Staff View
Vibrational microspectroscopic imaging of normal, wounded, and artificial skin. I.Wound characterization in skin punch biopsies and diabetic foot ulcers. II. Molecular organization of human skin equivalents

Descriptive

TitleInfo
Title
Vibrational microspectroscopic imaging of normal, wounded, and artificial skin. I.Wound characterization in skin punch biopsies and diabetic foot ulcers. II. Molecular organization of human skin equivalents
TitleInfo (type = abbreviated)
Title
Wound characterization in skin punch biopsies and diabetic foot ulcers
TitleInfo (type = abbreviated)
Title
Molecular organization of human skin equivalents
Name (type = personal)
NamePart (type = family)
Yu
NamePart (type = given)
Guo
NamePart (type = date)
1983-
DisplayForm
Guo Yu
Role
RoleTerm (authority = RULIB)
author
Name (type = personal)
NamePart (type = family)
Mendelsohn
NamePart (type = given)
Richard
DisplayForm
Richard Mendelsohn
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
chair
Name (type = personal)
NamePart (type = family)
Pietrangelo
NamePart (type = given)
Agostino
DisplayForm
Agostino Pietrangelo
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Lockard
NamePart (type = given)
Jenny V.
DisplayForm
Jenny V. Lockard
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Michniak-Kohn
NamePart (type = given)
Bozena
DisplayForm
Bozena Michniak-Kohn
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
outside member
Name (type = personal)
NamePart (type = family)
Diem
NamePart (type = given)
Max
DisplayForm
Max Diem
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
outside member
Name (type = corporate)
NamePart
Rutgers University
Role
RoleTerm (authority = RULIB)
degree grantor
Name (type = corporate)
NamePart
Graduate School - Newark
Role
RoleTerm (authority = RULIB)
school
TypeOfResource
Text
Genre (authority = marcgt)
theses
OriginInfo
DateCreated (qualifier = exact)
2013
DateOther (qualifier = exact); (type = degree)
2013-05
Place
PlaceTerm (type = code)
xx
Language
LanguageTerm (authority = ISO639-2b); (type = code)
eng
Abstract (type = abstract)
Vibrational microspectroscopy and imaging offer several advantages for dermatological research, including drug permeation, monitoring of metabolism in vivo, and characterization of skin components. Applications of this technology to the investigation of wound healing in an ex vivo skin punch biopsy and in diabetic foot ulcers are demonstrated in this thesis, along with a comparison of the skin barrier in native skin and in human skin equivalents. Three projects are described herein. The first is the study of lipid conformation in the migrating epithelial tongue during wound healing. The spatial distribution of lipid structure in an ex vivo skin wound healing model was studied using infrared microscopic imaging. Infrared images of samples at different times post wounding (Day 0, 2, 4 and 6) were collected and analyzed. The presence of a lipid class with disordered chains within and in the vicinity of the migrating epithelial tongue (MET) was revealed by analyzing spectra and spectral images of skin samples. The symmetric and asymmetric CH2 stretching frequencies revealed the presence of disordered lipid phases while factor analysis of spectral regions of lipids and univariate analysis of spectral regions provide the information concerning the spacial distribution of the lipids. Gene array analysis also provides evidence for an increase of an unsaturated lipid population. It is hypothesized that this lipid population increase might involve the epidermal growth factor receptor (EGFR) and that this lipid may play a role in controlling the migration of the MET and restoration of barrier functions at the wound site. The second application concerns wound healing in diabetic foot ulcer (DFU). Wound healing in this pathological state is hindered by factors such as glycation of proteins and delayed inflammatory response; these factors also alter the structure and function of the wounded tissue itself. Our study revealed spectral differences between the healing DFU and non-healing DFU samples which were traced to glycation probably of keratin. These results might provide a better understanding wound healing mechanisms in this pathological state. In the third project, vibrational microspectroscopy was applied to compare barrier physical properties in native and artificial skin. Barrier properties of human skin, pigskin, and two human skin equivalents (HSE), “Epiderm”TM 200X with an enhanced barrier, and “Epiderm”TM 200 with a normal barrier were studied. IR spectra reveal that the human stratum corneum (SC) contains a large portion of orthorhombically packed lipid chains at physiological temperature. However, this lipid packing motif occurs to a much lower extent or is absent entirely in pig skin and HSE. Confocal Raman microscopy revealed increased levels of cholesterol-enriched pockets within the HSE samples compared with native tissue. Taken together, these findings provide a useful set of experiments for preliminary characterization of HSE structure.
Subject (authority = RUETD)
Topic
Chemistry
RelatedItem (type = host)
TitleInfo
Title
Rutgers University Electronic Theses and Dissertations
Identifier (type = RULIB)
ETD
Identifier
ETD_4815
PhysicalDescription
Form (authority = gmd)
electronic resource
InternetMediaType
application/pdf
InternetMediaType
text/xml
Extent
xvi, 102 p. : ill.
Note (type = degree)
Ph.D.
Note (type = bibliography)
Includes bibliographical references
Note (type = vita)
Includes vita
Note (type = statement of responsibility)
by Guo Yu
Subject (authority = ETD-LCSH)
Topic
Spectrum analysis
Subject (authority = ETD-LCSH)
Topic
Foot--Wounds and injuries--Complications
Subject (authority = ETD-LCSH)
Topic
Skin--Wounds and injuries--Complications
Subject (authority = ETD-LCSH)
Topic
Diabetes--Complications
Identifier (type = hdl)
http://hdl.rutgers.edu/1782.1/rucore10002600001.ETD.000068791
RelatedItem (type = host)
TitleInfo
Title
Graduate School - Newark Electronic Theses and Dissertations
Identifier (type = local)
rucore10002600001
Location
PhysicalLocation (authority = marcorg); (displayLabel = Rutgers, The State University of New Jersey)
NjNbRU
Identifier (type = doi)
doi:10.7282/T3MP51X0
Genre (authority = ExL-Esploro)
ETD doctoral
Back to the top

Rights

RightsDeclaration (ID = rulibRdec0006)
The author owns the copyright to this work.
RightsHolder (type = personal)
Name
FamilyName
Yu
GivenName
Guo
Role
Copyright Holder
RightsEvent
Type
Permission or license
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2013-05-06 16:10:21
AssociatedEntity
Name
Guo Yu
Role
Copyright holder
Affiliation
Rutgers University. Graduate School - Newark
AssociatedObject
Type
License
Name
Author Agreement License
Detail
I hereby grant to the Rutgers University Libraries and to my school the non-exclusive right to archive, reproduce and distribute my thesis or dissertation, in whole or in part, and/or my abstract, in whole or in part, in and from an electronic format, subject to the release date subsequently stipulated in this submittal form and approved by my school. I represent and stipulate that the thesis or dissertation and its abstract are my original work, that they do not infringe or violate any rights of others, and that I make these grants as the sole owner of the rights to my thesis or dissertation and its abstract. I represent that I have obtained written permissions, when necessary, from the owner(s) of each third party copyrighted matter to be included in my thesis or dissertation and will supply copies of such upon request by my school. I acknowledge that RU ETD and my school will not distribute my thesis or dissertation or its abstract if, in their reasonable judgment, they believe all such rights have not been secured. I acknowledge that I retain ownership rights to the copyright of my work. I also retain the right to use all or part of this thesis or dissertation in future works, such as articles or books.
Copyright
Status
Copyright protected
Availability
Status
Open
Reason
Permission or license
Back to the top

Technical

RULTechMD (ID = TECHNICAL1)
ContentModel
ETD
OperatingSystem (VERSION = 5.1)
windows xp
Back to the top
Version 8.5.5
Rutgers University Libraries - Copyright ©2024