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ABSTRACT OF THE DISSERTATION

Model-based Bayesian Reinforcement Learning

with Generalized Priors

by John Thomas Asmuth

Dissertation Director: Michael L. Littman

Effectively leveraging model structure in reinforcement learning is a difficult

task, but failure to do so can result in computer agents that repeatedly take sub-

optimal actions, despite having enough information to perform better. The

Bayesian approach is a principled and well-studied method for leveraging

model structure, and it is useful to use in the reinforcement learning setting.

This dissertation studies different methods for bringing the Bayesian ap-

proach to bear for model-based reinforcement learning agents, as well as dif-

ferent models that can be used. The contributions include several examples

of models that can be used for learning MDPs, and two novel algorithms, and

their analyses, for using those models for efficient exploration: BOSS and BFS3.

The Bayesian approach to model-based reinforcement learning provides a

principled method for incorporating prior knowledge into the design of an

agent, and allows the designer to separate the problems of planning, learning
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and exploration. The BOSS and BFS3 algorithms are efficient (polynomial time)

mechanisms for decision making within this framework with provable bounds

on their accuracy.
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Preface

Portions of this dissertation are based on work previously published or sub-

mitted for publication by the author [1, 2].
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Chapter 1

Introduction

One of the fundamental goals for researchers working in the field of artificial

intelligence is to make computers act more like “us”. That is, we can play

chess, or drive a car, or control a robot, so why is it so difficult to make a com-

puter program to do things the way we do? Unfortunately, human behavior

appears to arise from an arcane mix of intuition, acquired knowledge, and cal-

culation. Automated problem solvers have gotten very good at the calculation

aspects, but effectively incorporating background knowledge into the agent’s

calculations remains difficult.

The Bayesian approach to machine-learning attempts to address the knowl-

edge issue. With this approach, knowledge given to the algorithm before any

acting occurs or from its own related experiences is formalized into a prior.

The prior describes what the algorithm designer thinks the world “might be”.

As a result, priors can be either extremely vague or even uninformative, but

they can also be exact or nearly exact descriptions of the world. The Bayesian

approach to machine-learning takes the prior and combines it with observa-

tions made from the world to create a posterior, or the agent’s better-informed

impression of the environment in which it acts.

In this dissertation, I discuss methods of applying the Bayesian approach

to building and using models for sequential decision making. Using a prior

to shape an agent’s concept of how its environment works can greatly reduce
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Figure 1.1: The two different approaches to Bayesian model-based reinforce-
ment learning that are discussed in this dissertation are the model-sampling
approach (left) and the experience-sampling approach (right). With a model-
sampling approach, the agent will sample MDPs from the posterior and use
those MDPs to run its internal simulation that it uses to create an estimated
value function. With an experience-sampling approach, the agent treats the
posterior itself as an MDP, and samples observations and rewards directly
from the posterior. The two main algorithmic contributions of this disserta-
tion, BOSS and BFS3, use alternate approaches, with BOSS being a model
sampler and BFS3 being an experience sampler.

the amount of data it must collect before performing well; if you tell it that

something can or can’t happen a certain way, it won’t need to test those things

to find out.

The approach I use here to sequential decision making and reinforcement

learning can be divided into distinct blocks: modeling and planning. Figure 1.1

illustrates the separation of these components. By drawing a strong distinction

between the two areas of agent design, one can more easily draw upon the re-

sults of their respective communities. The Bayesian machine-learning commu-

nity focuses its efforts on building complex models that can be used as priors

in learning, and works on efficient inference approximations. The planning

community focuses its research on efficient ways to act, once given a model. It

is only natural to seek to try to turn the fruits of these two communities into a
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pipeline for learning and sequential decision making.

It is important to note that the best pipeline in this situation is rarely the

greedy one, where the agent infers a model, feeds it directly into the plan-

ner and follows the planner’s advice. In Chapters 3, 4, and 5, I will describe,

motivate and analyze several innovative methods for combining the results of

model inference with different sorts of planners.

The particular flavor of learning and sequential decision making problems

approached here is called reinforcement-learning. Reinforcement learning pro-

vides a flexible way to evaluate a possible behavior through the use of numer-

ical rewards that the agent seeks to maximize. Simple “find the shortest path

to the goal” behavior, that much of planning research is centered around, is

insufficient for many more realistic scenarios where there can be many factors

to consider when comparing the “goodness” of two agent behaviors.

1.1 Reinforcement Learning

Reinforcement learning, or RL, is a framework for problems in which an agent

faces both an unknown world and/or an unknown goal. In a reinforcement-

learning scenario, the agent interacts with the environment by making obser-

vations and performing actions. Each time an action is performed, a new ob-

servation is returned to the agent along with a numerical reward signal. The

agent’s goal is, then, to maximize the cumulative reward over the course of the

experiment.

Reinforcement learning model to any problem that has an agent, an envi-

ronment and rewards. Shortest-path problems can be represented by a reward

function that gives −1 for each step before the goal, and 0 or some positive
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reward for every step after the goal is reached. Bandit problems, a class of

reinforcement-learning problems in which the actions taken in the past have

no effect on actions taken in the future (though the previous results can affect

the agent’s perception of what might happen in the future), can be mapped to

online advertizing, where the agent is trying to figure out what ads a typical

user is most likely to click.

The related fields of planning and control theory, while initially appearing

to solve many of the same kinds of problems, address only part of the story.

Planning and control theory are two ways to figure out what to do in a known-

model situation. That is, the situation where you have a complete understand-

ing of the world in which your agent exists, and there is no need to learn about

or explore the environment. The field of reinforcement-learning makes the op-

posite assumption: that some portion of the world must be learned to develop

good agent behavior.

With an unknown world, there is a tension between acting to optimize re-

ward based on what the agent already knows, and taking actions that are very

likely not the right thing to do, in order to learn more about the world so that

the agent can gather reward more efficiently in the future. This tension is re-

ferred to as the exploration/exploitation trade-off, and is central to the field of

reinforcement-learning.

Since the observations made by the agent often correspond strongly with

the previous observation and the action performed, reinforcement-learning

shares some attributes with active learning. The agent can direct the kinds

of data it receives by deciding which action to perform, but it is also limited by

the previous observation.
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Since it is often difficult to distinguish between two infinite sums, RL re-

searchers lean on the idea of a discount factor, usually labeled γ. An agent’s

optimal policy is then the one that maximizes the expected cumulative dis-

counted sum of rewards. This sum is called the expected return. The expected

return for a given policy π is denoted Rπ:

Rπ =
∞

∑
t=0

γtEπ[rt]. (1.1)

The optimal policy, π∗, is the policy that maximizes the return:

π∗ = argmax
π

Rπ. (1.2)

1.1.1 Markov Decision Processes

A common way to concisely describe a reinforcement-learning environment

is the Markov Decision Process, or MDP. With an MDP, the observation is a

complete description of the configuration, or state, of the world, and the next

observed state is a function only of the previous state and action performed.

That is, if an agent begins in state s1 and performs action a1, the odds that it

ends up in state s2 are the same no matter when this occurs — the next-state

distribution is unchanging. It is important to note that the agent’s impression of

the next-state distribution is free to change, but the actual distribution, which

may be unknown, is stationary.

An MDP is formally defined as the tuple 〈S, A, R, T〉, where S is the set

of states, A is the set of actions, R : S × A → < is the reward function, and

T : S× A → Π(S) is the transition function. The state and action sets S and

A may be a discrete collection or a continuous range. The reward function R

maps state-action pairs to numerical rewards, and the transition T maps state-

action pairs to distributions over next-states. Usually, S and A are given, and
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R and T begin unknown and must be learned.

An MDP is often represented by a graph (for example, see Figure 1.2),

where nodes are states and edges are actions. At any given time, the agent

is said to be in some state, and can take an action. As a result of taking the

action from the state, the agent will receive a numerical reward and end up in

another state, or possibly stay in the same state.

The expected return of the optimal policy for the MDP, starting in a particu-

lar state, is called the value of that state. The value of a state is denoted by V(s),

and is captured by a recurrence relation. The expected return for being in a

particular state, taking a given action, and following the optimal policy there-

after, is called the Q-value of that state-action pair. The Q-value of a state-action

pair is denoted by Q(s, a). The functions Q and V can be related by:

V(s) = max
a

Q(s, a), (1.3)

Q(s, a) = R(s, a) + γ ∑
s′

T(s, a)(s′)V(s′). (1.4)

Using the definition of V(s), we know that the optimal policy is the one that

always chooses the action with the highest Q-values for the current state.
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1.1.2 Planning

The act of finding an optimal or near-optimal policy for a known MDP is called

planning. Some planning techniques will be given a more thorough treatment

in Chapter 3. This chapter will briefly describe some simple planning tech-

niques.

Value Iteration

Value iteration, outlined in Algorithm 1, is a planning method which applies

the idea of dynamic programming to solving an MDP with a discrete state

space and discrete action space. The values that are iterated are the Q-values.

The Q-values are given some initial guess (for instance, zero), and Equations 1.3 and 1.4

are applied iteratively to all state-action pairs (for the Q-value) and to all states

(for the value).

Once the difference between successive estimates of the Q-values, mea-

sured by the ∞-norm1, is smaller than (1− γ)ε/2, the difference between the

last estimate and the truth is guaranteed to be no larger than ε. Eventually, the

error will shrink to an acceptably small level, and an approximately optimal

policy will be found.

For manageably small numbers of states and actions, value iteration is an

effective and easy method for planning. Because the minimum accuracy ε is

specified, the algorithm is gauranteed to finish after a finite number of “sweeps”

of updates over the states.

1 The infinity norm of a vector is the absolute value of its largest element.
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Input: State set S, action set A, reward function R, transition function T,
discount factor γ, accuracy ε

Output: Q-value table Q
∀s V0(s)← 0
∀s,a Q0(s, a)← 0
e0 ← ∞
i← 0
while ei > ε do

i← i + 1
ei ← 0
for s ∈ S do

for a ∈ A do
Qi(s, a)← R(s, a) + γ ∑s′ T(s′|s, a)Vi−1(s′)

Vi(s)← maxa Qi(s, a)
ei ← max(ei, |Vi(s)−Vi−1(s)|)

return Qi
Algorithm 1: Value iteration(S, A, R, T, γ, ε)

1.1.3 Outcomes

It is often useful to think of transitions from state to state in terms of the out-

come rather than the resulting state [4, 5].In the context of this dissertation, an

outcome is a summary of a change from one state to another. An example in a

grid-world is where each state is assigned a coordinate specifying a cell in the

grid. With the origin at the bottom left, moving from the cell (4, 2) to the cell

(4, 3) can be described by starting in the cell (4, 2) and moving “up” (0, 1). In

this situation, the outcome is “up” and it describes how to derive the destina-

tion state given the beginning state.

More formally, we have a set of states S, a set of outcomes O, an outcome

function f : S×O → S, and an inverse outcome function f−1 : S× S → O. In

the grid-world example, S is the set of all possible cell coordinates, and O is the

set {up, down, left, right, stay}. f is a function that takes a state (for instance,

(4, 2)) and an outcome (“up”) and produces the next state ((4, 3)). The inverse

outcome function takes two states and returns the outcome that describes the



9

transition from the first state to the second state if it exists.

The concept of an outcome becomes especially useful when trying to apply

the same dynamics to two or more different states. In the grid-world example,

it is very likely that every state-action pair has a unique next-state distribution.

But, observations on outcomes made in one state can very often be applied

successfully to learning another state.

Chapter 2 discusses some ways in which outcome distributions can be used

to cluster states together, and how these groupings can be used to speed learn-

ing and drive exploration.

1.1.4 Optimality Guarantees

A decision-making algorithm’s policy is said to be optimal if it maximizes the

expected return. Since it is generally impossible to infer an optimal policy

before any learning has taken place, weaker guarantees are necessary.

Convergence

A reinforcement-learning algorithm has a convergence guarantee if it will prov-

ably act with the optimal policy in the limit, or after an infinite number of

steps in the environment. While this guarantee is fairly weak, theoretically,

algorithms that assert it often converge to something near-optimal in a much

shorter period of time.

Q–learning [6] is an example of a reinforcement-learning algorithm with a

convergence guarantee.
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PAC-MDP

Probably Approximately Correct in MDPs, or PAC-MDP, is a guarantee that as-

serts near-optimality with high likelihood in a “short” amount of “time”. An

algorithm that is PAC-MDP divides its interactions with the environment into

two catagories: exploration steps and exploitation steps. All exploitation steps

must have near-optimal actions, or those whose Q–values are within a given

accuracy threshold of the state’s value, denoted by ε. For an algorithm to be

PAC-MDP, the number of exploration steps may not exceed a polynomial of

the parameters of the environment (often the parameters will be the number

of states and actions available in the environment). The algorithm is allowed

some overall chance of failure, denoted by δ.

An algorithm that is PAC-MDP will, with high probability, make approxi-

mately optimal decisions for all but a polynomial number of steps, where the

polynomial is a function of the number of states, actions, ε and δ.

RMAX [3] is an example of a reinforcement-learning algorithm with a PAC-

MDP guarantee.

Bayes-optimal

Bayes-optimality is an optimality guarantee made in the context of an MDP

prior. The prior distribution acts as knowledge about the environment given to

the agent before learning occurs. If the MDP truly is drawn from the provided

prior, then the policy that acquires the highest expected return is well-defined,

if difficult to compute.

Since every step in the environment affects the agent’s belief about the en-

vironment in a well-defined way, it is possible to account for all possible step

sequences and belief updates over some finite horizon.
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Figure 1.3: Left: an agent makes a trajectory through an MDP, starting at s1
and following the grey arrows. Right: the agent’s trajectory through the cor-
responding BAMDP, where each belief-state has information about what has
happened before, as well as the concrete state. Note that once the agent reaches
a particular belief-state in the BAMDP, many belief states become unreachable
since their internal beliefs are inconsistent with the experience that has been
realized.

Bayesian learning in an MDP can be represented by a Bayes-Adaptive MDP,

or BAMDP [7]. A BAMDP is a special MDP laid out like a directed acyclic

graph whose states are belief-states and whose actions are the actions that can

be performed in the actual MDP. The belief-state expresses the agent’s knowl-

edge about the environment and a concrete state in which the agent can exist.

The knowledge of the environment can be expressed by the combination of the

prior and the observations made up to that point, or the posterior.

Figure 1.3 shows a brief MDP traversal and the equivalent traversal in the

corresponding BAMDP. Inside each state in the BAMDP, which I will call a

belief-state, there is a pairing of a concrete-state from the real MDP and the his-

tory leading to that belief-state. The transition probabilities from belief-states

in the BAMDP are known functions of the belief-state’s posterior.

The intuition behind the accuracy of the BAMDP for Bayesian-optimal de-

cision making follows. Given some current belief-state for the agent, there is
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some set of next belief-states that can occur (this set may be infinite or con-

tinuous) for each action. The probability of each possible next belief-state is

well-defined, and the posterior represented by the belief-state is the combina-

tion of the previous posterior and the step that could theoretically have oc-

curred: each of the next belief-states represent one possible world that could

result from taking one of the actions.

With a model prior φ that supports MDPs with state-space S, action-space

A, and discount factor γ, the corresponding BAMDP is a new MDP with the

same action-space and discount factor, but a new state-space. The state-space

is S × H, where H is the set of all possible sequences of transitions, where a

transition is a tuple (s, a, s′, r). The prior φ can then be conditioned on a history

h to get the posterior φ|h. The transition function of the BAMDP M|φ is then

defined to be

P(〈s′, h + (s, a, s′, r)〉|〈s, h〉, a) =
∫

M
P(s′, r|s, a, M)φ(M|h)dM. (1.5)

In Equation 1.5, the transition likelihood to the concrete state in question, s′, is

considered for all possible MDPs M and weighted according to their posterior

likelihoods, taken from φ|h.

Finding the value of a belief-state can then be done recursively via dynamic

programming, treating the set of next belief-states as a set of independent plan-

ning problems solved in the exact same way. When the agent takes a step in the

actual environment, the agent’s new belief matches exactly one of the beliefs

considered in the planning problem from the previous state.

If the environment is truly drawn from the agent’s prior, simulating experi-

ence according to the prior and calculated posteriors is the exact same process

as running through a single trajectory in the experiment. In fact, the entire

BAMDP is known perfectly. Unfortunately, it is usually difficult to completely
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solve, since the complete BAMDP has an infinite number of states. Even if we

consider only those states reachable in a fixed number of steps (sufficient for

approximate planning when there is a discount factor), the number of reach-

able BAMDP belief-states grows exponentially with that horizon length, the

number of actions, and the number of different concrete states reachable in a

given transition.

PAC-BAMDP

Probably Approximately Correct for Bayes Adaptive MDPs (also known as near

Bayes-optimal [8]), or PAC-BAMDP [9], is an optimality guarantee for Bayesian

reinforcement-learning.

Exact Bayes-optimal policy inference is generally intractable. Even with a

small number of discrete actions and discrete states with a finite horizon, the

size of the tree grows exponentially with its depth (with A actions, S states,

and a depth of d, there can be up to (AS)d nodes visited by any algorithm.

This growth rate means that even if we limit our planning to some depth2,

fully evaluating every possibility is very expensive.

As is common in machine-learning tasks, we can opt to satisfy ourselves

with a probably approximately correct variation. Instead of considering all

possible next belief-states in the search tree, we may consider a sufficiently

representative subset. Limiting ourselves to the smaller set introduces some

probability of failure, denoted δ. In general, as δ grows small, the necessary

size of the subset grows large. Instead of searching infinitely deep into the

tree, we may consider nodes only up to a certain depth. Searching only to

2 With a discount factor γ, an accuracy constraint ε, and a maximum value Vmax, we need
not consider anything farther than logγ

ε
Vmax

steps away (see the Bounded Horizon Lemma for
details).
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some depth introduces an accuracy error, denoted ε. In general, as ε goes to

zero, the necessary depth of the search tree goes to infinity.

An algorithm that is PAC-BAMDP will, with probability 1 − δ, make ε-

Bayes-optimal decisions for all but a polynomial number of steps, where the

polynomial is a function of the number of concrete states (not the number of

belief-states), actions, ε, 1/(1− γ), and δ.

It is important to understand exactly what is entailed when an algorithm

is PAC-BAMDP. Starting from some particular belief state, there is no guaran-

tee that the discounted return seen from that belief state is optimal or Bayes-

optimal. In fact, the agent is able to choose very poor actions with extremely

poor returns. Even if only the first action from some belief state is sub-optimal,

if it brings the agent to a part of the state space with poor rewards, the return

that results from that first action can be arbitrarily worse than the return as-

sociated with the best action. This example, where one sup-optimal action is

followed by many optimal or near-optimal actions, is in line with the definition

and spirit of the PAC-BAMDP guarantee: the total number of actions that are

not near-optimal is small, even if those near-optimal actions are especially bad.

Since a single sub-optimal action can have a severe effect on the return seen

from that belief-state onwards, what can be said about the overall returns dur-

ing the lifetime of a PAC-BAMDP agent? First, we can define regret.

Definition 1. Regret is the difference between the agent’s expected discounted future

cumulative reward, when beginning at a particular belief state, and the expected dis-

counted future cumulative reward that would result from following the Bayes-optimal

policy on every step, starting from that same belief state.

Then, we can define the expected regret.
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Definition 2. Expected regret is the average regret of all belief states in the sequence

of belief states visited by an agent over its lifetime.

An expected regret of zero indicates that the agent’s policy was exactly

Bayes-optimal, and an expected regret of ε means that the policy was close

to Bayes-optimal, on average. An expected regret of ε does not mean that

the agent’s policy was ε-Bayes-optimal; several actions could have been worse

than ε-Bayes-optimal, as long as there were others that were closer to exactly

Bayes-optimal to make up for the shortfall. With a long enough sequence

of belief states, an agent that has a bounded number of steps that are not

ε-Bayes-optimal will have an expected regret that approaches something no

more than ε. A PAC-BAMDP algorithm does exactly that: With high probabil-

ity, it bounds the number of steps where the agent chooses an action that is not

ε-Bayes-optimal, and since the bound is small, the expected regret approaches

ε more quickly than an algorithm with a larger bound on the number of sub-

Bayes-optimal steps. A lower expected regret is good, because it indicates that

the agent is making more ε-optimal decisions.

The concept of PAC-BAMDP is not quite directly analogous to PAC-MDP.

With a PAC-MDP algorithm, it is normally impossible to act optimally for all

steps. That is, the polynomial number of mistakes is necessary to find the

optimal policy later — there is simply not enough information available to the

agent until many potentially sub-optimal steps are taken. With PAC-BAMDP,

it is possible to achieve ε-δ Bayes-optimal behavior with zero sub-optimal steps.

All information needed to act Bayes-optimally is contained in the prior.

An example of an ε-δ-Bayes optimal algorithm that requires zero sub-optimal

steps is the application of Sparse Sampling to the BAMDP. The Sparse Sam-

pling algorithm, discussed in detail in Chapter 3, performs an exhaustive tree
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search up to some provided depth d, trying every action from each visited state

C times in order to get a good representation of the next-state distribution. The

quantities d and C are chosen to ensure that a ε-accurate value for the state is

found with probability 1− δ. Given d and C, Sparse Sampling will have to

create (AC)d nodes in its search tree, where A is the number of actions. As a

result of this exponential component to the algorithm’s runtime, and the fact

that C and d need to be phenomenally large3 to ensure a reasonable accuracy,

Sparse Sampling is impractical to use even in most trivial problems.

PAC-BAMDP can then be called a compromise between a reinforcement-

learning algorithm’s sample complexity and computation complexity. Sparse

Sampling on the BAMDP has a sample complexity of 0, but an exponential

computation complexity. In contrast is Bayesian DP, presented in Chapter 3,

which has low computational complexity, but potentially unbounded sample

complexity. Chapter 3, on related work, and Chapters 4 and 5, on the contri-

butions of this dissertation, describe algorithms with PAC-BAMDP guarantees

and several ways to approach the more traditional computation complexity

issue.

The PAC-MDP Theorem

This section presents a framework for proving that an algorithm offers a PAC-

MDP guarantee.

This proof is an adaptation of earlier work [10, 11] with one minor change:

instead of saying a particular state-action pair is known when it has been tried

3 The quantity C must be large enough so that all nodes in the search tree have enough
children to be able to estimate their dynamics properly. However, the number of nodes in the
search tree grows with (AC)d. This feedback loop results in bounds for C that are astoundingly
high.
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at least some threshold number of times, a state-action pair is said to be known

when other state-action pairs of the same class have been visited at least some

threshold number of times. Introducing the concept of a class of state-action

pairs allows the analysis to work smoothly with BAMDPs, which have an in-

finite number of states. Though the number of states may be infinite, we can

choose classes for each state-action pair that identify what part of that pair is

being learned about (that is, we can ignore history when choosing a class).

Bounded Horizon Lemma. Let Vπ
m (s, H) be the expected value of following

policy π in MDP m for H steps, starting at state s. Then,

Vπ
m (s, H) ≥ Vπ

m (s)− εH, (1.6)

when

H = logγ(εH/Vmax). (1.7)

Proof. Let the return R be the discounted sum of rewards from time-step 0

onwards, and R(H) be the discounted sum of rewards for the first H steps.

That is,

R =
∞

∑
t=0

γtrt, (1.8)

R(H) =
H−1

∑
t=0

γtrt. (1.9)

Assuming without loss of generality that 0 ≤ rt ≤ Rmax, we can bound the

difference between R and R(H):

R− R(H) =
∞

∑
t=H

γtrt, (1.10)

≤
∞

∑
t=H

γtRmax, (1.11)

≤ γH

1− γ
Rmax, (1.12)

≤ γHVmax. (1.13)
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Therefore, to bound the difference at εH, we must choose an H such that

εH = γHVmax, (1.14)

H = logγ

(
ε

Vmax

)
. (1.15)

If choosing H this way bounds the difference between any sequence of returns

and its H horizon to εH, it must also bound the expected return under any

policy.

Simulation Lemma [11, 12]. Let m1 and m2 be two MDPs, such that

∀s,a,s′ |T1(s′|s, a)− T2(s′|s, a)| ≤ εT, (1.16)

∀s,a|R1(s, a)− R2(s, a)| ≤ εR. (1.17)

Then,

∀s|V1(s)−V2(s)| ≤ s(εT, εR), (1.18)

∀s,a|Q1(s, a)−Q2(s, a)| ≤ s(εT, εR), (1.19)

where

s(εT, εR) =
εR + γVmaxεT

1− γ
. (1.20)

Definition 3. Let m be an MDP with transition function T, reward function R, state

set S and action set A, and let Q(s, a) and V(s) be the Q-function and value function

for m, respectively.

Definition 4. Let C be a set of classes for state-action pairs, and let c : S× A → C

be a classifier. A simple and useful example of a classifier would be one that assigns

each state-action pair to its own class. For a BAMDP, where each BAMDP state is the

pairing of a concrete state from the MDP and a history of all transitions observed, the

classifier could assign each concrete state and action pair a class, ignoring history.
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Definition 5. Let B be a knownness threshold. The quantity B needs to be chosen such

that if an agent has tried some state-action pair at least B times, it has an approximately

accurate estimate of its transition and reward functions.

Definition 6. Let Kt ⊆ C be the set of known classes, and let Ut = C− Kt be the

set of unknown classes, at time-step t. A state-action pair (s, a) is said to be known

if c(s, a) ∈ Kt.

Definition 7. Let A be an agent, with

• Tt being A’s estimate of the transition function at time-step t,

• Rt being A’s estimate of the reward function at time-step t,

• Qt being A’s estimate of the Q-function at time-step t,

• πt being A’s policy at time-step t,

such that

πt(st) = argmax
a

Qt(st, a), (1.21)

∀(s,a)|c(s,a)∈Kt Qt(s, a) = Rt(s, a) + γ ∑
s′

Tt(s′|s, a)Vt(s′), (1.22)

Vt(s) = Qt(s, πt(s)). (1.23)

Note that Qt(s, a) is defined only for known state-action pairs. For unknown state-

action pairs, A may calculate Qt(s, a) however it wishes.

PAC-MDP Theorem. Let the following conditions be true.

1. Optimism: for any given c(s, a) ∈ Ut, Qt(s, a) ≥ Q(s, a)− εu.

2. Bounded discoveries: if c(st, at) ∈ Kt, then πt+1 = πt,

and ∀s,a ∑∞
t=0 1 [(s, a) = (st, at) ∧ c(st, at) ∈ Ut] < B.
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3. Accuracy: if c(s, a) ∈ Kt, then ∀s′ |Tt(s′|s, a)−T(s′|s, a)| ≤ εT and |Rt(s, a)−

R(s, a)| ≤ εR.

Then, the expected number of sub-ε-optimal actions chosen by agent A is at

most N = 1
δl

HBC, where

δl =
ε− (εu + s(εT, εR) + 2εH)

Vmax
, (1.24)

s(εT, εR) =
εR + γVmaxεT

1− γ
, (1.25)

H = logγ

(
εH

Vmax

)
, (1.26)

N ∈ poly
(

1
ε

, Vmax,
1

1− γ
, log

(
εH

Vmax

)
, B, C

)
. (1.27)

Proof. Lemma 1 shows that if a certain event is sufficiently unlikely during

a particular step, that step is ε-optimal. Lemma 2 shows that the expected

number of steps without that quality is bounded by 1
δ l HBC.

Definition 8. Let Dt be the event that A visits an unknown state-action pair some

time between time-step t and t + H. Or, the event ∃0≤n≤Hc(st+n, at+n) ∈ Ut.

Lemma 1. If P(Dt) ≤ δl, then Q(st, at) ≥ V(st)− ε. In other words, if the likelihood

of a discovery within H steps is too small, at is an ε-optimal action in state st.

Proof. The strategy for this proof is as follows:

• Speculate the existence of an intermediate MDP mt, which has perfectly

accurate dynamics for known state-action pairs, and optimistic Q-values

for unknown state-action pairs.

• Bound the difference between the value of the current policy on the real

MDP and on mt.

• Bound the difference between the value of the current policy on mt and

A’s estimate.
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Let mt be an MDP with the transition function for any known state-action

pair (with c(s, a) ∈ Kt) defined to be

Tmt(s
′|s, a) = T(s′|s, a), (1.28)

and the Q-function for any unknown state-action pair (with c(s, a) ∈ Ut) defined

to be

Qmt(s, a) = Qt(s, a). (1.29)

That is, for known state-action pairs, it has the dynamics from the true MDP,

and for unknown state-action pairs, it uses A’s estimate of the Q-function.

By applying Condition 3 and the simulation lemma, we can bound the dif-

ference between its value function and A’s estimate:

|Qmt(s, a)−Qt(s, a)| ≤ s(εT, εR), (1.30)

|Vmt(s)−Vt(s)| ≤ s(εT, εR), (1.31)

where s(εT, εR) =
εR+γVmaxεT

1−γ .

The value of following policy πt from st for H steps in m, or Vπt(st, H),

versus the same value in mt, or Vπt
mt (st, H), can only differ if an unknown state-

action pair is visited, and then the difference is bounded by Vmax. Therefore,

Vπt(st, H) ≥ Vπt
mt
(st, H)− δlVmax, (1.32)

Vπt(st) + εH ≥ Vπt
mt
(st)− εH − δlVmax, (1.33)

Vπt(st) ≥ Vπt
mt
(st)− 2εH − δlVmax, (1.34)

≥ Vt(st)− s(εT, εR)− 2εH − δlVmax, (1.35)

≥ V(st)− εu − s(εT, εR)− 2εH − δlVmax, (1.36)

Qπt(st, at) ≥ V(st)− εu − s(εT, εR)− 2εH − δlVmax, (1.37)

Q(st, at) ≥ V(st)− εu − s(εT, εR)− 2εH − δlVmax. (1.38)
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Equation 1.33 is a result of applying the Bounded Horizon Lemma. Equa-

tion 1.35 is a result of applying the Simulation Lemma. Equation 1.36 is a result

of applying the Optimism Condition.

If we choose δl such that

δl =
ε− (εu + s(εT, εR) + 2εH)

Vmax
, (1.39)

then

Q(st, at) ≥ V(st)− ε. (1.40)

Lemma 2. The expected number of steps that A takes where P(Dt) > δl is no more

than 1
δl

HBC.

Proof. Let a discovery be the event where c(st, at) ∈ Ut. That is, A took a step

that may change its estimated transition and Q-functions.

The number of discoveries is at most BC, since each state-action pair’s class

can be visited at most B times before it becomes known, and there are C classes

to choose from.

Let a window of H time-steps beginning at time-step t, be called a discovery

window if P(Dt) > δl, and t = 0, P(Lt−1) ≤ δl, or c(st−1, at−1) ∈ Ut−1. That

is, these windows do not overlap. The probability of a discovery, or visiting an

unknown state-action pair, is at least δl, so the expected number of discoveries

per window is at least δl.

The expected number of windows per discovery is at most 1/δl, and since

there are H steps per window, the expected number of steps per discovery is

H/δl.
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Since there are at most BC discoveries, the expected number of steps during

discovery windows is 1
δl

HBC.

Since any steps taken while not in a discovery window must must be ε-

optimal, the expected number of sub-optimal steps is at most 1
δl

HBC.

This proof framework provides a straightforward way to prove that certain

classes of reinforcement-learning algorithms have a PAC-MDP guarantee. That

is not to say that if an algorithm does not satisfy this framework’s conditions,

it cannot be PAC-MDP—they are sufficient, but not necessary, conditions.

1.2 Bayesian Inference

Bayesian inference refers to the general technique of combining a prior distri-

bution with observed data to obtain a posterior distribution. Bayesian priors

provide principled ways to bring knowledge into a learning problem. The

prior distribution encodes the designer’s assumption about how the agent’s

world or environment operates.

Bayesian inference is based on one simple equation, Bayes rule, that relates

the prior distribution to the posterior:

P(H|E) =
P(E|H)P(H)

P(E)
, (1.41)

where H is the hypothesis and E is the evidence. The quantity P(H|E), or

the probability of the hypothesis conditioned on the evidence, is the posterior;

P(E|H), or the probability of the evidence conditioned on the hypothesis, is

the data likelihood; P(H), or the probability of the hypothesis without regard

to the evidence, is the prior; P(E), or the probability of the evidence without

regard to the hypothesis, plays the role of a normalizing factor and is not cal-

culated directly.
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1.2.1 Coin Flipping

An example that can illustrate the Bayesian inference process is that of learning

the bias of a coin by flipping it a number of times.

Suppose there is a bag of 10000 coins, 10 of which are two-headed. The

remaining 9990 coins are fair coins, equally likely to flip heads or tails. The

experiment is to take a coin from this bag, and track how likely it is that the

coin is biased after some number of n observed flips.

First, there must be a generative model to describe the experiment dynam-

ics:

ρ ∼

 0.5 w.p. 9990/10000,

1 w.p. 10/10000,
(1.42)

H ∼ Binomial(ρ, n), (1.43)

where ρ is the bias of the coin, either 0.5 (fair) or 1 (two-headed), n is the num-

ber of flips made, and H is the number of flips observed to be heads.

The number of observed heads, H, is drawn from the binomial distribution,

which has the probability mass function

P(H = h|ρ, n) =
(

n
h

)
hρ(n− h)1−ρ. (1.44)

The prior distribution of the coin’s bias is defined explicitly in the genera-

tive model, in Equation 1.42. To find the corresponding posterior distribution,

one must use Bayes rule from Equation 1.41.

The posterior, P(ρ|h, n), can be formulated by applying Bayes rule.
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P(ρ|h, n) ∝ P(h|ρ, n)P(ρ|n), (1.45)

∝ P(h|ρ, n)P(ρ) (1.46)

∝
(

n
h

)
hρ(n− h)1−ρP(ρ) (1.47)

∝ hρ(n− h)1−ρP(ρ). (1.48)

From our original model, Equation 1.42 tells us that there are only two pos-

sibilities for ρ: 0 or 0.5. To find their exact posterior likelihoods, we can evaluate

Equation 1.46 for both and normalize.

P(ρ = 0.5|H = h, n) ∝ 0.5h0.5n−h · 9990
10000

(1.49)

∝ 0.5n · 9990
10000

. (1.50)

P(ρ = 1|H = h, n) ∝ 1h0n−h · 10
10000

. (1.51)

Let’s first evaluate the posterior likelihood that ρ = 1.

P(ρ = 1|H = h, n) =
1h0n−h · 10

10000

1h0n−h · 10
10000 + 0.5n · 9990

10000

. (1.52)

There are two basic cases:

1. Every flip was heads, or h = n.

2. Not every flip was heads, or h < n.

In Case 1, when h = n, Equation 1.52 can be used to evaluate the posterior

exactly.
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Figure 1.4

In Case 2, when h < n, P(ρ = 1|H = h, n) goes to zero because of the 0n−h

term in the numerator.

This same process, applying Bayes rule to turn a prior and observations

into a posterior, is the basis for all models discussed in this work.

1.2.2 The Chinese Restaurant Process

The Chinese Restaurant Process, or CRP, is a nonparametric prior that can be

used to guess assignments of elements in a set to clusters [13]. Here, the word

nonparametric indicates that the number of parameters supplied by the CRP

posterior is not known in advance and instead depends on the size of the ob-

servation set that it is given.

The CRP prior likelihood is easy to evaluate online. For a new element, the

prior likelihood that it belongs to any given cluster is proportional to the num-

ber of elements already in that cluster, and the prior likelihood that it belongs

in a new cluster is proportional to a parameter α.

Inference on mixture models can often be done with a CRP. A generative

mixture model follows. The observed data X and the base measure G0 are

given, and α is a parameter that influences cluster size:
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Fi ∼ G0 (1.53)

C ∼ CRP(α) (1.54)

Xt ∼ FCt . (1.55)

Here, C is a vector and Ct is the index of the cluster assigned to the data point

Xt. Fi is the sampling distribution associated with cluster i, and is drawn from

the base measure G0. Figure 1.4 illustrates how the data in X is clustered by C,

the assignment from the CRP.

The task here is to perform inference on the assignments C and the cluster

distributions Fi. It is useful to choose cluster distributions F and base measure

G0 such that G0 is conjugate prior to F. Conjugacy allows us to easily derive a

posterior F ∼ G0|D and to calculate the “clustering likelihood” P(X|C, G0) =

∏i
∫

Fi
Fi(Xi)G0(Fi)dFi analytically, where Xi = {Xt|Ct = i} is the collection of

data from X assigned to cluster i.

The conjugacy between Fi and G0 allows us to sample the assignment vec-

tor C with no knowledge of the parameters for Fi. C is sampled from the dis-

tribution P(C|X, G0, α) ∝ P(X|C, G0)P(C|α). This step in itself is useful, as

clustering has been performed. If more data needs to be generated for simu-

lation, a new point Xj’s cluster can be chosen according to P(Cj|C−j, α), that

cluster’s distribution FCj can be chosen from G0(FCj |X
Cj) and Xj’s value can be

chosen according to FCj(Xj).

There is also a closed form for the CRP prior, P(C|α):

P(C|α) = αr Γ(α)
Γ(α + ∑i ni)

∏
i

Γ(ni), (1.56)

where ni = ∑j δCj,i, and δi,j = 1 iff i = j, is the number of elements assigned to

cluster i, and r is the number of clusters with at least 1 member.
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The CRP is exchangeable. That is, the order of the elements does not affect

the posterior assignment distribution.

It is worth noting that the number of possible vectors C grows exponen-

tially with the number of elements in X. For CRP inference, Gibbs sampling [14,

15] is a practical way to do approximation.

1.3 Bayesian Models for Reinforcement Learning

Inferring latent structure from observations is a difficult task in any context, let

alone in reinforcement learning. Building structure into a learning algorithm

via an expert runs the risk of assuming too much and overfitting, or too little

and not being useful when compared to an unstructured learner. By the nature

of learning in stochastic systems (such as an environment used for reinforce-

ment learning), creating a system that infers structure from the observations

made can only effectively be done by weighing the likelihood that the obser-

vations came from a particular model against the likelihood that the model

was used in the first place, and this is exactly the Bayesian approach to model-

based reinforcement learning. While a frequentist approach might consider

only the observation likelihood, weighing that likelihood against a prior prob-

ability allows the algorithm to filter out unlikely models early on, often with

very little data. Instead of saying, “I do not know, and that is all I know,” be-

fore the necessary data is collected, a Bayesian model can say “I am not certain,

but I am leaning towards a few possibilities.” Since, when learning structure,

it is important to be able to consider different possible models, the ability to

narrow down the options quickly is key to making a reinforcement-learning

algorithm that finds an optimal policy quickly. Without the Bayesian approach

to learning, it is very difficult to generate such flexible, adaptive behavior.
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As mentioned briefly at the beginning of this chapter, the Bayesian ap-

proach to learning can be applied to modeling reinforcement-learning domains.

There exist Bayesian approaches to model-free reinforcement-learning [16], but

they do not fit within the scope of this dissertation devoted to model-based

reinforcement-learning. In particular, they are a step removed from the envi-

ronment structure, since they are priors on the value function or on the policy.

They do not provide a sensible way for a system designer to provide prior

knowledge about environment structure.

For model building for reinforcement learning, we must first start with a

model prior. We combine it with observations made by the agent to derive a

model posterior. This model posterior can be used for reasoning about future

choices that the agent will make.

1.3.1 Flat Dirichlet Multinomial

For a discrete-state -action MDP, the Flat Dirichlet Multinomial, or FDM, prior

can be used [17]. According to the FDM prior, the next-state distributions for

all state-action pairs are multinomials whose parameters are drawn i.i.d. from

the Dirichlet distribution, parameterized by some constant vector α:

θs,a ∼ Dirichlet(α), (1.57)

Ns,a ∼ Multinomial(θs,a). (1.58)

Because the Dirichlet distribution is conjugate to the multinomial distribu-

tion, the FDM posterior is easy to compute:

θs,a|Ns,a ∼ Dirichlet(α + Ns,a), (1.59)

P(s′|Ns,a, α) ∝ αs′ + Ns,a
s′ . (1.60)
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The derivation for Equations 1.59 and 1.60 are a result of Equation 2.12 in

Chapter 2.

Equation 1.59 gives us the ability to sample from the MDP posterior. Equa-

tion 1.60 gives us the ability to sample experience, and as a result FDM can be

considered a trajectory prior. This capability is useful if the planner wants only

a simulation oracle, and doesn’t care about entire models.

This prior is theoretically attractive, since it easily supports all possible

discrete-state discrete-action MDPs. but not good at generalizing as it treats es-

timating each state-action as a separate learning problem. On the other hand,

a different choice of the α parameter for each state-action pair can be used to

essentially know the MDP before hand - with some uncertainty built in where

appropriate. RL agents that rely on the FDM prior generally are unlikely out-

perform non-Bayesian agents; if the prior knowledge states, essentially, that

it is an MDP and the transition functions can be any multinomial, this infor-

mation does not give the Bayesian agent a leg up on other agents, since this

assumption will usually be baked into the algorithm design from the begin-

ning.

1.3.2 Gaussian Bandits

For a bandit problem in which the reward for an arm can be any real number,

the Gaussian bandit prior can be used [18]:

µa ∼ N(µ0, σ2
0 ), (1.61)

Ra
t ∼ N(µa, σ2). (1.62)

In Equations 1.61 and 1.62, µ0 and σ0 are parameters indicating where the

reward averages are likely to be, and σ is a parameter indicating the variance
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in the reward seen for a particular arm. The value µa is the expected reward

acquired from pulling arm a, and Ra
t is the reward acquired from pulling arm

a for the tth time.

Like the FDM prior in Section 1.3.1, the Gaussian bandit prior makes use of

conjugacy for efficient inference. The known-variance Normal distribution is

its own conjugate prior:

µa|Ra ∼ N

(µ0

σ2
0
+

∑T
t=1 Ra

t
σ2

)
/

(
1
σ2

0
+

T
σ2

)
,

(
1
σ2

0
+

T
σ2

)−1
 . (1.63)

While the Gaussian bandit prior does not model all possible continuous-

reward distributions like the FDM prior models all possible discrete MDPs, it

can still be used to trade-off uncertainty in the mean (indicated by the σ2
0 pa-

rameter) and knowledge of the mean gathered from data, expressed in Equa-

tion 1.63.

1.4 Model-based Bayesian Reinforcement Learning

This dissertation focuses on developing models appropriate to reinforcement-

learning domains, the algorithms that can take advantage of these models to

effectively solve the reinforcement-learning problem, and the analysis of these

algorithms.

Chapter 2 will extend the ideas from Section 1.2 and Section 1.3 to create

more structured and useful models.

Chapter 3 is a survey of existing model-based and Bayesian model-based

reinforcement-learning algorithms.

Chapter 4 introduces the Best Of Sampled Set algorithm and its analysis.

Chapter 5 introduces the Bayesian Forward Search Sparse Sampling algo-

rithm and its analysis.
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Chapter 6 reports on several experimental results comparing Bayesian model-

based reinforcement-learning algorithms against each other and other model-

based reinforcement-learning algorithms.

Chapter 7 concludes the dissertation and summarizes its contributions.
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Chapter 2

Models and Inference

A model, when used as a prior for a reinforcement-learning agent, is a way

to inform the agent about structure that it can expect to see in the environ-

ment. Non-Bayesian approaches to structured learning in RL, such as RAM-

RMAX [5], are often much more rigid in their structure. Even when the rigid-

ity is relaxed [19], the RMAX-based algorithm is extremely conservative, and

must try sub-optimal actions many times before it is satisfied that the MDP

is learned sufficiently well. The Bayesian approach to learning structure, in

conjunction with an appropriate model-based Bayesian reinforcement learn-

ing algorithm, allows an agent to focus on models that are likely, rather than

ruling out all models that are still possible. Additionally, priors are inherently

composable, as is demonstrated in Section 6.3.4, giving the algorithm the abil-

ity to consider multiple models that may or may not share structural elements.

The end result is much more intelligent behavior, balancing the need to obtain

high reward with the drive to learn more about the environment.

In this chapter, I will discuss several different priors that can be used for

model inference in a reinforcement–learning setting. The non-parametric mod-

els in Section 2.3, as well as the environment-specific models in Chapter 6,

are novel work. The analysis in Section 2.4, on the sample complexity of

models and priors, is a contribution of this dissertation. Before this work,

most Bayesian approaches to reinforcement learning focused on the simple and
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easy-to-work with Flat Dirichlet Multinomial, which is detailed in Section 2.1.

There are exceptions that will be discussed in Chapter 3 [20, 21, 22], and the

models discussed in this chapter can work equally well with any of those al-

gorithms.

There are two basic types of distributions that will be discussed: MDP dis-

tributions and experience distributions. The result of sampling from an MDP

distribution is an entire MDP which can be used with various Bayesian algo-

rithms to attack the reinforcement–learning problem. An experience distribu-

tion is one whose posterior is a theoretical transition in the agent’s world.

An experience distribution Θ is a distribution over possible next state/reward

pairs s′, r, given a possible history h, state s, and action a:

s′, r ∼ Θ|s, a, h. (2.1)

It is important to note that neither s nor h need be the agent’s current state

or history. They are possible states and histories that can be used for internal

simulation.

An MDP distribution φ is a distribution over possible MDPs, given a his-

tory h:

m ∼ φ|h. (2.2)

Like the history for experience distributions in Equation 2.1, the history in

Equation 2.2 may or may not be the agent’s current history (though often it will

be).

It is always possible to use an MDP distribution to mimic an experience

distribution by first sampling a model, and then sampling a single step using
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that model:

m ∼ φ|h, (2.3)

s′ ∼ Tm(s, a), (2.4)

where Tm(s, a) is the MDP m’s next-state distribution when in state s and taking

action a.

All of the model-based Bayesian reinforcement learning algorithms dis-

cussed in this work use one of these two basic types of priors.

2.1 Dirichlet Models

One of the simplest Bayesian models for reinforcement learning is the Flat

Dirichlet Multinomial, or FDM. The FDM is a prior for discrete state and ac-

tion spaces with independent next-state distributions for each state-action pair.

That is, next-state observations from one particular state and action gives no

information about the next-state distribution for some other state and action.

The “flat” part of FDM refers to the fact that all pieces of the model must be

learned independently; no higher level information can be shared. The “multi-

nomial” part refers to the fact that each next-state distribution can be described

by a multinomial. The “Dirichlet” part refers to the fact that the prior for each

multinomial is the Dirichlet distribution.

The Dirichlet distribution is defined as follows:

Dir(θ|α) =
Γ (∑i αi)

∏i Γ(αi)
∏

i
θ

αi−1
i . (2.5)

According to the FDM prior, each state-action pair’s next-state distribution

is a multinomial drawn i.i.d. from the Dirichlet distribution with parameter α,
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a vector of non-negative numbers that represent an initial indication of possi-

ble next-state distributions. Each entry corresponds to an entry in the multino-

mial, which indicates the likelihood of a particular next-state. The α-vector is a

parameter to the model, and can be tuned to particular domains.

In general, an α of all 1s means that any possible multinomial is equally

likely. An α with very high entries indicates that the multinomial is essentially

known, and has weights corresponding to the ratios of the elements in α.

Due to a conjugacy relationship between the multinomial and Dirichlet dis-

tributions, we can easily derive a posterior for θ given α and the observations

X.

P(θ|X, α) ∝ P(X|θ, α)P(θ|α), (2.6)

∝ Mult(X|θ)Dir(θ|α), (2.7)

∝
(∑i Xi)!
∏i Xi!

∏
i

θ
Xi
i

Γ (∑i αi)

∏i Γ(αi)
∏

i
θ

αi−1
i , (2.8)

∝ ∏
i

θ
Xi
i ∏

i
θ

αi−1
i , (2.9)

∝ ∏
i

θ
Xi+αi−1
i , (2.10)

∝
Γ (∑i Xi + αi)

∏i Γ(Xiαi)
∏

i
θ

Xi+αi−1
i , (2.11)

= Dir(θ|α + X). (2.12)

The α vector can encode what is learned from a set of prior observations.

With a Dir(〈x, y, z〉) prior and an observation of the second element, the pos-

terior is Dir(〈x, y + 1, z〉). Moving forward with that posterior is equivalent to

starting with the prior Dir(〈x, y + 1, z〉) without the benefit of the observation.

It follows that starting with a prior of Dir(〈1 + x, 1 + y, 1 + z〉) is the same as

starting with a prior of Dir(〈1, 1, 1〉) and making x, y, and z observations of the

first, second, and third outcomes, respectively.
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The likelihood of any particular observation set, given the parameter α, can

be derived from the model

θ ∼ Dir(α), (2.13)

X ∼ Mult(θ, n), (2.14)

where X is the result of n die rolls using θ as the side likelihoods, we can derive

the following by integrating out θ.

P(X|α, n) =
∫

θ
Mult(X|θ, n)Dir(θ|α), (2.15)

=
∫

θ

(∑i Xi)!
∏i Xi!

∏
i

θ
Xi
i

Γ (∑i αi)

∏i Γ(αi)
∏

i
θ

αi−1
i , (2.16)

=
(∑i Xi)!
∏i Xi!

Γ (∑i αi)

∏i Γ(αi)

∫
θ
∏

i
θ

Xi+αi−1
i , (2.17)

=
(∑i Xi)!
∏i Xi!

Γ (∑i αi)

∏i Γ(αi)
∏i Γ(αi + Xi)

Γ (∑i αi + Xi)

∫
θ

Γ (∑i αi + Xi)

∏i Γ(αi + Xi)
∏

i
θ

Xi+αi−1
i ,(2.18)

=
(∑i Xi)!
∏i Xi!

Γ (∑i αi)

∏i Γ(αi)
∏i Γ(αi + Xi)

Γ (∑i αi + Xi)

∫
θ

Dir(θ|α + X), (2.19)

=
(∑i Xi)!
∏i Xi!

Γ (∑i αi)

∏i Γ(αi)
∏i Γ(αi + Xi)

Γ (∑i αi + Xi)
. (2.20)

Moving from Equation 2.19 to Equation 2.20 is possible because the integral of

any distribution over its entire support necessarily sums to 1.

2.1.1 Tied Dirichlet Models

By itself, the FDM prior does not allow any sharing of information between

states. The observations made of outcomes from any given state-action pair

cannot be used to make inferences about any other state-action pair. However,

sometimes the algorithm designer has prior knowledge indicating that the out-

come distributions of two or more state-action pairs are identical. Here, we use

the term outcome to be distinct from next-state: the outcome must be combined
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with the starting state to get the next-state. For instance, the move-left outcome

can have the same likelihood for two particular states, but the identity of the

actual state to the left differs.

If these assumptions are made, we can share the outcome multinomial for

several state-action pairs. Then, outcome observations made in one of the state-

action pairs can be used to make inferences about the outcome distribution for

any of the other state-action pairs in the set in question.

For instance, in the Marble Maze domain [5], the possible outcomes are

north, east, south, west, and stay. They each indicate the agent moving to the

corresponding adjacent cell in the maze (or not moving). No other outcomes

are possible: the agent cannot move to non-adjacent cells. The outcome distri-

bution for any state-action pair depends on the walls surrounding the cell for

the current state. If there is a wall to the north, then any outcome that would

have been north becomes stay, indicating that the agent ran into the wall and

was unable to move.

Since the outcome distribution is a function of the current cell’s walls, dif-

ferent states whose cell wall configurations are identical have identical out-

come distributions. If these wall configurations are known before the experi-

ment begins, then a tied Dirichlet model can be used to speed learning.

θ ∼ Dir(α), (2.21)

X j ∼ Mult(θ), (2.22)

Y = 〈X1, X2, ..., X J〉. (2.23)

For a vector V, let (∑i Vi)!
∏i Vi!

= (∑i Vi)!
∏i Vi!

, and Γ(∑i Vi)
∏i Γ(Vi)

= Γ(∑i Vi)
∏i Γ(Vi)

. For vectors V and

ρ, let ρV = ∏i ρ
Vi
i . For a vector V and a constant k, let V + k = 〈V1 + k, V2 +
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k, ...〉.

P(Y|α) =
∫

θ
P(Y|θ)P(θ|α), (2.24)

=
∫

θ
∏

j
Mult(X j|θ)Dir(θ|α), (2.25)

=
∫

θ
∏

j

(
∑i X j

i

)
!

∏i X j
i !

θX j Γ (∑i αi)

∏i Γ(αi)
θα−1, (2.26)

= ∏
j

(
∑i X j

i

)
!

∏i X j
i !

Γ (∑i αi)

∏i Γ(αi)

∫
θ
∏

j
θX j+α−1, (2.27)

= ∏
j

(
∑i X j

i

)
!

∏i X j
i !

Γ (∑i αi)

∏i Γ(αi)

∫
θ
∏

j

Γ
(
∑i X j + αi

)
∏i Γ(X j + αi)

∏i Γ(X j + αi)

Γ
(
∑i X j + αi

)θX j+α−1,(2.28)

= ∏
j

(
∑i X j

i

)
!

∏i X j
i !

Γ (∑i αi)

∏i Γ(αi)
∏i Γ(X j + αi)

Γ
(
∑i X j + αi

) ∫
θ

Dir(θ|α + X j), (2.29)

= ∏
j

(
∑i X j

i

)
!

∏i X j
i !

Γ (∑i αi)

∏i Γ(αi)
∏i Γ(X j + αi)

Γ
(
∑i X j + αi

) . (2.30)

Section 2.3 demonstrates how to automatically tie different states together

based on experience using nonparametric clustering techniques.

2.2 Gaussian Models

Similarly to the Dirichlet model’s easy relation with discrete state and action

spaces, a Gaussian model can be used to provide priors for continuous spaces.

If an environment’s dynamics can be modeled with a Gaussian next-state or

outcome function, there are convenient priors that can be used to make infer-

ences.

For discrete action domains, learning the dynamics for each action can be
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considered a separate problem. Section 2.3 discusses methods to tie informa-

tion from different actions and different states together, but for now we’ll study

the simpler learning problem where each action can be considered in isolation.

The simplest case is when the next-state is drawn directly from a Gaussian

distribution. A more interesting case has an outcome drawn from a Gaussian

distribution, and then the next-state is derived from applying the outcome to

the previous state. The inference problem, where the agent learns the mean

and variance of the Gaussian distribution in question, is the same either way.

The only difference is what data the inference engine is given as examples.

An easy version of this problem is the unknown mean, known variance

prior: given some covariance Σ, and a mean prior of N(µµ, Σµ), we can con-

cisely describe the model as follows:

µa ∼ N(µµ, Σµ), (2.31)

ot ∼ N(µat , Σ), (2.32)

st+1 = f (st, ot). (2.33)

Here, µµ is the prior mean for the latent variable µa, and Σµ is the prior

covariance for µa. at is the action performed by the agent on the tth timestep,

and ot is the outcome observed as a result of that action. The next state, st+1

can be derived by applying the outcome function f to the previous state st and

outcome.

Given this model and a history s0, a0, o0, ..., sT, aT, oT, a posterior distribu-

tion for latent model variables µa can be inferred, for all actions a ∈ A. Since the

Gaussian distribution is conjugate prior to the known-covariance multivariate

normal distribution, there is a closed-form solution for its posterior [23]:
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Σ′ =
(

Σ−1
u + nΣ−1

)−1
, (2.34)

x̄ =
1
T

T

∑
t=1

ot, (2.35)

µa ∼ N
(
(Σ′
(

Σ−1
u µu + TΣ−1x̄

)
, Σ′
)

. (2.36)

It is possible to do inference with a known mean, unknown variance prior,

described as follows:

Σa ∼ W−1(m, Ψ), (2.37)

ot ∼ N(µ, Σat), (2.38)

st+1 = f (st, ot). (2.39)

Here, W−1(m, Ψ) is the inverse Wishart distribution, whose density is de-

scribed in Equation 2.40:

W−1(Σ|m, Ψ) =
|Ψ|m2

2mp/2Γp(m/2)
|Σ|−

m+p+1
2 exp

(
−1

2
tr
[
ΨΣ−1

])
, (2.40)

where p is the number of dimensions, and Γp is the partial gamma function.

The inverse Wishart distribution is chosen because it is conjugate (and there-

fore mathematically convenient) to the known mean, unknown variance Gaus-

sian, and as a result inference on the covariance Σ is efficient. Let X =

[
o1 o2 ... on

]
be a matrix whose columns are the observed outcome vectors. Assuming,

without loss of generality, that the mean is zero, the covariance posterior is
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defined as follows:

P(Σ|X, µ, m, Ψ) (2.41)

∝ P(X|Σ, µ, m, Ψ)P(Σ|µ, m, Ψ), (2.42)

∝ N(X|µ, Σ)W−1(Σ|m, Ψ), (2.43)

∝
(2π)−

np
2 |Σ|− n

2 exp
(
−1

2 tr
[
XX′Σ−1])

· |Ψ|
m
2

2
mp
2 Γp(

m
2 )
|Σ|−

m+p+1
2 exp

(
−1

2 tr
[
ΨΣ−1]) ,

(2.44)

∝ |Σ|− n
2 exp

(
−1

2
tr
[

XX′Σ−1
])
|Σ|−

m+p+1
2 exp

(
−1

2
tr
[
ΨΣ−1

])
,(2.45)

∝ |Σ|−
m+n+p+1

2 exp
(
−1

2
tr
[

XX′Σ−1 + ΨΣ−1
])

, (2.46)

∝ |Σ|−
m+n+p+1

2 exp
(
−1

2
tr
[
(XX′ + Ψ)Σ−1

])
, (2.47)

∝
|Ψ|m+n

2

2
(m+n)p

2 Γp(
m+n

2 )
|Σ|−

m+n+p+1
2 exp

(
−1

2
tr
[
(XX′ + Ψ)Σ−1

])
,(2.48)

= W−1(Σ|m + n, Ψ + XX′). (2.49)

We can also assess the data likelihood. Offsetting x1, x2, ..., xn to have a
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mean of µ = 0,

P(X|µ, m, Ψ) (2.50)

=
∫

Σ
P(X|µ, Σ, m, Ψ)P(Σ|m, Ψ)dΣ, (2.51)

=
∫

Σ
N(X|µ, Σ)W−1(Σ|m, Ψ)dΣ, (2.52)

=
∫

Σ

[
n

∏
i=1

N(xi|µ, Σ)

]
W−1(Σ|m, Ψ)dΣ, (2.53)

=
∫

Σ


[
∏n

i=1
1

(2π)p/2|Σ|1/2 exp(−1
2 x′iΣ

−1xi)
]

· |Ψ|m/2

2mp/2Γp(m/2)
|Σ|−

m+p+1
2 exp

(
−1

2 tr
[
ΨΣ−1]) dΣ

 , (2.54)

=
∫

Σ


[
∏n

i=1
1

(2π)p/2|Σ|1/2 exp(−1
2 tr
[
XX′Σ−1])]

· |Ψ|m/2

2mp/2Γp(m/2)
|Σ|−

m+p+1
2 exp

(
−1

2 tr
[
ΨΣ−1]) dΣ

 , (2.55)

=
∫

Σ

 1
(2π)np/2|Σ|n/2

[
exp(−1

2 tr
[
XX′Σ−1])]

· |Ψ|m/2

2mp/2Γp(m/2)
|Σ|−

m+p+1
2 exp

(
−1

2 tr
[
ΨΣ−1]) dΣ

 , (2.56)

=

1
(2π)np/2

|Ψ|m/2

2mp/2Γp(m/2)

·
∫

Σ

(
|Σ|−

m+n+p+1
2 exp(−1

2 tr
[
XX′Σ−1 + ΨΣ−1])dΣ

)
,

(2.57)

=

1
(2π)np/2

|Ψ|m/2

2mp/2Γp(m/2)

·
∫

Σ

(
|Σ|−

(m+n)+p+1
2 exp(−1

2 tr
[
(XX + Ψ)Σ−1])dΣ

)
,

(2.58)

=

1
(2π)np/2

|Ψ|m/2

2mp/2Γp(m/2)
2(m+n)p/2Γp((m+n)/2)
|XX′+Ψ|(m+n)/2

·
∫

Σ

(
|Σ|−

(m+n)+p+1
2

|XX′+Ψ|(m+n)/2

2(m+n)p/2Γp((m+n)/2)
exp(−1

2 tr
[
(XX + Ψ)Σ−1])dΣ

)
,

(2.59)

=

1
(2π)np/2

|Ψ|m/2

2mp/2Γp(m/2)
2(m+n)p/2Γp((m+n)/2)
|XX′+Ψ|(m+n)/2

·
∫

Σ W−1(Σ|m + n, XX′ + Ψ)dΣ,
(2.60)

= π−
np
2

|Ψ|m2
|XX′ + Ψ|m+n

2

Γp(
m+n

2 )

Γp(
m
2 )

∫
Σ

W−1(Σ|m + n, XX′ + Ψ)dΣ. (2.61)

Since we know that all distributions necessarily sum to 1, we can remove the
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integral in Equation 2.61 to see that

P(X|µ, m, Ψ) = π−
np
2

|Ψ|m2
|XX′ + Ψ|m+n

2

Γp(
m+n

2 )

Γp(
m
2 )

, (2.62)

which is useful for the mixture models in Section 2.3.

2.3 Nonparametric Mixture Models

While the application of conjugacy concepts to a reinforcement-learning sce-

nario is interesting and can be fun for the enthusiastic Bayesian, models that

don’t provide any flexibility or effective way to incorporate interesting prior

knowledge have limited utility. In most reinforcement-learning problems, ob-

servations made in one state can help you make inferences about other similar

states with less data.

If the algorithm designer’s prior knowledge says that there are groups of

states that share outcome dynamics, it makes sense to cluster states together

based on similarities seen in their next-state distributions. Many classical machine-

learning techniques that accomplish this task must be provided with a guess

for the total number of clusters.

In this section, we will discuss the nonparametric1 Bayesian approach to

clustering.

2.3.1 Dirichlet Mixture Models

With discrete state- and action-space environments whose states are divided

into several (unknown) groups based on their dynamics, a Dirichlet mixture

model can be used to help inference. Here, s1 and s2 refer to two arbitrary (yet

1 Here nonparametric refers to the fact that the model can have an arbitrarily large number
of parameters.
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different) states in the MDP, rather than the states observed on the first and

second steps in an experiment. Let os,a be a vector of counts, representing a

histogram of the outcomes observed so far in state s when taking action a.

The clustering model follows:

C ∼ CRP(α), (2.63)

θz,a ∼ Dirichlet(β), (2.64)

os,a ∼ Mult(θCs,a). (2.65)

In this model, C is the set of assignments of states to clusters. So, C1 is

the number representing the cluster to which s1 belongs. The quantity θz,a is

the parameter to the dynamics for states in cluster z when performing action a.

Finally, the outcome histogram os,a is drawn from a multinomial parameterized

by the θ corresponding to the cluster containing the state in question.

Using this model, we can sample dynamics from the posterior P(θ, C|o) to

get a guess about the underlying MDP. Because the Dirichlet distribution is

conjugate to the multinomial distribution, the likelihood P(o|C) can be eval-

uated efficiently. Using that likelihood, approximation techniques, such as

Gibbs sampling, can be used to effectively sample the posterior P(C|o) ∝ P(o|C)P(C),

and then sampling from P(θ|C, o) is straightforward.

The posterior sampling process, using Gibbs sampling, is as follows. Start

with a guess for the value of C. Then, choose one state i to move to different

cluster. For all possible clusters j it could belong to, including a new one, find

the likelihood P(Ci,j|o), where Ci,j is the same as C except that state i is now in

cluster j. Assign i to cluster j with probability proportional to P(Ci,j|o). Then,

move to the next state. Continue sweeping through all the states, reassigning
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them to different clusters, until the distribution is suitably mixed 2 Once C is

chosen, then each cluster’s multionimial is sampled from a Dirichlet whose

posterior uses the evidence from the states in that cluster.

2.3.2 Gaussian Mixture Models

The use of nonparametric clustering techniques can also be applied to Gaus-

sian dynamics. Relocatable Outcomes Across Regions, or ROAR is the name

I have given to one such technique.

Sampling from the ROAR posterior occurs in two stages. In the first stage,

the set of observed instance data for each action is clustered based on the sim-

ilarity between states, outcomes, rewards and termination signal. That is, the

observed instances induce a clustering. In the second stage, questions about

particular state-actions are asked, and distributions over the clusters found in

the first part, conditioned on the state-action, are generated. Once a cluster is

chosen, the outcome, reward and termination signal is drawn from the out-

come, reward and termination signal distributions associated with that cluster.

That is, the induced clustering is used to sample hypothetical experience, gen-

eralized from the real experience.

ROAR uses a nonparametric Bayesian prior over models that can generate

instances It = 〈st, at, ot, rt, φt〉 representing the state, action, outcome, reward and

termination signals for a particular step in the environment.

For a given action, the model may generate an instance by first drawing

normal distributions for the state feature vector, outcome feature vector and

reward signal generators, and a two-degree multinomial distribution for the

2 In practice, the number of sweeps required is not tremendously large, but it is difficult to
say anything concrete about how many are needed.



47

termination signal generator. These are drawn from a Dirichlet Process with

a base measure that uses independent Inverse Wishart and Dirichlet distribu-

tions for drawing normal and multinomial distributions, respectively. The val-

ues making up the instance itself are then drawn from the generators.

The Inverse Wishart distribution is chosen to be the prior for the Normal

distribution covariances because, as well as providing an analytical way to

integrate out key parameters (Equation 2.66), the way in which an Inverse

Wishart distribution is sampled is analogous to the way the maximum like-

lihood estimation of covariance is derived.

The basic form of the model is similiar to that described by the Infinite

Gaussian mixture model [24], except in its choice of priors (Rasmussen uses

the Gamma prior, rather than the Inverse Wishart), and the fact that the Infi-

nite Gaussian mixture model draws hyperparameters from their own priors,

where in this work they are fixed. Having fixed hyperparameters makes the

model less flexible, but also easier to deal with both mathematically and in the

approximation process.

The Chinese Restaurant Process (CRP) formulation of the Dirichlet Process
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is used:

C = 〈C0, C1, ..., CT〉 ∼ CRP(α)

Σs
i ∼ W−1(Ψs, ms)

Σo
i ∼ W−1(Ψo, mo)

Σr
i ∼ W−1(Ψr, mr)

θi ∼ Dir(
〈
αφ, βφ

〉
)

µs
i , µo

i , µr
i ∼ Uniform

st ∼ N(µs
Ct

, Σs
Ct
)

ot ∼ N(µo
Ct

, Σo
Ct
)

rt ∼ N(µr
Ct

, Σr
Ct
)

φt ∼ Multinomial(θCt).

A vector of cluster indices C is drawn from the CRP, and for each of these

clusters the parameters are chosen from their respective priors.

Cluster Sampling

To sample from the ROAR posterior, we must sample an assignment of clusters

to instances. First, the observed instances are grouped by action and the dif-

ferent groups are handled separately. We will refer to D as the entire collection

of observed instance data for the action under consideration, and η as the col-

lection of hyperparameters α, Ψs, ms, Ψo, mo, Ψr, mr, αφ, βφ. The distribution

over clusters, conditioned on observed data is

P(C|D, η) ∝ P(D|C, η)P(C|η),

where P(C|η) = P(C|α) is the CRP prior from Equation 1.56.
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We refer to P(D|C, η) as the clustering likelihood, or the probability that

the instances in D are clustered according to C. An important assumption is

independence across clusters, so we know that P(D|C, η) = ∏i P(Di|η), where

Di = {Dt|Ct = i} is the collection of instances assigned to cluster i.

The ith cluster likelihood P(Di|η) is then split up into its four components

for the state, outcome, reward and termination signals. Since they are assumed

to be independent,

P(Di|η) = P(si|Ψs, ms)P(oi|Ψo, mo)P(ri|Ψr, mr)P(φi|αφ, βφ).

To find the likelihood that some set X of real vectors was drawn from a normal

distribution whose mean is the sample mean and whose covariance Σ is drawn

from an Inverse Wishart prior, we can use the fact that the Inverse Wishart is

conjugate prior to the normal distribution to integrate out the parameter Σ:

P(X|Ψ, m) =
∫

Σ
N(X|X̄, Σ)W−1(Σ|Ψ, m)dΣ

=
1

π
np
2

Γp
(m+n

2

)
Γp(

m
2 )

|Ψ|m2
|Ψ + S|m+n

2
, (2.66)

where n is the number of vectors in X, p is the dimensionality of the data,

the scatter matrix S = ∑n
i=1(Xi − X̄)(Xi − X̄)T, the mean X̄ = 1

n ∑n
i=1 Xi, and

Γp(z) = πp(p−1)/4 ∏
p
j=1 Γ

(
z + 1−j

2

)
.

Similar techniques can be used to find the likelihood that some data came

from a multinomial whose parameter θ is drawn from a Dirichlet prior:

P(x|α) =
∫

θ
Mult(x|θ)Dir(θ|α)dθ

=
(∑n

i=1 xi)!
∏n

i=1 xi!
Γ(∑n

i=1 αi)

∏n
i=1 Γ(αi)

∏n
i=1 Γ(xi + αi)

Γ(∑n
i=1 xi + αi)

.
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Parameter Sampling

Given a particular clustering assignment C, the parameters for individual clus-

ters are independent. For the continuous features (state, outcome and reward) the

normal parameters can be sampled from the Inverse Wishart posterior. For the

discrete feature (terminal indicator) the Multinomial parameters can be sam-

pled from the Dirichlet posterior. Through this process of finding a clustering

and using posterior sampling to find cluster parameters, a sample is drawn

from the ROAR posterior.

Instance Sampling and Trajectory Sampling

Once a model M is sampled from the ROAR posterior, simulating experience

is straightforward. Outcomes, rewards and termination indicators 〈o, r, φ〉 can

be sampled from the model, conditioned on some particular state and action

〈s, a〉. Since 〈o, r, φ〉 is independent of 〈s, a〉, given a cluster, the algorithm must

first choose such a cluster c according to P(c|s, a, M) ∝ P(s|c, M)P(c|M, a).

The outcome, reward and terminal indicator are then sampled individually

according to P(o|c, M), P(r|c, M) and P(φ|c, M).

It is important to note that the cluster c chosen in this step does not have to

be one of those created during the inference process. The CRP always leaves

non-zero weight for creating a new cluster, and new clusters (drawn according

to the Inverse Wishart and Dirichlet prior) must be allowed. The ability to rea-

son about new clusters is especially important when the agent wants to make

a prediction about a state that is very far from those states already observed.

In this case, the likelihood of this state coming from one of the existing clus-

ters will shrink (as it is farther from the means of these clusters) and a new,

completely hypothetical cluster will be created.



51

For planning, dealing directly with the Gaussian mixture model described

in this section is inconvenient. It is much simpler to sample transitions directly,

using Monte-carlo simulations, rather than deal with their distributions. To

generate n instances from the model, we sample from the distribution

P(I1, ..., In|M, s1, a1, ..., sn, an)

. That is, we jointly draw a collection of new instances It = 〈st, at, ot, rt, φt〉,

conditioned on the states and actions that make them up. By doing so, we

can generate the outcomes, rewards and termination signals necessary for our

planner.

The distribution can be broken down according to specific instances to be

n

∏
j=1

P(Ij|M, I1, ..., Ij−1, sj, aj).

That is, the distribution of an instance Ij depends on all previous instances

drawn: each future sample is conditioned on the previous samples, as if they

were observations. This sampling process creates some consistency in parts of

the state space with little or no data.

Although it is tempting to sample the instances i.i.d., this shortcut will lead

to all instances in unexplored areas of the state space being sampled directly

from the prior3. Doing so causes the unexplored areas to appear the same as

the other unexplored areas in every model sampled. When they are sampled

jointly as described, the distributions for those unexplored areas are sampled

from the prior, but the instances are sampled from those distributions. As a re-

sult the unexplored areas are distinct from one another and from those in other

3 In the generative model, the means for new cluster outcome and reward distributions are
drawn from a uniform distribution. In practice, using a mean of zero for the first sample, and
the sample mean thereafter, is effective.
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models. There is same-model consistency in these areas that is not achieved

otherwise. Figure 2.1 shows how underrepresented parts of the state-space

can have consistent estimates.

2.4 Sample Complexity

Since a common subgoal for a reinforcement-learning agent is to learn a model,

it is useful to quantify the sample complexity of a model in the first place. It

is certainly true that there are some combinations of model priors and “true”

models4 that do not allow learning of the model without an unreasonably large

number of samples.

Example 1. Consider the coin flipping experiment in Section 1.2.1. Using a

variable x instead of the concrete likelihood 9990
10000 , we get the model

φ =

 0.5 w.p. x,

1 w.p. 1− x,
(2.67)

ρ ∼ φ, (2.68)

H ∼ Binomial(ρ, n). (2.69)

For any given probability in Equation 1.42, there is a number of heads-in-

a-row, without any tails, that is required before the posterior indicates that the

coin is more likely biased than not. The threshold will occur when P(ρ =

1|H = n, n) = P(ρ = 0.5|H = n, n). If we substitute x for 9990
10000 in Equa-

tion 1.42, this threshold gives us the relation

x =
1

2n + 1
. (2.70)

4 That is, models from which the observations are sampled.
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Given this relation, we can say something the sample complexity of a biased

coin is with this prior.

With the coin flipping example, we give only two possibilities in the prior:

double-headed or unbiased. These two coins are not ε-close to each other, for

any reasonable ε, since the likelihood of heads for the double-headed coin is

0.5 away from that of the unbiased coin, and the same distance for tails. If

the posterior has a probability of at least δ of sampling an unbiased coin after

B flips, the double-headed coin has a sample complexity greater than B, with

respect to the prior in Equation 2.67.

Choosing ε < 0.5, so that an unbiased coin is not considered an ε-approximation

of a double-headed coin, there is a relation between the number of samples B,

the prior likelihood x, and the probability of failure δ. We need to find B such

that the posterior likelihood for the double-headed coin is at least 1− δ. That

is,

P(ρ = 1|H = B, n = B)
P(ρ = 1

2 |H = B, n = B)
≥ 1− δ

δ
, (2.71)

(B
B)1

B00(1− x)

(B
B)

1
2

B 1
2

0
x

≥ 1− δ

δ
, (2.72)

(1− x)
1

2B x
≥ 1− δ

δ
, (2.73)

2B(1− x)δ ≥ (1− δ)x, (2.74)

2B ≥ (1− δ)x
(1− x)δ

, (2.75)

B ≥ log2

(
(1− δ)x
(1− x)δ

)
. (2.76)

Then, if we set x = 0.999 and δ = 0.001, we find that B ≥ 20 is sufficient.

The rest of this section will attempt to formalize the concept of sample com-

plexity for Bayesian machine learning.
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2.4.1 Sample Complexity of the Model for a Stochastic Func-

tion

Given

• a set X,

• a set Y,

• a similarity metric σ : X× X → [0, 1],

• any base value x0 ∈ X,

• any vector of example values x̄ ∈ Xn such that ∑n
i=1 σ(x0, x̄i) ≥ B,

• a set of models P with η0 ∈ P,

• a stochastic function fη0 : X → Π(Y),

• and some prior distribution φ ∈ Π(P) over models,

we say that a specific model η0 ∈ P has a sample complexity of B with φ if the

process

ȳi ∼ fη0(x̄i), (2.77)

η̃ ∼ φ|(x̄, ȳ), (2.78)

results in the condition

∀y∈Y| fη̃(y|x0)− fη0(y|x0)| ≤ ε (2.79)

holding with probability at least 1− δ.

Note that this must hold true for any x̄, and that this x̄ is chosen before-

hand.
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This guarantee can easily be adapted for a discrete set X whose members

cannot be generalized. In this case, the similarity metric σ is the Kronecker

delta, where the result is 1 if the two values are identical, and 0 otherwise.

With this metric, there must be at least B examples of x0 in the set of example

values.

To map this setting to the coin-flip example above, consider the set X to

be the set of all coins, double-headed or not. Then, we need examples of flips

from the coins in that set such that the coins are sufficiently similar to the one

we’re thinking about, x0. In this case, we only care about coins that are exactly

the coin we’re trying to estimate, so we need B examples of that coin. The set Y

will be the set {heads, tails}, and η0 is a model indicating that coin x0 is double-

headed. As a result, flipping the double-headed coin, or calling fη0(x0), should

result in heads each time.

Intuitively, if a model has a sample complextiy of B, then we only need

B evidence (according to the similarity metric σ) at a given point to have a

posterior sample be ε-accurate at that point with probability 1− δ.

In Chapter 4, I will show that this sample complexity guarantee is a suffi-

cient condition for the posterior accuracy conditions in the analysis of a model-

based Bayesian reinforcement-learning algorithm. In the later sections of this

chapter, I will describe how to fit different types of MDPs, and their priors, to

this guarantee.
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2.4.2 Sample Complexity of the Transition Function for a Discrete-

state, Discrete-action MDP

An MDP m0 can be considered the model for a stochastic function. The transi-

tion function Tm0 : S× A → S is a function using the MDP components as its

model. Specifically, Tm0(s, a) is a multinomial distribution parameterized by

an unknown θs,a
0 vector, which has a prior distribution φ. The goal is to then

evaluate the sample complexity of a particular vector θs,a
0 is, with samples from

the stochastic function Tm0(s, a) = Mult(θs,a
0 ).

Given

• X is the set of all state-action pairs S× A,

• Y is the set of states S,

• x0 is some state-action pair (s0, a0),

• x̄ is any vector of state-action pairs that contains at least B instances of

(s0, a0),

• P is the set of all possible multinomials for each of the state-action pairs

in the MDP,

• and fη0 is Tm0 , or the transition function of the true MDP m0,

when the process

s′i ∼ Mult(θsiai
0 ), (2.80)

θ̃s,a ∼ φ|(s1, a1, s′1), (s2, a2, s′2), ..., (sn, an, s′n), (2.81)

results in a posterior sample satisfying

∀s′∈S|θ̃s0a0(s
′)− θ0

s0a0
(s′)| ≤ ε, (2.82)
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with probability at least 1− δ, we can say that the MDP m0’s transition function

has a sample complexity of B.

Sample Complexity of an MDP Using the Flat Dirichlet Multinomial

The Flat Dirichlet Multinomial prior, or FDM, described in Chapter 2, is one

of the simplest priors for a discrete-state, discrete-action MDP. With the FDM

prior, the transition function for each state is treated as an independent prob-

lem where the parameter θ0 is learned from a set of samples from Mult(θ0),

and θ ∼ Dir(α).

We can then simplify the analysis of a model with the FDM prior’s sample

complexity to that of the sample complexity of some random simplex θ0 with

a Dirichlet prior.

Example 2. Let α = (1, 1) and θ0 = (1
2 , 1

2). This problem is the same as the

sample complexity of an unbiased coin with a uniform prior over its bias (that

is, an unbiased coin is just as likely as a double-headed coin, which is just as

likely as a coin that lands heads 2/3 of the time, etc.).

We can resolve the question of the sample complexity for this prior by an-

swering the question of how many times we need to flip this biased coin such

that our posterior samples are accurate.

Let ε = 0.1 and δ = 0.1. Then, for the unbiased coin to have a sample

complexity of B, we need to choose a B that is high enough so that 90% of

the time when we perform the experiment of flipping the coin B times and

sampling from the posterior, we get a coin with a heads likelihood in [0.4, 0.6]

and a tails likelihood in [0.4, 0.6].

Since the Multinomial distribution with two outcomes is the Binomial dis-

tribution, and the Dirichlet distribution on the two-dimensional simplex is the
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Beta distribution, we can use those distributions in our analysis. That is, given

the process

H ∼ Bin(ρ = 0.5, B), (2.83)

ρ̃ ∼ Dir(α = (H + 1, β = B− H + 1)), (2.84)

(2.85)

choose a value B such that

P(0.4 ≤ ρ̃ ≤ 0.6) ≥ 1− δ, (2.86)

∑B
H=0 Bin(H|ρ = 0.5, n = B)

·
∫ 0.6

ρ̃=0.4 Beta(ρ|α = H + 1, β = B− H + 1),
≥ 1− δ (2.87)

B

∑
H=0

(
B
H

)
1

2B

 Imin(1, 1
2+ε)(H + 1, B− H + 1)

−Imax(0, 1
2−ε)(H + 1, B− H + 1)

 ≥ 1− δ, (2.88)

where Ip(α, β) is the regularized incomplete gamma function, and
∫ p

0 Beta(p|α, β)dp =

Ip(α, β).

The smallest B that satisfies Equation 2.88 can be found numerically, and

happens to be 21. As a result, the unbiased coin has a sample complexity of

B = 20 with the Beta(1, 1) prior, for ε = 0.1 and δ = 0.1.

In general, for any hyperparameter α, set of states S, and true model θ0,, we

can relate B, ε and δ with the following equation:

∑
s̄′ :||s̄′||1=B

Mult(s̄′|θ0, B)
∫

θ:||θ−θ0||1≤ε

Dir(θ|α + s̄′)dθ ≥ 1− δ. (2.89)

Although the analysis is difficult, numerical techniques can be used to find the

smallest value B for a given ε and δ.
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2.4.3 Sample Complexity of the Prior

So far, this chapter has discussed the sample complexity of a particular “true”

model for a given prior.

That is, if we start with ε, δ, φ, and η0, we can imagine a function B(η0, φ, ε, δ)

that tells us how many samples are required to learn that model, given our ac-

curacy constraints, desired likelihood of success, and prior distribution.

It also makes sense to talk about the expected sample complexity, given a

prior. The sample complexity of a prior is

L(φ, ε, δ) =
∫

η0

φ(η0)B(η0, φ, ε, δ)dη0. (2.90)

In other words, the sample complexity of a prior is the expected sample

complexity of a model sampled from that prior.

Although the sample complexity is difficult to express exactly, it is related

to the probability of success. If, with x̄ : ∑i σ(x0, x̄i) ≥ B,

∫
η0

φ(η0)

∫
ȳ

fη0(ȳ|x̄)

∫
η̃

φ(η̃|(x̄, ȳ))1(||η̃ − η0|| ≤ ε) dη̃

 dȳ

 dη0 ≥ 1− δ.(2.91)

In english, first we pick a “true” model η0 according to the prior φ. Then, we

make some observations ŷ from the world created by η0. Once we have the

“true” model and the observations, we see how many models are ε-close to

the “true” model, weighted according to their posterior likelihoods.

Example 3. We can find the sample complexity of the Beta-Binomial model,

ρ ∼ Beta(α, β), (2.92)

H ∼ Bin(ρ0, B). (2.93)
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Table 2.1: Sample complexity for the Beta-Binomial. Using the model from
Section 3, the posterior for the latent variable ρ is ε-accurate with probability
at least 1− δ if B is above some threshold. This table gives examples of the
relations between the model hyperparameters, ε, δ, and B.

(α, β) δ ε lowest B
(1, 1) 0.1 0.1 91

(50, 50) 0.1 0.1 31
(100, 100) 0.1 0.1 0

(1, 5) 0.1 0.1 61
(5, 25) 0.1 0.1 43
(10, 50) 0.1 0.1 13

The Beta-Binomial prior’s ρ parameter has a sample complexity of B if∫
ρ0

Beta(ρ0|α, β)∑B
H=0 Bin(H|ρ0, B)

·
∫ ρ0+ε

ρ̃=ρ0−ε Beta(ρ̃|α + H, β + B− H)dρ̃ dρ0

≥ 1− δ,(2.94)

∫
ρ0

Beta(ρ0|α, β)∑B
H=0 Bin(H|ρ0, B)

·
[
Iρ0+ε(α + H, β + B− H)− Iρ0−ε(α + H, β + B− H)

]
dρ0

≥ 1− δ,(2.95)

where Ix(a, b) = Imax(0,min(1,x))(a, b) is the regularized incomplete gamma func-

tion.

For a given ε, δ, α, and β, the smallest B that satisfies Equation 2.95 can

be found numerically. Table 2.1 lists several example sample complexities for

different values of ε and δ, and different prior parameters.
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Figure 2.1: Riverswim is a simple environment where a fish tries to make its
way up the river, and can take one of three actions: red, green, or blue. In these
figures, the horizontal axis represents a state in the environment: further to the
right means further up the river. The vertical axis represents a possible out-
come: further up means that an action took the fish futher up the river, with a
point on the origin meaning that the fish did not move. Each dot represents an
action taken, with its horizontal position being where the fish was, and the ver-
tical position being how far it moved. The top figure is experience in the actual
environment; every dot represents an action that the agent took, and feedback
it got from the environment. The bottom figure is experience sampled from
the ROAR posterior. As a human, one can see that it matches very closely
the dynamics from the original environment, especially where there are more
samples. Where there are fewer samples, to the right, ROAR has less to go on
and its estimates are less accurate. However, because each sample is condi-
tioned on previous samples, there are still visible clusters to the right. ROAR is
making these up, and although they may be inaccurate, they are self-consistent
and can be used to speculate about unexplored parts of the statespace without
simply indicating that they are all drawn identically from the prior.
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Chapter 3

Related Work

In this chapter, we discuss important related work that will influence, directly

and indirectly, later contributions. Along with algorithms of general interest to

a student of model-based Bayesian reinforcement-learning, there are

• existing model-based RL algorithms used for comparisons in Chapter 6 [4,

25].

• algorithms that make use of a flexible prior [9, 18, 20, 21],

• model-based Bayesian RL algorithms with PAC-BAMDP guarantees [8,

9, 21].

• the FSSS algorithm, which is used as a building block in Chapter 3, and

several other tree search planners [26, 27].

3.1 RMAX

The RMAX [25] algorithm is a simple and robust method to balance explo-

ration and exploitation in the reinforcement-learning setting. The original al-

gorithm addresses only discrete state- and action-spaces, but the ideas apply

more generally [4, 28].

To effectively use RMAX, the agent designer needs a metric to determine

whether or not a particular state-action pair is known. In the discrete state and
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action case, the agent can count how many times it has tried a given action pair.

If that number exceeds a predetermined threshold, the given pair is known.

Otherwise, it is unknown.

To guide the RMAX agent, a model is constructed from the agent’s obser-

vations, with unknown state-action pairs transitioning only to a nirvana state,

or a state with the highest possible value. Known states have the transition

dynamics given by the MLE. The agent then acts greedily according to this

model.

Clamping unknown states at very high value will draw the agent towards

these states if there is any chance that visiting those states is the optimal thing

to do.

Because the model maintained by RMAX is accurate (when the state is

known), optimistic (when the state is unknown) and there is a bounded num-

ber of times that the agent can be surprised (because there is a finite number

of state-action pairs that can become known), the authors were able to show

that the algorithm is PAC-MDP. That is, it will make only a small number of

suboptimal decisions over the course of its lifetime.

3.1.1 Potential-based RMAX

As it stands, the RMAX algorithm cannot make use of any prior knowledge.

All unknown states are assigned the highest possible value, and the agent is

drawn to each of them in a way that depends only on how quickly it can reach

them.

The Potential-based shaping RMAX [29] algorithm addresses this defi-

ciency by incorporating a potential function φ(s). The agent will perform well

if this potential function is admissible. That is, ∀s V(s) ≤ φ(s); the potential
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function’s value for a given state must never be less than the true value for

the state. This admissibility requirement is common in heuristic-based search

algorithms, such as A* [30].

This algorithm works by assigning unknown states a value of φ(s), rather

than Vmax, the highest possible value. Setting φ(s) = Vmax is allowed, since

Vmax automatically satisfies the admissibility requirement, but lower values

result in faster convergence.

On the downside, this algorithm is very conservative, like the rest of the

RMAX family. Requiring a fixed number of visits to a state-action pair before

it becomes known means a lot of exploration steps if the heuristic is too opti-

mistic, some of which might not be necessary in practice.

3.1.2 Fitted-RMAX

Instance-based methods represent functions by a set of examples and use a pre-

defined similarity function to generalize to novel inputs. In the reinforcement-

learning setting, an instance is the tuple 〈s, a, s′, r〉, or the combination of state,

action, next state and reward.

Over the course of its lifetime, the agent gathers a large set of 〈s, a〉 → 〈s′, r〉

mappings. When it observes a new state-action pair, it can compare it to those

it has seen in the past and predict a next-state and reward that fits with those

already observed.

The ideas behind instance-based model learning can be combined with the

RMAX algorithm to create Fitted-RMAX [4]. Fitted-RMAX uses a Gaussian

kernel to determine the similarity between two states:

d(s1, s2) = exp

(
−||s1 − s2||22

b

)
, (3.1)
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where b is a width parameter used to determine how much distance affects the

similarity between two states.

The possible outcomes and rewards are then taken from a weighted aver-

age of those seen before when taking the action in question, where each possi-

bility 〈oi, ri〉 is weighted by d(st, si), where st is the state from which the agent

is considering taking an action.

Since this algorithm is applied in continuous domains, the standard defi-

nition of knownness that uses visit counts cannot be used. Instead, a distance

metric needs to be incorporated. The sum of the similarity scores between

the state in question and all previously experienced states is taken and com-

pared to a threshold B, over which the knownness metric declares a state to be

known. Unknown states are then assigned maximum value, according to the

rules of RMAX.

Once a policy is found for the Fitted-RMAX model, using some existing

continuous-state planner, the agent will be drawn to explore states that are

either unknown or have high value, like the original RMAX on which it is

based.

3.2 Bayes-adaptive Markov Decision Processes

The Bayes-adaptive MDP, or BAMDP [7], is an MDP whose optimal policy is

the Bayes-optimal policy for some other unknown MDP that is drawn from a

known prior. Every state in the BAMDP is a belief-state composed of a history,

or the set of observations made by the agent so far, and the concrete state that

the agent is currently in.
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The transition function of the BAMDP is defined as follows:

P(〈s′, h + (s, a, s′, r)〉, r|〈s, h〉, a) =
∫

M P(s′, r|s, a, M)φ(M|h)dM, (3.2)

where s and s′ are concrete states from the unknown MDP, 〈s, h〉 is a belief-state,

in the BAMDP, where the agent begins, and is composed of the concrete state

s and history h. The value h is the summary of all transitions observed by the

agent over the course of its lifetime. Here, they are represented by (s, a, s′, r)

tuples detailing the beginning and ending concrete states, the action taken and

the reward received.

The likelihood of the transition in the BAMDP is taken by integrating out

the underlying and unknown “true” MDP, according to MDP’s posterior distri-

bution. If a next-state sampler is needed, rather than an exact transition prob-

ability, the process is to first sample an MDP M from the posterior distribution

φ(M|h), and then sample the next state s′ and reward r from M.

By constructing the BAMDP according to Equation 3.2, the optimal policy is

identical to the Bayes-optimal policy in the learning setting. This fact follows

because the succession of transition likelihoods is exactly the same as those

indicated in the Bayesian model1.

Unfortunately, the BAMDP has potentially an infinite number of states,

since each possible history maps to a different belief state. However, as the

number of observations from a particular concrete state and using a particular

action grows large, the distribution over the possible next concrete states con-

verges, allowing a clever algorithm designer to collect large sets of belief states

together into equivalent classes, for the purposes of planning. An easy way

to make this optimization is to not adjust the posterior when an observation

1 See Section 1.1.4 for a full explanation of why optimal in the BAMDP is Bayes-optimal
while learning the MDP.
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Input: initial state s, prior Φ, #steps K
O← {}
for ever do

M ∼ Φ|O
π ← solve(M)
for K times do

a← π(s)
s′, r ← perform(a)
O← O ∪ {(s, a, s′, r)}
s← s′

Algorithm 2: Bayesian DP(s, Φ, K)

is made for a particular state-action pair s, a if that pair has been observed at

least B times in the past, for a choice of B sensible for the prior. This trick can be

used in any model-based Bayesian RL algorithm that uses a posterior sampler.

3.3 Bayesian Dynamic Programming

Bayesian Dynamic Programming [20], or Bayesian DP, is one of the first model-

based reinforcement learning algorithms to take advantage of posterior sam-

pling. The agent requires a model prior φ and a parameter K, which tells the

agent how many steps should be taken between samples.

Algorithm 2 lays out the Bayesian DP algorithm. The agent starts in some

initial state with no information about the environment except that which can

be gleaned from the prior Φ. Before taking any actions, the agent samples a

model M from the posterior Φ|O, where Φ is the model prior and O is the set

of observations recorded so far. Once M is sampled from the posterior, it is

solved optimally by whatever planning algorithm the designer prefers. The

resulting policy π is acted upon for the next K steps, and each step is recorded

and added to the set of observations. After K actions have been performed, a

new model is sampled from the updated posterior, and the process is repeated
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until the end of the experiment.

The act of periodically sampling from the posterior is intended to give the

agent glimpses of possible worlds. Some of the times a sample is drawn, a

state that the agent has not visited much will appear better than it actually is,

drawing the agent towards this relatively unknown state. On the other hand,

some times that unknown state will appear to have a very low value, causing

the agent to avoid it. State-action pairs that the agent has experienced many

times in the past will have relatively stable dynamics, and will usually have

a consistent value with respect to its neighboring states. As a result, this ap-

proach strikes a balance between exploration of states in which it is uncertain

and exploitation of states in which it is confident.

The fact that some samples will make an unknown state appear attractive

and other samples will make the same unknown state appear unattractive re-

quires Bayesian DP to be careful about when and how often it samples new

models. Too long between samples, and the agent is acting based on stale in-

formation. Too short between samples and the agent can end up dithering, as

explained next.

The parameter K, which is the number of steps taken between samples,

should be chosen to approximate the length of a trial (in situations where there

is a goal state) or the width of the MDP (maximum expected number of steps

to get from any given state to any other given state) when there is an infinite

horizon.

The idea here is that the agent should be able to reach any particular state

it wants before the next sample is taken and the agent might change its mind

about where it is trying to go. Consider a simple chain MDP, where only the

two states on the end are unknown. In a given posterior sample, one of the two
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ends may have a higher apparent value than the other. In the next sample, the

relative values of these two states may switch. If a new sample is taken before

the agent can reach one of the ends (and therefore learn about its dynamics),

thrashing can occur, resulting in an exponential number of steps (relative to

the number of states) before knowledge is gained.

To understand how thrashing can cause an exponential number of sub-

optimal steps, consider an MDP with one root state and N “chains” leading

off from that root state. At the end of one of these chains is the goal, and the

prior does not give preference to which chain might have that goal. At the

root, the agent can choose which chain to travel, but after that is limited to

two choices: continue or reset. Everything about the MDP is known except the

identity of the chain containing the high-valued goal. As a result, the posterior

does not change except when the agent reaches the end of a chain that it has

not reached before. Since the prior has no indication of which chain has the

goal, each time a sample is drawn the goal is randomly put at the end of one

of the chains. With Bayesian DP, if the agent is already on this chain, it can

continue getting closer to the goal. If the agent is on the wrong chain, it needs

to reset and head down the correct one.

If the length of each of the chains is L, this requires L/K identical guesses

in a row in order for the agent to either get the goal or remove that chain from

the posterior. With N unknown chains remaining, the likelihood of this event

happening for any L
K consecutive posterior samples is ( 1

N )
L
K . Briefly, consider

the problem of counting the number of flips of a biased coin before M consecu-

tive heads turn up, where each flip is heads with probability p. The likelihood

of flipping M heads in a row is pM. At the beginning, or immediately follow-

ing a tails, there are M different events that can happen, each with different
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likelihoods. There are M− 1 versions of flipping T heads and then a tails, for

0 ≤ T < M (a failure), each with probability pT(1 − p) and taking T flips,

and there is flipping M heads (a success), with probability pM and taking M

flips. Since the expected number of failures before a success is 1/(pM), we

can count the total number of expected steps by multiplying 1/(pM) by the

expected number of steps in a failure, which is

E[T] =
M−1

∑
T=0

P(T)T, (3.3)

=
M−1

∑
T=0

pT(1− p)T, (3.4)

= (1− p)p
M−1

∑
T=0

pT−1T, (3.5)

= (1− p)p
M−1

∑
T=0

dpT

dp
, (3.6)

= (1− p)p
d ∑M−1

T=0 pT

dp
, (3.7)

= (1− p)p
d 1−pM

1−p

dp
, (3.8)

= (1− p)p
[
(1− p)(1− pM)− MpM−1

1− p

]
, (3.9)

= p(1− p)2(1− pM)−MpM. (3.10)

Returning to the N-chain MDP, if we consider p = ( 1
N )

L
K and M = L

K , the

expected number of samples drawn (coins flipped) in a failure will be E[T] + 1

(the first sample is what we choose to think of as heads - the others then need

to match it). With an expected ( 1
N )−

L
K failures before the first success, that gives

an expected

E[number of failures]E[steps per failure] + E[steps per success](3.11)

=

(
1
N

)− L
K
(p(1− p)2(1− p

L
K )− L

K
p

L
K + 1) +

L
K

(3.12)
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samples before reaching the end of one of the chains. Ignoring the smaller

pieces, the ( 1
N )−

L
K factor is exponential with respect to the length of the chain.

Spacing out the MDP samples temporally allows the agent to visit at least

one unknown (and optimistically sampled) state every K steps (assuming that

any of the unknown states are optimistic in the posterior sample for those K

steps). Choosing a K that is at least as great as the expected number of steps

to get from any state in the MDP to any other state in the MDP alleviates the

thrashing issue seen in the N-chains example above. With K = L, ( 1
N )−

L
K → N,

and there is no exponential factor in the expectation.

3.4 Multi-Task Reinforcement Learning

Multi-Task Reinforcement Learning, or MTRL, considers the scenario where an

agent is given a sequence of environments, each of which is drawn i.i.d. from

some prior distribution. The Hierarchical Bayesian MTRL algorithm [22], or

HBMTRL assumes the following generative process for creating sequences of

MDPs:

C ∼ CRP(α), (3.13)

θc ∼ Θ, (3.14)

mi ∼ φ(θCi), (3.15)

where α is the CRP concentration parameter, C is the assignment of MDPs to

“classes” with Ci being the class of MDP mi, Θ is a distribution over MDP

hyper-parameters, θc is the hyper-parameter used for MDPs in class c, φ is

some distribution over MDPs parameterized by an instance of θ, and mi is an

MDP in the sequence.
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With this approach, the hyper-parameter distribution Θ and the MDP dis-

tribution family φ can be anything - the algorithm itself has no constraints on

what may be used.

The process HBMTRL uses is similar to that of Bayesian DP [20], except

that instead of sampling a single model from the posterior and acting accord-

ing to its optimal policy, HBMTRL will sample several MDPs and discard all

of them but the most likely. This has the effect of sampling from a peaked ver-

sion of the posterior, where the likelihood ratios between two samples grows

more severe. As the size of the sample set grows, the resulting version of the

posterior becomes more and more peaked. In the limit as the size of sample set

goes to infinity, this process will choose the mode of the posterior.

This algorithm is an example of using model-based Bayesian RL for trans-

fer learning, where experience gathered in one MDP can inform an agent’s

behavior in another. The model in Equation 3.13 indicates that all MDPs can

be divided into groups which share some basic qualities, represented by θi.

In the parlance of this dissertation, HBMTRL is both an algorithm and a

family of priors. The algorithm is the process of sampling from the peaked

posterior and acting according to the optimal policy of the result. The family

of priors is those priors that use a Dirichlet process mixture model to sample

MDPs.

3.5 BEETLE

Bayesian Exploration Exploitation Tradeoff in LEarning, or BEETLE [17] treats

the task of Bayes-optimal behavior as optimal behavior in a POMDP whose

hidden state is the MDP describing the transition probabilities between the
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observed states.

This algorithm assumes the Flat Dirichlet Multinomial prior, where each of

the MDP’s next-state distributions are drawn from a Dirichlet distribution.

The POMDP’s state-space is S × Θ, where Θ is the set of next-state likeli-

hood vectors, describing the entire dynamics of the MPD. The POMDP’s ac-

tion space is the same as that of the underlying MDP’s. The transition function

is P(〈s′, θ′〉|〈s, θ〉, a) = θs′
s,aδ(θ, θ′), where δ is the Kronecker delta. The set of

observations is the set of states from the underlying MDP. And, the reward

function is known.

Since the Dirichlet distribution is conjugate prior to the multionimial distri-

bution, belief monitoring is straightforward.

BEETLE is a point-based value iteration method for this sort of POMDP,

and for every iteration it will prune the number of belief-states that it is con-

sidering in order to mitigate the natural intractibility of POMDP planning.

3.6 Bayesian Exploration Bonus

The BEB [8] algorithm is a computationally efficient method to achieve near

Bayes-optimal behavior in discrete state- and action-spaces when using a Dirich-

let prior.

The algorithm uses a flat Dirichlet multinomial (FDM) prior, which states

that

θs,a ∼ Dirichlet(α), (3.16)

P(s′|s, a) = θs,a
s′ , (3.17)

where α is a tuning parameter that correlates with variance in the next-state

distribution.
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BEB assumes the reward function is known.

To drive exploration, BEB adds an internal bonus B(s, a) to the reward re-

ceived when taking action a from state s. It acts greedily according to Q̂(s, a):

Q̂(s, a) = R(s, a) + B(s, a) + γ ∑
s′

P(s′|s, a)V̂(s′), (3.18)

V̂(s) = max
a

Q̂(s, a), (3.19)

B(s, a) =
β

1 + n(s, a)
, (3.20)

where n(s, a) is the number of times that action a has been taken from state s.

This algorithm is similar to Model-Based Interval Estimation (MBIE) [31],

except that MBIE uses the square root of the visit count in its bonus. This

difference causes the bonus term used by MBIE to decay more slowly resulting

in slower convergence, and that extra conservativity allows MBIE to be a PAC-

MDP algorithm, where BEB is a near Bayes-optimal algorithm when the prior

is the flat Dirichlet multinomial.

3.7 Variance-based BEB

Variance-based BEB, or vBEB [21], is an adaptation of BEB that can make use

of a flexible prior, or one that is not restricted to the flat Dirichlet multinomial.

The vBEB algorithm provides a framework for analyzing an arbitrary prior,

and creating a bonus term based on the posterior variance for the state-action

pair to which the bonus will be applied. In this framework, the flat Dirichlet

multinomial gets the bonus term from Equation 3.20, and it will be different

for other priors. With the proper bonus selected, vBEB is a PAC-BAMDP algo-

rithm.
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3.8 BOLT

Bayesian Optimistic Local Transition, or BOLT [9], makes use of a flexible

prior and has PAC-BAMDP guarantees. BOLT works by constructing a hyper-

model m′ from the posterior φ|h, where φ is the model prior and h is the agent’s

current history at the time that the hyper-model is constructed. This hyper-

model has the same state-space, but an expanded action-space A′ = S × A.

The transition function of the hyper-model is

Tm′(s′|s, 〈ŝ, a〉) =
∫

m
φ(m|h + (s, a, ŝ)(η))Tm(s′|s, a)dm, (3.21)

where h+ (s, a, ŝ)(η) is the current history augmented with η extra hypothetical

transitions from s to ŝ when choosing action a. As a result, φ(m|h + (s, a, ŝ)(η))

is the hypothetical posterior likelihood of m after the extra transitions.

This hyper-model provides a way to introduce optimism into the partially

known or unknown MDP. At least one of the states must have high value (oth-

erwise, why bother?), and for a transition function that still has variance in

the posterior, creating an action with a higher likelihood of ending up in that

state allows the planner to pick and choose which states visits. Unlike RMAX-

and BEB-based algorithms, which augment rewards for state-action pairs with

poorly known transition functions, BOLT changes the transition function itself

to reflect that uncertainty.

3.9 Sparse Sampling

Sparse Sampling [26], outlined in Algorithm 3, is a Monte-carlo tree construc-

tion algorithm for value estimation on MDPs. This algorithm works by per-

forming exhaustive search, using Monte-carlo sampling to estimate transition

probabilities.
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Input: initial state s, next-state sampler P, reward function R, discount
factor γ, accuracy ε, probability of failure δ

Output: estimated value V
Rmax ← maxsa Rsa
Vmax ← Rmax

1−γ

λ← ε(1−γ)2

4
k← #actions
H ←

⌈
logγ(λ/Vmax)

⌉
C ← V2

max
λ2

(
2H log kHV2

max
λ2 + log Rmax

λ

)
V ← Sparse Sampling Recursion(s, P, R, γ, H, C)
return V

Algorithm 3: Sparse Sampling(s, P, R, γ, ε, δ)

Input: initial state s, next-state sampler P, reward function R, discount
factor γ, depth d, branching factor C

Output: estimated value V
if d = 0 then

V ← 0
else

for a ∈ A do
Qa ← Rsa
for C times do

s′ ∼ Psa
V′ ← Sparse Sampling Recursion(s′, P, R, γ, d− 1, C)
Qa ← Qa +

γV′
C

V ← maxa Qa
return V

Algorithm 4: Sparse Sampling Recursion(s, P, R, γ, d, C)

Many value-estimation algorithms, especially those preceding the publica-

tion of Sparse Sampling, have a strong linear or super-linear dependence on

the number of states in the MDP. This dependence often arises as a result of the

algorithm’s attempt to estimate the value of all states in the MDP.

Sparse Sampling reduces the dependence on the number of states by only

considering states that are likely to be reached from the state whose value is

being estimated. This state is the root of a search tree. Each node in the tree is

one particular state in the MDP (though more than one node can share a single
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state).

This algorithm makes use of a next-state generator P to generate transition

samples. If the runtime required to sample from Psa does not depend on the

number of states, then Sparse Sampling’s runtime will also not depend on the

number of states.

While this sampling runtime condition will not hold true for general MDPs,

it makes practical sense for many situations. For example, in a continuous-

state MDP (infinite number of states) that uses an offset drawn from a normal

distribution to determine the next state, the amount of time required to sample

from that normal distribution will depend only on the number of state features,

rather than the number of states. Also, in a gridworld, the next state is often

chosen from those states adjacent to the current state, and can be sampled very

quickly.

The Sparse Sampling algorithm works by sampling a fixed number C of

next-states for each action, when taken from the root. The value of those states

is estimated recursively and with a search-depth of one less than the current

search depth. As a base case, if the current search depth is zero, the value is

approximated by 0.

The algorithm must be provided a probability of success 1 − δ, required

accuracy ε and discount factor γ. These parameters inform Sparse Sampling’s

choice of the parameter C and the desired search depth.

The leaf nodes in the search tree, those whose value is approximated by

0, are too far in the future, according to the discount factor γ and accuracy

constraint ε, to have a significant affect on the value of the root.

Usually, the value C needed in order to achieve a particular ε and δ is too

high for any kind of practical use. Simply running Sparse Sampling on the
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BAMDP, and taking the action that it suggests has the highest value, results

in an approximately Bayes-optimal agent. But, since Sparse Sampling would

require an enormous amount of computation, algorithms that require less com-

putation (usually at the cost of some number of sub-Bayes-optimal steps) are

desireable.

3.10 Bayesian Sparse Sampling

Bayesian Sparse Sampling [18] is an adaptation of Sparse Sampling (see Sec-

tion 3.9) that uses a model prior and a targetted method of choosing actions

while planning.

Where Sparse Sampling is only able to estimate a state’s value for a particu-

lar concrete model, Bayesian Sparse Sampling works with uncertainty, codified

by a provided model prior. Every time a next-state is needed to further build

the search tree, a model is sampled from the posterior, and the next-state is

sampled from that model. Future next-states in the sub-tree of the newly sam-

pled next-state will include this generated transition in their observation sets,

allowing the sub-trees to simulate learning. This process is analogous to Sparse

Sampling in the BAMDP, except that Bayesian Sparse Sampling explores only

a small portion of the search tree that Sparse Sampling would discover.

The method of action-selection differs from Sparse Sampling in that rather

than trying each action a number of times, Bayesian Sparse Sampling will run

a series of roll-outs (simulated trajectories through the BAMDP). To choose the

action at each stage in the roll-out, Bayesian Sparse Sampling samples a model

from the posterior and finds the optimal action in the sampled model from the

current state, and chooses that state, similar to Thompson sampling [32].
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Choosing actions by identifying the optimal action in posterior samples al-

lows Bayesian Sparse Sampling to target its exploration to attempt only actions

that have a chance of being optimal. Also, when the posterior has converged

to something close to the truth, the sampled model will be consistent and cor-

rect, and Bayesian Sparse Sampling will only choose the best action, wasting

no samples in its value estimation.

This algorithm has some efficiency issues; it requires sampling from the

posterior and solving for the true optimal action in the inner loop. Both poste-

rior sampling and model solving can often be computationally difficult. There

are cases where the posterior sampling and model solving can be done effi-

ciently, for instance when the model is a bandit problem with the Beta prior [18].

3.11 Bayesian Approaches to Acting in POMDPs

The majority of the work discussed in this dissertation focuses on using priors

to help an agent explore and exploit an MDP. Even if that MDP is not known

exactly, the agent gets to know exactly what states it visits, and is guaranteed

that T(s′|s, a) is constant, if sometimes unknown, throughout the course of the

experiment.

When trying to act in a POMDP, the agent only gets to oberve a signal,

which is drawn from a distribution and conditioned on the unobserved state.

This disconnect makes learning much more difficult.

The use of Bayesian non-parametric techniques is a proven method for

learning latent variables in a variety of situations [1, 33, 34], and it makes sense

to use them for POMDP inference as well.

The Infinite POMDP [35] is an example of using non-parametric techniques
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for POMDP inference. It uses a CRP to assign specific observations to states,

and a Stick-breaking process to create next-state distributions. The CRP and

the Stick-breaking process are both different formulations of the Dirichlet pro-

cess, so the result is a hierarchical Dirichlet process.

The model can be written as follows:

Ts,a ∼ Stick(λ), (3.22)

Ωs,a ∼ H, (3.23)

Rs,a ∼ HR, (3.24)

S ∼ CRP(α), (3.25)

st+1 ∼ TSt,a, (3.26)

ot ∼ ΩSt,a, (3.27)

where λ and α are concentration hyper-parameters to their respective distribu-

tions, H is a prior over different observation distributions, Ωs,a is the observa-

tion distribution when in hidden state s and performing action a, Rs, a is the

reward distribution when in hidden state s and performing action a, HR is a

prior over different reward distributions, S is the assignment of time-steps to

states (so at time t, the agent was in state St), and ot is the observation made

after taking an action during time-step t.

This model is very general, and allows the agent designers choose a model

for the observations and rewards that fits with the domain they are working

with.
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Input: initial state s, next-state sampler P, reward function R, discount
factor γ, UCB parameter C

Output: estimated value V
∀s ns ← 0
∀s Vs ← 0
∀s,a ns,a ← 0
∀s,a Qs,a ← 0
if s is terminal then

Vs ← 0
return Vs

if ns 6= 0 then

∀a Bs,a ← 2C
√

log ns
ns,a

a← argmaxa Qs,a + Bs,a
else

a← randomly chosen action
s′ ← P(s, a)
r ← R(s, a)
Vs′ ← UCT(s′, P, R, γ, C)
Q̂s,a ← r + γvs′

Qs,a ← (ns,aQs,a + Q̂s,a)/(ns,a + 1)
ns ← ns + 1
ns,a ← ns,a + 1
Vs ← maxa Qs,a
return Vs

Algorithm 5: UCT(s, P, R, γ, C)

3.12 Upper Confidence Bounds on Trees

Upper Confidence bounds on Trees [27], or UCT, is a widely-used rollout-

based MCTS value-estimation algorithm. UCT is an application of the bandit

algorithm Upper Confidence Bounds [36], or UCB, to tree search. There are

multiple variants to the details of how UCT can work, and since none of them

relate directly to the work presented in this disseration, only one simple ver-

sion of UCT will be discussed.

The UTC algorithm works by running a series of roll-outs through the state

space, and making value estimates based on averages of observed returns.
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The roll-outs follow trajectories generated by applying some exploration pol-

icy to the next-state sampler P. Once each trajectory has finished, the total

discounted return experienced by each state-action pair is averaged with its

previously observed returns.

The key to UCT is how it chooses its rollout policy. Variations exist, but the

part they all have in common is the use of UCB for choosing actions in states

that have been visited before.

The bandit algorithm UCB mixes exploration and exploitation. The algo-

rithm will always choose the arm that has the greatest sum of average observed

reward and a bonus term. The bonus term is a function of the number of times

the arm in question has been pulled before, and how many chances the algo-

rithm has had to pull an arm in total.

The bonus term used by UCB for arm i is 2C
√

log t
ni

, where t is the total

number of pulls on any arm, ni is the number of times arm i has been pulled,

and C is a constant parameter that can be tuned. This bonus term has the

nice properties of going to zero as t goes to infinity (allowing UCB to rely

completely on average observed reward), and being infinite when ni is zero

(forcing UCB to try each action at least once).

UCT treats every possible state as a separate bandit algorithm, where each

action represents a different bandit arm. As it visits a state again and again in

its roll-outs, the UCB strategy will push it towards areas of the state-space that

are either less explored or have had more favorable returns. This algorithm

is also extremely computationally efficient, assuming next-states and rewards

can be sampled quickly.
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3.13 Forward Search Sparse Sampling

Forward Search Sparse Sampling [37], or FSSS, is another MCTS planner that

preferentially expands the search tree through the use of rollouts. It is outlined

in Algorithm 6. Unlike either Bayesian Sparse Sampling or UCT, it retains

the attractive guarantees of the original Sparse Sampling algorithm. FSSS

also maintains hard upper and lower bounds on the values for each state and

action so as to direct the rollouts; actions are chosen greedily according to the

upper bound on the value, and the next state is chosen such that it is the most

uncertain of the available candidates (according to the difference in its upper

and lower bounds).

FSSS will find the action to take from a given state s0, the root of the search

tree. The tree is expanded by running t trajectories, or rollouts, of length d.

There are theoretically justified ways to choose t and d, but in practical applica-

tions they are knobs used to balance computational overhead and accuracy. To

run a single rollout, the agent will call Algorithm 7, FSSS-Rollout(s0, d, 0, M).

The values Ud(s) and Ld(s) are the upper and lower bounds on the value of

the node for state s at depth d, respectively. Each time a rollout is performed,

the tree will be expanded. After at most (AC)d rollouts are finished (but often

less in practice), FSSS will have expanded the tree as much as is possibly use-

ful, and will agree with the action chosen by Sparse Sampling. Thus, FSSS

could be viewed as an anytime version of SS that uses pruning to speed its

calculation.

The fact that FSSS maintains upper bounds on the values for each state it

considers will be useful when an optimistic planner is required. It is often the

case that accurately finding (or even approximating) a state’s value will end up

being very difficult or intractable. FSSS promises that, with high probability,
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Input: state s, max depth d, #trajectories t, branching factor C, MDP M
Output: estimated value for state s
for t times do

FSSS-Rollout(s, d, C, 0, M)
V̂(s)← Ud(s)
return V̂(s)

Algorithm 6: FSSS(s, d, C, t, M)

the true value for a given state will be somewhere in between U(s) and L(s).

Maintaining this range of uncertainty can be useful for the algorithm employ-

ing FSSS as a planning algorithm, as we shall see in Chapter 5.
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Input: state s, max depth d, branching factor C, current depth l, MDP M
if Terminal(s) then

Ud(s) = Ld(s) = 0
return

if d = l then
return

if ¬Visitedd(s) then
Visitedd(s)← true
foreach a ∈ A do

Rd(s, a), Countd(s, a, s′), Childrend(s, a)← 0, 0, {}
for C times do

s′, r ∼ TM(s, a), RM(s, a)
Countd(s, a, s′)← Countd(s, a, s′) + 1
Childrend(s, a)← Childrend(s, a) ∪ {s′}
Rd(s, a)← Rd(s, a) + r/C
if ¬Visitedd+1(s′) then

Ud+1(s′), Ld+1(s′)← Vmax, Vmin
Bellman-backup(s, d)

a← argmaxa Ud(s, a)
s′ ← argmaxs′(Ud+1(s′)− Ld+1(s′)) ·Countd(s, a, s′)
FSSS-Rollout(s′, d, l + 1, M)
Bellman-backup(s, d)
return

Algorithm 7: FSSS-Rollout(s, d, C, l, M)

Input: state s, depth d
foreach a ∈ A do

Ud(s, a), Ld(s, a)← 0, 0
foreach s′ ∈ Childrend(s, a) do

Ud(s, a)← Ud(s, a) + 1
C γUd+1(s′)

Ld(s, a)← Ld(s, a) + 1
C γLd+1(s′)

Ud(s) = argmaxa Ud(s, a)
Ld(s) = argmaxa Ld(s, a)
return

Algorithm 8: Bellman-backup(s, d)
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Chapter 4

Best Of Sampled Set

Best Of Sampled Set [1], or BOSS, is a Bayesian approach to model-based

reinforcement learning. This algorithm makes use of a general prior to sample

entire models from the posterior. It works by sampling a set of models and

combining them (see Figure 4.2) in a way that helps it choose the best in each

situation.

This algorithm follows a strong tradition in model-based reinforcement

learners of optimism in the face of uncertainty. One of the best-known model-

based RL algorithms, RMAX [25], approaches this idea by locking unknown

states to the highest possible value, or Vmax.

4.1 Algorithm

The BOSS algorithm, outlined in Figure 4.1, makes use of repeated samples

from a posterior to create a hyper-model that can be used for trading off explo-

ration and exploitation.

There are two distinct cases to which BOSS algorithm can be analyzed: in

general and for discrete action and state spaces. The general case, for arbitrary

state and action spaces, works as an effective exploration heuristic, while the

specific case has formal efficiency guarantees. We will discuss first the general

case, and then the discrete state-action case.
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4.1.1 BOSS for General Models

The BOSS algorithm requires two important black boxes: a posterior sampler

and a planner.

It is important to remember that these two black boxes encapsulate entire

fields of active and interesting research and should not be thought of as solved

problems when designing an agent. However, using BOSS as an exploration

mechanism allows us to separate the reinforcement–learning problem from

the planning and inference problems. This separation allows reinforcement–

learning researchers to more easily draw on advances in other communities

and to build on them.

The Posterior Sampler

The model posterior is the combination of a model prior (provided by the pro-

grammer) and observations (collected by the agent or provided by the envi-

ronment). Techniques for deriving a posterior are covered in Chapter 2.

The posterior sampling black box must have the ability to sample from the

set of worlds that are possible, given the observations made so far. The sam-

pled model must be able to simulate transitions to next-states and rewards,

given an action and the state it was taken from.

As the agent explores the world, taking actions and receiving feedback, it

feeds the observations it has received to the posterior sampler. As the posterior

sampler gets more and more data, the models sampled from it become more

and more accurate, at least where the concentration of samples is high enough.

A posterior sampler can only be useful if some sort of accuracy guarantee

is possible. That is, as more observations are made, models sampled from the
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posterior become closer to the truth, at least in the parts of the model associated

with the observations. It is not always the case that a posterior will become

more accurate with more data. A simple example is a prior that says that a

coin will either always turn up heads or always turn up tails. The moment that

both a head and tail have been observed, the posterior becomes broken. The

posterior distribution for the coin’s bias,

P(ρ|h = 1, t = 1) =
Bin(H = 1|ρ, n = 2)P(ρ)

P(H = 1, n = 2)
, (4.1)

is now undefined. The denominator in Equation 4.1 is zero, since the coin must

be either two-headed or two-tailed.

For the general case, I will not specify exact accuracy guarantees. For the

special case in Section 4.1.2 there is a concrete assumption that must be met to

guarantee efficiency.

The Planner

BOSS requires a planner that, given a model, can (probably) find an (approx-

imately) optimal action for any given state. The specifics of how the planner

comes to its decision, including the number of samples drawn from the model

and how much time is spent in computation, are orthogonal to BOSS’s goal of

low exploration complexity.

Fortunately, since the planner’s operation is orthogonal to how BOSS works,

the two can be analyzed separately.

Although the planner is decoupled from BOSS’s operation, it is tied closely

to the posterior sampler. More accurately, it is closely tied to the models gener-

ated by the posterior sampler. The planner must be able to work in whatever

model the posterior sampler can create. More than that, it must be able to work
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in a hyper-model, created by melding some number of the posterior sampler’s

models together, as discussed in Section 4.1.1.

Hyper-models

A hyper-model is the combination of some set of K models with identical ac-

tion and state spaces, but possibly differing dynamics (as in Figure 4.3). The

resulting hyper-model has the same state space as each of its sub-models, but

has one more feature in its action space. This feature, k ∈ {1, ..., K}, indicates

from which sub-model the dynamics of this action are taken. That is, the ac-

tion (2, a) has the same next-state and reward distributions that action a has in

model 2.

Formally, a hypermodel m′ can be constructed from k MDPs m1, m2, ..., mk

that have the same state-space S and action-space A. They may each have

unique transition and reward functions T and R. The hypermodel m′ has state-

space S and action-space A× {i|i ∈ N, i ≥ 1, i ≤ k}. The transition function

for m′ is defined to be

Tm′(s′|s, 〈a, i〉) = Tmi(s
′|s, a). (4.2)

That is, the probability of ending up in state s′ after taking the action 〈a, i〉 is the

same as the probability of ending up in state s′ when taking action a in MDP

mi. Similarly, the reward function for m′ is defined to be

Rm′(s, 〈a, i〉) = Rmi(s, a). (4.3)

Intuitively, an agent acting according to m′ is free to choose the dynamics

from any of the sampled models during each step. An optimistic agent, one

that thinks the best of the unknown, can choose the dynamics that give it the
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biggest advantage. This is an example of “optimism in the face of uncertainty”,

where the agent is drawn to parts of the state space that are either known to be

good, or are not known. With this attack plan, the agent will either get good

reward or get good knowledge. Since the amount of knowledge to be learned

is usually finite, the agent will visit the unknown states enough to make them

known, and be able to act without exploration in the future.

BOSS’s method of model creation allows the hyper-model to retain all the

optimism of any of its sub-models. The idea is that, for each state, at least

one of the K models will predict dynamics at least as good as the true model’s

dynamics.

The claim that the hyper-model is, for every state, at least as optimistic as

any of its sub-models is detailed in Lemma 3.

It is important to choose K carefully. A low value for K will increase the

odds that, for some set of K models, there will be states for which no model’s

dynamics will be as good as the true model’s — this situation breaks any guar-

antees that BOSS offers. A high value for K can cause two problems. First, the

amount of work done by the planner increases, sometimes dramatically; the

runtime complexity of most discrete-action planning algorithms relies linearly

or super-linearly on the number of actions. Second, too much optimism can be

a bad thing. In the extreme, as K → ∞, all possible models will be represented

in every set of K sub-models. In this situation, the agent’s observations have no

effect on the hyper-model, since the likelihood of each sampled model is not

taken into account when compositing the sub-models together. With a finite,

yet large, K, the number of observations required to have a particular state’s

dynamics be accurate in each of the sub-models grows as a polynomial of K.

While this growth rate doesn’t make a dent in any theoretical guarantees, it
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does present serious issues in practice.

Algorithm

The basic BOSS algorithm is as follows:

1. Sample K sub-models from the posterior.

2. Combine each of the K models sampled into a hyper-model, as in Sec-

tion 4.1.1.

3. Using the planner, act optimally according to the hyper-model until a

discovery event occurs.

4. Go back to Step 1.

This process is repeated forever, though eventually Step 3 will never com-

plete, since the number of discovery events an agent can experience is bounded.

Here, we define a discovery event to be an action taken that causes a state

to go from unknown to known. How this change is quantified varies with the

model and prior being used. As an example, with a discrete state and action

space, a state may become known once each action has been attempted from

that state some pre-determined number of times. In a continuous state space,

reaching some action density at a state could be defined to trigger a discovery

event.

A discovery event is a signal to the agent that the observations it has gath-

ered have affected the posterior sufficently that the K models it has been work-

ing with may now be out of date. A new hyper-model is created, from the new

information, and the agent resumes its process of either getting high reward or
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making observations in states that are unknown (because they will have high

reward in the hyper-model).

The agent will get high reward because states that are known to be good

will be accurately represented in each of the K samples, and the planner will

be using an accurate version of those states’ dynamics when it plans, no matter

which version of the action it chooses to use.

The agent will make observations in states that are unknown because, for

each unknown state, at least one of the K sampled models will have dynamics

that are optimistic for that state, making it more attractive to the agent than it

would be otherwise.

4.1.2 BOSS for Discrete State and Action Spaces

With a discrete state and action space, where the model can be represented by

an MDP, the BOSS algorithm can be defined more exactly, and given formal

efficiency guarantees.

Knowness

For any prior that supports (has a non-zero probability for) the true model,

there will be some minimum number of observed transitions from a particu-

lar state, with a particular action, that is large enough to guarantee (with high

probability) a posterior sample that is close to the truth for that state-action

pair. We will call this threshold B. We choose B such that after B next-states

have been observed for a particular state-action pair, with high probability the

true next-state distribution is close to the distribution inferred from the obser-

vation set. The threshold B is a function of the desired accuracy and probability

of success.



93

A discovery event is then defined to occur on the Bth transition from a

particular state-action pair.

4.2 Theoretical Guarantees

The BOSS algorithm is both PAC-MDP and PAC-BAMDP, under slightly dif-

ferent conditions. The difference between optimal and Bayes-optimal, in this

situation, hinges on whether the “true” MDP has a bounded sample complex-

ity or the prior itself is has a bounded sample complexity. This distinction is

important to make, since with an especially strange prior, the posterior may

not converge to something close to the true model after a reasonable number

of observations. With this strange prior, BOSS will still be PAC-BAMDP, but

the Bayes-optimal and optimal policies may differ significantly.

4.2.1 Definitions

This section formalizes some definitions that are important for understanding

the theorem and proof that follows.

Definition 9. An MDP m̂ is said to be locally ε-optimistic at state-action pair s, a,

with respect to a baseline MDP m0, if

R(s, a) + γ ∑
s′

Tm̂(s′|s, a)Vm0(s
′) ≥ R(s, a) + γ ∑

s′
Tm0(s

′|s, a)Vm0(s
′)− ε,

or

∑
s′

Tm̂(s′|s, a)Vm0(s
′) ≥ ∑

s′
Tm0(s

′|s, a)Vm0(s
′)− ε, (4.4)

where R is the reward function for MDP m, where Tm is the transition function for

MDP m, Vm(s) is the value of state s in MDP m.
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That is, if the agent is able to take a single step from s, a in m̂, and then must exist

in m0 after that, it is able to achieve an expected discounted return that is at least as

high as that that it could achieve starting in m0, less ε.

Definition 10. An MDP m̂ is said to be locally ε-accurate at state-action pair s, a,

with respect to a baseline MDP m0, if

‖Tm̂(·|s, a)− Tm0(·|s, a)‖∞ ≤ ε,

or

∀s′
∣∣Tm̂(s′|s, a)− Tm0(s

′|s, a)
∣∣ ≤ ε, (4.5)

where Tm is the transition function for MDP m.

That is, the likelihood of ending up in state s′ while in m̂ is ε-close to that likelihood

in m.

With high probability, when the prior is has a sample complexity of B, posterior

samples will be locally ε-accurate for state-action pairs with at least B observed tran-

sitions.

Definition 11. A state-action pair that has been tried at least B times is declared to

be known. If a state-action pair has been tried fewer than B times, it is declared to be

unknown.

If there is any action a for which the state-action pair s, a is unknown, the state s

is also unknown. A state is known if all state-action pairs including it are known.

4.2.2 BOSS is PAC-BAMDP

Theorem 1. The BOSS algorithm, when provided with

1. a prior MDP distribution φ,
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2. a knownness threshold B,

3. a samples-per-hyper-model count K,

and if

1. the prior φ is has a sample complexity of B, with ε0 andδ0,

2. a posterior sample is locally ε0-optimistic for any arbitrary state-action pair

with probability at least 1− δ1,

where ε0 = ε(1 − γ)/(γVmax), δ0 = δ/(2KS2A2), and δ1 =
(
δ/(2S2A2)

)1/K,

will, with probability at least 1 − δ, perform ε-Bayes-optimal actions for all but a

number of steps that is polynomial with ε, δ, γ, B, the number of states S, and the

number of actions A. That is, BOSS will be PAC-BAMDP.

4.3 Proof of PAC-BAMDP

In this section, I present a proof that BOSS is PAC-BAMDP in discrete state and

action spaces, as long as certain assumptions hold. That is, with probability

1 − δ, the agent will choose ε-Bayes-optimal actions for all but a number of

steps that is polynomial with the number of states S, the number of actions A,

the prior’s accuracy threshold B, ε and δ.

This proof depends on three main assumptions, which follow.

1. Bounded discoveries: the agent will visit unknown state-action pairs only

a small number of times.

2. Optimism: the values for each unknown state in every hyper-model are

optimistic.



96

3. Accuracy: the hyper-models have accurate dynamics for any state-action

pair that is known.

These three assumptions are sufficient to ensure, with high probability, a

number of sub-optimal steps in the BAMDP that is polynomial [10].

We declare a state-action pair to be known if it has been attempted at least B

times. This number of attempts allows the agent to have gathered enough

experience to be able to accurately simulate its dynamics, according to As-

sumption 3. If the state-action pair has been attempted fewer than B times,

not enough observations have been made to make an accurate prediction, and

it is considered unknown. Unknown states have optimistic values in the hyper-

models, incentivizing the agent to visit them and learn about their dynamics.

In particular, because the prior φ must have bounded sample complexity,

we can assume that the dynamics for that state-action pair in a posterior sample

are ε0-accurate, for ε0 = ε(1− γ)/(γVmax), with high probability. If all state-

action pairs in a sampled MDP have ε0-accurate dynamics with respect to the

“true” MDP, then the simulation lemma [12, 38] tells us that the optimal policy

for that sampled MDP will be an ε-optimal policy in the “true” MDP.

4.3.1 Bounded Discoveries

Since a new hyper-model is constructed each time a discovery event occurs, it

is important to bound the number of possible discovery events. In the discrete

state and discrete action case, a discovery event occurs when a particular state-

action pair is tried for the Bth time. Since the number of unique state-action

pairs is SA, there may only be SA discovery events. As a result, the maximum

number of hyper-models created over the agent’s lifetime is SA.
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4.3.2 Optimism

This proof depends on hyper-models being ε-optimistic for all unknown state-

action pairs. Intuitively, if unknown state-action pairs are optimistic, the agent

has incentive to visit them and try them, eventually causing them to become

known.

Condition 2 in Section 4.2.2 lets us know that for an arbitrary unknown state-

action pair, an MDP m̂ ∼ φ|h sampled from the posterior will be locally ε0-

optimistic for that pair with probability at least 1− δ1.

To have an optimistic hyper-model, it is sufficient that for each of the SA

state-action pairs s, a, at least one of the K samples is locally ε0-optimistic at s, a.

Alternatively, that each state s has a locally ε0-optimistic version of each action.

First we show that the construction of a hyper-model retains all the opti-

mism of its sub-models.

Lemma 3. A hyper-model m′ has a value for each state at least as high as the value of

that state in each of the sub-models m1, m2, ..., mk.

Proof. By augmenting the set of actions available for a single state, we can only

raise the value of that state since the value, defined by the Bellman equation,

V∗m(s) = max
a∈A

Rm(s, a) + γ ∑
s′

Tm(s′|s, a)V∗m(s
′), (4.6)

is taken from the max over the set of actions. Augmenting the set of actions for

s0 results in a slightly different recurrence relation,

V∗m(s0) = max
a∈A

⋃
A′

Rm(s0, a) + γ ∑
s′

Tm(s′|s0, a)V∗m(s
′), (4.7)

V∗m(s 6= s0) = max
a∈A

Rm(s, a) + γ ∑
s′

Tm(s′|s, a)V∗m(s
′). (4.8)

Since V∗m(s0) can only have increased, we know the values of every other state

can also only have increased, since Tm(s′|s, a) ≥ 0 is a non-negative probability.
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It follows that as we augment the actions available to each state individually,

the values of any state in the new MDP must be at least as great as they were

before those actions were added. Because m′ is an augmentation for each of

the sub-models mi, it follows that ∀i,sVm′(s) ≥ Vmi(s).

Given that we know hyper-models retain all the optimism of their sub-

models, we can bound the likelihood that a hyper-model is optimistic every-

where.

Lemma 4. For any given unknown state-action pair, if a model sampled from the

posterior is locally optimistic with probability at least 1− δ1, then a hyper-model cre-

ated from the combination of K models sampled independently from the posterior is

optimistic for every unknown state-action pair with probability at least 1− SAδ1
K.

Proof. For a specific unknown state-action pair s, a, the probability that one of

the K samples used to construct a single hyper-model is locally ε0-optimistic is

the complement of the probability that none of them are.

The probability that a single sample is not locally ε0-optimistic is at most

δ1.

Since these K samples are conditioned on the same data and are indepen-

dent with respect to that data, the probability of K samples not being locally

ε0-optimistic is at most δ1
K.

The probability that at least one of them is locally ε0-optimistic is then no

less than the compliment, 1− δ1
K.

These K sub-models are composed into a single hyper-model, which needs

to be locally ε0-optimistic for all unknown state-action pairs. At any given point,

there are no more than SA unknown state-action pairs. The union bound tells

us that the likelihood of this being the case for a particular hyper-model is at
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least 1− SAδ1
K.

Since the number of hyper-models created over the lifetime of the agent is

bounded, so is the likelihood that they are all optimistic.

Lemma 5. If a posterior sample is locally ε0-optimistic for any given unknown

state-action pair with probability at least 1− δ1, then all unknown states in all hyper-

models will have locally ε0-optimistic version of each action with probability at least

1− δ/2.

Proof. Since an agent may experience at most SA discovery events and, there-

fore, construct at most SA hyper-models, and the likelihood that a particular

hyper-model is optimistic is at least 1−SAδ1
K, the union bound tells us that the

likelihood of each of them being locally ε0-optimistic for all of their unknown

state-action pairs is at least 1− S2A2δ1
K.

Since δ1 =
(
δ/(2S2A2)

)1/K, all hyper-models will be locally ε0-optimistic

for all of their unknown state-action pairs with probability at least 1− δ/2.

4.3.3 Accuracy

The BOSS algorithm, by itself, cannot guarantee model accuracy; as a Bayesian

algorithm, it is dependent on the prior chosen for the agent.

Lemma 6. If the prior φ is has a sample complexity of B for δ0 and ε0, then every

known state-action pair in every hyper-model will be locally ε0-accurate with prob-

ability at least 1− δ/2.

Proof. Since φ has bounded sample complexity, for a given posterior sample, a

particular known state-action pair will be locally ε0-accurate with probability at

least 1− δ0.
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Since the number of constructed hyper-models is at most SA, and K pos-

terior samples go into each hyper-model, known state-action pairs have to be

locally ε0-accurate in at most KSA posterior samples. Each time the posterior is

sampled, there are at most SA known state-action pairs, so the number of times

a known state-action pair needs a locally ε0-accurate is at most KS2A2.

Since δ0 = δ/(2KS2A2), applying the union bound tells us that the like-

lihood that all known state-action pairs in all posterior samples are locally ε0-

accurate is at least 1− KS2A2δ0 = 1− δ/2.

4.3.4 Probability of Success

Now that optimism and accuracy are guaranteed with high probability, they

can also be jointly guaranteed.

Lemma 7. In every posterior sample, all unknown state-action pairs are locallaly

ε0-optimistic, and all unknown state-action pairs are locallaly ε0-accurate, with

probability at least 1− δ.

Proof. Lemma 5 shows that all unknown state-action pairs are locallaly ε0-optimistic

in all samples with probability at least 1− δ/2.

Lemma 6 shows that all known state-action pairs are locallaly ε0-accurate in

all samples with probability at least 1− δ/2.

Applying the union bound to these two events holds both true with proba-

bility at least 1− δ.
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4.3.5 Approximately Bayes-optimal with High Probability

Lemma 7 shows that all known state-action pairs will be locally ε0-accurate and

all unknown state-action pairs will be locally ε0-optimistic, in all hyper-models

over the course of the agent’s lifetime, with high probability. These facts, along

with the bounded number of discoveries possible, allow us to connect BOSS

to the general PAC-MDP Theorem, detailed in Section 1.1.4, using the BAMDP.

4.4 Proof of PAC-MDP

By strengthening one of the conditions, we can ensure that BOSS is also PAC-

MDP.

Condition 1 in Section 4.3 stated that the prior φ must have a sample com-

plexity of B. That is, if the “true” model m0 is sampled from φ, and some

observations are made from acting in m0, then with high probability a poste-

rior sample will have accurate dynamics for all state-action pairs with enough

example transitions.

To create a PAC-MDP version, we replace that condition with a new one:

1. The “true” model, m0, has a sample complexity of B with the prior φ.

After this, the proof is identical. The distinction lies in that m0 is no longer

necessarily tied to the prior in any way — it is only important that the prior

can be used to learn m0.
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Environment

Observations

Actions
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Hyper-model

Posterior

Planner

Prior

Figure 4.1: BOSS combines observations made from the environment with the
prior to create sets of posterior samples. These posterior samples are combined
to create a hyper-model, which the planner takes as its model. The policy on
the hyper-model is used in the environment.
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Prior Observations
SamplesPosterior Hyper-model

Figure 4.2: A posterior is created by combining the prior with observations
made by the agent in the environment. Every the agent decides that it has
learned something, several samples are drawn from the posterior and com-
bined to create the hyper-model.
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Figure 4.3: Left: Two samples with the same state- and action-spaces and de-
terministic dynamics are combined to create a hyper-model. Every action from
each of the provided models exists in the hyper-model. Right: Two stochas-
tic MDPs are combined to create a stochastic hyper-model MDP. In both cases,
solid lines in the hyper-model indicate the action was taken from the upper
sample, and dashed lines indicate the action was taken from the lower sample.
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Figure 4.4: The agent chooses the best policy in the hyper-model, and then
translates it back into the environment it is dealing with. In this case, it chose
the red dashed action (perhaps s2 has a higher value than s3. In the real envi-
ronment, the agent will choose the red action, hoping that it has a high prob-
ability of resulting in transition to s3. If this hope is in error, the agent may
try the action several times and eventually have enough evidence to effect a
change in the posterior.
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Chapter 5

Bayesian Forward Search Sparse Sampling

Bayesian Forward Search Sparse Sampling, or BFS3, is a method for apply-

ing a special kind of tree search to a Bayes-Adaptive Markov Decision Pro-

cess (BAMDP). BFS3, introduced in Section 5.2 of this Chapter, uses Forward

Search Sparse Sampling as a subroutine. This application results in a policy

with provably efficient sample complexity.

5.1 Building Blocks

BFS3 is built upon the ideas from a few existing algorithms.

5.1.1 Sparse Sampling

Sparse Sampling [39] works by recursively expanding a full search tree up to

a certain depth d. At the root, each of the A actions is used for sampling a

constant number of times C, yielding a set of A · C children. Sparse sampling

is then run on each of the children with a recursion depth one less than the

root’s. Once the tree is fully created, the leaves are each assigned a value of

zero. Then, starting at the leaves, the values are backed up and combined

via the Bellman equation, defining the parents’ values, until the root’s value

is determined. The total number of nodes visited in this search tree is (AC)d,

making the algorithm impractical to run in all but the most trivial of domains.
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It is worth noting, however, that Sparse Sampling is best known as one

of the first reinforcement-learning planning algorithms that can achieve high

accuracy with high probability using an amount of computation that is not a

function of the size of the state space1. Because of this attractive property, it

makes sense to select it or one of its variants as the planner for the infinitely

large BAMDP. Sparse Sampling is the basis for a number of Monte-Carlo Tree

Search (MCTS) algorithms, which are considerably faster in practice [18, 27,

37].

Sparse Sampling is discussed in more detail in Chapter 3.

5.1.2 Forward Search Sparse Sampling

Forward Search Sparse Sampling, or FSSS, is a Monte-carlo tree search algo-

rithm used for planning in MDPs. It preferentially expands the search tree

through the use of rollouts, and is outlined in Algorithm 6. Unlike either

Bayesian Sparse Sampling [18] or UCT [27], it retains the attractive guarantees

of the original Sparse Sampling algorithm. An important property of FSSS is

that it maintains hard upper and lower bounds, with high probability, on the

values for each state and action, and uses those bounds to direct the rollouts;

actions are chosen greedily according to the upper bound on the value, and the

next state is chosen such that it is the most uncertain of the available candidates

(according to the difference in its upper and lower bounds).

The values Ud(s) and Ld(s) are the upper and lower bounds on the value of

the node for state s at depth d, respectively. Each time a rollout is performed,

1 This lack of dependence on the number of states assumes that sampling from the model
can be done in constant time. In most real situations there is at least a logarithmic dependency
on the number of states just for representing any given state.
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the tree will be expanded. After at most (AC)d rollouts are finished (but of-

ten less in practice), FSSS will have expanded the tree as much as is possibly

useful, and will agree with the action chosen by Sparse Sampling.

FSSS is discussed in more detail in Chapter 3.

5.1.3 A Modification on FSSS

BFS3 uses a slightly modified version of FSSS.

1. FSSS will not keep different values based on search depth. That is, ∀d,d′Ud =

Ud′ , Ld = Ld′ , Rd = Rd′ , Childrend = Childrend′ , Visitedd = Visitedd′ ,

and Countd = Countd′ . From this point forward, the depth suffix will be

dropped.

2. Since FSSS is executed at time-step t, call its upper and lower bound

functions Ut and Lt. Also, have time-step specific versions of each of the

other functions (R, Children, Visited, and Count). Before FSSS is invoked

by BFS3, let Ut = Ut−1, Lt = Lt−1, Rt = Rt−1, Childrent = Childrent−1,

Visitedt = Visitedt−1, and Countt = Countt−1.

The practical effect these changes have is that there is now a single MDP,

which we will call mA, that every call to FSSS uses for making its value esti-

mates, and that from time step to time step its estimates will build upon the

estimates of the past. FSSS’s upper and lower bounds for the value of states in

mA are true, not probabily approximate, since FSSS is using the true transition

function for this MDP.
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Input: time step t, state s, history h, depth d, branching factor C,
#trajectories T, MDP prior φ

Output: action to take in state s
Let x = 〈s, h〉
if x ∈ K then

return πt(x)
foreach a ∈ A do

if Childrent(x) = {} then
x′, r ∼ T-Rφ(x, a)
Childrent(x)← Childrent(x)

⋃{x′}
Countt(x, a, x′)← Countt(x, a, x′) + 1
Rt(x, a)← Rt(x, a) + r

C
foreach x′ ∈ Childrent(x, a) do

Run FSSS(x′, d, C, T, Mφ)
Ut(x, a)← R(x, a)
foreach x′ ∈ Childrent(x, a) do

Ut(x, a)← Ut(x, a) + γ
Countt(x,a,x′)

C Ut(x′)
if πt 6= πt−1 then

K ← {}
K ← K

⋃{x}
return πt(x)

Algorithm 9: BFS3(t, s, h, d, C, T, φ)

5.2 Bayesian Forward Search Sparse Sampling

BFS3 is the application of FSSS to a Bayes-adaptive MDP, or BAMDP. The

BAMDP is defined by the MDP prior φ(M), and the joint transition and reward

function T-Rφ is constructed such that

P(〈s′, h + (s, a, s′, r)〉, r|〈s, h〉, a) =
∫

M
P(s′, r|s, a, M)φ(M|h)dM.

Here, the BAMDP’s state-space is the set of belief-states that include the

history of all transitions seen so far. Because of how the BAMDP’s transition

function is constructed, each possible next-state’s history includes the transi-

tion from the previous state to the next state.

BAMDPs, their construction, and their relation to Bayes-optimality are dis-

cussed in detail in Section 1.1.4.
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Since, with FSSS, the next belief-states are only sampled and their likeli-

hoods are never calculated, a simple generative process can be used:

M ∼ φ|h (5.1)

s′, r ∼ TM(s, a), RM(s, a). (5.2)

This process is used whenever BFS3 or its subroutine FSSS sample a next-

state and reward. The algorithm never holds on to an individual MDP after

a single transition has been sampled from it. Also, note that whenever FSSS

does a Bellman backup, that backup is done for a belief-state (since FSSS is

acting on the BAMDP).

First, an MDP M is sampled from the posterior φ|h. Once it is sampled,

then the next state and reward are sampled from M. Sometimes this posterior

sampling can be computationally expensive, since inference is generally a hard

probelm. The BFS3 algorithm can only work effectively if this step is fast. Fast

posterior sampling is possible with many priors, including the very simple

FDM, but also more structured priors can be used with efficient inference — all

the priors used with BFS3 in Chapter 6 have efficient posterior inference.

To reconstruct the resulting belief-state, we pack the resulting concrete state

s′ with the new history made by augmenting h with (s, a, s′, r), resulting in a

transition from belief-state 〈s, h〉 to 〈s′, h + (s, a, s′, r)〉, except in cases where h

has B examples of transitions from (s, a), where the new belief state, 〈s′, h〉, has

an unchanged history. In many cases, the history h can be summarized by a

more compact sufficient statistic. For instance, with discrete-state and -action

MDPs, only a histogram of next-states needs to be kept for each state-action

pair, and the exact sequence that these transitions happened in is irrelevant.

Figure 5.1 illustrates BFS3’s process for each belief-state visited by the agent.
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In future steps through the environment, the agent may find itself in one of the

reachable belief-states in the search tree — all of the reachable belief-states rep-

resent one possible concrete state and history that, with some probability, may

be the root of BFS3’s search tree in some future situation.

5.2.1 Choice of FSSS

Although it is meaningful to use any sample-based planner for BFS3, I choose

FSSS because of a particular promise that it makes: with high probability,

FSSS will never underestimate the value of a state, even if it is unable to esti-

mate it accurately. Other sample-based planners well-known in the reinforcement-

learning literature, such as UCT [27], do not share this guarantee and it is im-

portant for the guarantees made by BFS3 in Section 5.2.3. Currently, FSSS is

the only known algorithm that can satisfy the conditions in Section 5.2.3.

5.2.2 Algorithm

The BFS3 process is detailed in Algorithm 9, which references Algorithm 6 in

Chapter 3. Every time the agent arrives in a new belief-state 〈s, h〉, it simulates

each action C times, to get a set of C× A next belief-states and rewards. Then,

FSSS is used to find the upper bound on the value of each of the next belief-

states. Once their optimistic values are found, BFS3 will average all the sums

of the discounted values and rewards together to get an estimate of the Bayes-

expected value of taking that action, and choose the action that maximizes this

quantity.

All histories should only take into account the first B transitions from a

given state-action pair, where B is the number of transitions required to have
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Figure 5.1: BFS3 samples next-belief-states for each action C times, and then
runs FSSS on the resulting belief state, using the BAMDP as a generative
model. Every node that is the same distance from the root represents one of
the possible worlds that the agent may experience, each with a different his-
tory and MDP posterior.

accurate posterior samples for any particular state-action. The exact value for

B is determined by the prior’s sample complexity, and is tied to the accuracy

condition in Section 5.2.3, Condition 1.

Putting a limit on the number of transitions to remember for a particular

state-action pair does two important things. First, it means it is possible for

the agent to end up in the same effective belief-state more than once2. The

result is that BFS3 can reuse past decisions and puts a bound on the number

of decisions that can be made, saving computation time. Second, it aids in the

PAC-BAMDP proof, since the number of random events that need to succeed

is bounded.

2 Normally, an agent would never experience the same belief-state twice, because every
step it takes grows the history by one transition.
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5.2.3 BFS3 is PAC-BAMDP

If certain reasonable prerequisites are satisfied, then with high probability, BFS3

will choose actions that are approximately Bayes-optimal except for a small

number of times.

Definition 12. Let mA be the MDP given to FSSS, as described in Section 5.1.3,

and let πt(x) = argmaxa Qt(x, a), where Qt is the upper bound on the value, as

determined by FSSS at time-step t.

Definition 13. An unknown state-action pair is one with fewer than B visits. A

known state-action pair is any state-action pair with at least B visits.

Definition 14. A pinned belief state is one with an εA-accurate value according to

Vt. That is, |Vt(s) − VA(s)| ≤ εA. It is important to note that the agent does not

necessarily know which belief states are pinned.

Definition 15. Let C be the quantity such that C samples from a transition function

are enough to create an εC
T-accurate approximation with probability at least 1− δC

T ,

and such that C samples from a reward function are enough to create an εC
R-accurate

approximation with probability at least 1− δC
R . Since BFS3’s sample complexity does

not depend on a particular value for C, only on the accuracies and success probabilities,

it is sufficient to assert that such a value for C exists, without finding it, for the proof

of PAC-BAMDP.

Theorem 2. With probability at least 1 − δ, the expected number of sub-ε-Bayes-

optimal actions taken by BFS3 is at most BSA(S + 1)d/δl if the following assump-

tions are true.

1. Accuracy: The prior’s transition function and reward function have a sample

complexity of at most B, for a transition accuracy of εT with probability at least

1− δT, and a reward accuracy of εR with probability at least 1− δR.
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2. Optimism: If running FSSS on belief-state x results in Vt(x) > VA(x) + εA

(that is, afterwards x remains an unpinned belief state), then πt leads from x

through a sequence of at most d unpinned belief states, ending with an unknown

state-action pair, with probability at least δl, where d is the search depth used by

FSSS.

Proof Sketch:

First, we will show that there is a BAMDP, constructed from the prior φ,

whose optimal policy is the Bayes-optimal policy for m0 ∼ φ. Then, we will

show that BFS3, acting in the BAMDP, will satisfy the three criteria required

for PAC-MDP behavior [10, 40] in that BAMDP3. These criteria are: 1. accuracy,

2. bounded discoveries, and 3. optimism.

First, because of Assumption 1 in our theorem statement, we know that

once we have received B examples of transitions from a state-action pair (s, a),

our estimate of the next-state distribution for that pair will be accurate. (This

condition need not hold for degenerate priors, but it appears to hold quite

broadly.)

Second, since we forget all additional transitions from state-action pairs for

which we have seen B examples, the number of possible state-histories that

an agent can observe is bounded. Specifically, each time a transition from

some state-action (s, a) is observed, either no change will be made to the state-

action’s histogram (it already sums to B), or exactly one entry in the histogram

will be incremented by 1. Since the histogram can be changed at most B times,

the total number of histories possible for an agent over the course of a single

experiment is B · S · A (B histories for each state-action pair).

3 PAC-MDP behavior in the BAMDP implies near Bayes-optimal behavior in the learning
setting, as discussed in Section 3.2.
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A discovery event, or one that potentially changes the MDP posterior, is

an event that results in a change to the history. There are B · S · A discoveries

possible, since other transitions will be forgotten.

Third, FSSS(x′, d, C, T, Mφ) is guaranteed to have an optimistic value esti-

mate for belief-state x′ as T (the number of trajectories), our bounded resource,

grows smaller. We also know that, from Assumption 2 of the theorem, T is suf-

ficient to find accurate estimates of x′ if all states in s′’s subtree have converged

next-state posteriors. Simply put, if x′’s subtree has no unknown state-action

pairs, then FSSS’s estimate of that state’s value will be accurate. As a result,

if FSSS’s estimate of a state’s value is inaccurate, there must be something to

learn about in x′’s subtree. FSSS guarantees that this inaccuracy will be opti-

mistic.

Also possible is that the value estimate of x′ is accurate and there are un-

known states in its subtree. In this case, the agent can decide whether or not to

visit that state fully informed of its value, and can take a Bayes-optimal action.

The PAC-MDP criteria direct the agent to areas of either high value or

high uncertainty, managing the exploration/exploitation tradeoff. Because the

agent will only go to areas of high uncertainty over areas of high reward a

bounded number of times that grows linearly with the number of possible

discovery events, we bound the number of sub-optimal steps taken over the

lifetime of the agent. �

5.2.4 Proof of PAC-BAMDP

This section presents the detailed argument that BFS3 is near Bayes-optimal.

There are two distinct steps to this proof. The first step is to find the likeli-

hood that all estimates are accurate. That likelihood is then the likelihood that
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BFS3 will be ε-Bayes optimal for all but a small expected number of steps. The

second step is to bound that number, assuming all estimates are accurate.

Definitions

This section will list several definitions important to the proof.

Definition 16. Let H be the set of all histories, which are sequences of (s, a, r, s′)

transitions.

Definition 17. Let X = S× H be the set of belief states.

Definition 18. Let the BAMDP mφ be the MDP with state space X, action space A,

and the transition and reward functions:

Tmφ(x′|x, a) = Tmφ(〈s′, h′〉|〈s, h)〉, a), (5.3)

Tmφ(〈s′, h′〉|〈s, h)〉, a) = f (h′|h, s, a)
∫

m
φ(m|h)Tm(s′|s, a)dm, (5.4)

f (h′|h, s, a) = 1[h′ = h + (s, a, r, s′)], (5.5)

Rmφ(x, a) = Rmφ(〈s, h)〉, a) =
∫

m
φ(m|h)Rm(s, a). (5.6)

That is, mφ is the BAMDP based on the prior φ.

Definition 19. Let nh(s, a) be the number of transitions from (s, a) in h.

Definition 20. Let the set of possible histories HB ⊂ H be the set of histories with no

more than B examples of transitions from any state-action pair. That is,

HB = {h|h ∈ H ∧ ∀s,ach(s, a) ≤ B}. (5.7)

Definition 21. Let the BAMDP mB
φ be the MDP with state space XB = S × HB,



116

action space A, and the transition and reward functions:

TmB
φ
(x′|x, a) = Tmφ(〈s′, h′〉|〈s, h)〉, a) = fB(h′|h, s, a)

∫
m

φ(m|h)Tm(s′|s, a)dm, (5.8)

fB(h′|h, s, a) =

 nh(s, a) ≤ B : 1[h′ = h + (s, a, r, s′)]

nh(s, a) = B : 1[h′ = h],
(5.9)

RmB
φ
(x, a) = Rmφ(x, a). (5.10)

That is, mB
φ is the BAMDP based on the prior φ, where transitions from state-action

pairs with at least B examples in the history are forgotten. Since the transition function

has a sample complexity of B, with an accuracy of εT, and the reward function has a

sample complexity of B with an accuracy of εR, mB
φ is an εT, εR approximation of mφ.

Definition 22. Let the BAMDP mA be the MDP with state space XB = S × HB,

action space A, and the transition and reward functions TA and RA, where

∀x′,x,a|TA(x′|x, a)− TmB
φ
(x′|x, a)| ≤ εc

T, (5.11)

∀x,a|RA(x, a)− RmB
φ
(x, a)| ≤ εc

R. (5.12)

That is, mA is an εc
T, εc

R approximation of mB
φ .

Accuracy

This section will find the likelihood that all estimates are accurate.

There are two sets of estimates to be made. The first set is the accuracy of

a transition function estimate and reward function, given that estimate, given

C samples from the functions being estimated. We will call such an estimate a

C-estimate.

Lemma 8. All C-estimates of the transition and reward function of mB
φ will be εc

T-

accurate and εc
R-accurate with probability at least 1− δC, where

δC = BS2A2(δC
T + δC

R). (5.13)
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Proof. The probability that, for a given history, state, and action, the transition

and reward estimates both fall within their bounds, is at least 1− (δC
T + δC

R), by

the union bound.

Since the maximum size of a history is BSA (since there may be at most

B examples of each state-action pair), and since the history used by BFS3 will

never shrink, the agent can experience at most BSA histories over the course of

its lifetime. For each of those histories, there are at most SA state-action pairs

for which it may make estimates. Multiplying those two together limits the

number of history-state-action combinations at BS2A2.

The probability that all C-estimates for all state-action-history combinations

are correct, over the lifetime of the agent, is 1− BS2A2(δC
T + δC

R) by the union

bound.

The second set is the estimate of the posterior after B examples are observed

from the MDP drawn from the prior. We will call such an estimate a B-estimate.

Lemma 9. All B-estimates of the transition and reward function of mφ will be εT-

accurate and εR-accurate with probability at least 1− δB, where

δB = SA(δT + δR). (5.14)

Proof. The probability that, for a given state-action pair with B examples, the

posterior transition and reward functions both fall within their bounds is at

least 1− (δT + δR), by the union bound.

The maximum number of state-action pairs that can ever have B examples

is SA (all of them).

The probability that all B-estimates for all state-action pairs are correct, over

the lifetime of the agent, is 1− SA(δT + δR) by the union bound.



118

The likelihood that all estimates of any sort are accurate needs to be estab-

lished.

Lemma 10. All C-estimates and B-estimates made by BFS3 fall within their bounds

with probability at least 1− δ, where

δ = BS2A2(δC
T + δC

R) + SA(δT + δR). (5.15)

Proof. Proof follows immediately from the union bound.

Lemma 11. With probability at least 1− δ, mA is an εC
T ,εC

R-approximation of mB
φ ,

and mB
φ is an εT,εR-approximation of mφ.

Proof. Since the estimates whose probabilities are bounded by Lemma 10 are

exactly those estimates used to create mB
φ and mA, when those estimates hold,

the bounds between those MDPs hold as well.

Bounded Sub-optimality

This section presents bounds between the value of a state in mA and mφ, and

then shows that BFS3 will take only a small number of sub-optimal steps in

mA and, therefore, a small number of sub-optimal steps in mφ.

Lemma 12. The difference in the values of the two MDPs mA and mφ for a given state

is bounded by the Simulation Lemma.

|VmA(s)−Vmφ(s)| ≤ s(εT + εc
T, εR + εc

R), (5.16)

|QmA(s, a)−Qmφ(s, a)| ≤ s(εT + εc
T, εR + εc

R), (5.17)

s(εT + εc
T, εR + εc

R) =
(εR + εc

R) + γVmax(εT + εc
T)

1− γ
. (5.18)

Proof. Since mA is an εc
T, εc

R approximation of mB
φ , and mB

φ is an εT, εR approxi-

mation of mφ, mA is an (εT + εc
T), (εR + εc

R) approximation of mφ. Proof follows

immediately from the Simulation Lemma.
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Lemma 13. Acting near-optimally in mA is sufficient for acting near-optimally in

mφ. Specifically, an action that is εA-optimal in mA is ε-optimal in mφ, where εA =

ε− s(εT + εc
T, εR + εc

R).

Proof. Proof is immediate.

Since an action that is εA-optimal in mA is ε-optimal in mφ, we will bound

the number of sub-εA-optimal steps in mA.

Definition 23. A model discovery is the event where the agent visits an unknown

state-action pair.

Definition 24. A value discovery is the event where BFS3 plans and causes a belief

state to become pinned.

Definition 25. A policy epoch is a sequence n steps long starting at t, where ∀0<i≤nπt =

πi. That is, a policy epoch is a time period during which the policy does not change.

Definition 26. A history epoch is a sequence of steps without a model discovery.

Definition 27. The agent’s estimate of the value of belief-state x at time step t is Vt(x).

Since BFS3 will use the estimates from the previous time-step as a way to boot-strap

its current estimates, we define V−1(x) = Vmax.

Every time BFS3 visits a belief state for the first time in a given policy epoch,

it will run FSSS at most CA times, using each of the at most CA possible next

belief states as the roots. FSSS will reuse and overwrite the previous value

estimates, such that if BFS3 runs FSSS on belief-state x at step t, FSSS will

start with the upper bound on the value of each belief state at Vt−1(x), and an

equivalent memory for the lower bound. After FSSS is done, Vt(x) is the new

upper-bound estimate for x.

The following is the proof of Theorem 2



120

Proof. Let mh
A be the set of belief states in mA with the history h. Once an agent

leaves mh
A it can never return, since the only way h can change is by growing

bigger.

The strategy will be to show that when BFS3 enters mh
A, the number of

sub-εA-optimal actions it takes before leaving is small. The time starting when

BFS3 enters this set of states and leaves is a history epoch.

The number of possible model discoveries during a history epoch is 1, since

making a discovery ends the epoch.

The number of possible value discoveries during a history epoch is S, since

there are at most S possible belief states in the set mh
A, and by the consistency

condition, a value discovery can be made once per belief state. In addition,

after S value discoveries in a history epoch, all remaining steps in that history

epoch will be εA-optimal, since all states have εA-accurate values.

Since, at step t, BFS3 will either replan or the policy will remain unchanged

since the last time the agent visited belief-state xt, either argmaxa QA(xt, a) is

εA-optimal, or the current policy πt will reach an unknown state-action pair in

the next d steps with probability at least δl.

If argmaxa QA(xt, a) is not εA-optimal, with probability at least δl, the agent

will either make a model discovery (if all the d belief states in the sequence

remain unknown) or a value discovery (if BFS3 replans during the sequence

and figures out the εA-accurate value).

The total number of possible model-discovery and value-discovery events

during a history epoch, when combined, numbers no more than S + 1 (there

are S possible value discoveries, and one possible model discovery). Since

every d-step window beginning at a belief state with inaccurate Q-values has a

probability of at least δl of making one of these S + 1 discoveries, the expected
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number of sub-εA-optimal steps per history epoch is at most (S + 1)d/δl.

Since there are at most BSA history epochs, one per possible model discov-

ery, the expected number of sub-εA-optimal steps for the lifetime of the agent

is at most BSA(S + 1)d/δl.
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Chapter 6

Experiments

In this chapter, I present experiments performed by myself and others, examin-

ing the BOSS and BFS3 algorithms, and comparing them to other algorithms

in the same spirit.

6.1 Parameter Choice

In each experiment, several values for each of the relevant parameters were

used, but sometimes only the best were recorded. The exact method of param-

eter choice is explained for each experiment.

6.1.1 RMAX

Many algorithms are fairly robust with respect to their parameters. For in-

stance, the RMAX [3] family of algorithms [4, 29] has one important parameter,

m, indicating how many samples of a state-action pair are necessary before that

pair is considered known. For a given environment, there is usually a value m∗

for which any m ≥ m∗ will cause the RMAX agent to find the optimal policy

— it needs at least m∗ samples of some set of key state-action pairs to know

how to behave well. Increasing m beyond m∗ will result in a longer period of

sup-optimal behavior at the beginning of the trial. Decreasing m will result in

potentially defective policies built on too little information.
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Since it is easy to identify the optimal value for m—increasing m does not

improve the resulting policy value, and decreasing m makes it worse—a brief

parameter sweep is sufficient to find the best value for any experiment. Many

environments have, for each state, a relatively small number of possible suc-

cessor states (for instance, in a grid world, those states that are adjacent). And

in many of these environments, a single successor state takes the bulk of the

probability mass (for instance, if the stochasticity comes from adding a failure

probability).

6.1.2 BOSS

BOSS, or Best Of Sampled Set, is discussed in detail in Chapter 4.

The BOSS algorithm has two important parameters: K indicates how many

posterior samples should be used when constructing a hyper-model, and B in-

dicates how many samples of a particular state-action pair are required before

that pair becomes known, triggering the creation of a new hyper-model.

Unlike RMAX, where a too-small value for m can effect reliably poor poli-

cies, the B parameter for BOSS is much more robust. When a state-action

pair becomes known according to RMAX, the agent decides that there is noth-

ing more to be learned for that pair and may avoid it entirely in the future.

Without enough samples, its initial estimation of that state-action’s dynamics

may be flawed. With BOSS, the agent is not drawn specifically to unknown

state-action pairss, but instead is drawn to state-action pairs whose dynam-

ics have high variance in the posterior. So, even if B is set to something too

small, BOSS can still be drawn to the unknown parts of the MDP because pos-

terior variance and B are uncorrelated. This is not to say that BOSS will work

equally well with any value for B — if B is too small, the posterior might still
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have too much variance when the last hyper-model is constructed, causing it

to have exploration built in to its final policy (leading to sub-optimal steps for

eternity). If B is too large, the effect is similar to that seen with RMAX: the

exploration phase at the beginning of the experiment may last longer than it

needs to, leading to a lower cumulative reward.

The K parameter for BOSS, which chooses how many posterior samples

to use when creating the hyper-model, must fall within a certain range to be

useful. In the limit, as K → ∞, BOSS will break down completely. Since BOSS

views all of the posterior samples going into a particular hyper-model equally,

sampling an infinite amount of them will lead to a hyper-model that is com-

pletely uninformed by the agent’s experience. Conditioning on observations

causes the posterior to change shape, making some models more likely than

others. If too many samples are taken, then the models that would normally

be skipped, due to low probability, will still be represented in the hyper-model.

In practice, the value of K that becomes “too big” is terrifically large, since with

enough data the posterior can become extremely peaked.

Setting K too low can cause underexploration. If there are not enough pos-

terior samples used to create the hyper-model, it is possible that some state-

action pairs will have a pessimistic value in the hyper-model, causing the agent

to sometimes actively avoid high-value states when they are unknown, since

they will have high variance in the posterior. Bayesian DP [20], discussed in

Section 3.3, is similar to BOSS with K = 1, except that it addresses the under-

exploration issue with periodic resampling.

Finding ideal parameters for BOSS is, in general, easy to do. Although

the theoretical guarantees require K to be large enough such that all unknown
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state-action pairs have optimistic values, in practical settings it’s only neces-

sary that most of them do, so that BOSS has exploration incentives.

6.1.3 BFS3

BFS3, or Bayesian Forward Search Sparse Sampling, is discussed in detail in

Chapter 5. It leans heavily on FSSS, which is discussed in detail in Chapter 3,

Section 3.13.

The choice of parameters for BFS3 is, for the most part, pre-specified by

FSSS. Since, for BFS3 to be effective, FSSS must be able to find the value of

any state in the “true” model, BFS3 must choose parameters that are at least as

conservative as those needed by FSSS.

The only parameter that will often need to be more conservative than the

one required by FSSS is the C: how many times FSSS will try each action from

each visited state when doing simulations. There are MDPs for which FSSS

only needs C = 1 to try out each action for each visited state — if a model is

deterministic, then the action will give the same results each time. However, a

deterministic “true” MDP does not induce a deterministic BAMDP: There can

still be stochasticity in the posterior until the agent has observed a transition

from the state being visited by FSSS. As a result, C must often be higher than

the minimum needed for FSSS to be effective for the “true” model.

Increasing parameters to values above what are needed will not harm the

performance of the agent with respect to sample complexity, but can have an

effect on the computation required. Computation will grow linearly with the

number of trajectories run, the number of times that FSSS will try each action

for each visited state, and the search depth.
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6.2 BOSS Experiments

This section lists experiments in which the BOSS algorithm was compared to

other model-based algorithms.

6.2.1 Chain

Consider the well-studied 5-state chain problem (Chain) [17, 20]. The agent has

two actions: Action 1 advances the agent along the chain, and Action 2 resets

the agent to the first node. Action 1, when taken from the last node, leaves the

agent where it is and gives a reward of 10—all other rewards are 0. Action 2

always has a reward of 2. With probability 0.2 the outcomes of the two actions

are switched, however. Optimal behavior is to always choose Action 1 to reach

the high reward at the end of the chain.

The slip probability 0.2 is the same for all state–action pairs. Poupart et al. (2006)

consider the impact of encoding this constraint into the prior on the transition

dynamics. That is, whereas in the Full prior the agent assumes each state–

action pair corresponds to independent multinomial distributions over next

states, under the Tied prior, the agent knows the underlying transition dynam-

ics except for the value of a single slip probability that is shared between all

state–action pairs. They also introduce a Semi prior in which the two actions

have independent slip probabilities. Posteriors for Full can be maintained us-

ing a Dirichlet (the conjugate for the multinomial) and Tied/Semi can be rep-

resented with simple Beta distributions.

In keeping with published results on this problem, Table 6.1 reports cumu-

lative rewards in the first 1000 steps, averaged over 500 runs. Standard error is

on the order of 20 to 50. The optimal policy for this problem scores 3677. The
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Table 6.1: Cumulative reward in Chain [1]

Tied Semi Full
BEETLE 3650 3648 1754
exploit 3642 3257 3078
BOSS 3657 3651 3003
RAM-RMAX 3404 3383 2810
Bayesian-DP 3158

exploit algorithm is one that always acts optimally with respect to the average

posterior-weighted model. RAM-RMAX [5] is a version of RMAX that can ex-

ploit the tied parameters of tasks like this one. Results for BEETLE and exploit

are due to Poupart et al. (2006). All runs used a discount factor of γ = 0.95 and

BOSS used B = 10 and K = 5.

The parameter values for BOSS were an initial guess, and the guess al-

lowed BOSS’s performance to either match or exceed every other algorithm in

the experiment.

All algorithms perform very well in the Tied scenario (although RAM-

RMAX is a bit slower as it needs to estimate the slip probability very accu-

rately to avoid finding a suboptimal policy). Poupart et al. (2006) point out

that BEETLE is more effective than exploit (an undirected approach) in the

Semi scenario, which requires more careful exploration to perform well. In

Full, however, BEETLE falls behind because the value function is difficult to

approximate in high dimensional spaces.

BOSS, on the other hand, explores as effectively as BEETLE in Semi, but is

also effective in Full. A similarly positive result in Full is obtained by Bayesian

DP [20].



128

Bayesian Modeling of State Clusters

The idea of state clusters is implicit in the Tied prior. We say that two states are

in the same cluster if their probability distributions over relative outcomes are

the same given any action. In Chain, for example, the outcomes are advancing

along the chain or resetting to the beginning. Both actions produce the same

distribution on these two outcomes independent of state, Action 1 is 0.8/0.2

and Action 2 is 0.2/0.8, so Chain can be viewed as a one-cluster environment.

We introduce a variant of the chain example, the two-cluster Chain2, which

includes an additional state cluster. Cluster 1—states 1, 3, and 5—behaves

identically to the cluster in Chain. Cluster 2—states 2 and 4—has roughly the

reverse distributions (Action 1 0.3/0.7, Action 2 0.7/0.3).

RAM-RMAX can take advantage of cluster structure, but only if it is known

in advance. In this section, we show how BOSS with an appropriate prior can

learn an unknown cluster structure and exploit it to speed up learning. The

prior used is the cluster prior, defined in Chapter 2.

We ran BOSS in a factorial design where we varied the environment (Chain

vs. Chain2) and the prior (Tied, Full, vs. Cluster). For our experiments, BOSS

used a discount factor of γ = 0.95, knownness parameter B = 10, and a sample

size of K = 5. The Cluster CRP used α = 0.5 and whenever a sample was

required the Gibbs sampler ran for a burn period of 500 sweeps with 50 sweeps

between each sample.

Figure 6.1 displays the results of running BOSS with different priors in

Chain and Chain2. The top line on the graph corresponds to the results for

Chain. Moving from left to right, BOSS is run with weaker priors—Tied, Clus-

ter, and Full. Not surprisingly, performance decreases with weaker priors. In-

terestingly, however, Cluster is not significantly worse than Tied—it is able to
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Figure 6.1: Varying priors and environments in BOSS.

identify the single cluster and learn it quickly.

The second line on the plot is the results for Chain2, which has two clus-

ters. Here, Tied’s assumption of the existence of a single cluster is violated and

performance suffers as a result. Cluster outperforms Full by a smaller margin,

here. Learning two independent clusters is still better than learning all states

separately, but the gap is narrowing. On a larger example with more sharing,

we’d expect the difference to be more dramatic. Nonetheless, the differences

here are statistically significant (2× 3 ANOVA p < 0.001).
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Figure 6.2: Varying K in BOSS.

Varying K

The experiments reported in the previous section used model samples of size

K = 5. Our next experiment was intended to show the effect of varying the

sample size. Note that Bayesian DP is very similar to BOSS with K = 1,

so it is important to quantify the impact of this parameter to understand the

relationship between these algorithms.

Figure 6.2 shows the result of running BOSS on Chain2 using the same pa-

rameters as in the previous section. Note that performance generally improves

with K. The difference between K = 1 and K = 10 is statistically significant

(t-test p < 0.001).



131

Figure 6.3: Diagram of 6x6 Marble Maze.

6.2.2 Marble Maze

To demonstrate the exploration behavior of our algorithm, we developed a

6x6 grid-world domain with standard dynamics [41]. In this environment, the

four actions, N, S, E and W, carry the agent through the maze on its way to the

goal. Each action has its intended effect with probability .8, and the rest of the

time the agent travels in one of the two perpendicular directions with equal

likelihood. If there is a wall in the direction the agent tried to go, it will remain

where it is. Each step has a cost of 0.001, and terminal rewards of −1 and +1

are received for falling into a pit or reaching the goal, respectively. The map of

the domain, along with its optimal policy, is illustrated in Figure 6.3.

The dynamics of this environment are such that each local pattern of walls

(at most 16) can be modeled as a separate cluster. In fact, fewer than 16 clusters
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appear in the grid and fewer still are likely to be encountered along an opti-

mal trajectory. Nonetheless, we expected BOSS to find and use a larger set of

clusters than in the previous experiments.

For this domain, BOSS used a discount factor of γ = 0.95 and a CRP hyper-

parameter of α = 10. Whenever an MDP set was needed, the Gibbs sampler

ran for a burn period of 100 sweeps with 50 sweeps between each sample. We

also ran RMAX in this domain.

The cumulative reward achieved by the BOSS variants that learned the

cluster structure, in Figure 6.4, dominated those of RMAX, which did not

know the cluster structure. The primary difference visible in the graph is the

time needed to obtain the optimal policy. Remarkably, BOSS B = 10 K = 10

latches onto near optimal behavior nearly instantaneously whereas the RMAX

variants required 50 to 250 trials before behaving as well. This finding can

be partially explained by the choice of the clustering prior and the outcomes

it drew from, which effectively put a lower bound on the number of steps to

the goal from any state. This information made it easy for the agent to ignore

longer paths when it had already found something that worked.

Looking at the clustering performed by the algorithm, a number of inter-

esting features emerge. Although it does not find a one-to-one mapping from

states to patterns of walls, it gets very close. In particular, among the states that

are visited often in the optimal policy and for the actions chosen in these states,

the algorithm groups them perfectly. The first, third, fourth, and fifth states in

the top row of the grid are all assigned to the same cluster. These are the states

in which there is a wall above and none below or right, impacting the success

probability of N and E, the two actions chosen in these states. The first, second,

third, and fifth states in the rightmost column are similarly grouped together.
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Figure 6.4: Comparison of algorithms on 6x6 Marble Maze.

These are the states with a wall to the right, but none below or left, impacting

the success probability of S and E, the two actions chosen in these states. Other,

less commonly visited states, are clustered somewhat more haphazardly, as it

was not necessary to visit them often to obtain high reward in this grid. The

sampled models used around 10 clusters to capture the dynamics.

A variety of parameters were used for BOSS, all resulting similarly valued

policies and unnoticable purely exploration periods, suggesting that BOSS’s

performance is quite robust with respect to its parameters.
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6.2.3 Puddle World

Puddle World [42] is an RL benchmark in which an agent attempts to navigate

two-dimensional space using four actions equivalent to north, east, south and

west. The outcome dynamics are consistent across the entire domain, but the

reward associated with each step can vary; in the center of the environment

is a large “puddle”, and if the agent ventures into the puddle it receives very

poor reward. It is an action-penalty domain where the agent’s goal is to reach

a terminal state in one corner. This domain has outcomes with small additive

noise.

ROAR/BOSS is compared against Fitted-RMAX in Figure 6.5. Here, both

algorithms are able to find effective policies, but the sub-optimal steps taken by

Fitted-RMAX significantly hurt its total reward gathered; this poor behavior

at the beginning is typical of RMAX-based algorithms. ROAR/BOSS, on the

other hand, is able to start being effective more quickly, since the dynamics of

of the model are partly encoded in the prior, though the details are left out.

Occasionaly, ROAR/BOSS decides to learn about a new area of the state-space

for a short period. Such episodes are visible in the plot as sharp, but short, dips

downwards as it takes sub-optimal actions.

Although only a single parameter choice is shown in the experiment, it was

able to significantly outperform its competitor, and has a very short learning

period at the beginning, with other smaller dips later on as it discovers other

interesting areas of the environment.
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Puddle World

Figure 6.5: ROAR/BOSS and Fitted-RMAX are compared on the Puddle World
domain. Fitted-RMAX was run with width parameter b = 0.05 and known-
ness threshold B = 2. ROAR/BOSS was run with K = 1, B = 5, α = 1.0, Ψs =
0.1I, ms = 200, Ψo = 0.01I, mo = 30, Ψr = 1.0I, mr = 20, αφ = 0.001, βφ =
0.01. Averaged over 20 runs.

6.2.4 Bridge of Fire

The previous section described a model that could be characterized as “deter-

ministic with small noise”. In the Bridge of Fire domain, this assumption is vi-

olated by making the noise associated with each action determine the action’s

effectiveness.

In the Bridge of Fire domain, the agent must navigate across a bridge, with-

out falling off the side (and into the fire), using three actions corresponding to



136

walk, hand-spring and pogo-stick. Walk is a very consistent action, moving the

agent forward along the bridge with no lateral noise. Hand-spring will move

the agent faster, but there is a chance that the agent moves to one side or the

other. Pogo-stick will take the agent a long way, but there is a huge amount of

uncertainty in the movement and more often than not the agent will pogo right

off of the bridge.

More concretely, the bridge is a 2× 10 rectangle, and the agent begins in

the middle of one edge. The walk action moves the agent forward according

to N(0.5, 1) and sideways according to N(0, 0). The hand-spring action moves

forward with N(1, 1) and sideways with N(0, 0.5), and finally the pogo-stick

action moves forward with N(1.5, 1) and sideways with N(0, 1). If the agent

makes it to the other side of the bridge, it receives a reward of 100 and the trial

ends. If the agent falls, it receives a reward of −100 and the trial ends. Every

non-terminal step gives the agent a reward of −1.

Ignoring the noise in the Bridge of Fire will cause the agent to prefer pogo-

stick, since the outcome moves the agent the furthest along the length of the

bridge and has zero mean lateral displacement. In reality, the agent should

prefer walk until near the end, when hand-spring becomes safer.

ROAR/BOSS is compared against Fitted-RMAX and CORL in Figure 6.6.

We see that the algorithms ROAR/BOSS and CORL were able to learn the

Bridge of Fire domain effectively. Fitted-RMAX makes assumptions that do

not hold in this environment, namely that there is no noise in the outcome

distribution, and does poorly as a result because the action it likes the best has

enough noise to knock the agent off the bridge.

For BOSS’s parameter choices, even the trivial value of K = 1 was enough

for the agent to be able to find the optimal policy more quickly than CORL,



137

! "! #!! #"! $!! $"! %!!

&'()*+

,%!!!!

,$"!!!

,$!!!!

,#"!!!

,#!!!!

,"!!!

!

"!!!

#!!!!

#"!!!
-
.
/
.
*)
0(
1
2
34
2
5
)
'6

7'(68239:3;('2

4<=4>7<??

-<4@
;(0026,4A=B
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Figure 6.6: ROAR/BOSS is compared against CORL on the Bridge of Fire do-
main. CORL was run with knownness threshold B = 20, and was given the
correct type function. Fitted-RMAX was run with width parameter b = 0.5
and knownness threshold B = 3. ROAR/BOSS was run with K = 1, B =
10, α = 1.0, Ψs = 0.1I, ms = 3, Ψo = 0.1I, mo = 3, Ψr = 1.0I, mr = 50, αφ =
0.001, βφ = 0.005. Averaged over 20 runs.

which is a more conservative algorithm. The rest of the parameters are associ-

ated with ROAR, rather than BOSS, and are chosen such that the prior guesses

about noise are within an order of magnitude of the truth.

6.2.5 Mind the Gap

The Mind the Gap domain is similar to Bridge of Fire, except none of the actions

have lateral displacement; the agent always goes straight and will never fall
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off the side. However, beginning 5 units from the initial state, there is a 1

unit stretch where the bridge has given out. To compensate, the agent has

that the algorithm controls has become better at the using the pogo-stick action:

The agent will either remain still or move forward exactly 1.5 units. The pogo-

stick action becomes appropriate when the agent is within 0.5 units of the gap,

though due to noise in the other actions, it is still very difficult to avoid the gap

with high probability.

The correct model in Mind the Gap is very difficult to learn. Using ROAR

with Bayesian DP proved ineffective; sampling only a single model at a time

didn’t give the agent enough reason to learn sufficiently about some parts of

the state space. However, using BOSS as the sampler was more successful.

BOSS is a very conservative algorithm, “pooling” the optimism from each of

its sampled models for planning. This domain demonstrates the need for such

optimism.

ROAR/BOSS and ROAR/Bayesian DP are compared against CORL in

Figure 6.7. Because of its unimodal outcome distribution assumption, CORL

was unable to perform well in the Mind the Gap domain, even after knowing

the correct “type” function for clustering. ROAR, with no prior knowledge

of the clustering, is able to effectively learn multi-modal distributions and can

correctly model this environment’s dynamics.

For this experiment, an effect was observed by changing BOSS’s K pa-

rameter. Since the environment is fairly difficult, increasing K—which can be

likened to increasing how conservative BOSS is—caused BOSS to remain op-

timistic longer for some of the harder-to-learn actions. Bayesian DP, which is

very similar to BOSS with K = 1, was unable to find the optimism required to

try the pogo-stick action when it was needed.
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Figure 6.7: ROAR/BOSS, ROAR/Bayesian DP, and CORL are compared on
the Mind the Gap domain. CORL was run with knownness threshold B = 10.
ROAR algorithms were run with B = 1, α = 1.0, Ψs = 0.5I, ms = 10, Ψo =
0.1I, mo = 3, Ψr = 0.01I, mr = 50, αφ = 0.01, βφ = 0.001. ROAR/Bayesian DP
drew samples every 20 steps. Averaged over 20 runs.

6.3 BFS3 Experiments

To demonstrate BFS3, we will show its performance in a number of domains,

and show how the use of different priors can affect its performance. This flexi-

bility with respect to using different priors is a compelling reason to use MCTS

algorithms in general, and BFS3 in particular, for model-based reinforcement

learning.

The first experiment is very simple, and exact Bayes-optimal behavior is
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possible. Bernoulli-bandits is a 5-armed bandit problem where each arm a has

some unknown probability pa ∼ Beta(α, β) of returning a reward of 1 or 0

each step. For each run in the experiment, the environment parameters pa are

drawn directly from the prior. The Gittins Index [43] can be used to achieve

Bayes-optimal behavior for multi-armed bandit problems. After 1000 steps,

BFS3 with the true prior received an average (over 40 runs) total reward of

727, where the Bayes-optimal agent received an average total reward of 815.

When using the FDM prior with a small state space, BEB may be consid-

ered a better choice. Since BEB operates greedily according to a grounded

MDP, rather than a belief-MDP, planning is made potentially much easier. This

algorithm is limited, however, in that it requires a known reward function; it

can only deal with uncertainty in the transition function.

6.3.1 Reward Priors

BFS3, with the right prior, can handle unknown rewards. In many domains,

there are only a few possible reward values. For example, many path-finding

domains give a reward of −1 for all actions. Or, there is a reward for a par-

ticular outcome that can be achieved from multiple states: these states would

share the same reward value. To represent this common structure in a genera-

tive model, the Dirichlet Process (DP) [44] may be used:

Rs,a ∼ DP(α, Unif(Rmin, Rmax)).

Note that with this prior, rewards are deterministic, if unknown.

In Figure 6.8, BFS3, with the unknown reward prior, is shown to suffer

no significant performance penalty compared to BFS3 with the known-reward

prior and to BEB (which also uses the known-reward prior). The domain is
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Figure 6.8: Here, BFS3/FDM, with both known rewards and unknown rewards
with a DP prior, is compared against the known-reward BEB, and RMAX [3],
a well known algorithm with PAC-MDP guarantees, with M = 5. Results are
averaged over 40 runs.

a 5× 5 grid world, where the agent must find its way from one corner to the

other. The agent can choose to go north, east, south or west, and with proba-

bility 0.2 it will go in a direction perpendicular to the one intended.

6.3.2 Factored Priors

Along with FDM, we introduce the Factored-Object prior, which describes fac-

tored MDPs in which the state features are broken up into a number of inde-

pendent yet identical objects. The action also has two features: the first indi-

cates which object is being acted upon, and the second indicates which action

is being performed. Factored-Object essentially has a single FDM posterior,
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which it applies to each object in the state simultaneously, sharing both infor-

mation (for faster convergence) and memory.

For a single object, Factored-Object and FDM are the same. For two objects,

FDM has to learn separately how a particular action affects a particular object

for every possible configuration of objects—for a different state of an object

not being operated on, FDM must re-learn how the original object is affected.

Factored-Object allows the agent to learn about multiple objects at the same

time: it knows that a given action affects object 1 in the same way it affects

object 2, and generalizes appropriately.

The Paint/Polish world [45] provides a situation where the simple and con-

venient FDM prior is insufficient. The size of the state-space grows exponen-

tially with the number of cans to paint (each of which introduces four binary

features). Figure 6.10 shows the results with a single can (and 24 states) and the

results with two cans (and 24·2 states). Figure 6.11 shows the results with four

cans (and 244 states). In these experiments, we see how encoding knowledge

into the algorithm’s prior can dramatically affect its performance. The FDM

prior simply does not scale with the number of parameters, and the Factored-

Object prior allows the agent to correctly generalize its experience without try-

ing to visit each state.

The parameters for BFS3, which are simply the parameters provided to

FSSS, were chosen by searching for parameters that allowed FSSS to find ac-

curate values on the known MDP, which is relatively small and easy to solve

with value iteration.
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Figure 6.10: BFS3 with FDM and Factored-Object priors. Left: Paint/Polish
with 1 can. FDM and Factored-Object are identical for one object, and give the
same performance. Right: Paint/Polish with 2 cans. Factored-Object outper-
forms FDM because it is better able to generalize. Results are averaged over 40
runs.
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Figure 6.11: Paint/Polish with 4 cans. Using the Factored-Object prior allows
BFS3 to learn quickly despite the very large state space. Using FDM does not
allow learning in a reasonable amount of time, and is not pictured. Results are
averaged over 40 runs.
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6.3.3 Wumpus World

BFS3 can also be used to apply Bayesian modeling to POMDPs. Wumpus

World [41] is based on a classic computer game in which an agent wanders

through a 4× 4 maze filled with fog, making it impossible to see past its cur-

rent cell. Even though the agent cannot see, it can feel a breeze if there is a pit in

an adjacent cell, and smell a stench if there is a Wumpus1 nearby. If the agent

falls into a pit, it will remain there forever. If the agent runs into the Wum-

pus, it is eaten forever. If the agent shoots its one arrow in the direction of the

Wumpus, the Wumpus is slain. If the arrow misses the Wumpus, the trial ends

and presumably the agent goes home. We replicate the dynamics presented in

detail by Sorg et al. (2010).

Wumpus World is based on a deterministic process, but since the agent only

knows attributes of cells that it has visited, it appears stochastic. The prior

over different possible mazes is known and given to the agent, and from this

prior it can infer the correct posterior distribution over what happens when it

performs a particular action in a particular belief-state.

We ran BFS3 on Wumpus World with a search depth of 15, and varied the

number of trajectories per step. Agents with 500, 1000, and 5000 trajectories

per step averaged 0.267, 0.358 and 0.499 cumulative reward, respectively. Av-

erages were taken over 1000 attempts. We compare these values to a variance-

based reward bonus strategy, Variance-based BEB [21], which, when tuned,

averaged 0.508. The Variance-based BEB results are due to Sorg et al. 2010.

That BFS3 performs better in Wumpus World as the computation budget

1 A Wumpus is a monster that eats RL agents.
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is increased supports our argument that the algorithm has a computational re-

sources knob which, when tuned higher, causes the agent’s behavior to get

closer to being Bayes-optimal at the cost of decision-making speed.

6.3.4 Texture World

Texture World is a simple grid world with four actions: north, east, south, and

west. From any state, the action attempts to move the agent one cell in the

desired direction, as long as the destination is in the grid and is not a black cell.

If the destination is valid, the action succeeds with some probability that

is a function of the agent’s current cell. Cells can be red, green, blue, or black.

If the world is textured, then all cells of the same color have the same success

probability, drawn from the Beta distribution. If the world is not textured,

then each state has its own success probability, independently sampled from

the Beta distribution. The world is either textured or not textured with some

probability.

The exact model is described by a generative process,

T ∼ Flip(p), (6.1)

ρs =

 θC
Cs

: T = heads

θS
s : T = tails,

(6.2)

θC
c ∼ Beta(α, β), (6.3)

θS
s ∼ Beta(α, β), (6.4)

where ρs is the success probability in state s, Cs is the color of state s, p is the

prior likelihood that the world is textured, and α and β are hyperparameters

for the Beta prior. The colors themselves are not part of the prior—the agent

knows the color of every state.
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So sample a model from this posterior, first the latent parameter T must

be sampled. Since there are only two possible values for T, heads or tails, it is

sufficient to find their likelihood ratios to pick from the posterior.

With observations o,

P(T|o) ∝ P(o|T)P(T). (6.5)

Evaluating P(o|T = tails) is straightforward: each of the states are a sep-

arate learning problem equivalent to learning the bias of a coin. Let ns be the

number of successes from state s, and let ts be the total number of attempts

from state s. Then,

P(o|T = tails) = ∏
s

∫
θ

Beta(θ|α, β)Bin(ns|θ, ts)dθ, (6.6)

and Equation 2.20 shows how this turns into

P(o|T = tails) = ∏
s

(ts)!
ns!(ts − ns)!

Γ (α + β)

Γ(α)Γ(β)

Γ(α + ns)Γ(β + ts − ns)

Γ (α + β + ts)
.(6.7)

Evaluating P(o|T = heads) is a little trickier: groups of states have their pa-

rameters tied together, but the problem cannot be considered one Multinomial

distribution for each cluster. Instead, it is still one multinomial for each state,

integrated across the θ for each cluster.

P(o|T = heads)

= ∏
c

∫
θ

Beta(θ|α, β)∏
s∈c

Bin(ns|θ, ts)dθ, (6.8)

= ∏
c

∫
θ

Γ(α + β)

Γ(α)Γ(β)
θ(α−1)(1− θ)(β−1) ∏

s∈c

(ts)!
ns!(ts − ns)!

θns(1− θ)(ts−ns)dθ, (6.9)

= ∏
c

Γ(α + β)

Γ(α)Γ(β) ∏
s∈c

(ts)!
ns!(ts − ns)!

∫
θ

θ(α−1)(1− θ)(β−1) ∏
s∈c

θns(1− θ)(ts−ns)dθ,(6.10)

= ∏
c

Γ(α + β)

Γ(α)Γ(β) ∏
s∈c

(ts)!
ns!(ts − ns)!

∫
θ

θ(α+∑s∈c ns−1)(1− θ)(β+∑s∈c(ts−ns)−1)dθ.(6.11)
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Let nc = ∑s∈c ns, and tc = ∑s∈c ts. Then,

P(o|T = heads)

= ∏
c

Γ(α + β)

Γ(α)Γ(β) ∏
s∈c

(ts)!
ns!(ts − ns)!

∫
θ

θ(α+nc−1)(1− θ)(β+(tc−nc)−1)dθ, (6.12)

=
∏c

Γ(α+β)
Γ(α)Γ(β) ∏s∈c

(ts)!
ns!(ts−ns)!

·
∫

θ
Γ(α+nc)Γ(β+tc−nc)

Γ(α+β+tc)
Γ(α+β+tc)

Γ(α+nc)Γ(β+tc−nc)
θ(α+nc−1)(1− θ)(β+(tc−nc)−1)dθ,

(6.13)

=
∏c

Γ(α+β)
Γ(α)Γ(β) ∏s∈c

(ts)!
ns!(ts−ns)!

· Γ(α+nc)Γ(β+tc−nc)
Γ(α+β+tc)

∫
θ Beta(θ|α + nc, β + tc − nc)dθ,

(6.14)

= ∏
c

Γ(α + nc)Γ(β + tc − nc)

Γ(α + β + tc)

Γ(α + β)

Γ(α)Γ(β) ∏
s∈c

(ts)!
ns!(ts − ns)!

. (6.15)

Although tricky to derive, these posterior likelihoods are easy to compute.

Once T is sampled (that is, a choice is made about whether or not the world is

textured), the success likelihoods of the clusters or of the states, whichever is

appropriate, is taken from the posterior Beta distribution that accounts for the

successes and failures seen so far in the particular cluster or state.

The ability to mathematically build prior knowledge into a reinforcement-

learning agent as shown is compelling since the algorithm itself need not change;

only the prior is different.

The BOSS and BFS3 algorithms were both run in Texture World, and the

results are shown in Figure 6.12 and in Figure 6.13. Here, BOSS was able

to quickly and effectively find the optimal policy, while BFS3 was sluggish,

computationally, and was unable to find the optimal policy.

The parameters for BOSS were a first guess that, when run, found an easily

identifiable optimal policy, choosing a path that used cells with a high success

rate. The parameters for BFS3 were increased until the resulting policy value

appeared to not get closer to the value of BOSS’s policy.
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Figure 6.12: Texture World on a 5x5 grid. BOSS was run with K = 5 and B =
10. BFS3 was run with a search depth of D = 10, search breadth of C = 5,
and at most 1500 trajectories per step. In this instance, the actual world had
textured set to “true”, and the red, green and blue state’s chances of success
were 0.2, 0.3, 0.8, respectively. The agents were only given the coloring of each
state and the prior; they had to decide for themselves whether or not textures
mattered.

Figure 6.13: Texture World on a 5x5 grid. BOSS, because it was able to use
value iteration for planning in the small world, was very efficient with its com-
putation when compared to BFS3, which by definition uses the conservative
tree-search planner FSSS.
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Chapter 7

Conclusion

7.1 Motivation

This section revisits the motivation behind the Bayesian approach to model-

based reinforcement learning and why generalized priors are an important as-

pect of that approach.

One goal of Bayesian approaches to machine learning is to make computer

learners more “human” in the predictions they make. Humans are very good

at knowledge transfer, or the application of observations made in the past to

predictions that need to be made in the future. The use of a prior is an effective

and principled way to bring in knowledge from some other domain (or from

an algorithm designer’s imagination).

The distinction between prior knowledge and algorithm is one that is im-

portant and natural, and allows the agent designer to narrow his or her focus.

The ability to develop a prior (and the associated inference mechanism) is suf-

ficient for bestowing an agent with some sort of intrinsic knowledge, and this

prior can then be plugged directly into Bayesian DP, BOSS, BFS3, or any other

algorithm built in this fashion.

Considering the inference separately from the decision making is also ad-

vantageous in that there exists a large and active community focused on Bayesian

model building and inference. In fact, Latent Dirichlet Allocation [33] provided
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the original motivation and inspiration for the Cluster and other related CRP-

based priors.

7.2 Contributions

This section lists the specific contributions of this dissertation.

7.2.1 Bayesian Modeling

While it is not unprecedented for a reinforcement-learning algorithm to accept

flexible priors [20, 22, 35], specific priors that can be adapted to different sit-

uations are less common. Chapter 2 discusses several structured priors that

can be used for reinforcement-learning algorithms, and discusses in detail the

analysis inference methods needed to work with them effectively.

Of special note are the non-parametric models, which allow a reinforcement

learner to infer complex structure from observations in ways that are impossi-

ble to guess before-hand. The cluster prior was presented previously [1], and

the ROAR prior, which uses a CRP to do inference about clustering in continu-

ous spaces, exists only in this dissertation.

Also useful are some of the highly-specialized models mentioned in the ex-

periments in Chapter 6. While they, in particular, are not much use outside of

the experiments they are tied to, they serve as an example of how an agent de-

signer can craft a special prior for a special environment. This creation allows

the designer to say exactly what parts of the environment are uncertain, and

encode the known structure in an efficient and principled way. And, once such

a prior is constructed, there exist several algorithms, including two introduced

in this dissertation, that can make use of this prior directly.
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7.2.2 The BOSS Algorithm

The BOSS algorithm and analysis, from Chapter 4, is a major contribution

of this dissertation. This algorithm is a flexible and powerful approach for

making use of arbitrary priors.

Uncertainly is typically one of the hardest things to quantify in machine

learning. Some approaches, like MBIE [46] or RMAX [3], deal with uncertainty

by artificially modifying the reward function of the estimated MDP. BOSS ad-

dresses uncertainty directly by using posterior samples, which naturally have

a correlation between variance and uncertainty. Additionally, BOSS is not sig-

nificantly more computationally expensive, aside from the posterior sampling,

than the simplest of model-based learners, since it can use off-the-shelf plan-

ning techniques.

Beyond the use of flexible priors, BOSS is one of a small collection [2, 9, 21]

of Bayesian algorithms that also has theoretical guarantees about its sample

complexity. Depending on the particulars of the environment and the prior,

BOSS can be both PAC-MDP and PAC-BAMDP. This dissertation presents

the detailed analysis of these guarantees with respect to BOSS, and provides

clues about how to make similar analyses for other Bayesian model-based al-

gorithms.

7.2.3 The BFS3 Algorithm

The BFS3 algorithm and its corresponding analysis is also a major contribution

of this dissertation. The approach used by BFS3 differs from BOSS in several

important respects. First, it is not planner-agnostic—the analysis depends on

FSSS [37] being used. Second, instead of sampling MDPs from the posterior,
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it samples observations directly. Depending on the situation, MDP sampling

or observation sampling might be more appropriate, and these two algorithms

show that both are possible and practical.

Also, BFS3 has an attribute that BOSS does not have: more is never worse,

and often better. That is, raising the values of its parameters will never cause

BFS3 to be less Bayes-optimal. There is some minimum value for the parame-

ters that BFS3 needs to function correctly, but beyond that it will put anything

you give it to good use. Contrast this property with BOSS’s sample count

parameter, where a value that is too high or too low will render BOSS useless.

This algorithm also has theoretical gaurantees. Specifically, it is PAC-BAMDP.

Since raising its parameters will eventually cause it to be exactly Bayes-optimal,

in the limit, it cannot have a PAC-MDP guarantee, since there are priors that

induce a Bayes-optimal policy that is sub-optimal [47].

7.2.4 Separating BOSS and BFS3

The BOSS and BFS3 algorithms are distinct in the way they work with pos-

teriors. BOSS requires a posterior for sampling MDPs, while BFS3 operates

directly on experience. The type of model that is appropriate for a specific

experiment is very context-dependent. It could be that it is difficult to sam-

ple the entire model at once. There are tricks, especially the trick used for

sampling from ROAR in Section 2.3.2, that allow BOSS to treat an experience

posterior as an approximate model posterior, but they can add complication

to the inference process. On the other hand, for BFS3 to effectively use an

experience sampler, it needs to be able to quickly sample from the posterior

conditioned on any possible history, since its search tree will contain belief-

states with many different histories. The amount of overhead required by the
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ROAR model makes it infeasible to use with BFS3.

Beyond the different inference processes used by BOSS and BFS3, they

also have very different computational requirements. Since BOSS is planner-

agnostic—BOSS can make use of any planner that can work with its hyper-

models—it can often take advantage of specifics of the domain to plan more

efficiently. For instance, with smaller discrete domains, it can quickly plan us-

ing value iteration. The BFS3 algorithm is tied specifically to tree search. Since

its goal is to approach Bayes-optimality, it searches the BAMDP, and the prob-

lem is generally intractable. However, FSSS can often be an effective planner

in practice, as shown in Section 6.3 and previous work [37]. In those situations,

BFS3 is a good algorithm choice for deciding how to explore the belief-state-

space in order to get to Bayes-optimality as quickly as possible.

7.3 Concluding Remarks

Encoding prior knowledge into a reinforcement-learning algorithm is hard.

Using the Bayesian approach, where the knowledge is encoded into a prior

distribution, allows a researcher to compartmentalize some of the difficulty.

Inferring structure in environments is especially difficult to do without using

the Bayesian approach. This dissertation aims to address two important as-

pects of Bayesian model-based reinforcement learning: the construction and

inference of priors and posteriors, and the algorithms that make effective use

of those priors and posteriors.
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