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This dissertation comprises three essays on financial economics and econometrics. The 

first essay outlines and expands upon further testing results from Bhardwaj, Corradi and 

Swanson (BCS: 2008) and Corradi and Swanson (2011). In particular, specification tests 

in the spirit of the conditional Kolmogorov test of Andrews (1997) that rely on block 

bootstrap resampling methods are first discussed. We then broaden our discussion from 

single process specification testing to multiple process model selection by discussing how 

to construct predictive densities and how to compare the accuracy of predictive densities 

derived from alternative (possibly misspecified) diffusion models. In particular, we 

generalize simulation steps outlined in Cai and Swanson (2011) to multifactor models 

where the number of latent variables is larger than three. In the second essay, we begin 

by discussing important developments in volatility modeling, with a focus on time 

varying and stochastic volatility as well as the "model free" estimation of volatility via 

the use of so-called realized volatility, and variants thereof called realized measures. In 

an empirical investigation, we use realized measures to investigate the role of “small” and 

“large” jumps in the realized variation of stock price returns and show that jumps do 
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matter in the relative contribution to the total variation of the process, when examining 

individual stock returns, as well as market indices. The third essay examines the 

predictive content of a variety of realized measures of jump power variations, all formed 

on the basis of power transformations of instantaneous returns. Our prediction involves 

estimating members of the linear and nonlinear extended Heterogeneous Autoregressive 

of the Realized Volatility (HAR-RV) class of models, using S&P 500 futures data as well 

as stocks in the Dow 30, for the period 1993-2009. Our findings suggest that past "large" 

jump power variations helpless in the prediction of future realized volatility, than past 

"small" jump power variations. Our empirical findings also suggest that past realized 

signed jump power variations, which have not previously been examined in this literature, 

are strongly correlated with future volatility. 
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Chapter 1

Introduction

This dissertation considers the speci�cation tests of di¤usion processes, the measure-

ment and forecast of volatility in the presence of stochastic volatility and jumps.

The technique of using densities and conditional distributions to carry out consis-

tent speci�cation testing and model selection amongst multiple di¤usion processes

have received considerable attention from both �nancial theoreticians and empirical

econometricians over the last two decades. One reason for this interest is that correct

speci�cation of di¤usion models describing dynamics of �nancial assets is crucial for

many areas in �nance including equity and option pricing, term structure modeling,

and risk management, for example. In the second chapter, we discuss advances to this

literature introduced by Corradi and Swanson (2005), who compare the cumulative

distribution (marginal or joint) implied by a hypothesized null model with corre-

sponding empirical distributions of observed data. We also outline and expand upon

further testing results from Bhardwaj, Corradi and Swanson (BCS: 2008) and Corradi

and Swanson (2011). In particular, parametric speci�cation tests in the spirit of the

conditional Kolmogorov test of Andrews (1997) that rely on block bootstrap resam-

pling methods in order to construct test critical values are �rst discussed. Thereafter,

extensions due to BCS (2008) for cases where the functional form of the conditional

density is unknown are introduced, and related continuous time simulation methods

are introduced. Finally, we broaden our discussion from single process speci�cation

testing to multiple process model selection by discussing how to construct predic-

tive densities and how to compare the accuracy of predictive densities derived from

alternative (possibly misspeci�ed) di¤usion models. In particular, we generalize sim-

ulation Steps outlined in Cai and Swanson (2011) to multifactor models where the
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number of latent variables is larger than three. These �nal tests can be thought of as

continuous time generalizations of the discrete time �reality check�test statistics of

White (2000), which are widely used in empirical �nance (see e.g. Sullivan, Timmer-

mann and White (1999, 2001)). We �nish the chapter with an empirical illustration

of model selection amongst alternative short term interest rate models.

In the third chapter, we begin by surveying models of volatility, both discrete

and continuous, and then we summarize some selected empirical �ndings from the

literature. In particular, in the �rst sections of this chapter, we discuss important

developments in volatility models, with focus on time varying and stochastic volatil-

ity as well as nonparametric volatility estimation. The models discussed share the

common feature that volatilities are unobserved, and belong to the class of miss-

ing variables. We then provide empirical evidence on "small" and "large" jumps

from the perspective of their contribution to overall realized variation, using high

frequency price return data on 25 stocks in the DOW 30. Our "small" and "large"

jump variations are constructed at three truncation levels, using extant methodology

of Barndor¤-Nielsen and Shephard (2006), Andersen, Bollerslev and Diebold (2007)

and Aït-Sahalia and Jacod (2009a,b). Evidence of jumps is found in around 22.8%

of the days during the 1993-2000 period, much higher than the corresponding �gure

of 9.4% during the 2001-2008 period. While the overall role of jumps is lessening, the

role of large jumps has not decreased, and indeed, the relative role of large jumps, as

a proportion of overall jumps has actually increased in the 2000s.

Volatility predictability is important in numerous areas of �nancial econometrics

ranging from the pricing of volatility-based derivative products to asset management.

In light of this, a number of recent papers have addressed volatility predictabil-

ity, some from the perspective of the usefulness of jumps in forecasting volatility.

Key papers in this area of research include Andersen, Bollerslev, Diebold and Labys

(2003), Andersen, Bollerslev and Diebold (2007), Barndo¤, Kinnebrock, and Shep-



3

hard (2010), Corsi (2004), Corsi, Pirino and Reno (2008), Patton and Shephard

(2011), and the references cited therein. In the fourth chapter, we examine the pre-

dictive content of a variety of realized measures of jump power variations, all formed

on the basis of power transformations of instantaneous returns (i.e., jrtjq), as �rst

discussed in Ding, Granger and Engle (1993) and Ding and Granger (1996). More

speci�cally, we consider jump power variations with 0 � q � 6; and construct a

variety of estimators of jump risk, including upside and downside risk, jump asym-

metry (i.e., realized signed jump power variation), and truncated jump measures. Our

prediction experiments use high frequency price returns constructed using S&P 500

futures data as well as stocks in the Dow 30, for the period 1993-2009 period; and our

empirical implementation involves estimating members of the linear and nonlinear

extended Heterogeneous Autoregressive of the Realized Volatility (HAR-RV) class of

models. Our �ndings suggest that past "large" jump power variations help less in

the prediction of future realized volatility, than past "small" jump power variations.

This in turn suggests the "larger" jumps might help less in the prediction of future

realized volatility than "smaller" jumps. Our empirical �ndings also suggest that past

realized signed jump power variations, which have not previously been examined in

this literature, are strongly correlated with future volatility, and that past downside

jump variations matter in prediction. Finally, incorporation of downside and upside

jump power variations does improve predictability, albeit to a limited extent. Over-

all, our �ndings are consistent with ABD (2007) in the concluding that continuous

components dominate, when predicting volatility.
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Chapter 2

Density and Conditional Distribution Based

Speci�cation Analysis

2.1 Introduction

The last three decades have provided a unique opportunity to observe numerous in-

teresting developments in �nance, �nancial econometrics and statistics. For example,

although starting as a narrow sub-�eld, �nancial econometrics has recently trans-

formed itself into an important discipline, equipping �nancial economic researchers

and industry practitioners with immensely helpful tools for estimation, testing and

forecasting. One of these developments has involved the development of �state of the

art�consistent speci�cation tests for continuous time models, including not only the

geometric Brownian motion process used to describe the dynamics of asset returns

(Merton (1973)), but also a myriad of other di¤usion models used in �nance, such

as the Ornstein-Uhlenbeck process introduced by Vacisek (1977), the constant elastic

volatility process applied by Beckers (1980), the square root process due to Cox, In-

gersoll and Ross (CIR: 1985), the so called CKLS model by Chan, Karolyi, Longsta¤

and Sanders (CKLS: 1992), various three factor models proposed Chen (1996), sto-

chastic volatility processes such as generalized CIR of Andersen and Lund (1997),

and the generic class of a¢ ne jump di¤usion processes discussed in Du¢ e, Pan and
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Singleton (2000).1

The plethora of available di¤usion models allow decision makers to be �exible

when choosing a speci�cation to be subsequently used in contexts ranging from equity

and option pricing, to term structure modeling and risk management. Moreover, the

use of high frequency data when estimating such models, in continuous time contexts,

allows investors to continuously update their dynamic trading strategies in real-time.2

However, for statisticians and econometricians, the vast number of available models

has important implications for formalizing model selection and speci�cation testing

methods. This has led to several key papers that have recently been published in the

area of parametric and non-parametric speci�cation testing. Most of the papers focus

on the ongoing �search�for correct Markov and stationary models that ��t�historical

data and associated dynamics. In this literature, it is important to note that correct

speci�cation of a joint distribution is not the same as that of a conditional distribution,

and hence the recent focus on conditional distributions, given that most models have

an interpretation as conditional models. In summary, the key issue in the construction

of model selection and speci�cation tests of conditional distributions is the fact that

knowledge of the transition density (or conditional distribution) in general cannot be

inferred from knowledge of the drift and variance terms of a di¤usion model. If the

functional form of the density is available parametrically, though, one can test the

hypothesis of correct speci�cation of a di¤usion via the probability integral transform

approach of Diebold, Gunther, and Tay (1998); the cross-spectrum approach of Hong

(2001), Hong and Li (2005) and Hong, Li, and Zhao (2007); the martingalization-

type Kolmogorov test of Bai (2003); or via the normality transformation approaches

of Bontemps and Meddahi (2005) and Duan (2003). Furthermore, if the transition

density is unknown, one can construct a non-parametric test by comparing a kernel

density estimator of the actual and simulated data, for example, as in Altissimo and

1For complete details, see Section 2.2.
2For further discussion, see Duong and Swanson (2010, 2011).
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Mele (2009) and Thompson (2008); or by comparing the conditional distribution of

the simulated and the historical data, as in Bhardwaj, Corradi, and Swanson (BCS:

2008). One can also use the methods of Aït-Sahalia (2002) and Aït-Sahalia, Fan,

and Peng (2009), in which they compare closed form approximations of conditional

densities under the null, using data-driven kernel density estimates.

For clarity and ease of presentation, we categorize the above literature into two

areas. The �rst area, initiated by the seminal work of Aït-Sahalia (1996) and later

followed by Pritsker (1998) and Jiang (1998), breaks new ground in the continuous

time speci�cation testing literature by comparing marginal densities implied by hy-

pothesized null models with nonparametric estimates thereof. These sorts of tests

examine one factor speci�cations. The second area of testing, as initiated in Corradi

and Swanson (CS: 2005) does not look at densities. Instead, they compare cumu-

lative distributions (marginal, joint, or conditional) implied by a hypothesized null

model with corresponding empirical distributions. A natural extension of these sorts

of tests involves model selection amongst alternative predictive densities associated

with competing models. While CS (2005) focus on cases where the functional form

of the conditional density is known, BCS (2008) use simulation methods to exam-

ine testing in cases where the functional form of the conditional density is unknown.

Corradi and Swanson (CS: 2011) and Cai and Swanson (2011) take the analysis of

BCS (2008) on Step further, and focus on the comparison of out of sample predictive

accuracy of possibly misspeci�ed di¤usion models, when the conditional distribution

is not known in closed form (i.e., they �choose�amongst competing models based on

predictive density model performance). The �best�model is selected by constructing

tests that compare both predictive densities and/or predictive conditional con�dence

intervals associated with alternative models

In this chapter, we primarily focus our attention on the second area of the model
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selection and testing literature.3 One feature of all of the tests that we shall discuss is

that, given that they are based on the comparison of CDFs, they obtain parametric

rates. Moreover, the tests can be used to evaluate single and multiple factor and

dimensional models, regardless of whether or not the functional form of the conditional

distribution is known.

In addition to discussing simple di¤usion process speci�cation tests of CS (2005),

we discuss tests discussed in BCS (2008) and CS (2011), and provide some gener-

alizations and additional results. In particular, parametric speci�cation tests in the

spirit of the conditional Kolmogorov test of Andrews (1997) that rely on block boot-

strap resampling methods in order to construct test critical values are �rst discussed.

Thereafter, extensions due to BCS (2008) for cases where the functional form of the

conditional density is unknown are introduced, and related continuous time simulation

methods are introduced. Finally, we broaden our discussion from single dimensional

speci�cation testing to multiple dimensional selection by discussing how to construct

predictive densities and how to compare the accuracy of predictive densities derived

from alternative (possibly misspeci�ed) di¤usion models as in CS (2011). In addi-

tion, we generalize simulation and testing procedures introduced in Cai and Swanson

(2011) to more complicated multi-factor and multi-dimensional models where the

number of latent variables larger than three. These �nal tests can be thought of as

continuous time generalizations of the discrete time �reality check�test statistics of

White (2000), which are widely used in empirical �nance (see e.g. Sullivan, Timmer-

mann and White (1999, 2001)). We �nish the chapter with an empirical illustration

of model selection amongst alternative short term interest rate models, drawing on

BCS (2008), CS (2011) and Cai and Swanson (2011).

Of the �nal note is that the test statistics discussed here are implemented via use of

simple bootstrap methods for critical value simulation. We use the bootstrap because

3For a recent survey on results in the �rst area of this literature, see Aït-Sahalia (2007).
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the covariance kernels of the (Gaussian) asymptotic limiting distributions of the test

statistics are shown to contain terms deriving from both the contribution of recursive

parameter estimation error (PEE) and the time dependence of data. Asymptotic

critical value thus cannot be tabulated in a usual way. Several methods can easily

be implemented in this context. First one can use block bootstrapping procedures,

as discussed below. Second one can use the conditional p-value approach of Corradi

and Swanson (2002) which extends the work of Hansen (1996) and Inoue (2001)

to the case of non vanishing parameter estimation error. Third is the subsampling

method of Politis, Romano and Wolf (1999), which has clear e¢ ciency �costs�, but

is easy implement. Use of the latter two methods yields simulated (or subsample

based) critical values that diverge at rate equivalent to the blocksize length under the

alternative. This is the main drawback to their use in our context. We therefore focus

on use of a block bootstrap that mimics the contribution of parameter estimation

error in a recursive setting and in the context of time series data. In general, use

of the block bootstrap approach is made feasible by establishing consistency and

asymptotic normality of both simulated generalized method of moments (SGMM)

and nonparametric simulated quasi maximum likelihood (NPSQML) estimators of

(possibly misspeci�ed) di¤usion models, in a recursive setting, and by establishing

the �rst-order validity of their bootstrap analogs.

The rest of the chapter is organized as follows. In Section 2.2, we present our

setup, and discuss various di¤usion models used in �nance and �nancial economet-

rics. Section 2.3 outlines the speci�cation testing hypotheses, presents the cumulative

distribution based test statistics for one factor and multiple factor models, discusses

relevant procedures for simulation and estimation, and outlines bootstrap techniques

that can be used for critical value tabulation. In Section 2.4, we present a small

empirical illustration. Section 2.5 summarizes and concludes.
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2.2 Setup

2.2.1 Di¤usion Models in Finance and Financial Economet-

rics

For the past two decades, continuous time models have taken center stage in the

�eld of �nancial econometrics, particularly in the context of structural modeling,

option pricing, risk management, and volatility forecasting. One key advantage of

continuous time models is that they allow �nancial econometricians to use the full

information set that is available. With the availability of high frequency data and

current computation capability, one can update information, model estimates, and

predictions in milliseconds. In this Section we will summarize some of the standard

models that have been used in asset pricing as well as term structure modelling.

Generally, assume that �nancial asset returns follow Ito-semimartingale processes

with jumps, which are the solution to the following stochastic di¤erential equation

system.

X(t�) =

Z t

0

b(X(s�); �0)ds��0t
Z
Y

y�(y)dy+

Z t

0

�(X(s�); �0)dW (s)+
JtX
j=1

yj; (2.1)

where X(t�) is a cadlag process (right continuous with left limit) for t 2 <+; and is an

N dimensional vector of variables, W (t) is an N�dimensional Brownian motion, b(�)

is N�dimensional function of X(t�); and �(�) is an NxN matrix-valued function of

X(t�); where �0 is an unknown true parameter. Jt is a Poisson process with intensity

parameter �0; �0 �nite, and the N�dimensional jump size, yj, is iid with marginal

distribution given by �: Both Jt and yj are assumed to be independent of the driving

Brownian motion, W (t).4Also, note that
R
Y
y�(y)dy denotes the mean jump size,

hereafter denoted by �0. Over a unit time interval, there are on average �0 jumps;

4Hereafter, X(t�) denotes the cadlag, while Xt denotes discrete skeleton for t = 1; 2; ::: .
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so that over the time span [0; t]; there are on average �0t jumps. The dynamics of

X(t�) is then given by:

dX(t) =
�
b(X(t�); �0)� �0�y;0

�
dt+ �(X(t�); �0)dW (t) +

Z
Y

yp(dy; dt); (2.2)

where p(dy; dt) is a random Poisson measure giving point mass at y if a jump occurs

in the interval dt, and b(�); �(�) are the �drift" and �volatility" functions de�ning the

parametric speci�cation of the model. Hereafter, the same (or similar) notation is

used throughout when models are speci�ed.

Though not an exhaustive list, we review some popular models. Models are pre-

sented with the "true" parameters.

Di¤usion Models Without Jumps:

Geometric Brownian Motion (log normal model). In this set-up, b(X(t�); �0) =

b0X(t) and �(X(t�); �0) = �0X(t)

dX(t) = b0X(t)dt+ �0X(t)dW (t);

where b0 and �0 are constants and and W (t) is a one dimensional standard Brownian

motion. (Below, other constants such as �0 , �0; �0; 0; �0; �0, �0, and 
0 are also

used in model speci�cations.)

This model is popular in the asset pricing literature. For example, one can model

equity prices according to this process, especially in the Black-Scholes option set-up

or in structured corporate �nance.5 The main drawback of this model is that the

return process (log(price)) has constant volatility, and is not time varying. However,

it is widely used as a convenient ��rst" econometric model.

Vasicek (1977) and Ornstein-Uhlenbeck process. The process is used to model

5See Black and Scholes (1973) for details.
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asset prices, speci�cally in term structure modelling, and the speci�cation is:

dX(t) = (�0 + �0X(t))dt+ �0dW (t)

where W (t) is a standard Brownian motion, and �0, �0 and �0 are constants. �0 is

negative to ensure the mean reversion of X(t).

Cox, Ingersoll and Ross (1995) use the following square root process to model the

term structure of interest rates:

dX(t) = �(�0 �X(t))dt+ �0
p
X(t)dW (t)

where W (t) is a standard Brownian motion, �0 is the long-run mean of X(t); �

measures the speed of mean-reversion, and �0 is a standard deviation parameter and

is assumed to be �xed. Also, non-negativity of the process is imposed, as 2��0 > �
2
0:

Wong (1964) points out that in the CIR model, X(t) with the dynamics evolving

according to:

dX(t) = ((�0 � �0)�X(t))dt+
p
�0X(t)dW (t); �0 > 0 and �0 � �0 > 0 (2.3)

belongs to the linear exponential (or Pearson) family with a closed form cumulative

distribution. �0 and �0 are �xed parameters of the model.

The Constant Elasticity of Variance, or CEV model is speci�ed as follows:

dX(t) = �0X(t)dt+ �0X(t)
�0=2dW (t)

where W (t) is a standard Brownian motion and �0; �0 and �0 are �xed constants.

Of note is that the interpretation of this model depends on �0; i.e. in the case of

stock prices, if �0 = 2, then the price process X(t) follows a lognormal di¤usion; if
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�0 < 2 , then the model captures exactly the leverage e¤ect as price and volatility

are inversely correlated.

Among other authors, Beckers (1980) uses this CEV model for stocks, Marsha

and Rosenfeld (1983) apply a CEV parametrization to interest rates and Emanuel

and Macbeth (1982) utilize this set-up for option pricing.

The Generalized constant elasticity of variance model is de�ned as follows:

dX(t) = (�0X(t)
�(1��0) + �0X(t))dt+ �0X(t)

�0=2dW (t)

where the notation follows the CEV case. �0 is another parameter of the model. This

process nests log di¤usion when �0 = 2; and nests square root di¤usion when �0 = 1:

Brennan and Schwartz (1979) and Courtadon (1982) analyze the model:

dX(t) = (�0 + �0X(t))dt+ �0X(t)
2dW (t)

where �0; �0; �0 are �xed constants and W (t) is a standard Brownian motion.

Du¢ e and Kan (1993) study the speci�cation:

dX(t) = (�0 �X(t))dt+
p
�0 + 0X(t)dW (t)

where W (t) is a standard Brownian motion and �0; �0 and 0 are �xed parameters.

Aït-Sahalia (1996) looks at a general case with general drift and CEV di¤usion:

dX(t) = (�0 + �0X(t) + 0X(t)
2 + �0=X(t))dt+ �0X(t)

�0=2dW (t)

In the above expression, �0; �0; 0; �0; �0 and �0 are �xed constants andW (t) is again

a standard Brownian motion.

Di¤usion Models with Jumps:
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For term structure modeling in empirical �nance, the most widely studied class of

models is the family of a¢ ne processes, including di¤usion processes that incorporate

jumps.

A¢ ne Jump Di¤usion Model : X(t�) is de�ned to follow an a¢ ne jump di¤usion

if

dX(t) = �0(�0 �X(t))dt+ 
0
p
D(t)dW (t) + dJ(t)

where X(t�) is an N�dimensional vector of variables of interest and is a cadlag

process, W (t) is an N�dimensional independent standard Brownian motion, �0 and


0 are square N � N matrices, �0 is a �xed long-run mean, D(t) is a diagonal matrix

with ith diagonal element given by

dii(t) = �0i + �
0
0iX(t)

In the above expressions, �0i and �
0
0i are constants. The jump intensity is assumed

to be a positive, a¢ ne function of X(t) and the jump size distribution is assumed

to be determined by it�s conditional characteristic function. The attractive feature

of this class of a¢ ne jump di¤usions is that, as shown in Du¢ e, Pan and Singleton

(2000), it has an exponential a¢ ne structure that can be derived in closed form, i.e.

�(X(t)) = exp(a(t) + b(t)0X(t))

where the functions a(t) and b(t) can be derived from Riccati equations.6 Given a

known characteristic function, one can use either GMM to estimate the parameters of

this jump di¤usion, or one can use quasi-maximum likelihood (QML), once the �rst

two moments are obtained. In the univariate case without jumps, as a special case,

this corresponds to the above general CIR model with jumps.

6For details, see Singleton (2006), page 102.
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Multifactor and Stochastic Volatility Model: Multifactor models have been

widely used in the literature; particularly in option pricing, term structure, and asset

pricing. One general set-up has (X(t); V (t))0 =
�
X(t); V 1(t); :::; V d(t)

�0
where only the

�rst element, the di¤usion process Xt; is observed while V (t) = (V 1(t); :::; V d(t))0dx1 is

latent. In addition, X(t) can be dependent on V (t): For instance, in empirical �nance,

the most well-known class of the multifactor models is the stochastic volatility model

expressed as:

0B@ dX(t)

dV (t)

1CA =

0B@ b1(X(t); �0)

b2(V (t); �0)

1CA dt+
0B@ �11(V (t); �0)

0

1CA dW1(t) (2.4)

+

0B@ �12(V (t); �0)

�22(V (t); �0)

1CA dW2(t); (2.5)

whereW1(t)1x1 andW2(t)1x1 are independent standard Brownian motions and V (t) is

latent volatility process. b1(�) is a function of X(t) and b2(�); �11(�); �22(�) and �22(�)

are general functions of V (t); such that system of equations (2.4) is well-de�ned. Pop-

ular speci�cations are the square-root model of Heston (1993), the GARCH di¤usion

model of Nelson (1990), lognormal model of Hull and White (1987) and the eigen-

function models of Meddahi (2001). Note that in this stochastic volatility case, the

dimension of volatility is d = 1: More general set-up can involve d driving Brownian

motions in V (t) equation.

As an example, Andersen and Lund (1997) study the generalized CIR model with

stochastic volatility, speci�cally

dX(t) = �x0(x0 �X(t))dt+
p
V (t)dW1(t)

dV (t) = �v0(v0 � V (t))dt+ �v0
p
V (t)dW2(t)
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where X(t) and V (t) are price and volatility processes, respectively, �x0; �v0 > 0 to

ensure stationarity, x0 is the long-run mean of (log) price process, and v0 and �v0

are constants. W1(t) and W2(t) are scalar Brownian motions. However, W1(t) and

W2(t) are correlated such that dW1(t)dW2(t) = �dt where the correlation � is some

constant � 2 [�1; 1]. Finally, note that volatility is a square-root di¤usion process,

which requires that �v0v0 > �2v0:

Stochastic Volatility Model with Jumps (SVJ): A standard speci�cation is:

dX (t) = �x0 (x0 �X(t)) dt+
p
V (t)dW1 (t) + Judqu � Jddqd;

dV (t) = �v0 (v0 � V (t)) dt+ �v0
p
V (t)dW2 (t) ;

where qu and qd are Poisson processes with jump intensity parameters �u and �d

respectively, and are independent of the Brownian motions W1 (t) and W2 (t) : In

particular, �u is the probability of a jump up, Pr (dqu (t) = 1) = �u and �d is the

probability of a jump down, Pr (dqd (t) = 1) = �d: Ju and Jd are jump up and jump

down sizes and have exponential distributions: f (Ju) = 1
�u
exp

�
�Ju
�u

�
and f (Jd) =

1
�d
exp

�
�Jd
�d

�
; where �u; �d > 0 are the jump magnitudes, which are the means of

the jumps, Ju and Jd:

Three Factor Model (CHEN): The three factor model combines various features

of the above models, by considering a version of the oft examined 3-factor model due

to Chan, Karolyi, Longsta¤ and Sanders (1992), which is discussed in detail in Dai

and Singleton (2000). In particular,

dX (t) = �x0 (� (t)�X (t)) dt+
p
V (t)dW1 (t) ;

dV (t) = �v0 (v � V (t)) dt+ �v0
p
V (t)dW2 (t) ; (2.6)

d� (t) = ��0
�
�0 � � (t)

�
dt+ ��0

p
� (t)dW3 (t) ;
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where W1 (t) ; W2 (t) and W3 (t) are independent Brownian motions, and V and � are

the stochastic volatility and stochastic mean ofX(t), respectively. �x0; �v0; ��0; v0; �0; �v0;

��0 are constants. As discussed above, non-negativity for V (t) and � (t) requires that

2�v0v0 > �
2
v0 and 2��0�0 > �

2
�0:

Three Factor Jump Di¤usion Model (CHENJ): Andersen, Benzoni and Lund

(2004) extend the three factor Chen (1996) model by incorporating jumps in the

short rate process, hence improving the ability of the model to capture the e¤ect of

outliers, and to address the �nding by Piazzesi (2004, 2005) that violent discontinuous

movements in underlying measures may arise from monetary policy regime changes.

The model is de�ned as follows:

dX (t) = �x0 (� (t)�X (t)) dt+
p
V (t)dW1 (t) + Judqu � Jddqd; (2.7)

dV (t) = �v0 (v0 � V (t)) dt+ �v0
p
V (t)dW2 (t) ;

d� (t) = ��0
�
�0 � � (t)

�
dt+ ��0

p
� (t)dW3 (t) (2.8)

where all parameters are similar as in (2.6), W1 (t) ; W2 (t) and W3 (t) are inde-

pendent Brownian motions, qu and qd are Poisson processes with jump intensities �u0

and �d0; respectively, and are independent of the Brownian motions Wr (t), Wv (t)

and W� (t) : In particular, �u0 is the probability of a jump up, Pr (dqu (t) = 1) = �u0

and �d0 is the probability of a jump down, Pr (dqd (t) = 1) = �d0: Ju and Jd are jump

up and jump down sizes and have exponential distributions f (Ju) = 1
�u0
exp

�
� Ju
�u0

�
and f (Jd) = 1

�d0
exp

�
� Jd
�d0

�
; where �u0; �d0 > 0 are the jump magnitudes, which are

the means of the jumps Ju and Jd:

2.2.2 Overview on Speci�cation Tests and Model Selection

The focus in this chapter is speci�cation testing and model selection. The �tools�used

in this literature have been long established. Several key classical contributions in-
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clude the Kolmogorov-Smirnov test (see e.g. Kolmogorov (1933) and Smirnov (1939)),

various results on empirical processes (see e.g. Andrews (1993) and the discussion in

chapter 19 of van der Vaart (1998) on the contributions of Glivenko, Cantelli, Doob,

Donsker and others), the probability integral transform (see e.g. Rosenblatt (1952)),

and the Kullback-Leibler Information Criterion (see e.g. White (1982) and Vuong

(1989)). For illustration, the empirical distribution mentioned above is crucial in our

discussion of predictive densities because it is useful in estimation, testing, and model

evaluation. Let Yt is a variable of interest with distribution F and parameter �0. The

theory of empirical distributions provides a result that

1p
T

TX
t=1

(1 fYt � ug � F (uj�0))

satis�es a central limit theorem (with a parametric rate) if T is large (i.e., asymp-

totically). In the above expression, 1 fYt � ug is the indicator function which takes

value 1 if Yt � u and 0 otherwise. In the case where there is parameter estimation

error, we can use more general results in chapter 19 of van der Vaart (1998). De�ne

PT (f) =
1

T

TX
i=1

f(Yi) and P (f) =
Z
fdP

where P is a probability measure associated with F: Here, Pn(f) converges to

P (f) almost surely for all the measurable functions f for which P (f) is de�ned .

Suppose one wants to test the null hypothesis that P belongs to a certain family

fP�0 : �0 2 �g; where �0 is unknown; it is natural to use a measure of the discrepancy

between Pn and Pb� for a reasonable estimator b�t of �0: In particular, if b�t converges to
�0 at a root-T rate, 1p

T
(PT �Pb�t) has been shown to satisfy a central limit theorem.7

With regard to dynamic misspeci�cation and parameter estimation error, the ap-

proach discussed for the class of tests in this chapter allows for the construction of

7See Theorem 19.23 in van der Vaart (1998) for details.
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statistics that admit for dynamic misspeci�cation under both hypotheses. This di¤ers

from other classes of tests such as the framework used by Diebold, Gunther and Tay

(DGT: 1998), Hong (2001), and Bai (2003) in which correction dynamic speci�cation

under the null hypothesis is assumed. In particular, DGT use the probability integral

transform to show that Ft(Ytj=t�1; �0) =
R Yt
�1 ft(yj=t�1; �0)dy is identically and inde-

pendently distributed as a uniform random variable on [0; 1], where Ft(�) and ft (�)

are a parametric distribution and density with underlying parameter �0, Yt is again

our random variable of interest, and =t is the information set containing all �rele-

vant�past information. They thus suggest using the di¤erence between the empirical

distribution of Ft(Ytj=t�1;b�t) and the 45� - degree line as a measure of �goodness of
�t�, where b�t is some estimator of �0. This approach has been shown to be very useful
for �nancial risk management (see e.g. Diebold, Hahnand, Tay (1999)), as well as for

macroeconomic forecasting (see e.g. Diebold, Tay and Wallis (1998) and Clements

and Smith (2000,2002)). Similarly, Bai (2003) develops a Kolmogorov type test of

Ft(Ytj=t�1; �0) on the basis of the discrepancy between Ft(Ytj=t�1;b�t) and the CDF
of a uniform on [0; 1]. As the test involves estimator b�t, the limiting distribution
re�ects the contribution of parameter estimation error and is not nuisance parameter

free. To overcome this problem, Bai (2003) proposes a novel approach based on a

martingalization argument to construct a modi�ed Kolmogorov test which has a nui-

sance parameter free limiting distribution. This test has power against violations of

uniformity but not against violations of independence. Hong (2001) proposes another

related interesting test, based on the generalized spectrum, which has power against

both uniformity and independence violations, for the case in which the contribution

of parameter estimation error vanishes asymptotically. If the null is rejected, Hong

(2001) also proposes a test for uniformity robust to non independence, which is based

on the comparison between a kernel density estimator and the uniform density. Two

features di¤erentiate the tests surveyed in this chapter from the tests outlined in the
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other papers mentioned above. First, the tests discussed here assume strict stationar-

ity. Second, they allow for dynamic misspeci�cation under the null hypothesis. The

second feature allows us to obtain asymptotically valid critical values even when the

conditioning information set does not contain all of the relevant past history. More

precisely, assume that we are interested in testing for correct speci�cation, given a

particular information set which may or may not contain all of the relevant past

information. This is important when a Kolmogorov test is constructed, as one is

generally faced with the problem of de�ning =t�1: If enough history is not included,

then there may be dynamic misspeci�cation. Additionally, �nding out how much

information (e.g. how many lags) to include may involve pre-testing, hence leading

to a form of sequential test bias. By allowing for dynamic misspeci�cation, such

pre-testing is not required. Also note that critical values derived under correct spec-

i�cation given =t�1 are not in general valid in the case of correct speci�cation given

a subset of =t�1. Consider the following example. Assume that we are interested

in testing whether the conditional distribution of YtjYt�1 follows normal distribution

N(�1Yt�1; �1). Suppose also that in actual fact the �relevant� information set has

=t�1 including both Yt�1and Yt�2, so that the true conditional model is Ytj=t�1 =

YtjYt�1; Yt�2 = N(�1Yt�1 + �2Yt�2; �2): In this case, correct speci�cation holds with

respect to the information contained in Xt�1; but there is dynamic misspeci�cation

with respect to Yt�1and Yt�2. Even without taking account of parameter estimation

error, the critical values obtained assuming correct dynamic speci�cation are invalid,

thus leading to invalid inference. Stated di¤erently, tests that are designed to have

power against both uniformity and independence violations (i.e. tests that assume

correct dynamic speci�cation under the null) will reject; an inference which is incor-

rect, at least in the sense that the �normality�assumption is not false. In summary,

if one is interested in the particular problem of testing for correct speci�cation for a

given information set, then the approach of tests in this chapter is appropriate.
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2.3 Consistent Distribution-Based Speci�cation Tests

and Predictive Density Type Model Selection

for Di¤usion Processes

2.3.1 One Factor Models

In this Section we outline the set-up for the general class of one factor jump di¤usion

speci�cations. All analysis carry through to the more complicated case of multi-factor

stochastic volatility models which we will elaborate upon in the next Subsection.

In the presentation of the tests, we follow a view that all candidate models, either

single or multiple dimensional ones, are approximations of reality, and can thus be

misspeci�ed. The issue of correct speci�cation (or misspeci�cation) of a single model

and the model selection test for choosing amongst multiple competing models allow

for this feature.

To begin, �x the time interval [0; T ]; consider a given single one factor candidate

model the same as (2.1), with the true parameters �0; �0; �0 to be replaced by it�s the

pseudo true analogs �y; �; �; respectively and 0 � t � T :

X(t�) =

Z t

0

b(X(s�); �
y)ds� �t

Z
Y

y�(y)dy +

Z t

0

�(X(s�); �
y)dW (s) +

JtX
j=1

yj;

or

dX(t�) =
�
b(X(t�); �y)� ��

�
dt+ �(X(t�); �y)dW (t) +

Z
Y

yp(dy; dt); (2.9)

where variables are de�ned the same as in (2.1) and (2.2). Note that as the above

model is the one factor version of (2.1) and (2.2) where the dimension of X(t�) is

1x1, W (t) is a one-dimensional standard Brownian motion and jump size, and yj is

one dimensional variable for all j. Also note that both Jt and yj are assumed to be
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independent of the driving Brownian motion.

If the single model is correctly speci�ed, then ,

b(X(t�); �y) = b0(X(t�); �0)

�(X(t�); �y) = �0(X(t�); �0)

� = �0; � = �0 ; � = �0

where b0(X(t�); �0); �0(X(t�); �0); �0; �0 ; �0 are unknown and belong to the true

speci�cation.

Now consider a di¤erent case (not a single model) where m candidate models are

involved. For model k with 1 � k � m; denote it�s corresponding speci�cation to be

(bk(X(t�); �
y
k); �k(X(t�); �

y
k); �k; �k; �k): Two scenarios immediate arise. Firstly, if

the model k is correctly speci�ed, then bk(X(t�); �
y
k) = b0(X(t�); �0); �k(X(t�); �

y
k) =

�0(X(t�); �0); �k = �0; �k = �0 and �k = �0 which are similar to the case of a

single model. In the second scenario, all the models are likely to be misspeci�ed and

modelers are faced with the choice of selecting the "best" one. This type of problem

is well-�tted into the class of accuracy assessment tests initiated earlier by Diebold

and Mariano (1995) or White (2000).

The tests discussed hereafter are Kolomogorov type tests based on the construction

of cumulative distribution functions (CDFs). In a few cases, the CDF is known in

closed form. For instance, for the simpli�ed version of the CIR model as in (2.3),

X(t) belongs to the linear exponential (or Pearson) family with the gamma CDF of

the form:8

F (u; �; �) =

R u
0
(�
2
)�2(1��=�)�1 exp(�x=(�

2
))dx

�(2(1� �=�)) ; where �(x) =
Z 1

0

tx exp(�t)dt;

(2.10)

and �; � are constants.

8See Wong (1964) for details.
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Furthermore, if we look at the pure di¤usion process without jumps:

dX(t) = b(X(t); �y)dt+ �(X(t); �y)dW (t); (2.11)

where b(�) and � = �(�) are drift and volatility functions, it is known that the

stationary density, say f(x; �y); associated with the invariant probability measure can

be expressed explicitly as:9

f(x; �y) =
c(�y)

�2(x; �y)
exp

�Z x 2b(u; �y)

�2(u; �y)
du

�

where c(�y) is a constant ensuring that f integrates to one. The CDF, say F (u; �y) =R u
f(x; �y)dx; can then be obtained using available numerical integration procedures.

However, in most cases, it is impossible to derive the CDFs in closed form. To

obtain a CDF in such cases, a more general approach is to use simulation. Instead

of estimating the CDF directly, simulation techniques estimates the CDF indirectly

utilizing it�s generated sample paths and the theory of empirical distributions. The

speci�cation of a speci�c di¤usion process will dictate the sample paths and thereby

corresponding test outcomes.

Note that in the historical context, many early papers in this literature are prob-

ability density-based. For example, in a seminal paper, Ait-Sahalia (1996) compares

the marginal densities implied by hypothesized null models with nonparametric esti-

mates thereof. Following the same framework of correct speci�cation tests, CS(2005)

and BCS (2008), however, do not look at densities. Instead, they compare the cumu-

lative distribution (marginal or joint) implied by a hypothesized null model with the

corresponding empirical distribution. While CS (2005) focus on the known uncondi-

tional distribution, BCS (2008) look at the conditional simulated distributions. CS

(2011) make extensions to multiple models in the context of out of sample accuracy

9See Karlin and Taylor (1981) for details.
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assessment tests. This approach is somewhat novel to this continuous time model

testing literature.

Now suppose we observe a discrete sample path X1;X2; :::; XT (also referred as

skeletons).10 The corresponding hypotheses can be set up as follows:

Hypothesis 1: Unconditional Distribution Speci�cation Test of a Single

Model

H0 : F (u; �
y) = F0(u; �0); for all u; a.s.

HA : Pr
�
F (u; �y)� F0(u; �0) 6= 0

�
> 0, for some u 2 U; with non-zero Lebesgue

measure.

where F0(u; �0) is the true cumulative distribution implied by the above density,

i.e. F0(u; �0) = Pr(Xt � u). F (u; �y) = Pr
�
X�y
t � u

�
is the cumulative distribution

of the proposed model. X�y
t is a skeleton implied by model (2.9).

Hypothesis 2: Conditional Distribution Speci�cation Test of A Single

Model

H0 : F� (ujXt; �
y) = F0;� (ujXt; �0); for all u; a.s.

HA : Pr
�
F� (ujXt; �

y)� F0;� (ujXt; �0) 6= 0
�
> 0, for some u 2 U; with non-zero

Lebesgue measure.

where

F� (ujXt; �
y) = Pr

�
X�y

t+� � ujX�y

t = Xt

�
is � -Step ahead conditional distributions and t = 1; :::; T � � . F0;� (ujXt; �0) is � -Step

ahead true conditional distributions.

Hypothesis 3: Predictive Density Test for Choosing Amongst Multiple

Competing Models

The null hypothesis is that no model can outperform model 1 which is the bench-

mark model.11

10As mentioned earlier, we follow CS (2005) by using notation X(�) when de�ning continuous time
processes and Xt for a skeleton.
11See White (2000) for a discussion of a discrete time series analog to this case, whereby point
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H0 : max
k=2;:::;m

EX

��
F
X
�
y
1
1;t+� (Xt)

(u2)� F
X
�
y
1
1;t+� (Xt)

(u1)

�
� (F0(u2jXt)� F0(u1jXt))

�2
�EX

  
F
X
�
y
k
k;t+�

(Xt)

(u2)� F
X
�
y
k
k;t+� (Xt)

(u1)

!
� (F0(u2jXt)� F0(u1jXt))

!2
� 0

HA : negation of H 0
0

where F
X
�
y
k
k;t+�

(Xt)

(u) = F �k (ujXt; �
y
k) = P �

�yk

�
X
�yk
t+� � ujX

�yk
t = Xt

�
; which is the

conditional distribution of Xt+� ; given Xt, and evaluated at u under the probability

law generated by model k: X
�yk
k;t+� (Xt) with 1 � � � T � t is the skeleton implied

by model k, parameter �yk and initial value Xt: Analogously, de�ne F �0 (ujXt; �0) =

P ��0(Xt+� � ujXt) to be the �true�conditional distribution.

Note that the three hypotheses expressed above apply exactly the same to the case

of multifactor di¤usions. Now, before moving to the statistics description section, we

brie�y explain the intuitions in facilitating construction of the tests:

In the �rst case (Hypothesis 1), CS (2005) construct a Kolomogorov type test

based on comparison of the empirical distribution and the unconditional CDF implied

by the speci�cation of the drift, variance and jumps. Speci�cally, one can look at the

scaled di¤erence between

F (u; �y) = Pr
�
X�y

t � u
�
=

Z u

f(x; �y)dx

and estimator of the true F0(ujXt; �0); the empirical distribution of Xt de�ned as:

1

T

TX
t=1

1 fXt � ug

where 1 fYt � ug is indicator function which takes value 1 if Yt � u and 0 otherwise.

Similarly for the second case of conditional distribution (Hypothesis 2), the test

rather than density-based loss is considered; Corradi and Swanson (2007b) for an extension of
White (2000) that allows for parameter estimation error; and Corradi and Swanson (2006a) for an
extension of Corradi and Swanson (2007b) that allows for the comparison of conditional distributions
and densities in a discrete time series context.
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statistic VT can be a measure of the distance between the � �Step ahead conditional

distribution of X�y
t+� ; given X

�y
t = Xt; as:

F� (ujXt; �
y) = Pr

�
X�y

t+� � ujX�y

t = Xt

�
;

to an estimator of the true F0;� (ujXt; �0); the conditional empirical distribution of

Xt+� conditional on the initial value Xt de�ned as:

1

T � �

T��X
t=1

1 fXt+� � ug ;

In the third case (Hypothesis 3), model accuracy is measured in terms of a dis-

tributional analog of mean square error. As is commonplace in the out-of-sample

evaluation literature, the sample of T observations is divided into two subsamples,

such that T = R + P; where only the last P observations are used for predictive

evaluation. A ��Step ahead prediction error under model k is 1fu1 � Xt+� �

u2g �
�
F �k (u2jXt; �

y
k)� F �k (u1jXt; �

y
k)
�
where 2 � k � m and similarly for model 1

by replacing index k with index 1: Suppose we can simulate P � � paths of ��Step

ahead skeleton12 using Xt as starting values where t = R; :::; R + P � � ; from which

we can construct a sample of P � � prediction errors. Then, these prediction errors

can be used to construct a test statistic for model comparison. In particular, model

1 is de�ned to be more accurate than model k if:

E

��
(F �1 (u2jXt; �

y
1)� F �1 (u1jXt; �

y
1))� (F �0 (u2jXt; �0)� F �0 (u1jXt; �0))

�2�
< E

��
(F �k (u

�
2jXt; �

y
k)� F �k (u�1jXt; �

y
k))� (F �0 (u2jXt; �0)� F �0 (u1jXt; �0))

�2�
:

whereE(�) is an expectation operator andE (1fu1 � Xt+� � u2gjXt) = F
�
0 (u2jXt; �0)�

F �0 (u1jXt; �0): Concretely, model k is worse than model 1 if on average ��Step ahead
12See Section 2.3.3.1 for model simulation details.
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prediction errors under model k is larger than that of model 1.

Finally, it is important to point out some main features characterized by all the

three test statistics. Processes X(t) hereafter is required to satisfy the regular condi-

tions, i.e. assumptions A1-A8 in CS (2011). Regarding model estimation (in Section

2.3.3), �y and �yk are unobserved and need to be estimated. While CS (2005), BCS

(2008) utilize (recursive) Simulated General Method of Moments (SGMM), CS (2011)

make extension to (recursive) Nonparametric Simulated Quasi Maximum Likelihood

(NPSQML). For the unknown distribution and conditional distribution, it will be

pointed out in Section 2.3.3.2 that F (u; �y), F� (ujXt; �
y) and F

X
�
y
k
k;t+�

(Xt)

(u) can be

replaced by their simulated counterparts using the (recursive) SGMM and NPSQML

parameter estimators. In addition, test statistics converge to functional of Gaussian

processes with covariance kernels that re�ect time dependence of the data and the

contribution of parameter estimation error (PEE). Limiting distributions are not nui-

sance parameter free and critical values thereby cannot be tabulated by the standard

approach. All the tests discussed in this chapter rely on the bootstrap procedures for

obtaining the asymptotically valid critical values, which we will describe in Section

2.3.4.

2.3.1.1 Unconditional Distribution Tests

For one-factor di¤usions, we outline the construction of unconditional test statistics

in the context where CDF is known in closed form. In order to test the Hypothesis

1, consider the following statistic:

V 2T;N;h =

Z
U

V 2T;N;h(u)�(u)du;

where

VT;N;h =
1p
T

TX
t=1

�
1fXt � ug � F (u;b�T;N;h)�
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In the above expression, U is a compact interval and
Z
U

�(u)du = 1; 1fXt � ug

is again the indicator function which returns value 1 if Xt � u and 0 otherwise.

Further, as de�ned in Section 2.3.3, b�T;N;h hereafter is a simulated estimator where T
is sample size and h is the discretization interval used in simulation. In addition, with

the abuse of notation, N is a generic notation throughout this chapter, i.e. N = L,

the length of each simulation path for (recursive) SGMM and N = M; the number

of random draws (simulated paths) for (recursive) NPQML estimator.13 Also note in

our notation that as the above test is in sample speci�cation test, the estimator and

the statistics are constructed using the entire sample, i.e. b�T;N;h.
It has been shown in CS (2005) that under regular conditions and if the estimator

is estimated by SGMM, the above statistics converges to a functional of Gaussian

process.14 In particular, pick the choice T;N !1; h! 0; T=N ! 0 and Th2 ! 0

Under the null,

V 2T;N;h !
Z
U

Z2(u)�(u)

where Z is a Gaussian process with covariance kernel. Hence, the limiting distribution

of V 2T;N;h is a functional of a Gaussian process with a covariance kernel that re�ects

both PEE and the time series nature of the data. As b�T;N;h is root-T consistent, PEE
does not disappear in the asymptotic covariance kernel.

Under HA, there exists an " > 0 such that

lim
T!1

Pr(
1

T
V 2T;N;h > ") = 1

For the asymptotic critical value tabulation, we use the bootstrap procedure. In

order to establish validity of the block bootstrap under SGMM with the presence of

PEE, the simulated sample size should be chosen to grow at a faster rate than the

13M is often chosen to coincide with S; the number of simulated paths used when simulating
distributions.
14For details and the proof, see Theorem 1 in CS (2005).
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historical sample, i.e. T=N ! 0:

Thus, we can follow Steps in appropriate bootstrap procedure in Section 2.3.4.

For instance, if the SGMM estimator is used, the bootstrap statistic is

V 2�T;N;h =

Z
U

V 2�T;N;h(u)�(u)du;

where

V �T;N;h =
1p
T

TX
t=1

�
(1fX�

t � ug � 1fXt � ug)� (F (u;b��T;N;h)� F (u;b�T;N;h))� :
In the above expression, b��T;N;h is the bootstrap analog of b�T;N;h and is estimated by
the bootstrap sample X�

1 ; :::; X
�
T (see Section 2.3.4):With appropriate conditions, CS

(2005) show that under the null, V 2�T;N;h has a well de�ned limiting distribution which

coincides with that of V 2T;N;h: We then can straightforwardly derive the bootstrap

critical value by following Step 1-5 Section 2.3.4. In particular, in Step 5, the idea

is to perform B bootstrap replications (B large) and compute the percentiles of the

empirical distribution of the B bootstrap statistics. Reject H0 if V 2T;N;h is greater than

the (1� �)th�percentile of this empirical distribution. Otherwise, do not reject H0:

2.3.1.2 Conditional Distribution Tests

Hypothesis 2 tests correct speci�cation of the conditional distribution, implied by

a proposed di¤usion model. In practice, the di¢ culty arises from the fact that the

functional form of neither � -Step ahead conditional distributions F� (ujXt; �
y) nor

F0;� (ujXt; �0) is unknown in most cases. Therefore, BCS (2008) develop bootstrap

speci�cation test on the basis of simulated distribution using the SGMM estimator.15

15In this chapter, we assume that X(�) satis�es the regularity conditions stated in CS (2011), i.e.
assuptions A1-A8. Those conditions also re�ect requirements A1-A2 in BCS (2008). Note that,
the SGMM estimator used in BCS (2008) satis�es the root-N consistency condition that CS (2011)
impose on their parameter estimator (See Assumption 4).
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With the important inputs leading to the test such as simulated estimator, distribu-

tion simulation and bootstrap procedures to be presented in the next Section16, the

test statistic is de�ned as:

ZT = sup
u�v2U�V

jZT (u; v)j

where

ZT (u; v) =
1p
T � �

T��X
t=1

 
1

S

SX
s=1

1
n
X
b�T;N;h
s;t+� � u

o
� 1fXt+� � ug

!
1 fXt � vg ;

with U and V compact sets on the real line. b�T;N;h is the simulated estimator using
entire sample X1;:::; XT and S is the number of simulated replications used in the

estimation of conditional distributions as described in Section 2.3.3. If SGMM es-

timator is used (similar to unconditional distribution case and the same as in BCS

(2008)), then N = L, where L is the simulation length used in parameter estimation.

The above statistic is a simulation-based version of the conditional Kolmogorov

test of Andrews (1997), which compare the joint empirical distribution

1

T � �

T��X
t=1

1fXt+� � ug1 fXt � vg

with its semi-empirical/semi-parametric analog given by the product of

1

T � �

T��X
t=1

F0;� (ujXt; �0)1 fXt � vg :

Intuitively, if the null is not rejected, the metric distance between the two should

asymptotically disappear. In the simulation context with parameter estimation error,

the asymptotic limit of ZT however is a nontrivial one. BCS (2008) show that with the

16See Sections 2.3.3 and 2.3.4 for further details.
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proper choice of T;N; S; h, i.e. T;N; S; T 2=S ! 1 and h; T=N; T=S;Nh; h2T ! 0;

then

ZT
d! sup
u�v2U�V

jZ(u; v)j;

where Z(u; v) is a Gaussian process with a covariance kernel that characterizes: 1)

long-run variance we would have if we knew F0;� (ujX1; �0); 2) the contribution of

parameter estimation error; 3) The correlation between the �rst two.

Furthermore, under HA; there exists some " > 0 such that:

lim
P!1

Pr

�
1p
T
ZT > "

�
= 1:

As T=S ! 0; the contribution of simulation error is asymptotically negligible. The

limiting distribution is not nuisance parameter free and hence critical values cannot

be tabulated directly from it. The appropriate bootstrap statistic in this context is:

Z�T = sup
u�v2U�V

jZ�T (u; v)j ;

where

Z�T (u; v) =
1p
T � �

T��X
t=1

 
1

S

SX
s=1

1

�
X
b��T;N;h
s;t+� � u

�
� 1fX�

t+� � ug
!
1 fX�

t � vg

� 1p
T � �

T��X
t=1

 
1

S

SX
s=1

1
n
X
b�T;N;h
s;t+� � u

o
� 1fXt+� � ug

!
1 fXt � vg

In the above expression, b��T;N;h is the bootstrap parameter estimated using the re-
sampled data X�

t for t = 1; :::; T � � . X
b��T;N;h
s;t+� ; s = 1; :::; S and t = 1; :::; T � � is

the simulated data under b��T;N;h and X�
t ; t = 1; :::; T � � is a resampled series con-

structed using standard block-bootstrap methods as described in 2.3.4. Note that in

the original paper, BCS (2008) propose bootstrap SGMM estimator for conditional

distribution of di¤usion processes. CS (2011) extend the test to the case of simulated
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recursive NPSQML estimator. Regarding the generation of the empirical distribution

of Z�T (asthmatically the same as ZT ); follow Step 1-5 in the bootstrap procedure in

Section 2.3.4. This yields B bootstrap replications (B large) of Z�T . One can then

compare ZT with the percentiles of the empirical distribution of Z�T ; and reject H0 if

ZT is greater than the (1 � �)th-percentile. Otherwise, do not reject H0. Tests car-

ried out in this manner are correctly asymptotically sized, and have unit asymptotic

power.

2.3.1.3 Predictive Density Tests for Multiple Competing Models

In many circumstances, one might want to compare one (benchmark) model (model

1) against multiple competing models (models k; 2 � k � m). In this case, recall in

the null in Hypothesis 3 is that no model can outperform the benchmark model.

In testing the null, we �rst choose a particular interval i.e., (u1; u2) 2 UxU where

U is a compact set so that the objective is evaluation of predictive densities for a

given range of values. In addition, in the recursive setting (not full sample is used

to estimate parameters), if we use the recursive NPSQML estimator, say b�1;t;N;h andb�k;t;N;h; for models 1 and k, respectively, then the test statistic is de�ned as
DMax
k;P;S(u1; u2) = max

k=2;:::;m
Dk;P;S(u1; u2):

where

Dk;P;S(u1; u2)

=
1p
P

T��X
t=R

0@" 1
S

SX
i=1

1
n
u1 � X

b�1;t;N;h
1;i;t+� (Xt) � u2

o
�1fu1 � Xt+� � u2g

#2

�
"
1

S

SX
i=1

1
n
u1 � X

b�k;t;N;h
k;i;t+� (Xt) � u2

o
�1fu1 � Xt+� � u2g

#21A :
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All notation is consistent with previous Sections where S is the number of simulated

replications used in the estimation of conditional distributions. X
b�1;t;N;h
1;i;t+� (Xt) and

X
b�k;t;N;h
k;i;t+� , i = 1; :::; S; t = 1; :::; T � � ; are the ith simulated path under b�1;t;N;h andb�k;t;N;h: If models 1 and k are nonnested for at least one k = 2; :::;m. Under regular

conditions and if P;R; S; h are chosen such as P;R;N ! 1 and h; P=N; h2P ! 0,

P=R! � where � is �nite then

max
k=2;::;m

(Dk;P;N(u1; u2)� �k(u1; u2))
d! max
k=2;:::;m

Zk(u1; u2);

where, with an abuse of notation, �k(u1; u2) = �1(u1; u2)� �k(u1; u2); and

�j(u1; u2) = E

0@  F
X
�
y
j
j;t+� (Xt)

(u2)� F
X
�
y
j
j;t+� (Xt)

(u1)

!
� (F0(u2jXt)� F0(u1jXt))

!21A ;
for j = 1; :::;m; and where (Z1(u1; u2); :::; Zm(u1; u2)) is an m�dimensional Gaussian

random variable the covariance kernels that involves error in parameter estimation.

Bootstrap statistics are therefore required to re�ect this parameter estimation error

issue.17

In the implementation, we can obtain the asymptotic critical value using a recur-

sive version of the block bootstrap. The idea is that when forming block bootstrap

samples in the recursive setting, observations at the beginning of the sample are

used more frequently than observations at the end of the sample. We can repli-

cate the Step 1-5 in bootstrap procedure in Section 2.3.4. It should be stressed the

re-sampling in the Step 1 is the recursive one. Speci�cally, begin by resampling b

blocks of length l from the full sample, with lb = T: For any given � ; it is necessary

to jointly resample Xt; Xt+1; :::; Xt+� : More precisely, let Zt;� = (Xt; Xt+1; :::; Xt+� );

t = 1; :::; T � � : Now, resample b overlapping blocks of length l from Zt;� : This yields

Zt;� = (X�
t ; X

�
t+1; :::; X

�
t+� ); t = 1; :::; T � � : Use these data to construct bootstrap

17See CS (2011) for further discussion.



33

estimator b��k;t;N;h. Recall that N is chosen in CS (2011) as the number of simulated

series used to estimate the parameters (N = M = S) and such as N=R;N=P ! 1:

Under this condition, simulation error vanishes and there is no need to resample the

simulated series.

CS (2011) show that

1p
P

TX
t=R

�b��k;t;N;h � b�k;t;N;h�
has the same limiting distribution as

1p
P

TX
t=R

�b�k;t;N;h � �yk� ;
conditional on all samples except a set with probability measure approaching zero.

Given this, the appropriate bootstrap statistic is:

D�
k;P;S(u1; u2)

=
1p
P

T��X
t=R

8<:
0@" 1

S

SX
i=1

1

�
u1 � X

b��1;t;N;h
1;i;t+� (X

�
t ) � u2

�
� 1fu1 � X�

t+� � u2g
#2

�

0@ 1
T

TX
j=1

"
1

S

SX
i=1

1
n
u1 � X

b�1;t;N;h
1;i;t+� (Xj) � u2

o
� 1fu1 � Xj+� � u2g

#21A1A
�

0@" 1
S

SX
i=1

1

�
u1 � X

b��k;t;N;h
k;i;t+� (X

�
t ) � u2

�
� 1fu1 � X�

t+� � u2g
#2

�

0@ 1
S

SX
j=1

"
1

S

SX
i=1

1
n
u1 � X

b�k;t;N;h
k;i;t+� (Xj) � u2

o
� 1fu1 � Xj+� � u2g

#21A1A9=; :
As the bootstrap statistic is calculated from the last P resampled observations, it

is necessary to have each bootstrap term recentered around the (full) sample mean.

This is true even in the case there is no need to mimic PEE, i.e. the choice of P;R is

such that P=R! 0: In such a case, above statistic can be formed using b�k;t;N;h rather
than b��k;t;N;h:



34

For any bootstrap replication, repeat B times (B large) ) bootstrap replications

which yield B bootstrap statistics D�
k;P;S. Reject H0 if Dk;P;S is greater than the

(1��)th-percentile of the bootstrap empirical distribution. For numerical implemen-

tation, it is of importance to note that in the case where P=R ! 0; P; T;R ! 1;

there is no need to re-estimate b��1;t;N;h (b��k;t;N;h): Namely, b�1;t;N;h(b�k;t;N;h) can be used
in all bootstrap experiments.

Of course, the above framework can also be applied using entire simulated distri-

butions rather than predictive densities, by simply estimating parameters once, using

the entire sample, as opposed to using recursive estimation techniques, say, as when

forming predictions and associated predictive densities.

2.3.2 Multifactor Models

Now, let us turn our attention to multifactor di¤usion models of the form

�
X(t); V 1(t); :::; V d(t)

�0
;

where only the �rst element, the di¤usion process Xt; is observed while V (t) =

(V 1(t); :::; V d(t))0 is latent. The most popular class of the multifactor models is sto-

chastic volatility model expressed as below:

0B@ dX(t)

dV (t)

1CA =

0B@ b1(X(t); �
y)

b2(V (t); �
y)

1CA dt+
0B@ �11(V (t); �

y)

0

1CA dW1(t) (2.12)

+

0B@ �12(V (t); �
y)

�22(V (t); �
y)

1CA dW2(t); (2.13)
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where W1(t)1x1 and W2(t)1x1 are independent Brownian Motions.18 For instance,

many term structure models require the multifactor speci�cation of the above form

(see Dai and Singleton (2000)). In a more complicated case, the drift function can also

be speci�ed to be a stochastic process which poses even more challenges to testing.

As mentioned earlier, the hypotheses (Hypothesis 1,2,3) and the test construction

strategy for multifactor models are the same as for one factor model. All theory essen-

tially applies immediately to multifactor cases. In implementation, the key di¤erence

is in the simulated approximation scheme facilitating parameter and CDF estimation.

X(t) cannot simply be expressed as a function of d+1 driving Brownian motions but

instead involves a function of (Wjt;
R t
0
WjsdWis ), i; j = 1; :::; d+ 1 (see e.g. Pardoux

and Talay (1985) p.30-32 and CS(2005)).

For illustration, we hereafter focus on the analysis of a stochastic volatility model

(2.12) where drift and di¤usion coe¢ cients can be written as

b =

�
b1(X(t); �

y))

b2(V (t); �
y))

�
; � =

0B@ �11(V (t); �
y) �12(V (t); �

y)

0 �22(V (t); �
y)

1CA
We also examine a three factor model (i.e., the Chen Model as in (2.6)) and a three

factor model with jumps, (i.e., CHENJ as in (2.7)). By presenting two and three factor

models as an extension of our above discussion, we make it clear that speci�cation

tests of multiple factor di¤usions with d � 3 can be easily constructed in similar

manner.

In distribution estimation, the important challenge for multifactor models lies in

the missing variable issue. In particular, for simulation of Xt, one needs initial values

of the latent processes V1;:::; Vd; which are unobserved. To overcome this problem, it

su¢ ces to simulate the process using di¤erent random initial values for the volatility

18Note that the dimension of X(�) can be higher and we can add jumps to the above speci�cation
such that it satis�es the regularity conditions outlined in the one factor case. In addition, CS (2005),
provide a detailed discussion of approximation schemes in the context of stochastic volatility models.
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process, then construct the simulated distribution using those initial values and av-

erage them out. This allows one to integrate out the e¤ect of a particular choice of

volatility initial value.

For clarity of exposition, we sketch out a simulation strategy for a general model

of d latent variables in Section 2.3.3. This generalizes the simulation scheme of three

factor models in the Cai and Swanson (2011). As a �nal remark before moving to the

statistic presentation, note that the class of multifactor di¤usion processes considered

in this chapter is required to match the regular conditions as in previous Section

(assumption from A1-A8 in CS (2011) with A4 being replaced by A4�).

2.3.2.1 Unconditional Distribution Tests

Following the above discussion on test construction, we specialize to the case of two-

factor stochastic volatility models. Extension to general multidimensional and mul-

tifactor models follows similarly. As the CDF is rarely known in closed form for

stochastic volatility models, we rely on simulation technique. With the simulation

scheme, estimators, simulated distributed and bootstrap procedures to be presented

in the next sections (see Section 2.3.3 and 2.3.4), the test statistics for Hypothesis

1 turns out to be:

SVT;S;h =
1p
T

TX
t=1

 
1fXt � ug �

1

S

SX
t=1

1(X
b�T;N;L;h
t;h � u)

!

In the above expression, recall that S is the number of simulation paths used in

distribution simulation, b�T;N;L;h is a simulated estimator (see Section 2.3.3). N is a

generic notation throughout this chapter, i.e. N = L, the length of each simulation

path for SGMM and N = M; the number of random draws (simulated paths) for

NPQML estimator. h is the discretization interval used in simulation. Note thatb�T;N;L;h is chosen in CS (2005) to be SGMM estimator using full sample and therefore
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N = L = S.19 To put it simply, one can write b�T;S;h = b�T;N;L;h.
Under the null, choose T; S to satisfy T; S !1; Sh! 0; T=S ! 0 then:

SV 2T;S;h !
Z
U

SV 2(u)�(u)

where Z is a Gaussian process with covariance kernel that re�ects both PEE and the

time dependent nature of the data. The relevant bootstrap statistic is:

SV 2�T;S;h =
1p
T

TX
t=1

0BB@ (1fX�
t � ug � 1fXt � ug)

� 1
S
(

SX
t=1

1(X
b��T;N;L;h
t;h � u)� 1(X

b�T;N;L;h
t;h � u))

1CCA
where b��T;S;h is the bootstrap analogue of b�T;S;h. Repeat the Step 1-5 in the bootstrap
procedure in Section 2.3.4 to obtain critical value which are the percentiles of the

empirical distribution of Z�T . Compare SVT;S;h with the percentiles of the empirical

distribution of the bootstrap statistic and reject H0 if SVT;S;h is greater than the

(1� �)th-percentile thereof. Otherwise, do not reject H0.

2.3.2.2 Conditional Distribution Tests

To test Hypothesis 2 for the multifactor models, �rst we present the test statistic

for the case of the stochastic volatility model (Xt; Vt) in (2.12), (i.e., for two factor

di¤usion), and then we discuss testing with the three factor model (Xt; V
1
t ; V

2
t ) as

in (2.6). Other multiple factor models can be tested analogously. Note that for

illustration, we again assume use of the SGMM estimator b�T;N;L;h; as in the original
work of BCS (2008) (namely, b�T;N;L;h is the simulated estimator described in Section
2.3.3). Speci�cally, N is chosen as the length of sample path L used in parameter

19As seen in assumption A4�in CS (2011) and Section 2.3.3 of this chapter, b�T;N;L;h can be other
estimators such as the NPSQML estimator. Importantly, b�T;N;L;h satis�es condition A4� in CS
(2011).
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estimation. The associated test statistic is:

SZT = sup
u�v2U�V

jSZT (u; v)j

SZT (u; v) =
1p
T � �

T��X
t=1

 
1

NS

NX
j=1

SX
i=1

1
n
X
b�T;N;;L;h
j;i;t+� � u

o
� 1fXt+� � ug

!
1 fXt � vg

where X
b�T;N;;L;h
j;i;t+� is is � - Step ahead simulated skeleton obtained by simulation proce-

dure for multi-factor model in Subsection 2.3.4.1.

In a similar manner, the bootstrap statistic analogous to SZT is

SZ�T = sup
u�v2U�V

jSZ�T (u; v)j ;

SZ�T (u; v)

=
1p
T � �

T��X
t=1

 
1
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NX
j=1

SX
i=1

1

�
X
b��T;N;L;h
j;i;t+� � u

�
� 1fX�

t+� � ug
!
1 fX�

t � vg

� 1p
T � �

T��X
t=1

 
1
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NX
j=1

SX
i=1

1
n
X
b�T;N;L;h
j;i;t+� � u

o
� 1fXt+� � ug

!
1 fXt � vg :

where b��T;N;L;h is the bootstrap estimator described in Section 2.3.4. For the three
factor model, the test statistic is de�ned as

MZT = sup
u�v2U�V

jMZT (u; v)j ;

MZT (u; v)

=
1p
T � �

T��X
t=1

 
1

L2S

LX
j=1

LX
k=1

SX
i=1

1
n
X
b�T;N;L;h
s;t+� � u

o
� 1fXt+� � ug

!
1 fXt � vg
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and bootstrap statistics is:

MZ�T (u; v)

=
1p
T � �

T��X
t=1

 
1

L2S

LX
j=1

LX
k=1

SX
i=1

1

�
X
b��t;N;L;h
s;t+� � u

�
� 1fX�

t+� � ug
!
1 fX�

t � vg

� 1p
T � �

T��X
t=1

 
1

L2S

LX
j=1

LX
k=1

SX
i=1

1
n
X
b�t;N;L;h
s;t+� � u

o
� 1fXt+� � ug

!
1 fXt � vg

where

X
b�T;N;L;h
s;t+� = X

b�T;N;L;h
s;t+� (Xt; V

1;b�T;N;L;h
j ; V

2;b�T;N;L;h
k )

X
b��t;N;L;h
s;t+� = X

b��t;N;L;h
s;t+� (Xt; V

1;b��t;N;L;h
j ; V

2;b��t;N;L;h
k ):

The �rst order asymptotic validity of inference carried out using bootstrap sta-

tistics formed as outlined above follows immediately from BCS (2008). For testing

decisions, one compares the test statistics SZT;S;h andMZT;S;h with the percentiles or

the empirical distributions of SZ�T and MZ
�
T;S;h; respectively. Then, reject H0 if the

actual statistic is greater than the (1 � �)th-percentile of the empirical distribution

of the bootstrap statistic, as in Section 2.3.4. Otherwise, do not reject H0.

2.3.2.3 Predictive Density Tests for Multiple Competing Models

For illustration, we present the test for the stochastic volatility model (two factor

model). Again, note that extension to other multi-factor models follows immediately.

In particular, all steps in the construction of the test in the one factor model case

carry through immediately to the stochastic volatility case with the statistic de�ned

as:

DVP;L;S = max
k=2;:::;m

DVk;P;L;S(u1; u2)
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where

DVk;P;L;S(u1; u2)

=
1p
P

T��X
t=R

0B@
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PL
j=1
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i=1 1

n
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o
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1CA
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!21A ;
Critical values for these tests can be obtained using a recursive version of the block

bootstrap. The corresponding bootstrap test statistic is:

DV �P;L;S = max
k=2;:::;m

DV �k;P;L;S(u1; u2)

where

DV �k;P;L;S(u1; u2)

=
1p
P

T��X
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9>=>; :

Of note is that we follow CS (2011) by adopting the recursive NPSQML estimatorb�1;t;N;L;h and b�k;t;N;L;h for model 1 and k, respectively, as introduced in Section 2.3.3.4



41

with the choice N =M = S: b��1;t;N;L;h and b��k;t;N;L;h are bootstrap analogs of b�1;t;N;L;h
and b�k;t;N;L;h respectively (see Section 2.3.4). In addition, we do not need to resam-
ple the volatility process, although volatility is simulated under both b�k;t;N;L;h andb��k;t;N;L;h; k = 1; :::;m:
Repeat Steps 1-5 in the bootstrap procedure in Section 2.3.4 to obtain critical

values. Compare DVP;L;S with the percentiles of the empirical distribution of DV �P;L;S;

and reject H0 if DVP;L;S is greater than the (1 � �)th-percentile. Otherwise, do not

reject H0: Again, in implementation, there is no need to re-estimate b��k;t;N;L;h for each
bootstrap replications if P=R ! 0; P; T;R ! 1, ass parameter estimation error

vanishes asymptotically in this case:

2.3.3 Model Simulation and Estimation

2.3.3.1 Simulating Data

Approximation schemes are used to obtain simulated distributions and simulated

parameter estimators, which are needed in order to construct the tests statistics

outlined in previous sections. We therefore devote the �rst part of this section to a

discussion of the Milstein approximation schemes that have been used in CS (2005),

BCS (2008) and CS (2011). Let L be the length of each simulation path and h be the

discretization interval, L = Qh and � be a generic parameter in simulation expression.

We consider three cases:

The pure di¤usion process as in (2.11):

X�
qh �X�

(q�1)h = b(X�
(q�1)h; �)h+ �(X

�
(q�1)h; �)�qh

�1
2
�(X�

(q�1)h; �)
0�(X�

(q�1)h; �)h

+
1

2
�(X�

(q�1)h; �)
0�(X�

(q�1)h; �)�
2
qh;
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where �
Wqh �W(q�1)h

�
= �qh

iid� N(0; h);

q = 1; : : : ; Q; with �qh
iid� N(0; h); and where �0 is the derivative of �(�) with respect

to its �rst argument. Hereafter, X�
qh denotes the values of the di¤usion at time qh;

simulated under generic �; and with a discrete interval equal to h; and so is a �ne

grain analog of X�
t;h.

The pure jump di¤usion process without stochastic volatility as in (2.9):

X�
(q+1)h �X�

qh

= b(X�
qh; �)h+ �(X

�
qh; �)�(q+1)h �

1

2
�(X�

qh; �)
0�(X�

qh; �)h

+
1

2
�(X�

qh; �)
0�(X�

qh; �)�
2
(q+1)h � ��yh+

JX
j=1

yj1 fqh � Uj � (q + 1)hg ; (2.14)

The only di¤erence between this approximation and that used for the pure di¤usion

is the jump part. Note that the last term on the right-hand-side (RHS) of (2.14)

is nonzero whenever we have one (or more) jump realization(s) in the interval [(q �

1)h; qh]: Moreover, as neither the intensity nor the jump size is state dependent, the

jump component can be simulated without any discretization error, as follows. Begin

by making a draw from a Poisson distribution with intensity parameter b��; say J .
This gives a realization for the number of jumps over the simulation time span. Then,

draw J uniform random variables over [0; L]; and sort them in ascending order so

that U1 � U2 � ::: � UJ : These provide realizations for the J jump times. Then,

make J independent draws from �; say y1; :::; yJ .
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SV models without jumps as in (2.4) (using a generalized Milstein scheme):

X�
(q+1)h = X�

qh +
eb1(X�

qh; �)h+ �11(V
�
qh; �)�1;(q+1)h

+�12(V
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qh; �)�2;(q+1)h +

1

2
�22(V

�
qh; �)

@�12;k(V
�
qh; �)

@V
�22;(q+1)h

+�22(V
�
qh; �)

@�11(V
�
qh; �)

@V

Z (q+1)h

qh

�Z s

qh

dW1;�

�
dW2;s (2.15)

V �(q+1)h = V �qh +
eb2(V �qh; �)h+ �22(V �qh; �)�2;(q+1)h

+
1

2
�22(V

�
qh; �)

@�22(V
�
qh; �)

@V
�22;(q+1)h (2.16)

where h�1=2�i;qh � N(0; 1); i = 1; 2, E(�1;qh�2;q0h) = 0 for all q 6= q0; and

eb(V; �) =
0B@ eb1(V; �)eb2(V; �)

1CA =

0B@ b1(V; �)� 1
2
�22(V; �)

@�12(V;�)
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2
�22(V; �)

@�22(V;�)
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1CA :
The last terms on the RHS of (2.15) involve stochastic integrals and cannot be

explicitly computed. However, they can be approximated, up to an error of order

o(h) by (see, for example, equation (3.7), pp. 347 in Kloeden and Platen (1999)):

Z (q+1)h

qh

�Z s

qh

dW1;�

�
dW2;s � h

�
1

2
�1�2 +

p
�p
�
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�
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�p
2�2 + �2;r
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�p
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;

where for j = 1; 2; �j; �j;p; &j;r; �j;r are iid N(0; 1) random variables, �p =
1
12
�

1
2�2

Pp
r=1

1
r2
; and p is such that as h! 0; p!1:

Stochastic Volatility with Jumps

Simulation of sample paths of di¤usion processes with stochastic volatility and

jumps follows straightforwardly from the previous two cases. Whenever both intensity
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and jump size are not state dependent, a jump component can be simulated and added

to either X(t) and/or the V (t) in the same manner as above. Extension to general

multidimensional and multifactor models both with and without jumps also follows

directly.

2.3.3.2 Simulating Distributions

In this section we sketch out methods used to construct ��step ahead simulated

conditional distributions using simulated data. In applications, simulation techniques

are needed when the functional form conditional distribution is unknown. We �rst

illustrate the technique for one factor models and then discuss multifactor models.

One factor models:

Consider the one factor model as in (2.9). To estimate the simulated CDFs,

Step 1: Obtain b�T;N;h (using the entire sample) or b�t;N;h (recursive estimator)
where b�T;N;h and b�t;N;h are estimators as discussed in Section 2.3.3.3 and 2.3.3.4.
Step 2: Under b�T;N;h or b�t;N;h20, simulate S paths of length � ; all having the

same starting value, Xt: In particular, for each path i = 1; :::S of length � ; generate

X
b�T;N;h
i;t+� (Xt) according to a Milstein schemes detailed in previous section, with � =b�T;N;h or b�t;N;h: The errors used in simulation are �qh iid� N(0; h), and Qh = � . �qh is

assumed to be independent across simulations, so that E(�i;qh�j;qh) = 0;for all i 6= j

and E(�i;qh�i;qh) = h; for any i; j: In addition, as the simulated di¤usion is ergodic,

the e¤ect of the starting value approaches zero at an exponential rate, as � !1.

Step 3: If b�T;N;h (b�t;N;h) is used, an estimate for the distribution; at time t + � ;
conditional on Xt; with estimator b�T;N;h(b�t;N;h), is de�ned as:

=
1

S

SX
i=1

1
n
X
b�T;N;h
i;t+� (Xt) � u

o
20Note that N = L for the SGMM estimator while N =M = S for NSQML estimator.
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BCS (2008) show that if the model is correctly speci�ed, then bF� (ujXt;b�T;N;h) provides
a consistent estimate of the conditional distribution F� (ujXt; �

y):

Speci�cally, assume that T;N; S !1: Then, for the case of SGMM estimator, if

h ! 0; T=N ! 0; and h2T ! 0; T 2=S ! 1; the following result holds for any Xt;

t � 1; uniformly in u

bF� (ujXt;b�T;N;h)� F� (ujXt; �
y)

pr! 0;

In addition, if the model is correctly speci�ed (i.e. if �(�; �) = �0(�; �) and �(�; �) =

�0(�; �)) then: bF� (ujXt;b�T;N;h)� F0;� (ujXt; �0)
pr! 0;

Step 4: Repeat Steps 1-3 for t = 1; :::; T�� : This yields T�� conditional distributions

that are ��Steps ahead which will be used in the construction of the speci�cation

tests.

The CDF simulation in the case selection test of multiple models with recursive

estimator is similar. For model k; let b�k;t;N;h be the recursive estimator of "pseudo
true" �yk computed using all observations up to varying time t: Then, X

b�k;t;N;h
k;i;t+� (Xt) is

generated according to a Milstein schemes as in Section 2.3.3.1, with � = b�k;t;N;h and
the initial value Xt; Qh = � . The corresponding empirical distribution of the simu-

lated series X
b�k;t;N;h
k;i;t+� (Xt) can then be constructed: Under some regularity conditions,

1

S

SX
i=1

1
n
u1 � X

b�k;t;N;h
k;i;t+� (Xt) � u2

o
pr! F

X
�
y
k
k;t+� (Xt)

(u2)�F
X
�
y
k
k;t+� (Xt)

(u1); t = R; :::; T�� ;

where F
X
�
y
k
k;t+� (Xt)

(u) is the marginal distribution of X
�yk
t+� (Xt) implied by k model

(i.e., by the model used to simulate the series), conditional on the (simulation) starting

value Xt: Furthermore, the marginal distribution of X�y
t+� (Xt) is the distribution of

Xt+� conditional on the values observed at time t: Thus, F
X
�
y
k
k;t+� (Xt)

(u) = F �k (ujXt; �
y
k):



46

Of important note is that in the simulation of X
b�k;t;N;h
k;i;t+� (Xt); i = 1; :::; S, for each

t; t = R; :::; T � � ; we must use the same set of randomly drawn errors and simi-

larly the same draws for numbers of jumps, jump times and jump sizes. Thus, we

only allow for the starting value to change. In particular, for each i = 1; :::; S; we

generate X
b�k;R;N;h
k;i;R+� (XR); :::; X

b�k;T��;N;h
k;i;T (XT�� ): This yields an SxP matrix of simulated

values, where P = T � R � � + 1 refers to the length of the out-of-sample period.

X
b�k;R+j;N;h
k;i;R+j+� (XR+j) (at time R + j + �) can be seen as � periods ahead value "pre-

dicted" by model k using all available information up to time R + jR+j, j = 1; :::; P

(the initial value XR+j and b�k;R+j;N;h estimated using X1; :::; XR+j): The key feature

of this setup is that it enables us to compare "predicted " � periods ahead values

(i.e. X
b�k;R+j;N;h
k;i;R+j+� (XR+j)) with actual values that are � periods ahead (i.e., XR+j+� ), for

j = 1; :::; P . In this manner, simulation based tests under ex-ante predictive density

comparison framework can be constructed.

Multifactor model:

Consider the multi-factor model with a skeleton
�
Xt; V

1
t ; :::; V

d
t

�0
(e.g. stochastic

mean, stochastic volatility models, stochastic volatility of volatility, etc.) where only

the �rst element Xt is observed. For simulation of the CDF; the di¢ culty arises as we

do not know the initial values of latent variables (V 1t ; :::; V
d
t )

0 at each point in time:

We generalize the simulation plan of BCS (2008) and Cai and Swanson (2011) to the

case of d dimensions. Speci�cally, to overcome the initial value di¢ culty, a natural

strategy is to simulate a long path of length L for each latent variable V 1t ; :::; V
d
t , use

them to construct Xt+� and the corresponding simulated CDF of Xt+� ; and �nally,

we average out the volatility values. Note that there are Ld combinations of the initial

values V 1t ; :::; V
d
t : For illustration, consider the case of stochastic volatility (d = 1)

and the Chen three factor model as in (2.6) (d = 2); using recursive estimators.

For the case of stochastic volatility (d = 1), i.e. (Xt; Vt)
0; the steps are as follows:

Step 1: Estimate b�t;N;L;h using recursive SGMM or NSQML estimation methods.
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Step 2. Using the scheme in (2.16) with � = b�t;N;L;h; generate the path V b�t;N;L;hqh

for q = 1=h; :::; Qh with Qh = L and hence obtain V
b�t;N;L;h
j j = 1; :::L.

Step 3: Using schemes in (2.15), (2.16), simulate LxS paths of length � , setting

the initial value for the observable state variable to be Xt: For the initial values of

unobserved volatility, use V
b�t;N;L;h
j;qh ; j = 1; :::L as retrieved in Step 2. Also, keep the

simulated random innovations (i.e.�1;qh;.�1;qh;
R (q+1)h
qh

�R s
qh
dW1;�

�
dW2;s) to be con-

stant across each j and t. Hence, for each replication i;using initial values Xt and

V
b�T;N;h
j;qh ; we obtain X

b�t;N;L;h
j;i;t+� (Xt) which is a � - step ahead simulated value.

Step 4: Now the estimator of F� (ujXt; �
y) is de�ned as:

bF� (ujXt;b�t;N;L;h) = 1

LS

LX
j=1

SX
i=1

1
n
X
b�t;N;h
j;i;t+� (Xt) � u

o
Note that, by averaging over the initial value of the volatility process, we have

integrated out it�s e¤ect. In other words, 1
S

PS
i=1 1

n
X
b�t;N;h
j;i;t+� (Xt) � u

o
is an estimate

of F� (ujXt; V
b�t;N;h
j;h ; �y):

Step 5: Repeat the Steps 1-4 for t = 1; :::; T � � : This yields T � � conditional

distributions that are ��steps ahead which will be used in the construction of the

speci�cation tests.

For three factor model (d = 2), i.e., (Xt; V
1
t ; V

2
t ), consider model (2.6), where

Wt = (W
1
t ;W

2
t ;W

3
t ) are mutually independent standard Brownian motions.

Step 1: Estimate b�t;N;L;h using SGMM or NSQML estimation methods.

Step 2: Given the estimated parameter b�
t;N;L;h

; generate the path V 1;
b�t;N;L;h

qh and

V
2;b�t;N;L;h
ph for q; p = 1=h; :::; Qh with Qh = L and hence obtain V 1;

b�T;N;L;h
j ,V 2;

b�T;N;L;h
k

j; k = 1; :::; L.

Step 3: Given the observable Xt and the L�L simulated latent paths (V
1;b�t;N;L;h
j

and V 2;
b�t;N;L;h

k j; k = 1; :::; L) as the start values , we simulate � -Step ahead

X
b�t;N;L;h
t+� (Xt; V

1;b�t;N;L;h
j ; V

2;b�t;N;L;h
k ). Since the start values for the two latent variables
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are L � L length, so for each Xt we have N2 path. Now to integrate out the initial

e¤ect of latent variables, form the estimate of conditional distribution as

bF�;s(ujXt;b�) = 1

L2

LX
j=1

LX
k=1

1
n
X
b�t;N;L;h
s;t+� (Xt; V

1;b�t;N;L;h
j ; V

2;b�t;N;L;h
k ) � u

o
;

where s denotes the sth simulation.

Step 4: Simulate X
b�t;N;L;h
s;t+� S times, that is, repeat Step 3 S times i.e. s = 1; :::; S.

The estimate of F� (ujXt; �
y) is

bF� (ujXt;b�) = 1

S

SX
i=1

bF�;s(ujXt;b�T;N;h)
Step 5: Repeat the Steps 1-4 for t = 1; :::; T � � : This yields T � � conditional

distributions that are ��steps ahead which will be used in the construction of the

speci�cation tests.

As a �nal remark, for the case of multiple competing models, we can proceed sim-

ilarly. In addition, in the next two subsections, we present the exactly identi�ed sim-

ulated (recursive) general method of moments and recursive nonparametric simulated

quasi-maximum likelihood estimators that can be used in simulating distributions as

well as constructing test statistics described in Section 2.3.2. The bootstrap analogs

of those estimators will be discussed in Section 2.3.4.

2.3.3.3 Estimation: (Recursive) Simulated General Method of Moments

(SGMM) Estimators

Suppose that we observe a discrete sample of T observations, say (X1; X2; :::; XT )
0;

from the underlying di¤usion in (2.9). The (recursive) SGMM estimator b�t;L;h with
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1 � t � T is speci�ed as:

b�t;L;h
= argmin

�2�

 
1

t

tX
j=1

g(Xj)�
1

L

LX
j=1

g(X�
j;h)

!0
W�1
t

 
1

t

tX
j=1

g(Xj)�
1

L

LX
j=1

g(X�
j;h)

!
(2.17)

= argmin
�2�

Gt;L;h(�)
0WtGt;L;h(�); (2.18)

where g is a vector of p moment conditions, � � <p (so that we have as many moment

conditions as parameters), and X�
j;h = X

�
[Qjh=L]; with L = Qh is the simulated path

under generic parameter � and with discrete interval h. X�
j;h is simulated using the

Milstein schemes.

Note that in the above expression, in the context of the speci�cation test b�t;L;h
is estimated using the whole sample, i.e. t = T . In the out of sample context, the

recursive SGMM estimator b�t;L;h is estimated recursively using the using sample from
1 up to t:

Typically, the p moment conditions are based on the di¤erence between sample

moments of historical and simulated data or, between sample moments and model

implied moments, whenever the latter are known in closed form. Finally, Wt is the

heteroskedasticity and autocorrelation (HAC) robust covariance matrix estimator,

de�ned as

W�1
t =

1

t

ltX
�=�lt

w�

t�ltX
j=�+1+lt

 
g(Xj)�

1

t

tX
j=1

g(Xj)

! 
g(Xj��)�

1

t

tX
j=1

g(Xj)

!0
;

(2.19)

where wv = 1� v=(lT + 1): Further, the pseudo true value, �y, is de�ned to be:

�y = argmin
�2�

G1(�)
0W0G1(�);
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where

G1(�)
0W0G1(�) = p lim

L;T!1;h!0
GT;L;h(�)

0WTGT;L;h(�);

and where �y = �0; if the model is correctly speci�ed.

In the above set up, the exactly identi�ed case is considered rather than the

overidenti�ed (S)GMM. This choice guarantees that G1(�
y) = 0 even under misspec-

i�cation, in the sense that the model di¤ers from the underlying DGP. As pointed

out by Hall and Inoue (2003), the root-N consistency does not hold for overidenti�ed

(S)GMM estimators of misspeci�ed models. In addition,

r�G1(�
y)0W

y
G1(�

y) = 0:

However, in the case for which the number of parameters and the number of moment

conditions is the same, r�G1(�
y)0W

y
is invertible, and so the �rst order conditions

also imply that G1(�
y) = 0:

Also note that other available estimation methods using moments include the

e¢ cient method of moments (EMM) estimator as proposed by Gallant and Tauchen

(1996, 1997), which calculates moment functions by simulating the expected value of

the score implied by an auxiliary model. In their setup, parameters are then computed

by minimizing a chi-square criterion function.

2.3.3.4 Estimation: Recursive Nonparametric Simulated Quasi Maxi-

mum Likelihood Estimators

In this section we outline a recursive version of the NPSQML estimator of Fermanian

and Salani´e (2004), proposed by CS (2011). The bootstrap counterpart of the re-

cursive NPSQML estimator will be presented in the next section.

One factor models:

Hereafter, let f
�
XtjXt�1; �

y� be the conditional density associated with the above
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jump di¤usion: If f is known in closed form, we can just estimate �y recursively, using

standard QML as:21

b�t = argmax
�2�

1

t

tX
j=2

ln f (XjjXj�1; �) ; t = R; :::; R + P � 1:: (2.20)

Note that, similarly to the case of SGMM, the pseudo true value �y is optimal in

the sense:

�y = argmax
�2�

E (ln f (XtjXt�1; �)) : (2.21)

for the case f is not known in closed form, we can follow Kristensen and Shin (2008)

and CS (2011) to construct the simulated analog bf of f and then use it to estimate �y.bf is estimated as function of the simulated sample pathsX�
t;i(Xt�1); for t = 2; :::; T�1;

i = 1; :::;M: First, generate T � 1 paths of length one for each simulation replication,

using Xt�1 with t = 1; :::T as starting values. Hence, at time t and simulation

replication i we obtain skeletons X�
t;i(Xt�1); for t = 2; :::; T � 1; i = 1; :::;M where

M is the number of simulation paths (number of random draws or X�
t;j(Xt�1) and

X�
t;l(Xt�1) are i.i.d.) for each simulation replication. M is �xed across all initial

values. Then the recursive NPSQML estimator is de�ned as follows:

b�t;M;h = argmax
�2�

1

t

tX
i=2

ln bfM;h (XijXi�1; �) �M

� bfM;h (XijXi�1; �)
�
; t � R;

where bfM;h (XtjXt�1; �) =
1

M�M

MX
i=1

K

 
X�
t;i;h(Xt�1)�Xt

�M

!
:

Note that with abuse of notation, we de�ne b�t;L;h for SGMM and b�t;M;h for
NPSQML estimators where L and M have di¤erent interpretations (L is the length

21Note that as model k is, in general, misspeci�ed,
PT�1

t=1 fk (XtjXt�1; �k) is a quasi-likelihood
and fk

�
XtjXt�1; �yk

�
is not necessarily a martingale di¤erence sequence.
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of each simulation path and M is number of random draws).

The function �M
� bfM;h (XtjXt�1; �)

�
is a trimming function. It has some charac-

teristics such as positive and increasing,

�M

� bfM;h (Xt; Xt�1; �)
�
= 0; if bfM;h (Xt; Xt�1; �) < �

�
M ;

and

�M

� bfM;h (Xt; Xt�1; �)
�
= 1; if bfM;h (Xt; Xt�1; �) > 2�

�
M ;

for some � > 0.22 Note that when the log density is close to zero, the derivative

tends to in�nity and thus even very tiny simulation errors can have a large impact

on the likelihood. The introduction of the trimming parameter into the optimization

function ensures the impact of this case to be minimal asymptotically.

Multifactor Models:

Since volatility is not observable, we cannot proceed as in the single factor case

when estimating the SV model using NPSQML estimator. Instead, let V �j be gener-

ated according to (2.16), setting qh = j; and j = 1; :::; L: The idea is to simulate L

di¤erent starting values for unobservable volatility, construct the simulated likelihood

functions accordingly and then average them out. For each simulation replication at

time t, we simulate L di¤erent values of Xt (Xt�1; V
�
j ) by generating L paths of length

one, using �xed observable Xt�1 and unobservable V �j , j = 1; :::; L as starting values:

Repeat this procedure for any t = 1; :::; T �1, and for any set j; j = 1; :::; L of random

errors �1;t+(q+1)h;j and �2;t+(q+1)h;j; q = 1; :::; 1=h: Note that it is important to use the

same set of random errors �1;t+(q+1)h;j and �2;t+(q+1)h;j across di¤erent initial values

for volatility. Denote the simulated value at time t; simulation replication i; under

22Fermanian and Salanie (2004) suggest using the following triming function:

�N (x) =
4(x� aN )3

a3N
� 3(x� aN )4

a4N
;

for aN � x � 2aN :
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generic parameter �; using Xt�1; V
�
j as starting values as X

�
t;i;h(Xt�1; V

�
j ): Then:

bfM;L;h (XtjXt�1; �) =
1

L

LX
j=1

1

M�M

MX
i=1

K

 
X�
t;i;h(Xt�1; V

�
j )�Xt

�M

!
;

and note that by averaging over the initial values for the unobservable volatility, its

e¤ect is integrated out. Finally, de�ne:23

b�t;M;L;h = argmin
�2�

1

t

tX
s=2

ln bfM;L;h (XsjXs�1; �) �M

� bfM;L;h (XsjXs�1; �)
�
; t � R:

Note that in this case, Xt is no longer Markov (i.e., Xt and Vt are jointly Markov-

ian, but Xt is not). Therefore, even in the case of true data generating process, the

joint likelihood cannot be expressed as the product of the conditional and marginal

distributions: Thus, b�t;M;L;h is necessarily a QML estimator. Furthermore, note that
r�f(XtjXt�1; �

y) is no longer a martingale di¤erence sequence; therefore, we need to

use HAC robust covariance matrix estimators, regardless of whether the model is the

�correct�model or not.

2.3.4 Bootstrap Critical Value Procedures

The test statistics presented in Section 2.3.1 and 2.3.2 are implemented using critical

values constructed via the bootstrap. As mentioned earlier, motivation for using the

bootstrap is clear. The covariance kernel of the statistics limiting distributions contain

both parameter estimation error and the data related time dependence components.

Asymptotic critical value cannot thus be tabulated in a usual way. Several methods

have been proposed to tackle this issue. One is the block bootstrap procedures which

we discuss. Others have been mentioned above.

With regarding to the validity of the bootstrap, note that, in the case of dependent

23For discussion of asymptotic properties of b�k;t;M;L;h; as well as of regularity conditions, see
CS(2011).
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observations without PEE, we can tabulate valid critical value using a simple empirical

version of the Künsch (1989) block bootstrap. Now, the di¢ culty in our context lies in

accounting for parameter estimation error. Goncalves and White (2002) establish the

�rst order validity of the block bootstrap for QMLE (or m-estimator) for dependent

and heterogeneous data. This is an important result for the class of SGMM and

NSQML estimators surveyed in this chapter, and allows Corradi and Swanson in CS

(2011) and elsewhere to develop asymptotically valid version of the bootstrap that can

be applied under generic model misspeci�cation, as assumed throughout this chapter.

For the SGMM estimator, as shown in CS (2005) the �rst order validity of the

block bootstrap is valid in the exact identi�cation case, and when T=S ! 0. In

this case, SGMM is asymptotically equivalent to GMM, and consequently there is no

need to bootstrap the simulated series. In addition, in the exact identi�cation case,

GMM estimators can be treated the same way that QMLE estimators are treated.

For the NSQML estimator, CS (2011) point out that the NPSQML estimator is

asymptotically equivalent to the QML estimator. Thus, we do not need to resample

the simulated observations as the negligible contribution of simulation errors.

Also note that critical values for these tests can be obtained using a recursive

version of the block bootstrap. When forming block bootstrap samples in the recur-

sive case, observations at the beginning of the sample are used more frequently than

observations at the end of the sample. This introduces a location bias to the usual

block bootstrap, as under standard resampling with replacement, all blocks from the

original sample have the same probability of being selected. Also, the bias term varies

across samples and can be either positive or negative, depending on the speci�c sam-

ple. A �rst-order valid bootstrap procedure for non simulation based m�estimators

constructed using a recursive estimation scheme is outlined in Corradi and Swanson

(2007a). Here we extend the results of Corradi and Swanson (2007a) by establishing

asymptotic results for cases in which simulation-based estimators are bootstrapped
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in a recursive setting.

Now the details of bootstrap procedure for critical value tabulation can be outlined

in 5 steps as follows:

Step 1: Let T = bl; where b denotes the number of blocks and l denotes the

length of each block. We �rst draw a discrete uniform random variable, I1; that can

take values 0; 1; :::; T � l with probability 1=(T � l + 1): The �rst block is given by

XI1+1 ; :::; XI1+l:We then draw another discrete uniform random variable, say I2; and a

second block of length l is formed, say XI2+1; :::; XI2+l: Continue in the same manner,

until you draw the last discrete uniform say Ib; and so the last block isXIb+1; :::; XIb+l:

Let�s call the X�
t the resampled series, and note that X

�
1 ; X

�
2 ; :::; X

�
T corresponds to

XI1+1; XI1+2; :::; XIb+l: Thus, conditional on the sample, the only random element is

the beginning of each block. In particular

X�
1 ; :::; X

�
l ; X

�
l+1; :::; X

�
2l; X

�
T�l+1; :::; X

�
T ;

conditional on the sample, can be treated as b iid blocks of discrete uniform random

variables. For a simple illustration the link between the bootstrap sample and the

original sample. Note that it can be shown that except a set of probability measure

approaching zero,

E�

 
1

T

TX
t=1

X�
t

!
=
1

T

TX
t=1

Xt +O
�
P (l=T ) (2.22)

V ar�

 
1

T 1=2

TX
t=1

X�
t

!
=

1

T

T�lX
t=l

lX
i=�l

(Xt �
1

T

TX
t=1

Xt)(Xt+i �
1

T

TX
t=1

Xt)

+OP �(l
2=T ); (2.23)

where E� and V ar� denotes the expectation and the variance operators with respect

to P � (the probability law governing the resampled series or the probability law
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governing the iid uniform random variables, conditional on the sample), and where

OP �(l=T ) (OP �(l
2=T )) denotes a term converging in probability P � to zero, as l=T ! 0

(l2=T ! 0):

In the case of recursive estimators, we proceed the bootstrap similarly as follows.

Begin by resampling b blocks of length l from the full sample, with lb = T: For

any given � ; it is necessary to jointly resample Xt; Xt+1; :::; Xt+� : More precisely, let

Zt;� = (Xt; Xt+1; :::; Xt+� ); t = 1; :::; T � � : Now, resample b overlapping blocks of

length l from Zt;� : This yields Zt;� = (X�
t ; X

�
t+1; :::; X

�
t+� ); t = 1; :::; T � � :

Step 2: Re-estimate b��t;N;h(b��T;N;L;h) using the bootstrap sample,
Zt;� = (X�

t ; X
�
t+1; :::; X

�
t+� ); t = 1; :::; T � �

(or full sample X�
1 ; X

�
2 ; :::; X

�
T ). Recall that if we use the entire sample for the

estimation, as the speci�cation test in CS(2005) and BCS(2008), then b��t;N;h is denoted
as b��T;N;h: The bootstrap estimators for SGMM and NPSQML are presented below:

Bootstrap (recursive) SGMM Estimators

If the full sample is used in the speci�cation test as in CS (2005) and BCS(2008),

the bootstrap estimator is constructed straightforward as

b��T;L;h
= argmin

�2�

 
1

T

TX
j=1

g(X�
j )�

1

L

LX
i=1

g(X�
j;h)

!0
W ��1
T

 
1

T

TX
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g(X�
j;h)

!
;

where W�1
T and g(:) are de�ned in (2.19) and L is the length of each simulation

path.

Note that it is convenient not to resample the simulated series as the simulation

error vanishes asymptotically. In implementation, we do not have mimic its contri-

bution to the covariate kernel.



57

In the case of predictive density type model selection where recursive estimators

are needed, de�ne the bootstrap analog as

b��t;L;h
= argmin

�2�

 
1

t

tX
j=1

  
g(X�

j )�
1

T

TX
j0=1

g(Xj0)

!
�
 
1

L

LX
i=1

g(X�
j;h)�

1

L

LX
i=1

g(X
b�t;L;h
j;h )

!!!0


��1t

 
1

t

tX
j=1

  
g(X�

j )�
1

T

TX
j0=1

g(Xj0)

!
�
 
1

L

LX
i=1

g(X�
j;h)�

1

L

LX
i=1

g(X
b�t;L;h
j;h )

!!!
= argmin

�2�
G�t;L;h(�)

0
��1t G�t;L;h(�);

where


��1t =
1

t

ltX
�=�lt

w�;t

t�ltX
j=�+1+lt

 
g(X�

j )�
1

T

TX
j0=1

g(Xj0)

! 
g(X�

j��)�
1

T

TX
j0=1

g(Xj0)

!

Note that each bootstrap term is recentered around the (full) sample mean. The

intuition behind the particular recentering in bootstrap recursive SGMM estimator is

that it ensures that the mean of the bootstrap moment conditions, evaluated at b�t;L;h
is zero, up to a negligible term. Speci�cally, we have
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= E�(g(X�
j ))�

1

T

TX
j0=1

g(Xj0) = O(l=T ); with l = o(T 1=2);

where the O(l=T ) term is due to the end block e¤ect (see Corradi and Swanson

(2007b) for further discussion).

Bootstrap Recursive NPSQML Estimators

Let Zt;� = (X�
t ; X

�
t+1; :::; X

�
t+� ); t = 1; :::; T � � . For each simulation replication,

generate T � 1 paths of length one, using X�
1 ; :::; X

�
T�1 as starting values, and so
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obtaining X�
t;j(X

�
t�1); for t = 2; :::; T � 1; i = 1; :::;M: Further, let:

bf �M;h �X�
t jX�

t�1; �
�
=

1

M�M

MX
i=1
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X�
t;i;h(X

�
t�1)�X�

t

�M

!
;

Now, for t = R; :::; R + P � 1, de�ne:

b��t;M;h
= argmax
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tX
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ln bfM;h �X�

l jX�
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�
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l jX�

l�1; �
��

��0
 
1

T

TX
l0=2

r�
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l0jX�
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� ����=b�t;M;h
�M
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+� 0M
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bfM;h (Xl0jXl0�1; �)

���b�t;M;h
ln bfM;h �Xl0jXl0�1;b�t;M;h���

where � 0M(�) denotes the derivative of �M(�) with respect to its argument. Note

that each term in the simulated likelihood is recentered around the (full) sample

mean of the score, evaluated at b�t;M;h: This ensures that the bootstrap score has
mean zero, conditional on the sample. The recentering term requires computation of

r�
bfM;h �Xl0jXl0�1;b�t;M;h� ; which is not known in closed form. Nevertheless, it can

be computed numerically, by simply taking the numerical derivative of the simulated

likelihood.

Bootstrap Estimators for Multifactor Model

The SGMM and the bootstrap SGMM estimators in the case of multifactor model

are similar as in one factor model. The di¤erence is that the simulation scheme (2.15)

and (2.16) are used instead of (2.14).

For recursive NPSQML estimators, to construct the bootstrap counterpart b��
t;M;L;h

of b�t;M;L;h; since M=T ! 1 and L=T ! 1; the contribution of simulation error is

asymptotically negligible. Hence, there is no need to resample the simulated obser-
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vations or the simulated initial values for volatility. De�ne:
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Now, for t = R; :::; R + P � 1, de�ne:
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where � 0M(�) denotes the derivative with respect to its argument.

Of note is that each bootstrap term is recentered around the (full) sample mean.

This is necessary because the bootstrap statistic is constructed using the last P re-

sampled observations, which in turn have been resampled from the full sample. In

particular, this is necessary regardless of the ratio, P=R. In addition, in the case

P=R ! 0, so that there is no need to mimic parameter estimation error, the boot-

strap statistics can be constructed using b�
t;M;L;h

instead of b��t;M;L;h:
Step 3: Using the same set of random variables used in the construction of the

actual statistics, construct X
b��t;N;h
i;t+�;� or X

b��t;N;h
k;i;t+�;�; i = 1; ::::; S and t = 1; :::; T � � : Note

that we do not need resample the simulated series (as L=T ! 1;simulation error

is asymptotically negligible). Instead, simulate the series using bootstrap estimators

and using bootstrapped values as starting values.

Step 4: Corresponding bootstrap statistics V 2�T;N;h (or Z
�
T;N;h; D

�
k;P;S; SV

2�
T;N;h;

SZ�T;N;h; SD
�
k;P;S depending on the types of tests) which are built on b��t;N;h (b��t;N;L;h)
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then are followed correspondingly: For the numerical implementation, again, of im-

portance note is that in the case where we pick the choice P=R ! 0; P; T;R ! 1;

there is no need to re-estimate b��t;N;h(b��t;N;L;h): b�t;N;h (b��t;N;L;h) can be used in all the
bootstrap replications.

Step 5: Repeat the bootstrap Steps 1-4 B times, and generate the empirical

distribution of the B bootstrap statistics.

2.4 Summary of Empirical Applications of the Tests

In this section, we brie�y review some empirical applications of the methods discussed

above. We start with unconditional distribution test, as in CS (2005), then give a

speci�c empirical example using the conditional distribution test from BCS (2008).

Finally, we brie�y discuss on conditional distribution speci�cation test applied to

multiple competing models. The list of the di¤usion models considered are provided

in Table 2.1.
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Table 2.1: Speci�cation Test Hypotheses of Short Rate Processes24

Model Speci�cation
Reference,

Hypothesis

Wong25 dr(t) = (�� �� r(t))dt+
p
�r(t)dW r(t) CS (2005),H1

CIR dr(t) = kr (r � r(t)) dt+
p
V (t)dW r(t);

BCS (2008),H2

Cai& Swanson (2011)

H2&H3

CEV dr(t) = kr (r � r(t)) dt+ �rr(t)
�dW r(t)

Cai & Swanson (2011)

H2&H3

SVJ26

dr(t) = kr (r � r(t)) dt+
p
V (t)dW r(t)

+Judqu�Jddqd;

dV (t) = kv (v � V (t)) dt+ �v
p
V (t)dW v (t) ;

BCS (2008), H2

Cai & Swanson (2011)

CHEN

dr (t)= �r (� (t)� r (t)) dt+
p
V (t)dW r;

dV (t)= �v (v � V (t)) dt+ �v
p
V (t)dW v (t) ;

d� (t)= ��
�
��� (t)

�
dt+ ��

p
� (t)dW � (t) ;

Cai & Swanson (2011)

H2&H3

CHENJ

dr (t)= �r (� (t)� r (t)) dt+
p
V (t)dW r (t)

+Judqu�Jddqd;

dV (t)= �v (v � V (t)) dt+ �v
p
V (t)dW v (t) ;

d� (t)= ��
�
��� (t)

�
dt+ ��

p
� (t)dW � (t) ;

Cai & Swanson (2011)

H2&H3

Note that speci�cation testing of the �rst model - a simpli�ed version of the

CIR model (we refer to this model as Wong) is carried out using the unconditional

distribution test. With the cumulative distribution function known in closed form as

in (2.10), the test statistic can be straightforwardly calculated. It is also convenient

24In the 3rd column, H1, H2 and H3 denote Hypothesis 1, Hypothesis 2 and Hypothesis 3, re-
spectively. The hypotheses are presented corresponding to the references in the third column. For
example, for CIR model, H2 corresponds to BCS (2008) and H2, H3 correspond to Cai and Swanson
(2011).
25This model is a simpli�ed version of the CIR model. For convenience, we refer to this model as

Wong.
26Data used for Stochatic Volatility and Jump (SVJ) model is the same as in CIR Model.
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to use GMM estimation in this case as the �rst two moments are known in closed

form, i.e. �� � and �=2(�� �); respectively. CS (2005) examine Hypothesis 1 using

simulated data. Their Monte Carlo experiments suggest that the test is useful, even

for samples as small as 400 observations.

Hypothesis 2 is tested in BCS (2008) and Cai and Swanson (2011). For illus-

tration, we focus on the results in BCS (2008) where CIR, SV and SVJ models are

empirically tested using the one-month Eurodollar deposit rate (as a proxy for short

rate) for the sample period January 6, 1971 - September 30, 2005, which yields 1,813

weekly observations. Note that one might apply these tests to other datasets including

the monthly federal funds rate, the weekly 3-month T-bill rate, the weekly US dollar

swap rate, the monthly yield on zero-coupon bonds with di¤erent maturities, and the

6-month LIBOR. Some of these variables have been examined elsewhere, for example

in Ait-Sahalia (1999), Andersen, Benzoni and Lund (2004), Dai and Singleton (2000),

Diebold and Li (2006, 2007), and Piazzesi (2001).

The statistic needed to apply the test discussed in Section 2.3.1.2 is:

ZT = sup
v2V

jZT (v)j ;

where

ZT (v) =
1p
T � �

T��X
t=1

 
1

S

SX
s=1

1
n
u � X

b�T;N;h
s;t+� � u

o
� 1fu � Xt+� � ug

!
1 fXt � vg ;

and

Z�T = sup
v2V

jZ�T (v)j ;
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where
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For the case of stochastic volatility models, similarly we have:

SZT = sup
v2V

jSZT (v)j ;

where
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and its bootstrap analog

SZ�T = sup
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BCS (2008) carry out these tests using � �Step ahead con�dence intervals. They

set � = f1; 2; 4; 12g which corresponds to one week, two week, one month, and one

quarter ahead intervals and set (u; u) = (X � 0:5�X ; X � �X); covering 46.3% and
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72.4% coverage, respectively. X and �X are the mean and variance of an initial

sample of data. In addition, S = f10T; 20Tg and l = f5; 10; 20; 50g:

For illustrative purposes, we report one case from BCS (2008). The test is im-

plemented by setting S = 10T and l = 25 for the calculation of both ZT and SZT :

In the Table 2.2, single, double, and triple starred entries represent rejection using

20%; 10%; and 5% size tests, respectively. Not surprisingly, the �ndings are consistent

with some other papers in the speci�cation test literature such as such as Aït-Sahalia

(1996) and Bandi (2002). Namely, the CIR model is rejected using 5% size tests in

almost all cases. When considering SV and SVJ models, smaller con�dence intervals

appear to lead to more model rejections. Moreover, results are somewhat mixed when

evaluating the SVJ model, with a slightly higher frequency of rejection than in the

case of SV models.

Table 2.2: Empirical Illustration of Speci�cation Testing - CIR, SV; SV J Models

(u; u) CIR SV SV J

ZT 5% CV 10% CV SZT 5% CV 10% CV SZT 5% CV 10% CV

l = 25

1 X � 0:5�X 0.5274*** 0.2906 0.3545 0.9841*** 0.8729 0.9031 1.1319 1.8468 2.1957

X � �X 0.4289*** 0.2658 0.3178 0.6870 0.6954 0.7254 1.2272* 1.1203 1.3031

2 X � 0:5�X 0.6824*** 0.4291 0.4911 0.4113 1.3751 1.4900 0.9615* 0.8146 1.1334

X � �X 0.4897* 0.4264 0.5182 0.3682 1.1933 1.2243 1.2571 1.3316 1.4096

4 X � 0:5�X 0.8662** 0.7111 0.8491 1.2840 2.3297 2.6109 1.5012* 1.1188 1.6856

X � �X 0.8539* 0.7521 0.9389 1.0472 2.2549 2.2745 0.9901* 0.9793 1.0507

12 X � 0:5�X 1.1631* 1.0087 1.3009 1.7687 4.9298 5.2832 2.4237* 2.0818 3.0640

X � �X 1.0429 1.4767 2.0222 1.7017 5.2601 5.6522 1.4522 1.7400 2.1684

(�) Notes: Tabulated entries are test statistics and 5%, 10% and 20% level critical values. Test

intervals are given in the second column of the table, for � =1; 2; 4; 12. All tests are carried out

using historical one-month Eurodollar deposit rate data for the period January 1971 - September

2005, measured at a weekly frequency. Single, double, and triple starred entries denote rejection

at the 20%,10%, and 5% levels, respectively. Additionally, X and �X are the mean and standard

deviation of the historical data. See above for complete details.
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Finally, turning to Hypothesis 3, Cai and Swanson (2011) use an extended

version of the above dataset, i.e. the one-month Eurodollar deposit rate from January

1971 to April 2008 (1,996 weekly observations). Speci�cally, they examine whether

the CHEN model is the �best�model amongst multiple alternative models including

those outlined in Table 2.1. The answer is "yes". In this example, the test was

implemented using Dk;p;N(u1; u2); as described in Sections 2.3.1 and 2.3.2, where

P = T=2 and predictions are constructed using recursively estimated models and

the simulation sample length used to address latent variable initial values is set at

L = 10T . The choice of other inputs to the test such as � and interval (u; u) are the

same as in BCS (2008). The number of replications S; the block length l and number

of bootstrap replications are S = 10T; l = 20 and B = 100.

Cai and Swanson (2011) also compare the Chen model with the so called Smooth

Transition Autoregression Model (STAR) model de�ned as follows:

rt = (�1 + �1rt�1)G(; zt; c) + (�1 + �2rt�1)(1�G(; zt; c)) + ut

where ut is a disturbance term, �1; �1;  , �2; and c are constants, G(�) is the

logistic CDF (i.e. G(; zt; c) = 1
1+exp((zt�c)) ), and the number of lags, p is selected

via the use of Schwarz information criterion. Test statistics and predictive density

type �mean square forecast errors�(MSFEs) values are again calculated as in Section

2.3.1 and 2.3.2.27 Their results indicate that at a 90% level of con�dence, one cannot

reject the null hypothesis that the CHEN model generates predictive densities at

least as accurate as the STAR model, regardless of forecast horizon and con�dence

interval width. Moreover, in almost all cases, the CHEN model has lower MSFE, and

the magnitude of the MSFE di¤erential between the CHEN model and STAR model

rises as the forecast horizon increases. This con�rms their in-sample �ndings that the

CHEN model also wins when carrying out in-sample tests.

27See Table 6 in Cai and Swanson (2011) for complete details.
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2.5 Concluding Remarks

This chapter reviews a class of speci�cation and model selection type tests developed

by CS (2005), BCS (2008) and CS (2011) for continuous time models. We begin with

outlining the setup used to specify the types of di¤usion models considered in this

chapter. Thereafter, di¤usion models in �nance are discussed, and testing procedures

are outlined. Related testing procedures are also discussed, both in contexts where

models are assumed to be either correctly speci�ed under the null hypothesis or gener-

ically misspeci�ed under both the null and alternative test hypotheses. In addition

to discussing tests of correct speci�cation and test for selecting amongst alternative

competing models, using both in-sample methods and via comparison of predictive

accuracy, methodology is outlined allowing for parameter estimation, model and data

simulation, and bootstrap critical value construction.

Several extensions that are left to future research are as follows. First, it remains

to construct speci�cation tests that do not integrate out the e¤ects of latent factors.

Additionally, it remains to examine the �nite sample properties of the estimators and

bootstrap methods discussed in this chapter.
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Chapter 3

Volatility in Discrete and Continuous Time

Models: A Survey with New Evidence on Large

and Small Jumps

3.1 Introduction

This chapter explains how a mixture of discrete jump processes and continuous di¤u-

sion processes came to be used to model volatility in modern empirical �nance. In the

�rst part of the chapter, we present a selective survey of discrete-time and continuous-

time volatility models and include a quick summary of the empirical �ndings. After

noting that volatility modeling can be viewed as a missing data problem, we quickly

discuss the traditional discrete-time models, some newer parametric continuous-time

models, and some new nonparametric continuous-time models. Our focus is how the

earlier literature link to the newer literature that mixes jump processes and di¤usion

processes. Finally, we use methods presented in Duong and Swanson (2010), to look

for jumps in tick-by-tick data on 25 stocks. Modeling and forecasting �nancial asset

return volatility constitute two cornerstones in modern econometric research. Volatil-

ity is a key factor in portfolio allocation and in pricing options and more advanced

�nancial instruments known as derivatives.28 So, volatility lies at the heart of many

28See Carr and Lee (2003, 2009) for more disussion on volatility-based derivative products.
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modern �nancial calculations. Unfortunately, the true process generating volatility

is unobserved, despite the ironic fact that di¤erent levels of "volatility�are reported

on the evening news.

The literature on estimating volatility is vast, which is to be expected given it�s

practical and theoretical importance to modern �nance. This chapter tells the story

of how a mixture of discrete jump processes and continuous di¤usion process came

to be used to model volatility, it discusses some methods for detecting or estimating

jumps, and it presents some more empirical evidence that jumps can be detected in

high-frequency �nancial data. The availability of high-frequency �nancial data is an

essential precursor to the continuous-time and jump-process literature, and enables

�nancial econometricians to estimate continuous-time models.

We begin by looking at the key ARCH class of models, followed by a discussion of

the class of continuous time processes frequently used in �nance and the link between

discrete time and continuous time models. We then discuss the construction of im-

plied volatility in the Black-Scholes framework, and generalizations thereof. and it�s

extensions. Finally, we discuss recent research in the area of "model free" estimation

of integrated volatility via use of so-called realized volatility, and variants thereof

called realized measures. In our empirical investigation, we use realized measures to

investigate the role of jumps in the realized variation of stock price returns.

The importance of realized volatility to econometric modelling is now obvious.

For example, future realized volatilities are often used in the so-called variance swap,

an important product in the volatility derivative market. Other products that use

realized volatility such as caps on the variance swap, corridor variance swaps, and

options on realized volatility have also been introduced into the class of volatility

related �nancial instruments traded in �nancial markets. The key here is that in-

vestors worry about future volatility risk, and hence often choose to opt for this type
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of contract in order to hedge against it.29 Realized volatility is also needed for cal-

culation of the variance risk premium, a new �nancial variable that has interesting

implications in asset pricing. For example, Bollerslev, Tauchen and Zhou (2009) �nd

that the variance risk premium is able to explain time-series variation in post-1990

aggregate stock market returns with high (low) premia predicting high (low) future

returns. Finally, note that in the context of realized volatility, jumps have a signif-

icant impact on modeling and forecasting volatility and it�s realized measures. For

example, when jumps are present, realized volatility is a biased estimator of inte-

grated volatility. Thus, practitioners who are interested in modeling risks associated

with continuous components of return processes, or integrated volatility, should use

carefully designed realized measures that take jumps e¤ects into account.30 Careful

analysis of jumps and realized measures in the presence of jumps are crucial elements

to any reasonable quanti�cation of risk. Moreover, several authors31 have found that

separation of continuous components from jump components can improve forecasts

of future realized volatility. This �nding should be of great interest to practitioners,

especially when their objective is hedging. In summary, risk, or volatility plays an

important role in many areas of econometrics used in the �nance industry. However,

as volatility is generally unmeasured, it poses a standard sort of "missing variable"

problem.

Turning back to our discussion of jumps, note that evidence of jumps in �nancial

markets is plentiful. In an important paper, Huang and Tauchen (2005) �nd evidence

of jumps for S&P cash and future (log) returns from 1997 to 2002, in approximately

7% of the trading days. Their test for jumps requires the jump component to be a com-

29Volatility and variance swaps are newer hedging instruments, adding to the traditional volatility
"Vega", which is derived from options data. See Hull (1997, pp. 328) for a de�nition of Vega. For
example, as noted in Carr and Lee (2009), the UBS book was short many millions of vega in 1993,
and they were the �rst to use variance swaps and options on realized volatility to hedge against
volatility risk.
30See Corradi, Distaso and Swanson (2009, 2011) for discussion of prediction of integrated volatil-

ity.
31For instance, see Andersen, Bollerslev and Diebold (2007).
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pound Poisson process. Several authors, including Cont and Mancini (2007), Tauchen

and Todorov (2010) and Aït-Sahalia and Jacod (2009b) have taken the analysis of

jumps one step further by developing tests to ascertain whether the process describing

an asset contains "in�nite activity jumps" - those jumps that are tiny and look simi-

lar to continuous movements, but whose contribution to the jump risk of the process

is not negligible. Cont and Mancini (2007) implement their method of testing for the

existence of in�nite activity jumps using foreign exchange rate data, and �nd no evi-

dence in�nite activity jumps. Aït-Sahalia and Jacod (2009b) estimate that the degree

of activity of jumps in Intel and Microsoft log returns is approximately 1.6, which

implies evidence of in�nite activity jumps for these, and possibly many other stocks.

Andersen, Bollerslev and Diebold (ABD: 2007) �nd that separating out the volatility

jump component results in improved out-of-sample volatility forecasting, and �nd

that jumps are closely related to macroeconomic announcements. In summary, it is

now generally accepted that many return processes contain jumps.

In the part of this chapter that present empirical �ndings relevant to the topic

discussed in previous sections, we examine high frequency data for 25 stocks in the

DOW 30, using 5 minute interval observations, and for the sample period from 1993

to 2008. Some of the stocks in our data set, (e.g. Microsoft and Intel) have been found

to be characterized by in�nite activity jumps by Aït-Sahalia and Jacod (2009b), and

therefore do not belong to the class of �nite activity jump processes that Barndor¤-

Nielsen and Shephard (BNS: 2006) has often been applied to. This fact underscores

the importance of the recent papers by Jacod (2008), Tauchen and Todorov (2010)

and Aït-Sahalia and Jacod (2009a,b), where new limit theory applicable to in�nite

activity is implemented and developed; and underscores why the results of these

papers are used in our empirical investigation. In summary, we �nd evidence of

jumps in around 22.8% of the days in the 1993-2000 period, and 9.4% in the 2001-

2008 period. This degree of jump activity implies more (jump induced) turbulence in
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�nancial markets in the previous decade than the current decade. However, and as

expected, the prevalence of "large" jumps varies across these periods. (Note that we

examine large jumps by picking 3 di¤erent �xed  levels, corresponding to 50th; 75th

and 90th percentiles of samples of the monthly maximum return increments, i.e.

our monthly �abnormal event" samples.) In particular, large jump activity increases

markedly during the 2001-2008 period, with respect to its contribution to the realized

variation of jumps and with respect to the contribution of large jumps to the total

variation of the (log) price process. This suggests that while the overall role of jumps

is lessening, the role of large jumps has not decreased, and indeed, the relative role

of large jumps, as a proportion of overall jumps has actually increased in the 2000s.

Note that this result holds on average across all 25 stocks examined. In summary, it

appears that frequent �small" jumps of the 1990s have been replaced with relatively

infrequent "large" jumps in recent years. Interestingly, this result holds for all of

the stocks that we examine, supporting the notion that their is strong co-movement

across jump components for a wide variety of stocks, as discussed in Bollerslev, Law

and Tauchen (2008).

The rest of the chapter is organized as follows: Section 3.2 discusses volatility

models in discrete time. Section 3.3 discusses volatility models in continuous time,

and outlines various measures used to estimate (and forecast) volatility. Section

3.4 summarizes results from the extant testing and prediction literatures that are

often used in the study of volatility, and in particular that are used in our empirical

investigation that is presented in Section 3.5. Concluding remarks are contained

Section 3.6.
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3.2 Volatility Models in Discrete Time

A number of important stylized facts have emerged from empirical studies of discrete-

time models. After discussing these stylized facts, we review discrete-time models

and then discuss Nelson (1990) and Corradi (2000), which link the discrete-time and

continuous-time literatures. This chapter is not a survey of the huge literature on

discrete-time models that began with the seminal papers by Engle (1982), Bollerslev

(1986) and Nelson (1991). See Bollerslev, Chou and Kronner (1992) and Bollerslev,

Engle and Nelson (1994) for more complete introductions.

3.2.1 Stylized Facts in Financial Market - Directions for Volatil-

ity Models

It is well-known in empirical �nance that asset returns share various regularities, all

of which guide �nancial economists and econometricians in their choice of models.

These stylized facts have been discussed by many authors. Here, we highlight some

of them that pertain to stock returns.

Leptorkurtosis: Asset returns have been noted by Mandelbrot (1963) and Fama

(1965) to have fat tails and one therefore should use non-normal distributions to model

their dynamics. Fama (1965) shows evidence of excess kurtosis in the distribution

of stock returns. According to Clark (1973), a stochastic process is fat tailed if it

is conditionally normal with a randomly changing conditional variance. Engle and

González-Rivera (1991) introduce a semi-parametric volatility model, which allows

for generic return distributions.

Volatility Clustering and Persistence: By observing cotton prices, Mandelbrot

(1963) stressed that �.... large changes tend to be followed by large changes, of either

sign, and small changes tend to be followed by small changes...�. The persistence

of shocks to the conditional variance of stock returns seems to be clear. The in-
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terpretation of this persistence as well as how long the shocks persist are crucial in

specifying the �correct�dynamics. Porterba and Summers (1986) note that volatility

shocks may a¤ect the entire term structure, associated risk premia, and investment

in long-lived capital goods.

Volatility persistence is an important feature that pertains to models with time

varying and codependent variance. Black and Scholes (1973) wrote that �...there is

evidence of non-stationary in the variance. More work must be done to predict vari-

ances using the information available.�. Since their chapter, numerous autoregressive

conditional heteroskedasticity, volatility and stochastic volatility models have been

developed.

Leverage E¤ects: Black (1976) observes that changes in stock prices seem to be

negatively correlated with changes in stock volatility. Volatility seems to increase

after bad news and decrease after good news. Schwert (1989, 1990) presents empirical

evidence that stock volatility is higher during recessions and �nancial crises. Christie

(1982) discusses economic mechanisms that explain this e¤ect. Speci�cally, reductions

in equity value raise the riskiness of �rms, as implied by debt to equity ratios, and

therefore lead to increases in future volatility. For modeling, Nelson (1991) suggests

a new model that captures the asymmetric relation between returns and changes in

volatility.

Co-movement in Volatilities. This is also �rst commented on by Black (1976). He

points out the commonality in volatility changes across stocks. When stock volatilities

change, they all tend to change in the same direction. This suggests that (few)

common (unobserved or missing) factors might be speci�ed when modelling individual

asset return volatility.
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3.2.2 ARCH and GARCH Models

In this section, we discuss the autoregressive conditional heteroskedasticity (ARCH)

model of Engle (1982) and the Generalized ARCH (GARCH) model of Bollerslev

(1986), as well as related models. These models are very well known, but we cover

them in moderate detail in order to trace the evolution to the modern continuous-time

and jump-process literatures.

Uncovering the correct conditional volatility speci�cation is important in �nance

because misspeci�ed models can leave modellers with erroneous information about

the risk return trade-o¤ of investments. For investment decision-making, risk-averse

investors take into account not only expected returns, but also the level of risk.

Investors demand risk premia for risk and the risk premium may include premia due

to changes in volatility. In risk neutral pricing, a measure of volatility is needed for

the derivation of the market price of risk.

The di¢ culties in specifying an acceptable trade-o¤ between �exibility and par-

simony, as well as settling on a model capable of picking up the key stylized facts

caused the discrete-time literature to grow very quickly. From our perspective, we

note that similar di¢ culties have had a similar e¤ect on the continuous-time litera-

ture. In this survey, we focus on a few basic discrete-time models and how they relate

to continuous-time models.

Turning to our discussion of ARCH type models, let Xt be a �nancial asset re-

turn, say, and Ft�1 denotes a �ltration of all information through time t � 1. The

prototypical autoregressive conditional heteroskedasticity (ARCH) model has:

Xt = "t�t

"t � i:i:d with

E("t) = 0 and V ar("t) = 1
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�2t = �0 + �1X
2
t�1

and in the more general case:

XtjFt�1 � N(Zt�; �2t )

�2t = h("t�1; "t�2;:::;"t�p; �)

"t = Xt � Zt�

where Zt may contain lags of Xt: If the function h contains current and lagged X 0s,

then

�2t = h("t�1; "t�2;:::;"t�p; xt; xt�1;:::;xt�p; �)

In this class of models, ARCH(p) is the most popular where

XtjFt�1 � N(Zt�; �2t )

�2t = �0 + �1"
2
t�1 + �2"

2
t�2 + : : : �p"

2
t�p

Engle (1982) proposes a convenient estimation and testing methodology for the

model using maximum likelihood. He shows that � and � could be estimated sep-

arately under some regularity conditions.32 To capture the trade-o¤ between risk

and expected return, Engle, Lilien and Robins (1987) introduce ARCH in mean, or

ARCH-M models. Let

Xt = g(Zt�1; �
2
t ; b) + "t

The appealing feature of this model is that the conditional mean, �t; is a function

of the variance, i.e. �t = g(Zt�1; �
2
t ; b): This helps us to model directly the risk-

return relationship, and has important implications for predicting the conditional

32For details, see Sections 4 and 5 in Engle (1982).
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mean function, since the conditional volatility enters therein. The parametric choice

for the function g depends on the modeler. In practice, many papers set g to be a

linear or logarithmic function.

An important improvement to these models is made by Bollerslev (1986), where

the ARCHmodel is generalized to the Generalized ARCH (GARCH) model. As noted

in Bollerslev (1986), the extension from ARCH to GARCH is similar to the extension

in time series modelling of an AR to an ARMA model. Speci�cally, as in the case of

the ARCH model, let "t be the innovation in a linear regression

"t = Xt � Z 0t�

Then the GARCH (p,q) speci�cation is given by

"tjFt�1 � N(0; �2t )

�2t = �0 +

qX
i=1

�i"
2
t�i +

pX
i=1

�i�
2
t�i

"t = Xt � Zt�

where p and q denote lag orders, and

p � 0; q > 0

�0 > 0; �i � 0; i = 1; :::; q

�i � 0; i = 1; :::; p

It is clear that the di¤erence between the above set up and the ARCH model is

the linear lagged conditional variances. Conditional volatility today not only depends

on the lagged innovations but also on lagged conditional volatilities.

Bollerslev (1986) presents a complete set of results on the conditions under which
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the model is appropriate, as well as maximum likelihood and testing procedures for

implementing the general GARCH (p,q) model. The most successful model, empiri-

cally, is the GARCH(1,1) model. Engle and Bollerslev (1986) discuss the so-called In-

tegrated GARCH or IGARCHmodel. Under this speci�cation,
Pq

i=1 �i+
Pp

i=1 �i = 1;

and this leads to a unit root in the volatility equation.

In other key papers, Nelson (1990, 1991) discusses the use of EARCH (i.e., expo-

nential ARCH) to approximate continuous time processes. Nelson (1991) points out

that the GARCH model has several limitations in empirical applications to �nancial

markets. For instance, in the GARCH model, volatility responds symmetrically to

positive and negative residuals and therefore does not explain the stylized leverage

e¤ect. In lieu of this, Nelson (1991) proposes the Exponential ARCH, or EARCH in

which the volatility function is constructed as follows:

Xt = �t"t

"t � i:i:d with

E("t) = 0 and V ar("t) = 1

and

ln(�2t ) = �t +
1X
k=1

�kg("t�k); �1 � 1

where f�tgt=�1;1 and f�kgk=1;1 are parameters.

The choice for the functional form of g is

g("t) = �"t + (j"tj � Ej"tj)

This set-up allows the conditional variance process to respond asymmetrically to

rises and falls in stock prices. It is straightforward to verify this as when "t is positive

g("t) = (� + )"t � E(j"tj) and when "t is negative g("t) = (� � )"t � E(j"tj): In
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each case, the g("t) is linear function with a di¤erent slope.

In addition, Nelson (1991) points out, while in GARCH, it is di¢ cult to ver-

ify the persistence the shocks to the variance, in the EARCH model, the station-

arity and ergodicity of the logarithm of the variance process are easily checked.

He states conditions for the ergodicity and strict stationarity of fexp(��t�2t )g and

fexp(��t=2Xt)g.33 Other modi�cations of the GARCH (1,1) model include the GJR

model proposed by Glosten, Jaganathan and Runkle (1993). This model imposes

structure that induces asymmetry in shocks to returns in a di¤erent way. Namely,

they de�ne

�2t = ! + �"
2
t + "

2
t1f"t�0g + ��

2
t�1

Note that when  < 0; positive return shocks increase volatility less than negative

shocks.

The above discussion summarizes a very few of the important models in class of

discrete ARCH models.34 In addition to these models, there have been many modi�-

cations and improvements. For a complete list and discussion, see Bollerslev (2008),

where he provides a Glossary to ARCH. For models with multivariate speci�cations

(see Bollerslev, Engle and Wooldbridge (1988)). In the next section, we will high-

light some links between discrete time models and continuous time models in the

framework of modeling volatility.

3.2.3 From ARCH and GARCH to Continuous Time Models

An interesting aspect of the volatility literature is the connection between discrete

time and continuous time models. In the case of constant volatility, the classical

33See Theorem 2.1 in Nelson (1991).
34We also present the work of Heson and Nandi (2000) and Barone-Adesi, Engle, Mancini (2008)

which use modi�cations of ARCH models for option pricing in Section 3.2.2.
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result by Cox and Ross (1976) shows that the limiting form of the jump process

dXt = �Xtdt+ cXtdNt(�)

as � ! 0 is the di¤usion process

dXt = �Xtdt+ �XtdWt

where � is a function of c. Nt(�) is a continuous time Poisson process with intensity

�; (i.e., dNt is the number of jumps of Xt during dt and is Poisson-distributed with

parameter �dt). cXt is the jump amplitude and Wt is a standard Brownian motion.

In another important research, Nelson (1990) bridges the gap between discrete and

continuous time stochastic volatility models by using AR(1) Exponential ARCH and

GARCH (1,1) models as approximations for continuous time processes. It should be

noted that in this approximation framework, only the discrete models with one lag are

relevant due to the characteristics of continuous time models. GARCH models with

two more lags as explanatory variables are not relevant. Under certain assumptions,35

Nelson (1990) at �rst looks at the GARCH (1,1) - M process of Engle and Bollerslev

(1986)

Xt = Xt�1 + c�
2
t + �t"t;

�2t = ! + �
2
t [� + �"

2
t ];

If time is partitioned more �nely, one can write the above di¤erence equation as

Xkh = X(k�1)h + hc�
2
kh + �kh"kh

�2(k+1)h = !h + �
2
kh[�h + h

�1�h"
2
kh];

35For details, see Section 2 in Nelson (1990).
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where h is the time increment and "kh � i:i:d N(0; h): He shows that if h goes to 0

in the limit, this system converges weakly in distribution36 to a di¤usion process of

the form

dXt = c�
2
tdt+ �tdW1t

d�2t = (! � ��2t )dt+ ��2tdW2t

whereW1t andW2t are linearly independent standard Brownian motions, independent

of the initial values (X0; �
2
0).

In another important paper in this line of research, Corradi (2000) considers the

limit when h! 0; of the GARCH (1,1) process

Xkh �X(k�1)h = �(k�1)h"kh;

�2kh � �2(k�1)h = !h + (!1h � 1)�2(k�1)h + h�1!2h�2(k�1)h"kh

She shows that in the limit, this system converges to either one of the following

continuous time processes, depending on the parameters !1h and w2h37

dYt = �tdWt

d�2t = (!0 + ��
2
t )dt

or

dYt = �tdW1t

d�2t = (!0 + ��
2
t )dt+ ��

2
tdW2t

where (W1t;W2t) are two standard independent Brownian motions.

36For a de�nition of weak convergence for stochastic processes, see Billingsley (1978).
37For details, see Proposition 2.1 in the Corradi (2000).
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Nelson (1990) also introduces a class of ARCH models which can approximate a

wide range of stochastic di¤erential equations. He investigates the approximations of

the system of stochastic di¤erential equations de�ned as follows:

dXt = fdt+ gdW1t

dYt = Fdt+GdW2t

�
dW1;t

dW2;t

�
[dW1;t 2;t] = 
dt

where the �rst equation is univariate, Yt is vector of latent state variables, W1t can

be correlated with elements in W2t:, and F;G; f; g are functions of Xt; Yt; and t: He

shows that the above system is the limit of the following ARCH type discrete time

system of di¤erence equations

X(k+1)h = Xkh + fh+ g"kh

Y(k+1)h = Ykh + Fh+G"
�
kh

where "�kh corresponds to W2t and is constructed on the basis of "kh � N(0; h) and


:38

3.3 Volatility in Continuous Time

3.3.1 Continuous Time Models

While many �nancial economists have long preferred the continuous-time frame-

work,39 the availability of high-frequency data made feasible the econometric analysis

of continuous-time models. As with discrete time models, the di¢ cult choices involved

38For details on the construction of "�kh; see Section 3.2 in Nelson (1990).
39For example, see Du¢ e (2001) for asset pricing in continuous time.
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in specifying the volatility function have given rise to a plethora of models.

Over the last 20 years, continuous-time models have taken on a central role in

option pricing, risk management and volatility forecasting. Continuous-time models

allow decision makers to model and react to the nearly continuous �ow of data. In

principle, �nancial managers can update their trading strategies every second. For

econometricians, the use of high-frequency data has interesting implications for both

estimation and prediction.

The list of models discussed in this section is not meant to be exhaustive. Rather,

the list is designed to lead to the jump-processes and the realized volatilities models

in which we are interested.

Di¤usion Processes:
Brownian Motion with Drift :

dXt = �dt+ �dWt

This speci�cation has been used a lot in early work in economics and �nance due

to its simplicity. It is obvious that Xt is normally distributed with mean �t and

variance �2t:

Geometric Brownian Motion (Log Normal Model):

dXt = �Xtdt+ �tXtdWt

This model has been very popular for asset prices. It has been extensively used in

the Black and Scholes (1973) option pricing framework and in structured corporate

�nance. The main drawback of this model is that the (log) return process has constant
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volatility. To see this, apply Itô�Lemma40 to the function f(x) = log(x); yielding

d log(Xt) = (��
�2

2
)dt+ �dWt:

Ornstein-Uhlenbeck Process (sometimes referred to as the Vasicek (1977) model,

and often used to model interest rates):

dXt = (�+ �Xt)dt+ �dWt:

Cox, Ingersoll and Ross (1985) analyze the following square root process, also

known as the CIR model, again for modelling the term structure of interest rates,

although this model, unlike the Vasicek model, ensures positivity of rates.

dXt = (�+ �Xt)dt+ �
p
XtdWt:

Brennan and Schwartz (1979) and Courtadon (1982) analyze the process:

dXt = (�+ �Xt)dt+ �X
2
t dWt:

Constant Elasticity of Variance (CEV):

dXt = �Xtdt+ �X
�=2
t dWt

40See Protter (1990) and Du¢ e (2001) for details on Itô�Lemma.
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Note that the interpretation of this model depends on �: In particular, in the case

using this process to model stock price, if � = 2, the price processXt follows geometric

Brownian motion and therefore the volatility of the (log) stock return process is

constant. If � < 2, this model captures the leverage e¤ects discussed above. Among

other authors, Beckers (1980) uses this CEV model for stocks. Marsh and Rosenfeld

(1983) apply the CEV model to interest rates and Emanuel and Macbeth (1982) use

this set-up for option pricing.

Generalized Constant Elasticity of Variance:

dXt = (�X
�(1�!)
t + �Xt)dt+ �X

�=2
t dWt

This process nests the log di¤usion when � = 2; and square root process when

� = 1:

Chan, Karolyi, Longsta¤, and Sanders (1992) study the case of linear drift and

CEV di¤usion with � � 2

dXt = (�+ �Xt)dt+ �X
�=2
t dWt:

Du¢ e and Kan (1996) specify a mean reversion and square root structure in

volatility for modelling of interest rates. In the univariate case:

dXt = (��Xt)dt+
p
�0 + �1XtdWt:

Aït-Sahalia (1996) looks at more the general case of di¤usions with general drift
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and CEV:

dXt = (�+ �Xt + X
2
t + �=Xt)dt+ �X

�=2
t dWt:

Needless to say, model selection is important issue when specifying di¤usion mod-

els. Note that in the general setting, the di¤usion process is written as

dXt = �(Xt; t; �)dt+ �(Xt; t; �)dWt

Also, it is known that the drift and di¤usion terms �(Xt; t) and �(Xt; t) respec-

tively uniquely determine the stationary density, say f(x; �0); associated with the

invariant probability measure of the above di¤usion process.41 In particular,

f(x; �0) =
c(�0)

�2(x; �0)
exp

�
2�(u; �0)

�2(u; �0)
du

�

In a seminal paper, Aït-Sahalia (1996) constructs a nonparametric test for inter-

est rate models on the basis of the comparison of such stationary densities. In his

empirical application to spot interest rates, he �nds that the misspeci�cation of the

models in the literature on spot interest rates is mainly due to the linearity of the drift

function in such models. In addition, his proposed model (general drift and CEV)

could not be rejected. In this same line of research, Corradi and Swanson (2005,

2011) develop bootstrap speci�cation tests for univariate and multifactor di¤usion

process that do not require knowledge of the transition density. Instead of comparing

of densities, their method is based on a comparison of cumulative distribution func-

tions. They also extend their methods to di¤usion process with jumps and stochastic

volatility.

Jump Di¤usions:
41See Karlin and Taylor (1981), pp. 241.
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Many high-frequency �nancial time series appear to be a mixture of sudden rel-

atively large changes and smooth small changes. This image suggests modeling a

high-frequency �nancial time series as a mixture of a discrete jump process and a

continuous di¤usion process. A jump-process Jt is a discrete process speci�ed by a

distribution, �, for the magnitudes of the jumps and a distribution, �(Xt), for the in-

tensity with which jumps occur. A jump-di¤usion process is the sum of a continuous

di¤usion process and a jump process,

dXt = �(Xt; t; �)dt+ �(Xt; t; �)dW + dJt

One pioneering work which incorporates jumps into continuous time processes is

Merton (1976), where he models the continuous component of the log price process to

be Gaussian as in the case of geometric Brownian motion. The magnitude of jumps

also follows a Gaussian distribution, and jumps follow Poison distribution in his paper.

Newer developments in this area do not �append�a �discrete�jump process onto the

di¤usion, but instead specify the jumps using other means, such as via the use of

Levy processes.

A¢ ne Jump Di¤usion Model : This class of models is widely studied in the em-

pirical �nance literature, especially in term structure modelling. The family of a¢ ne

processes Xt including jumps is parametrized as follow

dXt = �(��Xt)dt+ 

p
DtdW + dJt

where Wt is an N�dimensional independent standard Brownian motion, � and 
 are

square N � N matrices. Dt is a diagonal matrix with ith diagonal element given by

dii;t = �i + �
0
iXt



87

The jump intensity is assumed to be a positive, a¢ ne function of Xt and the

jump size distribution is assumed to be determined by its conditional characteristic

function. As shown by transform analysis in Du¢ e, Pan and Singleton (2000), the

attractive feature of this class of a¢ ne jump di¤usions is that the exponential a¢ ne

structure characteristics function is known in closed form. Namely

�t(Xt) = exp(at + b
0
tXt)

where functions at and bt can be derived from Riccati equations.42 With known

characteristics function, one can use either GMM to estimate the parameters of this

system of this jump di¤usion, and can use quasi-maximum likelihood (QML), once

the �rst two moments are obtained. In the univariate case without jumps, as a special

case, this corresponds to the above general CIR model with jumps.

Stochastic Volatility Models:
Stochastic volatility models are popular, particularly for modelling asset prices

and interest rates. They are �rst introduced by Harvey, Ruiz and Shephard (1994) in

discrete time. Stochastic volatility implies that unobserved volatility follows another

stochastic process. For example, one speci�cation could be

dXt = (�+ �Xt)dt+ �dW1t;

and the volatility process follows:

d�2t = �(#� �2t )dt+ ��tdW2t;

where Cov(dW1t; dW2t) = �dt:

Andersen and Lund (1997) estimate the generalized CIR model with stochastic

42For details, see Singleton (2006), pp. 102.
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volatility:

dXt = �1(��Xt)dt+ �tX
�
t dW1t;

d log �2t = �1(�� log �2t )dt+ �dW2t:

Mixed Stochastic Volatility, Jump Di¤usion Models. An example of these models

comes from the application of spectral GMM in Chacko and Viceira (2003) where the

return process is speci�ed as:

dXt = (��
�2t
2
)dt+ �tdW1t + [exp(Ju)� 1]dNu(�u) + [exp(�Jd)� 1]dNd(�d)

d�2t = �(�� �2t )dt+ ��tdW2t;

where �u; �d are jump intensity parameters and are constant, and where. Ju and Jd

>0 are stochastic jump magnitudes that follow an exponential distribution, i.e.

f(Ju) =
1

�u
exp(

�Ju
�u
);

f(Ju) =
1

�d
exp(

�Jd
�d
):

In addition, in the option pricing literature, many models are nested in the following

data generating process which allows for jumps in both equations

dXt = �tdt+ �tXtdW1t + dJ1t

d�2t = �(�� �2t )dt+ ��t(�dW1t +
p
1� �2dW2t) + dJ2t

where W1t and W2t are two independent Brownian motions process, and J1t and J2t

are two jump processes. Popular models that are nested in this class include Heston

(1993) with no jumps in either price or volatility, Bates (2000), Chernov and Ghysels



89

(2000) and Pan (2002).43

3.3.2 Implied Volatility from Option Pricing

3.3.2.1 Black-Scholes Framework as an Illustration

Implied volatility is considered to be the market prediction of future volatility, used in

the context of option pricing. In this section, we �rstly provide a standard method to

show how econometricians can construct implied volatility from Black-Scholes option

prices. Though stochastic volatility better captures the dynamics of asset returns,

Black-Sholes model is still considered to be an important element of option pricing

theory and practice. However, that said, after the current discussion we turn to

a discussion of �model free�measures of implied volatility, and the so-called VIX

volatility index.

Within the Black-Scholes framework, we restate the derivation of the European

call price. In this model, stock prices are assumed to be log-normally distributed.

A nice feature of this assumption is that option prices can then be derived in closed

form, i.e. using the Black-Scholes (BS) formula. Once an option pricing function is

known, implied volatility can in turn be backed out using stock, option and interest

rate data. Note that one can also derive the price of any derivative whose payo¤ is a

function of stock prices. Also, even under more complicated assumptions about the

stock price process, the risk neutral pricing methodology presented below can still be

applied.

Let�s assume that we are interested in an asset market which has 3 assets: a

riskless bond, a stock, and a derivative whose payo¤ is a function of the stock price.

Also, say that under the physical probability measure, P; the price of a non-dividend

43For a more detailed discussion, see Singleton (2006), chapter 15.
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paying stock, Xt, follows a geometric Brownian motion, i.e.

dXs = �Xsds+ �XsdWs

and the interest rate, r;associated with riskless bond (i.e. the short rate) is as-

sumed to be constant. For simplicity, we analyze the dynamics of the process Xs =

Xs
ers
: Using Itô�Lemma, Xs follows:

dXs = (�� r)Xsds+ �XsdWs

Say that the call option on the stock has strike price K and maturity date T: It�s

payo¤ at time T is

CT = (XT �K)+ = max(XT �K; 0)

Option pricing means we look for the price of the derivative ct whose payo¤ at

maturity is CT . With the no arbitrage assumption, there must exist a risk neutral

measure Q: Under this risk neutral measure, the discount process Xs; Cs =
Cs
esr
has

no drift term, or is a martingale:

dXs = �XsdWs

ct = E
Q[
CT
ert
jXt] = e

�rTEQ[((XT �K)+)jXt]

where Ws is a Brownian motion under measure Q. The expectation above is taken

under the probability measure Q: Recall that probability measures P and Q can be

transformed back and forth though Girsanov�s Theorem.44 In particular XT=Xt is

log-normally distributed with mean �(�2=2)(T � t) and variance �2(T � t): Or, given

that the asset Cs has no drift term, one can easily verify that the ct process is the

44See Du¢ e (2001) for details on Girsanov�s Theorem.
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solution to the following partial di¤erential equation

�rf + ft + rSfX + 1=2�2fXX = 0

with the boundary condition at the expiration date f(S; T ) = Payo¤ at time T =

max(XT �K; 0): Note that one can use this derivation approach for any asset, with a

change in payo¤ function. In more complicated settings with more complicated price

process dynamics, the same PDE approach can be applied.

However, in such cases, to solve the PDE, a numerical algorithm is needed as there

may not be a closed form solution for the option price. Turning again to our closed

form BS solution, note that it takes the form

ct = �(z)� e�r(T�t)�(z � �
p
T � t)

where � is the cumulative normal cdf and,

z =
log(Xt=K) + (r + �

2=2(T � t))
�
p
T � t

From the BS formula, one can invert the unobservable �. In particular, � is

function of current time t variables, Xt; r; � = T � t;K and ct which are all observed

and available in the data. This is useful in the framework of no-arbitrage pricing, and

this option pricing tool is the key to backing out implied volatility. Generally, one

can write

ct = z(Xt; r;K; � ; �� )

and the volatility process can be inferred once the nonlinear function z is known. If

it is not known in closed form, we still can back out implied volatility via numerical

analysis.
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3.3.2.2 Deviation from Black-Scholes

The main drawback of Black-Scholes is that it is not consistent with empirical evi-

dence that implied volatility varies across di¤erent maturities and strike price. Du-

mas, Flemning and Wahley (1998) propose an ad hoc Black-Scholes model in which

volatility is not constant. This measure is now widely used by practitioners. Ad hoc

BS allows for di¤erent implied volatilities to price options di¤erently. In particular,

implied volatilities are modeled as follows:

�(� ;K) = �0 + �1K + �2K
2 + �0� + �1�

2 + �2�K

where �(� ;K) is the Black-Scholes implied volatility for and option with strike K

and time to maturity � : This method has been shown by Dumas et al. (1998) to be

better than the constant volatility approach. Option pricing with varying volatility,

such as a square root di¤usion model, are also proposed by many researchers (for

example, see the work of Bates (1996, 2000), Bakshi, Cao and Chen (1997) and Scott

(1997)). Heston (1993) provides a parametric stochastic volatility model, i.e. square

root process for volatility, and solves for closed-form prices. Chernov and Ghysels

(2000) and Pan (2002) introduces a more general pricing framework, i.e. stochastic

volatility with jumps. For a survey of this option pricing literature, see Bates (2003),

and for a discussion of the econometrics of option pricing see Garcia, Ghysels and

Renault (2010). In an interesting discrete-time set-up, Heston and Nandi (2000)

proposes a closed form GARCH option price model in which they present an option

formula for a stochastic volatility model with GARCH. This discrete-time set-up is

close to the Heston (1993) continuous time stochastic volatility model, but is easier
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to implement. They specify the following dynamics for asset returns

log(X(t) = log(Xt�h) + r + ��
2
t + �t"t

�2t = ! + �1�
2
t�h + �1("t�h � 1�t�h)2

where �1 determines the kurtosis of the distribution and 1 allows for asymmetric

e¤ects of shocks. Speci�cally

Covt�h(�
2(t+ h); log(Xt)) = �2�11�2(t):

In testing the empirical implications of this GARCH option pricing model, they

�nd that the model produces smaller valuation errors compared to the ad hoc BS

model mentioned above. In di¤erent work, Barone-Adesi, Engle and Mancini (2008)

propose a new option pricing method with �ltered historical innovations. The new

feature in their methodology is that it �ts in an incomplete markets framework and

is not based on the speci�cation of the change of measure, i.e. from physical measure

to risk neutral measure and state price density.45 Instead, they estimate separate

GARCH parameters in the risk neutral world. They show that their pricing outper-

forms other discrete GARCH models.

In recent papers in the semi-parametric literature, as opposed to Black-Scholes,

Carr and Madan (1998), Demeter�et al. (1999), Britten-Jones and Neuberger (2000),

Lynch and Panigirtzoglou (2003), Jiang and Tian (2005), Car and Wu (2009) develop

variants of so called �model-free�implied volatility. These estimators are referred to

as semiparametric measures, as volatility is implied from option prices via risk neutral

pricing without many of the usual parametric assumptions on the dynamics of asset

returns. In addition, these volatility measures provide ex ante risk neutral expec-

45For further discussion on risk neutral pricing and change of measures, see Du¢ e (2001), chapter
6.
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tations of future volatilities, which is an important input to calculate variance risk

premia. Variance risk premia are de�ned as the di¤erence between implied volatil-

ity and realized volatility. When (log) stock prices follow a continuous process, the

implied volatility between time t and t+ h can be derived by the formula.

IMVt;t+h = 2

1Z
0

C(t+ h;K)� C(t;K)
K2

dK = EQt (�
2
t+h)

where C(t;K) is the price of European call option written on strike price K and

maturing at time t: Here, EQt (�
2
t+h) is the expectation of the variation of the log

price process, or of the realized volatility. An advantage to using the above model

free implied volatility in equity markets is that one now can rely on a published

volatility index (usually the VIX) as a standard measure of implied volatility on the

S&P 500 index. VIX is considered a key measure of market expectations of near-term

volatility implied from S&P 500 stock index option prices. VIX was �rst introduced

by the Chicago Board of Exchange (CBOE) in 1993, and often referred to by many

as a �fear� index. In 2003, CBOE updated the calculation of VIX and the general

formula is as follows:

IMV =
2

T

X
i

�Ki

K2
i

er�Q(Ki)�
1

�

�
F

K0

� 1
�2

where V IX = IMV �100; � is time to expiration, F is the forward index level derived

from index option prices, K0 is the �rst strike price below F; Ki is the strike price of

ith out of the money option, r is risk free rate, �Ki = (Ki+1�Ki�1)=2; Q(Ki) is the

mid point bid-ask spread for each option with strike price Ki:
46

46For details, see �CBOE Volatility Index - VIX� at the link
http://www.cboe.com/micro/vix/vixwhite.pdf and Demeter� et al. (1999)
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3.3.3 Realized Volatility - Nonparametric Measures

The latest developments in the volatility literature largely center on the use of so

called realized volatility (RV) as a �model-free�estimator of latent variance of stock

returns or other �nancial variables. Daily realized volatility is simply the sum squared

returns from high-frequency data over short time interval within any given day. As

noted in the key early works of Andersen and Bollerslev (1998), Banrdor¤-Nielsen and

Shephard (2002) and Medahhi (2002), RV and it�s variants yield much more accurate

ex post observations of volatility than the traditional sample variances which used

daily or lower frequency data. Many papers have been written on this topic since

these �rst papers. In practice, RV has been an important variable in the volatility

derivatives market. For instance, trading of forward contracts on future realized

volatility was sporadically seen in �nancial market as early as 1993. This type of

product is now common, and is often referred to as the variance swap. One important

feature of this product is that it�s payo¤ is a linear function of RV and therefore is

simple to use as a hedging tool, compared to traditional vega hedging. Moreover,

there is much market demand for this product as practitioners prefer implied volatility

to variance and they need additional instruments to hedge against future volatility

risk. Other products that used realized volatility such as caps on variance swaps,

corridor variance swaps, and options on realized volatility are also available in �nancial

markets.47 In research, several authors have developed the concept of variance risk

premia which directly depend on RV and they argue that this variable is useful in

asset pricing. Variance risk premium (VRP) is de�ned as

V RPt = IMVt �RVt
47For a discussion of volatility and variance swaps, see for instance, Carr and Lee (2009).
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where IMVt is implied volatility de�ned under the risk neutral measure Q as

IMVt = E
Q[Return variation between t� 1 and t]

Bollerslev, Tauchen and Zhou (2009) use this premium to predict stock market

returns and they �nd that the premium is able to explain time-series variation in

post-1990 aggregate stock market returns with high (low) premia predicting high

(low) future returns.

RV non-parametrically measures the variation of return processes, and the dy-

namics of RV can be driven by components other than those directly involved with

returns. When the return process is continuous, it�s variation is due to the contin-

uous component, and is known as the integrated volatility (IV ). Realized volatility

is a proxy for IV.48 Several authors (for example, Huang and Tauchen (2005) and

Aït-Sahalia and Jacod (2009a,b) �nd important evidence of active jumps in equity

markets. If jumps occur, variation of the return process is greater than integrated

volatility as it contains a jump variation component. Realized volatility therefore is

not an estimator of integrated volatility. ABD (2007) construct a simple measure

of the variation of this jump component and then show that incorporation of jumps

can a¤ect estimation and volatility prediction. (Our empirical application discussed

below �ts within this strand of the literature. In particular, we provide evidence

of jumps and large jumps as well as providing a measure of large jump variation in

equity markets.)

Following the general set-up of Aït-Sahalia and Jacod (2009a), consider the �ltered

probability space (
; F; (Ft)t�0; P ) ; in which (Ft)t�0 is denoted as a �ltration (i.e., a

family of sub-sigma algebras Ft of F; being increasing t : Fs � Ft if s � t). The log

price process, Xt= log(Pt); is assumed to be an Itô semimartingale process that can

48For instance, under the assumption that the return process is continuous, Kristensen (2010)
develops a kernel based approach to estimate integrated and spot volatilty using realized volatility.
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be written as:

Xt = X0 +

Z t

0

bsds+

Z t

0

�sdBs +
X
s�t
�Xs; (3.24)

where X0 +
R t
0
�sds +

R t
0
�sdBs is the continuous semimartingale component of the

process, which is the sum of a local martingale plus an adapted process with �nite

variation component. Additionally, �Xs is a jump at time s, de�ned as:

�Xs = Xs � lim
�<s;�!s

X� :

Given this de�nition, the jump part of Xt in the time interval [0; t] is de�ned to

be
P

s�t�Xs. Note that when the jump is a Compound Poisson Process (CPP) - i.e.

a �nite activity jump process - then it can be expressed as:

Jt =
X
s�t
�Xs =

NtX
i=1

Yi;

where Nt is number of jumps in [0; t]; Nt follows a Poisson process, and the Yi�s are

i.i.d. and are the sizes of the jumps. The CCP assumption has been widely used in

the literature on modeling, forecasting, and testing for jumps. However, as discussed

above, recent evidence suggests that processes may contain in�nite activity jumps -

i.e. in�nite tiny jumps that look similar to continuous movements. In such cases, the

CCP assumption is clearly violated, and hence we draw in such cases on the theory

of Jacod (2008) and Aït-Sahalia and Jacod (2009a) when applying standard BNS

(2006) type jump tests in the sequel. The empirical evidence discussed in this chapter

involves examining the structure of the jump component of the log return process,

Xt; using one historically observed price sample path fX0; X�n ; X2�n :::Xn�ng; where

�n is deterministic. The increment of the process at time i�n is denoted by:

�n
iX = Xi�n �X(i�1)�n :
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For convenience, we consider the case t = n�n in the sequel.49 In general, inte-

grated volatility and quadratic variation are formally de�ned as:

IVt =

Z t

0

�2sds = [variation due to continuous component]t

QVt = [X;X]t =

Z t

0

�2sds+
X

t�1�s<t
�X2

s = IVt + [variation due to jump component]t

Volatility processes QVt and IVt are not observable. However, one could exploit

high or ultra high frequency data in �nancial markets to estimate these variables. If

the process is continuous, IVt = QVt and their noisy estimators, hereby referred to

as realized measures (RM) could be written as

RMt;n = IVt +Nt;n

whereNt;n denotes the measurement error associated with the realized measureRMt;n:

There are two sources of measurement errors. One is due to the so-called microstruc-

ture noise e¤ect of high frequency data, and the second is due to standard noise.

There are a few realized measures and methods proposed to alleviate the e¤ect of

the contaminated high frequency noise. For example, Corradi, Distaso and Swanson

(2009, 2011) derive consistent estimators of predictive conditional densities of inte-

grated volatility using these noisy realized measures. They show that by choosing an

appropriate realized measure, one can achieve consistent estimation, even in the pres-

ence of jumps and microstructure noise in prices. They thereby construct conditional

predictive densities and con�dence intervals for integrated volatility using realized

measures, which may be of interest to volatility derivatives traders. Note that as

microstructure noise is not the focus of our chapter, we will focus mainly on three

key realized measures that are commonly used, i.e. realized volatility, bipower, and

49See Jacod (2008) for further details.
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tripower variation (many papers in the extant literature now look also at multipower

variation). For a list of other realized measures that are robust to microstructure

noise, see for instance Corradi, Distaso and Swanson (2009, 2010). The realized

volatility of equity return process X is de�ned as follows:

RVt;n =
nX
i=1

(�n
iX)

2

It has been shown that when n is large, realized volatility converges almost surely

to the quadratic variation of the process.50 If we measure volatility within a day then,

RVt;n =
nX
i=1

(�n
iX)

2 '
Z t

t�1
�2sds+ [jump variation between day day t� 1 and t]t

where n here is used to denote the number of incremental returns within a day or any

other �xed time period. Multipower variations are constructed on the basis of

Vr1;r2:::;rj =
nX

i=j+1

j�n
iXjr1j�n

i�1Xjr2 ::::j�n
i�jXjrj :

where r1;r2;:::; rj are positive, such that
Pj

1 ri = k: Bipower (BV ) and tripower vari-

ation (TP ) are special cases of multipower variations. Speci�cally, Bipower variation

is given by

BVt;n = (�1)
�1

nX
i=2

V1;1 '
Z t

t�1
�2sds

where �1 = EjZj = 21=2�(1)=�(1=2) and Z is a standard normal random variable;

and tripower variation is given by

TVt;n = V 2
3
; 2
3
; 2
3
��32
3

'
Z t

t�1
�2sds

where �r = E(jZjr)and Z is a N(0; 1) random variable. Finally, to illustrate the nuts
50See Barndor¤-Nielsen and Shephard (2002).
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and bolts of microstructure robust realized measures, we include the formula for a

commonly used subsample based realized volatility measure, dRV t;l;M , suggested by
Zhang, Mykland and Ait-Sahalia (2005), and de�ned as

dRV t;l;n = RV avgt;l;n � 2lbvt;n;
where

bvt;n = RVt;l;n
2n

=
1

2n

nX
j=1

(�n
iX)

2

and

RV avgt;l;n =
1

B

BX
b=1

RV bt;l =
1

B

BX
b=1

t�1X
j=1

(Xt+ jB+b
n
�X

t+
(j�1)B+b

n

)2

Here, Bl �= n; l = O(n1=3)

Forecasting Realized Volatility With the availability of high frequency data in

recent years, much e¤ort has been dedicated to building good models to forecast

realized volatility, a �model free� estimator of ex post variance. To see the link of

this type of forecast to the volatility forecasting in discrete time models, note that

the daily volatility implied by a discrete time model, let�s say GARCH, is equivalent

to
p
QVt or

p
IVt (without jumps) in continuous time,51 which are proxied by

p
RVt;n

or
p
BVt;n or

p
TVt;n. The link justi�es the rationale of this type of forecast in the

literature. We highlight several important papers in this area of research. The key

paper is Andersen, Bollerslev, Diebold, Laby (2003), who show empirically that a

long memory Gaussian VAR can capture the dynamics of volatility. They apply a

simple trivariate VAR (VAR-RV) to model the dynamics of volatilities of logarithmic

exchange rates, i.e. DM/$, Yen/$ and Yen/DM. In particular, denote yt as the vector

51To see this, in the case of continuous process, V ar(Xt �Xt�1) = E(
R t
t�1 �sdBs)

2 =
R t
t�1 �

2
sds:

In addition, for convenience in notation, in this section,
p
QVt or

p
IVt are refered to as volatilities

in a day.
.
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of the the exchange rates, and de�ne the forecasting equation as

�(L)(1� L)d(yt � �) = "t

where "t is a vector white noise process. The authors point out that this simple

framework performs better than many alternative models that have been used in this

literature. In the same regression model, Corsi (2003) proposes the so called HAR -

RV model in which realized volatility is speci�ed as a linear sum of the lagged realized

volatilities over di¤erent horizons, i.e.

RVt;t+h = �0 + �dRVt + �wRVt;t�5 + �mRVt;t�22 + �t+h

where h is the forecasting horizon, i.e. h = 1; 5; 22: and RVt;t+h = h�1[RVt+1 +

RVt+2 + ::: + RVt+h]: ABD (2007) generalizes HAR - RV to linear and nonlinear

HAR-RV, HAR-RV-J and HAR-RV-CJ. In particular, the new feature of the model

that they propose involves incorporating the variation of jump components of the log

price process into their forecasts. The advantage of these models is that they are

rather simple to implement via least squares estimation and they take advantage of

recent developments in the construction of robust jump tests. In the next section,

we summarize robust jump testing and discuss the quanti�cation of large jumps and

small jumps, a departure that can potentially help improve the model�s forecasting

performance.

3.4 Volatility and Jumps

Thus far, we have summarized important developments in volatility models, with

focus on time varying and stochastic volatility as well as nonparametric volatility

estimators. All of our models share the same feature that volatilities are unobserved,
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or belong to class of missing variables. We now turn to a discussion of jumps, testing

for jumps, and disentangling the e¤ects of jumps from measures of volatility.

This section also contains the results of our empirical analysis of jumps and volatil-

ity. See Duong and Swanson (2010) for derivations of the tests and measures discussed

and used in this section.

3.4.1 Testing for Jumps

In this section, we review some theoretical results relating to testing for jumps, namely

testing whether Jt =
P

s�t�Xs 6= 0. In pioneering work, BNS (2006) proposes a ro-

bust and simple test for a class of Brownian Itô Semimartingales plus Compound

Poisson jumps. In recent work, Aït-Sahalia and Jacod (2009a) among others develop

a di¤erent test which applies to a large class of Itô-semimartingales, and allows the

log price process to contain in�nite activity jumps - small jumps with in�nite con-

centrations around 0. In this chapter, we follow the jump test methodology of Huang

and Tauchen (2005) as well as Barndor¤-Nielsen and Shephard (2006), which looks

at the di¤erence between the continuous component and total quadratic variation in

order to test for jumps. However, we make use of the limit theorems developed and

used by Jacod (2008) and Aït-Sahalia and Jacod (2009a) in order to implement the

Barndor¤ -Nielsen and Shephard (2006) type test under the presence of both in�nite

activity and �nite activity jumps (see Section 3.4 for further discussion). A simpli�ed

version of the results of the above authors applied to (4.31) for the one-dimensional

case is as follows. If the process X is continuous, let f(x) = xn (exponential growth),

let ��s be the law N(0; �
2
s); and let ��s(f) be the integral of f with respect to this

law. Then:

r
1

�n

 
�n

nX
i=1

f(
�n
iXp
�n

)2 �
Z t

0

��s(f)ds

!
L�S�!

Z t

0

q
��s(f

2)� �2�s(f)dBs (3.25)
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Here, L� S denotes stable convergence in law, which also implies convergence in

distribution. For n = 2; the above result is the same as BNS (2006). More generally:

r
1

�n

 
nX
i=1

(�n
iX)

2 �
Z t

0

�2sds

!
D�! N(0;

Z t

0

#�4sds) (3.26)

or q
1
�n

�Pn
i=1(�

n
iX)

2 �
R t
0
�2sds

�
qR t

0
#�4sds

D�! N(0; 1); (3.27)

where # is constant and where
R t
0
�2sdt is known as the integrated volatility or the

variation of the continuous component of the model and
R t
0
�2sdt is integrated quar-

ticity. From the above result, notice that if the process does not have jumps, thenPn
i=1(�

n
iX)

2;which is an approximation of quadratic variation of the process, should

be "close" to the integrated volatility. This is the key idea underlying the BNS (2006)

jump test. For appropriate central limit theorems, in tests with both �nite and in�nite

activity jumps, refer to Barndor¤-Nielsen, Graverson, Jacod, Podolskij, and Shephard

(2006), in the case of continuous semimartingales and Barndor¤-Nielsen, Shephard,

and Winkel (2006) for discontinuous process with Lévy jumps. A �nal crucial issue

in this jump test is the estimation of
R t
0
�2sdt and

R t
0
�4sdt in the presence of both

�nite and in�nite activity jumps. As remarked in BNS (2006), in order to ensure that

tests have power under the alternative, integrated volatility and integrated quarticity

estimators should be consistent under the presence of jumps. The authors note that

robustness to jumps is straightforward so long as there are a �nite number of jumps,

or in cases where the jump component model is a Lévy or non-Gaussian OU model

(Barndor¤-Nielsen, Shephard, and Winkel (2006)). Moreover, under in�nite activity

jumps, note that as pointed out in Jacod (2007), there are available limit results for

volatility and quarticity estimators for the case of semimartingales with jumps.

Turning again to our discussion of volatility and quarticity, note that in a continu-
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ation of work initiated by Barndor¤-Nielsen and Shephard (2004), Barndor¤-Nielsen,

Graverson, Jacod, Podolskij, and Shephard (2006) and Jacod (2007) develop gen-

eral so-called multipower variation estimators of
R t
0
�ksds; in the case of continuous

semimartingales and semimartingales with jumps, respectively, which are based on

Vr1;r2:::;rj =
nX

i=j+1

j�n
iXjr1j�n

i�1Xjr2 ::::j�n
i�jXjrj :

where r1;r2;:::; rj are positive, such that
Pj

1 ri = k: For cases where k = 2 and k = 4,

BNS (2006) use V1;1 (bipower variation) and V1;1;1;1. In our jump test implementation,

we use V 2
3
; 2
3
; 2
3
(tripower variation) and V 4

5
; 4
5
; 4
5
: The reason we use tripower variation,

V 2
3
; 2
3
; 2
3
; instead of bipower variation, V1;1; is that it is more robust to clustered jumps.

Denote the estimators of
R t
0
�2sds and

R t
0
�4sds to be cIV and cIQ, and note that:

cIV = V 2
3
; 2
3
; 2
3
��32
3

'
Z t

0

�2sds (3.28)

and

cIQ = ��1
n V 4

3
; 4
3
; 4
3
��54
5

'
Z t

0

�4sds; (3.29)

where �r = E(jZjr)and Z is a N(0; 1) random variable.

Regardless of the estimator that is used, the appropriate test hypotheses are:

H0 : Xt is a continuous process

H1 : the negation of H0 (there are jumps)

If we use multi-power variation, under the null hypothesis the test statistic which
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directly follows from the CLT mentioned above is:

LSjump =

q
1
�n

�Pn
i=1(�

n
iX)

2 � cIV �q
#cIQ D�! N(0; 1)

and the so-called jump ratio test statistic is:

RSjump =

q
1
�nq

#cIQ=(cIV )2
 
1�

cIVPn
i=1(�

n
iX)

2

!
D�! N(0; 1):

Of note is that an adjusted jump ratio statistic has been shown by extensive

Monte Carlo experimentation in Huang and Tauchen (2005), in the case of CCP

jumps, to perform better than the two above statistics, being more robust to jump

over-detection. This adjusted jump ratio statistic is:

AJjump =

q
1
�nq

#max(t�1; cIQ=(cIV )2)
 
1�

cIVPn
i=1(�

n
iX)

2

!
L�! N(0; 1) (3.30)

In general if we denote the daily test statistics to be Zt;n(�);where n is the number

of observations per day and � is the test signi�cance level,52 then we reject the null

hypothesis if Zt;n(�) is in excess of the critical value ��; leading to a conclusion that

there are jumps. The converse holds if Zt;n(�) is less than ��. In our empirical appli-

cation, Zt;n(�) is the adjusted jump ratio statistic, and we calculate the percentage of

days that have jumps, for the period from 1993 to 2008. We now turn to a discussion

of large jumps and constructing measures of the daily variation due to continuous

and jump components.

52 i.e., �n = 1=n
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3.4.2 Large Jumps and Small Jumps

There is now clear evidence that jumps are prevalent in equity market. For example,

Huang and Tauchen (2005) construct the above jump test statistics, and �nd that

jumps contribute about 7% to the total variation of daily stock returns. Aït-Sahalia

and Jacod (2009b) not only �nd jumps but given the existence of jumps, they look

more deeply into the structure of the jumps, and for Intel and Microsoft returns they

�nd evidence of the existence of in�nite activity jumps.

An important focus in our chapter is to the decomposition of jumps into "large"

and "small" components so that we may assess their contributions to the overall

variation of the price process. In particular, for some �xed level ; de�ne large and

small jump components as follows, respectively:

LJt() =
X
s�t
�XsIj�Xsj�:

and

SJt() =
X
s�t
�XsIj�Xsj<:

The choice of  may be data driven, but in this chapter we are more concerned with

scenarios where there is some prior knowledge concerning the magnitude of . For

example, under various regulatory settings, capital reserving and allocation decisions

may be based to a large extent on the probability of jumps or shocks occurring that

are of a magnitude greater than some known value, : In such cases, planners may

be interested not only in knowledge of jumps of magnitude greater than , but also

in characterizing the nature of the variation associated with such large jumps. The

procedure discussed in this section can readily be applied to uncover this sort of

information.
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3.4.3 Realized measures of daily jump variation

The partitioning of variation due to continuous and jump components can be done, for

example, using truncation based estimators which have been developed by Mancini

(2001,2004,2009) and Jacod (2008). One can also simply split quadratic variation

into continuous and jump components by combining various measures of integrated

volatility, such as bipower or tripower variation and realized volatility. Andersen,

Bollerslev, and Diebold (2007) do this, and construct measures of the variation of the

daily jump component as well as the continuous component. In this chapter we use

their method, but apply it to both small and large jumps. In particular, once jumps

are detected, the following risk measures introduced by Andersen et al. (2007) are

constructed:

V Jt =Variation of the jump component = maxf0; RVt � cIVtg � Ijump;t
V Ct =Variation of continuous component = RVt � V Jt;

where RVt =
Pn

i=1(�
n
iX)

2 is the daily realized volatility (i.e. a measure of the

variation of the entire (log) stock return process), Ijump is an indicator taking the

value 0 if there are no jumps and 1 otherwise, and n is the number of intra-daily

observations. One can then calculate daily jump risk. Note that in these formulae,

the variation of the continuous component has been adjusted (i.e. the variation of the

continuous component equals realized volatility if there are no jumps and equals cIVt if
there are jumps). In addition, note that

Pn
i=1(�

n
iX)

2Ij�ni Xj� converges uniformly in

probability to
P

s�t(�Xs)
2Ij�Xsj�; as n goes to in�nity.

53 Thus, the contribution of

the variation of jumps with magnitude larger than  and smaller than  are denoted

and calculated as follows:

Realized measure of large jump variation: V LJt;=minfV Jt; (
Pn

i=1(�
n
iX)

2Ij�ni Xj� �

Ijump;t)g,

Realized measure of small jump variation: V SJt; = V Jt �V LJt;;
53See Jacod (2008), Aït-Sahalia and Jacod (2011) for further details.
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where Ijump is de�ned above and Ijump; is an indicator taking the value 1 if there are

large jumps and 0 otherwise. This condition simply implies that large jump risk is

positive if the process has jumps and has jumps with magnitude greater than :

Now we can write the relative contribution of the variation of the di¤erent jump

components to total variation in a variety of ways:

Relative contribution of continuous component = V Ct
RVt

Relative contribution of jump component = V Jt
RVt

Relative contribution of large jump component = V LJt;
RVt

Relative contribution of small jump component = V LSt;
RVt

Relative contribution of large jumps to jump variation = V LJt;
V Jt

Relative contribution of small jumps to jump variation = V LSt;
V Jt

We are now ready to discuss some empirical �ndings based on the application of

the tools discussed in this section.

3.5 Empirical Findings

3.5.1 Data description

We use a large tick by tick data set of 25 DOW 30 stocks available for the period 1993-

2008. The data source is the TAQ database. We use only 25 stocks because we purge

our data set of those stocks that not frequently traded or are not available across the

entire sample period. For the market index, we follow several other papers and look

at S&P futures. We also follow the common practice in the literature of eliminating

from the sample those days with infrequent trades (less than 60 transactions at our

5 minute frequency).

One problem in data handling involves determining the method to �lter out an

evenly-spaced sample. In the literature, two methods are often applied - previous tick

�ltering and interpolation (Dacorogna, Gencay, Müller, Olsen, and Pictet (2001)).
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As shown in Hansen and Lund (2006), in applications using quadratic variation, the

interpolation method should not be used, as it leads to realized volatility with value

0 (see Lemma 3 in their paper). Therefore, we use the previous tick method (i.e.

choosing the last price observed during any interval). We restrict our dataset to

regular time (i.e. 9:30am to 4:00pm) and ignore ad hoc transactions outside of this

time interval. To reduce microstructure e¤ects, the suggested sampling frequency in

the literature is from 5 minutes to 30 minutes54. As mentioned above, we choose the

5 minute frequency, yielding a maximum of 78 observations per day.

3.5.2 Jump and Large Jump Results

We implement our analysis in two stages. In the �rst stage we test for jumps and

in second stage we examine large jump properties, in cases where evidence of jumps

is found. The list of the companies for which we examine asset returns is given in

Table 3.1, along with a summary of our jump test �ndings. The rest of the tables

and �gures summarize the results of our empirical investigation. Before discussing

our �ndings, however, we brie�y provide some details about the calculations that we

have carried out.

All daily statistics are calculated using the formulae in Section 3.4 with:

�n =
1

n
=

1

# of 5 minute transactions / day

Therefore, �n = 1=78 for most of the stocks in the sample, except during various

shortened and otherwise nonstandard days, and except for some infrequently traded

stocks. This also implies the choice of time to be the interval [0; 1], where the time

from [0; 1] represents the standardizing time with beginning (9 am) set to 0 and

end (4.30 pm) set to 1: In our calculations of estimates of integrated volatility and

integrated quarticity, we use multipower variation, as given in (4.45) and (4.46).

54See Aït-Sahalia, Y., Mykland, P. A., and Zhang, L. (2005)
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Recall also that �n
iX = Xi�n � X(i�1)�n is simply the incremental return of Xi�n :

For any trading day, X0 and X1 correspond to the �rst and the last observations of

the day. Denote T as the number of days in the sample. We construct the time series

fZt;n(�)gTt=0 and
n
V Ct
RVt
; V Jt
RVt
; V LJt;

RVt
; V SJt;

RVt

oT
t=0
: The number of days and proportion of

days identi�ed as containing jumps can easily be calculated as:

Number of days identi�ed as jumps =
PT

i=0 I(Zi;n(�) > ��):

Proportion of days identi�ed as jumps =
PT
i=0 I(Zt;n(�)>��)

T
:

In addition, we construct the following monthly time series

Proportion of days identi�ed as jumps in a month=
Pm+h
i=m I(Zt;n(�)>��)

h

Monthly average relative contribution of jump component =
Pm+h
i=m

V Ji
RV i

h

Monthly average relative contribution of large jump component truncated at level

 =
Pm+h
i=m

VLJi;
RVt

h
;

where m is the starting date and h is the number of days in each month. On average,

there are 22 business days per month. Note that there are 12 statistics each year for

each time series.

Here, I(�) denotes the indicator function. The average relative contribution of con-

tinuous, jump, and large jump components to the variation of the process is reported

using the mean of the sample (i.e. we report the means of V Ct
RVt
; V Jt
RVt
; V LJt;

RVt
; andV SJt;

RVt
):

In addition to reporting �ndings based on examination of the entire sample period,

we also split the sample into two periods. The �rst period is from 1993 to 2000 and the

second period is from 2001 to 2008. The reason for doing this is that we would like to

see whether jump activity changes over time. Moreover, these subsamples correspond

roughly to break dates for �nancial data found in Cai and Swanson (2011).

In the sequel, we provide �gures for representative individual stocks in our sample

(i.e. Walmart, IBM, Bank of America and Citigroup). These stocks are chosen on the

basis of their market systematic risk beta. Namely, Walmart has low beta of around

0.3, IBM has a beta close to 0.7, and Bank of America and Citigroup are more risky
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stocks with betas of around 2.6 and 2.8.

Turning now to our results, a �rst sense of the prevalence of jumps can be formu-

lated by inspecting Panels A,B, C and D of Figure 3.1, where statistics higher than

3.09 (i.e. the 0.001 signi�cance level critical value) are presented for the entire sample

from 1993 to 2008. It is obvious that jumps are prevalent. Additionally, it should

be noted that there is a marked di¤erence in jump frequency between 1993-2000 and

2001-2008, where the �rst period is much more densely populated with jumps than

the latter period. The highest statistic values are around 11, for Walmart in 1997, 11

for IBM in 1994, 10 for Bank of America in 1996 and 7 for Citigroup from 1996 to

1998. Post 2000, the highest statistics are consistently located in 2002 and 2006-2008.

Moreover, a simple visual check of the statistic magnitudes in this �gure suggests that

jumps are more prevalent in the earlier sample period, with respect to both frequency

and signi�cance level (more will be said on this later).

Regarding our choice of the large jumps, an important step is to choose truncation

levels, : If we choose arbitrarily large truncation levels, then clearly we will not �nd

evidence of large jumps. Also one may easily proceed by just picking the trunca-

tion level based on the percentiles of the entire historical sample of the 5 minute log

return. However, results could then turn out to be di¢ cult to interpret, as in one

case the usual choice of 90th or 75th percentiles leads to virtually no large jumps

while the choice 25th or 10th percentiles leads to a very large number of large jumps.

In addition, "large" jumps are often thought of as abnormal events that arise at a

frequency of one in several months or even years. Therefore, a reasonable way to

proceed is to pick the truncation level on the basis of the sample of the monthly max-

imum increments - monthly based abnormal events. Speci�cally, we set three levels

 = 1; 2; 3 to be the 50th; 75th; and 90th percentiles of the entire sample from 1993 to

2008. Panels A,B,C, and D of Figure 3.2 depict the monthly largest absolute incre-

ments and the jump truncation levels used in our calculations of the variation of large
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and small jump components. Again, it is quite obvious that the monthly maximum

increments are dominant in the previous decade. The larger monthly increments in

current decades are mostly located in 2006-2008 and 2002-2004. As a result, the �xed

truncation levels which are chosen across the entire sample result in more "hits" in

previous decade than in the current one. The truncation level of Citigroup is the

largest of the four stocks depicted (for example at  = 3 the level is approximately

0.04 for Citigroup and 0.025 for IBM).

Notice that the graphs in Figures 3.3A and 3.3B depict magnitudes of the variation

of continuous, jump, and truncated jump components of returns for our 4 sample

stocks. Namely, the plots are of daily realized volatility, and realized variance of

continuous, jump and large jump components at di¤erent truncation levels. As might

be expected, inspection of the graphs suggests a close linkage between the greater

number of jumps in the �rst decade of the sample and the and large jump risk over the

same period. For example, in the case of IBM, the variation of the jump components

is clearly dominant in the earlier decade. The highest daily jump risk occurs in late

1998, and is above 0.018. Indeed, at jump truncation level 3, we only see large jump

risk for the years 1994, 1996, 1998, 2000 and 2008. Combined with the results of

Figure 3.1, this again strongly suggests that there was much more turbulence in the

earlier decade.

Turning now to our tabulated results, �rst recall that Table 3.1 reports the pro-

portion of days identi�ed as having jumps, at 6 di¤erent signi�cant levels, � =

f0:1; 0:05; 0:01; 0:005; 0:001; 0:0001g: Again, there is clear evidence of jumps in both

periods. However, the jump frequency in the 1993-2000 sample is signi�cantly higher

than that in the 2001-2008 sample, across all stocks and test signi�cance levels. For

example, at the � = 0:005 and 0:001 levels, the average daily jump frequencies are

46.9% and 22.8% during the 1993-2000 period, as compared with 16.8% and 9.4%

during the 2001-2008 period, respectively. When considering individual stocks, the
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story is much the same. As illustrated in Figures 3.1, and tabulated in Table 3.1, the

proportion of "jump-days" for IBM and for the Bank of America are 5.9% and 8.8%

during the 2000s, which is much smaller than the value of 19.2% and 21.3% for the

two stocks during the 1990s, based on tests implemented using a signi�cance level of

� = 0:001.

Of course, when calculating jump frequencies, we ignore the magnitudes of the

jumps. Table 3.2 addresses this issue by summarizing another measure of jumps

- namely the average percentage contribution of jumps to daily realized variance.

Details of the measures reported are given above and in Section 3.4. In support of

our earlier �ndings, it turns out that jumps account for about 15.6% and 8.1% of total

variation at signi�cance levels � = 0:005 and 0:001, respectively, when considering

the entire sample period from 1993-2008:Moreover, analogous statistics for the period

1993-2000 are 25.1% and 12.7%, while those for the 2001-2008 period are 7% and 5%.

The statistics for IBM and Bank of America are 25.3% and 10.7% for the period 1993-

2000 and 3.5% and 2.3% for the period 2001-2008 while those for the entire samples

are 7.9% and 6.6%. This result is consistent with our earlier �ndings through �gure

analysis.

In summary, without examining the impact of large jumps, we already have evi-

dence that: (i) There is clear evidence that jumps characterize the structure of the

returns of all of the stocks that we examine. (ii) The 1990s are characterized by

the occurrence of more jumps than the 2000s. (iii) The contribution of jumps to

daily realized variance is substantively higher during the 1990s than the 2000s. (iv)

Our results are consistent across all stocks, suggesting the importance of jump risk

comovement during turbulence periods.

In our empirical analysis of large jumps, we carry out the same steps as those

employed above when examining overall jump activity. Results are reported in Tables

3.3A-C are for truncation levels  = 1; 2; 3 at 6 di¤erent signi�cant levels, � =
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f0:1; 0:05; 0:01; 0:005; 0:001; 0:0001g: As mentioned earlier, Figures 3.1 and 3.3 contain

plots of jump test statistics and realized variation not only for overall jump activity,

as discussed above, but also for large jumps. Examination of these tables suggest a

number of conclusions.

Across the entire sample, there is evidence of large jumps at all levels by measure

of variation. Table 3.3A reports the proportion of days identi�ed as having large

jumps for truncation level  = 1. It can be seen that the proportion of variation

due to large jumps at truncation level  = 1 accounts for about 0:9% and 0:6%

of total variation (regardless of stock), at signi�cance levels � = 0:005 and 0:001,

respectively. Values at signi�cance level 0.001 for the periods 1993-2000 and 2001-

2008 are around 0:8% and 0:4%, respectively. For  = 2; values are 0.4% and 0.3%

at signi�cant levels � = 0:005 and 0:001; respectively, when considering the entire

sample. Values at signi�cance level 0.001 for the periods 1993-2000 and 2001-2008

are around 0.4% and 0.2% for period 1993-2000 and 2001-2008, respectively. A similar

result obtains for  = 3, suggesting that large jump variability is around twice as big

(as a proportion of total variability) for the latter sub-sample, regardless of truncation

level. As previously, these results are surprisingly stable across stocks. Although not

included here, our analysis of the market index data discussed above yielded a similar

result. Further examination of the statistics in the Tables 3.3A-C also yields another

interesting �nding. In particular, though proportions of jumps and large jumps at

truncation level  = 1; 2; 3 are all larger in the previous decade, the di¤erence is

smaller and increasingly narrows as higher truncation levels are considered, when

examining large jumps. This result, which is true for many of our stocks, suggests an

increased role of large jumps in explaining daily realized variance during the latter

sub-sample. To illustrate this point, which is apparent upon inspection of average

statistics constructed for all 25 stocks, we investigate the case of of ExxonMobil, where

we look at all statistics at signi�cance level � = 0:001: The proportion of variation
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of jumps to total variation is 17% for the period 1993-2000 (as shown in Table 3.2),

almost 3 times as much as the corresponding value of 6.2% in 2001-2008. However

for large jumps at truncation level  = 1 , the analogous value is 0.6% for 1993-

2008, which is just 1.5 times as much as the 0.4% value during 2001-2008. Similarly

at truncation level  = 2; the value is 0.4% for 1993-2008 and 0.2% for 2001-2008.

Interestingly, at truncation level  = 3; the proportion of variation of jumps is 0 for

period 1993-2000 while it is 0.1% for period 2001-2008. Therefore, with respect to

large jump we �nd that: (i) Large jumps incidence and magnitudes are consistent

with our earlier �nding that the 1990s are much more turbulent than the 2000s. (ii)

However, for higher truncation levels, the contribution of jump risk during the two

periods becomes much closer, and indeed the contribution during the latter period

can actually become marginally greater. This suggests that while the overall role of

jumps is lessening, the role of large jumps has not decreased, and indeed, the relative

role of large jumps has actually increased in the 2000s.

3.6 Concluding Remarks

In this chapter we review some of the recent literature on volatility modelling and

jumps, with emphasis on the notion that these variables are unobserved latent vari-

ables, and thus can be viewed in some sense as �missing data�. Many estimators of

volatility, both continuous and discrete, as well as both parametric and nonparame-

teric are also reviewed.

In an empirical investigation, we provide new evidence of jumps in individual log

price processes, and note that there are clearly comovements during turbulent times,

for all stocks. More noticeably, jump incidence is greater during the 1990s than during

the 2000s, although the incidence of "very large" jumps is similar across both decades,

and the relative importance of large jumps has increased.
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Figure 3.1: Jump Test Statistics of Days Identi�ed as Having Jumps of

(Log) Stock Prices: Sample Period 1993-2008 *
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� Panel A, B, C, D depict daily test statistics of days identi�ed as having jumps for Walmart, IBM, Bank of

America, Citigroup (Log) Stock Price using 0.001 signi�cant level. Speci�cally, all statistics in the �gure are larger

than 3.09. See section 3.5 for further details.
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Figure 3.2: Monthly Largest Increments and Truncation Levels  = 1; 2; 3:

Sample Period 1993-2008 �
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� Panel A,B,C,D depict the monthly largest absolute increments and the jump truncation levels used as thresh-
olds in our calculations of the variations of large and small jump components, where level =1 corresponds to the
median of monthly maximum increments , level =2 corresponds to 75th percentile of monthly maximum increments,
and level =3 corresponds to 90th percentile monthly maximum increments of(log) stock prices of Walmart, IBM,
Bank of America and Citigroup for the sample period is from 1993 to 2008.
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Figure 3.3A: Daily Realized Volatility (RV) and Realized Variation of

Continuous, Jump and Truncated Jump Components (Log) Stock Prices

for Truncation Levels  = 1; 2; 3 �

Panel A: Walmart

.00

.01

.02

.03

.04

.05

94 96 98 00 02 04 06 08

RV

.000

.004

.008

.012

.016

.020

.024

.028

.032

94 96 98 00 02 04 06 08

Continuous

.00

.01

.02

.03

.04

.05

94 96 98 00 02 04 06 08

Jump

.00

.01

.02

.03

.04

.05

94 96 98 00 02 04 06 08

Jump 1

.00

.01

.02

.03

.04

.05

94 96 98 00 02 04 06 08

Jump 2

.00

.01

.02

.03

.04

.05

94 96 98 00 02 04 06 08

Jump 3

Panel B: IBM

.00

.01

.02

.03

.04

.05

94 96 98 00 02 04 06 08

RV

.00

.01

.02

.03

.04

.05

94 96 98 00 02 04 06 08

Continuous

.000

.004

.008

.012

.016

.020

94 96 98 00 02 04 06 08

Jump

.000

.004

.008

.012

.016

.020

94 96 98 00 02 04 06 08

Jump 1

.000

.004

.008

.012

.016

.020

94 96 98 00 02 04 06 08

Jump 2

.0 0 0

.0 0 4

.0 0 8

.0 1 2

.0 1 6

.0 2 0

9 4 9 6 9 8 0 0 0 2 0 4 0 6 0 8

Jump 3

� See Figure 3.2 for details about the jump truncation levels. The above panels plot daily realized volatility,
realized measures of the variation of continuous, jump and large jump components at truncation levels  = 1; 2; 3,
which are shortly referred to as jump 1, jump 2 and jump 3 for the period 1993-2008. The realized measures of
variations are calculated as discussed in Section 3.4 and 3.5.
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Figure 3.3B: Daily Realized Volatility (RV) and Realized Variation of

Continuous, Jump and Truncated Jump Components of (Log) Stock

Prices for Truncation Levels  = 1; 2; 3 �
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� See notes in Figure 3.3A.
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Table 3.1: Percentage of Days Identi�ed as Having Jumps Using Daily

Statistics �

Stock Name Panel A: Sample Period 1993-2000 (T ' 2000) Panel B: Sample Period 2001-2008 (T ' 1900)
Signi�cant Level � 0.1 0.05 0.01 0.005 0.001 0.0001 0.1 0.05 0.01 0.005 0.001 0.0001

Alcoa 88 80.9 62.1 52 26.3 8.7 49.2 39.3 21.4 16.5 9.7 4.3
American Express 82.9 76.2 56.4 46.6 19.3 4.6 47.4 36.8 20.2 14.7 8.0 4.0
Bank of America 81.8 75.6 56.7 46.4 21.3 5.0 45.1 34.1 20.1 15.7 8.8 3.1

Citigroup 86.3 80.5 63.3 51.9 23.3 4.9 43.6 32.9 17.9 14.6 7.1 2.6
Caterpillar 87.2 81.5 61.8 51 25.9 7.3 46 35.3 19.9 16.3 9.5 4.3
Dupont 83.8 76.5 57.2 48.3 24.2 5.6 49.5 38.8 21.8 17.1 9.5 3.9

Walt Disney 89.3 83.9 65.9 56.0 27.3 5.3 55.6 43.9 23.9 17.6 10.1 3.9
General Electric 79.6 73.5 54.5 45.5 22.3 4.5 49.2 39.3 21.8 16.2 9.4 3.9

GM 88.1 83.1 65.4 54 25.4 6.2 51.8 40.4 22.8 17.8 10.5 4.7
Home Depot 87.7 81 62.1 51.4 24.6 5.1 49.5 38.5 22.1 16.8 10 4.3

IBM 73.8 65 47.3 39.6 19.2 5.9 39.9 30.1 15.1 11.7 5.9 2.8
Intel 69.2 58.9 39.5 33.0 18.0 6.3 51.7 41.4 23.6 18.7 11.3 4.7

Johnson & Johnson 86.7 81.2 62.8 52.5 25.2 5.7 47.5 37.7 22.1 18.0 10.9 4.6
JPM 79.5 73.2 55.7 47.6 21.4 5.0 47.9 35.9 20.8 16.1 9.0 3.3

Coca Cola 86.4 80.8 63.3 54.2 23.9 4.8 52.5 41.9 23.3 18.5 10.2 4.6
McDonald�s 90.5 85 66.1 55.9 25.8 4.9 51.3 40.8 24.6 19.8 11.5 4.8

3M 85.7 78.8 59.2 49.9 25.6 6.9 43.1 33.1 18.8 14.2 7.9 3.6
Microsoft 68.5 58.7 38.6 30.5 16.4 7.0 56.3 44.8 25.7 21.5 11.1 4.4
P�zer 82.6 75.4 56.6 49.1 26.3 6.5 50 40 23.5 17.7 9.4 4.1

Procter & Gamble 80.1 72.4 55.6 46.4 25.5 6.4 46.9 35.6 18.5 14.4 7.2 2.8
AT & T 89.3 83.3 65.8 54.7 23.1 4.4 58.8 48.4 29 22.8 13.8 6.1

United Tech.Corp. 84.2 77.1 54.3 43.9 22.8 8.2 46.3 36.3 20.5 16.0 9.1 3.6
Verizon 81.5 67.7 46 39.5 24.2 8.1 51.4 40.9 24.5 19.4 11.2 5.0
Walmart 86.7 81.5 59.8 46.9 15.5 5.1 44.7 34.3 18.7 14.0 7.4 2.6

ExxonMobil 61.3 49.8 32.8 26.2 17 5.2 44.2 33.6 17.5 12.9 6.2 2.9
Average 82.4 75.3 56.4 46.9 22.8 5.9 48.8 38.2 21.5 16.8 9.4 4.0
� See notes to Figure 3.1. Entries denote the percentage of days identi�ed as having jumps based on the

calculation of daily statistics. Statistics are the adjusted ratio jump statistics of Barndor¤-Nielsen and Shephard
(2006) and Huang and Tauchen (2005), as discussed in Section 3.4. Test results are summarized in Panel A for
the sample period from 1993-2000 and for the sample period 2001-2008 in Panel B. These sample periods have
approximately 2000 and 1900 daily statistics, respectively. Statistics are reported for six di¤erent signi�cance levels,
� =0:1; 0:05; 0:01; 0:005; 0:001; 0:0001.
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Table 3.2: Daily Realized Variation: Ratio of Jump to Total Variation �

Stock Name Panel A: Sample Period 1993-2000 (T ' 2000) Panel B: Sample Period 2001-2008 (T ' 1900)
Signi�cant Level � 0.1 0.05 0.01 0.005 0.001 0.0001 0.1 0.05 0.01 0.005 0.001 0.0001

Alcoa 41.2 39.5 32.6 28.4 14.8 5.2 13.6 11.8 7.7 6.4 4.1 2.1
American Express 39.5 38.1 30.5 26.2 10.8 2.6 12.7 10.9 7.1 5.7 3.5 1.9
Bank of America 37.2 36.0 29.7 25.3 12.1 2.9 11.6 9.8 6.8 5.6 3.5 1.5

Citigroup 41.5 40.3 34.1 29.2 13.7 3.0 11.0 9.3 6.0 5.1 2.8 1.2
Caterpillar 40.0 38.6 32.0 27.5 14.7 4.5 12.3 10.5 7.1 6.2 4.0 2.0
Dupont 36.8 35.4 29.1 25.8 13.3 3.2 13.3 11.5 7.6 6.4 4.0 1.8

Walt Disney 42.0 40.8 34.9 30.7 15.8 3.4 15.3 13.2 8.6 6.9 4.2 1.8
General Electric 34.0 32.8 27.1 23.8 12.3 2.5 13.2 11.6 7.7 6.1 3.8 1.8

GM 42.5 41.4 35.2 30.2 14.7 3.9 14.6 12.5 8.3 6.9 4.4 2.2
Home Depot 40.0 38.6 32.3 27.9 14.1 3.1 13.3 11.5 7.8 6.3 4.1 2.0

IBM 30.1 28.3 23.1 20.4 10.7 3.5 9.8 8.2 5.1 4.2 2.3 1.3
Intel 24.0 22.0 16.8 14.7 8.9 3.5 13.9 12.2 8.3 6.9 4.6 2.2

Johnson &Johnson 39.2 38.1 32.3 28.3 14.2 3.4 13.0 11.3 7.8 6.7 4.4 2.1
JPM 36.0 34.7 29.2 25.6 12.0 2.8 12.6 10.6 7.2 5.9 3.7 1.6

Coca Cola 39.9 38.8 33.1 29.4 13.7 2.8 14.0 12.3 8.2 6.8 4.2 2.1
McDonald�s 43.9 42.8 36.0 31.5 15.1 3.1 14.9 13.1 9.2 7.8 5.0 2.3

3M 39.0 37.5 30.9 27.2 14.4 4.1 11.0 9.4 6.2 5.1 3.2 1.6
Microsoft 23.2 21.4 16.1 13.5 8.0 3.7 15.1 13.2 9.0 7.8 4.5 2.0
P�zer 35.5 34.1 28.2 25.4 14.7 3.9 13.8 12.1 8.3 6.7 3.9 1.9

Procter &Gamble 33.9 32.4 27.8 24.5 14.2 3.7 11.9 10.1 6.3 5.2 3.0 1.4
AT &T 43.8 42.6 36.0 31.1 13.5 2.8 17.7 15.9 11.1 9.3 6.1 3.0

United Tech.Corp. 37.1 35.5 27.6 23.0 12.4 4.8 12.2 10.5 7.0 5.8 3.6 1.6
Verizon 29.4 26.8 21.0 18.8 12.0 4.4 14.4 12.6 8.7 7.4 4.7 2.4
Walmart 44.4 43.2 33.8 27.4 9.1 3.4 11.5 9.8 6.3 5.1 3.0 1.2

ExxonMobil 19.3 17.1 12.7 10.9 7.6 2.6 10.8 9.1 5.7 4.6 2.5 1.3
Average 36.5 35.1 28.9 25.1 12.7 3.5 13.1 11.3 7.6 6.3 3.9 1.9

Panel C: Sample Period 1993-2008 (T ' 3900)
Signi�cant Level � 0.1 0.05 0.01 0.005 0.001 0.0001

Alcoa 26.7 25.0 19.5 16.9 9.2 3.6
American Express 26.4 24.8 19.1 16.2 7.2 2.3
Bank of America 24.7 23.2 18.5 15.7 7.9 2.2

Citigroup 26.6 25.1 20.3 17.4 8.3 2.1
Caterpillar 26.2 24.7 19.6 16.9 9.4 3.3
Dupont 25.4 23.7 18.6 16.3 8.8 2.5

Walt Disney 29.0 27.3 22.0 19.1 10.2 2.6
General Electric 23.8 22.5 17.6 15.1 8.2 2.2

GM 28.9 27.3 22.1 18.8 9.7 3.1
Home Depot 27.0 25.3 20.3 17.4 9.2 2.5

IBM 20.2 18.5 14.3 12.5 6.6 2.4
Intel 19.0 17.2 12.6 10.9 6.8 2.9

Johnson &Johnson 26.4 25.0 20.3 17.7 9.4 2.8
JPM 24.6 23.0 18.4 16.0 7.9 2.2

Coca Cola 27.3 25.9 20.9 18.4 9.0 2.5
McDonald�s 30.4 29.0 23.5 20.5 10.4 2.7

3M 26.0 24.4 19.4 16.9 9.2 2.9
Microsoft 19.4 17.6 12.8 10.8 6.3 2.9
P�zer 24.9 23.3 18.5 16.3 9.4 2.9

Procter &Gamble 23.2 21.5 17.3 15.1 8.7 2.6
AT &T 31.2 29.6 23.9 20.5 9.9 2.9

United Tech.Corp. 23.7 22.1 16.5 13.8 7.7 3.1
Verizon 15.3 13.5 9.5 8.1 5.1 2.5
Walmart 28.3 26.9 20.4 16.5 6.1 2.3

ExxonMobil 11.9 10.1 6.6 5.4 3.1 1.5
Average 24.7 23.1 18.1 15.6 8.1 2.6

� See notes to Figure 3.2. The entries in the table denote the average percentage of daily variation of the jump
component relative to daily realized variance for the sample periods 1993-2000, 2001-2008 and 1993-2008. The realized
measure of variation of the jump component is calculated as discussed in Section 3.4. In addition to frequency of
jumps, realized measures of variations also take the magintude of jumps into account. Entries are caculcated accross
6 di¤erent signi�cant levels, � =0:1; 0:05; 0:01; 0:005; 0:001; 0:0001.
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Table 3.3A: Daily Realized Variation: Ratio of Large Jump to Total

Variation, Jump Truncation Level  = 1 �

Stock Name Panel A: Sample Period 1993-2000 (T ' 2000) Panel B: Sample Period 2001-2008 (T ' 1900)
Signi�cant Level � 0.1 0.05 0.01 0.005 0.001 0.0001 0.1 0.05 0.01 0.005 0.001 0.0001

Alcoa 1.8 1.7 1.2 1.1 0.9 0.6 1.3 1.2 0.9 0.8 0.5 0.4
American Express 1.5 1.3 1.0 0.8 0.6 0.4 1.2 1.1 0.8 0.6 0.5 0.3
Bank of America 3.0 2.7 1.8 1.5 1.0 0.7 1.0 0.9 0.8 0.6 0.4 0.2

Citigroup 2.1 1.9 1.2 1.0 0.6 0.4 0.8 0.7 0.5 0.4 0.3 0.1
Caterpillar 2.3 2.2 1.6 1.5 1.0 0.6 0.7 0.6 0.5 0.5 0.3 0.2
Dupont 2.1 1.9 1.2 1.0 0.7 0.3 0.9 0.9 0.6 0.5 0.4 0.2

Walt Disney 2.1 1.8 1.1 0.9 0.6 0.4 1.6 1.4 1.0 0.9 0.6 0.3
General Electric 1.5 1.4 0.8 0.7 0.4 0.2 1.3 1.2 0.9 0.6 0.3 0.2

GM 1.5 1.4 1.0 0.8 0.6 0.4 1.3 1.2 0.8 0.7 0.5 0.2
Home Depot 1.9 1.7 1.3 1.1 0.6 0.3 0.7 0.6 0.5 0.3 0.2 0.1

IBM 2.3 2.1 1.7 1.6 1.0 0.7 0.5 0.5 0.4 0.4 0.2 0.1
Intel 2.3 2.1 1.6 1.2 0.8 0.5 0.7 0.7 0.4 0.4 0.3 0.2

Johnson &Johnson 2.2 2.0 1.5 1.3 0.9 0.6 0.6 0.6 0.4 0.3 0.2 0.1
JPM 1.3 1.1 0.7 0.6 0.3 0.2 1.7 1.5 1.0 0.8 0.6 0.3

Coca Cola 2.3 2.1 1.3 1.2 0.8 0.5 0.8 0.8 0.6 0.5 0.4 0.3
McDonald�s 1.8 1.6 1.2 0.9 0.7 0.4 1.0 1.0 0.7 0.6 0.4 0.2

3M 2.1 2.0 1.3 1.1 0.7 0.5 0.6 0.6 0.4 0.4 0.4 0.3
Microsoft 2.9 2.7 2.0 1.7 1.0 0.5 0.6 0.6 0.5 0.4 0.2 0.1
P�zer 2.0 1.9 1.3 1.1 0.8 0.5 0.7 0.6 0.5 0.4 0.3 0.2

Procter &Gamble 2.4 2.2 1.7 1.4 0.9 0.5 0.8 0.7 0.5 0.4 0.3 0.2
AT &T 2.3 2.2 1.6 1.3 0.9 0.7 1.7 1.5 1.2 1.1 0.7 0.4

United Tech.Corp. 3.2 2.9 2.1 1.9 1.2 0.6 1.3 1.1 0.8 0.7 0.5 0.2
Verizon 6.9 6.3 5.0 4.4 2.7 1.1 1.5 1.3 1.0 0.9 0.6 0.4
Walmart 2.7 2.4 1.4 1.2 0.9 0.6 0.6 0.6 0.4 0.4 0.3 0.1

ExxonMobil 2.1 1.8 1.3 1.0 0.6 0.4 1.1 0.9 0.7 0.6 0.4 0.2
Average 2.3 2.1 1.5 1.3 0.8 0.5 1.0 0.9 0.7 0.6 0.4 0.2

Panel C: Sample Period 1993-2008 (T ' 3900)
Signi�cant Level � 0.1 0.05 0.01 0.005 0.001 0.0001

Alcoa 1.6 1.4 1.0 0.9 0.7 0.5
American Express 1.3 1.2 0.9 0.7 0.5 0.4
Bank of America 2.0 1.9 1.3 1.1 0.7 0.5

Citigroup 1.4 1.3 0.8 0.7 0.5 0.3
Caterpillar 1.5 1.4 1.1 1.0 0.7 0.4
Dupont 1.5 1.4 0.9 0.8 0.5 0.2

Walt Disney 1.8 1.6 1.1 0.9 0.6 0.4
General Electric 1.4 1.3 0.8 0.7 0.4 0.2

GM 1.4 1.3 0.9 0.8 0.5 0.3
Home Depot 1.3 1.2 0.9 0.7 0.4 0.2

IBM 1.4 1.3 1.0 1.0 0.6 0.4
Intel 1.5 1.4 1.0 0.8 0.6 0.3

Johnson &Johnson 1.4 1.3 1.0 0.8 0.6 0.4
JPM 1.5 1.3 0.9 0.7 0.5 0.3

Coca Cola 1.6 1.5 1.0 0.8 0.6 0.4
McDonald�s 1.4 1.3 1.0 0.8 0.5 0.3

3M 1.4 1.3 0.9 0.8 0.6 0.4
Microsoft 1.8 1.7 1.3 1.1 0.6 0.3
P�zer 1.3 1.2 0.9 0.8 0.6 0.4

Procter &Gamble 1.6 1.5 1.1 0.9 0.6 0.3
AT &T 2.0 1.9 1.4 1.2 0.8 0.5

United Tech.Corp. 2.1 2.0 1.4 1.3 0.8 0.4
Verizon 1.8 1.6 1.2 1.1 0.7 0.4
Walmart 1.7 1.5 0.9 0.8 0.6 0.3

ExxonMobil 1.2 1.1 0.7 0.6 0.4 0.2
Average 1.6 1.4 1.0 0.9 0.6 0.3

� See notes to Figure 3.2. Entries in the table denote the average percentage of daily variation due to jumps
constructed using truncation level  = 1, relative to the daily realized variance, for the sample periods 1993-2000,
2001-2008 and 1993-2008. The realized measure of variation of the jump component is calculated as discussed in
Section 3.4. Entries are caculcated accross 6 di¤erent signi�cance levels (� =0:1; 0:05; 0:01; 0:005; 0:001; 0:0001).



123

Table 3.3B: Daily Realized Variation: Ratio of Large Jump to Total

Variation, Jump Truncation Level  = 2 �

Stock Name Panel A: Sample Period 1993-2000 (T ' 2000) Panel B: Sample Period 2001-2008 (T ' 1900)
Signi�cant Level � 0.1 0.05 0.01 0.005 0.001 0.0001 0.1 0.05 0.01 0.005 0.001 0.0001

Alcoa 0.8 0.8 0.6 0.5 0.5 0.3 0.5 0.5 0.4 0.4 0.2 0.1
American Express 0.8 0.7 0.6 0.5 0.3 0.3 0.5 0.4 0.3 0.2 0.2 0.1
Bank of America 0.9 0.9 0.5 0.4 0.3 0.2 0.4 0.4 0.3 0.3 0.2 0.1

Citigroup 1.0 1.0 0.7 0.5 0.4 0.3 0.3 0.3 0.2 0.2 0.2 0.1
Caterpillar 1.0 1.0 0.8 0.8 0.5 0.3 0.3 0.3 0.3 0.3 0.2 0.2
Dupont 0.9 0.8 0.4 0.3 0.2 0.1 0.4 0.4 0.2 0.2 0.1 0.0

Walt Disney 1.0 0.9 0.4 0.3 0.3 0.2 0.5 0.5 0.3 0.3 0.2 0.1
General Electric 0.7 0.7 0.4 0.4 0.2 0.1 0.6 0.6 0.5 0.3 0.1 0.1

GM 0.7 0.7 0.4 0.3 0.2 0.2 0.7 0.6 0.4 0.4 0.3 0.1
Home Depot 1.0 0.9 0.7 0.6 0.3 0.2 0.2 0.2 0.2 0.1 0.0 0.0

IBM 1.0 0.9 0.8 0.7 0.5 0.3 0.2 0.2 0.2 0.2 0.1 0.1
Intel 0.9 0.9 0.7 0.6 0.4 0.2 0.2 0.2 0.1 0.1 0.1 0.0

Johnson &Johnson 0.9 0.8 0.6 0.5 0.4 0.3 0.3 0.3 0.2 0.2 0.2 0.1
JPM 0.4 0.4 0.2 0.2 0.1 0.0 0.7 0.7 0.5 0.4 0.3 0.2

Coca Cola 0.9 0.9 0.4 0.4 0.2 0.2 0.4 0.4 0.2 0.2 0.2 0.2
McDonald�s 0.8 0.7 0.5 0.4 0.3 0.3 0.5 0.5 0.4 0.2 0.2 0.0

3M 1.0 0.9 0.5 0.4 0.3 0.2 0.2 0.1 0.1 0.1 0.1 0.1
Microsoft 1.1 1.0 0.8 0.6 0.3 0.1 0.2 0.2 0.2 0.2 0.1 0.0
P�zer 0.8 0.8 0.6 0.6 0.4 0.3 0.3 0.3 0.2 0.2 0.1 0.1

Procter &Gamble 1.1 1.0 0.8 0.6 0.4 0.3 0.3 0.2 0.2 0.2 0.1 0.1
AT &T 1.1 1.0 0.7 0.6 0.4 0.4 0.7 0.6 0.6 0.5 0.3 0.1

United Tech.Corp. 1.1 1.0 0.7 0.6 0.5 0.3 0.4 0.4 0.3 0.3 0.2 0.1
Verizon 2.8 2.6 2.2 1.9 0.7 0.2 0.5 0.5 0.4 0.4 0.3 0.2
Walmart 1.2 1.1 0.6 0.5 0.5 0.4 0.2 0.2 0.2 0.2 0.1 0.0

ExxonMobil 0.8 0.6 0.5 0.4 0.4 0.2 0.5 0.5 0.4 0.3 0.2 0.1
Average 1.0 0.9 0.6 0.5 0.4 0.2 0.4 0.4 0.3 0.3 0.2 0.1

Panel C: Sample Period 1993-2008 (T ' 3900)
Signi�cant Level � 0.1 0.05 0.01 0.005 0.001 0.0001

Alcoa 0.6 0.6 0.5 0.4 0.3 0.2
American Express 0.7 0.6 0.4 0.3 0.3 0.2
Bank of America 0.7 0.6 0.4 0.4 0.3 0.2

Citigroup 0.7 0.7 0.5 0.4 0.3 0.2
Caterpillar 0.7 0.6 0.5 0.5 0.4 0.3
Dupont 0.7 0.6 0.3 0.3 0.2 0.1

Walt Disney 0.8 0.7 0.4 0.3 0.2 0.2
General Electric 0.7 0.6 0.5 0.3 0.1 0.1

GM 0.7 0.7 0.4 0.3 0.2 0.2
Home Depot 0.6 0.6 0.4 0.3 0.2 0.1

IBM 0.6 0.6 0.5 0.5 0.3 0.2
Intel 0.6 0.5 0.4 0.3 0.2 0.1

Johnson &Johnson 0.6 0.6 0.4 0.4 0.3 0.2
JPM 0.6 0.5 0.4 0.3 0.2 0.1

Coca Cola 0.6 0.6 0.3 0.3 0.2 0.2
McDonald�s 0.7 0.6 0.5 0.3 0.3 0.2

3M 0.6 0.6 0.3 0.3 0.2 0.2
Microsoft 0.6 0.6 0.5 0.4 0.2 0.0
P�zer 0.6 0.5 0.4 0.4 0.3 0.2

Procter &Gamble 0.7 0.6 0.5 0.4 0.3 0.2
AT &T 0.9 0.8 0.6 0.6 0.4 0.3

United Tech.Corp. 0.7 0.7 0.5 0.4 0.3 0.2
Verizon 0.7 0.6 0.5 0.4 0.3 0.2
Walmart 0.7 0.6 0.4 0.3 0.3 0.2

ExxonMobil 0.6 0.5 0.4 0.3 0.2 0.1
Average 0.7 0.6 0.4 0.4 0.3 0.2

� See notes to Table 3.3A.
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Table 3.3C: Daily Realized Variation: Ratio of Large Jump to Total

Variation, Jump Truncation Level  = 3 �

Stock Name Panel A: Sample Period 1993-2000 (T ' 2000) Panel B: Sample Period 2001-2008 (T ' 1900)
Signi�cant Level � 0.1 0.05 0.01 0.005 0.001 0.0001 0.1 0.05 0.01 0.005 0.001 0.0001

Alcoa 0.3 0.3 0.2 0.2 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.0
American Express 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.0
Bank of America 0.5 0.5 0.3 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1

Citigroup 0.5 0.5 0.4 0.3 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.0
Caterpillar 0.5 0.5 0.4 0.4 0.3 0.2 0.1 0.1 0.1 0.1 0.1 0.1
Dupont 0.4 0.4 0.2 0.1 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0

Walt Disney 0.5 0.5 0.2 0.2 0.2 0.2 0.3 0.3 0.2 0.2 0.1 0.0
General Electric 0.3 0.3 0.2 0.1 0.0 0.0 0.3 0.3 0.3 0.2 0.0 0.0

GM 0.3 0.3 0.2 0.1 0.1 0.1 0.2 0.2 0.1 0.1 0.1 0.0
Home Depot 0.4 0.4 0.3 0.3 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0

IBM 0.3 0.3 0.3 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Intel 0.4 0.4 0.3 0.2 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0

Johnson &Johnson 0.4 0.4 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.0
JPM 0.2 0.2 0.1 0.1 0.0 0.0 0.2 0.2 0.2 0.2 0.1 0.1

Coca Cola 0.5 0.5 0.2 0.2 0.1 0.1 0.2 0.2 0.1 0.1 0.1 0.1
McDonald�s 0.4 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.0

3M 0.3 0.3 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0
Microsoft 0.4 0.4 0.2 0.2 0.1 0.0 0.1 0.1 0.1 0.1 0.0 0.0
P�zer 0.3 0.3 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.0 0.0

Procter &Gamble 0.3 0.3 0.2 0.2 0.2 0.1 0.2 0.2 0.1 0.1 0.1 0.1
AT &T 0.6 0.5 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.0

United Tech.Corp. 0.2 0.2 0.2 0.2 0.2 0.1 0.2 0.2 0.1 0.1 0.1 0.0
Verizon 0.7 0.7 0.7 0.7 0.0 0.0 0.2 0.1 0.1 0.1 0.1 0.0
Walmart 0.5 0.5 0.3 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.0 0.0

ExxonMobil 0.1 0.1 0.1 0.0 0.0 0.0 0.2 0.2 0.2 0.2 0.1 0.0
Average 0.4 0.4 0.3 0.2 0.1 0.1 0.2 0.2 0.1 0.1 0.1 0.0

Panel C: Sample Period 1993-2008 (T ' 3900)
Signi�cant Level � 0.1 0.05 0.01 0.005 0.001 0.0001

Alcoa 0.3 0.3 0.2 0.2 0.1 0.1
American Express 0.3 0.2 0.2 0.1 0.1 0.1
Bank of America 0.3 0.3 0.2 0.2 0.1 0.1

Citigroup 0.3 0.3 0.2 0.2 0.2 0.1
Caterpillar 0.3 0.3 0.3 0.2 0.2 0.1
Dupont 0.3 0.3 0.1 0.0 0.0 0.0

Walt Disney 0.4 0.4 0.2 0.2 0.1 0.1
General Electric 0.3 0.3 0.2 0.2 0.0 0.0

GM 0.3 0.3 0.1 0.1 0.1 0.1
Home Depot 0.2 0.2 0.2 0.1 0.0 0.0

IBM 0.2 0.2 0.2 0.2 0.1 0.1
Intel 0.2 0.2 0.2 0.1 0.1 0.0

Johnson &Johnson 0.3 0.3 0.2 0.2 0.2 0.1
JPM 0.2 0.2 0.1 0.1 0.0 0.0

Coca Cola 0.3 0.3 0.1 0.1 0.1 0.1
McDonald�s 0.3 0.3 0.2 0.1 0.1 0.1

3M 0.2 0.2 0.1 0.1 0.1 0.1
Microsoft 0.2 0.2 0.2 0.1 0.1 0.0
P�zer 0.2 0.2 0.2 0.1 0.1 0.1

Procter &Gamble 0.2 0.2 0.2 0.2 0.1 0.1
AT &T 0.4 0.4 0.2 0.2 0.2 0.1

United Tech.Corp. 0.2 0.2 0.2 0.2 0.1 0.1
Verizon 0.2 0.2 0.1 0.1 0.1 0.0
Walmart 0.3 0.3 0.2 0.2 0.1 0.1

ExxonMobil 0.2 0.2 0.2 0.2 0.1 0.0
Average 0.3 0.3 0.2 0.1 0.1 0.1

� See notes to Table 3.3A.
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Chapter 4

Volatility Predictability and Jump Asymmetry

4.1 Introduction

Many recent modelling advances in asset pricing and management are predicated on

the importance of jumps, or discontinuous movements in asset returns. In an im-

portant paper, Huang and Tauchen (2005) �nd evidence of discrete large jumps in

S&P cash and future (log) returns from 1997 to 2002, in approximately 7% of the

trading days. Aït-Sahalia and Jacod (2009b) develop methods to ascertain whether

the process describing an asset contains "in�nite activity jumps" - those jumps that

are tiny and look similar to continuous movements, but whose contribution to the

jump risk of the process is not negligible. In an empirical analysis of Intel and Mi-

crosoft returns, they �nd evidence of the presence of in�nite active jumps in historical

data. In summary, it is now generally accepted that many return processes contain

jumps.55 Once jumps are found, the economic implications of including them in

dynamic asset pricing exercises are substantial. For example, the incorporation of

jumps lead to break-downs in the typical market completeness condition needed for

portfolio replication strategy in derivatives valuation. Additionally, jumps complicate

the implementation of the "state of the art" change of risk measure in risk neutral

pricing. As a result, asset allocation and risk management, which heavily depend

on risk measures and underlying asset return dynamics, are a¤ected. In volatility

measurement, it is necessary to separate out the volatility due to jumps or construct

variables that appropriately summarize information generated by jumps.

In volatility forecasting, once jumps are detected, understanding the role of vari-

ables that capture jump information is potentially important for applied practition-

55For other examples of work in this area, see Aït-Sahalia (2002), Carr et al., (2002), Carr and
Wu (2003), Barndor¤-Nielsen and Shephard (BNS: 2006), Woerner (2006), Jacod (2008), Jiang
and Oomen (2008), Lee and Mykland (2008), Tauchen and Todorov (2009), Aït-Sahalia and Jacod
(2009a,b) and the references cited therein.
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ers, especially in the construction of hedging strategies.56 In general, volatility pre-

dictability is important in numerous areas ranging from the pricing of volatility-based

derivative products to asset management. In light of this, a number of recent papers

have addressed volatility predictability, some from the perspective of the usefulness

of jumps in forecasting volatility. However, although there is strong evidence of the

importance of jumps in pricing, investment and risk management, there is mixed ev-

idence concerning whether information extracted from jumps is useful for volatility

forecasting. In a seminal work, Andersen, Bollerslev and Diebold (ABD: 2007) show

that almost all of the predictability in daily, weekly, and monthly return volatilities

comes from the non-jump component for DM/$ exchange rate, the S&P500 market

index, and the 30-year U.S. Treasury bond yield. Corsi, Pirino and Reno (2008) �nd

that jumps are positively correlated with, and have a signi�cant impact on future

volatility of the S&P500 index, various individual stocks and US bond yields. Pat-

ton and Shephard (2011) point out that the impact of a jump on future volatility

critically depends on the sign of the jump, for both the S&P 500 index, as well as

105 individual stocks. In this chapter we add to the empirical literature on this topic

by providing results on volatility forecasting using a variety of "new" variables that

capture information generated by jumps.

When undertaking empirical research using volatility, a key issue involves the

choice of the volatility estimator. One approach involves "backing out" volatility

from parametric from ARCH, GARCH, Stochastic Volatility, or Option pricing mod-

els. The approach that we adopt involves using recently developed "model free" es-

timators (see the in�uential work of Andersen, Bollerslev, Diebold and Laby (2001)),

including realized volatility (RV), and variants thereof such as bipower variation,

tripower variation, multipower variation, semivariance, and various others.57 One

key reason for the use of these "model free" realized measures (RMs), is that they

allow us to treat volatility as if it is observed, when we �t regressions in order to assess

jump predictability. Modeling and forecasting RMs are important not only because

RMs are a natural proxy for volatility, but also because of the many practical appli-

56See Andersen, Bollerslev and Diebold (2007) and Aït-Sahalia and Jacod (2011) for further
discussion.
57See e.g., Barndor¤-Nielsen and Shephard (2004), Aït-Sahalia, Mykland and Zhang, (2005),

Zhang (2006), Barndorf-Nielsen, Hansen, Lunde, and Shephard (2006,2008), Jacod (2008), Barndo¤,
Kinnebrock, Shephard (2010), and the references cited therein.
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cations and uses of RMs in constructing synthetic measures of risk in the �nancial

markets. For example, since shortly after the inception in 1993 of the VIX (index of

implied volatility), a variety of volatility-based derivative products have been engi-

neered using RV as an input. These include variance swaps, caps on variance swaps,

corridor variance swaps, covariance swaps, options on RV overshooters, and up and

downcrossers. The key here is that investors worry about future volatility risk, and

hence often opt for this type of contract in order to hedge against risk, adding to

the traditional volatility "Vega".58 In light of the above uses of RV, several authors

have advocated forecasting RV (and more generally RMs) using extensions of ARMA

models (see e.g., Andersen, Bollerslev, Diebold and Labys (2003), Corsi (2004), and

ABD (2007)). In related work, Corradi, Distaso and Swanson (2012) develop model

-free conditional predictive density estimators and con�dence intervals for integrated

volatility.

Given the availability of volatility estimators, as discussed above, it remains to

choose variables that capture information generated by jumps. In this chapter, we

examine four realized measures of jump power variations, all formed on the basis of

power transformation of the instantaneous return (i.e., jrtjq). The analysis of power
transformations of returns is not new. Ding, Granger and Engle (1993) and Ding and

Granger (1996) develop long memory Asymmetric Power ARCH models based on

power transformations of daily absolute returns. They �nd that the autocorrelations

of power transformations of S&P 500 returns are the strongest for q < 1. In the

context of high frequency data, Liu and Maheu (LH: 2005) and Ghysels and Sohn (GS:

2009) study the predictability of future realized volatility using past absolute power

variations and multipower variations. GS (2009) �nd that the optimal value of q is

approximately unity. However, their empirical evidence considers the continuous class

of models, and does not account for jumps. Andersen, Bollerslev and Diebold (ABD:

2007), on the other hand, develop an interesting framework for separating jump and

continuous components of RV, and carry out predictability experiments indicating

that jumps play a small but notable role in forecasting volatility. In related recent

58Volatility and variance swaps are newer hedging instruments, adding to the traditional volatility
"Vega", which is derived from options data. See Hull and White (1997, pp. 328) for a de�nition of
Vega. For example, as noted in Carr and Lee (2008), the UBS book was short many millions of vega
in 1993, and they were the �rst to use variance swaps and options on realized volatility to hedge
against volatility risk. See Duong and Swanson (2011) for further discussion.
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work, Barndo¤, Kinnebrock, and Shephard (BKS: 2010) construct new estimators

of downside (and upside) risk (i.e., so-called realized semivariances), using square

transformations of positive and negative intra-daily return, and �nd that downside

risk measures are important when attempting to model and understand risk: They

note, as quoted from Granger (2008), that: �It was understood that risk relates to

an unfortunate event occurring, so for an investment this corresponds to a low, or

even negative, return. Thus getting returns in the lower tail of the return distribution

constitutes this �downside risk.�However, it is not easy to get a simple measure of

this risk.� This point is noteworthy, since it is argued in the literature (see e.g., Ang,

Chen and Xing (2006)), that investors treat downside losses di¤erently than upside

gains. As a result, agents who put higher weight on downside risk demand additional

compensation for holding stocks with high sensitivity to downside market movements.

Most authors in this literature pay attention to co-skewness as a measure of downside

risk, and use daily data for estimation thereof. Patton and Shephard (2011) build on

these ideas and use semivariance estimators to forecast volatility.

Building on the work of above authors, and in particular BKS (2010), we con-

tribute to the volatility prediction literature by examining recently proposed realized

measures of (downside) jump power variations. The measures are constructed using

power transformations of absolute intra-daily returns, based on recent limit theory

advances due to Jacod (2008) and BKS (2010). Theoretically, the measures do not re-

quire the use of a jump test in order to �pre-test�for jumps. Although construction of

the measures is closely related to the work of Ghysels and Sohn (2009), our approach

di¤ers in that we focus on jump power variations with q > 2: Furthermore, the limit

theory that we adopt allows us to construct estimators of downside and upside jump

power variations using intra-daily positive and negative returns. These estimators are

suggested by BKS (2010) as alternatives to the semivariances implemented in Patton

and Shephard (2011). We also examine jump asymmetry (i.e., realized signed jump

power variation) in realized volatility prediction experiments. Of note is that the

role of the size of jumps that are most useful for forecasting can be inferred through

examination of the order of q: For this reason, we consider jump power variations

with 0 � q � 6: While previous authors have focused on q � 2;allowing for a wider
range of values for q is sensible, given that convergence to jump power variation oc-
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curs only when q > 2 (see e.g. Todorov and Tauchen (2010) and BKS (2010)). 59We

also use an approach recommended in Duong and Swanson (2010) for constructing

truncated jump measures, in order to assess whether jumps of a particular range of

magnitudes are more useful than measures based upon the use of all jumps, or of

signed jumps. Our dataset includes high frequency price returns constructed using

S&P futures index data as well as stocks in the Dow 30, for the period 1993-2009;

and our empirical implementation involves estimating members of the linear and non-

linear extended Heterogeneous Autoregressive of the Realized Volatility (HAR-RV)

class of models. Our �ndings suggest that past "large" jump power variations help

less in the prediction of future realized volatility, than past "small" jump power vari-

ations. This in turn suggests the "larger" jumps might help less in the prediction

of future realized volatility than "smaller" jumps. Our empirical �ndings also sug-

gest that past realized signed jump power variations, which have not previously been

examined in this literature, are strongly correlated with future volatility, and that

past downside jump variations matter in prediction. Moreover, our results include

various experimental setups in which the (forecast) best values of q are larger than 2

for S&P 500 futures: Interestingly, whether or nor jump tests are implemented prior

to the construction of jump power variations also a¤ects the choice of q, in a variety

of in-sample and out-of-sample forecasting contexts. Finally, incorporation of down-

side and upside jump power variations does improve predictability, albeit to a limited

extent. Overall, our �ndings are consistent with ABD (2007) in the concluding that

continuous components dominate, when predicting volatility.

The rest of the chapter is organized as follows: Section 4.2 discusses volatility and

price jump variation, and Section 4.3 discusses the various realized measures of price

jump variation that we examine. Section 4.4 outlines our experimental setup, and

Section 4.5 gathers our empirical �ndings. Concluding remarks are contained Section

4.6.
59In our implementation, for q > 6, the prediction results are almost the same as the case q = 6

and therefore are not presented.
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4.2 Volatility and Price Jump Variations

We adopt a general semi-parametric speci�cation for asset prices. Following Todorov

and Tauchen (2010), the log-price of asset, pt = log(Pt); is assumed to be an Itô

semimartingale process,

pt = p0 +

Z t

0

bsds+

Z t

0

�sdBs + Jt; (4.31)

where p0 +
R t
0
�sds+

R t
0
�s�dBs is a Brownian semi-martingale and Jt is a pure jump

process which is the sum of all "discontinuous" price movements up to time t;

Jt =
X
s�t
�ps:

Jt is assumed to be �nite60 and a jump at time s is de�ned as �ps = ps� ps�.
When the jump component is a Compound Poisson Process (CPP) - i.e. a �nite

activity jump process - then,

Jt =
NtX
i=1

Yi; (4.32)

where Nt is number of jumps in [0; t]. Nt follows a Poisson process, and the Y 0i s are

i.i.d. and are the sizes of the jumps. The CCP assumption has been widely used in

the literature on modeling, forecasting, and testing for jumps. However, jumps could

have more general speci�cations, which contain so called - in�nite activity jumps as

in Todorov and Tauchen (2010).

The empirical evidence discussed in this chapter involves examining the varia-

tion of the log-price jump component using an equally spaced path of a historically

observed price sample, i.e. fp0; p1�n ; p2�n :::; pn�ng, where the sampling frequency
�n =

t
n
is deterministic61. The intra-daily return or increment of pt is

ri;n = pi�n � p(i�1)�n :

Returns are observed at various frequencies. However, volatility of log-price is

often treated as an unobserved variable. The "true" value of variance of price (risk)

60See, for example Jacod (2008) or Todorov and Tauchen (2009) for the conditions for the �niteness
of jump.
61For instance, if we use 5 minute sampling frequency to calculate daily measure in our application.

Then t = 1 and n = 78 and �n = 1
78 :
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is de�ned in the literature by so-called quadratic variation of the process pt, i.e.,

Vt = [p; p]t =

Z t

0

�2sds+QJt;

where the variation of continuous component is
R t
0
�2sds (integrated volatility) and

the variation of jump component is QJ =
P

s�t(�ps)
2:

The realized volatility (RV), constructed by simply summing up all successive

intra-daily squared returns, converges to the quadratic variation of the process as

sampling frequency n ! 1. Andersen, Bollerslev, Diebold and Labys (2001) use
realized volatility as an estimator of variation or volatility of the process,

RVt =

nX
i=1

r2i;n
ucp�! Vt; (4.33)

where ucp denotes uniform convergence in probability. RV is useful, in particular

in volatility modeling and forecasting.

As jumps are often linked to abnormal or tailed behaviors of returns, the assess-

ment of di¤erent RMs of jump variations is important. One way is to decompose

price jumps �ps as in Duong and Swanson (DS: 2010) and Ait-Sahalia and Jacod

(2011) using pre-�xed truncation level ;  � 0;

JTt; =
X
0<s�t

(�ps)
2I�ps> +

X
0<s�t

(�ps)
2I�ps<�; (4.34)

where I is an indicator taking 1 if jump size is larger than  (upside truncated

jumps) or less than � (downside truncated jumps). Intuitively, JTt; keeps all jumps
with absolute magnitude larger than :

In this chapter, we assess jump variations using di¤erent measures, jump power

variations formulated by power transformation of absolute log-price jumps (j�psjq),

JPq;t =
X
0<s�t

j�psjq, (4.35)

and "upside" jump power variation measure, de�ned as

JPV +q;t =
X
0<s�t

j�psjqI�ps>0. (4.36)

JPV +q;t retains the "upside" jump movements. Similarly, we could consider the
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"downside" jump power variation which keeps all the "downside" jump movements,

i.e.,

JPV �q;t =
X
0<s�t

j�psjqI�ps<0, (4.37)

Finally, jump asymmetry could be measured by the so-called signed jump power

variation, de�ned as

JAq;t =
X
0<s�t

j�psjqI�ps>0 �
X
0<s�t

j�psjqI�ps<0. (4.38)

In the above expression, we are particularly interested in the case where q is

larger or equal to 2. Note that for a large value of q; JPq;t; JPV +q;t; JPV
�
q;t; JAq;t are

dominated by large jumps. For q < 2; the jump variations are not always guaranteed

to be �nite. The natural estimators for the above jump variations are based on power

transformation of intra-daily return, jri;njq, which we will discuss in the next section.

4.3 Realized Measures of Price Jump Variations

Our interest in this chapter is to construct and examine the realized measures (RMs)

of jump power variations such as JPq;t; JPV +q;t; JPV
�
q;t; JAq;t; for a wide range of values

of q, and then use them for various prediction experiments. In this line of research,

note that for the case q = 2, BKS (2010) develop the so-called realized semivariances

which are the estimators of JPV +q;t; JPV
�
q;t. PS (2011) build on these results and make

use of realized semivariances to forecast volatility. For the variations with q 6= 2, GS
(2009) study the predictability of future RV using realized power variations. Realized

power variations are formed on the basis of the power transformation of absolute

return. They look for the optimal predictors of this type in the forecast. In their set-

up, the log-price process is a continuous semimartingale. In the following sections,

we brie�y review the estimators used in GS (2009), BKS (2010) and PS (2011) and

then present the RMs of jump power variations JPq;t; JPV +q;t; JPV
�
q;t; JAq;t used in

our chapter.

4.3.1 Semivariances and Realized Power Variations

We start by reviewing the estimators used in BKS (2010) and PS (2011). BKS (2010)

construct realized semivariances on the basis of square transformation of intra-daily
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return, r2i;n; de�ned as follows:

RS� =
nX
i=1

(ri;n)
2 Ifri;n<0g,

and

RS+ =
nX
i=1

(ri;n)
2 Ifri;n>0g.

RS� (RS+) retains only negative (positive) intra-daily returns and could serve as

a measure of downside (upside) risks as pointed out in BKS (2010). They show that

RS+ and RS� converge uniformly in probability to semi-variances,

RS+ ! 1

2

Z t

0

�2sds+
X
(�ps)

2I�ps>0, (4.39)

and

RS� ! 1

2

Z t

0

�2sds+
X
(�ps)

2I�ps<0.

With the above limit results, realized measure of "downside" jump variation is

obtained by replacing
R t
0
�2sds with it�s estimator cIV ,

nX
i=1

r2i;nIfri;n<0g �
1

2
cIV !X

(�ps)
2I�ps�0. (4.40)

In volatility forecasting experiments, PS (2011) use bipower variation for cIV 62.

In addition, they construct the so-called "signed" jump variation variable, �RJ =

RS+ �RS� that captures jump variation asymmetry,

�RJ !
X
(�ps)

2I�ps>0 �
X
(�ps)

2I�ps<0.

When jumps are not present, �RJ converges to 0 and there is no asymmetry in

volatility of (log) price process. When the process has jumps, �RJ could be a proxy

for jump variation asymmetry.

Turning to the discussion of variations with q 6= 2; to our knowledge, very few

papers empirically examined realized power variations for forecasting. GS (2009)

examine the optimal realized power variation, n�1+q=2
Pn

i=1 jri;njq (optimal q) in fore-
casting future RV: They build their estimators on the assumption that the price

62See BNS (2004) for the dicussion on bipower variation and integrated volatility.
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process follows Brownian Semi-martingale. Their implications are therefore restricted

to the higher order variation of log-price continuous component,
R t
0
�qsds; involving no

jumps: In such case, Ait-Sahalia and Jacod (2011) point out that for all q > 0;

n�1+q=2
nX
i=1

jri;njq ! �q

Z t

0

�qsds, (4.41)

where �q = E(juj
q) and u is a standard normal random variable.

4.3.2 Realized Downside and Signed Jump Power Variation

Understanding the role of variables that capture jump information is potentially im-

portant for applied practitioners. In this section, we �rst study recently proposed

realized measures of jump power variations JPq;t. The measures are constructed us-

ing power transformations of absolute intra-daily returns, based on recent limit theory

advances due to Jacod (2008) and BKS (2010). Furthermore, the limit theory that

we adopt then allows us to construct estimators of downside and upside jump power

variations, JPV +q;t; JPV
�
q;t for q > 2; using intra-daily positive and negative returns.

These estimators are suggested by BKS (2010) as alternatives to the semivariances

implemented in PS (2011). Finally. making use of the RMs of JPV +q;t; JPV
�
q;t, we de-

velop a novel proxy for jump asymmetry (i.e., realized signed jump power variation).

The RMs of jump power variations are de�ned as:

RPVq;t =
nX
i=1

jri;njq;

for q > 0:

The realized downside and upside power variations are de�ned as:

RJ+q;t =

nX
i=1

jr+i;njq,

and

RJ�q;t =

nX
i=1

jr�i;njq,

for q > 2.

For a brief discussion of the above realized measures, the convergences of the

above RMs to jump power variations occur when q > 2. Therefore, in the prediction
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experiments, di¤erent from previous work, we are particularly interested a range of q

from 2 to 6 and allow for price process to contain jumps. Regarding RPVq;t; we also

look at at the range of q from 0 to 2 by applying a jump robust limit result of Jacod

(2008).

Regarding the limiting behavior of RPVq;t; Todorov and Tauchen (2010) summa-

rize selected results from Barndor¤-Nielsen et. al. (2005) and Jacod (2008). In their

set-up, the log-price process contains continuous martingale, jump and drift compo-

nents. The value of q directly a¤ects the limiting behavior of RPVq;t. For instance,

for q < 2; the limit of RPVq;t is determined by the continuous martingale. For q > 2;

the limit is driven by jump component. When q = 2; both continuous and jump

components contribute to the limit of RPVq;t. The results are as follows:8>>>><>>>>:
�
1�q=2
n RPVq;t

ucp�! �q
R t
0
�qsds , if 0 < q < 2,

RPVq;t
ucp�! V if q = 2,

RPVq;t
ucp�! JPq;t if q > 2.

(4.42)

BKS (2010) point out that we can go one step further to decompose jump power

variations into upside movements and downside movements, i.e.�
RJ+q;t

ucp�! JPV +q;t

RJ�q;t
ucp�! JPV �q;t

if q > 2 (4.43)

As earlier mentioned, for q < 2; the scaled RPVq;t converges to power variations

of the continuous component, involving no jumps. Intuitively, with q > 2; the scaled

RPVq;t; RJ
+
q;t; RJ

�
q;t eliminate all variations due to the continuous component and keep

all the large jumps. In addition, the realized measures are more dominated by large

jumps for the high value of q. Conversely, for the case q < 2, all jumps are eliminated

asymptotically.

Building on (4.43), we could construct the novel RMs of jump power variation

asymmetry, so-called "signed" jump power variation. It is straightforward to verify

that:

RJAq;t = RJ
+
q;t �RJ�q;t

ucp�! JAq;t

Note that this variable has not been studied in volatility forecasting literature. PS

(2011) study the predictability of the similar estimator, �RJ; constructed on the basis
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of realized semivariance: In our forecasting experiments, we examine the usefulness

of this new jump asymmetry variable, RJAq;t with a wide range of values of q > 2;

in future volatility forecasting.

As the last remark in our discussion of RMs of variations, in the predictive com-

parison of variables that capture information generated by jumps and the continuous

component, we need to select variables that measure the variation of the continuous

movements of price process. In this chapter we use multi-power variations, which are

estimators of
R t
0
�qsds. Those estimators are robust to the existence of jumps. We

also utilize these estimators for the jump test implementation highlighted in the next

section. The multipower variations discard the impact of jumps by multiplying power

transformations of successive absolute intra-daily returns, i.e.,

Vm1;m2:::;mj
=

nX
i=2

jri;njm1jri�1;njm2 ::::jri�j;njmj ,

where m1;m2;:::;mj are positive, such that
Pj

1mi = q:

4.3.3 Testing for Jumps

As discussed in the previous section, realized measures of jump power variations

RPVq;t; RJ
+
q;t; RJ

�
q;t, RJAq;t converge asymptotically to jump power variations JPq;t,

JPV +q;t; JPV
�
q;t; JAq;t of the price process. Theoretically, this result also holds for

price process without jumps, yielding the limits of zeros: However, in �nite sample,

it might be useful to implement a pre-testing step to determine whether the log-price

process has jumps. The pre-testing approach is developed by ABD (2007) and is

empirically examined in DS (2010) for the construction of RMs of truncated jump

quadratic variation. We follow this approach in our construction of variables that

capture information generated by jumps, in particular we use the jump test statistics

developed by BNS (2006) and Huang and Tauchen (2005).

Firstly, we review some theoretical results relating to testing for jumps, namely

testing whether Jt 6= 0.
In pioneering work, BNS (2006) propose a robust and simple test for a class of

Brownian Itô Semimartingales plus Compound Poisson jumps63. In recent work, Aït-

63A simpli�ed version of the results of the above authors applied to (4.31) for the one-dimensional
case is as follows. If the process X is continuous, let f(x) = xn (exponential growth), let ��s be the
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Sahalia and Jacod (2009a) among others develop a di¤erent test which applies to a

large class of Itô-semimartingales, and allows the log price process to contain in�nite

activity jumps - small jumps with in�nite concentrations around 0.

Regardless of the estimator that is used, the appropriate test hypotheses are:

H0 : pt is a continuous process in the interval [0; t]

H1 : the negation of H0 (there are jumps)

If we use multipower variation, under the null hypothesis the test statistic which

directly follows from the CLT mentioned above is:

LSjump =

q
t
n

�Pn
i=1(ri;n)

2 � cIV �q
#cIQ D�! N(0; 1)

and the so-called jump ratio test statistic is:

RSjump =

q
t
nq

#cIQ=(cIV )2
 
1�

cIVPn
i=1(ri;n)

2

!
D�! N(0; 1):

where cIV and cIQ are multipower variation estimators of integrated volatilityR t
0
�2sds and

R t
0
�4sds. BNS (2006) use V1;1 (bipower variation) and V1;1;1;1. In jump

test implementation with multipower estimators, ABD (2007) suggest the use V 2
3
; 2
3
; 2
3

(tripower variation) and V 4
5
; 4
5
; 4
5
: The reason we use tripower variation, V 2

3
; 2
3
; 2
3
; instead

of bipower variation, V1;1; is that it is more robust to clustered jumps and note that:

cIV = V 2
3
; 2
3
; 2
3
��32
3

(4.45)

and

cIQ = n

t
V 4
3
; 4
3
; 4
3
��54
5

(4.46)

where �r = E(jZjr) and Z is a N(0; 1) random variable.

law N(0; �2s); and let ��s(f) be the integral of f with respect to this law. Then:r
1

�n

 
�n

nX
i=1

f(
�ni Xp
�n

)2 �
Z t

0

��s(f)ds

!
�!

Z t

0

q
��s(f

2)� �2�s(f)dBs (4.44)
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Andersen, Dobrev, Schaumburg (2008) suggest a di¤erent estimator that could

handle the case of consecutive jumps. This estimator is also more robust to occurrence

of zero-return. This robust jump measure is as follows:

cIV =MedRVn = �

6� 4
p
3 + �

�
n

n� 2

� n�1X
i=2

med (jri�1;nj jri�2;nj jri�3;nj)2

Of note is that an adjusted jump ratio statistic has been shown by extensive

Monte Carlo experimentation in Huang and Tauchen (2005), in the case of CCP

jumps, to perform better than the two above statistics, being more robust to jump

over-detection. This adjusted jump ratio statistic is:

AJjump =

p
n
tq

#max(t�1; cIQ=(cIV )2)
 
1�

cIVPn
i=1(ri;n)

2

!
D�! N(0; 1)

In general if we denote the daily test statistics to be Zt;n(�); where n is the number

of observations per day and � is the test signi�cance level 64, then we reject the null

hypothesis if Zt;n(�) is in excess of the critical value ��; leading to a conclusion that

there are jumps. The converse holds if Zt;n(�) is less than ��. In our empirical

application, Zt;n(�) is the adjusted jump ratio statistic.

4.3.4 Realized Measures of Daily Variations

With the availability of the RMs such as RPVq;t; RJ+q;t; RJ
�
q;t, RJAq;t and the jump

tests, in this section, we elaborate further on how to construct daily time series of

variables that captures information generated by the variations of log-price process

for forecast experiments.

For each day, we calculate the realized measures of jump power variations using a

high frequency price path. To mitigate the e¤ect of microstructure noises,65 we sample

data at �ve-minute frequency as suggested in Aït-Sahalia, Mykland and Zhang (2005).

The �rst group of predictors is constructed without jump tests. The second group of

predictors utilizes jump test adjusted technique by ABD (2007). We set n = 78, the

number of �ve-minute observations within a day, and consider the range of q from 0:1

64 i.e., �n = 1=n
65The main drawback of realized measures constructed on the basis of high frequency data is that

they are contaminated by mictrostructure noises. See Aït-Sahalia, Mykland and Zhang (2005) for
further dicussion.
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to 6, i.e. q = f0:1; 0:2; :::; 5:9; 6g:

4.3.4.1 Predictors with No Jump Test

The daily times series of realized measures of jump power variations are formed at a

particular day t as follows:

RPVq;t = Realized qth order power variation at day t =
P78

i=1 jri;78jq with q > 0,
RJ+q;t = Realized Measure of qth order upside jump power variation at day t =P78
i=1

�
jr+i;78jq

�
; q > 2,

RJ�q;t = Realized Measure of qth order downside jump power variation at day t =Pn
i=1

�
jr�i;78jq

�
, q > 2,

RJAq;t = Realized Measure of qth order signed jumps power variation at day

t = RJ+q;t �RJ�q;t, q > 2,
As noted before, realized qth order power variation with q < 2 does not involve

jumps.

4.3.4.2 Predictors with Jump Test

First, the predictors are calculated as in section 4.3.4.1. Jump tests are then imple-

mented on daily basis and the predictors are adjusted accordingly. Speci�cally, RMs

of jump power variations at day t are positive if jumps are detected and 0 otherwise.

This simple approach is �rst studied by ABD (2007) in the construction of time series

of RMs of quadratic variations of jump component. Let Ijump;t be the indicator of

jumps, i.e. Ijump;t = 1 if jumps occur at day t and Ijump;t = 0 otherwise: Then the

adjusted realized measure of jump power variations are expressed as,

RPVq;t = Realized q � th order power variation = Ijump;t � f
P78

i=1 jri;78jqg,
RJ+q;t =Realized q�th order upside jump power variation = Ijump;t�f

P78
i=1

�
jr+i;78jq

�
g,

RJ�q;t =Realized q �th order downside jump power variation = Ijump;t�f
Pn

i=1

�
jr�i;78jq

�
g,

RJAq;t = Realized q� th order signed jumps power variation = Ijump;t � fRJ+q;t �
RJ�q;tg.

4.3.4.3 Benchmark Realized Variations of the Continuous and Jump Com-
ponents

The RMs of quadratic variation (RV) and variation of continuous component are

formalized as in ABD (2007),
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RV Jt =Variation of the jump component = maxf0; RVt � cIVtg � Ijump;t,
RV Ct =Variation of continuous component = RVt �RV Jt,
where cIVt is an estimator of variation of continuous component R t0 �2sds: One could

use Tripower Variation or Truncated Power Variation. In the chapter, we use Tripower

Variation:

RV Jt =Variation of the jump component = maxf0; RVt � cIVtg � Ijump;t,
RV Ct =Variation of continuous component = RVt �RV Jt.
As the above measures in section 4.3.4.1 and 4.3.4.2 depend on q, we take into

account the fact that larger q magni�es larger jump in the sum. RPVq;t; RJ+q;t; RJ
�
q;t

and RJAq;t are assessed for a wide range of values of q; from 2:1 to 6, i.e. q =

f2:1; 2:2; ::::; 5:9; 60g: We end up with 40 sub-models (predictors) for each case. For
the realized power variation RPV; we set q from 0:1 to 6:

4.4 Models and Forecast Evaluations

4.4.1 Model Speci�cations

In a classical paper, Ding, Granger and Engle (DGE:1993) �nd that the auto-correlation

of power transformation of daily return of S&P 500 is strongest when q = 1, as op-

posed to the value q = 2 widely used in the literature: This leads them to generalize

ARCH type model to the class of so-called Asymmetric Power ARCH (APARCH)

model. The APARCH speci�cation allows for the �exibility of q in the power qth

transformation of absolute returns. GS (2009) point out that this class of models

ends up working with volatility that is not measured by squared returns, which re-

searchers and practitioners care the most. Using the �ve-minute intra-daily returns

of the Down Jones Composite over the period 1993-2000, GS (2009) make a thor-

ough empirical correlation analysis of daily RV and realized power variations, with

the forecasting horizon from one to four weeks. They conclude that realized power

variation with q = 1 and future RV display the strongest cross-correlation over the

�rst 10 lags. Beyond this �rst 10 lags, the cross-correlation holds for q = 0:5. This

suggests that the prediction of RVs using variables such as realized power variation

might be a better approach compared to the lag of RVs. GS (2009) use the Mixed

Data Sampling Regression (MIDAS) models to investigate the predictive power of

realized power variation for q < 2.
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We add to the empirical research on this topic by providing results on volatil-

ity forecasting using a variety of "new" variables that capture information generated

by jumps. In particular, we utilize RMs of jump power variations discussed in the

previous section. We estimate an extended Heterogeneous Autoregressive of the Re-

alized Volatility (HAR-RV) class of models. The HAR-RV model, initially developed

in Corsi (2009), has been implemented with success in a number of recent contri-

butions. These models are formulated on the basis of the so-called Heterogeneous

ARCH, or HARCH, a class of models analyzed by Müller et al. (1997), in which the

conditional variance of the discretely sampled returns is parameterized as a linear

function of the lagged squared returns over the identical return horizon together with

the squared returns over shorter return horizons. Intuitively, di¤erent groups of in-

vestors have di¤erent investment horizons, and consequently behave di¤erently. The

genuine HAR-RV model is formally a constrained AR(22) model and is convenient

in application as volatility is treated as if it is observed, when we �t regressions in

order to assess predictability. In the following, we describe the set-up of HAR-RV

and present the speci�cations that extends HAR-RV to incorporate our new jump

variables.

De�ne the multi-period normalized realized measures for jump and continuous

components as the average of the corresponding one-period measures. Namely for

daily time series Yt; we construct Yt;t+h such that

Yt;t+h = h
�1[Yt+1 + Yt+2 + :::+ Yt+h]; (4.47)

where h is an integer. Yt;t+h aggregates information between time t+1 and t+h: The

daily time series Yt could be the RMs such asRVt; RV Jt; RV Ct; RPVq;t; RJ+q;t; RJ
�
q;t; RJAq;t

and q = f0:1 + 0:1kgk=59k=0 .

In standard linear and nonlinear HAR-RV models, future RV depends on the past

of RV,

�(RVt;t+h) = �0 + �d�(RVt) + �w�(RVt�5;t) + �m�(RVt�22;t) + �t+h, (4.48)

where � is a linear, square root or log function.

The incorporations of RMs of jump variations, RV Jt could be done as in ABD
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(2007), using the HAR-RV-J,

�(RVt;t+h) = �0 + �d�(RVt) + �w�(RVt�5;t) + �m�(RVt�22;t) + �j�(RV Jt) + �t+h,

or HAR-RV-CJ,

�(RVt+h) = �0 + �d�(RV Ct) + �w�(RV Ct�5;t) + �m�(RV Ct�22;t) + �jd�(RV Jt);

+ �jw�(RV Jt�5;t) + �jm�(RV Jt�22;t) + �t+h:

ABD (2007) �nd that the class of log HAR-RV, log HAR-RV-J and log HAR-RV-

CJ models performs the best for several market indexes. DS (2010) revisit this class

of models but focus on the predictive performance of the models applied to Dow 30

individual stock returns. PS (2011) extend this class of models to assess di¤erent pre-

dictors, the realized semivariance and realized signed jump measure. Their extended

HAR-RV model is,

�(RVt;t+h) = �0 + �
+
1 �(RS

+
t ) + �

�
1 �(RS

�
t ) + �

+
5 �(RS

+
t�5;t) + �

�
5 �(RS

�
t�5;t)

+ �+22�(RS
+
t�22;t) + �

�
22�(RS

�
t�22;t) + "t+h:

Building on Corsi (2004), ABD (2007) and PS (2011), we extend the HAR- RV

to incorporate time series of RMs of jump power variations. In addition, we modify

the forecast set-up by examining the forecast of RVt+h; rather than RVt;t+h: The

speci�cations are presented as follows:

Speci�cation 1: Class of standard HAR-RV-C Model (Benchmark Model),

�(RVt+h) = �0 + �cd�(RV Ct) + �cw�(RV Ct�5;t) + �cm�(RV Ct�22;t) + �t+h: (4.49)

In this benchmark case, future RV s depend on lags of the variation of the contin-

uous component of the process.

Speci�cation 2: Class of HAR-RV-C-PV(q) Model,

�(RVt+h) = �0 + �cd�(RV Ct) + �cw�(RV Ct�5;t) + �cm�(RV Ct�22;t)

+ �jd�(RPVq;t) + �jw�(RPVq;t�5;t) + �jm�(RPVq;t�22;t) + �t+h; (4.50)

where RPVq;t is qth order variation of the jump component. RPVq;t�5;t and
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RPVq;t�22;t are calculated using (4.47). As discussed in the previous section, we allow

for a wide range of values of q from 0:1 to 6: Note that when q > 2; the implication

of this variable is jump power variations. With q < 2; actually the limit is robust to

jumps as discussed in Section 2.

Speci�cation 3: HAR-RV-C-UJ(q) Model (upside jump) is de�ned as,

�(RVt+h) = �0 + �cd�(RV Ct) + �cw�(RV Ct�5;t) + �cm�(RV Ct�22;t)

+ �+jd�(RJ
+
q;t) + �

+
jw�(RJ

+
q;t�5;t) + �

+
jm�(RJ

+
q;t�22;t) + �t+h: (4.51)

This speci�cation incorporates the RMs of qth order upside jump power variations

as explanatory variables to forecast future RV. Speci�cally, RJ+q;t; RJ
+
q;t�5;t; RJ

+
q;t�22;t

measure the qth order power variation of positive jumps of today, previous week,

and previous month, respectively: RJ+q;t�5;t; RJ
+
q;t�22;t are calculated using (4.47). The

range of q varies from 2:1 to 6:

Speci�cation 4: HAR-RV-C-DJ(q) Model (downside jump),

�(RVt+h) = �0 + �cd�(RV Ct) + �cw�(RV Ct�5;t) + �cm�(RV Ct�22;t)

+ ��jd�(RJ
�
q;t) + �

�
jw�(RJ

�
q;t�5;t) + �

�
jm�(RJ

�
q;t�22;t) + �t+h: (4.52)

This speci�cation incorporates the RMs of qth order downside jump variations

as explanatory variables. Speci�cally, RJ�q;t; RJ
�
q;t�5;t; RJ

�
q;t�22;t are the RMs of the

qth order power variations of negative jumps of today, previous week, and previous

month, respectively: RJ�q;t�5;t; RJ
�
q;t�22;t are calculated using (4.47). The range of q

varies from 2:1 to 6:

Speci�cation 5: HAR-RV-C-UDJ(q) Model (Full decomposition),

�(RVt+h) = �0 + �cd�(RV Ct) + �cw�(RV Ct�5;t) + �cm�(RV Ct�22;t)

+ �+jd�(RJ
+
q;t) + �

+
jw�(RJ

+
q;t�5;t) + �

+
jm�(RJ

+
q;t�22;t)

+ ��jd�(RJ
�
q;t) + �

�
jw�(RJ

�
q;t�5;t) + �

�
jm�(RJ

�
q;t�22;t) + �t+h: (4.53)

This speci�cation fully decomposes realized measure of the qth order jump power

variation into upside and downside components. The predictors therefore contain

both upside and downside jump power variations, i.e. RJ+q;t; RJ
+
q;t�5;t; RJ

+
q;t�22;t and
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RJ�q;t; RJ
�
q;t�5;t; RJ

�
q;t�22;t. We set the range of q to vary from from 2:1 to 6 for this

speci�cation.

Speci�cation 6: HAR-RV-C-APJ(q) Model,

�(RVt+h) = �0 + �cd�(RV Ct) + �cw�(RV Ct�5;t) + �cm�(RV Ct�22;t)

+ �jd�(RJAq;t) + �jw�(RJAq;t�5;t) + �jm�(RJAq;t�22;t) + �t+h: (4.54)

This class of models uses RMs of signed jump power variations, measures of

jump asymmetry, as explanatory variables for RV forecast. Speci�cally, predictors

are RJAq;t; RJAq;t�5;t and RJAq;t�22;t; calculated using (4.47).

The estimation of the above models is simply done by OLS regression. We report

the parameters and measures of �t. Across all the speci�cations, there is a potential

issue of the serial correlation due to the long forecast horizons (h = 5; 22). Though

serial correlation does not a¤ect the consistency of the estimated parameters, robust

estimates of covariance matrix need be addressed. In our empirical experiments, we

apply both standard and robust heteroskedasticity-and- autocorrelation-consistent

(HAC) estimators of covariance matrix 66 .

In a di¤erent forecast experiment, we construct realized measures of the truncated

jump power variations following the similar approach as in DS (2010). Speci�cally,

we de�ne the RMs of jump power variations truncated at a �xed level  to be:

RJq() =
nX
i=1

jri;njqIjri;nj<:

Similarly for the RMs of downside jump power variations truncated at �xed level

;

RJ�q () =

nX
i=1

jri;njqI�<ri;n<0;

and for realized measure of upside jump power variations truncated at �xed level

;

RJ+q () =

nX
i=1

jri;njqI0<ri;n<:

66For Hac estimator, we use Newey-West estimator.
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Then, if one is interested in jumps with magnitude less than  in the forecast of

future RV; the time series of RJq;t; RJ�q;t; RJ
+
q;t on the right hand side of forecasting

equation(4.50) (4.51) (4.52) (4.53) (4.54) could be replaced byRJq;t(); RJ�q;t(); RJ
+
q;t():

In this context, we assume that the modeler has a predetermined knowledge of . In

our empirical implementation, we choose  on the basis of the sample of maximum

of monthly increments which represents monthly abnormal events. A question we

would want to see is whether the choice of larger  has an impact on the volatility

prediction.

Note that we could obtain the optimal value of q for prediction of volatility under

a certain measure of �t criteria such as the minimum mean square error. However,

this is not the aim of our chapter. By using a wide rage of values of q; we are

more interested in capturing the pattern of the predictive powers of the RMs of jump

power variations. The pattern also helps in approximating the optimal value of q in

the prediction.

Regarding the predictive regression of the above models, note that for speci�cation

2, we need to estimate 60 linear regression equations, depending on q from 0.1 to 6.

For each speci�cation 3,4,5 and 6, we need to estimate 40 linear regression equations,

depending on q from 2.1 to 6. A straightforward way to assess the usefulness of the

RMs is to compare the predictive accuracy, measured by mean square errors or R2

across all values of q: In the next section, we discuss the forecast evaluation methods

that are being used in empirical implementation.

4.4.2 In-Sample and Out-of-Sample Forecast Evaluation

For each speci�cation, we �t the above forecasting equations by ordinary least square.

The forecast horizons that we examine in this chapter are set to be h = 1; 5; 22 which

are the one day ahead, one week ahead and one month ahead horizon, respectively.

Our model speci�cations extend the standard HAR-RV models, as presented in pre-

vious section. For each speci�cation, we have 40 sub-models, corresponding to 40

di¤erent values of q: Once a measure of �t is obtained, we present it as a function of

q and the relationship between q and the measure of �t could be plotted. Regard-

ing the measure of �t, a straightforward way is using in-sample adjusted R2. The

other favored measure of �t is the out-of-sample R2, calculated from projection of
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the predictive RV sample on the sample of forecasted RV implied by the model. For

the pairwise model comparisons, we use the Diebold-Mariano (DM:1995) test and

quadratic loss function.

Speci�cally, the entire sample of T observations is divided into two samples, the

estimation sample containing R observations and the prediction sample containing

P = T � R observations. The traditional in-sample adjusted R2 is calculated using
entire sample T .

For the out of sample forecast, we calculate the R2 using recursive, rolling or �xed

estimation schemes. If the forecast horizon h = 1 and the recursive estimation are

used, the model is to be �tted by P regressions using data chunks from 1 to R; 1

to R + 1; :::1 to T � 1: Alternatively, we could use the rolling scheme where the P
regressions are implemented using data chunks 1 to R; 2 to R+1; :::; T �P to T � 1.
The �xed scheme requires the estimation using the entire sample. After this step, we

could calculate P predicted values implied by the models. Next, the out-of-sample

R2s are obtained by simply regressing the prediction sample on the forecasts implied

by the models. Note that the above procedure is presented with forecasting horizon

h = 1: For the general forecast horizon h and the recursive scheme, the models are

�tted P times using data chunk from 1 to R� h+1; 1 to R+1; :::1 to T � h. For the
rolling scheme, P model-implied forecasts are obtained by the estimation using data

chunk from 1 to R� h+ 1; 2 to R + 1; :::; T � P � h+ 1 to T � h:
Now turn to predictive equality accuracy test of Diebold and Mariano (DM: 1995),

we could formally make a pairwise comparisons of any two models by applying this

test. Suppose we are interested in the comparison of two models i = 1; 2 using the

times series yt, t = 1; 2; :::; T: The mean square forecast error (MSFE) is de�ned as

MSFE =
T�h+1X
�=R�h+2

(yt+h � byi;t+h)2 ;
where byi;t+h is the forecast for horizon h for model i: Denote "i;t+h to be model�s

prediction error of model i: The hypothesis could be set up as. The null H0 :

E("21;t+h) � E
�
"22;t+h

�
= 0 and alternative H1 : not H0: The actual statistics is con-

structed as: DM = P�1
PP

k=1 (dt=b�) where dt = b"21;t+h � b"22;t+h; a the comparative
measure of �t between the two models. b� is the the estimator of standard deviation
of (
PP

k=1 dt)=P: The choice of this estimator could be set as a heteroskedasticity and
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auto-correlation robust estimator (HAC). In addition, to the acceptance and rejec-

tion outcome of the test on the basis of the test statistics, we could also infer that

the negative statistics implies that model 2 is preferred to model 1 as it�s statistics

measure of �t over the out of sample forecast is superior.

4.4.3 Alternative Models to HAR-RV and Other Issues

Given the main focus of our chapter is to assess the predictability of the new group of

variables that capture information generated by jumps, we use the simple predictive

regression models, i.e. the extended HAR-RV in this chapter. For an alternative to

the extended HAR-RV class of models, the GARCH-based model as in BKS (2010)

could be considered. The other approach is using stochastic volatility models. Both

approaches require us to treat true volatility as an unobserved variable. In this

context, RVs are additional variables that capture rich information generated by high

frequency data sets. Stochastic Volatility (SV) model in discrete time is discussed

in depth by Shephard (2005). We could use models that inputs RV variable into

volatility equation. One way is to estimate the bivariate return - stochastic volatility

system building on Lies�eld and Richard (2003) �ltering framework. In the context

of mixed data sampling, one could also implement non-linear regression MIDAS as

used in Ghysels and Sohn (2009) as an alternative to HAR-RV model.

In addition, with the choice of volatility estimator, variables that capture informa-

tion generated by jumps (RMs of Jump Power Variations), jump test statistics, and

predictive models as discussed in previous sections, before moving to the discussion on

empirical �ndings, it is useful make an comparative overview on empirical strategies

implemented in our chapter and other related papers. The following list summarizes

the selected papers that examine jumps and higher order power transformation of

absolute returns to predict future volatility.
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Summary of Related Work using RMs of Power Variations for Volatility Prediction67

Paper HFD Jumps Dow/Upside Power q Jump Test Truncation

DGE (1993) No No No 0-5 No No

LM (2005) Yes Yes No 0-2 No No

ABD (2007) Yes Yes No 2 Yes No

GS (2009) Yes No No 0-2 No No

PS (2011) Yes Yes Yes 2 No No

Duong (2012) Yes Yes Yes 0-6 Yes Yes

In the above list, note that our work makes a thorough examination of jumps

variations by using a wide range of values of q compared to other papers and we

also consider jump test adjusted RMs in predictions. In the next section, we present

empirical �ndings of our chapter.

4.5 Empirical Findings

4.5.1 Data Description

For empirical implementation in this chapter, we implement the forecasting experi-

ments on S&P 500 futures for the period 1993-2009. We also look at Dow 30 com-

ponents in the period 1993-2008 as in DS (2010). The data source for stocks is the

TAQ database. In the data processing, we follow the common practice in the litera-

ture by eliminating from the sample those days with infrequent trades (less than 60

transactions at our 5 minute frequency).

One problem in data handling involves determining the method to �lter out an

evenly-spaced sample. In the literature, two methods are often applied - previous tick

�ltering and interpolation (Dacorogna, Gencay, Müller, Olsen, and Pictet (2001)).

67The table summarizes the selected papers that examine jumps and higher order power trans-
formation of absolute returns to predict future volatility. The �rst column is the list of papers
under consideration. The second, third and fourth column provide information whether the paper
in the list utilizes high frequency data (HFD), jumps, downside/upside jumps, respectively. The �fth
column provides the range of order q used in each paper. The sixth and seventh column provide
information whether the paper implements jump test adjustment technique as in ABD (2007) and
whether the paper looks at truncated jumps (truncation) in the construction of jump variables for
volatility prediction, respectively.
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As shown in Hansen and Lund (2006), in applications using quadratic variation, the

interpolation method should not be used, as it leads to realized volatility with value

0 (see Lemma 3 in their paper). Therefore, we use the previous tick method (i.e.

choosing the last price observed during any interval). We restrict our data-set to

regular time (i.e. 9:30am to 4:00pm) and ignore ad hoc transactions outside of this

time interval. To reduce microstructure e¤ects, the suggested sampling frequency in

the literature is from 5 minutes to 30 minutes68. As mentioned above, we choose the

5 minute frequency, yielding a maximum of 78 observations per day.

4.5.2 Prediction without Jump Test

First, we calculate all daily RMs as discussed in section 4.3.4 for S&P 500 futures.

For each realized measure, we end up with a time-series of size T = 4123. In the

out-of-sample forecasting experiments, we choose prediction sample size, P = 410;

and estimation sample size, R = 3713; respectively.69

Models considered in our empirical application are discussed in Section 4.3. We

present all the speci�cations in Table 4.2. For a quick summary, the speci�cation

1 (benchmark model), HAR-RV-C incorporates only RMs of continuous component

variations as predictors. The speci�cation 2, the HAR-RV-C-PV (q > 0) uses RMs

of continuous component variations and RMs of qth (jump) power variation com-

ponents as predictors70. The speci�cation 3, the HAR-RV-C-UJ (q > 2) uses RMs

of continuous component variations and RMs of the qth order "upside" jump power

variation components as predictors. The speci�cation 4, HAR-RV-C-DJ (q > 2)

utilize continuous component variations and the qth order "downside" jump power

variation components as predictors. The speci�cation 5, HAR-RV-C-UDJ (q > 2)

builds directly on speci�cation 3 and 4, and uses both RMs of the qth order upside

and downside jump power variation components in predictions. The speci�cation 6,

HAR-RV-C-APJ examines variables that capture jump asymmetry by incorporating

RMs of the signed qth order jump power variations in the prediction. The formulation

68See Aït-Sahalia, Y., Mykland, P. A., and Zhang, L. (2005)
69We also implement other choices for P =210, 310, 510, 610,710 and results show the same

pattern, which are available upon request.
70For q>2;the realized power variation converges to the jump power variation. For q<2, the

standardized realized power variation converges to power variation of continuous component as
discussed in Section 3.
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of the time series, RPVq;t; RJ+q;t, RJ
�
q;t and RJAq;t is shown in details Section 4.3.4.

The empirical analyses of exchange rates, equity index returns, and bond yields

in ABD (2007) suggest that the volatility jump component is both highly impor-

tant and distinctly less persistent than the continuous component, and that separat-

ing the "rough" jump movements from the smooth continuous movements results in

signi�cant in-sample volatility forecast improvements (i.e. the linear and nonlinear

HAR-RV-CJ models perform better than the other two classes of models).

We �rst provide a brief discussion on the performance of the models for S&P fu-

tures. In our chapter, the predictive performance of a model is measured by both its

in-sample and out-of sample R2; which is similar to approach taken in ABD (2007).

We also carry out the Diebold-Mariano (1995) predictive equivalence tests to deter-

mine whether the choice of order q matters for the qth order jump power variations

in forecasting future RV.

Turning to our regression results, Table 4.1 reports the regression estimates, in-

sample and out-of-sample R2 values for the linear, square root and log HAR-RV-C

models at daily (h = 1), weekly (h = 5) and monthly (h = 22) prediction horizons.

The entries in bracket are t-statistics calculated using the Newey-West estimator

with auto-correlation up to 44 lags71. Regarding in-sample and out-of-sample R2s,

as shown in the table, the square root models and log models perform much better

than their linear counterpart regardless of the prediction horizon. For instance, at the

forecasting horizon h = 1; the in-sample and out-of-sample R2 of square root models

are 0.45 and 0.34 while those of the linear counterpart are 0.35 and 0.24, respectively.

In addition, the estimates of �cd, �cw, �cm and t-statistics con�rm the long memory

persistent feature of volatility. For the linear model with h = 1; the t-statistics of the

monthly forecast parameter is 7:81; implying that the continuous component of the

previous month could help the one-day-ahead prediction of volatility. This statistical

pattern holds for square root and log models across all forecast horizons. In addition,

at prediction horizon h = 22; while the in-sample R2s are large, the out-of sample

results show an opposite direction.

In the formulation of RMs of jump power variations, RPVq;t, RJ+q;t, RJ
�
q;t, and

RJAq;t, order q is gridded by 0.1 from 2.1 and 6, i.e q = f2:1; 2:2; :::; 5:8; 5:9; 6g.
71HAC estimator is known to be robust to both heteroscedasticity and auto-correlation.
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The choice of maximal q = 6 is su¢ cient to determine the e¤ect of large jumps

and their predictive power72. With q > 2; the realized (jump) power variation,

RPVq;t, converges asymptotically to jump power variations of log-price process. In

addition, larger q e¤ectively eliminates the e¤ect of continuous component and smaller

jumps and magnify the impacts of large jumps. In the presentation of results, we

choose q = 2:5 and q = 5, the two representative cases for small and large jump

power variations. Table 4.3A, 4.3B, 4.3C, 4.3D report predictive regression estimates

of the two cases. Each table involves linear, square root or log model. All the

numbers in the brackets are t-statistics. For the in-sample forecast results, jump

coe¢ cients are not statistically signi�cant for q = 5 (large jumps). The results hold

across all model speci�cations. For q = 2:5, the t-statistics are signi�cant for �jm
in HAR-RV-C-PV linear and square root models. Similarly, the t-statistics are 2.366

and 2.1 for forecasting horizon h = 1 in HAR-RV-C-PDJ linear and square root

models. Regarding the full "decomposition" HAR-RV-C-PDUJ model, we �nd that

the downside jumps have an impact on future RV at one-day-ahead forecast horizon

(h = 1): In particular, for linear model, Table 4.3C shows that the t-statistics for ��jd
is 2.138. All the upward jump variations have small impacts on the prediction. More

interestingly, correlation between the past RAJ(q) and and future RV is strong across

all forecast horizons (daily, weekly and monthly) for all models under consideration

(linear, square root, log). Table 4.4 depicts the �ndings in the group of log models,

showing the t-statistics for �jd of 10.05 (daily), 9.15 (weekly), 10.01(monthly) for case

q = 2:5 and 10.76 (daily), 9.91 (weekly), 11.08 (monthly) for case q = 5. The �nding

strongly suggests that jump asymmetry matters for modeling future RV, at least at

the shorter horizon. In addition, the asymmetry holds for both large and small jumps.

Turn to the analysis of the predictive comparison, our prediction experiments

show improvements for both in sample and out of sample once RMs of jump power

variations are used as additional predictors in volatility forecasting. For example, at

the forecast horizons h = 1 and h = 5, the out-of sample R2s of the HAR-RV-C square

root models are 0.341 for h = 1 and 0.244 for h = 5 compared to that numbers of 0.368

and 0.262 of HAR-RV-C-PV models. This is equivalent to 8% and 7.5% increases in

R2 if we switch from HAR-RV-C to HAR-RV-C-PV models. However, as shown in

72In our implementation, for q > 6, the prediction results are almost the same as the case q = 6
and therefore are not presented.
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the table, the continuous component, RV C; dominates in all prediction experiments,

which is consistent with the previous �ndings in the literature on volatility forecasting

using high frequency data. There are little improvements in R2 for HAR-RV-C-PDUJ

in the prediction. Interestingly, the table suggests in-sample and out-of sample R2 be

smaller for the larger q when we examine prediction experiments for the case q = 2:5

and q = 5. Once we consider a wider range of values of q; this pattern is clear as

shown next.

Table 4.4 shows the Diebold and Mariano (DM) test statistics for �xed, recursive

and rolling schemes. In the construction of the statistics, denoted in the table as DM

Stat, we make a restriction for q to be larger or equal to 2:5; i.e. (q = f2:5+k�0:1gk=35k=0 )

and then search for the values of q that yield the maximal and minimal mean square

errors. More speci�cally, qb denotes the the value of q that yields biggest R2 and qs

denotes the value of q that yields the smallest R2. The table shows that qb is smaller

than qs. In addition, for most of the models, the value of qb is 2:5 and the value of qs

is 6: We test whether the predictions of future volatility using RMs of (jump) power

variations as predictors di¤er if qb and qs are used. The results of DM tests show that

most of the t-statistics are signi�cant, regardless of which forecast scheme is used. In

particular, the results are stronger for downside jump measures.

Finally, the pattern involving R2s suggested in the above discussion is con�rmed

by our �gures shown in the appendix. In Figure 4.1, we plot the in-sample adjusted

R2s of all linear and nonlinear models across horizon h = 1; 5 and 22. The vertical

axis ranges from 0 to 1 for the value of the R2. The horizontal axis ranges from 0.1

to 6, representing the 60 grid points of value of q, i.e. q = f0 + 0:1 � kg60k=1. In those
plots, except for HAR-RV-PV models, we focus on the part of the curves on the right

side of 2 as convergence to jump power variation occurs only when q > 2 (see e.g.

Todorov and Tauchen (2010) and BKS (2010)): The purple curve represents the R2s

of HAR-RV-C-PDUJ model (full decomposition). The light blue curve represents the

R2s of HAR-RV-C-AJP model. The dark purple curve represents HAR-RV-C-PUJ

model. The light green curve represents HAR-RV-C-PDJ. The dark blue curve and

orange curve represent the R2s of HAR-RV-C-PV and the benchmark model HAR-

RV-C model, respectively: Notably, for q > 2 the R2 is monotonically decreasing in

q. These results are consistent with what we found in Table 4.3. With the monotonic
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pattern, all the curves look very close to one another, except for HAR-RV-C-PDUJ

and HAR-RV-C-AJP model. HAR-RV-C-PDUJ model is slightly better for daily and

weekly horizon while HAR-RV-C-AJP model is slightly superior for monthly horizon.

It is also clear that the R2s of all models are higher than those of the benchmark

model. This suggests that higher order jumps be helpful in prediction of future RV.

The predictive power of large jumps power variations dies out as q becomes bigger. As

the higher order jump power variations are dominated by large jumps, the observation

suggests that large jumps play less important role in the prediction and dies out when

the value of q is larger than 6:

Finally, we also plot the results for the mean square errors across power q; as

shown in Figure 4.4. The shapes of plots are in opposite direction to R2, supporting

our earlier �ndings. In addition to S&P futures, we also implement the volatility

prediction applied to individual stocks in the Down 30. We get the similar pattern.

However, the optimal values of q in the prediction for those stocks are smaller than

2 and mostly stick around 1, which is consistent with the �ndings in GS (2009). We

show the results for several individual stocks of the Dow 30 components in Figure

4.573. The patterns are obviously similar to S&P futures.

4.5.3 Prediction with Jump Test and Truncated Jump

In the previous section, we present a set of results which are purely based on the RMs

of jump power variations which are not adjusted for the jump tests. Theoretically, the

realized measures should converge to jump power variations. In �nite sample with the

sampling choice of 5 minutes (n = 78 per day), ABD (2007) develop a straightforward

procedure to separate the variation of log-price process due to jumps. We follow this

approach to adjust the realized measures of jumps for any day that jump does not

occur. In particular day, we �rst test for jumps using the simple jump test procedure

and set the realized measures of jumps to be 0 once the jump statistics is signi�cant.

With the new time series of RPVq;t; RJ+q;t, RJ
�
q;t and RJAq;t; we then carry out the

similar forecast experiments as in previous section.

The results show similar pattern as earlier �ndings. Figure 4.2 plots the in-sample

R2s for all speci�cation and horizons while Figure 4.3 plot the out of sample R2s for

73We present the result for 4 stocks. Results for other stocks in Dow 30 are avaialbe upon request.
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linear, square root at the forecast horizon h = 1 and h = 5: Across all plots, HAR-RV-

C-PDUJ is slightly better for and daily and weekly horizon while HAR-RV-C-AJP

is slightly better for monthly horizon. Regarding all speci�cations from 2 to 6 of

linear square root and log models, the R2s are higher than those of the benchmark

model. This result is consistent with the earlier �ndings that higher order jumps help

in prediction of future. In addition, similar to the above discussion, large jumps play

less important role in the prediction and dies out: In comparison of out-of sample

R2s between jump test and no jump test cases, we see a marginal improvement in

the jump test case. Though the increase is very small, this would suggest jump test

might be helpful in the forecast experiments using jump variations.

As an additional remark, as shown in Figure 4.3A and 4.3B for S&P futures,

the out-of-sample results for the no-jump-test case point out the scenarios where the

optimal predictive values of q are larger than 2; as opposed to the the results found

in earlier in the literature where q is around 1. Interestingly, the curves change when

jump tests are implemented. For linear models at horizon h = 1 and h = 5, the

optimal q is larger than 2 in Figure 4.3A (no jump tests) and is less than 2 in Figure

4.3B (with jump tests). Conversely, for the linear model, the optimal q is larger than

2 when jump tests are implemented. This illustration therefore also suggests that the

implementation of jump tests could a¤ect the results of the prediction.

Now turn to the truncated jumps variables, as discussed in section 4.4.1, we trun-

cate large jumps on the basis of percentiles of the time series of monthly largest incre-

ments, as implemented in DS (2010). For the experiments, we pick  = 5th; 10th and

25th percentile of the sample spanning period 1993-2009, i.e. we discard all the jumps

larger than this threshold and construct the new time series RPVq;t(); RJ+q;t(),

RJ�q;t() and RJAq;t(): We then implement forecast using speci�cations as in 4:1.

Interestingly, the results are almost the same as in the above discussion, implying

that the larger jumps matter little in the prediction of future volatility.

In summary, our analysis demonstrates that: (i) Continuous component domi-

nates in the predictions. (ii) There is a strong correlation between our jump power

variation based jump asymmetry variable and future realized volatility and down-

side jumps matters more than upward jumps in the prediction. (iii) Incorporation of

downside and upside jump power variations might help in prediction but to a limited
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extent in term of both in-sample and out-of-sample prediction. (iv) There is a strong

pattern that higher order jump power variations help less in the prediction of realized

volatility, regardless of model speci�cations that we consider.(v) We �nd the evidence

that the optimal value of q could be larger than 2, depending on the set-up and jump

implementation. (vi) Finally, the implementation of jump tests might change the

results in the predictions.

4.6 Concluding Remarks

In this chapter, we build on the recent theoretical results of Jacod (2008) and Barndor¤-

Nielsen and Shephard (2004, 2006) and BKS (2010) to assess large jump power vari-

ations, downside (upside) jump power variations, and asymmetry jump power varia-

tions. In particular, we look at the role of those variables in the prediction of future

realized volatility. We do so by extending the class of approximate long memory

model, HAR-RV. Our results are consistent with the earlier �ndings in the litera-

ture, such as ABD (2007) that continuous component dominates in the prediction of

future realized volatility. The separation of continuous and jump components could

help in increasing in-sample and out-of- sample R2. In addition, we �nd a pattern of

predictability in which past "large" jump power variations help less in the prediction

of future realized volatility, than past "small" jump power variations. This suggests

the "larger" jumps might help less in the prediction of future realized volatility than

"smaller" jumps. Regarding jump asymmetry, there is an evidence that the signed

jump power variation has a strong correlation with future RV. Our results also show

that downside jump power variation might matter for modeling future RV. Moreover,

in various experimental setups, the (forecast) best values of q are larger than 2 for

S&P futures. Finally, incorporation of downside and upside jump power variations

does improve predictability, albeit to a limited extent.
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Table 4.1: HAR-RV-C Predictive Regression for S&P 500 futures (Benchmark)*

Linear Model Square Root Model Log Model

�0 �d �w �m �0 �d �w �m �0 �d �w �m

h=1 (Daily Forecast)

0.000 0.089 0.060 1.654 -0.002 0.067 0.117 1.001 -0.200 0.167 0.099 0.716

(-0.67) (1.93) (0.38) (7.81) (-1.569) (2.70) (1.70) (11.91) (-1.15) (7.04) (1.66) (11.71)

R2in(R
2
out) = 0.35(0.244) R2in(R

2
out) = 0.45(0.341) R2in(R

2
out) = 0.45(0.388)

h=5 (Weekly Forecast)

0.000 0.058 -0.075 1.832 -0.001 0.055 0.037 1.077 -0.346 0.134 0.142 0.688

(-0.71) (0.51) (-0.43) (10.31) (-1.00) (0.94) (0.40) (12.62) (-1.84) (5.80) (2.40) (10.85)

R2in(R
2
out) = 0.35(0.169) R2in(R

2
out) = 0.44(0.244) R2in(R

2
out) = 0.43(0.296)

h=22 (Monthly Foreast)

0.000 -0.034 0.387 1.375 0.000 0.011 0.137 0.978 -0.772 0.076 -0.014 0.847

(0.32) (-0.89) (3.47) (11.86) (0.18) (0.41) (1.92) (15.04) (-3.08) (3.24) (-0.19) (12.39)

R2in(R
2
out) = 0.33(0.026) R2in(R

2
out) = 0.41 (0.0357) R2in(R

2
out) = 0.38 (0.033)
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Table 4.2: Summary of Model Speci�cations for RV Forecasting

Speci�cation 1 �(RV t+h) = �0+�cd�(RV Ct) + �cw�(RV Ct�5;t) + �cm�(RV Ct�22;t)

+�t+h

Speci�cation 2 �(RVt+h) = �0 + �cd�(RV Ct) + �cw�(RV Ct;t�5) + �cm�(RV Ct;t�22)

(HAR-RV-C-PV(q)) +�jd�(RPVq;t) + �jw�(RPVq;t;t�5) + �jm�(RPVq;t;t�22)

+�t+h

Speci�cation 3 �(RVt+h) = �0 + �cd�(RV Ct) + �cw�(RV Ct;t�5) + �cm�(RV Ct;t�22)

(HAR-RV-C-UJ(q)) +�+jd�(RJ
+
q;t�5;t) + �

+
jw�(RJ

+
q;t�5;t) + �

+
jm�(RJ

+
q;t�22;t) + �t+h

Speci�cation 4 �(RVt+h) = �0 + �cd�(RV Ct) + �cw�(RV Ct;t�5) + �cm�(RV Ct;t�22)

(HAR-RV-C-DJ(q)) +��jd�(RJ
�
q;t�5;t) + �

�
jw�(RJ

�
q;t�5;t) + �

�
jm�(RJ

�
q;t�22;t) + �t+h

Speci�cation 5 �(RVt+h) = �0 + �cd�(RV Ct) + �cw�(RV Ct�5;t) + �cm�(RV Ct�22;t)

(HAR-RV-C-UDJ(q)) +�+jd�(RJ
+
q;t�5;t) + �

+
jw�(RJ

+
q;t�5;t) + �

+
jm�(RJ

+
q;t�22;t)

+��jd�(RJ
�
q;t�5;t) + �

�
jw�(RJ

�
q;t�5;t) + �

�
jm�(RJ

�
q;t�22;t) + �t+h

Speci�cation 6 �(RVt+h) = �0 + �cd�(RV Ct) + �cw�(RV Ct�5;t) + �cm�(RV Ct�22;t)

(HAR-RV-C-APJ(q)) +�jd�(RJAq;t) + �jw�(RJAq;t�5;t) + �jm�(RJAq;t�22;t) + �t+h
� The table 4.1 summarizes the estimation of HAR-RV-C model at daily (h=1), weekly (h=5) and montly

(h=22) horizon. For each horizon, the �rst row entries are the parameter estimates, the second row entries in bracket
are t-statistics. The third row reports RI and RO , the in and out-of- sample R-square of the predictive regressions,
respectively.
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Table 4.3A: Predictive Regression for q=2.5 and q=5 for S&P 500 Futures *

Linear Models Square Root Models Log Models

h=1 h=5 h=22 h=1 h=5 h=22 h=1 h=5 h=22

q=2.5 0.001 0 0.001 0.006 0.005 0.008 -0.519 -0.702 -1.228

�0 -3.035 -1.737 -2.107 -3.444 -2.885 -3.286 (-1.902) (-2.369) (-3.290)

q=5 0.001 0 0.001 0.003 0.004 0.006 -0.38 -0.55 -1.024

-3.171 -2.345 -2.468 -2.486 -2.455 -3.136 (-1.620) (-2.173) (-3.203)

q=2.5 0.066 0.004 -0.072 0.02 0.024 0.031 0.174 0.136 0.075

�cd -1.448 -0.031 (-1.090) -0.599 (0.347 -0.674 -6.808 -5.691 -2.978

q=5 0.073 0.019 -0.078 0.056 0.056 0.029 0.169 0.133 0.071

-1.771 -0.17 (-1.319) -1.786 (0.961 -0.71 -6.893 -5.73 -2.944

q=2.5 -0.122 -0.251 0.421 0.015 -0.116 0.111 0.087 0.128 -0.017

�cw (-0.812) (-1.419) -2.79 -0.177 (-1.058) -1.247 -1.346 -2.102 (-0.217)

q=5 -0.067 -0.197 0.429 0.061 -0.065 0.088 0.098 0.137 -0.012

(-0.443) (-1.151) -2.944 -0.777 (-0.616) -1.015 -1.594 -2.289 (-0.164)

q=2.5 0.701 1.23 0.686 0.52 0.695 0.37 0.681 0.653 0.793

�cm -2.472 -4.925 -2.215 -3.628 -4.685 -1.933 -10.055 -9.149 -10.088

q=5 1.25 1.569 1.029 0.854 0.973 0.784 0.691 0.666 0.818

-6.84 -10.869 -5.276 -9.239 -10.025 -7.699 -10.764 -9.918 -11.084
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Table 4.3A: Predictive Regression for q=2.5 and q=5 for S&P 500 Futures (Cont.)

q=2.5 0.072 0.214 0.165 0.108 0.067 -0.042 -16.351 -9.511 -2.187

�jd -0.434 1.317) -0.7 -1.942 -0.879 (-0.426) (-1.441) (-0.787) (-0.143)

q=5 18.272 56.886 71.9 0.625 -0.05 -0.84 -2597 -1047 3180

-0.351 1.171) -1.002 -0.563 (-0.035) (-0.451) (-0.877) (-0.302) -0.889

q=2.5 0.788 0.793 -0.186 0.321 0.471 0.08 27.949 30.637 10.902

�jw -1.628 1.775) (-0.543) -1.916 -2.573 -0.544 -0.872 -0.97 -0.362

q=5 194.637 195.392 -76.421 3.984 7.134 3.415 2032 6163 127

-1.158 -1.469 (-0.808) -1.064 -1.884 -1.223 -0.215 -0.68 -0.016

q=2.5 1.18 0.46 1.236 0.387 0.195 0.746 32.416 26.803 51.586

�jm -2.238 -0.893 -1.976 -1.969 -0.793 -2.742 -0.984 -0.726 -1.389

q=5 114.426 2.21 211.491 0.879 -1.852 2.98 10776 6132 10073

-0.714 -0.017 -1.346 -0.245 (-0.454) -0.987 -1.066 -0.59 -1.056

R2in q=2.5 0.376 0.372 0.333 0.463 0.452 0.418 0.452 0.434 0.383

q=5 0.368 0.368 0.333 0.455 0.446 0.414 0.451 0.434 0.383

R2out q=2.5 0.315 0.199 0.033 0.368 0.262 0.04 0.39 0.297 0.032

q=5 0.244 0.167 0.027 0.344 0.24 0.037 0.389 0.296 0.032

� The table 4.3A summarizes the regression parameter estimates for HAR-RV-C model at daily (h=1), weekly
(h=5) and montly (h=22) horizon. For each parameters corresponding to q=2.5 or q=5, the �rst row entries are the
parameter estimates. The entries in bracket in the second row are t-statistics. The four rows at the bottom report
Rin and Rout, the in-sample and out-of- sample R-squares of the predictive regressions for the case q=2.5 and q=5,
respectively.
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Table 4.3B: Predictive Regression for q=2.5 and q=5 for S&P 500 Futures *

Linear Models Square Root Models Log Models

h=1 h=5 h=22 h=1 h=5 h=22 h=1 h=5 h=22

q=2.5 0.001 -0.702 -1.228 0.006 0.005 0.008 -0.525 -0.710 -1.236

�0 (3.024) (-2.369) (-3.290) (3.462) (2.886) (3.281) (-1.917) (-2.385) (-3.300)

q=5 0.001 -0.550 -1.024 0.004 2.489 0.006 -0.384 -0.554 -1.027

(3.175) (-2.173) (-3.203) (2.533) (0.004) (3.145) (-1.632) (-2.184) (-3.203)

q=2.5 0.069 0.136 0.075 0.023 0.025 0.030 0.174 0.136 0.074

�cd (1.465) (5.691) (2.978) (0.675) (0.359) (0.653) (6.812) (5.653) (2.955)

q=5 0.078 0.133 0.071 0.058 0.968 0.027 0.169 0.133 0.071

(1.779) (5.730) (2.944) (1.813) (0.058) (0.673) (6.894) (5.715) (2.927)

q=2.5 -0.122 0.128 -0.017 0.018 -0.113 0.109 0.087 0.130 -0.016

�cw (-0.800) (2.102) (-0.217) (0.222) (-1.037) (1.226) (1.345) (2.125) (-0.203)

q=5 -0.070 0.137 -0.012 0.063 -0.633 0.085 0.099 0.136 -0.012

(-0.456) (2.289) (-0.164) (0.804) (-0.061) (0.976) (1.601) (2.286) (-0.156)

q=2.5 0.656 0.653 0.793 0.503 0.682 0.371 0.679 0.651 0.792

�cm (2.211) (9.149) (10.088) (3.442) (4.541) (1.966) (10.050) (9.121) (10.043)

q=5 1.228 0.666 0.818 0.845 10.021 0.788 0.690 0.666 0.817

(6.486) (9.918) (11.084) (8.960) (0.982) (7.668) (10.738) (9.897) (11.055)
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Table 4.3B: Predictive Regression for q=2.5 and q=5 for S&P 500 Futures (Cont.)

q=2.5 0.115 -9.511 -2.187 0.143 0.091 -0.057 -33.777 -16.717 -2.734

�jd (0.347) (-0.787) (-0.143) (1.798) (0.859) (-0.411) (-1.493) (-0.731) (-0.091)

q=5 21.144 -1047 3180 0.720 -0.083 -1.051 -5414 -2223 7005

(0.204) (-0.302) (0.889) (0.449) (-0.424) (-0.411) (-0.915) (-0.341) (0.994)

q=2.5 1.548 30.637 10.902 0.441 0.654 0.126 56.900 57.260 17.944

�jw (1.638) (0.970) (0.362) (1.917) (2.516) (0.623) (0.893) (0.901) (0.304)

q=5 390 6163 127 5.415 1.885 5.192 3453 12940 -688

(1.184) (0.680) (0.016) (1.058) (17.888) (1.385) (0.182) (0.710) (-0.043)

q=2.5 2.528 26.803 51.586 0.582 0.300 1.038 65.742 56.053 106.019

�jm (2.366) (0.726) (1.389) (2.104) (0.863) (2.748) (0.999) (0.755) (1.416)

q=5 263 6132 10073 1.719 -0.446 3.727 22752 12109 20505

(0.817) (0.590) (1.056) (0.348) (-5.091) (0.858) (1.104) (0.576) (1.051)

R2in q=2.5 0.376 0.372 0.333 0.463 0.452 0.418 0.452 0.434 0.383

q=5 0.365 0.368 0.333 0.455 0.446 0.414 0.451 0.434 0.383

R2out q=2.5 0.318 0.201 0.033 0.364 0.260 0.039 0.390 0.297 0.032

q=5 0.244 0.167 0.027 0.345 0.241 0.037 0.390 0.296 0.032
� See notes in Table 4.3A.



162

Table 4.3C: Predictive Regression for q=2.5 and q= 5 for S&P 500 Futures*

Linear Models Square Root Models Log Models

h=1 h=5 h=22 h=1 h=5 h=22 h=1 h=5 h=22

q=2.5 0.001 0.000 0.001 0.006 0.006 0.008 -0.569 -0.748 -1.279

�0 (2.950) (1.648) (2.055) (3.550) (2.901) (3.284) (-2.038) (-2.468) (-3.357)

q=5 0.001 0.000 0.001 0.004 0.004 0.006 -0.415 -0.582 -1.026

(3.221) (2.326) (2.607) (2.727) (2.561) (3.128) (-1.746) (-2.262) (-3.156)

q=2.5 0.067 0.004 -0.072 0.019 0.023 0.031 0.173 0.136 0.074

�cd (1.477) (0.030) (-1.135) (0.583) (0.335) (0.671) (6.758) (5.646) (2.952)

q=5 0.072 0.020 -0.074 0.056 0.054 0.028 0.168 0.133 0.071

(1.845) (0.182) (-1.300) (1.778) (0.940) (0.712) (6.859) (5.733) (2.958)

q=2.5 -0.102 -0.239 0.407 0.018 -0.110 0.113 0.094 0.133 -0.011

�cw (-0.633) (-1.439) (2.755) (0.217) (-1.034) (1.291) (1.462) (2.172) (-0.141)

q=5 -0.040 -0.185 0.407 0.067 -0.056 0.084 0.104 0.140 -0.013

(-0.235) (-1.132) (2.757) (0.834) (-0.557) (0.980) (1.673) (2.333) (-0.174)

q=2.5 0.578 1.153 0.713 0.509 0.680 0.364 0.668 0.643 0.782

�cm (1.713) (3.750) (2.468) (3.549) (4.638) (1.943) (9.919) (8.889) (9.762)

q=5 1.160 1.504 1.062 0.831 0.951 0.793 0.682 0.659 0.818

(5.209) (8.904) (6.022) (8.645) (10.120) (8.485) (10.528) (9.598) (10.980)

q=2.5 -1.116 0.419 1.836 -0.303 -0.114 0.082 -144 89 75

��jd (-0.659) (0.395) (2.138) (-1.002) (-0.317) (0.263) (-1.037) (0.784) (0.638)

q=5 -526 8 532 -5.807 -4.136 3.523 -16818 -7675 39133

(-0.785) (0.026) (1.961) (-0.831) (-0.700) (0.667) (-0.426) (-0.312) (1.644)
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Table 4.3C: Predictive Regression for q=2.5 and q= 5 for S&P 500 Futures (Cont.)*

q=2.5 0.523 -0.579 0.404 0.002 0.588 0.608 214 -130 -173

��jw (0.111) (-0.241) (0.082) (0.002) (0.756) (0.699) (0.449) (-0.340) (-0.412)

q=5 400 245 328 -2.498 16.943 11.885 -22222 58161 -39700

(0.292) (0.347) (0.215) (-0.144) (1.479) (0.954) (-0.199) (0.747) (-0.433)

q=2.5 14.004 9.028 -3.694 2.772 1.644 0.097 946 989 1155

��jm (1.682) (0.798) (-0.495) (1.435) (0.742) (0.048) (1.217) (1.063) (1.262)

q=5 3597 2303 -1813 47.313 18.591 -22.755 277860 154197 28836

(1.692) (0.825) (-0.916) (1.689) (0.572) (-0.717) (1.530) (0.735) (0.122)

q=2.5 1.272 0.001 -1.536 0.460 0.212 -0.141 113.345 -109.981 -81.229

�+jd (0.755) (0.001) (-1.547) (1.595) (0.574) (-0.481) (0.817) (-0.884) (-0.690)

q=5 567.860 103.841 -397.293 6.768 4.195 -4.735 11699 5426 -33271

(0.833) (0.331) (-1.310) (1.018) (0.658) (-0.897) (0.293) (0.190) (-1.373)

q=2.5 0.893 2.094 -0.688 0.445 0.062 -0.498 -172.658 185.572 187.449

�+jw (0.184) (0.792) (-0.131) (0.373) (0.089) (-0.551) (-0.362) (0.493) (0.434)

q=5 -79.637 108.397 -441.164 7.847 -7.332 -6.750 22772 -48575 40677

(-0.056) (0.143) (-0.274) (0.440) (-0.785) (-0.507) (0.208) (-0.656) (0.428)

q=2.5 -11.313 -7.911 6.100 -2.226 -1.355 0.968 -875 -934 -1049

�+jm (-1.438) (-0.726) (0.784) (-1.167) (-0.623) (0.462) (-1.131) (-1.013) (-1.163)

q=5 -3255.071 -2218.650 2196.218 -45.618 -20.656 26.622 -252245 -138328 -8874

(-1.634) (-0.795) (1.066) (-1.648) (-0.628) (0.813) (-1.469) (-0.678) (-0.038)

R2in q=2.5 0.378 0.373 0.335 0.464 0.452 0.418 0.480 0.434 0.384

q=5 0.372 0.369 0.335 (0.456 0.447 .0415 0.452 0.434 0.383

R2out q=2.5 0.342 0.212 0.03 0.373 0.263 0.038 0.391 0.298 0.033

q=5 0.249 0.169 0.027 (0.352 0.246 0.035 0.390 0.297 0.032
�See notes in Table 4.3A.
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Table 4.3D: Predictive Regression for q=2.5 and q = 5 for S&P 500 Futures*

Linear Models Square Root Models Log Models

h=1 h=5 h=22 h=1 h=5 h=22 h=1 h=5 h=22

q=2.5 0.001 0.000 0.001 0.006 0.005 0.008 -0.519 -0.702 -1.228

�cd (3.035) (1.737) (2.107) (3.449) (2.885) (3.285) (-1.902) (-2.369) (-3.290)

q=5 0.001 0.000 0.001 0.003 0.004 0.006 -0.380 -0.550 -1.024

(3.171) (2.345) (2.468) (2.484) (2.451) (3.135) (-1.620) (-2.173) (-3.203)

q=2.5 0.066 0.004 -0.072 0.019 0.023 0.032 0.174 0.136 0.075

�cw (1.448) (0.031) (-1.090) (0.575) (0.338) (0.680) (6.807) (5.688) (2.977)

q=5 0.073 0.019 -0.078 0.056 0.055 0.028 0.169 0.133 0.071

(1.771) (0.170) (-1.319) (1.780) (0.947) (0.710) (6.893) (5.730) (2.944)

q=2.5 -0.122 -0.251 0.421 0.013 -0.115 0.111 0.087 0.129 -0.017

�cm (-0.812) (-1.419) (2.790) (0.163) (-1.053) (1.242) (1.348) (2.104) (-0.216)

q=5 -0.067 -0.197 0.429 0.058 -0.063 0.088 0.098 0.137 -0.012

(-0.443) (-1.151) (2.944) (0.741) (-0.602) (1.005) (1.594) (2.289) (-0.164)



165

Table 4.3D: Predictive Regression for q=2.5 and q = 5 for S&P 500 Futures (Cont.)

q=2.5 0.701 1.230 0.686 0.522 0.695 0.370 0.681 0.653 0.793

�jd (2.472) (4.925) (2.215) (3.649) (4.681) (1.934) (10.058) (9.152) (10.092)

q=5 1.250 1.569 1.029 0.858 0.973 0.784 0.691 0.666 0.818

(6.840) (10.869) (5.276) (9.293) (9.994) (7.693) (10.764) (9.918) (11.084)

q=2.5 0.072 0.214 0.165 0.078 0.048 -0.030 -16.138 -9.318 -2.037

�jw (0.434) (1.317) (0.700) (1.970) (0.898) (-0.431) (-1.431) (-0.777) (-0.134)

q=5 18.273 56.886 71.902 0.450 -0.002 -0.591 -2596.867 -1046.806 3180.150

(0.352) (1.171) (1.002) (0.571) (-0.002) (-0.449) (-0.876) (-0.302) (0.889)

q=2.5 0.788 0.793 -0.186 0.229 0.330 0.057 27.695 30.419 10.641

(1.628) (1.775) (-0.543) (1.930) (2.588) (0.549) (0.867) (0.967) (0.355)

q=5 194.636 195.391 -76.421 2.935 4.928 2.420 2031.944 6162.489 127.111

(1.158) (1.469) (-0.808) (1.108) (1.897) (1.230) (0.215) (0.680) (0.016)

q=2.5 1.180 0.460 1.236 0.271 0.139 0.528 32.365 26.705 51.504

�jm (2.238) (0.893) (1.976) (1.947) (0.805) (2.740) (0.985) (0.726) (1.391)

q=5 114.426 2.211 211.490 0.499 -1.222 2.100 10776.175 6131.779 10073.197

(0.714) (0.017) (1.346) (0.197) (-0.435) (0.991) (1.066) (0.590) (1.056)

R2in q=2.5 0.376 0.372 0.335 0.463 0.451 0.418 0.452 0.434 0.384

q=5 0.368 0.368 0.335 0.455 0.445 0.415 0.451 0.434 0.383

R2out q=2.5 0.315 0.199 0.033 0.368 0.262 0.040 0.39 0.297 0.032

q=5 0.244 0.167 0.027 0.343 0.241 0.037 0.389 0.296 0.032
�See notes in Table 4.3A.
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Table 4.4: Diebold - Mariano Predictive Tests for S&P 500 futures*

Panel A: Recursive Scheme

Linear Models Square Root Models Log Models

h=1 h=5 h=22 h=1 h=5 h=22 h=1 h=5 h=22

DM Stat 5.30 2.75 -3.04 3.42 2.60 3.25 2.08 2.84 2.29

HAR-C-PV qb 2.50 2.50 2.50 2.50 2.50 2.50 3.20 2.50 2.50

.qs 4.40 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00

DM Stat 4.05 1.61 -2.40 3.20 2.90 3.41 2.51 3.20 2.64

HAR-C-PDJ qb 2.50 2.50 2.50 2.50 2.50 2.50 3.20 2.50 2.50

.qs 4.30 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00

DM Stat 5.80 2.36 -1.69 3.20 2.05 3.30 2.20 1.49 1.31

HAR-C-PUJ qb 2.50 2.50 2.50 2.50 2.50 2.50 3.10 2.50 2.50

.qs 4.40 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00

DM Stat 6.16 2.89 -1.75 3.51 2.31 3.16 2.19 2.28 1.63

HAR-C-PDUJ qb 2.50 2.50 2.50 2.50 2.50 2.50 3.10 2.50 2.50

.qs 4.40 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00

Panel B: Rolling Scheme

DM Stat 6.17 3.19 -3.41 3.29 2.55 3.19 0.99 2.87 2.49

HAR-C-PV qb 2.50 2.50 2.50 2.50 2.50 2.50 3.40 2.50 2.50

.qs 4.20 4.70 5.40 6.00 6.00 6.00 6.00 6.00 6.00

DM Stat 4.28 2.15 -2.67 3.09 2.84 3.32 -3.18 3.30 2.83

HAR-C-PDJ qb 2.50 2.50 2.50 2.50 2.50 2.50 3.40 2.50 2.50

.qs 4.20 4.70 5.40 6.00 6.00 6.00 2.50 6.00 6.00

DM Stat 6.56 2.86 -1.89 3.04 1.99 3.20 0.92 1.46 1.53

HAR-C-PUJ qb 2.50 2.50 2.50 2.50 2.50 2.50 3.30 2.50 2.50

.qs 4.20 4.70 5.40 6.00 6.00 6.00 6.00 6.00 6.00

DM Stat 7.13 3.40 -1.75 3.35 2.26 3.11 2.11 2.24 1.88

HAR-C-PDUJ qb 2.50 2.50 2.50 2.50 2.50 2.50 3.10 2.50 2.50

.qs 4.20 4.70 5.30 6.00 6.00 6.00 6.00 6.00 6.00
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Panel C: Fixed Scheme

Linear Models Square Root Models Log Models

h=1 h=5 h=22 h=1 h=5 h=22 h=1 h=5 h=22

DM Stat 6.17 3.11 -3.23 4.27 3.15 3.41 -4.82 3.32 2.35

HAR-C-PV qb 2.5 2.5 2.5 2.5 2.5 2.5 3.5 2.5 2.5

.qs 4.3 4.8 5.8 6.0 6.0 6.0 2.5 6.0 6.0

DM Stat 4.23 1.98 -2.46 3.67 3.25 3.52 -3.75 3.46 2.66

HAR-C-PDJ qb 2.5 2.5 2.5 2.5 2.5 2.5 3.5 3.5 3.5

.qs 4.3 4.3 4.3 6.0 6.0 6.0 6.0 6.0 6.0

DM Stat 6.82 2.76 -1.84 3.86 2.43 3.37 0.21 1.80 1.23

HAR-C-PUJ qb 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5

.qs 4.3 5.8 5.8 6.0 6.0 6.0 6.0 6.0 6.0

DM Stat 7.13 3.05 -1.80 4.37 2.87 3.34 1.73 3.19 1.85

HAR-C-PDUJ qb 2.5 2.5 2.5 2.5 2.5 2.5 3.2 2.5 2.5

.qs 4.3 4.9 3.4 6.0 6.0 6.0 6.0 6.0 6.0

� The table reports Diebold-Mariano (1995) test statistics, calculated using Hac estimators with auto-correlated
lags up to 44 as discussed in section 4.4.2, for linear, square root and log speci�cations HAR- C-PV, HAR-C-PDJ,
HAR-C-DUJ, HAR-C-AJP at forecast horizon h=1,5,22 respectively. For each speci�cation, the entries in the �rst
rorws, DM Stat are statistics. The entries in the second row, qb(2:5 <= qb <= 6) is the value of q that yields the
highest R-square and qs(2:5 <= qb <= 6) is the value of q that yields the smallest R-square.
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Figure 4.1: In-sample R2 for S&P 500 futures, No Jump Test*

Linear, h=1 Square Root, h=1 Log, h=1

Linear, h=5 Square Root, h=5 Log, h=5

Linear, h=22 Square Root, h=22 Log, h=22

� The �gure depicts 9 plots in-sample R-square of 6 speci�cations summarized in Table 4.2 for all linear, square
root and log models across forecast horizon h=1, 5 and 22. For each plot, the vertical axis represents R-square, with
range from 0 to 1. The horizontal represents the order q with range from 0 to 6 , i.e, q=0.1,0.2,...,5.9,6. The orange
line plots R-square of HAR-RV-C. The purple curve plots R-square of HAR-RV-C-PDUJ model. The dark purple
represents HAR-RV-C-PUJ and the light green represents HAR-RV-C-PDJ and dark blue is for HAR-RV-C-PV. The
light blue plots R-square of HAR-RV-C-AJP.
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Figure 4.2: In-sample R2 for S&P 500 futures, with Jump Test*

Linear, h=1 Square Root, h=1 Log, h=1

Linear, h=5 Square Root, h=5 Log, h=5

Linear, h=22 Square Root, h=22 Log, h=22

� The Figure depicts 9 plots in-sample R�where jump tests are taken into account. See footnote in Figure 4.1.
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Figure 4.3A: Out of sample R2 for S&P 500 futures, No Jump Test*

Linear, h=1 Square Root, h=1

Linear, h=5 Square Root, h=5

Figure 4.3B: Out of sample R2 for S&P 500 Futures, with Jump Test*

Linear, h=1 Square Root, h=1

Linear, h=5 Square Root, h=5

� The Figure 4.3A depicts 4 plots in-sample R-squares of 6 speci�cations summarized in Table 4.2 for linear,
square root across forecast horizon h=1, 5 See footnote in Figure 4.1 for further details. Figure 4.3B takes jump tests
into account.
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Figure 4.4A: Mean Square Errors for S&P 500 futures, No Jump Test*

Linear, h=1 Square Root, h=1

Linear, h=5 Square Root, h=5

Figure 4.4B:Mean Square Errors for S&P 500 futures, Jump Test*

Linear, h=1 Square Root, h=1

Linear, h=5 Square Root, h=5

� The �gure 4.4A depicts 4 plots mean square errors of speci�cations from 2 to 6 summarized in Table 4.2 for
linear, square root across forecast horizon h=1, 5. Figure 4.4B takes jump tests into account. See footnote in Figure
4.1 for further details.



172

Figure 4.5: R2 for Dow 30 components for Square Root Models, No Jump Test*

Panel A: Intel

Square Root, h=1 Square Root, h=5 Square Root, h=22

Panel B: City

Square Root, h=1 Square Root, h=5 Square Root, h=22

Panel C: Microsoft

Square Root, h=1 Square Root, h=5 Square Root, h=22

Panel D: Home Depot

Square Root, h=1 Square Root, h=5 Square Root, h=22

� The Panel A,B,C,D in Figure 4.5 depict the in-sample R-squares for the 4 representative stocks in Down 30
components. The four stocks are Intel, Citi, MSFT and Home Depot, respectively and the models are square root at
daily, weekly and monthly forecast horizon. See footnotes in Figure 4.1A for further details about the plot.
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