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ABSTRACT OF THE DISSERTATION
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Robust Saliency Detection and Effective Feature Modeling

by Xinyi Cui

Dissertation Director: Professor Dimitris N. Metaxas

Human activity analysis is an important area of computer vision research today. The

goal of human activity analysis is to automatically analyze ongoing activities from an

unknown video. The ability to analyze complex human activities from videos has many

important applications, such as smart camera system, video surveillance, etc. However,

it is still far from an off-the-shelf system. There are many challenging problems and it

is still an active research area. This dissertation focuses on addressing two problems:

various camera motions and effective modeling of group behaviors.

We propose a unified and robust framework to detect salient motions from diverse

types of videos. Given a video sequence that is recorded from either a stationary

or moving camera, our algorithm is able to detect the salient motion regions. The

model is inspired by two observations: 1) background motion caused by orthographic

cameras lies in a low rank subspace, and 2) pixels belonging to one trajectory tend

to group together. Based on these two observations, we introduce a new model using

both low rank and group sparsity constraints. It is able to robustly decompose a

motion trajectory matrix into foreground and background ones. Extensive experiments

demonstrate very competitive performance on both synthetic data and real videos.

After salient motion detection, a new method is proposed to model group behaviors
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in video sequences. This approach effectively models group activities based on social

behavior analysis. Different from previous work that uses independent local features,

our method explores the relationships between the current behavior state of a subject

and its actions. An interaction energy potential function is proposed to represent the

current behavior state of a subject, and velocity is used as its actions. Our method does

not depend on human detection, so it is robust to detection errors. Instead, tracked

salient points are able to provide a good estimation of modeling group interaction. We

evaluate our algorithm in two datasets: UMN and BEHAVE. Experimental results show

its promising performance against the state-of-art methods.
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Chapter 1

Introduction

1.1 Human Activity Analysis

Human activity analysis is an important area of computer vision research today. The

goal of human activity analysis is to automatically analyze ongoing activities from an

unknown video. For example, a sequence of image frames. In the sample case when a

video sequence contains only one clip of a human activity, the objective of the system

is to label the video into its activity category. In more complex cases, when an input

video is given, the system needs to detect starting and ending times of all occurring

activities.

The ability to analyze complex human activities from videos has many important

applications. Automated surveillance systems in public places like airports and subway

stations require detection of suspicious activities as opposed to normal activities. For

instance, an airport surveillance system must be able to automatically find suspicious

activities like ‘a person leaving a bag’ or ‘a person placing his/her bag in a trash bin’.

Analysis of human activities also enables the real-time monitoring of patients, children,

and elderly persons. The construction of gesture-based human computer interfaces and

vision-based intelligent environments becomes possible as well with an activity analysis

system. Table 1.1 lists a few application domains and potential usages of computer

vision systems that understand people’s behaviors.

There are various types of human activities. Depending on their complexity, human

activities can be roughly categorized into three levels: gestures, actions and group

interactions/activities. Gestures are elementary movements of a person’s body part, and

are the atomic components describing the meaningful motion of a person. ‘Stretching

an arm’ and ‘raising a leg’ are good examples of gestures. Actions are single person
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Application domain Potential use

security, surveillance automatic monitoring, abnormality detection
sports and entertainment sport analysis
web application movie/video retrieval
hospitals and medical applications nursing home monitoring, smart surgery

Table 1.1: Application domains and potential use of computer vision systems that can
understand people’s behaviors.

activities, such as ‘walking’, ‘waving’, and ‘punching’. group interaction/activites are

human activities that involve two or more persons and/or objects. For example, ‘a

person stealing a suitcase from another’ is a human-object interaction involving two

humans and one object. A group activity is performed by conceptual groups composed

of multiple persons and/or objects. ‘A group of persons marching’, ‘a group having a

meeting’, and ‘two groups fighting’ are typical examples of them.

Now days, cameras are everywhere. The research of activity analysis is strong en-

couraged by the emerging number of cameras. But these cameras do not actually “see”

things. For example, for surveillance cameras, we still reply on people to monitor the

events and activities. A significant amount of progress on human activity analysis has

been made in the past 10 years, but it is still far from being an off the shelf technology.

Further, today’s environment for human activity analysis keeps changing. The cameras

were mostly fixed cameras and without pan-tilt-zoom adjustments. Today’s cameras

may be mounted on several types of moving platforms ranging from a moving car or a

truck to an unmanned aerial vehicle (UAV). In addition, there are increasing number of

freely moving cameras, such as smart phones and hand-held digital video cameras. De-

signing an activity analysis system to handle these cameras is an extremely challenging

task.

1.2 Challenges

There are many challenging problems for group activity analysis.

• Few Pixels on Objects: In a scene with a lot of people, detection of individual

objects becomes extremely hard as the number of pixels on the object decreases
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with increasing number of people. The appearance information becomes further

distorted due to the constant interaction among individuals making up the crowd.

The interaction among a group of people makes it hard to detect or tracking each

individual. See Figure 1.1 for example.

• Appearance Ambiguity: Ideally one would like to track all the visible object-

s throughout the scene. However, ambiguous appearance information resulting

from too few pixels than desirable on the targets makes it difficult to persistently

track the objects. Some state-of-art methods rely on manual correction of tracked

trajectories for further group activity analysis. This however does not work for

automatic video analysis.

• Various camera motions: The crowded scenes may not be recorded by an absolute-

ly stationary camera. As the cameras become cheap, many videos are recorded by

hand-held digital video cameras, smart phones or UAV. Even for a surveillance

camera mounted in a building, it still suffers from small shakes by window or

group vibrations. The analysis of activity from a moving platform poses many

more challenges. Noise, tracking, and segmentation issues arising out of stabiliza-

tion of video add to the difficulty of the problem of the analysis of activities. The

camera motions makes it hard to separate the people behaviors from the scene.

• Representation of group behaviors: The behaviors in a group are the interactions

among the participants. The individual centric representation of behaviors is not

applicable for a group. How to build a model to effectively represent the group

interaction is challenging.

1.3 Our Solutions

This dissertation focuses on two challenging problems: handling various camera motions

and representation of group behaviors. We propose a salient motion detection method

to find the moving area in a video sequence. The video sequence can be recorded by

either a stationary camera or a freely moving camera. We also propose a new method
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Figure 1.1: Video sequences with a lot of people. As people are severely occluded, it is
hard to have accurate detection or tracking of each individual.

to model the behaviors of groups, by representing the group activity as the interactions

of particles.

A new method is designed for salient motion detection [19]. This is based on two

constraints: the low rank constraint on the salient motion area (foreground area), and

the group sparsity constraint on the background area. Those constraints are inspired

by two “sparsity” observations behind our method. When the scene in a video does

not have any foreground moving objects, video motion has a low rank constraint for

orthographic cameras [69, 89]. Thus the motion of background points forms a low rank

matrix. For the salient motion regions, the foreground moving objects usually occupy

a small portion of the scene. Thus this satisfied a sparsity constraint. In addition,

when a foreground object is projected to pixels on multiple frames, these pixels are not

randomly distributed. They tend to group together as a continuous trajectory. Thus

these foreground trajectories usually satisfy the group sparsity constraint.

We use such information to differentiate independent objects from the scene. Based

on these two observations, the video salient motion detection problem is formulated as

a matrix decomposition problem. First, the video motion is represented as a matrix

on trajectory level (i.e. each row in the motion matrix is a trajectory of a point).

Then it is decomposed into a background matrix and a foreground matrix, where the

background matrix is low rank, and the foreground matrix is group sparse. This low

rank constraint is able to automatically model background from both stationary and

moving cameras, and the group sparsity constraint improves the robustness to noise. We

validate our approach on various types of data, i.e., synthetic data, real video sequences
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recorded by stationary cameras or moving cameras and/or nonrigid foreground objects.

Experiments show that our method performs better than the recent state-of-the-art

algorithms.

To model the group activities from video sequences, we propose a new algorithm to

represent group activities by learning the relationships between the current behavior

state of a subject and its actions [20]. This algorithms is based on the exploration of

the reasons why people take different actions under different situations. Our goal is to

explore the reasons why people take different actions under different situations.

An interaction energy potential function is defined to represent the current state of

a subject based on the positions/velocities of a subject itself as well as its neighbors.

Social behaviors are captured by the relationship between interaction energy potential

and its action, which is then used to describe social behaviors. Then we use SVM to

build a model for analyzing the group behaviors. We test the algorithm on two datasets

UMN [2] and BEHAVE [1]. Results show that our method is more powerful to model

behaviors in group activities, comparing to other state-of-art algorithms.

1.4 Main Contributions

The main contribution of this dissertation is fourfold.

1. A new model is proposed for salient motion detection in video sequences. For

any given raw videos from a surveillance camera, our method is able to locate the

moving regions and generate the dense tracked trajectories. This servers as the

first step for group activity analysis.

2. Our framework is able to handle various types of video sequences, including rigid

and non-rigid objects in stationary cameras, nominally moving cameras and mov-

ing cameras. Since our method is based on low rank and group sparsity constraints

over multiple frames, it is robust to handle outliers along the video sequences.

3. A new feature representation is proposed for group activity analysis. This method

is used to model behaviors in human group activities. As this approach model-

s group activities using social behavior analysis, it is effective to describe the



6

interactions among a group of people.

4. Our algorithm is successfully applied to video datasets under surveillance cameras.

The UMN and BEHAVE datasets contain video sequences of group interactions

like walking together, running, fighting, panic, etc. Monitoring group events in a

public area is important for video surveillance and smart camera system.

1.5 Organization

The remainder of this dissertation is organized as follows. Chapter 2 reviews the relevant

works in two major areas: salient motion detection and action/activity analysis. For

salient detection problem in Section 2.2, we start from image saliency detection, and

then review the major algorithms in salient motion detection in video sequences. Since

our work employ sparse methods to find the salient moving regions, we also briefly

introduce sparse method in Section 2.3. Major research methods in action/activity

analysis are introduced in Section 2.4. This section starts from surveys in action analysis

from single persons, then discuss the major methods in group behavior analysis.

Given a video sequence as an input, our system first locates the salient motion

regions. Chapter 3 introduces the proposed salient motion detection method in detail.

This method is inspired by two observations from the background and foreground.

Based on the observations, a unified and robust framework to effectively handle diverse

types of videos is presented. The problem formulation and optimization framework

are also discussed here. This framework is able to handle both videos from stationary,

nominally moving cameras as well as moving cameras. We also evaluate the algorithm

performance in this chapter using both synthetic data and real videos.

After having the salient motion regions, we can further analyze the group behaviors.

Our proposed method for modeling behaviors in human group activities is presented in

Chapter 4. This approach effectively models group activities based on social behavior

analysis. The motivation comes from the way people interact in a public area. As our

major contribution is the feature, how the feature is calculated and used is discussed

here. To validate the performance, we test it on two datasets: UMN and BEHAVE. It
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shows competitive performance on these datasets.

Finally we conclude and discuss the future work in Chapter 5.
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Chapter 2

Related Work

2.1 Overview

Our work involves two major research areas: robust saliency detection and effective fea-

ture modeling. Thus this chapter reviews the relevant work in both field. In Section 2.2,

we will review the major research works in saliency detection. Since saliency detection

involves both work in images and videos, it starts from image saliency detection, then

the major approaches in motion saliency detection in video sequences. The approach

we propose for robust saliency detection uses sparsity analysis to find the salient moving

regions. Thus we also give a brief survey of sparsity methods in Section 2.3. Section 2.4

discusses the mainstream work of feature modeling for action/activity analysis in video

sequences.

2.2 Salient Motion Detection

Visual saliency is the ability of a vision system (human or machine) to select a certain

subset of visual information for further processing. This mechanism serves as a filter

to select only the interesting information related to current behaviors or tasks to be

processed while ignoring irrelevant information. Recently, salient object detection has

attracted a lot of interest in computer vision as it provides fast solutions to several

complex processes. There are basically two major categories for saliency detection:

saliency detection in images and salient motion detection in videos. This section will

give a brief introduction to image saliency detection, and will then mostly focus on the

research in salient motion detection.

Image saliency detection aims to detect the salient foreground regions. The saliency
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detection system first detects the most salient and attention-grabbing object in a scene,

and then it segments the whole extent of that object. The output usually is a map

where the intensity of each pixel represents the probability of that pixel belonging to the

salient object. This problem in its essence is a segmentation problem but slightly differs

from the traditional general image segmentation. While salient object detection models

segment only the salient foreground object from the background, general segmentation

algorithms partition an image into regions of coherent properties. Some typical research

methods in this area are Itti [42] and Hou [36]. Please refer to extensive reviews for

more details [8].

A considerable amount of work has studied the problem of salient motion detection

in video sequences. Salient motion detection is actually a broad concept. The goal of

salient detection is to find the salient foreground regions from the background in a video

sequence. Background subtraction and motion segmentation all fall into this concept.

Since this dissertation compares both sub-domains, the rest of this section will discuss

these two research areas.

Background subtraction aims to detect all foreground objects given a video sequence,

and label the foreground areas as a binary mask. Many algorithms have been proposed

for this problem. Here we review a few related work, and please refer to [71, 11] for

comprehensive surveys.

The mainstream in the research area of background subtraction focuses on stationary

cameras. The earliest background subtraction methods use frame difference to detect

moving objects. It thresholds the difference between two/three consecutive frames.

Large changes are considered as foreground [43, 44]. Many subsequent approaches have

been proposed to model uncertainty in background appearance. W4 is a well known

system to incorporate statistic models for the background subtraction problems [31]. It

models the variance in a set of background images with the maximum and minimum

intensity value and the maximum difference between consecutive frames. Pfinder [95] is

based on Gaussian distribution models. The assumption is that the pixel value follows

a Gaussian distribution, and a likelihood model is used to compare the likelihood of

background and foreground for a particular pixel. The Mixture of Gaussians (MoG) [85]
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assumes the color evolution of each pixel can be modeled. It is widely used in real

systems [88]. Elgammal et al. [27] propose a non-parametric model. Sheikh and Shah

consider both temporal and spatial constraints and build a joint spatial-color model in

a Bayesian framework [82]. [22, 21, 24] use image saliency properties to find salient

motion regions.

One important variation in stationary camera based research is the background

dynamism. When the camera is stationary, the background scene may change over

time due to many factors (e.g. illumination changes, waves in water bodies, shadows,

etc). Several algorithms have been proposed to handle dynamic background [64, 117,

57, 46, 50, 18, 50].

All the above work assumes that the camera is stationary. Background subtraction

under moving camera is more challenging since it is not straightforward to model or up-

date foreground/background. The research for moving cameras has recently attracted

people’s attention. A popular way to handle camera motion makes strong assumption

of the scene. [63, 34, 75] cancel the camera motion by estimating dominant background

motion to identify foreground objects. However, these methods are based on a strong

assumption that the background is able to be modeled effectively with a single plane,

which is not generally valid. A more advanced approach is the combination of plane

and parallax framework, where a homography is first computed to match the features

in two consecutive frames and the residual pixels are further registered by parallax

estimation [106]. This technique involves fewer restrictions than the homography-only

based algorithms, but still assumes that there exists a dominant plane for matching by

homography.

Recently, [81] has been proposed to build a background model using RANSAC to

estimate the background trajectory basis. This approach assumes that the background

motion spans a three dimensional subspace. Then sets of three trajectories are randomly

selected to construct the background motion space until a consensus set is discovered, by

measuring the projection error on the subspace spanned by the trajectory set. However,

RANSAC based methods are generally sensitive to parameter selection, which makes

it less robust when handling different videos. The goal of our approach is to propose a
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unified framework to robustly handle diverse types of videos.

Motion segmentation aims to segment the trajectories into different motion seg-

ments. The trajectories are tracked using tracking algorithms from an input video

sequence. Many motion segmentation algorithms have been proposed in recent years.

Generalized Principal Component Analysis (GPCA) [92] is designed as generic subspace

separation algorithms that do not place any restriction on the relative orientations of

the motion subspaces. Local Subspace Affinity (LSA) [99] uses local information around

each trajectory to create a pairwise similarity matrix that can then be segmented using

spectral clustering techniques. This algorithm works well then the trajectory number

is small. But the algorithm itself is computationally heavy, it is not able to handle

dense trajectories. RANSAC based method is also proposed to segment motions [91].

The Hopkins 155 Dataset has been created with the goal of providing an extensive

benchmark for testing feature based motion segmentation algorithms. The salient mo-

tion algorithm this dissertation proposes here is similar to motion segmentation. But

our algorithm does not need to know the cluster number, which is not given in real

applications.

2.3 Sparsity Methods

Sparsity methods have been widely studied recently. The basic idea is that a sparse

signal can be recovered with high probability from a small number of its linear mea-

surements [12, 26]. The problem of sparsity priors can be solved by either using greedy

methods such as basis pursuit [17] and matching pursuit [58], or using L1 norm relax-

ation and convex optimization [12, 45, 28]. Sparsity methods have been used in many

applications, such as face recognition [14], super resolution [100, 101], medical image

segmentation [112, 113, 114], image annotation [110, 111] and MR image reconstruc-

tion [39, 38].

The idea of using group sparse structure to achieve better performance has attracted

a lot of attention [107]. Theoretically proves are provided to show that group sparsity

is superior to standard sparsity for strongly group-sparse signals [7, 40]. When the
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underlying group structure is consistent with the data, a convincing theoretical justi-

fication has been provided to use group sparse regularization instead of regular sparse

regularization. Group sparsity has been used in several vision problems including, but

not limited to, human gait recognition [98] and image annotation [110].

[40, 37] employs spatial group sparsity to tackle background subtraction problem.

It naturally extends the standard sparsity concept in compressive sending to dynamic

group sparsity. This approach is motivated by the observation that in some practical

sparse data the nonzero coefficients are often not random but tend to be clustered.

By utilizing both the clustering and sparsity priors, better results can be achieved.

A greedy sparse recovery algorithm is developed, which prunes data residues in the

iterative process according to both sparsity and group clustering priors rather than

only sparsity as in previous methods. This algorithm can recover stably sparse data

with clustering trends using far fewer measurements and computations current state-of-

the-art algorithms with provable guarantees. This algorithm can also adaptively learn

the dynamic group structure and the sparsity number if they are not available in the

practical applications. Our approach is inspired by this method in the sense of group

sparsity. But there are two differences. First the group property used our method is on

the temporal domain, constraining the tracking points from multiple frames to group

together. It is not the neighboring pixels on the same frame. Second, the dynamic group

sparsity is only able to solve background subtraction problem under stationary cameras,

while our method is able to handle both stationary cameras and moving cameras.

Low rank constraints and matrix completion problems have been well studied in

recent years [15] and applied to several vision problems, such as face recognition [14],

face shadow removal [65] and image classification [108].

The basic idea is to recover a low rank matrix from only a small fraction of its

entries, and by extension, from a small number of linear functionals. Robust PCA [14]

tries to recover a low-rank matrix by minimizing nuclear norm. The basic idea is

that given a data matrix with a low-rank component and a sparse component, it is

possible to recover both the low-rank and the sparse components exactly by solving

a very convenient convex problem called Principal Component Pursuit under some
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suitable assumptions. It provides a principled approach to robust principal component

analysis, which can recover the principal components of a data matrix, even though

a positive fraction of the entries are arbitrarily corrupted or missing. This work has

been successfully applied to detection of objects in a cluttered background scenario. It

assumes that the stationary background satisfies a low rank constraint. However, this

assumption does not hold when camera moves. In this dissertation, a new low rank

constraint is introduced on moving cameras. The constraint is applied on the tracked

trajectories from the scene in temporal domain, and it is able to handle salient motions

from a freely moving cameras.

2.4 Modeling activity features

Human action/activity modeling in video sequences is a hot topic in the communities

of computer vision and pattern recognition. Please see [72, 3] for full survey. The

interest in the topic is motivated by the promise of many applications. Automatic

analysis of videos enable more efficient video searching e.g. finding tackles in soccer

matches, handshakes in news footage or typical dance moves in music videos. It is also

important for automatic surveillance, e.g. monitoring shopping malls. Another example

is to support aging in places for the elderly in smart homes. Interaction applications

like human-computer interactions also benefit from the advances in automatic human

action analysis.

In recent years, many algorithms have been proposed to improve the performance

of action/activity analysis. A lot of research work focuses on finding better image

representation and features extracted from the image sequences. Ideally, these should

generalize over small variations in person appearance, background, viewpoint and action

types. At the same time, the representations must be sufficient rich for robust action

analysis. Using local descriptors or patches is a popular way to represent human actions.

A video sequence is then represented by a collection of independent patches. Accurate

localization and background subtraction are not required. The local representations are

somewhat invariant to changes in viewpoint, person appearance and partial occlusions.

A variety of features have been studied in recent years. 3D Haar-like features [55, 23] are
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used to model pedestrian’s movements. Encoded dynamic features are used to describe

periodical movements [102]. Space-time interest points are the locations in space and

time where sudden changes of movement occur in the video. Laptev and Lindeberg [48]

extended the Harris corner detector [33] to 3D. Space-time interest points are those

points where the local neighborhood has a significant variation in both the spatial

and the temporal domain. Dollár et al. [25] uses dense sampling instead of sparse

interest points for feature representation. This method applies Gabor filtering on the

spatial and temporal dimensions individually. In addition to intensity and motion cues,

Rapantzikos et al. [74] also incorporate color.

After local interest point detection, local descriptors are applied to summarize an

image/video patch. The spatial and temporal size of a patch is usually determined

by the scale of the interest point. Schuldt et al. [77] calculate patches of normalized

derivatives in space and time. Niebles et al. [67] take the same approach but apply

smoothing before reducing the dimensionality using PCA. Dollar et al. [25] experiment

with both image gradients and optical flow. Please refer to Mikolajczyk et al. [62] for

the survey on features.

How to model the relationship among local features is also very important. One way

is to build grids over spatial/temporaldomain. Ikizler and Duygulu [41] sample oriented

rectangular patches and bin them into a grid. Zhao and Elgammal [116] bin local

descriptors around interest points in a histogram with different levels of granularity.

Nowozin et al. [68] use a temporal instead of a spatial grid. Another way is to exploit

correlations between local descriptors to construct higher-level descriptors. Scovanner

et al. [78] construct a word co-occurrence matrix for a reduced codebook size. Liu

et al. [53] uses a combination of the space-time features and spin images to represent

the correlations of features. Yi and Pavlovic [80] use Isotonic Canonical Correlation

Analysis for movement alignment and action anlaysis. These algorithms have been

successfully applied to action analysis problems, focusing on single action with one

person [77](hand-waving, running...). pair-wise action recognition (answer phone[49],

horse riding [54]).

These works do not consider interactions among multiple people. For most of the
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surveillance systems in public area, it is also important to identify group activities.

Events like fighting or escaping often involve multiple people and their interactions.

Several algorithms for group activity modeling have been proposed in recent years.

Different features are used for group activity: human body/body parts [59, 73], optical

flow [5] and detecting moving regions [96]. Recently, Zhou et al. .[118] and Ni et al.

et al. [66] use trajectory analysis to describe different group activities. However, these

algorithms heavily depend on the accuracy of tracking trajectories. Especially when

the camera is mounted on buildings and people are severely occluded, these algorithms

need human intervention to correct the trajectories, which are not practical in real

applications.

Modeling social behaviors of people is an important branch to represent group activ-

ity, and it has been widely used in evacuation dynamics, traffic analysis and graphics.

Pedestrian behaviors have been studied from a crowd perspective, with macroscopic

models for crowd density and velocity. On the other end, microscopic models deal

with individual pedestrians. A popular model is the Social Force Model [35]. In the

Social Force Model, pedestrians react to energy potentials caused by other pedestrians

and static obstacles through a repulsive force, while trying to keep a desired speed

and motion direction. Helbing et al. in [35] originally introduce it to investigate people

movement dynamics. It is also applied to the simulation of crowd behavior [105], virtual

reality and studies in computer graphics for creating realistic animations of the crowd

[90].

Social behavior analysis has also attracted much attention in the computer vision

community. Ali and Shah [4] use the cellular automaton model to track in extremely

crowded situations. Antonini et al. [6] propose a variant of Discrete Choice Model to

build a probability distribution over pedestrian positions in next time step. Scovanner

and Tappen [79] learns pedestrians’ dynamics and motions as a continuous optimization

problem. Pellegrini et al. [70] propose a Linear Trajectory Avoidance (LTA) method to

track multiple targets. Predictions of velocities are computed by the minimization of

energy potentials. Recently, Mehran et al. [60] propose a method to model behaviors

among a group of people. It represents the group patterns in a local region based on
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moving particles. Wu et al. [97] uses chaotic invariants of Lagrangian Particle Trajec-

tories to model group behaviors in crowded scenes. They have been successfully used

in crowded scene modeling.

Different from the above work, our method is based on the relationship between

the current state of a person and his/her reactions. It fully utilizes the information of

interaction energy potential and the corresponding people’s reactions, which contains

comprehensive information to model the behaviors among a group of people.



17

Chapter 3

Salient Motion Detection

3.1 Introduction

Salient motion detection is an important step in many video analysis systems. It aims

to find independent moving objects in a scene and filter out the unimportant area. The

idea of saliency detection comes from human visual system, where the first stage of

human vision is a fast but simple pre-attentive process. Salient motion detection can

be used in many applications, such as the surveillance and monitoring of public facilities

like train stations, underground subways or airports, monitoring patients in a hospital

environment or other health care facilities, and other similar applications.

Recently, moving camera platforms have increased significantly, like cellular phones,

vehicles, and robots. As a larger and larger percentage of video content is produced by

moving cameras, the need for foundational algorithms that can isolate interesting areas

in such video is becoming increasingly pressing. It is still a very challenging problem

to robustly handle diverse types of videos. Here we propose a unified framework for

salient motion detection, which can robustly deal with videos from stationary or moving

cameras with various number of righd/non-rigid objects.

The proposed method for salient motion detection [19] is based on two sparsity

constraints applied on foreground and background levels, i.e., low rank [14] and group

sparsity constraints [107]. It is inspired by recently proposed sparsity theories [13, 84].

There are two “sparsity” observations behind our method. First, when the scene in

a video does not have any foreground moving objects, video motion has a low rank

constraint for orthographic cameras [69, 89]. Thus the motion of background points

forms a low rank matrix. Second, foreground moving objects usually occupy a small

portion of the scene. In addition, when a foreground object is projected to pixels on
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multiple frames, these pixels are not randomly distributed. They tend to group together

as a continuous trajectory. Thus these foreground trajectories usually satisfy the group

sparsity constraint.

These two observations provide important information to differentiate independent

objects from the scene. Based on them, the video salient motion detection problem is

formulated as a matrix decomposition problem. First, the video motion is represented

as a matrix on trajectory level (i.e. each row in the motion matrix is a trajectory of a

point). Then it is decomposed into a background matrix and a foreground matrix, where

the background matrix is low rank, and the foreground matrix is group sparse. This low

rank constraint is able to automatically model background from both stationary and

moving cameras, and the group sparsity constraint improves the robustness to noise

(see details in Sec. 3.2.2).

Our approach is validated on various types of data, i.e., synthetic data, real video se-

quences recorded by stationary cameras or moving cameras and/or nonrigid foreground

objects. Extensive experiments also show that our method compares favorably to the

recent state-of-the-art methods.

The main contribution of the proposed approach is a new model using low rank

and group sparsity constraints to differentiate foreground and background motions.

This approach has three merits:

1. The low rank constraint is able to handle both static and moving cameras. It

allows us to develop a unified algorithm to handle both stationary cameras and

moving cameras.

2. The group sparsity constraint leverages the information of the points on the con-

secutive frames. By using the group information, rather than individual points,

it makes the algorithm robust to random noise;

3. It is relatively not sensitive to parameter settings. This is of significant practical

importance: the same parameter works well for all tested videos.

In the remainder of this chapter, the major method will be presented in Section 3.2,

including the math formulation using sparse representation for background subtraction
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a) Input video

b) Tracked trajectories c) Trajectory matrix d) Decomposed trajectories

e) Decomposed trajectories 
on original frames

Figure 3.1: The framework. Our method takes a raw video sequence as input, then
generate the dense point trajectories using a dense point tracking tool [86]. The dense
point trajectories form a two dimensional data matrix. Our algorithm is then applied
to decompose the matrix into foreground and background using the proposed low rank
and group sparsity based model. The final labeled trajectories are visualized in the
original frames.

in Section 3.2.2; the optimization framework in Section 3.2.3, and pixel-level labeling

in Section 3.2.4. Section 3.3 shows the experimental results of our methods and com-

parisons with state-of-art methods on both synthetic data and real videos. Section 3.4

concludes this chapter.

3.2 Methodology

3.2.1 The Overview

Our salient motion detection algorithm takes a raw video sequence as input, then return

a set of trajectories that are labeled as foreground or background motions. Figure 3.1

shows our framework. First, A dense set of points is tracked over all frames. We

use an off-the-shelf dense point tracker [86] to produce the trajectories. These dense

point trajectories form a two dimensional data matrix. Then a low rank and group

sparsity based model is performed to decompose the data matrix into foreground and
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background.

After the trajectory level separation, the trajectories can be further used to label the

frames into binary foreground and background. motion segments are generated using

optical flow [51] and graph cuts [9]. Then the color and motion information gathered

from the recognized trajectories builds statistics to classify each motion segment as

foreground or background.

3.2.2 Low Rank and Group Sparsity based Model

Notations: Given a video sequence, k points are tracked over l frames. Each trajectory

is represented as

pi = [x1i, y1i, x2i, y2i, ...xli, yli] ∈ R1×2l,

where x and y denote the 2D coordinates in each frame. The collection of k trajectories

is represented as a k × 2l matrix,

φ = [pT1 , p
T
2 , ..., p

T
l ]T , φ ∈ Rk×2l.

In a video with moving foreground objects, a subset of k trajectories comes from the

foreground, and the rest belongs to the background. Our goal is to decompose tracked k

trajectories into two parts: m background trajectories and n foreground trajectories. If

we already know exactly which trajectories belong to the background, then foreground

objects can be easily obtained by subtracting them from k trajectories, and vice versa.

In other words, φ can be decomposed as:

φ = B + F, (3.1)

where B ∈ Rk×2l and F ∈ Rk×2l denote matrices of background and foreground tra-

jectories, respectively. In the ideal case, the decomposed foreground matrix F consists

of n rows of foreground trajectories and m rows of flat zeros, while B has m rows of

background trajectories and n rows of zeros.

Eq. 3.1 is a severely under-constrained problem. It is difficult to find B and F
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Figure 3.2: Illustration of our model. Trajectory matrix φ is decomposed into a back-
ground matrix B and a foreground matrix F . B is a low rank matrix, which only has a
few nonzero eigenvalues (i.e. the diagonal elements of Σ in SVD); F is a group sparse
matrix. Elements in one row belongs to the same group (either foreground or back-
ground), since they lie on one trajectory. The foreground rows are sparse comparing to
all rows. White color denotes zero values, while blue color denotes nonzero values.

without any prior information. In our method, we incorporate two effective priors to

robustly solve this problem, i.e., the low rank constraint for the background trajectories

and the group sparsity constraint for the foreground trajectories.

Low rank constraint for the background. In a 3D structured scene without any

moving foreground object, video motion solely depends on the scene and the motion of

the camera. Our background modeling is inspired from the fact that B can be factored

as a k× 3 structure matrix of 3D points and a 3× 2l orthogonal matrix [89]. Thus the

background matrix is a low rank matrix with rank value at most 3. This leads us to

build a low rank constraint model for the background matrix B:

rank(B) ≤ 3, (3.2)

Another constraint has been used in the previous research work using RANSAC

based method [81]. This work assumes that the background matrix is of rank three:

rank(B) = 3. This is a very strict constraint for the problem. We refer the above

two types of constraints as the General Rank model (GR) and the Fixed Rank model

(FR). Our GR model is more general and handles more situations. A rank-3 matrix

models 3D scenes under moving cameras; a rank-2 matrix models a 2D scene or 3D

scene under stationary cameras; a rank-1 matrix is a degenerated case when scene only

has one point. The usage of GR model allows us to develop a unified framework to
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handle both stationary cameras and moving cameras.

The experiment section (Sec. 3.3.2) provides more analysis on the effectiveness of

the GR model when handling diverse types videos. We also compare the performance of

our method using GR model and RANSAC based method[81] in Sec. 3.3.2 (see Tab. 3.2)

Group sparsity constraint for the foreground. Foreground moving objects,

in general, occupy a small portion of the scene. This observation motivates us to use

another important prior, i.e., the number of foreground trajectories should be smaller

than a certain ratio of all trajectories,

m < αk, (3.3)

where α controls the sparsity of foreground trajectories.

Another important observation is that each row in φ represents one trajectory. Thus

the entries in φ are not randomly distributed. They are spatially clustered within each

row. If one entry of the ith row φi belongs to the foreground, the whole φi is also in

the foreground. This observation makes the foreground trajectory matrix F satisfy the

group sparsity constraint:

‖F‖2,0 < αk, (3.4)

where ‖ · ‖2,0 is the mixture of both L2 and L0 norm. The L2 norm constraint is

applied to each group separately (i.e., each row of F ). It ensures that all elements in

the same row are either zero or nonzero at the same time. The L0 norm constraint

is applied to count the nonzero groups/rows of F . It guarantees that only a sparse

number of rows are nonzero. Thus this group sparsity constraint not only ensures that

the foreground objects are spatially sparse, but also guarantees that each trajectory is

treated as one unit.

The traditional sparsity constraint, L0 norm, has been intensively studied in recent

years. However, it does not work well for this problem compared to the group spar-

sity one. L0 norm treats each element of F independently. It does not consider any

neighborhood information. Thus it is possible that points from the same trajectory

are classified into two classes. In the experiment section (Sec. 3.3.1), we discuss the
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advantage of group sparsity constraint over sparsity constraint through synthetic data

analysis, and also show that this constraint improves the robustness of our model.

Based on the low rank and group sparsity constraints, we formulate our objective

function as:

(
B̂, F̂

)
= arg min

B,F

(
‖ φ−B − F ‖2F

)
,

s.t. rank(B) ≤ 3, ‖ F ‖2,0 < αk, (3.5)

where ‖·‖F is the Frobenius norm. This model leads to a good separation of foreground

and background trajectories. Figure 3.2 illustrates our model.

Eq. 3.5 only has one parameter α, which controls the sparsity of the foreground

trajectories. In general, user-tuning parameter is a key issue for a good model. It is

preferable that the parameters are easy to tune and not sensitive to different datasets.

In the experiment section (Sec. 3.3), we show that the model is relatively insensitive to

parameter selection.

Low rank constraints and Robust PCA have been recently used to solve vision

problems [115, 14], including background subtraction at the pixel level [14]. It assumes

that the stationary scenes satisfy a low rank constraint. However, this assumption does

not hold when camera moves. Furthermore, that formulation does not consider any

group information, which is an important constraint to make sure neighbor elements

are considered together.

3.2.3 Optimization Framework

This subsection discusses how to effectively solve Eq. 3.5. The first challenge is that it

is not a convex problem, because of the nonconvexity of the low rank constraint and the

group sparsity constraint. Furthermore, we also need to simultaneously recover matrix

B and F , which is generally a Chicken-and-Egg problem.

In our framework, alternating optimization and greedy methods are employed to

solve this problem. We first focus on the fixed rank problem (i.e., rank equals to 3),

and then will discuss how to deal with the more general constraint of rank ≤ 3.
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Eq. 3.5 is divided into two subproblems with unknown B or F , and solved by using

two steps iteratively:

Step 1: Fix B, and update F . The subproblem is:

(
F̂
)

= arg min
F

(
‖ φ′ − F ‖2F

)
, s.t. ‖F‖2,0 < αk, (3.6)

where φ′ = φ−B.

Step 2: Fix F , and update B. The subproblem is:

(
B̂
)

= arg min
B

(
‖ φ′′ −B ‖2F

)
, s.t. rank(B) = 3, (3.7)

where φ′′ = φ− F .

To initialize this optimization framework, we simply choose Binit = φ, and Finit = 0.

Greedy methods are used to solve both subproblems. To solve Eq. 3.6, we compute

‖Fi‖2, i ∈ 1, 2, ..., k, which represents the L2 norm of each row. Then the αk rows with

largest values are preserved, while the rest rows are set to zero. This is the estimated F

in the first step. In the second step, φ′′ is computed as per newly-updated F . To solve

Eq. 3.7. Singular value decomposition (SVD) is applied on φ′′. Then three eigenvectors

with largest eigenvalues are used to reconstruct B. Two steps are alternatively employed

until a stable solution of B̂ is found. Then F̂ is computed as φ − B̂. The reason of

updating F̂ after all iterations is that the greedy method of solving Eq. 3.6 discovers

exact αk number of foreground trajectories, which may not be the real foreground

number. On the contrary, B can be always well estimated, since a subset of unknown

number of background trajectories is able to have a good estimation of background

subspace. Thus we finalize F̂ by φ− B̂. Since the whole framework is based on greedy

algorithms, it does not guarantee a global minimum. In our experiments, however, it

is able to generate reliable and stable results.

The above-mentioned method solves the fixed rank problem, but the rank value in

the background problem usually cannot be pre-determined. To handle this undeter-

mined rank issue, we propose a multiple rank iteration method. First, B and F are
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initialized as B
(0)
init = φ and F

(0)
init = 0k×2l. Then the fixed rank optimization procedure

is performed on each specific rank starting from 1 to 3. The output of the current fixed

rank procedure is fed to the next rank as its initialization. We obtain the final result

B(3) and F (3) in the rank-3 iteration. Algorithm 1 shows this optimization framework

in detail.

Given a data matrix of k×2l with k trajectories over l frames, the major calculation

is O(kl2 + l3) for SVD on each iteration. Convergence of the fixed rank problem is

achieved 6.7 iterations on average. Since we use a few frames to construct the trajectory

matrix (10−30 frames in our framework), the value of l is much lower than k, the total

trajectory number. The overall time complexity is O(kl2 + k3), where l << k.

To explain why our framework works for the general rank problem, we discuss

two examples. First, if the rank of B is 3 (i.e., moving cameras), then this framework

discovers an optimal solution in the third iteration, i.e., using rank-3 model. The reason

is that the first two iterations, i.e. the rank-1 and rank-2 models, cannot find the correct

solution as they are using the wrong rank constraints. Second, if the rank of the matrix

is 2 (i.e., stationary cameras), then this framework obtains stable solution in the second

iteration. This solution will not be affected in the rank-3 iteration. The reason is that

the greedy method is used to solve Eq. 3.7. When selecting the eigenvectors with three

largest eigenvalues, one of them is simply flat zero. Thus B does not change, and the

solution is the same in this iteration. Note that low rank problems can also be solved

using convex relaxation on the constraint problem [14]. However, our greedy method

on unconstrained problem is better than convex relaxation in this application. Convex

relaxation is not able to make use of the specific rank value constraint (≤ 3 in our case).

The convex relaxation uses λ to implicitly constrain the rank level, which is hard to

constrain a matrix to be lower than a specific rank value.

3.2.4 Pixel Level Labeling

The labeled trajectories from the previous step are then used to label each frame at

the pixel level (i.e. return a binary mask for a frame). In this step, each frame is

treated as an individual labeling task. First, the optical flow [51] is calculated between
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Algorithm 1 Optimization framework to solve equation (3.5)

input: Trajectory matrix φ ∈ Rk×2l, sparsity weight α.

initialization: B
(0)
init = φ, F

(0)
init = 0k×2l.

optimization:
for rc = 1 to 3 do
B

(rc)
init = B(rc−1), F

(rc)
init = F (rc−1)

repeat
update F:
(F̂ ) = argmin(‖ φ′ − F ‖2F ), s.t. ‖F‖2,0 < αk
Fg = ‖φ′‖2
Keep αK rows from φ′ with the largest value in Fg, and set the rest to zeros
update B:
(B̂) = argmin(‖ φ′′ −B ‖2F ), s.t. rank(B) = rc
[U,Σ, V ] = SV D(φ′′)
Vr = V [1 : r]
B̂ = φVrV

T
r

until halting criterion true.
F̂ = φ− B̂

end for
output: B̂, F̂ .

two consecutive frames. Then motion segments are computed using graph cuts [9] on

optical flow. The advantage of using optical flow instead of color for graph cuts is that

it is able to find independent motion regions. Thus each motion segment is a unit from

a rigid part on a moving object. After collecting the motion segments, the goal is to

label each motion segment s as f or b, where f and b denotes the label of foreground

and background.

There are two steps to label the segments. First, segments with high confidence

belonging to f and b are selected. Second, a statistical model is built based on those

segments. This model is used to label segments with low confidence.

The confidence of a segment is determined by counting the number of labeled f

and b trajectories. If a segment only has one type of trajectories (i.e. either f or b),

then it is a high confidence segment. The low confidence segments are those having no

trajectories or containing both f and b ones. Thus it is hard to determine the label by

simply counting trajectories.

To predict the labels of these low confidence segments, a statistical model is built

for f and b based on high confidence ones. First, 20% pixels are uniformly sampled
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Figure 3.3: Synthetic data. The foreground is four moving shapes, and the background
is a randomized grid (Each point is enlarged to have a better view).

on segments with high confidence. Each sampled pixel w is represented by color in

hue-saturation space (h, s), optical flow (u, v) and position on the frame (x, y). The

reason we use sampled points to build the model instead of the original trajectories is

that the sparse trajectories may not cover enough information (i.e., color and positions)

on the motion unit. Uniform sampling covering the whole segment is able to build a

richer model.

The probability of a segment si belonging to f or b is then evaluated using a kernel

density function:

P (si|c) =
1

N · |si|

N∑
i=1

∑
j∈si

κ(ej − wi), c ∈ {f, b} (3.8)

where κ(·) is the Normal kernel, N is the total number of sampled pixels, and |si| is

the pixel number of si. For every pixel j lying on si, ej denotes the vector containing

color, optical flow and position. This formula defines the probability a segment belongs

to the label of f or b. For a segment with low confidence, its label is assigned to f if

P (s|f) > P (s|b) and vice versa.

3.3 Experiments

To evaluate the performance of our algorithm, we conduct experiments on different

data sources: synthetic data, real videos from both moving and stationary cameras.

Its performance on the trajectory separation is evaluated by F -Measure, which is the

harmonic mean of recall and precision. This is a standard measurement for many
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state-of-art algorithm [11, 50]:

F =
2 · recall · precision
recall + precision

, (3.9)

where recall is the ratio of the number of correctly classified foreground trajectories

to the number of foreground trajectories in ground truth, and precision is the ratio of the

number of correctly classified foreground trajectories to the number of trajectories clas-

sified as foreground. Since our major contribution is to separate background/foreground

motions on trajectory level, thus our comparisons and analysis mainly focus on the first

step: trajectory level labeling.

3.3.1 Evaluations on Synthetic Data

Experimental settings. A grid of background points and four shapes are generated

(Figure 3.3). The homogeneous representation of each point is (X,Y, Z, 1) as its position

in the 3D world. Then the projected points (x, y) are obtained in a 2D image by


x

y

1

 = C ·



X

Y

Z

1


where C is a 3 × 4 camera projection matrix. The depth value Z in the 3D world

for foreground shapes and background grid is 10 ± 5 and 20 ± 10, respectively. The

foreground shapes move and the background grid stays still. Changing the camera

projection matrix C simulates the camera movement and generates projected images.

Two advantages of our method are demonstrated, i.e., the robustness of the group

sparsity constraint, and the insensitivity to parameter settings.

Group sparsity constraint versus sparsity constraint. We first compare the

performance between the group sparsity constraint (L2,0 norm) and traditional sparsity

constraint (L0 norm). The sparsity constraint aims to find a sparse set of nonzero

elements, which is ‖F‖0 < αk × 2l in our problem. k × 2l denotes the total number
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Figure 3.4: Comparison between group sparsity constraint (L2,0 norm) and sparsity (L0

norm) constraint. The left is synthetic data simulated with a stationary camera, and
the right is simulated with a moving camera.

of nonzero elements. It is equivalent to the total number of nonzero elements in the

group sparsity constraint. Note that the formulation with this L0 sparsity constraint is

similar to Robust PCA method [14]. The difference is that we use it at the trajectory

level instead of pixel level.

Two sets of data are generated to evaluate the performance. One is simulated with a

stationary camera, and the other is from a moving one. Foreground keeps moving in the

whole video sequence. Random noise with variance v is added to both the foreground

moving trajectories and camera projection matrix C. The performance is shown in

Figure 3.4. In the noiseless case (i.e. v = 0), the motion pattern from the foreground

is distinct from the background in the whole video sequence. Thus each element on the

foreground trajectories is different from the background element. Sparsity constraint

produces the same perfect result as group sparsity constraint. When v goes up, the

distinction of elements between foreground and background goes down. Thus some

elements from the foreground may be recognized as background. On the contrary, the

group sparsity constraint connects the elements in the neighboring frames. It treats

the elements on one trajectory as one unit. Even some elements on this trajectories

are similar to the background, the distinction along the whole trajectory is still large

from the background. As shown in the Figure 3.4, using the group sparsity constraint

is more robust than using the sparsity constraint when variance increases. In Sec. 3.3.2,
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Figure 3.5: Demonstration of dense point tracking technique. Left: feature tracking;
middle: optical flow; right: dense point tracking. Each diagram represents point corre-
spondences between frames of a hypothetical sequence. Feature tracking is long-range
but sparse. Optical Flow is dense but short-range. The dense point tracking is dense
and long-range.

we will further show the results in real videos. The visualized B̂ and F̂ matrices will

be also shown.

3.3.2 Evaluations on Real Videos

Experimental settings. We test our algorithm on publicly available videos from

various sources. One video source is provided by Sand and Teller [76] (refer this as

ST sequences). ST sequences are recorded with hand held cameras, both indoors and

outdoors, containing a variety of non-rigidly deforming objects (hands, faces and bod-

ies). It contains three video sequences (“VHand”, “VCars”, “VPerson”). They are

high resolution images with large frame-to-frame motion and significant parallax. The

average motion of a background point is 133.90 pixels for “VHand”, 67.10 pixels for

“VCars” and 90.93 pixels for “VPerson”. Another source of videos is provided from

Hopkins 155 dataset [91], which has two or three motions from indoor and outdoor

scenes. These sequences contain degenerate and non-degenerate motions, independent

and partially dependent motions, articulated and non-rigid motions. We also test our

algorithm on some typical videos for traditional background subtraction: “truck” (sta-

tionary cameras). The trajectories in these sequences were created using an off-the-shelf

dense particle tracker [86]. We will first evaluate the trajectory based labeling and then

show the performance on the the pixel level labeling results.
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Figure 3.6: Dense point tracking technique (Sundaram et al. [86]) is used to generate
long-term trajectories. The figure shows the tracked points. They are sampled by every
4 pixels.

Dense point tracking Given an input video, we first need to extract the trajec-

tories of the pixels. We use a set of trajectories of dense points as the input, referred

as dense point trajectories. Dense point tracking techniques become popular in very

recent years [76, 86]. It combines two approaches: feature tracking [56] and optical flow

[51, 10]. Feature tracking follows a sparse set of salient image points over many frames,

whereas optical flow estimates a dense motion field from one frame to the next. Dense

point tracking aims to produce motion estimates that are both spatially dense and

temporally long-range. For an image point, it needs to know where the corresponding

scene point appears in all other video frames (until the point leaves the filed of view or

becomes occluded).

The current technique of dense point tracing makes it possible to generate long-

term trajectories with a rich coverage. We use an off-the-shelf dense point tracking

tool (Sundaram et al. [86]) for all videos. To initialize the tracking process, it first

samples the pixels on the first frame. In our experiment setting, we sample pixels by

every 4 pixels. Smaller number (e.g. sampling by every 2 pixels) generates denser

trajectory set. But this is not necessary, as our algorithm can label each pixel as

background/foreground in the second stage. Figure 3.6 shows an example.

To obtain the ground truth of these videos, we manually label each frame of those

videos into a binary mask. The label tool we use here is the Human-Assisted Motion
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Figure 3.7: The Human-Assisted Motion Annotation tool by Liu et al [52]. For each
frame, we generate binary mask as the ground truth.

Annotation tool by Liu et al. [52]. The advantage of this tool is that it has a built-in

motion tracking algorithm. It can track the moving objects. By labeling the pixels

on the object contour, this tool is able to generate a binary mask for the object, and

then automatically track the contour to the next frame. When the automatic tracking

drifts, it can be fixed by manual correction. This speeds up the whole manual labeling

process. Figure 3.7 shows an example of our labeling tool interface.

Handling stationary and moving cameras. We first demonstrate that our

approach handles both stationary cameras and moving cameras automatically in a

unified framework, by using the General Rank constraint (GR) instead of the Fixed

Rank constraint (FR). We use two videos to show the difference. One is “VHand”

from a moving camera (rank(B) = 3), and the other is “truck” captured by stationary

camera (rank(B) = 2). We use the distribution of L2 norms of estimated foreground

trajectories (i.e., ‖F̂i‖2, i ∈ 1, 2, ..., k) to show how well background and foreground

is separated in our model. For a good separation result, F should be well estimated.

Thus ‖F̂i‖2 is large for foreground trajectories and small for background ones. In other

words, its distribution has an obvious difference between the foreground region and the

background region (see examples in Figure 3.8).
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Figure 3.8: ‖F̂i‖2 distribution of the GR and the FR model. Green means foreground
and blue means background. Separation means good result. Top row is from moving
camera, and bottom row is from stationary camera. The first three columns are GR−1,
GR−2 and GR−3, and the forth column is FR.

We use GR-i, i ∈ 1, 2, 3 to denote the optimization iteration on each rank value.

‖F̂i‖2 of each specific rank iteration is plotted in Figure 3.8. The GR method works

for both cases. When the rank of B is 3 (the first row of Figure 3.8), the FR model

also finds a good solution, since rank-3 perfectly fits the FR model. However, the

FR constraint fails when the rank of B is 2, where the distribution of ‖F̂i‖2 between

B and F are mixed together. On the other hand, GR−2 can handle this well, since

the data perfectly fits the constraint. On GR−3 stage, it uses the result from GR−2

as the initialization, thus the result on GR−3 still holds. The figure shows that the

distribution of ‖F̂i‖2 from the two parts has been clearly separated in the third column

of the bottom row. This experiment demonstrates that the GR model can handle more

situations than the FR model. Since in real applications it is hard to know the specific

rank value in advance, the GR model provides a more flexible way to find the right

solution.

Performance evaluation on trajectory labeling. We discussed the parameter

sensitivity between our method and RANSAC based method (RANSAC-b) in Sec. 3.3.1.
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RANSAC Best RANSAC Global Our Method

VPerson 0.923± 0.123 0.786± 0.221 0.981
th=26, p=90% th=21, p=70% α=0.3

VHand 0.976± 0.006 0.952± 0.168 0.987
th=16, p=70% th=21, p=70% α=0.3

VCars 0.995± 0.003 0.867± 0.298 0.993
th=11, p=90% th=21, p=70% α=0.3

cars2 0.893± 0.174 0.750± 0.291 0.976
th=21, p=90% th=21, p=70% α=0.3

cars5 0.992± 0.017 0.985± 0.127 0.990
th=16, p=70% th=21, p=70% α=0.3

people1 0.968± 0.097 0.932± 0.186 0.955
th=11, p=90% th=21, p=70% α=0.3

truck 0.562± 0.317 0.351± 0.537 0.975
th=21, p=70% th=21, p=70% α=0.3

Table 3.1: Quantitative results on ST video sequences (the average F -Measure with its
standard deviation, and the parameter settings). Our method provides a deterministic
solution. Thus the standard deviation is zero. RANSAC Best uses the optimal para-
meters for each video, while RANSAC Global uses a uniform setting which results in
the best average performance.

We further evaluate the parameter sensitivity in real videos. Table 3.1 shows the quan-

titative results on RANSAC-b and our method. As RANSAC based method is sensitive

to parameters, we show two types of results for RANSAC-b. One is from different opti-

mal parameter settings for each individual video sequence (refer as RANSAC-b Best),

and the other is from a uniform setting resulting in the best average performance for

all video sequences (refer as RANSAC-b Global). RANSAC-b Best has reached very

good performance, but the parameter settings for these video sequences are different

(Table 3.1). Since many practical applications need a uniform setting to handle multi-

ple videos, RANSAC-b Global is a fair way to compare, whose performance is relatively

worse. In general, our algorithm outperforms them in terms of average F -Measure,

with one parameter α = 0.3 for all videos.

We also compare our method with three state-of-art algorithms: background sub-

traction algorihm using RANSAC (RANSAC-b) [81], Generalized GPCA (GPCA) [92],



35

RANS GPCA LSA RANS Std. Ours
AC-b AC-m Sparse

VPerson 0.786 0.648 0.912 0.656 0.616 0.981

VHand 0.952 0.932 0.909 0.930 0.132 0.987

VCars 0.867 0.316 0.145 0.276 0.706 0.993

cars2 0.750 0.773 0.568 0.958 0.625 0.976

cars5 0.985 0.376 0.054 0.637 0.779 0.990

people1 0.932 0.564 0.087 0.743 0.662 0.955

truck 0.351 0.368 0.140 0.363 0.794 0.975

Table 3.2: Quantitative evaluation at trajectory level labeling. The numbers reported
here are the average value on multiple runs. The variation is not reported here. Please
refer to Table 3.1 for more information.

Local Subspace Affinity (LSA) [99] and motion segmentation using RANSAC (RANSAC-

m) [91]. RANSAC-b is a state-of-art algorithm used for background subtraction prob-

lem [81]. GPCA, LSA and RANSAC-m are motion segmentation algorithms using

subspace analysis for trajectories. The code is available with the Hopkins dataset.

When testing these methods, we use the same trajectories as for our own method. The

three motion segmentation algorithms ask for the number of regions to be given in

advance. We provide the correct number of segments n, whereas our method does not

need that. Motion segmentation methods separate trajectories into n segments. Here

we treat the segment with the largest trajectory number as the background and rest as

the foreground. Since LSA method runs very slow when using trajectories more than

5000, we randomly sample 5000 trajectories for each test video.

For RANSAC-b method, two major parameters influence the performance: projec-

tion error threshold th and consensus percentage p. Inappropriate selection of para-

meters may result in failure of finding the correct result. In addition, as RANSAC-b

randomly selects three trajectories in each round, it may end up with finding a subspace

spanned by part of foreground and background. The result it generates is not stable.

Running the algorithm multiple times may give different separation of background and

foreground, which is undesirable. In order to have a fair comparison with it, we grid

search the best parameter set over all teste videos and report the performance under
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the optimal parameters.

The quantitative results are shown in Table 3.2. The results on those video sequences

are also demonstrated here (VCars: Figure 3.9, cars2: Figure 3.10, cars5: Figure 3.11,

people1: Figure 3.12, VHand: Figure 3.13, truck: Figure 3.14, VPerson: Figure 3.15).

Our method works well for these videos. Take “cars5 ” for example. GPCA and

LSA misclassify some trajectories. RANSAC-b randomly selects three trajectories to

build the scene motion. On this frame, the three random trajectories all lie in the

middle region. The background model built from these 3 trajectories do not cover the

left and right region of the scene, thus the left and right regions are misclassified as

foreground. RANSAC-m produces similar behavior to RANSAC-b. Std. sparse method

does not have any group constraint in the consecutive frames, thus some trajectories

are classified as foreground in one frame, and classified as background in the next

frame. Note that the quantitative results are obtained by averaging on all frames over

50 iterations. Figure 3.11 only shows performance on one frame, which may not reflect

the overall performance shown in Tab. 3.2.

Figure 3.9: Performance comparison on video sequence “VCars”
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Figure 3.10: Performance comparison on video sequence “cars2”

Figure 3.11: Performance comparison on video sequence “cars5”

Figure 3.12: Performance comparison on video sequence “people1”
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Figure 3.13: Performance comparison on video sequence “VHand”

Figure 3.14: Performance comparison on video sequence “truck”

Figure 3.15: Performance comparison on video sequence “VPerson”
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Figure 3.16: Visualization of the computed B̂ and F̂ matrices. Left: ground truth;
middle: the result from L0; right: the result from our method. As the computed B̂
and F̂ are exactly complimentary to each other, we show them in one matrix and
use different color to denote the elements in B̂ and F̂ . Green color shows the non-
zero elements in F̂ denoting the foreground elements; purple color shows the non-zero
elements in B̂ denoting the background elements. The size of the matrices is 1644
by 60. To have the best visualization, all foreground trajectories and 20% randomly
selected background trajectories and shown here. They are also re-scaled to fit the
space. Each row denotes one trajectory in the video, where each trajectory contains
the x,y positions over 30 frames. In our method, the trajectories are classified either
foreground or background. In L0 methods, the discovered foreground elements scatter
over the whole matrix.

Group sparsity constraint versus sparsity constraint in real videos. Our

method works better than the regular sparsity method (refer to L0 in this dissertation).

Our method finds the correct region (on the person) as the foreground, while the L0

finds not only the region on the person, but also part of the scene as the foreground. As

discussed in Sec. 3.3.1, our method uses the group information to make it more robust

to noise. On some frames in this “VPerson” video, the foreground and background

motions are very similar. L0 cannot differentiate the motions on such frames, since it is

hard to classify the motions on one frame without considering the neighboring frames.

Our method treats all frames on the trajectory as a whole unit. Even when the motions

between foreground and background on some frames are not easy to differentiate, the

whole foreground trajectory can still stand out of the scene motions. The visualization

on the computed B̂ and F̂ matrices for “VPerson” video in Figure 3.16 also confirms our

assumption. Our method returns a whole trajectory as either foreground or background.

The foreground regions calculated from the L0 method distributes the whole matrix.
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It is able to correctly locate part of the foreground motions, but it also finds some

elements from the background as the foreground.

RANSAC randomly selects three trajectories to build the scene motion. In this

figure, the three random trajectories all lie in the left region. Since the video contains

3D structure with large depth, the motion between the left side of the scene and the

right side is different. In RANSAC method, the scene motion model based on the 3

trajectories from the left side does not cover the right side. Thus it only finds the

background on the left side of the region and classify the right side of the scene as

foreground.
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Figure 3.17: The influence of trajectory length l. Left: the performance change under
l; right: the trajectory number change under l. When l increases, the performance
increases as well, while the trajectory number drops constantly. A good tradeoff occurs
around l = 10.

The influence of trajectory length. In our method, the trajectories are tracked

over l frames. Longer trajectory length carries more information for foreground/background

separation, thus it leads to higher performance. But many trajectories cannot be

tracked for many frames, due to lost tracking, falling out of the scene or occlusion
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Figure 3.18: Demonstration of the influence of trajectory length l on a specific frame.
When the trajectory length l goes up, the performance increases while the trajectory
number drops.

by other objects. Using a long trajectory length number makes low coverage of the

scene. Thus there is a tradeoff between high performance and trajectory coverage.

We conduct an experiment to show the influence of trajectory length on both per-

formance and trajectory coverage. The result is shown in Figure 3.17. When the

trajectory length l goes up, the performance increases. It reaches high and stable per-

formance after l = 9. The trajectory number drops constantly along the trajectory

length change. The separation results using different l is also shown in one specific

frame 9 in Figure 3.18. In the first image (l = 2), the separation result is totaly wrong.

This is because the motion between only 2 frames does not carry much information to

separate foreground and background motions in this video. When l increase from l = 3

to l = 7, the accuracy of foreground becomes better and better. When l = 9, more

than 90% trajectories are classified correctly. When l increases from l = 10 to l = 45,

the separation performance remains good, but the most trajectories are gone. When

l = 10, it is a good tradeoff between performance and trajectory coverage.
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Figure 3.19: Performance on “VPerson”, a video sequence under moving camera. From
left to right: top row: one frame from the original video sequence, the ground truth
we manually labeled, result on RANSAC-b; bottom row: MoG, Standard Sparsity
discussed in the previous section, and our method. The performance of RANSAC-b is
conducted when it reaches its optimal performance in the trajectory level separation
step.

Performance evaluation on pixel level labeling. We also evaluate the per-

formance at the pixel level to compare four methods: RANSAC-b [81], MoG [85], L0

constraint and the proposed method. GPCA, LSA, RANSAC-m are not evaluated in

this part, since these three algorithms do not provide pixel level labeling. Figure 3.19

shows the result on “VPerson”, a video sequence under moving camera.

MoG works well for stationary cameras, but has unsatisfied performance in moving

cameras (e.g. “VPerson”). This is because a statistical model of MoG is built on pixels

of fixed positions over multiple frames, but background objects do not stay in fixed

positions under moving cameras. RANSAC based method can accurately label pixels

if the trajectories are well classified (e.g., “VPerson”). However, it is also possible

to build a wrong background subspace because RANSAC method is not stable and

sensitive to parameter selection. Our method can robustly handle these diverse types

of data, due to our generalized low rank constraint and group sparsity constraint.

As discussed in the previous section, there is no guarantee that RANSAC-b generates

stable results on the trajectory level separation. This is due to the fact of the random
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sampling of three trajectories in the initialization process. When the trajectory level

separation step of RANSAC-b fails to generate satisfied results, the result on pixel level

labeling is bad as well. In this experiment, since we want to focus on the pixel level

labeling performance, we take the optimal result on the trajectory level labeling of

RANSAC-b. Note that the pixel level result of our method is better than the one from

RANSAC on “VPerson” video (Figure 3.19). The region around head is well segmented

in our method with little background scene. This is because the pixel labeling in our

approach treats each rigid moving part as a single unit (i.e. motion segments on optical

flow). Thus the head region is well separated from the scene.

One limitation of our method is that it classifies the shadow as part of the foreground

(e.g., on the left side of the person in “VPerson” video). This could be further refined

by using shadow detection/removal techniques [50].

Discussions One limitation of our algorithm is that it takes the input from the

dense point tracker. So the performance of our algorithm really depends on the qualify

of dense point tracker. The dense point tracking is still an open research area. It fails

to track the objects when it moves very fast. Figure 3.20 shows an example of a squirrel

jumping from a table. Since the action is fast, the dense point tracker fails to track it.

Without the trajectories on the object, our algorithm is not able to give a good result

on this.

Another limitation is that our algorithm is not able to handle missing elements in

the trajectory matrix. The algorithm needs to take the trajectories that last for the

entire l frames. Trajectories that do not last for the whole l frames are discarded.

Figure 3.21 shows an example of this. The area marked in yellow square shows the

region of missing trajectories. the left frame shows the trajectories original from the

dense point tracker. The yellow region has a lot of trajectories. The right frame shows

the result from our algorithm. The trajectories in the lower region are lost due to

occlusion when the person is walking. The trajectories in the right region are lost due

to the fact they are out of the scene. The trajectories in these regions do not last the

entire l frames, so they are discarded and not shown in the frame. To overcome this

problem, one solution would be to further introduce some techniques to handle missing
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Figure 3.20: The dense point tracking result from a fast moving object: a jumping
squirrel. Since the squirrel is moving very fast, the dense point tracker is not able to
capture the movement.

Figure 3.21: The input of our algorithm is the trajectories with full length. The tra-
jectories that do not last for the whole l frames are discarded. The area with yellow
square shows the region of missing trajectories. Left: the original tracked trajectories;
Right: the classified trajectories from our algorithm.

data, for example, matrix factorization. And the combine the strategy of handling

missing data with our framework to cover the regions.

3.4 Summary

This dissertation proposed an effective approach to do salient motion detection for

complex videos by decomposing the motion trajectory matrix into a low rank one and

a group sparsity one. Then the information from these trajectories is used to further

label foreground at the pixel level.

The proposed approach is a new algorithm to detect salient motions using low rank
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and group sparsity constraints. By using the low rank constraint, the algorithm is able

to handle both static and moving cameras. This gives us a unified algorithm to handle

both stationary cameras and moving cameras. By using the group sparsity constraint, it

brings the points on the consecutive frames together. Rather than analyzing individual

points in the video sequence, the group constraint makes the algorithm robust to random

noise. The algorithm is also relatively insensitive to parameter settings.

The trajectories recognized by the above model can be further used to label a frame

into foreground and background at the pixel level. Motion segments on a video sequence

are generated using fairly standard techniques (i.e. optical flow and graph cuts). Then

the color and motion information gathered from the trajectories is employed to classify

each motion segment as foreground or background.

Extensive experiments are conducted on both synthetic data and real videos to show

the benefits of our model. The low rank and group sparsity constraints make the model

robust to noise and handle diverse types of videos.

Our method depends on trajectory-tracking technique, which is also an active re-

search area in computer vision. When the tracking technique fails, our method may

not work well. A robust way is to build the tracking errors into the optimization for-

mulation, so it is able to handle the tracking errors and detect salient motions at the

same time. This is one of our future directions.
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Chapter 4

Group Activity Analysis

4.1 Introduction

Group activity analysis plays an important role in video surveillance and smart camera

systems. Various activities have been studied, including restricted-area access detection

[47], car counting [29], detection of people carrying cases [32], abandoned objects [83],

group activity detection [118, 66], social network modeling[104], monitoring vehicles

[103], scene analysis [87] and so on. This dissertation focuses on modeling events in

human group activities, which is a very important application for video surveillance.

Figure 4.1 shows two sample frames. (a) shows a group of people fighting in the street,

and (b) shows people running away from the scenes.

(a) (b)

Fighting Panic

Figure 4.1: Abnormal event examples. (a) a group of people fighting; (b) People are
panic, trying to run away from the scene.

We propose a new method to model group activities. We represent group activities

by learning relationships between the current behavior state of a subject and its actions.

The goal is to explore the reasons why people take different actions under different
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(a) (b)

Figure 4.2: Interaction energy potentials of two sample frames. Green arrow is the
velocity; round dot denotes energy values. Red dot shows a low energy value and blue
shows a high value.

situations [20].

In the real world, people are driven by their goals. They take into account of the

environment as well as the influence of other people. We define an interaction energy

potential function to represent the current state of a subject based on the position-

s/velocities of a subject itself as well as its neighbors. Figure 4.2 shows an example

of interaction energy potentials and velocities. Section 4.2 gives the details of the def-

inition. Social behaviors are captured by the relationship between interaction energy

potential and its action, which is then used to describe social behaviors. The feature

patterns indicate a group activity. The Interaction Energy Potentials are further rep-

resented by Bag-of-Words features and trained through machine learning algorithms.

Our method is validated on two datasets UMN [2] and BEHAVE [1]. Extensive

experiments show that our method is more effective to model the behaviors in group

activities, than the state-of-art algorithms.

The main contribution of the proposed approach is a new feature representa-

tion method using Interaction Energy Potential to model the group behaviors. This

approach has three merits:

1. The Interaction Energy Potential is proposed to model the relationship among a

group of people;
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2. The relationship between the current state of a subject and the corresponding

reaction is explored to model the group behavior patterns;

3. This method does not rely on human detection or segmentation technique, so

it is more robust to the errors that are introduced by detectoin/segmentation

techniques.

In the remainder of this chapter, the major method will be presented in Section 4.2,

including the salient points detection and tracking in Section 4.2.2, Interaction Energy

Potential formulation in Section 4.2.3, and feature representation and modeling in Sec-

tion 4.2.4. The experimental results are shown in Section 4.3. The algorithm is tested

on two datasets: UMN and BEHAVE. Comparing with the state-of-art methods, our

method are more effective. Section 4.4 discuss the summary and future work.

4.2 Methodology

4.2.1 Overview

Here we propose a new method to model group interactions using interaction energy

potentials. Our method takes a raw video sequence as input, and then label each video

clip as normal or abnormal event. The system framework is summarized in Figure 4.3.

First, salient moving points on the foreground moving regions are extracted. Second, an

interaction energy potential is calculated for each point. Third, features are represented

by relationships among interaction energy potentials and corresponding actions with a

coding scheme. Finally, SVM is used to model the features.

4.2.2 Salient Point Detection and Tracking

The ideal case for human activity analysis is to track all the subjects and estimate

their positions and velocities, but human detection and tracking is still a challenging

problem. Instead we use local salient regions (local interest points) to represent subjects

in a scene. The movements of subjects can be represented by the movements of salient
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Normal / 
Abnormal?

a) Input Video

b) Salient Point 
Detection and 
Tracking

c) Interaction Energy 
Potential Calculations

d) Feature 
Representation

e) SVM

f) Results

Figure 4.3: Flow chart: given an input clip, salient detection and tracking is performed
first. Then Interaction Energy Potential is calculated on the tracked points. After
wrapping up with feature representation, SVM is used to label each event.

moving points associated with the subjects, and interactions among the subjects can

be implicitly embodied in the interactions among salient points. We use the method

proposed in the previous chapter to detect the local salient points. Since the videos

we use here are all under stationary cameras, so salient points we obtain are of good

quality. The other way to generate the points are using [49] to detect the local spatio-

temporal interest points (STIP), and then use the KLT tracker [56, 61] to track interest

points. Figure 4.2 shows an example of salient point detection and tracking.

For each tracked points pi, we record its positions {x0
i ...x

t
i...}, where each xt is a 2D

vector, and its velocity vti at time t is calculated by

vti =
xt+Ti − xti

T
(4.1)

where T is the time interval. A point pi is then modeled as pi = (xti,v
t
i). Besides
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1

2

3

4

5

Figure 4.4: Toy examples. Five subjects, with their current velocities. Color denotes
energy values. Red color denotes a low interaction energy potential value, while yellow
denotes a high energy value. Taking perspective of subject 1, it has interactions with
subject 2 and 3; ignores subject 4 subject and moves away from subject 5.

the self-representation of velocity, we also take into account of neighbor salient points,

which implicitly represent interactions among subjects in group activities. Interactions

among subjects are modeled by interaction energy potentials, which is addressed in the

following section.

4.2.3 Interaction Energy Potentials

Given a set of salient points S = {pi} (i = 1...n), energy potential Ei of pi is calculated

based on positions and velocities of its neighbor points. The calculation of the inter-

action energy potentials is inspired by the idea of social behaviors[70]: assuming that

people are aware of the positions and velocities of other people at time t. Thus we can

make a reasonable assumption that people can predict the movement of other people

and have a general estimation about whether they would meet in the near future. This

is also how people walk in the real world.

We first consider two subjects. Given two subjects si and sj in a scene, we are

now thinking from the perspective of si, and treating sj as its neighbor. We define the

current time as t = 0 and use xi = x0
i for simplicity. If si proceeds with velocity vi,

then it expects to have a distance d2ij(t) from sj at time t.
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d2ij(t) = ||xi + tvi − (xj + tvj)||2 (4.2)

Minimal distance dij occurs at the time of closest point t∗, where

t∗ = max{0, arg min d2ij(t)} (4.3)

where arg min d2ij(t) can be obtained by setting the derivative of dij to zero with

respect to time t. Then we obtain t∗ as follows:

t∗ = max{0,−(xi − xj) · (vi − vj)
′

||vi − vj ||2
} (4.4)

By substituting t into Eq. 4.2, we can obtain the minimum distance d∗2ij between

subjects i and j as

d∗2ij = d2ij(t
∗).

d∗2ij defines how far two subjects will meet based on the current velocities. If d∗2ij is

smaller than a distance threshold dc, a close-distance meet would happen in the near

future. If pj has a close-distance from pi, pj is very likely to draw pi’s attention at this

moment. We therefore build an interaction energy potential function based on their

distance

Eij = wcijw
φ
ijexp(−

d2ij(t)

2σ2d
) (4.5)

wcij =

 1 d∗2ij < dc

0 otherwise
(4.6)

wφij =

 1 φij < φview

0 otherwise
(4.7)

where σd is the radius of influence of pj . The closer of pj , the higher attention would

pi have. φ is the current angular displacement of pj from the perspective of pi. φview is

the field-of-view, which is the angle displacement between the current moving direction
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and the neighbor point direction. As people only see things in the front, φview controls

how people see things. The Interaction energy potential Eij describes the influence

from pj . Eij is high when they are close, and it is minimal as their distance goes to

infinity.

For the case of multiple subjects, the influence of all the other subjects can be

modeled as an average of energy potential Eik. The overall interaction energy for

subject pi is given by

Ei =
1

N

∑
k 6=i,Eik>0

Eik (4.8)

whereN is the number of non-zero neighbor points. The Interaction energy potential

Ei describes the current behavior state of subject pi. Figure 4.4 shows an example of

5 points with their interaction energy potentials. Now we are taking perspective of

subject p1, with 4 neighboring points in the frame. p1 is moving towards p2 and p3. As

they are going to meet based on the current velocities, p2 and p3 have a high influence

on p1. p4 is in the back, so p1 does not see it. p5 moves further away from p1, so it

does not draw p1’s attention at this moment. The total interaction energy potential

of p1 comes from p2 and p3. Next we take perspective of p5. It moves away from all

the other points, so its neighbors would not influence it at this time. It results in a

low interaction energy value for p5. The Energy potential is calculated for each subject

from its own view. Then energy values are denoted by color in the figure. Yellow dot

in Figure 4.4 shows a high energy value, while red dot shows a low energy value. In

our method, E is calculated for each point. Figure 4.2 shows an example of detected

points and corresponding interaction energy potentials.

4.2.4 Features Representation and Modeling

The Interaction energy potential reflects the current interaction with the surrounding

of a person. Different from [70], our goal is to find reasons why people take actions and

what situations make them take actions. This can be modeled by relationships between

current states (interaction energy potential E) and actions (velocities v).
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

Figure 4.5: Two events. (a)group meeting event; (b) energy E of meeting; (c) velocity
magnitude vm of meeting; (d) velocity direction changing ∆vd of meeting; (e) velocity
magnitude changing ∆vd of meeting; (f)fighting event; (g) energy E of fighting; (h)
velocity magnitude vm of fighting; (i) velocity direction changing ∆vd of fighting; (j)
velocity magnitude changing ∆vd of fighting.
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Figure 4.5 shows an example of the relationship between energy changing and veloc-

ity changing over time. In Figure 4.5, (a) is a group of people meeting. Color lines show

energy changing through time. We choose one point and its trajectory for analysis. (b)

shows its energy changing over time. As people move closer, the energy increases slow-

ly. At the same time, vm, ∆vd and ∆vm remain stable. They are shown in (c)(d)(e)

respectively. This is a common event in the real world. People have their desires to

meet, and they try to remain at a constant speed and direction. In contrast, (f) shows a

group of people fighting. At time 10, ∆vd changes dramatically (shown in (i)) even with

low interaction energy potential (shown in (g)). This indicates an uncommon pattern.

A point changes its moving direction dramatically without an obvious reason.

Each local patch around the salient points is represented by Interaction energy

potentials and optical flows. Then standard bag-of-words method is used. The bag-of-

words model (BoW model) is a histogram representation based on independent features.

It represents an image or a video as an orderless collection of local features. It has been

widely used in image classification/retrieval and action analysis [93, 94, 109]. A bag

of visual words is a sparse vector of occurrence counts of a vocabulary of local im-

age features. There are two basic steps for BoW model: feature representation and

codebook generation. Here Interaction Energy Potential is used as the feature repre-

sentation. Then these feature vectors are converted to “codewords” (analogy to words

in text documents), which also produces a “codebook” (analogy to a word dictionary).

A codeword can be considered as a representative of several similar patches. Here we

uses k-means clustering to generate the clusters. Then each patch in an image/video

is mapped to a certain codeword through the clustering process and the image can be

represented by the histogram of the codewords.

Soft assignment [30] is used here to generate the codebook. Soft assignment is a

technique for representing images/videos as histograms by flexible assignment of image

descriptors to a visual vocabulary. It has several advantages over hard assignment. Hard

assignment associates each descriptor vector with the nearest visual word of a given

dictionary. Whilst this provides with a reasonable expressive power, a single descriptor

belongs to only one closest word in a dictionary. This yields a high quantization error.
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Soft assignment mitigates this effect by allowing soft contribution of each descriptor

to its closest words in a dictionary. After the BoW representation, each video clip is

represented by a feature vector. Then we use SVM [16] to build a model and label each

video clip.

The major computation in our algorithm is the calculation of interaction energy

potential for each tracked points. For each tracked point, the value of IEP is determined

by checking every other point. Thus the overall time complexity is O(k2), where k is

the number of tracked salient points in our framework. The number of salient points

for each video sequence is not large. It is in the scale of a few hundred.

4.3 Experiments

Figure 4.6: The UMN Dataset: people walking in a park.

Figure 4.7: The UMN Dataset: people running away from the park.
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Figure 4.8: Performance on the UMN dataset.

To evaluate the performance of our algorithm, we conduct experiments on two datasets:

UMN dataset [2] and BEHAVE dataset [1]. Details are shown in the following sections.

Method Area Under ROC

Interaction Energy Potential 0.9795± 0.0144

SFM [60] 0.9468± 0.0146

Optical Flow 0.8317± 0.0138

Table 4.1: Quantitative results on the UMN dataset.

4.3.1 The UMN Dataset

This dataset is collected from University of Minnesota [2], which contains videos of 11

different scenarios of an escape event. The videos are shot in 3 different scenes, including

both indoor and outdoor. Each video clip starts with an initial part of normal behaviors

and ends with sequences of abnormal behaviors. Figure 4.6 shows some sample frames

from a normal event. Figure 4.7 shows some sample frames from an event with all

people running away from the scene. Scenes in this dataset are crowded, with about 20

people walking around. The videos are chopped into 765 clips. Each clip has 10 frames,

containing either normal or abnormal event. Our job is to find the abnormal events,

and label each clip as a normal/abnormal event. To obtain a reliable result, we random

select 5 scenarios for training, and 6 for testing. Then the average and variance of the

performance are reported.

We take optical flow features as the baseline, and also compare with Social Force [60],

a state of art algorithm for group event analysis. Figure 4.8 and Table 4.1 reports the
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experimental results. The results show that our algorithm is competitive with these

state-of-art methods.

4.3.2 The BEHAVE Dataset

To further demonstrate the effectiveness of our method, we conduct experiments on

another dataset: the BEHAVE Dataset. We collect an activity dataset from the BE-

HAVE dataset [1]. The BEHAVE dataset has many complex group activities, including

meeting, splitting up, standing, walking together, ignoring each other, fighting, escap-

ing as well as running. Scenarios contain various number of participants. The dataset

consists of 50 clips of fighting events, and 271 normal events. All the activities in this

dataset are common in the real world. The scene is moderately crowded. The length

of tracked salient points are 27.81 frames in average. Figure 4.9 shows the frames from

two normal events: two groups of people are passing by each other, and two groups of

people are walking towards each other and meeting. Figure 4.10 shows the frames from

two fighting scenes.

Figure 4.9: The BEHAVE dataset: samples from the normal events. Left: two groups
of people passing by; Right: two groups of people meeting.
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Figure 4.10: The BEHAVE dataset: people fighting on the street.
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Figure 4.11: Results on BEHAVE dataset. Comparison of our method (green line) with
Social Force [60] and Optical Flow.

Method Area Under ROC

Interaction Energy Potential 0.9822± 0.0034

SFM [60] 0.9246± 0.0041

Optical Flow 0.9080± 0.0072

Table 4.2: Quantitative results on the BEHAVE dataset.

Finally, we compare our method with the optical flow based method and Mehran et

al. ’s method [60]. Figure 4.11 and Table 4.2 show our results comparing to these two

methods. It shows that our Interaction Energy Potential does a better job to represent

events in such complex group activities. It comes from the fact that our feature does

not only consider the velocity distribution, but also utilizes the interaction among a

group, which is able to improve the performance.

Discussions One of the limitations of our algorithm is that it is context dependent.
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This is due to the fact that the group behaviors can be very different in many scenarios.

For example, the events in an indoor scene like airport or bank are different from an

outdoor field like soccer field. Figure 4.12 shows two examples. On the soccer field,

running fast, chasing another player or scrambling for the ball are quite common. But

this can be treated as a suspicious event in an airport, bank or subway. Since the

definition of events is dependent on different locations, the model needs to be trained

accordingly. The model used in different environment is context dependent. However,

since our algorithm is designed for surveillance cameras that are usually mounted in

a building or mounting structure for a long time, training a model should be only a

one-time thing. One camera does not need to cover all the scenarios. In the future,

if there are cases where the cameras need to be moved into different scenes, we can

also make our model context aware. The basic idea is to combine a scene classification

method into our framework. It can be done by combining scene features (static image

features) into our model, or train a hierarchy model with a built-in scene classifier. In

doing so, our model can carry both the scene information and the event modeling based

on different events. The model can first detect the scene environment, and then use the

corresponding knowledge from this scene environment.

Another limitation of this algorithm is when the camera position changes, the para-

meters need to be adjusted. Currently in our model, the parameters are based on the

datasets where the cameras are mounted in a relatively high building. The current

distance and the comfort distance are learnt accordingly. However, if the camera is

mounted from a high-rise building as shown in Figure 4.13, the parameters need to be

adjusted, since the distance setting is different. One solution to overcome this limita-

tion is to learn the parameters in world coordinates. Then the distances in the world

coordinates reflect the real distance that people are comfortable. This is more generic.

When a camera is mounted, the image position is first converted to world positions,

so the parameters do not need to be re-trained. This decouples the problem into a

one-time parameter learning and camera calibration problem.



60

Figure 4.12: The definition of abnormal events is different depending on the scenarios.
Chasing in a soccer field is common, but in an indoor scene like subway, it can be an
abnormal event. The variety of abnormal events makes our model context dependent.
Left: a subway station; Right: a soccer field.

4.4 Summary

We proposed a method to model group activities. The proposed algorithm explored the

reasons why people take actions and what situations make people take actions. The re-

lationships between the current behavior states and actions indicate normal/abnormal

patterns. Pedestrians’ environment is modeled by an interaction energy potential func-

tion. Different group activities are indicated in uncommon energy-velocity patterns.

Our method does not depend on human detection or tracking algorithm. We conduct-

ed the experiments on the UMN dataset and the BEHAVE dataset. Results showed the

effectiveness of our method, and it is more competitive with the state-of-art methods.

One future direction would be exploring more on the spatial information. In our

approach, Bag-of-Words (BoW) model is used for the final feature representation. It

represents an image as an orderless collection of local features. Though it has shown

impressive levels of performance, it discards the spatial relationships of local features.

In our method, the spatial information within each cropped window is implicitly con-

sidered. But the spatial layout among the cropped windows are not considered, due to

the orderless Bag-of-Words feature representation. The spatial relationships between

local image features are important in the sense that they provide a kind of ‘linkage’

information between independent image features. This will help us better understand
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Figure 4.13: Street scene from a bird-of-view camera mounted in a high-rise building.

how the objects in the scenes are related to each other. To model complex group ac-

tivities, the spatial relationships among the local areas can be strong signals. This

can potentially improve the performance of group activities. A popular way to model

spatial relationship is the Spatial Pyramid Match model (SPM) model. It works by

placing a sequence of increasingly coarser grids over the image and taking a weighted

sum of the number of matches that occur at each scale. Feature matches from finer

scales are given more weight. Applying the SPM model to our feature representation

is one of our future work.
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Chapter 5

Conclusions

This dissertation aims to address two challenging problems in group activity analysis:

various camera motions and feature modeling of group activity analysis. To address

the first problem, we proposed a salient motion detection method to handle various

camera motions. Given a video sequence under either stationary or moving cameras,

the algorithm is able to detect the moving areas from the background. The general idea

of this method comes from two “sparsity” observations. The motions of foreground

moving objects satisfies a group sparsity constraint. At the same time, the motion of

the background objects satisfies a low rank constraint under an orthographic cameras.

Using these constraints, the salient motion detection problem is formulated as a matrix

decomposition problem. Experiments are conducted on various types of data. Our

algorithm performs better than the state-of-art algorithms. To effectively model the

motions of group behaviors, a new feature representation is proposed. The interaction

energy potential proposed in this feature is able to represent interactions among groups

of people. The algorithm is tested on two datasets UMN [2] and BEHAVE [1]. Results

show that our feature presentation is more effective comparing to other state-of-art

methods.

There are some future directions to pursue toward the goal of group activity analysis.

First, the salient motion detection method depends on trajectory-tracking technique,

which is also an active research area in computer vision. When the tracking technique

fails, our method may not work well. A robust way is to build the tracking errors

into the optimization formulation, so it is able to handle the tracking errors and detect

salient motions at the same time. This is one of our future directions.

Second, more group information can be applied to the salient motion detection
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model. The group information used in our algorithm is the neighboring information

along a tracked point. We call it temporal group information. Another strong group

information is the neighboring information in spatial displacement. For example, a

point on a car’s window and a point on this car’s roof should have very similar motion

movements. This gives us further constraints for the foreground regions. How to

incorporate the spatial group information into our formula is also interesting.

Third, more spatial information can be incorporated into the features. In our

method, each cropped window incorporates the spatial information. But the spatial

information among those windows is not considered, which is an important signal for

complex group activities. We believe this can potentially improve the performance.

Fourth, we live in a world with a lot of data. The current datasets we deal with

only contain a few categories with several hundreds of videos. How to do group activity

analysis in huge datasets is a very challenging yet interesting problem. This is one of

our future directions.
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