Then there is a unique $h_{x} \in \mathcal{F}_{\gamma}$ that contain x. Since Q is orthogonal to P, then Q is contained in the hyperplane bounded by h_{x}. But $Q, P \subset t$ so $\partial t \in \mathcal{R}_{\gamma}$ and $\partial Q=(\partial t) \cap h_{x}$. Hence $\partial Q \in \mathcal{K}_{\gamma}$.

Conversely if $\partial Q \in \mathcal{K}_{\gamma}$, there are $h \in \mathcal{F}_{\gamma}$ and $t \in \mathcal{R}_{\gamma}$ such that $\partial Q=h \cap t$. Let \hat{h} and \hat{t} be the hyperplane bounded by h and t respectively. Then \hat{h} is orthogonal to P through a line bounded by v. Also \hat{t} contains P, so $Q=\hat{h} \cap \hat{t}$ implies $Q \cap P=$ $(\hat{h} \cap t) \cap P=\hat{h} \cap(\hat{t} \cap P)=\hat{h} \cap P$. Then P is orthogonal to \hat{h} through $P \cap Q$ and hence to Q. Since $v \in h \cap t$, then $v \in \partial Q ; v \in \partial P$ implies that v bounds the line $P \cap Q$.

Theorem 3.5.4. Let γ be a screw parabolic isometry of \mathbb{H}^{4}. Then for each $k \in \mathcal{K}_{\gamma}$ there exist $k_{1}, k_{2} \in \mathcal{K}_{\gamma}$ such that $\gamma=H_{k_{1}} H_{k}=H_{k} H_{k_{2}}$.

Proof. Let τ be the translation part of γ and ρ be the rotational part of γ. If $k \in \mathcal{K}_{\gamma}$, there are $s \in \mathcal{F}_{\gamma}$ and $t \in \mathcal{R}_{\gamma}$ such that $k=s \cap t$. Then there are $s_{1}, s_{2} \in \mathcal{F}_{\tau}=\mathcal{F}_{\gamma}$ such that $\tau=R_{s_{1}} R_{s}=R_{s} R_{s_{2}}$ and there are $t_{1}, t_{2} \in \mathcal{F}_{\rho}=\mathcal{R}_{\gamma}$ such that $\rho=R_{t_{1}} R_{t}=R_{t} R_{t_{2}}$. Each sphere of $\left\{s, s_{1}, s_{2}\right\}$ is orthogonal to each sphere in $\left\{t, t_{1}, t_{2}\right\}$. The following relations hold.

$$
\begin{array}{ll}
R_{s} R_{t_{1}}=R_{t_{1}} R_{s} & H_{k}=R_{s} R_{t} \\
R_{t_{2}} R_{s}=R_{s} R_{t_{2}} & H_{k}=R_{t} R_{s}
\end{array}
$$

Let $k_{1}=s_{1} \cap t_{1}$ and $k_{2}=s_{2} \cap t_{2}$. Then $H_{k_{1}}=R_{s_{1}} R_{t_{1}}=R_{t_{1}} R_{s_{1}}$ and $H_{k_{2}}=R_{s_{2}} R_{t_{2}}=$

$$
\begin{array}{rlrl}
R_{t_{2}} R_{s_{2}} . \text { Since } \gamma= & & \\
& \gamma \rho=\rho \tau, & & \\
& =\tau \rho & & =\rho \gamma \\
& =R_{s_{1}} R_{s} R_{t_{1}} R_{t} & & =R_{t} R_{t_{2}} R_{s} R_{s_{2}} \\
& =R_{s_{1}} R_{t_{1}} R_{s} R_{t} & & =R_{t} R_{s} R_{t_{2}} R_{s_{2}} \\
& =H_{k_{1}} H_{k} & & =H_{k} H_{k_{2}}
\end{array}
$$

3.6 More on Half-Turn Banks

The half-turn bank of an isometry of hyperbolic space serves as a collection of planes in which the isometry can be factored into a product of two half-turns. In this section, we show that any half-turn factorization of an orientation preserving isometry comes from the defined set called half-turn bank.

The half-turn bank \mathcal{K}_{γ} of an isometry γ of \mathbb{H}^{4} is a collection of circles with a property that for each $P \in \mathcal{K}_{\gamma}$, there are $Q, R \in \mathcal{K}_{\gamma}$ such that $\gamma=H_{Q} H_{P}=H_{P} H_{R}$ where H_{P}, H_{Q} and H_{R} are half-turns about their respective planes. It is defined as intersections of hyperplanes in the permuted pencil and invariant/twisting pencils of γ.

In section 3.6.1, the common perpendicular line across a pair of ultra-parallel ($n-2$)dimensional planes is constructed. In section 3.6.2 all possible combinations of pairs of planes in \mathbb{H}^{4} are enumerated to show the result of composing half-turns about the planes. Together with classification of isometries, the combinations tell how the involved planes intersect whenever an isometry is factored into a product of two half-turns. Section 3.6.3 has the details of proving that all half-turn factorizations come from half-turn banks. The theorem implies that a pair of isometries is linked by a half-turn if and only if they have a common circle in their half-turn banks.

3.6.1 Codimension-2 version of common perpendicular

If P and Q are ultra-parallel hyperplanes in \mathbb{H}^{4}, there is a unique line perpendicular to them. If P and Q are ultra-parallel lines in \mathbb{H}^{4}, there is also a unique line perpendicular
to them. In this section, the same result is shown for a pair of ultra-parallel ($n-2$)dimensional subplanes of \mathbb{H}^{n}.

Theorem 3.6.1. For each pair of ultra-parallel planes $\alpha, \beta \in \mathbb{H}^{4}$, there is a unique line orthogonal to both α and β.

More generally, the definitions of half-turn banks can be extended to orientation preserving isometries of \mathbb{H}^{n}, but to justify its name, a more general statement can be used.

Theorem 3.6.2. Let $n \geq 2$ be an integer. For each pair of ultra-parallel ($n-2$)dimensional planes $\alpha, \beta \in \mathbb{H}^{n}$, there is a unique line orthogonal to both α and β.

Proof. Theorem 3.6.2 implies Theorem 3.6.1, so constructing the common orthogonal line in a general setting is enough for a case in Theorem 3.6.3. Let P and Q be ultraparallel ($n-2$)-dimensional planes of \mathbb{H}^{n}. If $n=2$, then P and Q are distinct points, and the unique line connecting them are vacuously orthogonal to P and Q. If $n=3$, then P and Q are ultra-parallel lines so there is a unique line perpendicular to both of them. If $n \geq 4$, we use the hyperboloid model of \mathbb{H}^{n} embedded in the Lorentzian space $\mathbb{R}^{n, 1}$. Then P and Q extend to $(n-1)$-dimensional vector subspaces P^{\prime} and Q^{\prime} respectively. Since P and Q are ultra-parallel, the span of $P^{\prime} \cup Q^{\prime}$ is the whole $\mathbb{R}^{n, 1}$. However, its dimension can not add up to $2 n-2$ but only a maximum of $n+1$.

Therefore, the dimension of the space-like subspace $P^{\prime} \cap Q^{\prime}$ is either $n-2$ or $n-3$. If it is $n-2$, then $\operatorname{span}\left(P^{\prime} \cup Q^{\prime}\right)$ is n-dimensional and has P^{\prime} and Q^{\prime} as its hyperplanes with a unique common perpendicular line. If $\operatorname{dim}\left(P^{\prime} \cap Q^{\prime}\right)$ is $n-3$, then $N=\left(P^{\prime} \cap Q^{\prime}\right)^{L}$ is a 4-dimensional time-like vector subspace nontrivially intersecting both P^{\prime} and Q^{\prime} due to their large dimensions. Since N contains $P^{\prime L}$ and Q^{L}, which respectively intersect P^{\prime} and Q^{\prime} trivially, $N \cap P^{\prime}$ and $N \cap Q^{\prime}$ are 2-dimensional subspaces. If they are time-like, then there is a unique line in \mathbb{H}^{n} perpendicular to both $\mathbb{H}^{n} \cap N \cap P^{\prime}$ and $\mathbb{H}^{n} \cap N \cap Q^{\prime}$. We must show that $N \cap P^{\prime}$ and $N \cap Q^{\prime}$ are time-like vector subspaces.

Pick a time-like vector vector $x \in N$. Then $x \notin P^{\prime L} \cup Q^{L L}$ since $P^{L L}$ and Q^{L} are space-like. Let $w \in{P^{\prime}}^{L}$ and $v \in{Q^{\prime}}^{L}$ be nontrivial elements so they are linearly
independent with x. Since $P^{\prime L}$ and ${Q^{\prime}}^{L}$ are subsets of N, the spans of $\{x, w\}$ and $\{x, v\}$ are subspaces of N. Then the vector $-\frac{\langle x, w\rangle_{L}}{\langle w, w\rangle_{L}} w+x$ is an element of both N and P^{\prime} since it is Lorentz orthogonal to $w \in P^{\prime L}$, and is a linear combination of w and x. Then its Lorentz norm can be completed as follows.

$$
\begin{aligned}
\left\|-\frac{\langle x, w\rangle_{L}}{\langle w, w\rangle_{L}} w+x\right\|_{L}^{2} & =\frac{\langle x, w\rangle_{L}^{2}}{\|w\|_{L}^{2}}-2 \frac{\langle x, w\rangle_{L}^{2}}{\|w\|_{L}^{2}}+\|x\|_{L}^{2} \\
& =-\frac{\langle x, w\rangle_{L}^{2}}{\|w\|_{L}^{2}}+\|x\|_{L}^{2}
\end{aligned}
$$

Since x is time-like and w is space-like, the quantity above is negative, making the vector time-like. Hence, $N \cap P^{\prime}$ is a 2-dimensional time-like subspace of P^{\prime}. By replacing the vector w with v, the same arguments show that $N \cap Q^{\prime}$ is also a 2-dimensional time-like subspace of Q^{\prime}.

3.6.2 Combinations of a pair of planes

There are a few ways for two planes in \mathbb{H}^{4} to intersect. They can intersect in a line, a point, or in a point at infinity. The last case is not technically an intersection but points in the two planes can be arbitrarily near.

Let P, Q be distinct planes in \mathbb{H}^{4}. There are four ways they can intersect or not intersect.

1. P and Q are ultra-parallel.
2. P and Q are tangent to a unique point x at infinity.
3. $P \cap Q$ is a line.
4. $P \cap Q$ consists of a single point p.

Let h be a half-turn of \mathbb{H}^{4} about some plane α. Then h is a type-I elliptic isometry with a well-defined permuted pencil \mathcal{F}_{h} and invariant pencil \mathcal{T}_{h}. Recall that \mathcal{F}_{h} consists of spheres that contain the boundary of α at infinity while \mathcal{T}_{h} consists of spheres
orthogonal to the boundary of α through two points. For each $c \in \mathcal{T}_{h}$, the image of c under h is also c. For each $s \in \mathcal{F}_{h}$, then $h(s)$ must also be in \mathcal{F}_{h}; but h is an involution so $h(s)=s$. Equivalently h leaves all spheres in both \mathcal{F}_{h} and \mathcal{T}_{h} invariant.

In this section, the model of \mathbb{H}^{4} being used is the upper half space of \mathbb{R}^{4} so that the boundary at infinity is $\widehat{\mathbb{R}^{3}}$. Going back to P and Q, let P^{\prime} be the boundary of P in $\widehat{\mathbb{R}^{3}}$ and Q^{\prime} be that of Q. By conjugation, assume P^{\prime} is a straight Euclidean line in $\widehat{\mathbb{R}^{3}}$ and Q^{\prime} is a Euclidean circle, except in the second case where we may assume that $x=\infty$. Then the elements of $\mathcal{K}_{H_{P}}$ are precisely the circles in planes orthogonal to P^{\prime} and centered in points of P^{\prime}. We investigate the composition $H_{P} H_{Q}$ and its invariant subplanes based on the combination of P and Q.

P and Q are ultra-parallel

If P and Q are ultra-parallel, then there is a unique line N in \mathbb{H}^{4} that is orthogonal to both P and Q. Both H_{P} and H_{Q} leave N invariant so $H_{P} H_{Q}$ must also leave N invariant. That leaves two options for $H_{P} H_{Q}$: either hyperbolic or elliptic. Suppose $H_{P} H_{Q}$ has a fixed point y inside \mathbb{H}^{4}. Then $H_{P}(y)=H_{Q}(y)$, so the midpoint between y and $H_{P}(y)$ is an element of both P and Q. This contradicts the hypothesis that P and Q are ultra-parallel.

Lemma 3.6.1. Let P and Q be ultra-parallel planes in \mathbb{H}^{4}. Then $H_{P} H_{Q}$ is a hyperbolic isometry.

P and Q are tangent to a unique point x at infinity

Let P and Q be distinct planes in \mathbb{H}^{4} so that their boundaries meet at one point x at infinity. By conjugation, we may assume $x=\infty$ of $\widehat{\mathbb{R}^{3}}$. Then P^{\prime} and Q^{\prime} are Euclidean lines. If P^{\prime} and Q^{\prime} form a Euclidean plane, there are several Euclidean lines perpendicular to both P^{\prime} and Q^{\prime} but all of them identify a unique direction or vector $v \in \mathbb{R}^{3}$. If they do not form a plane, there is a unique Euclidean line N orthogonal to P^{\prime} and Q^{\prime}, which identifies a direction $v \in \mathbb{R}^{3}$. In either case, all Euclidean lines with same direction as v is left invariant by $H_{P} H_{Q}$. Futhermore, $H_{P} H_{Q}$ is a parabolic translation
$\left(x \mapsto x+2 v, \quad x \in \mathbb{R}^{3}\right)$ if P^{\prime} and Q^{\prime} are coplanar or a screw parabolic isometry with twisting plane bounded by N if not. So if P and Q are tangent, $H_{P} H_{Q}$ is definitely parabolic.

Lemma 3.6.2. Let P and Q be tangent planes in \mathbb{H}^{4}. Then $H_{P} H_{Q}$ is a parabolic isometry.

$P \cap Q$ is a line

Let P and Q be planes of \mathbb{H}^{4} intersecting in a line L. Then they form a unique hyperplane h and it is an element of both permuted pencils of H_{P} and H_{Q}. It follows that h is left invariant, and L is fixed pointwise by $H_{P} H_{Q}$. The plane τ orthogonal to h through L is also left by $H_{P} H_{Q}$, but since L is fixed pointwise, $H_{P} H_{Q}$ also fixes τ pointwise. To illustrate it with the model $\widehat{\mathbb{R}^{3}}$ as the boundary at infinity, assume P^{\prime} is a Euclidean line and Q^{\prime} is a circle intersecting P^{\prime} in two points y_{1} and y_{2}. Then $Q^{\prime} \cup P^{\prime}$ forms a unique Euclidean plane \hat{h}. There is a unique circle $\hat{\tau}$ passing through y_{1} and y_{2} centered at their midpoint, and inside the Euclidean plane orthogonal to \hat{h} through P^{\prime}. Then $\hat{\tau}$ is orthogonal to both P^{\prime} and Q^{\prime} through $P^{\prime} \cap Q^{\prime}$. Both half-turns H_{P} and H_{Q} flip $\hat{\tau}$ across $P^{\prime} \cap Q^{\prime}$ so the composition $H_{P} H_{Q}$ fixes $\hat{\tau}$ pointwise. Since $\hat{\tau}$ is the unique plane orthogonal to h through $P \cap Q$, then $\hat{\tau}$ is the only fixed point set of $H_{P} H_{Q}$. It follows that $H_{P} H_{Q}$ is a type-I elliptic isometry. Moreover, its twisting plane is orthogonal to \hat{h}.

Lemma 3.6.3. Let P and Q be distinct planes in \mathbb{H}^{4} intersecting in a line. Then $H_{P} H_{Q}$ is a type-I elliptic isometry whose twisting plane is orthogonal to the hyperplane containing $P \cup Q$ through $P \cap Q$.

$P \cap Q$ consists of a single point p

Suppose P and Q are planes \mathbb{H}^{4} intersecting in a unique point p. Then for each $x \in \mathbb{H}^{4} \backslash$ $\{p\}$, we show that $H_{P} H_{Q}(x) \neq x$. Suppose first that $x \in Q$. Then $H_{P} H_{Q}(x)=H_{P}(x)$ which is not equal to x since $x \notin P$. For the rest of this combination of P and Q, assume that $x \in \mathbb{H}^{4} \backslash Q$. If it happens that $H_{Q}(x) \in P$, then $H_{P} H_{Q}(x)=H_{Q}(x) \neq x$.

If $H_{Q}(x) \notin P$ but $x \in P$, then $H_{P} H_{Q}(x) \notin P$ so $H_{P} H_{Q}(x) \neq x$.
The last possibility is when both $H_{Q}(x)$ and x are outside $Q \cup P$. We prove that H_{P} can not map $H_{Q}(x)$ back to x. Suppose $H_{P} H_{Q}(x)=x$. Let m be the midpoint between $H_{P}(x)$ and x, and let L be the line connecting x to $H_{Q}(x)$. Then m is in Q since it is the midpoint between x and $H_{Q}(x)$. Likewise m must also be in P as $H_{P}(x)=H_{Q}(x)$. There is only one point in $P \cap Q$ so this midpoint must be p. Furthermore, L is orthogonal to both P and Q through p. It follows that the hyperplane orthogonal to L through p contains both P and Q. Since intersecting planes within a hyperplane must meet in at least a line, $P \cap Q$ must have at least a line which has more points other than p. This contradicts that P and Q intersect only in a point.

Lemma 3.6.4. Let P and Q be distinct planes in \mathbb{H}^{4} intersecting in a single point. Then $H_{P} H_{Q}$ is a type-II orientation preserving elliptic isometry.

Since $H_{P} H_{Q}$ is type II elliptic, one might wonder where the invariant planes or lines are located. If P and Q are orthogonal complements of each other, then H_{Q} and H_{P} respectively rotate them half-way around. Otherwise, $H_{P} H_{Q}$ has a canonical pair of invariant planes. To locate these invariant planes, we can use the ball model of \mathbb{H}^{4} embedded in \mathbb{R}^{4} which is conformal to both the Euclidean geometry and the spherical geometry of S^{3}. The problem simplifies further if P and Q are conjugated to intersect at the origin. The following lemma locates the canonical invariant planes relative to P and Q.

Lemma 3.6.5. Let P and Q be 2 -dimensional vector subspaces of \mathbb{R}^{4} intersecting trivially. Then there are 2-dimensional vector subspaces τ_{1} and τ_{2} orthogonal complements of each other such that τ_{1} and τ_{2} are orthogonal to P and Q through two separate lines.

Proof. Let $U_{P}=S^{3} \cap P$ and $U_{Q}=S^{3} \cap Q$ be unit (Euclidean) circles. The Euclidean inner product restricted to $U_{P} \times U_{Q}$ has a maximum value realized by a pair (v_{P}, v_{Q}) since $U_{P} \times U_{Q}$ is compact and the inner product is continuous. The vectors v_{P}, v_{Q} can be augmented by $w_{P} \in P$ and $w_{Q} \in Q$ so that the sets $\left\{v_{P}, w_{P}\right\}$ and $\left\{v_{Q}, w_{Q}\right\}$ are orthonormal bases. Let $\tau_{1}=\operatorname{span}\left\{v_{P}, v_{Q}\right\}$ and $\tau_{2}=\operatorname{span}\left\{w_{P}, w_{Q}\right\}$. The dimension of τ_{i} is 2 since $v_{P} \neq v_{Q}$. It follows that $\tau_{1} \cap \tau_{2}=\{0\}$ and they intersect P and Q through
two separate lines. What is left to show is that τ_{1} and τ_{2} are orthogonal to P, Q and each other. It is sufficient to show that $\left\langle v_{P}, w_{Q}\right\rangle=\left\langle v_{Q}, w_{P}\right\rangle=0$.

The function $\theta \mapsto\left\langle(\cos \theta) v_{P}+(\sin \theta) w_{P}, v_{Q}\right\rangle$ is continuous and smooth with a maximum at $\theta=0$. Its derivative $\theta \mapsto\left\langle-(\sin \theta) v_{P}+(\cos \theta) w_{P}, v_{Q}\right\rangle$ therefore has a zero value at $\theta=0$. Hence $\left\langle v_{Q}, w_{P}\right\rangle=0$. Similarly the function $\theta \mapsto\left\langle(\cos \theta) v_{Q}+\right.$ $\left.(\sin \theta) w_{Q}, v_{P}\right\rangle$ has derivative $\theta \mapsto\left\langle-(\sin \theta) v_{Q}+(\cos \theta) w_{Q}, v_{P}\right\rangle$ with a zero value at $\theta=0$, implying that $\left\langle w_{Q}, v_{P}\right\rangle=0$.

Corollary 3.6.1. Let P and Q be orthogonal planes in \mathbb{H}^{4} intersecting in a unique point. Then $H_{P} H_{Q}$ is a type II elliptic involution that leaves every line through $P \cap Q$ invariant.

Proof. Since P and Q are orthogonal, they are left invariant by both H_{P} and H_{Q}. The half-turns are involutions themselves so applying $H_{P} H_{Q}$ twice to $P \cup Q$ is the identity map on $P \cup Q$. The conformal ball model can be used to conjugate $H_{P} H_{Q}$ into an element of $\mathrm{SO}(4)$, with p corresponding to the origin. Then P and Q form vector spaces that are orthogonal complements of each other. Any Euclidean orthonormal bases of them can be combined into an orthonormal basis \mathcal{B} of \mathbb{R}^{4}. If $x \in \mathbb{H}^{4}=B_{4}$ is outside $P \cup Q$, it can be expressed as a linear combination of vectors in $\mathcal{B} \subset \partial(P \cup Q)$. The composition $\left(H_{P} H_{Q}\right)^{2}$ as an element of $\mathrm{SO}(4)$ therefore maps x back to itself. Hence $H_{P} H_{Q}$ is an involution.

A matrix of $\mathrm{SO}(n)$ has its inverse and transpose equal, but if it is also an involution, then $H_{P} H_{Q}$ as a matrix is also symmetric and thus diagonalizable (Spectral Theorem). There are four linearly independent eigenvectors that correspond to lines in \mathbb{H}^{4} that are pairwise perpendicular through p. The diagonal entries are all -1 since a 1 value would make $H_{P} H_{Q}$ have more than one fixed point and other values would make the matrix not in $\mathrm{SO}(4)$. Each vector is hence mapped into its opposite. In the conformal ball model of hyperbolic space, the action of $H_{P} H_{Q}$ on lines passing through p is reflection across p.

Corollary 3.6.2. Let P and Q be non-orthogonal planes in \mathbb{H}^{4} intersecting in a unique
point. Then $H_{P} H_{Q}$ is a type II elliptic isometry with a unique unordered pair of invariant planes orthogonal to each other through the fixed point of $H_{P} H_{Q}$.

Proof. If P and Q intersect only in one point, then $H_{P} H_{Q}$ is type II elliptic isometry. There are planes τ_{1} and τ_{2} that are orthogonal to each other through the fixed point of $H_{P} H_{Q}$ and also orthogonal to both P and Q through separate lines. Both H_{P} and H_{Q} leave τ_{1} and τ_{2} invariant since they are orthogonal to the half-turns' fixed point sets. Then τ_{1} and τ_{2} are also left invariant by $H_{P} H_{Q}$.

It must be shown that τ_{1} and τ_{2} are the unique invariant planes. In order to show their uniqueness, $H_{P} H_{Q}$ can be conjugated to a 4×4 matrix in $\mathrm{SO}(4)$ so that the upper-left and lower-right 2×2 blocks are elements of $\mathrm{SO}(2)$ (Theorem 3.1.7). Since $H_{P} H_{Q}$ has only one fixed point, either both these blocks are diagonal matrices with -1 in its entries or one of these blocks is non-diagonalizable.

Recall that the construction of τ_{1} allows it to have $v_{P} \in P$ and $v_{Q} \in Q$ so that the angle between v_{P} and v_{Q} is at minimum. If P and Q are not orthogonal, this angle is less than $\pi / 2$. The action of $H_{P} H_{Q}$ on τ_{1} is a composition of reflections across $\operatorname{span}\left\{v_{P}\right\}$ and $\operatorname{span}\left\{v_{Q}\right\}$. Thus, one of the non-diagonalizable block correspond to the rotation of τ_{1} in an angle other than 0 and π. Then τ_{1} is the unique invariant plane of $H_{P} H_{Q}$ with minimum angle or rotation. The orthogonal complement of τ_{1} is τ_{2} which is also unique.

3.6.3 The half-turn bank is exhaustive

In this section, we show that every half-turn factorization of an orientation preserving isometry comes from its half-turn bank. The proof still uses cases but the lemmas from section 3.6.2 restrict the possibilities for how a pair of planes intersect.

Theorem 3.6.3. Let γ be an orientation preserving isometry of \mathbb{H}^{4}. Then for every half-turn factorization $H_{P} H_{Q}$ of γ, the circles ∂P and ∂Q are elements of \mathcal{K}_{γ}.

Proof. The proofs depend on the class of isometry of γ.

- γ is hyperbolic.

If γ is hyperbolic, let L be its axis. The only combination for P and Q is that they are ultra-parallel. The common perpendicular line of P and Q is left invariant by $H_{P} H_{Q}$ so it must be L. Then both P and Q are orthogonal to the axis of γ. Let h_{P} be the hyperplane spanned by L and P. Similarly, let h_{Q} be the hyperplane spanned by L and Q. Then $\partial h_{P} \in \mathcal{F}_{H_{P}}$ and $\partial h_{Q} \in \mathcal{F}_{H_{Q}}$ with $P \subset h_{P} ; Q \subset h_{Q}$. If $h_{P}=h_{Q}$, there are $f_{P} \in \mathcal{F}_{H_{P}}$ and $f_{Q} \in \mathcal{F}_{H_{Q}}$ such that $H_{P}=R_{f_{P}} R_{h_{P}}$ and $H_{Q}=R_{h_{Q}} R_{f_{Q}}$ are reflection factorizations. If $h_{P}=h_{Q}$, then $\gamma=H_{P} H_{Q}=$ $R_{f_{P}} R_{f_{Q}}$ is a pure hyperbolic isometry with $\partial f_{P}, \partial f_{Q} \in \mathcal{F}_{\gamma}$ and $\partial h_{P}=\partial h_{Q} \in \mathcal{T}_{\gamma}$. So $\partial P=\partial\left(h_{P} \cap f_{P}\right) \in \mathcal{K}_{\gamma}$ and $\partial Q=\partial\left(h_{Q} \cap h_{Q}\right) \in \mathcal{K}_{\gamma}$.

If $h_{P} \cap h_{Q}$ is a plane τ, then τ intersects P and Q in two different lines. The half-turns H_{P} and H_{Q} reflect τ across these lines and thus leave τ invariant. If γ is pure loxodromic, then $h_{P} \neq h_{Q}$, so the twisting plane of γ matches τ. Still, the hyperplanes h_{Q}^{\perp} orthogonal to h_{Q} through Q and h_{P}^{\perp} orthogonal to h_{P} through P are also orthogonal to L so $\partial h_{P}^{\perp}, \partial h_{Q}^{\perp} \in \mathcal{F}_{\gamma}$. Both h_{P} and h_{Q} contain τ so $\partial h_{P}, \partial h_{Q} \in \mathcal{R}_{\gamma}$. Since $P=h_{P} \cap h_{P}^{\perp}$ and $Q=h_{Q} \cap h_{Q}^{\perp}$, then $\partial P, \partial Q \in \mathcal{K}_{\gamma}$.

- γ is parabolic.

If γ is parabolic, then P and Q are tangent at infinity. For simpler illustration, assume that the fixed point of γ is ∞. Then the boundaries $(\partial P, \partial Q)$ of P and Q are straight non-crossing Euclidean lines in \mathbb{R}^{3}. Any Euclidean line commonly perpendicular to the boundaries of P and Q forms the same direction exactly equal to that of γ. Recall that the direction of the map $x \mapsto A x+b$ is the Euclidean line spanned by b in \mathbb{R}^{3}. Let B the direction of γ. Then B is either Euclidean-parallel or equal to any common perpendicular between ∂P and ∂Q. Let h_{P} and h_{Q} be the Euclidean planes orthogonal to B through ∂P and ∂Q respectively. Let f_{P} be the Euclidean plane orthogonal to h_{P} through ∂P and let f_{Q} be Euclidean plane orthogonal to h_{Q} through ∂Q. Then $h_{P}, f_{P} \in \mathcal{F}_{H_{P}}$ and $h_{Q}, f_{Q} \in \mathcal{F}_{H_{Q}}$. Since $\left(h_{P}, f_{P}\right)$ and $\left(h_{Q}, f_{Q}\right)$ are pairwise orthogonal, then $H_{P}=R_{h_{P}} R_{f_{P}}$ and $H_{Q}=R_{f_{Q}} R_{h_{Q}}$ are reflection factorizations.

If $f_{P}=f_{Q}$, then $\gamma=H_{P} H_{Q}=R_{h_{P}} R_{h_{Q}}$ is pure parabolic, so $f_{P}=f_{Q} \in \mathcal{T}_{\gamma}$ and
$h_{P}, h_{Q} \in \mathcal{F}_{\gamma}$. If $f_{P} \cap f_{Q}$ is a Euclidean line τ, it is left invariant by H_{P}, H_{Q} and hence by γ. This implies that τ bounds the twisting plane of γ and therefore $f_{P}, f_{Q} \in \mathcal{R}_{\gamma}$. Still, $\partial P, \partial Q \in \mathcal{K}_{\gamma}$.

- γ is type-I elliptic.

If γ is type-I elliptic, then P and Q intersect in a line. Let τ be the twisting plane of γ. There is also a unique hyperplane h spanned by P and Q. Then τ is orthogonal to h through $P \cap Q$. The planes P, Q and τ pairwise intersect at $P \cap Q$ while τ is orthogonal to both P and Q through $P \cap Q$. Let h_{P} be the hyperplane spanned by τ and P; let h_{Q} be the hyperplane spanned by Q and τ. It follows that $\partial h \in \mathcal{T}_{\gamma}$ and $\partial h_{P}, \partial h_{Q} \in \mathcal{F}_{\gamma}$. Since $P=h_{P} \cap h$ and $Q=h_{Q} \cap h$, then $\partial P, \partial Q \in \mathcal{K}_{\gamma}$.

- γ is type-II elliptic.

If γ is type-II elliptic, then P and Q intersect in a unique point p. Using the conformal ball model of \mathbb{H}^{4} inside \mathbb{R}^{4}, we may assume that p is the origin. Then P and Q extend to Euclidean planes that intersect only at the origin. There are planes τ_{1} and τ_{2} that has properties in Lemma 3.6.5. Let h_{P}, h_{Q}, h_{1} and h_{2} be hyperplanes defined as follows.

$$
\begin{array}{ll}
h_{P}=\operatorname{span}\left(\tau_{1} \cup P\right) & h_{Q}=\operatorname{span}\left(\tau_{2} \cup Q\right) \\
h_{1}=\operatorname{span}\left(Q \cup \tau_{1}\right) & h_{2}=\operatorname{span}\left(P \cup \tau_{2}\right)
\end{array}
$$

The configuration of planes and hyperplanes yield to $\tau_{1} \subset h_{P} \cap h_{1}, \tau_{2} \subset h_{Q} \cap h_{2}$, $P=h_{P} \cap h_{2}$ and $Q=h_{Q} \cap h_{1}$.

There are two options for γ and the planes τ_{1}, τ_{2}. Either γ has an associated angle that is not an integer multiple of π (Corollary 3.1.3) or γ is an involution (Corollary 3.6.1). In the former case, γ has a unique pair of invariant planes that must match τ_{1} and τ_{2}. By Corollary 3.1.3, $\gamma=\rho_{1} \rho_{2}$ where ρ_{1} and ρ_{2} are type I elliptic isometries whose respective twisting planes are τ_{1} and τ_{2}. In the latter case, P and Q are already in \mathcal{K}_{γ}.

In any option for γ, the planes P, Q have their boundaries in as elements of \mathcal{K}_{γ}.

Corollary 3.6.3. Let A and B be orientation preserving isometries of \mathbb{H}^{4}. Then the pair A, B is linked by half-turns if and only if $\mathcal{K}_{A} \cap \mathcal{K}_{B}$ is nonempty.

Proof. If A and B are linked by half-turns, then there are planes α, β and δ such that $A=H_{\alpha} H_{\beta}$ and $B=H_{\beta} H_{\delta}$. But β is an element of both \mathcal{K}_{A} and \mathcal{K}_{B}.

If $\mathcal{K}_{A} \cap \mathcal{K}_{B}$ is nonempty, let β be one of its elements. Then there are $\alpha \in \mathcal{K}_{A}$ and $\beta \in \mathcal{K}_{B}$ such that $A=H_{\alpha} H_{\beta}$ and $B=H_{\beta} H_{\delta}$.

Chapter 4

Conditions for Linking in Dimension 4

In this chapter, some conditions for a pair of isometries in \mathbb{H}^{4} to be linked are stated and proved. The main idea is to find a geometric or computational requirements for a given pair to be linked. The conditions are divided into cases depending on which type of isometry is given. Since the elliptic isometries are not included, there are total of ten cases. Note that in the definition of linked pairs, the order of the isometries matters. Whereas in this chapter, the order of the isometries do not matter once they are linked. This helps in forming an algorithm in the discreteness test of the group generated by the pair.

The conditions for linking pairs with twisting planes are quite demanding, justifying the theorem of Basmajian and Maskit [1] that linked pairs are of measure zero. Still, pencils can be a useful tool for finding a common perpendicular plane to factorize orientation preserving isometries. In particular, planes in which half-turn factoring are constructed all fit in the elements of the pencil of an isometry.

4.1 The Ten Cases

The following list is the ten cases for combinations of types of two isometries.

1. Both are pure hyperbolic.
2. Both are pure parabolic.
3. Pure hyperbolic and pure parabolic
4. Pure parabolic and pure loxodromic
5. Screw parabolic and pure hyperbolic
6. Screw parabolic and pure parabolic
7. Pure loxodromic and pure hyperbolic
8. Both are screw parabolic.
9. Both are pure loxodromic.
10. Screw parabolic and pure loxodromic

4.1.1 Both are pure hyperbolic

Theorem 4.1.1. If A and B are pure hyperbolic isometries of \mathbb{H}^{4} with ultra-parallel axes, then there is a plane P orthogonal to both axes of A and B. Hence, A and B are linked.

Proof. Suppose both A and B are pure hyperbolic with ultra-parallel axes. Let L be the common perpendicular line between the axes of A and B. If the axes of A and B lie in a plane C, then $L \subset C$ and there are plenty of planes that are orthogonal to C containing L. Pick P to be any of those planes. Then $\partial P \in \mathcal{K}_{A} \cap \mathcal{K}_{B}$. If the axes of A and B do not lie in the same plane, the axis of A and L still lie in a plane P_{1}. As the axis of B and L intersect in a single point, so does P_{1} and axis of B and they are contained is a unique hyperplane C. There is a unique plane P orthogonal to C through L. Since both axes of A and B lie in the hyperplane C, then P must be orthogonal to both of them. Then $\partial P \in \mathcal{K}_{A} \cap \mathcal{K}_{B}$. It follows that there are $P_{1}, P_{2} \in \mathcal{K}_{A}$ and $P_{3}, P_{4} \in \mathcal{K}_{B}$ such that $A=H_{P_{1}} H_{P}=H_{P} H_{P_{2}}$ and $B=H_{P_{3}} H_{P}=H_{P} H_{P_{4}}$.

4.1.2 Both are pure parabolic

Theorem 4.1.2. Let A and B be pure parabolic isometries of \mathbb{H}^{4}. Then A and B are linked.

Proof. Suppose their fixed points x_{A} and x_{B} are not equal. Then there is a unique line $L=$ connecting x_{A} to x_{B}. Let $h_{A} \in \mathcal{F}_{A}$ be the element containing x_{B} and $h_{B} \in \mathcal{F}_{B}$ the element containing x_{A}. Then $h_{B} \cap h_{A}$ contains the line L. Either $h_{A} \cap h_{B}$ is a circle or
$h_{A}=h_{B}$. Let P be a circle in $h_{A} \cap h_{B}$ through x_{A} and x_{B}. Thus P is a circle in different or same spheres in \mathcal{F}_{A} and \mathcal{F}_{B}. Then $P \in \mathcal{K}_{A} \cap \mathcal{K}_{B}$. Hence, there are $P_{1}, P_{2} \in \mathcal{K}_{A}$ and $P_{3}, P_{4} \in \mathcal{K}_{B}$ such that $A=H_{P_{1}} H_{P}=H_{P} H_{P_{2}}$ and $B=H_{P_{3}} H_{P}=H_{P} H_{P_{4}}$.

If $x_{A}=x_{B}$, there are still $h_{A} \in \mathcal{F}_{A}$ and $h_{B} \in \mathcal{F}_{B}$ that has three possibilities: $h_{A}=h_{B} ; P=h_{A} \cap h_{B}$ is a circle; or $h_{A} \cap h_{B}=\left\{x_{A}\right\}$. In the first case, let $t \in \mathcal{T}_{A}$. Then $h_{B} \cap t \in \mathcal{K}_{A} \cap \mathcal{K}_{B}$ and so A and B are linked. In the second case, $P \in \mathcal{K}_{A} \cap \mathcal{K}_{B}$ and links A and B. In the last case, let $\mathcal{F}_{A}=\mathcal{F}_{B}$ which implies that $\mathcal{K}_{B}=\mathcal{K}_{A}$ whose elements make A and B linked.

4.1.3 Pure hyperbolic and pure parabolic

Theorem 4.1.3. Let A and B be isometries of \mathbb{H}^{4}. Suppose A is pure hyperbolic, and B is pure parabolic and $\operatorname{fix}(A) \cap \operatorname{fix}(B)=\emptyset$. Then A and B are linked.

Proof. Let v be the fixed point of B and L be the axis of A. Then there is $h_{x} \in \mathcal{F}_{A}$ containing v. If \hat{h} is the hyperplane bounded by h_{x}, there is a unique point $a \in \hat{h} \cap L$. Then there is a unique $h_{a} \in \mathcal{F}_{B}$ which bounds a hyperplane that contains a. Since the hyperplanes bounded by h_{x} and h_{a} intersect in a, their intersection $h_{x} \cap h_{a}$ is at least a plane orthogonal to L and bounded by v. Otherwise $h_{x}=h_{a}$ and one can pick a plane $P \subseteq h_{x} \cap h_{a}$ bounded by v and passes through a. Then $P \in \mathcal{K}_{A} \cap \mathcal{K}_{B}$ so A and B are linked.

4.1.4 Pure parabolic and pure loxodromic

Let A be a pure parabolic isometry of \mathbb{H}^{4} and B a pure loxodromic isometry of \mathbb{H}^{4}. Suppose the fixed points of A and B in $\widehat{\mathbb{R}^{3}}$ are disjoint. The following are conditions for A and B to be linked.

Theorem 4.1.4 (Condition 1). Suppose there is an $h \in \mathcal{F}_{A} \cap \mathcal{F}_{B}$. Then A and B are linked.

Proof. Let L be the boundary of the twisting plane of B, and let x be the fixed point A. Since $L \in \mathcal{D}_{B}, h$ intersects L in two points y and z. If x is equal to either y or
z, then L is the unique element of \mathcal{D}_{B} containing x. It allows any plane of sphere t in $\widehat{\mathbb{R}^{3}}$ containing L to be an element of both \mathcal{T}_{A} and \mathcal{R}_{B}. Hence, $h \cap t$ is an element of both \mathcal{K}_{A} and \mathcal{K}_{B} that links A and B. If x, y, and z are three distinct points, they form a unique circle L_{2} that must be a subset of h. Then L_{2} is perpendicular to L so it is in \mathcal{K}_{B}. It also passes through x so $L_{2} \in \mathcal{K}_{A}$. Thus $L_{2} \in \mathcal{K}_{A} \cap \mathcal{K}_{B}$ so A and B are linked.

Theorem 4.1.5 (Condition 2). If the fixed point of A is in the boundary of the twisting plane of B, then A and B are linked.

Proof. Let x be the fixed point of A. Since x is not the fixed point of B, there is a unique $h_{x} \in \mathcal{F}_{B}$ containing x. Let L be the boundary of the twisting plane of B. Then $L \in \mathcal{D}_{B}$ intersects h in two points, one of which is x. Let m be the other intersection point. There is also a unique $h_{m} \in \mathcal{F}_{A}$ containing m. Either $h_{m}=h_{x}$ which is done in the first condition, or $h_{m} \cap h_{x}$ is a circle c since both h_{m} and h_{x} contain x and m. We must show $c \in \mathcal{K}_{A} \cap \mathcal{K}_{B}$. The intersection points of c and L are x and m, but $c \subset h_{x} \in \mathcal{F}_{B}$ so $c \in \mathcal{K}_{B}$. As A is pure parabolic, any circle inside any element of \mathcal{F}_{A} and passing through x is an element of \mathcal{K}_{A}. Hence, $c \in \mathcal{K}_{A}$ as $x \in c \subset h_{m} \in \mathcal{F}_{A}$ and $x \in c$. Then other planes can be found so that A and B are linked.

Theorem 4.1.6 (Condition 3). Let $L \subset \widehat{\mathbb{R}^{3}}$ be the boundary of the twisting plane of B. If three points in L form a subset of h for some $h \in \mathcal{F}_{A}$, then A and B are linked.

Proof. The three points determine L and are sufficient for L to fit inside h. Let $x \in \widehat{\mathbb{R}^{3}}$ be the fixed point of A. The case where $x \in L$ is is handled in the previous condition. We may assume $x \notin L$. Then there is a unique $c_{x} \in \mathcal{K}_{B}$ containing x. We must show $c_{x} \in \mathcal{K}_{A}$. As $c_{x} \in \mathcal{K}_{B}$, it must intersect L in two points which are in h. But h contains x since A is parabolic, so it has three points in common with c_{x}. They are sufficient for c_{x} to be a subset of h. A circle or line in h containing x is an intersection of h with some element of \mathcal{T}_{A}. Hence c_{x} having this property, must be in \mathcal{K}_{A}. This implies that A and B are linked.

4.1.5 Screw parabolic and pure hyperbolic

Let A be screw parabolic and B be pure hyperbolic isometries of \mathbb{H}^{4}. Assume they have disjoint fixed points in the boundary. Throughout this case, let x be the fixed point of A and let L be the boundary of its twisting plane. Likewise, let d_{x} be the unique element of \mathcal{D}_{B} containing x.

Theorem 4.1.7 (Condition 1). If there is an $h \in \mathcal{F}_{A} \cap \mathcal{F}_{B}$, then A and B are linked.
Proof. Let a and b be points in $\widehat{\mathbb{R}^{3}}$ so that $d_{x} \cap h=\{x, b\}$ and $L \cap h=\{x, a\}$. If $a=b$, then $d_{x}=L$ so any sphere c containing L is an element of both \mathcal{T}_{B} and \mathcal{R}_{A}. It follows that $c \cap h$ is an element of both \mathcal{K}_{A} and \mathcal{K}_{B}. If $a \neq b$, the points a, b, and x form a unique circle L_{2} in $\widehat{\mathbb{R}^{3}}$. Because $a, b, x \in h, L_{2} \subset h$. We claim that $L_{2} \in \mathcal{K}_{A} \cap \mathcal{K}_{B}$. First, L_{2} intersects L in two points, a and x, while sitting in $h \in \mathcal{F}_{A}$. Hence, $L_{2} \in \mathcal{K}_{A}$. Next, L_{2} intersects d_{x} in two points, b and x while sitting in $h \in \mathcal{F}_{B}$. Thus, $L_{2} \in \mathcal{K}_{B}$. The half-turn around L_{2} is the desired common factor of A and B linking them.

Theorem 4.1.8 (Condition 2). If $L \subset h$ for some $h \in \mathcal{F}_{B}$, then A and B are linked.

Proof. The hypothesis implies that h is the unique element of \mathcal{F}_{B} containing x. Let b be the intersection of d_{x} and h in $\widehat{\mathbb{R}^{3}}$ other than x. There is a unique $h_{b} \in \mathcal{F}_{A}$ containing b. Let a be the intersection of h_{b} and L other than x. Connect a, b and x with the unique circle L_{2}. Then L_{2} is a subset of both h_{b} and h. It also connects L and d_{x} in two distinct points. Hence, $L_{2} \in \mathcal{K}_{A} \cap \mathcal{K}_{B}$ so A and B are linked.

Theorem 4.1.9 (Condition 3). If either $m \in L$ or d_{x} is orthogonal to k_{m}, then A and B are linked.

The definition of m and k_{m} are as follows. There is a unique element $h_{x} \in \mathcal{F}_{B}$ containing x, and it is orthogonal to d_{x} through two intersection points, one of which is x. Let m be the other intersection point. If $m \notin L$ there are unique elements $h_{m} \in \mathcal{F}_{A}$ and $k_{m} \in \mathcal{K}_{A}$ containing m.

Proof. Suppose $m \in L$. It is possible that $d_{x}=L$ which implies that $h_{m}=h_{x}$ reducing the case to the previous condition. If $d_{x} \neq L, h_{m} \cap h_{x}$ is a circle c containing m and
x. It follows that $c \subset \mathcal{K}_{A} \cap \mathcal{K}_{B}$ since it intersects d_{x} and L orthogonally through two points. Hence, A and B are linked.

If $m \notin L$, the hypothesis requires that d_{x} is orthogonal to k_{m}. It follows that $k_{m} \subset h_{x}$ since all circles orthogonal to d_{x} at x and m are contained in h_{x}. Therefore, $k_{m} \in \mathcal{K}_{B}$ so A and B are linked.

Theorem 4.1.10 (Computational Condition). Let A be a screw parabolic isometry of \mathbb{H}^{4} leaving the z-axis of $\widehat{\mathbb{R}^{3}}$ invariant and fixing ∞. Let B be a pure hyperbolic isometry of \mathbb{H}^{4} fixing v and w in \mathbb{R}^{3}. If v and w are equidistant to the z-axis then A and B are linked.

If $v=\left(v_{1}, v_{2}, v_{3}\right)$ and $w=\left(w_{1}, w_{2}, w_{3}\right) \in \mathbb{R}^{3}$, we say that v and w are equidistant to the z-axis if $v_{1}^{2}+v_{2}^{2}=w_{1}^{2}+w_{2}^{2}$.

Proof. The unique element $d_{\infty} \in \mathcal{D}_{B}$ containing ∞ is the Euclidean line connecting v and w. On the other hand, the unique element $h_{\infty} \in \mathcal{F}_{B}$ containing ∞ is the orthogonal complement of d_{∞} through the midpoint m of v and w. Then

$$
m=\left(\frac{v_{1}+w_{1}}{2}, \frac{v_{2}+w_{2}}{2}, \frac{v_{3}+w_{3}}{2}\right) .
$$

Let $m=\left(m_{1}, m_{2}, m_{3}\right)$; then $m_{1}=\frac{v_{1}+w_{1}}{2}$ and $m_{2}=\frac{v_{2}+w_{2}}{2}$. If $m_{1}=0=m_{2}$, then the hypothesis implies that $v_{1}=v_{2}=w_{1}=w_{2}=0$ so d_{∞} is the boundary of the twisting plane of A. It follows that h_{∞} is a horizontal Euclidean plane and therefore, $h_{\infty} \in \mathcal{F}_{A}$. Hence, $m_{1}=0=m_{2}$ implies the first condition which is proven to link A and B.

If one of m_{1} and m_{2} is nonzero, m does not lie in z-axis so the unique element k_{m} of \mathcal{K}_{A} passing through m is the Euclidean line connecting m and ($0,0, m_{3}$). Computing the angle between d_{∞} and k_{m} may come from the inner product $\left(-m_{1},-m_{2}, 0\right) \cdot(v-m)$, but the hypothesis imply that $v-m=\left(0,0, \frac{v_{3}-w_{3}}{2}\right)$. It follows that k_{m} is orthogonal to d_{∞} and it satisfies the third condition so A and B are linked.

Proposition 4.1.1. If A is a screw parabolic isometry of \mathbb{H}^{4} fixing ∞, leaving z-axis invariant, and B a pure hyperbolic isometry of \mathbb{H}^{4} fixing v and w in \mathbb{R}^{3}, then conditions 1, 2 and 3 imply the computational condition.

4.1.6 Screw parabolic and pure parabolic

Let A be screw parabolic and B be a pure parabolic isometries of \mathbb{H}^{4} with different fixed points. Throughout this case, let x be the fixed point of A and y be the fixed point of B. Suppose L is the boundary of the twisting plane of A. There are unique elements $d_{x} \in \mathcal{D}_{B}$ containing x and $d_{y} \in \mathcal{D}_{A}$ containing y. If $y \notin L$, denote the unique element of \mathcal{K}_{A} containing y by k_{y}.

Theorem 4.1.11 (Condition 1). If there is an $h \in \mathcal{F}_{A} \cap \mathcal{F}_{B}$, then A and B are linked.

Proof. As A and B are both parabolic, h contains both x and y. Since $L \in \mathcal{D}_{A}$, it intersects h orthogonally in a point a other than x. If $a=y, L=d_{x}$ so any circle in h connecting x and a is an element of $\mathcal{K}_{A} \cap \mathcal{K}_{B}$ making A and B linked. If $a \neq y$ the points a, x and y form a circle c in h. The circle c intersects L in two points and also d_{x} in x and y. Hence, c is in both \mathcal{K}_{A} and \mathcal{K}_{B} so A and B are linked.

Theorem 4.1.12 (Condition 2). If $y \in L$, then A and B are linked.

Proof. There are spheres $h_{x} \in \mathcal{F}_{B}$ and $h_{y} \in \mathcal{F}_{A}$ containing both x and y. If $h_{x}=h_{y}$, A and B are linked as per previous condition. Otherwise, $h_{x} \cap h_{y}$ is a circle k passing through x and y. If $y \in L, k \in \mathcal{K}_{A}$ but k is also in \mathcal{K}_{B} so A and B are linked.

Theorem 4.1.13 (Condition 3). If $L \subset h$ for some $h \in \mathcal{F}_{B}$, then A and B are linked.

Proof. We may assume $y \notin L$. Otherwise, the linking of A and B is implied by the previous condition. Then there is a unique $k_{y} \in \mathcal{K}_{A}$ containing y. It intersects L in a point p other than x. The circle k_{y} is uniquely determined by the points $x, p, y \in h$. Hence, $k_{y} \subset h$ so $k_{y} \in \mathcal{K}_{B}$ since B is pure parabolic. The half-turn about k_{y} links A and B.

Theorem 4.1.14 (Condition 4). If $k_{y} \perp d_{x}$, then A and B are linked.

If $y \notin L$, there is a unique $k_{y} \in \mathcal{K}_{A}$ containing y. If $y \in L$, there are many choices for $k_{y} \in \mathcal{K}_{A}$ but choosing $k_{y} \perp d_{x}$ is not necessary.

Proof. There is a unique $h_{x} \in \mathcal{F}_{B}$ containing x. It intersects d_{x} in x and y which are also in k_{y}. Every circle orthogonal to d_{x} through x and y must be a subset of h_{x} so $k_{y} \subset h_{x}$. The span of $k_{y} \cup d_{x}$ is an element of \mathcal{T}_{B} so $k_{y} \in \mathcal{K}_{B}$. Therefore, A and B are linked.

4.1.7 Pure loxodromic and pure hyperbolic

Linking pairs of hyperbolic isometries are better expressed inside \mathbb{H}^{4}. The hyperplanes and planes in \mathbb{H}^{4} bounded by the pencils have as much interesting properties.

Let A be a pure loxodromic isometry of \mathbb{H}^{4} with axis Ax_{A} and twisting plane τ_{A}. Let B be a pure hyperbolic isometry of \mathbb{H}^{4} with axis Ax_{B}. Assume Ax_{A} and Ax_{B} are disjoint. Then there is a unique line N perpendicular to both Ax_{A} and Ax_{B}. It intersects A in a point a and B in a point b. There is a unique hyperplane h_{a} orthogonal to Ax_{A} through a. Likewise, there is a unique hyperplane h_{b} orthogonal to Ax_{B} through b. Since $\mathrm{Ax}_{A} \subset \tau_{A}$, there is a unique line $L_{a} \subset \tau_{A}$ perpendicular to Ax_{A} through a. Throughout this case, $A, B, \operatorname{Ax}_{A}, \mathrm{Ax}_{B}, \tau_{A}, N, a, b$ and L_{a} are used.

Theorem 4.1.15 (Condition 1). If $L_{a}=N$, then A and B are linked.

Proof. The hypothesis implies that τ_{A} intersects Ax_{B} at least at b. If $\mathrm{Ax}_{B} \subset \tau_{A}$, there are plenty of planes orthogonal to τ_{A} through N. Any of them is orthogonal to Ax_{B}. If Ax_{B} intersect τ_{A} only at b, they span a hyperplane h. There is a plane k orthogonal to h through N. Since h contains τ_{A} and Ax_{B}, k is also orthogonal to τ_{a} and Ax_{B}. (By dimension count, $k \subset h_{b}$.) Hence, k is an element of both \mathcal{K}_{A} and \mathcal{K}_{B}, so A and B are linked.

Theorem 4.1.16 (Condition 2). If $L_{a} \subset h_{b}$, Then A and B are linked.

Proof. If $L_{a} \subset h_{b}$, it is possible that $L_{a}=N$, which is the previous case. We may assume that $L_{a} \neq N$. Then L_{a} and N span a plane k which sits in h_{a}. It follows that $k \subset h_{b}$ since both L_{a} and N lie in h_{b}. Thus k is orthogonal to Ax_{B} and τ_{A} so $k \in \mathcal{K}_{B}$ linking A and B.

Computational procedure for testing the link between A and B.

1. Compute the common perpendicular N and its endpoints $n_{1}, n_{2} \in \widehat{\mathbb{R}^{3}}$.
2. Locate the intersection points a and b with Ax_{A} and Ax_{B} respectively.
3. Compute the distance between a and b. Build the pure hyperbolic isometry P with fixed points n_{1} and n_{2} (i.e. along N) with translation length equal to that distance.
4. Compute L_{a} which is the perpendicular line to Ax_{A} through a and inside the twisting plane.
5. Compute/Locate M_{a} which is the image of L_{a} under P. Automatically, $P(a)=b$.
6. Compute the angle between Ax_{B} and M_{a} or check if M_{a} is perpendicular to Ax_{B}.
7. If they are perpendicular, A and B are linked.

4.1.8 Both are screw parabolic

Let A and B be screw parabolic isometries of \mathbb{H}^{4}, with disjoint fixed points x and y respectively. Let τ_{A} and τ_{B} be their respective twisting planes. Define $L_{A}=\partial \tau_{A}$ and $L_{B}=\partial \tau_{B}$. As $x \neq y$, there are unique elements $h_{x} \in \mathcal{F}_{B}$ and $h_{y} \in \mathcal{F}_{A}$ such that $x \in h_{x}$ and $y \in h_{y}$. The conditions in which a common orthogonal plane exists are quite restrictive, so A and B are highly unlikely linked.

Theorem 4.1.17 (Condition 1). If there is $h \in \mathcal{F}_{A} \cap \mathcal{F}_{B}$ and the points x, y, x_{h} and y_{h} form a circle, Then A and B are linked.

Any $h \in \mathcal{F}_{A}$ intersect L_{A} in two points. Let x_{h} be the intersection point other than x. If $h \in \mathcal{F}_{B}$, let y_{h} be the element of $h \cap L_{B}$ other than y.

Proof. Let c be the circle formed by x, y, x_{h} and y_{h} as allowed by the hypothesis. We must show $c \in \mathcal{K}_{A} \cap \mathcal{K}_{B}$. Since $\left\{x, y, x_{h}, y_{h}\right\} \subset h, c \subset h$. Also c is orthogonal to L_{A} through $\left\{x, x_{h}\right\}$ so $c \in \mathcal{K}_{A}$. Similarly, c is orthogonal to L_{B} through $\left\{y, y_{h}\right\}$ so $c \in \mathcal{K}_{B}$. Hence A and B are linked.

Theorem 4.1.18 (Condition 2). If $y \in L_{A}$ and $x \in L_{B}$, then A and B are linked.

Proof. We may assume $h_{x} \neq h_{y}$; otherwise $L_{A}=L_{B}$ making any circle in h_{x} that connects x to y an element of $\mathcal{K}_{A} \cap \mathcal{K}_{B}$. Let c be $h_{x} \cap h_{y}$ which is a circle containing $\{x, y\}$. The hypothesis imply that $h_{y} \cap L_{A}=\{x, y\}=h_{x} \cap L_{B}$, so c is orthogonal to both L_{A} and L_{B}. Therefore, $c \in \mathcal{K}_{A} \cap \mathcal{K}_{B}$. The existence of c makes A and B linked.

Theorem 4.1.19 (Condition 3). If $h_{y} \cap L_{A} \subset h_{x}, h_{x} \cap L_{B} \subset h_{y}$ and $h_{x} \neq h_{y}$, then A and B are linked.

Proof. Let c be $h_{x} \cap h_{y}$. Then c is a circle containing $\left(h_{y} \cap L_{A}\right) \cup\left(h_{x} \cap L_{B}\right)$. It is orthogonal to L_{B} and L_{A} through two distinct points each. Hence, $c \in \mathcal{K}_{A} \cap \mathcal{K}_{B}$. It follows that A and B are linked.

Theorem 4.1.20 (Condition 4). If $L_{B} \subset h_{y}$ and $L_{A} \subset h_{x}$, then A and B are linked.

Proof. Since $L_{B} \subset h_{y}, h_{y} \in \mathcal{R}_{B}$. Let $c=h_{y} \cap h_{x}$. Then $c \in \mathcal{K}_{B}$. Similarly, $L_{A} \subset h_{x}$ implies that $h_{x} \in \mathcal{R}_{A}$ so $c \in \mathcal{K}_{A}$. Thus A and B are linked.

4.1.9 Both are pure loxodromic

Let A and B be pure loxodromic isometries of \mathbb{H}^{4} with axes $\mathrm{Ax}_{A}, \mathrm{Ax}_{B}$ and twisting planes τ_{A}, τ_{B} respectively. Assume Ax_{A} and Ax_{B} are disjoint. There is a unique line N perpendicular to both Ax_{A} and Ax_{B}. (Similar to case 7,) There are hyperplanes h_{a} orthogonal to Ax_{A} through a, and h_{b} orthogonal to Ax_{B} through b. There are also lines $L_{a} \subset \tau_{A}$ perpendicular to Ax_{A} through a, and $L_{b} \subset \tau_{B}$ perpendicular to Ax_{B} through b. Like the previous case, A and B are rarely linked.

Theorem 4.1.21. If L_{a} and L_{b} are coplanar, then A and B are linked.

Proof. Suppose first that N, L_{a} and L_{b} are distinct lines. The plane P containing L_{a} and L_{b} is unique. Since N connects a and b, N lie in P. Each of τ_{A} and τ_{B} intersect P in L_{a} and L_{b} respectively. So unless N coincide with either L_{a} or L_{b}, P is orthogonal to both τ_{A} and τ_{B}.

If only one of L_{a} and L_{b}, say L_{a}, is equal to N, τ_{B} is orthogonal to P. But $N, L_{b} \subset h_{a}$ so $P \subset h_{a}$ which makes P orthogonal to τ_{A} through L_{a}. Then P is the common orthogonal plane τ_{A} and τ_{B}.

If both L_{a} and L_{b} are equal to N, there are plenty of planes containing L_{a} and L_{b}. However, either $h_{a} \cap h_{b}$ is a plane Q of $h_{a}=h_{b}$ which contains planes Q through a and b. In both cases, Q is orthogonal to τ_{A}, τ_{B} and the axes $\mathrm{Ax}_{A}, \mathrm{Ax}_{A}$ so $Q \in \mathcal{K}_{A} \cap \mathcal{K}_{B}$. Hence A and B are linked.

4.1.10 Screw parabolic and pure loxodromic

Let A be screw parabolic isometry of \mathbb{H}^{4} fixing x and with twisting plane τ_{A}. Let B be a pure loxodromic isometry of \mathbb{H}^{4} with axis Ax_{B} and twisting plane τ_{B}. Suppose x does not bound Ax_{B}. There is a unique $h_{x} \in \mathcal{F}_{B}$ that contains x. There is also $d_{x} \in \mathcal{D}_{B}$ containing x. Let x_{2} be the intersection of d_{x} with h_{x} other than x. Since $x \neq x_{2}$, there are unique elements $d_{2} \in \mathcal{D}_{A}$ and $h_{2} \in \mathcal{F}_{A}$ containing x_{2}.

Let L_{A} be the boundary of τ_{A} and L_{B} be that of τ_{B}. Since $L_{A} \in \mathcal{D}_{A}, L_{A} \cap h_{2}$ has exactly two points. Let a be the element of $L_{A} \cap h_{2}$ other than x. Similarly, let b_{1} and b_{2} be the elements of $L_{B} \cap h_{x}$. Throughout this case, $A, B, \tau_{A}, \tau_{B}, \operatorname{Ax}_{B}, x, h_{x}, x_{2}, d_{x}$, $d_{2}, h_{2}, L_{A}, L_{B}, b_{1}$ and b_{2} are used consistently.

Theorem 4.1.22 (Condition 1). If there is an $h \in \mathcal{F}_{A} \cap \mathcal{F}_{B}$ and the points of $h \cap$ $\left(L_{A} \cup L_{B}\right)$ form a circle, then A and B are linked.

Proof. Since $x \in h$, then h is the unique element of \mathcal{F}_{B} containing x. That is $h=h_{x}$. It follows that $x_{2} \in h$ and h is the unique element of \mathcal{F}_{A} containing x_{2}. So $h=h_{x}=h_{2}$. Hence,

$$
\begin{aligned}
h \cap\left(L_{A} \cup L_{B}\right) & =\left(h \cap L_{A}\right) \cup\left(h \cap L_{B}\right) \\
& =\left(h_{2} \cap L_{A}\right) \cup\left(h_{x} \cap L_{B}\right) \\
& =\left\{x, a, b_{1}, b_{2}\right\} .
\end{aligned}
$$

Let c be the circle containing $\left\{x, a, b_{1}, b_{2}\right\}$ according to the hypothesis. Then $c \subset h$ since $\left\{x, a, b_{1}, b_{2}\right\} \subset h$. It is orthogonal to L_{A} through $\{x, a\}$ and to L_{B} through $\left\{b_{1}, b_{2}\right\}$.

Therefore, $c \in \mathcal{K}_{A} \cap \mathcal{K}_{B}$. It implies that A and B are linked.

Theorem 4.1.23 (Condition 2). If $a \in h_{x}, b_{1}, b_{2} \in h_{2}$ and $h_{x} \neq h_{2}$, then A and B are linked.

Proof. Let $c=h_{x} \cap h_{2}$. Then c is a circle since $h_{x} \neq h_{2}$. It is orthogonal to L_{A} through $\{a, x\}$ and to L_{B} through $\left\{b_{1}, b_{2}\right\}$. Thus, $c \in \mathcal{K}_{A} \cap \mathcal{K}_{B}$ so A and B are linked.

Theorem 4.1.24 (Condition 3). If there are $p_{A} \in \mathcal{F}_{A}$ and $p_{B} \in \mathcal{F}_{B}$ such that $L_{B} \subset p_{A}$ and $L_{A} \subset p_{B}$, then A and B are linked.

Proof. Since $L_{A} \subset p_{B}$, then $p_{B} \in \mathcal{R}_{A}$ so $p_{b} \neq p_{A}$. Let $c=p_{B} \cap p_{A}$. Then $c \in \mathcal{K}_{A}$ as it is an intersection of a pair in $\mathcal{F}_{A} \times \mathcal{R}_{A}$. Likewise, $L_{B} \subset p_{A}$ implies that $p_{A} \in \mathcal{R}_{B}$, so c is also in \mathcal{K}_{B}. Hence A and B are linked.

Chapter 5

Discreteness Conditions

The linking of a pair has a few applications to discreteness of 2-generator subgroups of Isom $\left(\mathbb{H}^{n}\right)$. If a group leaves a lower dimensional subplane C invariant, its discreteness can be determined by its restriction to C as long as its action on C is faithful. Section 5.1 shows a known result that extends to dimension 4 once a pair is linked. In section 5.2 , some types of pairs in Chapter 4 are guaranteed to have lower dimensional invariant hyperplanes. Other pairs can have invariant planes if their rotational parts are halfturns. In section 5.3, the isometries are restricted in order to reduce the discreteness problem to lower dimensions.

5.1 Results from lower dimension

Determining and classifying discrete groups in hyperbolic geometry has been a hard problem in any dimension. In dimension 2, there is an algorithm by Gilman-Maskit [4] that completely determines whether a 2 -generator group is discrete or not. This method does not extend to dimension 3 since it relies in comparing traces in $\mathrm{PSL}_{2} \mathbb{R}$ either greater than or less than, which does not work in complex numbers. In dimension 3 however, the linking by factoring allows a 2-generator group to be tested for discreteness in certain examples.

Definition 34. Let $F=\left\{S_{1}, S_{2}, S_{3}\right\}$ be a set of extended Euclidean spheres in $\widehat{\mathbb{R}^{n}}$ as the visual boundary of \mathbb{H}^{n+1}. Then F is called a set of non-separating disjoint spheres if for each $\sigma \in F$, the elements of $F \backslash\{\sigma\}$ are in a connected component of $\widehat{\mathbb{R}^{3}} \backslash \sigma$.

Definition 35. Let A, B be orientation preserving isometries of \mathbb{H}^{n} that are linked by half-turns $H_{\alpha}, H_{\beta}, H_{\delta}$ for some $(n-2)$-dimensional planes α, β and δ. Then (A, B)
has the non-separating disjoint sphere property if there are extended Euclidean spheres C_{1}, C_{2} and C_{3} in the boundary at infinity such that $C_{1} \supset \alpha, C_{2} \supset \beta, C_{3} \subset \delta$ and $\left\{C_{1}, C_{2}, C_{3}\right\}$ is a set of non-separating disjoint spheres.

Theorem 5.1.1 (Gilman, [6]). If a non-elementary marked group $G=\langle A, B\rangle \subset \mathrm{PSL}_{2} \mathbb{C}$ has the non-separating disjoint circle property, then G is discrete.

Gilman and Keen [8] has another discreteness condition in dimension 3 on 2-generator elementary subgroups given by defining a core geodesic which is essentially the common perpendicular line between the axes of the generators. The core geodesic serves as the axis of a half-turn that links a pair. Every pair of isometries of \mathbb{H}^{3} is linked by half-turns so requiring them to be linked is superfluous.

Theorem 5.1.2 (Gilman-Keen, [8]). If all palindromes in a non-elementary group $G=\langle A, B\rangle \subset \mathrm{PSL}_{2} \mathbb{C}$ have axes that intersect the core geodesic L in a compact interval then G is discrete.

In dimension 4 and above, Basmajian and Maskit [1] show that in a measure theoretic sense, almost all pairs of isometries are not linked. The linking must be imposed in order to use the arguments of Theorem 5.1.2 since it depends on the simultaneous factoring of A and B which is automatic in dimension 3. Fortunately, some conditions in Chapter 4 imply that certain linked pairs have invariant subplanes of lower dimension. The discreteness question becomes a lower dimensional problem and linking may not be necessary.

Meanwhile, linking by half-turns must be imposed in dimensions 4 or higher to extend Theorem 5.1.1. The conditions in Chapter 4 allow geometric criteria for a pair to be linked by half-turns.

Corollary 5.1.1 (nsds condition). Let A and B be linked pairs of orientation preserving isometries of \mathbb{H}^{4} such that $\langle A, B\rangle$ is a non-elementary group, $A=H_{P_{A}} H_{P}$ and $B=$ $H_{P} H_{P_{B}}$ for some planes $P_{A}, P, P_{B} \subset \mathbb{H}^{4}$. If there are non-separating and disjoint spheres $S_{A}, S, S_{B} \subset \widehat{\mathbb{R}^{3}}$ containing $\partial P_{A}, \partial P, \partial P_{B}$ respectively, then $\langle A, B\rangle$ is discrete.

Proof. Let $G_{3}=\left\langle H_{P_{A}}, H_{P}, H_{P_{B}}\right\rangle$. If a sphere σ contains the boundary of the twisting
plane of a half-turn H, then $\sigma \in \mathcal{F}_{H}$ and there is $\sigma^{\prime} \in \mathcal{F}_{H}$ such that $H=R_{\sigma} R_{\sigma^{\prime}}=$ $R_{\sigma^{\prime}} R_{\sigma}$. The spheres σ and σ^{\prime} are orthogonal so $R_{\sigma^{\prime}}$ leaves σ invariant.

Going back to G_{3}, there is a side-pairing between the half-turns and F. In particular, $H_{P_{A}}$ maps S_{A} to itself, H_{P} maps S to itself, and $H_{P_{B}}$ maps S_{B} to itself. Since the elements of F are non-separating, they bound a polyhedron in \mathbb{H}^{4} that satisfy the hypothesis of Poincaré Polyhedron Theorem [17]. The conclusion of this theorem shows that G_{3} is discrete, but $\langle A, B\rangle<G_{3}$ so $\langle A, B\rangle$ is discrete.

5.2 Pairs with Invariant Subplanes

A group of isometries of \mathbb{H}^{4} with an invariant hyperplane or plane C can be tested for discreteness by restricting its action on C as long as no nontrivial element fixes C pointwise. If the group is discrete as isometries of C, then the group is discrete as isometries of \mathbb{H}^{4}. The discreteness problem reduces to lower dimension.

5.2.1 Classical Pairs

If A, B are isometries of \mathbb{H}^{4} do not have rotational parts, they have at least one common invariant hyperplane. They are automatically linked as shown in Chapter 4. Therefore, the discreteness of $\langle A, B\rangle$ can be analyzed by treating its elements as isometries of \mathbb{H}^{3}.

Corollary 5.2.1. For any pair of pure parabolic isometries A, B of \mathbb{H}^{4}, there is a hyperplane $C \subset \mathbb{H}^{4}$ that is left invariant by the group generated by A and B.

Proof. Suppose first that A and B have a common fixed point x in the boundary. Pick any y in $\widehat{\mathbb{R}^{3}}$ other than x. Then there are planes and hyperplanes bounded by $h_{1} \in \mathcal{F}_{A}$, $p_{1} \in \mathcal{D}_{A}, h_{2} \in \mathcal{F}_{B}, p_{2} \in \mathcal{D}_{B}$ containing y. As p_{1} and p_{2} intersect at y, they are either equal or they span a sphere \hat{C} that contain x and y. If $p_{1}=p_{2}$, let \hat{C} be any sphere containing p_{1}. The sphere \hat{C} is an element of both \mathcal{T}_{A} and \mathcal{T}_{B} since it contains both p_{1} and p_{2}. Hence, the hyperplane C bounded by \hat{C} is left invariant by both A and B. The rest of the group $\langle A, B\rangle$ leave C invariant as well.

Suppose next that A fixes x and B fixes y in the boundary where $x \neq y$. Then there are planes and hyperplanes bounded by $p_{1} \in \mathcal{D}_{A}, h_{1} \in \mathcal{F}_{A}$ containing y and $p_{2} \in \mathcal{D}_{B}$,
$h_{2} \in \mathcal{F}_{B}$ containing x. If $p_{1}=p_{2}$, any sphere \hat{C} containing p_{1} belong to $\mathcal{T}_{A} \cap \mathcal{T}_{B}$. If $p_{1} \neq p_{2}$, they still intersect at x and y so they span a sphere \hat{C} that consequently belongs to both \mathcal{T}_{A} and \mathcal{T}_{B}. The hyperplane C bounded by \hat{C} is therefore left invariant by A and B. This suffices to show C is left invariant by $\langle A, B\rangle$.

Corollary 5.2.2. Let A be pure hyperbolic and B be pure parabolic isometries of \mathbb{H}^{4}. Then there is a hyperplane in \mathbb{H}^{4} that is left invariant by the group generated by A and B.

Proof. Suppose first that the fixed points of A and B are three different points. Let x the fixed point of B and let y and z be those of A. Pick $h_{x} \in \mathcal{F}_{A}$ and $p_{x} \in \mathcal{D}_{A}$ containing x. Since p_{x} is a circle, $p_{x} \cap h_{x}$ have two points, one of which is x. Let x_{2} be the other point. Then there are $h_{2} \in \mathcal{F}_{B}$ and $p_{2} \in \mathcal{D}_{B}$ containing x_{2}. The circles p_{x} and p_{2} span a sphere \hat{C} which bounds a hyperplane C. Since $\hat{C} \in \mathcal{T}_{A} \cap \mathcal{T}_{B}$, then $\langle A, B\rangle$ must leave C invariant.

Suppose the fixed point of B is common with one of the points of A. There is a $t \in \mathcal{T}_{B}$ containing the fixed point of A that is not common with B. Then t has the fixed points of A so $t \in \mathcal{T}_{A}$. Thus t is left invariant by A and B.

Corollary 5.2.3. If A and B are pure hyperbolic isometries of \mathbb{H}^{4} with ultra-parallel axes, then there is a hyperplane C that is left invariant by the group $\langle A, B\rangle$.

Proof. If the axes of A and B are subsets of the same plane P, let C be any hyperplane containing P. Otherwise, let N be the common perpendicular between their axes. The axis of A and N span a unique plane that intersect the axis of B in one point. Together $\mathrm{Ax}_{A} \cup \mathrm{Ax}_{B} \cup N$ span a unique hyperplane C. In both cases, there is a hyperplane C containing the axes of A and B. Since both A and B are pure hyperbolic, they leave C invariant. If W is a composition of A, B or their inverses, W also leaves C invariant. Hence the group $\langle A, B\rangle$ leaves C invariant.

5.2.2 Pairs with Rotational Parts

Let A be an orientation preserving isometry of \mathbb{H}^{4} with a twisting plane P and B be either a pure parabolic or pure hyperbolic isometry of \mathbb{H}^{4}. If $\partial P \in \mathcal{D}_{B}$, then B and therefore $\langle A, B\rangle$ leave P invariant. The discreteness of $\langle A, B\rangle$ can possibly be answered by treating A and B as isometries of \mathbb{H}^{2}. If A has a twisting hyperplane, it is possible for its boundary to be an element of \mathcal{T}_{B}. In this case, the twisting hyperplane is left invariant by the group $\langle A, B\rangle$ as acting on \mathbb{H}^{3}. If both A and B have rotational parts that are not half-turns, their twisting planes must match to have an invariant plane. If they both have twisting hyperplanes, those have to match to have an invariant hyperplane.

The question about how a pair is linked is a different problem. Indeed, one can impose conditions on a pair for them to be both linked and have an invariant subplane. Imposing the condition of having an invariant subplane together with linking reduces the question of discreteness to the known results in lower dimensions. However the conditions in Chapter 4 may imply that the invariant subplanes do not match. Hence the idea of finding an invariant subplane for both generators is too restrictive to use.

If the rotational part of an isometry A in a pair is a half-turn, then any hyperplane containing its twisting plane has its boundary in \mathcal{R}_{A}. If B leaves a hyperplane h invariant in \mathcal{R}_{A}, then $\langle A, B\rangle$ leaves h invariant but reverses the orientation of h even if A is orientation preserving in \mathbb{H}^{4}. The theorems mentioned here from [8] and [6] assume that the isometries are orientation preserving although the statements may still hold.

5.3 Restricting the Isometries

If A and B leave a common plane or hyperplane C invariant, the group $\langle A, B\rangle$ must also leave C invariant. Let $n=\operatorname{dim}(C)$ so n is either 2 or 3 . The action of $\langle A, B\rangle$ on \mathbb{H}^{4} restricts to an action on C which is isometric to \mathbb{H}^{n}. The discreteness of $\langle A, B\rangle<$ Isom ${ }^{+}\left(\mathbb{H}^{4}\right)$ reduces to testing the discreteness on its action on \mathbb{H}^{n}. There are nonseparating disjoint circles $[2,4,6,16]$ and core geodesic $[8]$ tests that can be used to check discreteness.

Theorem 5.3.1. Let A and B be pure hyperbolic isometries of \mathbb{H}^{4} with ultra-parallel axes. Let L be the common perpendicular line through their axes. If all palindromes have axes that intersect L in a compact subset, then $\langle A, B\rangle$ is discrete.

Proof. If A and B are both pure hyperbolic with ultra-parallel axis, then by Theorem 4.1.1, there is a hyperplane C that is left invariant by $\langle A, B\rangle$. The action of $\langle A, B\rangle$ on \mathbb{H}^{4} restricts to C which is isometric to \mathbb{H}^{3}. Let L be the common perpendicular line between the axes of A and B. By Lemma 5.1 of [8] the palindromes in A and B have axes intersecting L orthogonally. If these intersections form a compact subset, by Theorem 6.3 of [8], the group $\langle A, B\rangle$ is discrete.

Theorem 5.3.2. Let A and B be pure parabolic isometries of \mathbb{H}^{4} with different fixed points x and y. If all non-parabolic palindromes have axes that intersect the line $[x, y]$ connecting x to y in a compact subset, then $\langle A, B\rangle$ is discrete.

Proof. By Corollary 5.2.1, there is a hyperplane C that is left invariant by the group $\langle A, B\rangle$. The action of this group can be restricted to $C \supset[x, y]$ which is isometric to \mathbb{H}^{3}. By Lemma 5.1 of [8] the non-parabolic palindromes in A and B have axes intersecting $[x, y]$ orthogonally. If these intersections form a compact subset, by Theorem 6.3 of [8], the group $\langle A, B\rangle$ is discrete.

Theorem 5.3.3. Let A be pure hyperbolic and B be pure parabolic isometries of \mathbb{H}^{4} with disjoint fixed points at infinity. If the axes of palindromes in A and B intersect the core geodesic in a compact subset, then $\langle A, B\rangle$ is discrete.

Proof. By Corollary 5.2.2, there is a hyperplane C that is left invariant by the group $\langle A, B\rangle$. The action of this group can be restricted to a hyperplane C which contains the line L perpendicular to Ax_{A} and has fix (B) in its horizon. The restriction of the action of $\langle A, B\rangle$ on C has L as its core geodesic. Axes of non-parabolic palindromes in A and B intersect L orthogonally. If these intersections from a compact subset, by Theorem 6.3 of [8], the group $\langle A, B\rangle$ is discrete.

Theorem 5.3.4. Let A and B be linked pairs with an invariant plane or hyperplane C and core geodesic L so that $\langle A, B\rangle$ is non-elementary. If all non-parabolic palindromes have axes that intersect L in a compact interval, then $\langle A, B\rangle$ is discrete.

Chapter 6

Detailed Investigation of Enumeration Schemes

In this chapter we turn to a different topic, the enumeration of primitive words in a rank two free group. Every primitive word in such a group is conjugate to a unique palindrome or to a product of two palindromes. One enumeration scheme for primitives uses what are known as E-words. An E-word is either the unique palindrome in the conjugacy class of the word or a unique product of two palindromes that have previously occurred in the enumeration scheme. Here we present two alternative ways of listing or studying the E-words defined in [9] first by defining rational numbers called "orphans" and second by defining a new string called an E-sequence that comes from modifying the Gilman-Maskit algorithm in [4]. Farey words are the words that arise in the Keen-Series enumeration scheme [11]. Applications of the latter alternative mainly give comparisons of the Keen-Series Farey words [11] with E-words. Using the former alternative, the definition of E-words, which is a recursive definition, can also be modified so as to have an alternative terminating conditions. This gives quicker computations. The main result here is Theorem 6.1.2. An implementation of the enumeration scheme for Ewords using Theorem 6.1.2 can be found in the webpage https://pegasus.rutgers. edu/~benjsilv/turboenumerate.html.

By studying the mapping classes of a punctured torus, one concludes that the primitive elements of a rank-2 free group can be indexed, up to conjugacy, by rational numbers and infinity. Gilman and Keen [9] derived an iteration scheme that takes a rational number and gives back a primitive element of the rank-2 free group F_{2} with the options of providing its primitive associate. This iteration terminates on two conditions, when the argument or input is either 0 or ∞. In section 6.1.4, an alternative
but equivalent conditions for terminating the recursive iteration is shown. These conditions enable a faster computation of the enumeration scheme whether manually or by a machine.

The Gilman-Maskit algorithm for determining the discreteness or non-discreteness of a two-generator subgroup of $\mathrm{PSL}_{2} \mathbb{R}$ stops with a pair of generators that are Farey words. The Farey words are primitive words that are indexed by rational numbers and infinity. The E-words, which are primitive words with either a palindromic form or a palindromic product form, are also indexed by rational numbers and infinity. In section 6.2, the Gilman-Maskit algorithm is modified so that the stopping generators are E-words.

We can view the enumeration scheme and the Gilman-Maskit algorithm as being reverses of each other in the following sense. The enumeration scheme begins by splitting a given rational number into the Farey sum of two other rational numbers. It keeps on splitting the other rational numbers until it ends with the E-word that correspond to either 0 or ∞. Technical details are given below, but roughly speaking both the modification of enumeration in section 6.1.4 and as well as the original definition of the enumeration scheme take a continued fraction expansion $\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{k}\right]$ and starts with a_{k} and runs down to a_{0}. The difference between these two is that the alternative procedure that comes out of the first modification terminates the recursion at $\left[a_{0} ; 1\right]$ whereas the original one keeps on with the recursion. On the other hand, the modified Gilman-Maskit algorithm takes the same continued fraction expansion $\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{k}\right]$ but starts with a_{0} and ends with a_{k}.

Finally, we apply our investigations of the different iteration schemes to obtain a theorem, Theorem 6.2.8 about the number of E-words of a given length within an interval.

6.1 Equivalent Conditions for Terminating Palindromic Primitives

As indicated above, it is well known that the conjugacy classes of the primitive elements of a rank-2 free group F_{2} can be indexed by rational numbers and infinity up to taking
inverses. Moreover, it is also known that for each conjugacy class of primitive elements, there is a representative that is either a palindrome or product of two palindromes. Gilman and Keen [9] prove these results by defining a function $E: \mathbb{Q} \cup\{\infty\} \rightarrow F_{2}=$ $\langle A, B\rangle$. This function is recursive and terminates on conditions $0 \mapsto A^{-1}$ and $\infty \mapsto B$. In this section, we give non-recursive formulas for this function E in cases where the rational number is an integer or reciprocal of an integer. These formulas serve as an alternative terminating conditions for the original enumerating scheme derived by Gilman and Keen [9].

The original definition of the enumeration scheme can be implemented and run in a machine without any modification. However every time a recursion "calls itself," the state of the previous "caller" is stored until the recursion stops calling itself. It is often efficient for a recursion to minimize calling itself in order to avoid wasted resources such as time and storage space. The non-recursive formulas for special cases reduce the self-calling of the recursion. An implementation of the enumeration scheme of E-words using Theorem 6.1.2 can be found in the webpage https://pegasus.rutgers.edu/ \sim benjsilv/turboenumerate.html. If the original definition is implemented instead, the machine can run out of allocated space for saving the state of an iteration and halt without the desired output. Hence applying Theorem 6.1.2 allows a running implementation to work on much more range of inputs.

6.1.1 Summary of the Gilman-Keen Enumeration Scheme

The notation used here for elements of $\mathbb{Q} \cup\{\infty\}$ are of the form p / q where $p \in \mathbb{Z}$, $q \in \mathbb{Z} \cap[0, \infty)$ and $\operatorname{gcd}(p, q)=1$. The element ∞ is denoted by $1 / 0$. By definition, $\frac{1}{0}$ and $\frac{0}{1}$ are in lowest terms.

Definition 36. Let $p / q, r / s \in \mathbb{Q} \cup\{\infty\}$. The pair p / q and r / s are called Farey neighbors if $|p s-r q|=1$.

If p / q and r / s are Farey neighbors, the Farey sum of p / q and r / s is

$$
\frac{p}{q} \oplus \frac{r}{s}=\frac{p+r}{q+s}
$$

Both p / q and r / s are Farey neighbors of their Farey sum. The Farey neighbors do not have transitive property. A rational number may have infinitely many Farey neighbors but the set rational numbers that are its Farey neighbors is certainly bounded. We give a name for its minimum and maximum.

Definition 37. The smallest and largest Farey neighbors of a nonzero rational number p / q are called parents of p / q.

The details of the Gilman-Keen enumeration scheme can be found in [9]. The following is a brief overview. Set $E_{0 / 1}=A^{-1}$ and $E_{1 / 0}=B$. For the rest of \mathbb{Q}, take the parents m / n and r / s of p / q such that $\frac{m}{n}<\frac{p}{q}<\frac{r}{s}$. Define $E_{p / q}$ recursively by

$$
E_{p / q}= \begin{cases}E_{r / s} E_{m / n} & \text { if } p q \text { is odd } \\ E_{m / n} E_{r / s} & \text { if } p q \text { is even }\end{cases}
$$

Definition 38. The function $E: \mathbb{Q} \cup\{\infty\} \rightarrow F_{2}$ given by $p / q \mapsto E_{p / q}$ is called the the Gilman-Keen enumeration scheme or simply enumeration scheme.

The definitions of $E_{0 / 1}$ and $E_{1 / 0}$ are called terminal conditions since they do not require breaking a fraction into a Farey sum of their parents. Hence, we call the elements 0 and ∞ of $\mathbb{Q} \cup\{\infty\}$ orphans.

6.1.2 Non-recursive Formulas for Special Cases

In this section, formulas are given for $E_{n / 1}, E_{1 / n}, E_{p /(p+1)}$, and $E_{(p+1) / p}$ for all $n \in \mathbb{Z}$ and nonnegative integers p. Since the enumeration scheme is a recursive definition, the corresponding words of non-orphans are cumbersome to compute. However, formulas can be derived on some cases.

Lemma 6.1.1. For $n>1$, the parents of $\frac{1}{n}$ are $\frac{0}{1}$ and $\frac{1}{n-1}$. For $n>0$, the parents of $\frac{n}{1}$ are $\frac{1}{0}$ and $\frac{n-1}{1}$.

Proof. Since $\frac{1}{0}=\infty$, any other Farey neighbor of $\frac{n}{1}$ must be finite. Suppose p / q is a finite Farey neighbor of n. We may assume $q \geq 1$; otherwise, pass the negative sign to p. Then, $\frac{p}{q}<n \Rightarrow p<q n$. Since p / q is a Farey neighbor of $n,|p-q n|=1$. Hence,
$q n-p=1$, and

$$
\begin{aligned}
q \geq q n-p & \Longrightarrow p \geq q n-q \\
& \Longrightarrow p \geq q(n-1) \\
& \Longrightarrow \frac{p}{q} \geq n-1
\end{aligned}
$$

Since $n-1$ is a Farey neighbor of $n, n-1$ must be the lower parent of n.
Next, we show the parents of $\frac{1}{n}$. Suppose $n>1$ and $\frac{p}{q}$ is a Farey neighbor of $\frac{1}{n}$ with $\frac{p}{q}>\frac{1}{n}$. Since $n>1, \frac{1}{n}>0$ so we assume $p \geq 1$ and $q \geq 1$. Then $|p n-q|=1$ and $p n>q \Rightarrow p n-q=1$. Hence,

$$
\begin{aligned}
p \geq 1 & \Longrightarrow p \geq p n-q \\
& \Longrightarrow q \geq p n-p \\
& \Longrightarrow q \geq p(n-1) \\
& \Longrightarrow \frac{1}{n-1} \geq \frac{p}{q}
\end{aligned}
$$

Since $\frac{1}{n-1}$ is a Farey neighbor of $\frac{1}{n}$, it is the greater parent of $\frac{1}{n}$. Lastly, if a Farey neighbor $\frac{p}{q} \leq \frac{1}{n}$, then $q-p n=1 \Rightarrow q-1=p n \Rightarrow p=\frac{q-1}{n}$. Since $n>1$ and we may assume that $q \geq 1$, it implies $p \geq 0$. Hence $\frac{p}{q} \geq 0$. Since 0 is a Farey neighbor of $\frac{1}{n}, \frac{0}{1}$ must be lower parent of $\frac{1}{n}$.

Corollary 6.1.1. If n is a negative integer, the parents of n are ∞ and $n+1$; the parents of $\frac{1}{n}$ are 0 and $\frac{1}{n+1}$ for $n<-1$.

Proof. If $n<0$, then $n+1$ is the greatest Farey neighbor of n other than ∞. Using similar methods, ∞ is the lowest possible parent of a negative rational number. On the other hand, if $n<-1$, then $-n>1$, so the parents of $\frac{1}{-n}$ are 0 and $\frac{1}{-n-1}=$ $-\frac{1}{n+1}$. Hence, the minimum and maximum Farey neighbors of $\frac{1}{n}$ are $\frac{-1}{-(n+1)}$ and 0 respectively.

Lemma 6.1.2. Let $p \in \mathbb{N}$. The parents of $\frac{p}{p+1}$ are $\frac{p-1}{p}$ and $\frac{1}{1}$. The parents of $\frac{p+1}{p}$ are $\frac{p}{p-1}$ and $\frac{1}{1}$.

Proof. Suppose $\frac{m}{n}<\frac{p}{p+1}$ is a Farey neighbor with $n \geq 1$. Then $|m p+m-p n|=1$ and $p n>m p+m \Rightarrow p n-m p-m=1$.

$$
\begin{aligned}
n \geq 1 & \Longrightarrow n \geq p n-m p-m \\
& \Longrightarrow m+m p \geq p n-n \\
& \Longrightarrow m(1+p) \geq n(p-1) \\
& \Longrightarrow \frac{m}{n} \geq \frac{p-1}{p+1}
\end{aligned}
$$

However,

$$
\begin{aligned}
-1>1 & \Longrightarrow p-1>p+1 \\
& \Longrightarrow \frac{p-1}{p+1}>1>1-\frac{1}{p}=\frac{p-1}{p}
\end{aligned}
$$

Since $\frac{p-1}{p}$ is a Farey neighbor of $\frac{p}{p+1}, \frac{p-1}{p}$ is a parent of $\frac{p}{p+1}$. In the case where $\frac{m}{n}>\frac{p}{p+1}$, we have $m p+m>n p \Longrightarrow m p+m-p n=1$. Assuming $n \geq 1, n \geq m p+m-p n$. Then,

$$
\begin{aligned}
n+p n \geq m p+m & \Longrightarrow n(1+p) \geq m(p+1) \\
& \Longrightarrow n \geq m \\
& \Longrightarrow \frac{m}{n} \leq 1
\end{aligned}
$$

Since 1 is Farey neighbor of of $\frac{p}{p+1}, 1$ must be a parent of of $\frac{p}{p+1}$.
The following is initially an observation from computations by a machine.
Theorem 6.1.1. For each $p \geq 0, E_{p /(p+1)}=\left(A^{-1} B\right)^{p} A^{-1}$ and $E_{(p+1) / p}=\left(B A^{-1}\right)^{p} B$.
Proof. For $p=0, E_{0 /(0+1)}=E_{0 / 1}=A^{-1}=\left(A^{-1} B\right)^{0} A^{-1}$ and $E_{(0+1) / 0}=E_{1 / 0}=B=$ $\left(B A^{-1}\right)^{0} B$. Suppose the assertion is true for high enough p. Then,

$$
\begin{gathered}
E_{\frac{p+1}{p+2}}=E_{\frac{p}{p+1}} E_{\frac{1}{1}}=\left(A^{-1} B\right)^{p} A^{-1} \cdot B A^{-1}=\left(A^{-1} B\right)^{(p+1)} A^{-1} \\
E_{\frac{p+2}{p+1}}=E_{\frac{1}{1}} E_{\frac{p+1}{p}}=B A^{-1}\left(B A^{-1}\right)^{p} B=\left(B A^{-1}\right)^{(p+1)} B .
\end{gathered}
$$

Note that $p(p+1)$ is always even, $\frac{p}{p+1}<1$ and $\frac{p+1}{p}>1$.
In computing a primitive word in the image of the enumerating scheme, the recursion eventually runs through the decreasing entries of a continued fraction $\left[a_{0} ; a_{1}, \ldots, a_{k}\right]$.

The fraction $\frac{n}{1}$ has the form $[n ;]$ and $\frac{1}{n}$ has the form $[0 ; n]$. Thus, a formula for these cases saves the iteration several steps. To construct more unified formulas, a function $s: \mathbb{R} \rightarrow\{-1,1\}$ is defined by

$$
s(x)= \begin{cases}1 & \text { for } x \in(-\infty, 0) \\ -1 & \text { for } x \in[0, \infty)\end{cases}
$$

Theorem 6.1.2. Let $n \in \mathbb{Z}$. Then,

$$
E_{\frac{n}{1}}=B^{\left\lceil\frac{|n|}{2}\right\rceil} A^{s(n)} B^{\left\lfloor\frac{|n|}{2}\right\rfloor}
$$

and

$$
E_{\frac{1}{n}}=A^{s(n)\left\lfloor\frac{|n|}{2}\right\rfloor} B A^{s(n)\left\lfloor\frac{|n|}{2}\right\rceil} .
$$

Proof. The cases for $n=-2,-1,0,1,2$ are given below. The inductive steps are shown for $n+2$ and $n-2$.

Case $n=0$:

$$
\left.B^{\left\lceil\frac{|0|}{2}\right\rceil} A^{s(0)} B^{\lfloor\lfloor 0 \mid}\right\rfloor=B^{0} A^{-1} B^{0}=A^{-1}=E_{0 / 1}
$$

and

$$
A^{s(0)\left\lfloor\left\lfloor\frac{|0|}{2}\right\rfloor\right.} B A^{s(0)\left\lceil\frac{|0|}{2}\right\rceil}=A^{0} B A^{0}=B=E_{1 / 0}
$$

Case $n=1$:

$$
B^{\left\lceil\left\lvert\, \frac{|1|}{2}\right.\right\rceil} A^{s(1)} B^{\left\lfloor\frac{|1|}{2}\right\rfloor}=B^{1} A^{-1} B^{0}=B A^{-1}=E_{1 / 1}
$$

and

$$
A^{s(1)\left\lfloor\frac{|1|}{2}\right\rfloor} B A^{s(1)\left\lceil\frac{|1|}{2}\right\rceil}=A^{-1 \cdot 0} B A^{-1 \cdot 1}=B A^{-1}=E_{1 / 1}
$$

Case $n=-1$:

$$
B^{\left\lceil\frac{|-1|}{2}\right\rceil} A^{s(-1)} B^{\left[\frac{|-1|}{2}\right\rfloor}=B^{1} A^{1} B^{0}=B A=E_{-1 / 1}
$$

and

$$
A^{s(-1)\left\lfloor\frac{|-1|}{2}\right\rfloor} B A^{s(-1)\left\lfloor\frac{|n|}{2}\right\rceil}=A^{1 \cdot 0} B A^{1 \cdot 1}=B A=E_{1 /-1}
$$

Case $n=2$:

$$
\begin{gathered}
B^{\left\lceil\frac{|2|}{2}\right\rceil} A^{s(2)} B^{\left\lfloor\frac{|2|}{2}\right\rfloor}=B^{1} A^{-1} B^{1}=B A^{-1} B \\
E_{2 / 1}=E_{1 / 1} E_{1 / 0}=B A^{-1} \cdot B
\end{gathered}
$$

and

$$
\begin{aligned}
& A^{s(2)\left\lfloor\frac{|2|}{2}\right\rfloor} B A^{s(2)\left\lceil\frac{|2|}{2}\right\rceil}=A^{-1} B A^{-1} \\
& E_{1 / 2}=E_{0 / 1} E_{1 / 1}=A^{-1} \cdot B A^{-1} .
\end{aligned}
$$

Case $n=-2$:

$$
\begin{gathered}
B^{\left\lceil\frac{|-2|}{2}\right\rceil} A^{s(-2)} B^{\left\lfloor\frac{|-2|}{2}\right\rfloor}=B^{1} A^{1} B^{1}=B A B \\
E_{-2 / 1}=E_{-1 / 1} E_{1 / 0}=B A \cdot B
\end{gathered}
$$

and

$$
\begin{gathered}
A^{s(-2)\left\lfloor\frac{|-2|}{2}\right\rfloor} B A^{s(-2)\left\lceil\frac{|-2|}{2}\right\rceil}=A^{1 \cdot 1} B A^{1 \cdot 1}=A B A \\
E_{1 /-2}=E_{0 / 1} E_{-1 / 1}=A \cdot B A
\end{gathered}
$$

The following are the inductive steps. Assume that for n high or low enough, the assertions are true.

Case $n+2$:
Assume $n \geq 0$. Then,

$$
B^{\left\lceil\frac{|n+2|}{2}\right\rceil} A^{s(n+2)} B^{\left\lfloor\frac{|n+2|}{2}\right\rfloor}=B^{\left\lceil\frac{|n|}{2}\right\rceil+1} A^{s(n)} B^{\left\lfloor\frac{\lfloor n \mid}{2}\right\rfloor+1}
$$

since $\frac{|n+2|}{2}=\frac{n}{2}+1$ and $s(n)=s(n+2)$.

$$
\begin{aligned}
E_{\frac{n+2}{1}} & = \begin{cases}E_{(n+1) / 1} E_{1 / 0}=\left(E_{1 / 0} E_{n / 1}\right) E_{1 / 0} & \text { if } n \text { is even } \\
E_{1 / 0} E_{(n+1) / 1}=E_{1 / 0}\left(E_{n / 1} E_{1 / 0}\right) & \text { if } n \text { is odd }\end{cases} \\
& =B E_{\frac{n}{1}} B \\
& =B\left(B^{\left[\frac{|n|}{2}\right\rceil} A^{s(n)} B^{\left\lfloor\frac{|n|}{2}\right\rfloor}\right) B \\
& =B^{\left[\frac{|n|}{2}\right\rceil+1} A^{s(n+2)} B^{\left\lfloor\frac{n n \mid}{2}\right\rfloor+1} .
\end{aligned}
$$

$$
\begin{aligned}
& A^{s(n+2)\left\lfloor\frac{|n+2|}{2}\right\rfloor} B A^{s(n+2)\left\lceil\frac{|n+2|}{2}\right\rceil}=A^{s(n)\left(\left\lfloor\frac{|n|}{2}\right\rfloor+1\right)} B A^{s(n)\left(\left\lceil\frac{|n|}{2}\right\rceil+1\right)} \\
&=A^{s(n)} A^{s(n)\left\lfloor\frac{|n|}{2}\right\rfloor} B A^{s(n)\left\lfloor\frac{|n|}{2}\right\rceil} A^{s(n)} \\
&=A^{s(n)} E_{\frac{1}{n}} A^{s(n)} . \\
& E_{1 /(n+2)}= \begin{cases}E_{0 / 1} E_{1 /(n+1)} & =E_{0 / 1}\left(E_{1 / n} E_{0 / 1}\right) \quad \text { if } n \text { is even } \\
E_{1 /(n+1)} E_{0 / 1} & =\left(E_{0 / 1} E_{1 / n}\right) E_{0 / 1} \quad \text { if } n \text { is odd } \\
= & E_{0 / 1} E_{1 / n} E_{0 / 1} \\
=A^{s(n)} E_{1 / n} A^{s(n)}\end{cases}
\end{aligned}
$$

Case $n-2$:

Assume $n<0$. Then,

$$
\frac{|n-2|}{2}=\frac{|(-1)(-n+2)|}{2}=\frac{-n+2}{2}=\frac{-n}{2}+1
$$

and

$$
s(n-2)=s(n) .
$$

Therefore,

$$
\begin{aligned}
B^{\left\lceil\frac{|n-2|}{2}\right\rceil} A^{s(n-2)} B^{\left\lfloor\frac{|n-2|}{2}\right\rfloor} & =B^{\left\lceil\frac{|n|}{2}\right\rceil+1} A^{s(n)} B^{\left\lfloor\frac{|n|}{2}\right\rfloor+1} \\
& =B E_{n / 1} B \\
& =E_{1 / 0} E_{n / 1} E_{1 / 0} \\
& =E_{(n-1) / 1} E_{1 / 0} \\
& =E_{(n-2) / 1} .
\end{aligned}
$$

And also,

$$
\begin{aligned}
A^{s(n-2)\left\lfloor\frac{|n-2|}{2}\right\rfloor} B A^{s(n-2)\left\lceil\frac{|n-2|}{2}\right\rceil} & \left.=A^{s(n)\left(\left\lfloor\frac{|n|}{2}\right\rfloor+1\right)} B A^{s(n)\left(\left\lceil\frac{|n|}{2}\right\rceil+1\right.}\right) \\
& =A^{s(n)} E_{1 / n} A^{s(n)} \\
& =E_{0 / 1} E_{1 / n} E_{0 / 1} \\
& =E_{1 /(n-1)} E_{0 / 1} \\
& =E_{1 /(n-2)}
\end{aligned}
$$

Note that the enumeration scheme terminates the recursion on the condition $E_{0 / 1}=A$ for negative numbers even if $\frac{0}{1} \mapsto A^{-1}$.

6.1.3 Examples

Some examples are shown in this section. The details below are not exhaustive in computing the parents of the given fraction, but Theorem 6.1.2 is directly applied.

$$
\begin{gathered}
E_{17 / 3}=E_{6 / 1} E_{11 / 2}=E_{6 / 1}\left(E_{5 / 1} E_{6 / 1}\right) \\
=B^{3} A^{-1} B^{3} \cdot\left(B^{2} A^{-1} B^{2} \cdot B^{3} A^{-1} B^{3}\right) \\
=B^{3} A^{-1} B^{3} \cdot B^{3} A^{-1} B^{5} A^{-1} B^{3} \\
=B^{3} A^{-1} B^{6} A^{-1} B^{5} A^{-1} B^{3} \\
E_{2 / 21}=E_{1 / 11} E_{1 / 10} \\
=A^{-5} B A^{-6} \cdot A^{-5} B A^{-5} \\
=A^{-5} B A^{-11} B A^{-5} \\
E_{3 / 31}=E_{1 / 10} E_{2 / 21}=E_{1 / 10}\left(E_{1 / 11} E_{1 / 10}\right) \\
=A^{-5} B A^{-5} \cdot A^{-5} B A^{-6} \cdot A^{-5} B A^{-5} \\
=A^{-5} B A^{-10} B A^{-11} B A^{-5} \\
E_{31 / 9}=E_{7 / 2} E_{24 / 7} \\
=E_{7 / 2}\left(E_{17 / 5} E_{7 / 2}\right) \\
=E_{7 / 2}\left(E_{7 / 2} E_{10 / 3}\right) E_{7 / 2} \\
=E_{7 / 2} E_{7 / 2}\left(E_{3 / 1} E_{7 / 2}\right) E_{7 / 2} \\
=\left(E_{7 / 2}\right)^{2} E_{3 / 1}\left(E_{7 / 2}\right)^{2} \\
=\left(E_{3 / 1} E_{4 / 1}\right)^{2} E_{3 / 1}\left(E_{3 / 1} E_{4 / 1}\right)^{2} \\
=\left(B^{2} A^{-1} B^{1} \cdot B^{2} A^{-1} B^{2}\right)^{2}\left(B^{2} A^{-1} B^{1}\right)\left(B^{2} A^{-1} B^{1} \cdot B^{2} A^{-1} B^{2}\right)^{2} \\
=B^{2} A^{-1} B^{3} A^{-1} B^{4} A^{-1} B^{3} A^{-1} B^{4} A^{-1} B^{3} A^{-1} B^{3} A^{-1} B^{4} A^{-1} B^{3} A^{-1} B^{2}
\end{gathered}
$$

6.1.4 Alternative Termination Conditions

Since using Theorem 6.1.2 allows the enumeration scheme to terminate the recursion earlier, we conclude this section with the alternative but equivalent terminating conditions.

Theorem 6.1.3. The Gilman-Keen enumeration scheme can have its recursion terminated using the conditions

$$
E_{\frac{n}{1}}=B^{\left\lceil\frac{|n|}{2}\right\rceil} A^{-1} B^{\left\lfloor\frac{|n|}{2}\right\rfloor} \quad E_{\frac{1}{n}}=A^{-\left\lfloor\frac{|n|}{2}\right\rfloor} B A^{-\left\lceil\frac{|n|}{2}\right\rceil}
$$

for $n \in \mathbb{Z} \cap[0, \infty)$; and

$$
E_{\frac{n}{1}}=B^{\left\lceil\frac{|n|}{2}\right\rceil} A B^{\left\lfloor\frac{|n|}{2}\right\rfloor} \quad E_{\frac{1}{n}}=A^{\left\lfloor\frac{|n|}{2}\right\rfloor} B A^{\left.\left\lvert\, \frac{|n|}{2}\right.\right\rceil}
$$

for $n \in \mathbb{Z} \cap(-\infty, 0)$.

Proof. First we must show that these terminating conditions give the same words as those of the original enumeration scheme. By Theorem 6.1.2, these conditions give the same words, but only allows the recursion to terminate early. Next, we show that these conditions eventually stops the iteration of the enumerations scheme. From [9], the iteration stops under only two conditions: $E_{0 / 1}=A^{-1}, A$ and $E_{1 / 0}$. If we have these two conditions, the iteration must stop. These two conditions are exactly the case $n=0$, as shown in the proof of Theorem 6.1.2. Thus, the conditions above terminate the iteration.

Remark:

It has been observed initially from machine computations that once the Theorem 6.1.2 is used as a terminating condition, the original ones are not needed anymore.

6.2 The Modified Gilman-Maskit Algorithm

A linear step in the Gilman-Maskit algorithm sends the ordered pair (g, h) to $(g, g h)$. A Fibonacci step sends the pair (g, h) to $(g h, g)[4,13,14]$. Which step is used or picked
depends on the traces of the new generators; the one with lower trace should occupy the left spot. It comes from the assumption that the old pair has $\operatorname{tr}^{2}(g)<\operatorname{tr}^{2}(h)$.

The main idea of a 'step' is to replace one of the two generators with their product. By keeping one of the generators, this procedure ensures that the groups generated by the old and new pairs are the same. The algorithm retains the generator with lower trace. The following is the proposed new 'step' in picking new generators from a given ordered pair (a, b).

conditions for a and b	preserve a	preserve b
both a and b are palindromes	$(a, b a)$	$(b a, b)$
a is not a palindrome	$(a, a b)$	$(a b, b)$
b is not a palindrome	$(a, a b)$	$(a b, b)$

Note that there are no assumptions about the traces of a and b, but it assumes a takes the left spot and both generators are either a palindrome or a product of palindromes. Since a generator is not usually expressed as product of other generators, there should be a new definition of a palindrome.

6.2.1 Summary of Gilman-Maskit Algorithm

The Gilman-Maskit algorithm takes two elements A and B of $\mathrm{PSL}_{2} \mathbb{R}$ and gives a definite output: either $\langle A, B\rangle$ is discrete; or not. The algorithm uses conditions, e.g. Poincaré polygon theorem or Jorgensen's inequality, to decide whether the group is discrete or not using the generators A and B. If it can not decide using A and B, the generators are combined to construct new generators to use for testing discreteness.

One such combination is the pair $(A, A B)$ and the traces of their matrices are reduced after the iteration. Eventually the process of changing the generators stop and the algorithm makes a decision [4].

Other combinations and conditions are also used but the step that changes (A, B) into $(A, A B)$ called here a Nielsen step is the main modification of this section.

6.2.2 Redefining Palindromes

Let L be a hyperbolic line or geodesic in \mathbb{H}^{3}, the 3-dimensional hyperbolic space. Although a subgroup of $\mathrm{PSL}_{2} \mathbb{R}$ acts on the upper-half space \mathbb{H}^{2}, the action always extend to $\mathbb{H}^{3} \cup \widehat{\mathbb{C}}$. Typically, L is the common perpendicular line of the axes of a fixed pair of elements a_{0} and b_{0}. Let $H_{L} \in \mathrm{PSL}_{2}, \mathbb{C}$ be the half-turn around L.

Definition 39. Let $g \in \mathrm{PSL}_{2} \mathrm{C}$. We say g is a palindrome with respect to L if $g=H_{L} g^{-1} H_{L}$.

If $g \in\langle A, B\rangle$, the definition does not depend on the factorization of g in terms of A and B. If L is the common perpendicular non-degenerate line through the axes of A and B, and g is a palindrome with respect to L, then g as a word in A and B reads the same forward and backward. The following is a reworded lemma in [8].

Theorem 6.2.1. Let W be a word and in the generators A and B. Let L be the common perpendicular through the axes of A and B. Then W reads the same forward and backward if and only if W is a palindrome with respect to L.

This definition allows the modification to be well-defined if a line L is fixed. To do this, fix the initial pair of generators $\left(a_{0}, b_{0}\right)$ and construct their common perpendicular L as in [4] or [8]. Alternatively, we can keep track of the 'steps' and tell which of the generators or if none is the product of palindromes.

6.2.3 A Second Look at the Original Algorithm

The original Gilman-Maskit algorithm has a few assumptions about the given pair of generator (a, b). First it assumes that the fixed points are oriented so that the attracting points are on the opposite sides of the common perpendicular. Second it assumes $\operatorname{tr}^{2}(a)<\operatorname{tr}^{2}(b)$. Hence, the generator that needs to be retained is certainly a.

The order of the new generators is the difference between the linear and Fibonacci steps. The Fibonacci step seems to 'switch' the order done by the linear step. The Fsequence $\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ in [7] is a notation for recording the iteration in the GilmanMaskit algorithm that stores the number of consecutive linear steps before the next

Fibonacci step. Thus n_{1} is the number of first consecutive linear steps before the first Fibonacci step, n_{2} is the number of second consecutive linear steps, and $k-1$ (or k) is the number of all Fibonacci steps. The Fibonacci step is the only time the change-of-order is tracked in terms of recording the F -sequence.

The first assumption can be assured by replacing the generators by inverses whenever appropriate. The second assumption is assured by switching the order. These assurances are actually elements of $\operatorname{Aut}\left(F_{2}\right)$ that are usually ignored (on purpose) when recording the F-sequence and even when defining the algorithm itself.

In ignoring the action of certain elements of $\operatorname{Aut}\left(F_{2}\right)$, the palindromic and product-of-palindrome forms of the primitive elements are destroyed. Thus, the elements of $\operatorname{Aut}\left(F_{2}\right)$ used in every 'step' of the algorithm must be picked carefully to preserve the palindromic form. In particular, the 'switching' automorphism is not used at all.

Switching the generators is not essential to the original algorithm. The important things are that 1) one of the generators is preserved; and 2) the new generator is a product of the two previous ones. The proposed modification respects these two properties.

Remark:

It just turns out that the classification of steps into linear and Fibonacci is compatible with the Farey words. The winding steps defined in $[13,14]$ are not elements of $\operatorname{Aut}\left(F_{2}\right)$ at all but it seems not to be destructive of the palindromic forms [8]. However, it does not produce the E-words in the p / q form.

6.2.4 New Linear and Fibonacci Steps

The original linear step seems to preserve the left generator and change the other. The original Fibonacci step turns the left generator into the right generator, and hence seems to change both generators. The F-sequence in [7] records the consecutive linear steps before a Fibonacci step. The proposed new steps here always preserve one generator including its position whether left or right. Instead of classifying the steps, we define a new sequence $\left[n_{0} ; n_{1}, n_{2}, \ldots, n_{k}\right]$ called E-sequence. Let n_{0} be the number of steps
in preserving the initial right generator before changing it. Let n_{1} be the number of steps in preserving the initial left generator before changing it. Let n_{2} be the number of steps the next right generator is preserved. The rest of the $n_{i} \mathrm{~S}$ alternates between left and right generators. So for even i, n_{i} steps preserve the right generator; for odd i, n_{i} steps preserve the left generator. If the algorithm preserves the left generator first, we let $n_{0}=0$. All n_{i} s take positive integers except n_{0} can take a zero value. Hence, an E-sequence can take continued fraction expansion values of any positive rational number p / q.

6.2.5 From E-sequence to E-words

The main purpose of the modification is to end the algorithm with E-words. Since $\operatorname{tr}^{2}(a b)=\operatorname{tr}^{2}(b a)$ and the modification uses only Nielsen automorphisms, the proposed method stops the algorithm with the same number of steps and complexity as the original one. In section 6.2.7, we prove that this modification produces E-words in the end. More precisely and more strongly,

Theorem 6.2.2. Let $\left[n_{0} ; n_{1}, n_{2}, \ldots, n_{k}\right]$ be the continued fraction expansion of the nonnegative rational number p / q. Then the last changed generator of the modified GilmanMaskit algorithm using the E-sequence $\left[n_{0} ; n_{1}, n_{2}, \ldots, n_{k}\right]$ is the E-word corresponding the rational number $-p / q$.

Examples of the Modified Algorithm

The following shows the modified algorithm using the E-sequence $[5 ; 4,3]$.

$$
\begin{aligned}
(a, b) & \rightarrow(b a, b) \rightarrow(b a b, b) \rightarrow\left(b^{2} a b, b\right) \rightarrow\left(b^{2} a b^{2}, b\right) \\
& \rightarrow\left(b^{3} a b^{2}, b\right) \rightarrow\left(b^{3} a b^{2}, b^{3} a b^{3}\right) \\
& \rightarrow\left(b^{3} a b^{2}, b^{3} a b^{5} a b^{3}\right) \rightarrow\left(b^{3} a b^{2}, b^{3} a b^{5} a b^{5} a b^{3}\right) \\
& \rightarrow\left(b^{3} a b^{2}, b^{3} a b^{5} a b^{5} a b^{5} a b^{3}\right) \rightarrow\left(b^{3} a b^{5} a b^{5} a b^{5} a b^{3}, b^{3} a b^{5} a b^{5} a b^{5} a b^{3}\right) \\
& \rightarrow\left(b^{3} a b^{5} a b^{5} a b^{5} a b^{6} a b^{5} a b^{5} a b^{5} a b^{5} a b^{3}, b^{3} a b^{5} a b^{5} a b^{5} a b^{3}\right) \\
& \rightarrow\left(b^{3} a b^{5} a b^{5} a b^{5} a b^{6} a b^{5} a b^{5} a b^{5} a b^{5} a b^{6} a b^{5} a b^{5} a b^{5} a b^{3}, b^{3} a b^{5} a b^{5} a b^{5} a b^{3}\right)
\end{aligned}
$$

One can observe that the sum of the exponents of a is 13 , and that of b is 68 . Moreover, the continued fraction expansion of $\frac{68}{13}$ is $[5 ; 4,3]$.

The following shows the algorithm using the E-sequence $[4 ; 3,2]$.

$$
\begin{aligned}
(a, b) & \rightarrow(b a, b) \rightarrow \cdots \rightarrow\left(b^{2} a b^{2}, b\right) \rightarrow\left(b^{2} a b^{2}, b^{3} a b^{2}\right) \\
& \rightarrow\left(b^{2} a b^{2}, b^{2} a b^{5} a b^{2}\right) \rightarrow\left(b^{2} a b^{2}, b^{2} a b^{5} a b^{4} a b^{2}\right) \\
& \rightarrow\left(b^{2} a b^{4} a b^{5} a b^{4} a b^{2}, b^{2} a b^{5} a b^{4} a b^{2}\right) \\
& \rightarrow\left(b^{2} a b^{4} a b^{5} a b^{4} a b^{4} a b^{5} a b^{4} a b^{2}, b^{2} a b^{5} a b^{4} a b^{2}\right)
\end{aligned}
$$

In this example, the sum of the exponents of a is 7 , and that of b is 30 . Likewise, the continued fraction expansion of $\frac{30}{7}$ is $[4 ; 3,2]$.

The following shows the algorithm using the E-sequence $[0 ; 3,4]$.

$$
\begin{aligned}
(a, b) & \rightarrow(a, b a) \rightarrow(a, a b a) \rightarrow\left(a, a b a^{2}\right) \rightarrow\left(a^{2} b a^{2}, a b a^{2}\right) \\
& \rightarrow\left(a^{2} b a^{3} b a^{2}, a b a^{2}\right) \rightarrow\left(a^{2} b a^{3} b a^{3} b a^{2}, a b a^{2}\right) \\
& \rightarrow\left(a^{2} b a^{3} b a^{3} b a^{3} b a^{2}, a b a^{2}\right)
\end{aligned}
$$

The fraction for above is $\frac{4}{13}$ which has a continued fraction expansion of $[0 ; 3,4]$.
Lastly, the example found in [9] is copied to the E-sequence $[3 ; 2,4]$.

$$
\begin{aligned}
(a, b) & \rightarrow(b a, b) \rightarrow(b a b, b) \rightarrow\left(b^{2} a b, b\right) \rightarrow\left(b^{2} a b, b^{2} a b^{2}\right) \\
& \rightarrow\left(b^{2} a b, b^{2} a b^{3} a b^{2}\right) \rightarrow\left(b^{2} a b^{3} a b^{3} a b^{2}, b^{2} a b^{3} a b^{2}\right) \\
& \rightarrow\left(b^{2} a b^{3} a b^{4} a b^{3} a b^{3} a b^{2}, b^{2} a b^{3} a b^{2}\right) \\
& \rightarrow\left(b^{2} a b^{3} a b^{4} a b^{3} a b^{3} a b^{4} a b^{3} a b^{2}, b^{2} a b^{3} a b^{2}\right) \\
& \rightarrow\left(b^{2} a b^{3} a b^{4} a b^{3} a b^{4} a b^{3} a b^{3} a b^{4} a b^{3} a b^{2}, b^{2} a b^{3} a b^{2}\right)
\end{aligned}
$$

The last modified generator looks like the E-word corresponding to $\frac{31}{9}$.

6.2.6 Reversing the Enumeration Scheme

In this section reversing the process of the Gilman-Keen enumeration scheme is shown. The definition of the scheme requires taking the parents of a given rational number.

While the parents exist and are well-defined for most rational numbers, their computations and ordering are cumbersome. In addition, the parents are broken further into "grandparents" until orphans are encountered. Every time a parent is not an orphan, another splitting into two parents must occur; the manual computations get worse.

In theory, one can start with the greatest grandparents of all elements which exactly are the orphans 0 and ∞. This section explains in detail how this process can be done. A typical pair of parents are noticeably Farey neighbors. Furthermore, their Farey sum is equal to their only 'child'. We prove these observations and show that the properties of Farey neighbors are also properties of parents. In the process of reversing the enumeration scheme, the modification of the Gilman-Maskit algorithm is also proven to stop with E-words.

The following are claims in [9]. The proofs are provided here.
Lemma 6.2.1. Let $\frac{p}{q}$ be Farey neighbors with $\frac{p}{q}<\frac{r}{s}$. Assume $\frac{p}{q}$ and $\frac{r}{s}$ are in lowest terms. Then $\frac{p}{q}<\frac{p+r}{q+s}<\frac{r}{s}$; and the pairs $\frac{p}{q}, \frac{p+r}{q+s}$ and $\frac{p+r}{q+s}, \frac{r}{s}$ are Farey neighbors.

Proof. We may assume $q \geq 1$ and $s \geq 1$ so that $q+s \geq 2$. Then,

$$
\begin{aligned}
p s<q r & \Longrightarrow p s+p q<r q+p q \\
& \Longrightarrow p(s+q)<(r+p) q \\
& \Longrightarrow \frac{p}{q}<\frac{r+p}{s+q} \\
p s<q r & \Longrightarrow p s+r s<q r+r s \\
& \Longrightarrow(p+r) s<r(q+s) \\
& \Longrightarrow \frac{p+r}{q+s}<\frac{r}{s} .
\end{aligned}
$$

Since $|p s-q r|=1$, we have

$$
\begin{aligned}
|p(q+s)-q(p+r)| & =|p q+p s-q p-q r| \\
& =|p s-q r|=1 \\
|(p+r) s-(q+s) r| & =|p s+r s-q r-q s| \\
& =|p s-q r|=1
\end{aligned}
$$

Corollary 6.2.1. If $\frac{p}{q}$ and $\frac{r}{s}$ are Farey neighbors, then the fractions $\frac{p}{q}, \frac{r}{s}$, and $\frac{p+r}{q+s}$ are in lowest terms.

Lemma 6.2.2. Let $\frac{p}{q}$ and $\frac{r}{s}$ be Farey neighbors expressed in lowest terms. Then p and q cannot be both even; r and s cannot be both even. Moreover, p, q, r and s cannot be all odd.

Proof. If p and q are both even, then $\frac{p}{q}$ are not in lowest term since $\operatorname{gcd}(p, q) \geq 2$. Same is true with r and s. Suppose all integers p, q, r and s are odd. Then $p s$ and $r q$ are also odd, but $p s-q r$ is even. In particular $|p s-r q|$ is not 1 .

From this point onward, $\frac{p}{q}$ and $\frac{r}{s}$ are Farey neighbors reduced to lowest terms.
Lemma 6.2.3. For each pair of Farey neighbors $\frac{p}{q}$ and $\frac{r}{s}$, only one of the following combinations hold.

1. $p q$ is odd; $r s$ is even.
2. $p q$ and r s are even.
3. $p q$ is even rs is odd.

Proof. If $p q$ is odd, both p and q are odd. By the lemma above, r and s cannot be both odd so one of them must be even. Hence $r s$ is even.

When it comes to listing possibilities, whether even or odd, of the integers p, q, r and s, two more combinations can be eliminated.

Lemma 6.2.4. For each pair of Farey neighbors $\frac{p}{q}$ and $\frac{r}{s}$, the following combinations do not hold.

1. p and r are even; q and s are odd.
2. p and r are odd; q and s are even.

Proof. If the fractions are Farey neighbors, $|p s-r q|=1$. If any combinations above hold, both $p s$ and $r q$ are even. Hence, the difference of even numbers is even. In particular $|p s-r q|$ cannot equal to 1 .

Initially, odd-even combinations of four integers p, q, r and s add up to 16. However the preceding lemmas imply that there can be only 6 possibilities.

Theorem 6.2.3. For each pair of Farey neighbors $\frac{p}{q}$ and $\frac{r}{s}$, only one of the following combinations hold.

p	q	r	s	$(p+r)(q+s)$
even	odd	odd	even	odd
odd	odd	even	odd	even
odd	odd	odd	even	even
odd	even	even	odd	odd
even	odd	odd	odd	even
odd	even	odd	odd	even

Proof. The conditions where p and q are both even eliminate four conditions. The conditions where r and s are both even reduces 3 more. The case where all p, q, r and s are odd and lemma above make 3 more impossible. The remaining possibilities are 6 out of 16 .

The Gilman-Keen enumeration scheme maps each element of $\mathbb{Q} \cup\{\infty\}$ to a primitive word in F_{2} by defining a recursion. Recall that the word $E_{p / q}$ in F_{2} corresponding to a positive rational number p / q.

$$
E_{p / q}= \begin{cases}E_{r / s} E_{m / n} & \text { if } p q \text { is odd } \\ E_{m / n} E_{r / s} & \text { if } p q \text { is even }\end{cases}
$$

The elements $\frac{m}{n}$ and $\frac{r}{s}$ of $\mathbb{Q} \cup\{\infty\}$ are the parents of $\frac{p}{q}$. For the orphans 0 and ∞, $E_{0}=A^{-1}$ and $E_{\infty}=B$. It is also assumed that $\frac{m}{n}<\frac{r}{s} \leq \infty$.

It is probably well-known that the Farey sum of the parents of p / q is equal to p / q. It is also known that for any Farey neighbors $\frac{m}{n}$ and $\frac{r}{s}$ whose Farey sum is $\frac{p}{q}$, then $\frac{m}{n}$ and $\frac{r}{s}$ must be the parents of $\frac{p}{q}$. The proofs of well-known facts are provided here.

Fact 6.2.1. If $\frac{p}{q}$ and $\frac{r}{s}$ are positive and Farey neighbors, then the parents of their Farey sum are exactly $\frac{p}{q}$ and $\frac{r}{s}$.

Proof. Assume $\frac{p}{q}<\frac{r}{s}$. The case where $\frac{r}{s}=\infty$ imply that $\frac{p}{q}$ is an integer. This makes their Farey sum equal to the integer $p+1$. By Lemma 6.1.1, the parents of $p+1$ are p and ∞, which are p / q and r / s. So we can assume that $\frac{r}{s}<\infty$.

Suppose $\frac{m}{n}$ is a Farey neighbor with $\frac{m}{n}<\frac{p+r}{q+s}$. Assume $n \geq 1$. Then,

$$
\frac{p+r}{q+s}<\frac{r}{s} \Rightarrow \frac{m}{n}<\frac{r}{s} \Rightarrow s m<n r \Rightarrow n r-s m>0
$$

Since $n r-s m$ is an integer, $n r-s m \geq 1$. By Farey neighbor property,

$$
\begin{aligned}
m q+m s<n p+n r & \Longrightarrow n p+n r-m q-s m=1 \\
& \Longrightarrow 1-n p+q m=n r-s m \geq 1 \\
& \Longrightarrow q m-n p \geq 0 \\
& \Longrightarrow q m \geq n p \\
& \Longrightarrow \frac{m}{n} \geq \frac{p}{q}
\end{aligned}
$$

Thus, p / q is a parent of $\frac{p+r}{q+s}$.
Suppose $\frac{m}{n}$ is a Farey neighbor of $\frac{p+r}{q+s}$ with $\frac{p+r}{q+s}<\frac{m}{n}$. Assume $n, q, s \geq 1$. Similarly,

$$
\frac{p}{q}<\frac{p+r}{q+r} \Rightarrow \frac{p}{q}<\frac{m}{n} \Rightarrow q m-p n>0 .
$$

The difference $q m-p n$ must be at least 1 . Therefore,

$$
\begin{aligned}
p n+r n<q m+s m & \Longrightarrow q m+s m-p n-r n=1 \\
& \Longrightarrow q m-p n=1+r n-s m \\
& \Longrightarrow 1+r n-s m \geq 1 \\
& \Longrightarrow r n-s m \geq 0 \\
& \Longrightarrow \frac{r}{s} \geq \frac{m}{n} .
\end{aligned}
$$

Thus, r / s is the other parent of $\frac{p+r}{q+s}$.
The theorem above and Lemma 6.2.1 allow one to guess the parents of a given rational number p / q. This is done by breaking p and q into sums $p=m+r$ and $q=n+s$, so that $|m s-r n|=1$. On large numerators or denominators, the combinations can be cumbersome, but the goal is to reverse the process of the recursion defined in the
enumeration scheme. More precisely, the goal is to determine $E_{p / q}$ starting from A and B instead of starting from computing the parents of p / q.

From this point onward, we assume Farey neighbors $\frac{p}{q}$ and $\frac{r}{s}$ have $\frac{p}{q}<\frac{r}{s}$. The following theorem derives the E-word corresponding to $\frac{p+r}{q+s}$.

Theorem 6.2.4. Let $\frac{p}{q}$ and $\frac{r}{s}$ be nonnegative and Farey neighbors with $\frac{p}{q}<\frac{r}{s}$. Then, $E_{(p+r) /(q+s)}$ is a product of $E_{p / q}$ and $E_{r / s}$ determined by the following table.

p	q	r	s	$(p+r)(q+s)$	$E_{(p+r) /(q+s)}$
even	odd	odd	even	odd	$E_{r / s} E_{p / q}$
odd	odd	even	odd	even	$E_{p / q} E_{r / s}$
odd	odd	odd	even	even	$E_{p / q} E_{r / s}$
odd	even	even	odd	odd	$E_{r / s} E_{p / q}$
even	odd	odd	odd	even	$E_{p / q} E_{r / s}$
odd	even	odd	odd	even	$E_{p / q} E_{r / s}$

Proof. Since the parents of $\frac{p+r}{q+s}$ are exactly $\frac{p}{q}$ and $\frac{r}{s}$, the residue class $\bmod 2$ of $(p+r)(q+s)$ can be determined by the residue class $\bmod 2$ of p, q, r, and s. The possible combinations are fully listed. Since $\frac{p}{q}<\frac{r}{s}$, the E-word corresponding to $\frac{p+r}{q+s}$ is determined in terms of the words corresponding to $E_{p / q}$ and $E_{r / s}$.

The image of the enumeration scheme is a set of palindromes or product of palindromes. Gilman and Keen [9] proved that $E_{p / q}$ is a palindrome if and only if $p q$ is even. Hence, $E_{p / q}$ is not a palindrome if and only if $p q$ is odd. Using the table in the theorem above, $E_{(p+r) /(q+s)}$ is a palindrome if either $p q$ or $r s$ is not a palindrome; and $E_{(p+r) /(q+s)}$ is not a palindrome if both $p q$ and $r s$ are palindromes.

Let $a=A^{-1}$ and $b=B$, where A and B are generators of rank-2 free group. Then $\langle a, b\rangle=\langle A, B\rangle$ and $(a, b)=\left(E_{0 / 1}, E_{1 / 0}\right)$. This initial condition has the rational number corresponding to the left generator less than that of the right generator.

Theorem 6.2.5. Let $\frac{p}{q}<\frac{r}{s}$ be positive Farey neighbors. Let $\left(a_{1}, b_{1}\right)$ be the new pair of generators after applying the modified algorithm step to the generators $\left(E_{p / q}, E_{r / s}\right)$. Then both a_{1} and b_{1} are E-words; $a_{1}=E_{j / k}$ and $b_{1}=E_{m / n}$ such that $\frac{j}{k}<\frac{m}{n}$. Either $\frac{j}{k}$ or $\frac{m}{n}$ is equal to $\frac{p+r}{q+s}$ so $\frac{j}{k}$ and $\frac{m}{n}$ are Farey neighbors.

Proof. Let $a_{0}=E_{p / q}$ and $b_{0}=E_{r / s}$. Then $\left(a_{1}, b_{1}\right)$ is one of the following.

conditions for a_{0} and b_{0}	preserve a_{0}	preserve b_{0}
both a_{0} and b_{0} are palindromes	$\left(a_{0}, b_{0} a_{0}\right)$	$\left(b_{0} a_{0}, b_{0}\right)$
a_{0} is not a palindrome	$\left(a_{0}, a_{0} b_{0}\right)$	$\left(a_{0} b_{0}, b_{0}\right)$
b_{0} is not a palindrome	$\left(a_{0}, a_{0} b_{0}\right)$	$\left(a_{0} b_{0}, b_{0}\right)$

Since either a_{0} or b_{0} is preserved, we show that $a_{0} b_{0}$ or $b_{0} a_{0}$ is the E-word corresponding to $\frac{p+r}{q+s}$. If a_{0} and b_{0} are both palindromes, both $p q$ and $r s$ are even. Using the table in Theorem 6.2.3, $(p+r)(q+s)$ is odd in any possible combinations of parities (residue classes $\bmod 2$) of p, q, r and s. Also $\frac{p}{q}$ and $\frac{r}{s}$ are the parents of $\frac{p+r}{q+s}$. Hence, $E_{(p+r) /(q+s)}=E_{r / s} E_{p / q}=b_{0} a_{0}$.

If either a_{0} or b_{0} is not a palindrome, then either $p q$ or $r s$ is odd, respectively. The same table shows $(p+r)(q+s)$ is even so $E_{(p+r) /(q+s)}=E_{r / s} E_{p / q}=a_{0} b_{0}$.

The only thing left to show is that $\frac{j}{k}<\frac{m}{n}$. This is a simple application of Lemma 6.2.1 that says $\frac{p}{q}<\frac{p+r}{q+s}<\frac{r}{s}$. If $\frac{j}{k}=\frac{p}{q}, \frac{m}{n}=\frac{p+r}{q+s}$ so $\frac{j}{k}$ and $\frac{m}{n}$ are Farey neighbors. If $\frac{j}{k}=\frac{p+r}{q+s}, \frac{m}{n}=\frac{r}{s}$. In any case $\frac{j}{k}<\frac{m}{n}$.

Corollary 6.2.2. The modified algorithm step, applied finitely many times to a pair of primitive associates $\left(E_{p / q}, E_{r / s}\right)$ where $\frac{p}{q}<\frac{r}{s}$, provides a pair of E-words that generate the same group $\left\langle E_{p / q}, E_{r / s}\right\rangle=\langle A, B\rangle$.

6.2.7 Proof of Theorem 6.2.2

Theorem 6.2.6. Let $\left[n_{0} ; n_{1}, n_{2}, \ldots, n_{k}\right]$ be the continued fraction expansion of the nonnegative rational number p / q. Then the last changed generator of the modified GilmanMaskit algorithm using the E-sequence $\left[n_{0} ; n_{1}, n_{2}, \ldots, n_{k}\right]$ is the E-word corresponding the rational number $-p / q$.

Proof. Let $\left[n_{0} ; n_{1}, n_{2}, \ldots, n_{k}\right]$ be an E-sequence. Then the modified algorithm has outputs of E-words corresponding to the rational numbers p_{i} / q_{i} and r_{i} / s_{i} for $i=$ $0,1,2, \ldots, k$ in the following recursive formulas.

$$
\begin{array}{llll}
p_{0}=0 & q_{0}=1 & r_{0}=1 & s_{0}=0
\end{array}
$$

$$
\begin{array}{ll}
p_{i}=n_{2 i-2} r_{i-1}+p_{i-1} & r_{i}=n_{2 i-1} p_{i}+r_{i-1} \\
q_{i}=n_{2 i-2} s_{i-1}+q_{i-1} & s_{i}=n_{2 i-1} q_{i}+s_{i-1}
\end{array}
$$

These recursions seem to work, both for E-sequence and fairy addition. Next thing to show is that

$$
\frac{p_{i}}{q_{i}}=\left[n_{0} ; n_{1}, n_{2}, \ldots, n_{2 i-2}\right]
$$

and

$$
\frac{r_{i}}{s_{i}}=\left[n_{0} ; n_{1}, n_{2}, \ldots, n_{2 i-1}\right] .
$$

There are formulas in [9] where approximants are defined as follows.

$$
\begin{gathered}
g_{0}=n_{0} \quad h_{0}=1 \quad g_{1}=n_{1} n_{0}+1 \quad h_{1}=n_{1} \\
g_{i}=n_{i} g_{i-1}+g_{i-2} \\
h_{i}=n_{i} h_{i-1}+h_{i-2}
\end{gathered}
$$

It was claimed in [9] that $\frac{g_{i}}{h_{i}}=\left[n_{0} ; n_{1}, n_{2}, \ldots, n_{i}\right]$. There is a way to relate $\frac{p_{i}}{q_{i}}$ and $\frac{r_{i}}{s_{i}}$ to $\frac{g_{i}}{h_{i}}$. In particular,

$$
\frac{p_{i}}{q_{i}}=\frac{g_{2 i-2}}{h_{2 i-2}} \quad \frac{r_{i}}{s_{i}}=\frac{g_{2 i-1}}{h_{2 i-1}}
$$

for all $i \geq 1$. We show it as follows.

$$
\begin{aligned}
p_{1} & =n_{0} r_{0}+p_{0} & r_{1} & =n_{1} p_{1}+r_{0} \\
& =n_{0} & & =n_{1} n_{0}+1 \\
& =g_{0} & & =g_{1} \\
q_{1} & =n_{0} s_{0}+q_{0} & s_{1} & =n_{1} q_{1}+s_{0} \\
& =n_{0} \cdot 0+1 & & =n_{1} \cdot 1+0 \\
& =1 & & =n_{1} \\
& =h_{0} & & =h_{1}
\end{aligned}
$$

The assertions work for $i=1$. To show that the formulas work for all other i, we show that they work for $i+1$. That is,

$$
\begin{aligned}
p_{i+1} & =g_{2(i+1)-2} & & q_{i+1}=h_{2 i} \\
& =g_{2 i+2-2} & & r_{i+1}=g_{2 i+1} \\
& =g_{2 i} & & h_{i+1}=h_{2 i+1} .
\end{aligned}
$$

The following are the computations.

$$
\begin{aligned}
p_{i+1} & =n_{2 i} r_{i}+p_{i} & r_{i+1} & =n_{2 i+1} p_{i+1}+r_{i} \\
& =n_{2 i} g_{2 i-1}+g_{2 i-2} & & =n_{2 i+1} g_{2 i}+g_{2 i-1} \\
& =g_{2 i} & & =g_{2 i+1} \\
q_{i+1} & =n_{2 i} s_{i}+q_{i} & s_{i+1} & =n_{2 i+1} q_{i+1}+s_{i} \\
& =n_{2 i} h_{2 i-1}+h_{2 i-2} & & =n_{2 i+1} h_{2 i}+h_{2 i-1} \\
& =h_{2 i} & & =h_{2 i+1}
\end{aligned}
$$

Now that p_{i}, q_{i}, r_{i} and s_{i} are consolidated to two formulas, g_{i} and h_{i}, except p_{0}, q_{0}, r_{0} and s_{0}, it follows that

$$
\frac{g_{i}}{h_{i}}=\left[n_{0} ; n_{1}, n_{2}, \ldots, n_{i}\right] .
$$

Corollary 6.2.3. Let $k \in \mathbb{N}$ be an even integer. For any continued fraction expansion $\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{k+1}\right]$,

$$
\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{k}\right]<\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{k+1}\right]
$$

For any continued fraction expansion $\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{k}\right]$,

$$
\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{k}\right]<\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{k-1}\right]
$$

Proof. If $k=0,\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{k-1}\right]$ is defined to be ∞ so the statement is equivalent to the fact that natural numbers are finite. The continued fraction expansion $\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{k}\right]$ can be regarded as an E-sequence that can be applied to the pair (a, b). The stopping generators correspond to the E-words $E\left(\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{k}\right]\right)$
and $E\left(\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{k+1}\right]\right)$. Since k is even, $E\left(\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{k}\right]\right)$ is the left generator. Also since the modification is designed to preserve the order of fractions, then $\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{k}\right]<\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{k-1}\right]$. Suppose that the E-sequence is extended further to $\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{k+1}\right]$. Then the set of stopping generators still contains E-word corresponding to $\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{k}\right]$ which is still in the left spot. Hence, $\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{k}\right]<\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{k+1}\right]$.

6.2.8 Consecutive Steps

In the theory of F-sequence, n consecutive linear steps have an simple formula $(a, b) \mapsto$ $\left(a, a^{n} b\right)$. Equivalently, a is preserved in n consecutive steps. In the modified algorithm, there are more than one formula and not all of them are simple. The formulas depend on palindromic conditions of the current generators and which generator is preserved. There are six formulas shown in the following.

Case 1

Suppose a is preserved in n steps; both a and b are palindromes with respect to a fixed line. The next pair is $(a, b a)$. Using the table in Theorem 6.2.5, $b a$ is not a palindrome so the step that preserves a should be $(g, h) \mapsto(g, g h)$. Hence, the next pair of generators is $(a, a b a)$. Both a and $a b a$ are palindromes again so the next new generator is $a b a^{2}$. Note that $a b a^{2}$ is equal to $E_{1 / 3}$. The steps that change the right generator alternates between palindrome and non-palindrome. If $j=\lfloor n / 2\rfloor, n$ steps preserving a ends in $\left(a, a^{j} b a^{j}\right)$ if n is even of $\left(a, a^{j} b a^{j} a\right)$ if n is odd. The right generator is exactly the E-word corresponding to $\frac{1}{n}$ in the pair (a, b). The formula for this case is

$$
(a, b) \mapsto\left(a, E_{1 / n}(a, b)\right) .
$$

Case 2

Suppose a is preserved in n steps; a is not a palindrome. The next pair of generators must be ($a, a b$). Since a is not a palindrome, $a b$ is still a palindrome. The next pair after a step is $\left(a, a^{2} b\right)$. Because the right generator is always a palindrome, the formula
for this case is simple:

$$
(a, b) \mapsto\left(a, a^{n} b\right) .
$$

Case 3

Suppose a is preserved in n steps; b is not a palindrome. Like the second case, the next pair is ($a, a b$), but the new generators are both palindromes. The next new generators are $a b a, a^{2} b a, a^{2} b a^{2}, a^{3} b a^{2}$, etc. For n steps, the right generator is $a^{j} b a^{j}$ if n is even or $a a^{j} b^{j}$ if n is odd $(j=\lfloor n / 2\rfloor)$. This is similar to E_{n} but switched a with b. Hence the formula for the third case is

$$
(a, b) \mapsto\left(a, E_{n}(b, a)\right) .
$$

Case 4

Suppose b is preserved in n steps; both a and b are palindromes. The left generator becomes $b a$ which is not a palindrome. The next generators are $b a b, b^{2} a b, b^{2} a b^{2}, b^{3} a b^{2}$, etc. For n steps and $j=\lfloor n / 2\rfloor$, the last left generator is $b^{j} a b^{j}$ if n is even or $b b^{j} a b^{j}$ if n is odd. Thus, the formula for this case is

$$
(a, b) \mapsto\left(E_{n}(a, b), b\right)
$$

Case 5

Suppose b is preserved in n steps; a not a palindrome. The next left generators are $a b$, $b a b, b a b^{2}, b^{2} a b^{2}, b^{2} a b^{3}$, etc. Likewise, it is either $b^{j} a b^{j}$ or $b^{j} a b^{j} b$ which is the E-word $E_{1 / n}$ with switched a and b. So the formula for this case is

$$
(a, b) \mapsto\left(E_{1 / n}(b, a), b\right)
$$

Case 6

The last case is as simple as the second. Suppose b is preserved in n steps but is not a palindrome. The left generator for each step is a palindrome so the last left generator is $a b^{n}$. The formula is

$$
(a, b) \mapsto\left(a b^{n}, b\right)
$$

The following table summarizes all the formulas.

	preserve a	preserve b
both a and b are palindromes	$\left(a, E_{\frac{1}{n}}(a, b)\right)$	$\left(E_{n}(a, b), b\right)$
a is not a palindrome	$\left(a, a^{n} b\right)$	$\left(E_{\frac{1}{n}}(b, a), b\right)$
b is not a palindrome	$\left(a, E_{n}(b, a)\right)$	$\left(a b^{n}, b\right)$

6.2.9 Length of E-words

Theorem 6.2.7. The length of $E_{m / n}$ in the generators $\{a, b\}$ is $|m|+|n|$. Moreover $E_{m / n}$ has $|m|$ b-factors and $|n|$ a-factors.

Proof. Suppose $g, h \in F_{2} ; g$ has $p b$-factors and $q a$-factors. Suppose h has $r b$-factors and $s a$-factors. The modified algorithm applied to (g, h) replaces one of the generators with either $g h$ or $h g$. Both $g h$ and $h g$ have $p+r b$-factors and $q+s a$-factors. More seriously, the algorithm starts with (a, b) and ends with $\left(E_{p / q}, E_{r / s}\right)$. The fraction $1 / 1$ correspond to $b a$ which is the very first new E-word of the algorithm. For $E_{1 / 1}=b a$, the assertion is true. Suppose this assertion is still true after the algorithm stops at the pair $\left(E_{p / q}, E_{r / s}\right)$. Then $E_{p / q}$ has $p b$-factors and $q a$-factors; $E_{r / s}$ has $r b$-factors and $s a$-factors. Continuing the algorithm just one step further yields a new E-word $E_{(p+r) /(q+s)}$. It is either $E_{p / q} E_{r / s}$ or $E_{r / s} E_{p / q}$. In any case, $E_{(p+r) /(q+s)}$ has $p+r$ b-factors and $q+s a$-factors.

6.2.10 E-words when $k \leq 2$

It is shown in section 6.1.4 what the form of E -words are if $k=0$ or precisely $p / q \in \mathbb{Z}$. In this section, we look at E-words up to $k=2$ and show what happens to "exponents" of a and b for any E-word. To alleviate complicated notations, we define $m_{i}=\left\lfloor\frac{n_{i}}{2}\right\rfloor$ and $M_{i}=\left\lceil\frac{n_{i}}{2}\right\rceil$. Then $m_{i}+M_{i}=n_{i}, m_{i}=M_{i}$ if n_{i} is even and $M_{i}=m_{i}+1$ if n_{i} is odd. This notation is used as superscripts. For example, Theorem 6.1.2 shows $E_{n_{0}}=b^{M_{i}} a b^{m_{i}}$ and $E_{1 / n_{1}}=a^{m_{i}} b a^{M_{i}}$.

For $p / q>1$ and $k \geq 2$, four possible cases of an E-sequence can be fed to the modified Gilman-Maskit algorithm. The E-word corresponding to $\left[n_{0} ; n_{1}, \ldots, n_{k}\right]$ is
also a word in $E\left(\left[n_{0} ; n_{1}, \ldots, n_{k-2}\right]\right)$ and $E\left(\left[n_{0} ; n_{1}, \ldots, n_{k-1}\right]\right)$ if $k \geq 2$. By induction, $E\left(\left[n_{0} ; n_{1}, \ldots, n_{k}\right]\right)$ is a word in $E\left(\left[n_{0} ; n_{1}, n_{2}\right]\right)$ and $E\left(\left[n_{0} ; n_{1}\right]\right)$.

Lemma 6.2.5. Let $a, W, b \in F_{n}$. Then

$$
(a W b)^{k}=a(W b a)^{k} a^{-1}
$$

for and $k \in \mathbb{N}$.

Proof. For $k=0$, the statement is true. Suppose for k high enough, the statement is true. Then,

$$
\begin{aligned}
(a W b)^{k+1} & =(a W b)^{k} a W b=a(W b a)^{k} a^{-1} a W b \\
& =a(W b a)^{k} W b a a^{-1}=a(W b a)^{k+1} a^{-1}
\end{aligned}
$$

The following are the possible cases for an E-sequence with nonzero first entry and lengths or k equal to 1 and 2 .

Case $\left[\right.$ odd $\left.; n_{1}\right]$

Assume n_{0} is odd and $n_{1} \geq 1$. The modified algorithm turns the pair (a, b) into $\left(E_{n_{0}}, b\right)$. Since n_{0} is odd, $E_{n_{0}}$ is not a palindrome. The stopping pair is $\left(E_{n_{0}},\left(E_{n_{0}}\right)^{n_{1}} b\right)$.

$$
\begin{aligned}
E_{n_{0}} & =b^{M_{0}} a b^{m_{0}} \\
\left(E_{n_{0}}\right)^{n_{1}} b & =\left(b^{M_{0}} a b^{m_{0}}\right)^{n_{1}} b \\
& =b^{M_{0}}\left(a b^{m_{0}} b^{M_{0}}\right)^{n_{1}} b^{-M_{0}} b \\
& =b^{M_{0}}\left(a b^{n_{0}}\right)^{n_{1}} b^{1-M_{0}} \\
& =b^{M_{0}}\left(a b^{n_{0}}\right)^{n_{1}-1} a b^{M_{0}}
\end{aligned}
$$

Note that since $\left(E_{n_{0}}\right)^{n_{1}} b=E\left(\left[n_{0} ; n_{1}\right]\right)$ and $n_{1}>1$ the highest exponent is n_{0}.

Case [even; n_{1}]

Assume $n_{0} \geq 2$ is even and $n_{1} \geq 1$. The pair (a, b) becomes the following pairs.

$$
\begin{aligned}
(a, b) & \rightarrow\left(E_{n_{0}}, b\right) \rightarrow\left(E_{n_{0}}, E_{n_{0}}^{m_{1}} b E_{n_{0}}^{M_{1}}\right) \\
E_{n_{0}} & =b^{m_{0}} a b^{m_{0}} \\
E_{n_{0}}^{m_{1}} b E_{n_{0}}^{M_{1}} & =\left(b^{m_{0}} a b^{m_{0}}\right)^{m_{1}} b\left(b^{m_{0}} a b^{m_{0}}\right)^{M_{1}} \\
& =b^{m_{0}}\left(a b^{m_{0}} b^{m_{0}}\right)^{m_{1}} b^{-m_{0}} b b^{m_{0}}\left(a b^{m_{0}} b^{m_{0}}\right)^{M_{1}} b^{-m_{0}} \\
& =b^{m_{0}}\left(a b^{n_{0}}\right)^{m_{1}} b\left(a b^{n_{0}}\right)^{M_{1}} b^{-m_{0}} \\
& =b^{m_{0}}\left(a b^{n_{0}}\right)^{m_{1}-1} a b^{n_{0}} b\left(a b^{n_{0}}\right)^{M_{1}-1} a b^{n_{0}} b^{-m_{0}} \\
& =b^{m_{0}}\left(a b^{n_{0}}\right)^{m_{1}-1} a b^{n_{0}+1}\left(a b^{n_{0}}\right)^{M_{1}-1} a b^{m_{0}}
\end{aligned}
$$

Case [odd; $1, n_{2}$]

Assume n_{0} is odd and $n_{2} \geq 1$. The modified algorithm turns (a, b) into the following pairs.

$$
\begin{aligned}
(a, b) & \rightarrow\left(E_{n_{0}}, b\right) \rightarrow\left(E_{n_{0}}, E_{n_{0}} b\right) \\
& \rightarrow\left(\left(E_{n_{0}} b\right)^{m_{2}} E_{n_{0}}\left(E_{n_{0}} b\right)^{M_{2}}, E_{n_{0}} b\right) \\
E_{n_{0}} b & =b^{M_{0}} a b^{M_{0}} \\
\left(E_{n_{0}} b\right)^{m_{2}} E_{n_{0}}\left(E_{n_{0}} b\right)^{M_{2}} & =\left(b^{M_{0}} a b^{M_{0}}\right)^{m_{2}} b^{M_{0}} a b^{m_{0}}\left(b^{M_{0}} a b^{M_{0}}\right)^{M_{2}} \\
& =b^{M_{0}}\left(a b^{M_{0}} b^{M_{0}}\right)^{m_{2}} b^{-M_{0}} b^{M_{0}} a b^{m_{0}} b^{M_{0}}\left(a b^{M_{0}} b^{M_{0}}\right)^{M_{2}} b^{-M_{0}} \\
& =b^{M_{0}}\left(a b^{n_{0}+1}\right)^{m_{2}} a b^{n_{0}}\left(a b^{n_{0}+1}\right)^{M_{2}} b^{-M_{0}} \\
& =b^{M_{0}}\left(a b^{n_{0}+1}\right)^{m_{2}} a b^{n_{0}}\left(a b^{n_{0}+1}\right)^{M_{2}-1} a b^{M_{0}}
\end{aligned}
$$

Case [even; $1, n_{2}$]

Assume n_{0} is even and $n_{2} \geq 1$. The following pairs are encountered by the modified algorithm.

$$
\begin{aligned}
(a, b) & \rightarrow\left(E_{n_{0}}, b\right) \rightarrow\left(E_{n_{0}}, b E_{n_{0}}\right) \\
& \rightarrow\left(E_{n_{0}}\left(b E_{n_{0}}\right)^{n_{2}}, b E_{n_{0}}\right) \\
b E_{n_{0}} & =b b^{m_{0}} a b^{m_{0}}=b^{m_{0}+1} a b^{m_{0}} \\
E_{n_{0}}\left(b E_{n_{0}}\right)^{n_{2}} & =b^{m_{0}} a b^{m_{0}}\left(b^{m_{0}+1} a b^{m_{0}}\right)^{n_{2}} \\
& =b^{m_{0}} a b^{m_{0}} b^{m_{0}+1}\left(a b^{m_{0}} b^{m_{0}+1}\right)^{n_{2}} b^{-m_{0}-1} \\
& =b^{m_{0}} a b^{n_{0}+1}\left(a b^{n_{0}+1}\right)^{n_{2}} b^{-m_{0}-1} \\
& =b^{m_{0}} a b^{n_{0}+1}\left(a b^{n_{0}+1}\right)^{n_{2}-1} a b^{m_{0}} \\
& =b^{m_{0}}\left(a b^{n_{0}+1}\right)^{n_{2}} a b^{m_{0}}
\end{aligned}
$$

Note that the highest exponent is $n_{0}+1$.
Summary of cases $k \leq 2$:

E-sequence	stopping pair
[odd; n_{1}]	$\left(b^{M_{0}} a b^{m_{0}}, b^{M_{0}}\left(a b^{n_{0}}\right)^{n_{1}-1} a b^{M_{0}}\right)$
[even; $\left.n_{1}\right]$	$\left(b^{m_{0}} a b^{m_{0}}, b^{m_{0}}\left(a b^{n_{0}}\right)^{m_{1}-1} a b^{n_{0}+1}\left(a b^{n_{0}}\right)^{M_{1}-1} a b^{m_{0}}\right)$
[odd; $\left.1, n_{2}\right]$	$\left(b^{M_{0}}\left(a b^{n_{0}+1}\right)^{m_{2}} a b^{n_{0}}\left(a b^{n_{0}+1}\right)^{M_{2}-1} a b^{M_{0}}, b^{M_{0}} a b^{M_{0}}\right)$
[even; $\left.1, n_{2}\right]$	$\left(b^{m_{0}}\left(a b^{n_{0}+1}\right)^{n_{2}} a b^{m_{0}}, b^{m_{0}+1} a b^{m_{0}}\right)$

Note that the formulas above work even if $n_{k}=1$.
Corollary 6.2.4. For $n_{0}>0, k \geq 3$ and $p / q=\left[n_{0} ; n_{1}, \ldots, n_{k}\right] E_{p / q}$ is a word in a and b of the form

$$
b^{k_{1}} a b^{k_{2}} a b^{k_{3}} \cdots a b^{k_{q}} a b^{k_{q+1}}
$$

where $k_{1}, k_{q+1} \in\left\{m_{0}, M_{0}\right\}$ and $\left\{k_{2}, k_{3}, \ldots, k_{q}\right\}=\left\{n_{0}, n_{0}+1\right\}$.
Proof. By Theorem 6.2.2, $E_{p / q}$ is the last modified generator in running the E-sequence $\left[n_{0} ; n_{1}, \ldots, n_{k}\right]$. The modified algorithm has to output the words $E\left(\left[n_{0} ; n_{1}\right]\right)$ and $E\left(\left[n_{0} ; n_{1}, n_{2}\right]\right)$ in the middle of the process. Hence $E_{p / q}$ is a word in $E\left(\left[n_{0} ; n_{1}\right]\right)$ and
$E\left(\left[n_{0} ; n_{1}, n_{2}\right]\right)$. The possibilities of these words are listed in the preceding table. Any product or powers of them has $b^{m_{0}} b^{m_{0}}, b^{m_{0}} b^{m_{0}+1}, b^{M_{0}} b^{M_{0}}$ or $b^{m_{0}} b^{M_{0}}$ in its substring which simplifies to either $b^{n_{0}}$ or $b^{n_{0}+1}$. The table also shows that $E_{p / q}$ is of the claimed form where $k_{i} \in\left\{n_{0}, n_{0}+1\right\}$ except k_{1} and k_{q+1} which are in $\left\{M_{0}, m_{0}\right\}$.

In the second case in the table, m_{1} and M_{1} can possibly equal to 1 so there might be no b-exponent equal to n_{0}. We show that n_{0} still appears as an exponent in $E\left(\left[n_{0} ; n_{1}, \ldots, n_{k}\right]\right)$ if $k \geq 3$.

Let $n_{1}>1$. Suppose after running the E-sequence $\left[n_{0} ; n_{1}\right]$ on (a, b), the new pair is (g, h). If n_{0} is even, g is a palindrome. Continuing the E-sequence further to $\left[n_{0} ; n_{1}, 1\right]$ turns g into either $g h$ or $h g$.

$$
\begin{aligned}
g h & =b^{m_{0}} a b^{n_{0}}\left(a b^{n_{0}}\right)^{m_{1}-1} a b^{n_{0}+1}\left(a b^{n_{0}}\right)^{M_{1}-1} a b^{m_{0}} \\
& =b^{m_{0}}\left(a b^{n_{0}}\right)^{m_{1}} a b^{n_{0}+1}\left(a b^{n_{0}}\right)^{M_{1}-1} a b^{m_{0}} \\
h g & =b^{m_{0}}\left(a b^{n_{0}}\right)^{m_{1}-1} a b^{n_{0}+1}\left(a b^{n_{0}}\right)^{M_{1}-1} a b^{n_{0}} a b^{m_{0}} \\
& =b^{m_{0}}\left(a b^{n_{0}}\right)^{m_{1}-1} a b^{n_{0}+1}\left(a b^{n_{0}}\right)^{M_{1}} a b^{m_{0}}
\end{aligned}
$$

Hence $E\left(\left[n_{0} ; n_{1}, n_{2}\right]\right)$, for $n_{2}>1$, is a word in $E\left(\left[n_{0} ; n_{1}\right]\right)$ and $E\left(\left[n_{0} ; n_{1}, 1\right]\right)$, but $E\left(\left[n_{0} ; n_{1}, n_{2}, n_{3}\right]\right)$ is a word in $E\left(\left[n_{0} ; n_{1}\right]\right)$ and $E\left(\left[n_{0} ; n_{1}, n_{2}\right]\right)$. Hence, there is i with $2 \leq i \leq q$ so that $k_{i}=n_{0}$.

The same problem occurs in the last case where both primitive generators do not have n_{0} as a b-exponent. We must also show that n_{0} still appear as an exponent in $E\left(\left[n_{0} ; n_{1}, \ldots, n_{k}\right]\right)$ for $k \geq 3$.

Let $n_{2} \geq 1$. Suppose after running the E-sequence $\left[n_{0} ; 1, n_{2}\right]$ on (a, b), the new pair is (g, h). If n_{0} is even, g is a palindrome and h is not. Then the E-sequence $\left[n_{0} ; 1, n_{2}, 1\right]$ turns (g, h) into $(g, g h)$. Continuing further, $\left[n_{0} ; 1, n_{2}, 2\right]$ stops with the pair $(g, g h g)$ while $\left[n_{0} ; 1, n_{2}, 1,1\right]$ stops with the pair $(g h g, g h)$. Thus $E\left(\left[n_{0} ; 1, n_{2}, 1, n_{4}\right]\right)$ is a word
in $g h$ and $g h g$ for $n_{4}>1$, and $E\left(\left[n_{0} ; 1, n_{2}, n_{3}\right]\right)$ is a word in g and $g h g$ for $n_{3}>2$.

$$
\begin{aligned}
g h g & =b^{m_{0}}\left(a b^{n_{0}+1}\right)^{n_{2}} a b^{m_{0}} b^{m_{0}+1} a b^{m_{0}} b^{m_{0}}\left(a b^{n_{0}+1}\right)^{n_{2}} a b^{m_{0}} \\
& =b^{m_{0}}\left(a b^{n_{0}+1}\right)^{n_{2}} a b^{n_{0}+1} a b^{n_{0}}\left(a b^{n_{0}+1}\right)^{n_{2}} a b^{m_{0}} \\
g h & =b^{m_{0}}\left(a b^{n_{0}+1}\right)^{n_{2}} a b^{m_{0}} b^{m_{0}+1} a b^{m_{0}} \\
& =b^{m_{0}}\left(a b^{n_{0}+1}\right)^{n_{2}} a b^{n_{0}+1} a b^{m_{0}}
\end{aligned}
$$

Hence both $E\left(\left[n_{0} ; 1, n_{2}, 1, n_{4}\right]\right)$ and $E\left(\left[n_{0} ; 1, n_{2}, n_{3}\right]\right)$ have b-exponents equal to n_{0}.
Remark: The E-word corresponding to $\left[n_{0} ; 1, n_{2}, 1\right]$ still has no b-exponent equal to n_{0}. However, for a continued fraction expansion $\left[n_{0} ; n_{1}, \ldots, n_{k}\right], n_{k}$ is required to be at least 2.

The case when $p / q<1$ is similar but $n_{0}=0$ and the index shifts by 1 . For example, the E-sequence $\left[0 ; n_{1}, n_{2}, n_{3}\right]$ is similar to $\left[n_{1} ; n_{2}, n_{3}\right]$ which is greater than 1 as a rational number. In order to see the precise forms of E -words of $p / q<1$, we go through the cases $n_{0}=0$ and $k \leq 3$.

Case [$0 ;$ odd, n_{2}]
Assume n_{1} is odd and $n_{2} \geq 1$. The modified algorithm runs this E-sequence as follows.

$$
\begin{aligned}
(a, b) & \rightarrow\left(a, E_{1 / n_{1}}\right) \rightarrow\left(a\left(E_{1 / n_{1}}\right)^{n_{2}}, E_{1 / n_{1}}\right) \\
E_{1 / n_{1}} & =a^{m_{1}} b a^{M_{1}} \\
a\left(E_{1 / n_{1}}\right)^{n_{2}} & =a\left(a^{m_{1}} b a^{M_{1}}\right)^{n_{2}} \\
& =a a^{m_{1}}\left(b a^{M_{1}} a^{m_{1}}\right)^{n_{2}} a^{-m_{1}} \\
& =a^{M_{1}}\left(b a^{n_{1}}\right)^{n_{2}} a^{-m_{1}} \\
& =a^{M_{1}}\left(b a^{n_{1}}\right)^{n_{2}-1} b a^{n_{1}-m_{1}} \\
& =a^{M_{1}}\left(b a^{n_{1}}\right)^{n_{2}-1} b a^{M_{1}}
\end{aligned}
$$

Case $\left[0 ;\right.$ even, n_{2}]
Assume $n_{1} \geq 2$ is even and $n_{1} \geq 1$. The pair (a, b) becomes the following pairs.

$$
\begin{aligned}
(a, b) & \rightarrow\left(a, E_{1 / n_{1}}\right) \rightarrow\left(\left(E_{1 / n_{1}}\right)^{M_{2}} a\left(E_{1 / n_{1}}\right)^{m_{2}}, E_{1 / n_{1}}\right) \\
E_{1 / n_{1}} & =a^{m_{1}} b a^{m_{1}} \\
\left(E_{1 / n_{1}}\right)^{M_{2}} a\left(E_{1 / n_{1}}\right)^{m_{2}} & =\left(a^{m_{1}} b a^{m_{1}}\right)^{M_{2}} a\left(a^{m_{1}} b a^{m_{1}}\right)^{m_{2}} \\
& =a^{m_{1}}\left(b a^{m_{1}} a^{m_{1}}\right)^{M_{2}} a^{-m_{1}} a a^{m_{1}}\left(b a^{m_{1}} a^{m_{1}}\right)^{m_{2}} a^{-m_{1}} \\
& =a^{m_{1}}\left(b a^{n_{1}}\right)^{M_{2}-1} b a^{n_{1}+1}\left(b a^{n_{1}}\right)^{m_{2}-1} b a^{m_{1}}
\end{aligned}
$$

Case $\left[0 ;\right.$ odd, $\left.1, n_{3}\right]$
Assume n_{1} is odd and $n_{3} \geq 1$. The pair (a, b) turns into the following pairs.

$$
\begin{aligned}
(a, b) & \rightarrow\left(a, E_{1 / n_{1}}\right) \rightarrow\left(a E_{1 / n_{1}}, E_{1, n_{1}}\right) \\
& \rightarrow\left(a E_{1 / n_{1}},\left(a E_{1 / n_{1}}\right)^{M_{3}} E_{1 / n_{1}}\left(a E_{1 / n_{1}}\right)^{m_{3}}\right) \\
a E_{1 / n_{1}} & =a a^{m_{1}} b a^{M_{1}} \\
& =a^{M_{1}} b^{M_{1}} \\
\left(a E_{1 / n_{1}}\right)^{M_{3}} E_{1 / n_{1}}\left(a E_{1 / n_{1}}\right)^{m_{3}} & =\left(a^{M_{1}} b a^{M_{1}}\right)^{M_{3}} a^{m_{1}} b a^{M_{1}}\left(a^{M_{1}} b a^{M_{1}}\right)^{m_{3}} \\
& =a^{M_{1}}\left(b a^{M_{1}} a^{M_{1}}\right)^{M_{3}} a^{-M_{1}} a^{m_{1}} b a^{M_{1}} a^{M_{1}}\left(b a^{M_{1}} a^{M_{1}}\right)^{m_{3}} a^{-M_{1}} \\
& =a^{M_{1}}\left(b a^{n_{1}+1}\right)^{M_{3}} a^{-1} b a^{n_{1}+1}\left(b a^{n_{1}+1}\right)^{m_{3}} a^{-M_{1}} \\
& =a^{M_{1}}\left(b a^{n_{1}+1}\right)^{M_{3}-1} b a^{n_{1}} b a^{n_{1}+1}\left(b a^{n_{1}+1}\right)^{m_{3}-1} b a^{M_{1}} \\
& =a^{M_{1}}\left(b a^{n_{1}+1}\right)^{M_{3}-1} b a^{n_{1}}\left(b a^{n_{1}+1}\right)^{m_{3}} b a^{M_{1}}
\end{aligned}
$$

Case $\left[0 ;\right.$ even, $\left.1, n_{3}\right]$
Assume n_{1} is even and $n_{3} \geq 1$. The pairs encountered by the modified algorithm are as follows.

$$
\begin{aligned}
(a, b) & \rightarrow\left(a, E_{1 / n_{1}}\right) \rightarrow\left(E_{1 / n_{1}} a, E_{1 / n_{1}}\right) \\
& \rightarrow\left(E_{1 / n_{1}} a,\left(E_{1 / n_{1}} a\right)^{n_{3}} E_{1 / n_{1}}\right) \\
E_{1 / n_{1}} a & =a^{m_{1}} b a^{m_{1}} a \\
& =a^{m_{1}} b a^{m_{1}+1} \\
\left(E_{1 / n_{1}} a\right)^{n_{3}} E_{1 / n_{1}} & =\left(a^{m_{1}} b a^{m_{1}+1}\right)^{n_{3}} a^{m_{1}} b a^{m_{1}} \\
& =a^{m_{1}}\left(b a^{n_{1}+1}\right)^{n_{3}} a^{-m_{1}} a^{m_{1}} b a^{m_{1}} \\
& =a^{m_{1}}\left(b a^{n_{1}+1}\right)^{n_{3}} b a^{m_{1}}
\end{aligned}
$$

Summary of cases for $n_{0}=0$ and $k \leq 3$:

E-sequence	stopping pair
$\left[0 ;\right.$ odd $\left.; n_{2}\right]$	$\left(a^{M_{1}}\left(b a^{n_{1}}\right)^{n_{2}-1} b a^{M_{1}}, a^{m_{1}} b a^{M_{1}}\right)$
$\left[0 ;\right.$ even $\left.; n_{2}\right]$	$\left(a^{m_{1}}\left(b a^{n_{1}}\right)^{M_{2}-1} b a^{n_{1}+1}\left(b a^{n_{1}}\right)^{m_{2}-1} b a^{m_{1}}, a^{m_{1}} b a^{m_{1}}\right)$
$\left[0 ;\right.$ odd $\left.; 1, n_{3}\right]$	$\left(a^{M_{1}} b a^{M_{1}}, a^{M_{1}}\left(b a^{n_{1}+1}\right)^{M_{3}-1} b a^{n_{1}}\left(b a^{n_{1}+1}\right)^{m_{3}} b a^{M_{1}}\right)$
$\left[0 ;\right.$ even $\left.; 1, n_{3}\right]$	$\left(a^{m_{1}} b a^{m_{1}+1}, a^{m_{1}}\left(b a^{n_{1}+1}\right)^{n_{3}} b a^{m_{1}}\right)$

Likewise, the table works for n_{2} of n_{3} possibly equal to 1 .
Corollary 6.2.5. For $n_{0}=0, n_{1} \geq 1, k \geq 4$ and $p / q=\left[n_{0} ; n_{1}, \ldots, n_{k}\right], E_{p / q}$ is a word in a and b of the form

$$
a^{k_{1}} b a^{k_{2}} b a^{k_{3}} \cdots b a^{k_{p}} b a^{k_{p+1}}
$$

where $k_{1}, k_{p+1} \in\left\{m_{1}, M_{1}\right\}$ and $\left\{k_{2}, k_{3}, \ldots, k_{p}\right\}=\left\{n_{1}, n_{1}+1\right\}$.

Proof. The E-word corresponding to $\left[0 ; n_{1}, n_{2}, \ldots, n_{k}\right]$ is a word in the stopping pair of the E-sequence $\left[0 ; n_{1}, n_{2}, n_{3}\right]$. By induction, $E_{\left[0 ; n_{1}, \ldots, n_{k}\right]}$ is a word in the stopping pair of $\left[0 ; n_{1}, n_{2}\right]$. Looking at the table above, any word in a given stopping pair has either $a^{M_{1}+M_{1}}, a^{m_{1}+m_{1}}, a^{m_{1}+1+m_{1}}$ or $a^{m_{1}+M_{1}}$ in its substring which is equal to either
$a^{n_{1}}$ or $a^{n_{1}+1}$. Hence, $E_{\left[0 ; n_{1}, \cdots, n_{k}\right]}$ is of the form $a^{k_{1}} b a^{k_{2}} b \cdots a^{k_{p}} b a^{k_{p+1}}$ where $k_{1}, k_{p+1} \in$ $\left\{m_{1}, M_{1}\right\}$ and $k_{2}, k_{3}, \ldots, k_{p} \in\left\{n_{1}, n_{1}+1\right\}$. Using similar arguments in 6.2.4, there is $k_{i}=n_{i}$ if $k \geq 4$.

Theorem 6.2.8. Let $n \in \mathbb{N}$. There exists a bijection between the set of nonzero integers relatively prime with n in the interval $[-n, n] \subset \mathbb{R}$ and the set of E-words of length n.

Proof. Let Φ and Ψ be the sets defined as follows.

$$
\begin{aligned}
& \Phi=\{p \in \mathbb{Z}: 0<|p|<n \text { and } \operatorname{gcd}(p, n)=1\} \\
& \Psi=\{(p, q) \in \mathbb{Z} \times \mathbb{N}:|p|+q=n, p \neq 0 \text { and } \operatorname{gcd}(p, q)=1\}
\end{aligned}
$$

Define a function $f: \Phi \rightarrow \Psi$ given by $f(x)=(x, n-|x|)$. Let $x \in \Phi$. Then $|x|+(n-|x|)=n, \operatorname{gcd}(x, n)=1$ and $n-|x|>0$. Also $\operatorname{gcd}(x, n-|x|)=1$ since a divisor both of x and $n-|x|$ is also a divisor of n. Hence $f(x) \in \Psi$. Let $(p, q) \in \Psi$. Then $q=n-|p|$ and $\operatorname{gcd}(p, n)=1$ by a similar argument. Thus, $p \in \Phi$ and $f(p)=(p, q)$. If $x \neq y \in \Phi, f(x)=(x, n-|x|) \neq(y, n-|y|)=f(y)$. The set Ψ is exactly the index set of all E-words of length n.

Appendix A

Accompanying Figures

The following figures are aid for visualizing pencils of an isometry or a pir of isometries. Figures A. 1 through A. 5 approximates the pencils of various types. The rest, figures A. 6 through A.28, are pictures involving pairs in Chapter 4.

Permuted pencil of a type I elliptic isometry that fixes ∞.
Same picture for the twisting pencil of either pure loxodromic on screw parabolic

Figure A.1: Elliptic Permuted Pencil Fixing ∞

Figure A.2: Elliptic Permuted Pencil Not Fixing ∞

Figure A.3: Parabolic Permuted Pencil Not Fixing ∞

Figure A.4: Hyperbolic Permuted Pencil Fixing ∞

```
Permuted Pencil of
    a hyperbolic isometry
        fixing v and w
        ~\not=\infty\not=w
```


Figure A.5: Hyperbolic Permuted Pencil Not Fixing ∞

Figure A.6: Theorem 4.1.4

Figure A.7: Theorem 4.1.5

Figure A.8: Theorem 4.1.6

Figure A.9: Theorem 4.1.7

Figure A.10: Theorem 4.1.8

Figure A.11: Theorem 4.1.9: d_{x} is perpendicular to k_{m}

Figure A.12: Theorem 4.1.9: $m \in L$

Figure A.13: Theorem 4.1.10

Figure A.14: Theorem 4.1.11

Figure A.15: Theorem 4.1.12

Figure A.16: Theorem 4.1.13

Figure A.17: Theorem 4.1.14

> pure loxodromic A pure typer bolic B

H. 4.16.

Theorem 4. 1.15

Figure A.18: Theorem 4.1.15

Theorem 4.l.16

Figure A.19: Theorem 4.1.16

Figure A.20: Theorem 4.1.17

Figure A.21: Theorem 4.1.18

Figure A.22: Theorem 4.1.19

Figure A.23: Theorem 4.1.20

Figure A.24: Theorem 4.1.21

Figure A.25: General Figure for Section 4.1.10

Figure A.26: Theorem 4.1.22

Figure A.27: Theorem 4.1.23

Figure A.28: Theorem 4.1.24

Bibliography

[1] Ara Basmajian and Bernard Maskit, Space form isometries as commutators and products of involutions, Trans. Amer. Math. Soc. 364 (2012), no. 9, 5015-5033, DOI 10.1090/S0002-9947-2012-05639-X. MR2922617
[2] Ara Basmajian and Karan Puri, Generating the Möbius group with involution conjugacy classes, Proc. Amer. Math. Soc. 140 (2012), no. 11, 4011-4016, DOI 10.1090/S0002-9939-2012-11253-5. MR2944740
[3] Werner Fenchel, Elementary geometry in hyperbolic space, de Gruyter Studies in Mathematics, vol. 11, Walter de Gruyter \& Co., Berlin, 1989. With an editorial by Heinz Bauer. MR1004006 (91a:51009)
[4] J. Gilman and B. Maskit, An algorithm for 2-generator Fuchsian groups, Michigan Math. J. 38 (1991), no. 1, 13-32, DOI 10.1307/mmj/1029004258. MR1091506 (92f:30062)
[5] Jane Gilman, Two-generator discrete subgroups of $\operatorname{PSL}(2, \mathbf{R})$, Mem. Amer. Math. Soc. 117 (1995), no. 561, $\mathrm{x}+204$. MR1290281 (97a:20082)
[6] _ A discreteness condition for subgroups of $\operatorname{PSL}(2, \mathbf{C})$, Lipa's legacy (New York, 1995), Contemp. Math., vol. 211, Amer. Math. Soc., Providence, RI, 1997, pp. 261-267, DOI 10.1090/conm/211/02824. MR1476991 (98k:30060)
[7] Jane Gilman and Linda Keen, Word sequences and intersection numbers, Complex manifolds and hyperbolic geometry (Guanajuato, 2001), Contemp. Math., vol. 311, Amer. Math. Soc., Providence, RI, 2002, pp. 231-249, DOI 10.1090/conm/311/05455. MR1940172 (2004c:30071)
[8] , Discreteness criteria and the hyperbolic geometry of palindromes, Conform. Geom. Dyn. 13 (2009), 76-90, DOI 10.1090/S1088-4173-09-00191-X. MR2476657 (2010c:30060)
[9] \qquad , Enumerating palindromes and primitives in rank two free groups, J. Algebra 332 (2011), 1-13, DOI 10.1016/j.jalgebra.2011.02.010. MR2774675 (2012f:20078)
[10] Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002. MR1867354 (2002k:55001)
[11] Linda Keen and Caroline Series, Pleating coordinates for the Maskit embedding of the Teichmüller space of punctured tori, Topology 32 (1993), no. 4, 719-749, DOI 10.1016/0040-9383(93)90048-Z. MR1241870 (95g:32030)
[12] , The Riley slice of Schottky space, Proc. London Math. Soc. (3) 69 (1994), no. 1, 72-90, DOI 10.1112/plms/s3-69.1.72. MR1272421 (95j:32033)
[13] Vidur Malik, Curves generated on surfaces by the Gilman-Maskit algorithm, ProQuest LLC, Ann Arbor, MI, 2007. Thesis (Ph.D.)-Rutgers The State University of New Jersey - Newark. MR2710734
[14] _ Primitive words and self-intersections of curves on surfaces generated by the GilmanMaskit discreteness algorithm, In the tradition of Ahlfors-Bers. V, Contemp. Math., vol. 510, Amer. Math. Soc., Providence, RI, 2010, pp. 209-237, DOI 10.1090/conm/510/10027. MR2581839 (2011e:20072)
[15] Bernard Maskit, Kleinian groups, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 287, Springer-Verlag, Berlin, 1988. MR959135 (90a:30132)
[16] Karan Mohan Puri, Factorization of isometries of hyperbolic 4-space and a discreteness condition, ProQuest LLC, Ann Arbor, MI, 2009. Thesis (Ph.D.)-Rutgers The State University of New Jersey - Newark. MR2713266
[17] John G. Ratcliffe, Foundations of hyperbolic manifolds, 2nd ed., Graduate Texts in Mathematics, vol. 149, Springer, New York, 2006. MR2249478 (2007d:57029)
[18] Kristopher Tapp, Matrix groups for undergraduates, Student Mathematical Library, vol. 29, American Mathematical Society, Providence, RI, 2005. MR2141985 (2006d:20001)

Vita

Andrew Ebitner Silverio

1979 Born November 25th, Baler, Aurora, Philippines
1996 High School, Don Bosco Technical College, Mandaluyong, Philippines
2004 A. A. in Computer Science and Mathematics, High Honors, Union County College, Cranford, NJ

2005 Naturalized United States Citizen
2006 B. A. in Mathematics, High Honors, Rutgers University - Newark
2006-2012 Teaching Assistantship, Rutgers Newark
2012-2013 Dissertation Fellowship, Rutgers Newark
2013 Ph. D. in Mathematical Sciences, Rutgers University - Newark

Positions Held

2003-2006 Data Entry, Commerce Bancorp, South Plainfield, NJ
2006 Intern, BOC, Murray Hill, NJ
2006-2012 Teaching Assistant, Department of Mathematics, Rutgers University

Graduate Student Seminar Talks

2010 Things We Like in Dimension Two, Rutgers Newark Graduate Student Seminar

2011 Deformation Theory and Planar Families, CUNY Hyperbolic Geometry Student Seminar (invited)

2011 Primitive Words in Rank 2 Free Group, CUNY Hyperbolic Geometry Student Seminar

2011 The Dilatation Workshop, Rutgers Newark Graduate Student Seminar
2012 Pencils in Hyperbolic 4-Space, CUNY Hyperbolic Geometry Student Seminar

2013
Geometry Hodgepodge, Rutgers Newark Graduate Student Seminar

