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ABSTRACT OF THE DISSERTATION

Universal Labeling Algebras as Invariants of Layered

Graphs

by Susan Durst

Dissertation Director: Robert L. Wilson

In this work we will study the universal labeling algebra A(Γ), a related algebra B(Γ),

and their behavior as invariants of layered graphs. We will introduce the notion of

an upper vertex-like basis, which allows us to recover structural information about the

graph Γ from the algebra B(Γ). We will use these bases to show that several classes

of layered graphs are uniquely identified by their corresponding algebras B(Γ). We

will use the same techniques to construct large classes of nonisomorphic graphs with

isomorphic B(Γ). We will also explore the graded structure of the algebra A(Γ), using

techniques developed by C. Duffy, I. Gelfand, V. Retakh, S. Serconek and R. Wilson to

find formulas for the Hilbert series and graded trace generating functions of A(Γ) when

Γ is the Hasse diagram of a direct product of partially ordered sets.
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Chapter 1

Introduction

A directed graph Γ = (V,E) consists of a set V of vertices, together with a set E of

ordered pairs of elements of V called edges. Given an edge e = (v, w), we call v the

“tail” of e and write v = t(e), and we call w the “head” of v and write w = h(e). A

path is a sequence of edges (e1, e2, . . . , en) satisfying h(ei) = t(ei+1) for all 1 ≤ i < n.

A layered graph is a directed graph Γ = (V,E) whose vertex set V is divided into a

sequence of layers V0, V1, V2, V3, . . . such that each directed edge in E travels exactly

one layer down.

Let Γ = (V,E) be a layered graph, let A be an algebra over some field F , and let f

be a map from E to A. To each path π = (e1, . . . , en) in Γ, we associate a polynomial

pπ = (t− f(e1))(t− f(e2)) . . . (t− f(en)) in A[t]. We say that the ordered pair (A, f) is

a labeling of Γ if pπ1 = pπ2 for any paths π1 and π2 with the same starting and ending

vertices. Each graph Γ has a universal labeling, given by (A(Γ), fΓ). The algebra A(Γ)

is called the universal labeling algebra for the graph Γ.

These algebras arose from the constructions occurring in the proof of Gelfand and

Retakh’s Vieta theorem [2] for polynomials over a noncommutative division ring. There

they show how to write such a polynomial in a central variable t with a specified set of

roots {xi | 1 ≤ i ≤ n} in the form

f(t) = (t− y1)(t− y2) . . . (t− yn).

The expressions for the yi depend on the ordering of the roots, and lead to labelings of

the Boolean lattice.

Universal labeling algebras induce an equivalence relation∼A on the collection of layered
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graphs, given by Γ ∼A Γ′ if and only if A(Γ) ∼= A(Γ′). One of the major goals of this

work is to explore the equivalence classes of this relation. In order to do so, we will work

with a related algebra B(Γ). We will use B(Γ) to demonstrate that several interesting

collections of layered graphs have equivalence classes consisting of one isomorphism

class of layered graphs. These include complete layered graphs, Boolean lattices, and

lattices of subspaces of finite-dimensional vector spaces over finite fields. We will also

give examples of nonisomorphic graphs which have isomorphic B(Γ).

The algebras A(Γ) have interesting structures as graded algebras. In [7], Retakh, Ser-

conek, and Wilson give a linear basis for A(Γ) which allows us to compute the Hilbert

series of A(Γ). In [1], Duffy generalizes this result to study the graded trace generating

functions for automorphisms of A(Γ) induced by graph automorphisms acting on Γ.

Here we will use the same tools to calculate Hilbert series and graded trace generating

functions for Hasse diagrams of direct products of posets and certain sublattices of the

Young lattice.

Structure of the Paper

We will begin in Chapter 2 with the construction of the algebra A(Γ). This algebra

has a filtration which allows us to consider the associated graded algebra grA(Γ). If Γ

satisfies certain additional conditions, we can pass from the associated graded algebra

to its quadratic dual B(Γ). We will discuss how, under the correct set of hypotheses,

each of these algebras can be presented as a quotient of T (V+), the free associative

algebra generated by the vertices of Γ of nonzero rank.

We are interested in studying the equivalence relation on layered graphs which sets

Γ ∼B Γ′ whenever B(Γ) ∼= B(Γ′). One reasonable question to consider is, given two

layered graphs Γ = (V,E) and Γ′ = (W,F ), which isomorphisms φ : T (V+) → T (W+)

will induce isomorphisms from B(Γ) to B(Γ′)? In Chapter 3, we will answer this

question by considering a certain collection of linear subspaces κa of B(Γ). In Chapter 4,

we will introduce a construction which allows us to find these subspaces.
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In Chapter 5, we will use the tools developed in Chapters 3 and 4 to give examples of

several important collections of layered graphs which have equivalence classes consisting

of one layered graph isomorphism class. Specifically, we will deal with complete layered

graphs, Boolean lattices, and the lattice of subspaces of a finite-dimensional vector

space over a finite field.

There also exist equivalence classes under this relation which have size greater than

one. Chapter 6 explores the equivalence relation ∼B on the class of layered graphs with

only two nontrivial layers. In the process, we will demonstrate that large collections of

two-layered graphs are equivalent with respect to this relation.

Chapters 7 and 8 focus on the algebra A(Γ). Specifically, we calculate the Hilbert

series and graded trace functions for selected automorphisms of A(Γ). In Chapter 7,

we study Hilbert series and graded trace functions when Γ is the Hasse diagram of a

direct product of posets. Chapter 8 focuses on the Young lattice.
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Chapter 2

Preliminaries

2.1 Ranked Posets and Layered Graphs

Recall that a directed graph G = (V,E) consists of a set V of vertices, together with

a set E of ordered pairs of vertices called edges. We define functions t and h from E

to V called the tail and head functions, respectively, such that for e = (v, w), we have

t(e) = v and h(e) = w.

In [4], Gelfand, Retakh, Serconek, and Wilson define a layered graph to be a directed

graph Γ = (V,E) such that V =
⋃n
i=0 Vi, and such that whenever e ∈ E and t(e) ∈ Vi,

we have h(e) ∈ Vi−1. For any v ∈ V , define S(v) to be the set {h(e) : t(e) = v}. Let

V+ be the collection of vertices in V \ V0. The layered graphs that we will consider in

this paper all have the property that for any v ∈ V+, the set S(v) is nonempty.

Recall that if (P,≤) is a partially ordered set, and x, y ∈ P , we write x m y and say

that x covers y if the following holds:

i) x > y.

ii) For any z ∈ P , such that x ≥ z ≥ y, we have x = z or y = z.

A ranked poset is a partially ordered set (P,≤) together with rank function |·| : P → N

satisfying the following two properties:

i) (xm y)⇒ (|x| = |y|+ 1).

ii) |x| = 0 if and only if x is minimal in P .

Notice that if Γ = (V,E) is a layered graph as defined above, then we can associate to
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Γ a partially ordered set (V,≤), with the partial order given by w ≤ v if and only if

there exists a directed path in Γ from v to w. If Γ satisfies the additional property that

S(v) = ∅ if and only if v ∈ V0, then we can define a rank function on (V,≤), given by

|v| = i if and only if v ∈ Vi. When it is convenient, we will treat the graph Γ as a ranked

partially ordered set of vertices, writing v ≥ w to indicate that there is a directed path

from v to w, v mw to indicate that there is a directed edge from v to w, and |v| = i to

indicate that v ∈ Vi.

Also notice that any ranked partially ordered set (P,m) has as its Hasse diagram a

layered graph (P,EP ), with edges given by (p, q) for each covering relation pmq. When

it is convenient, we will equate P with its Hasse diagram so that we can talk about the

algebra A(P ) for any ranked poset P . Clearly, there is a one-to-one correspondence

between layered graphs of this type and ranked posets.

2.2 Universal Labeling Algebras

Let Γ = (V,E) be a layered graph. We call an ordered n-tuple of edges π = (e1, e2, . . . , en)

a path if h(ei) = t(ei+1) for all 1 ≤ i < n. We will occasionally find it useful to refer

to the notion of a vertex path, a sequence (v1, . . . , vn) of vertices such that for every

1 ≤ i < n there exists e = (vi, vi+1) ∈ E. Each path (e1, . . . , en) has an associated

vertex path given by (t(e1), t(e2), . . . , t(en), h(en)), and each vertex path (v1, . . . , vn)

has an associated path ((v1, v2), (v2, v3), . . . , (vn−1, vn)).

Let Γ = (V,E) be a layered graph, and fix a field F . Let A be an F -algebra, and let

f : E → A be a set map. To each path π = (e1, . . . , en) in Γ, we associate a polynomial

pf,π = (t− f(e1))(t− f(e2)) . . . (t− f(en)) ∈ A[t],

where t is a central indeterminate. We write ||π|| = n, t(π) = t(e1), and h(π) = h(en).

Whenever we have two paths π1 and π2 with t(π1) = t(π2) and h(π1) = h(π2), we write

π1 ≈ π2.

Definition 1. The ordered pair (A, f) is called a Γ-labeling if it satisfies pf,π1 = pf,π2

whenever π1 ≈ π2. Given two Γ-labelings (A, f) and (A′, f ′), the algebra map φ : A→
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A′ is an Γ-labeling map if φ ◦ f = f ′.

For each layered graph, we define an algebra A(Γ) as follows: let T (E) be the free

associative algebra on E over F , and to each path π = (e1, . . . , en), associate the

polynomial

Pπ = (t− e1)(t− e2) . . . (t− en) =

∞∑
i=0

e(π, i)ti ∈ T (E)[t].

Define A(Γ) to be T (E)/R, where R is the ideal generated by the set

{e(π1, i)− e(π2, i) | π1 ≈ π2 and 0 ≤ i ≤ ||π1|| − 1}.

This is precisely the algebra introduced by Gelfand, Retakh, Serconek, and Wilson in

[4].

Proposition 1. Let Γ = (V,E) be a layered graph, let A(Γ) = T (E)/R as defined as

above, and let fΓ : E → A(Γ) be defined by fΓ(e) = e + R. Then (A(Γ), fΓ) is the

universal Γ-labeling.

Proof. Let (A, f) be an arbitrary Γ-labeling. We need to show that there exists a unique

Γ-labeling map φ : A(Γ)→ A. Let g : E → T (E) be the canonical embedding of E into

the free algebra T (E). Then there exist unique algebra isomorphisms ψA(Γ) : T (E) →

A(Γ) and ψA : T (E) → A satisfying ψA(Γ) ◦ g = fΓ and ψA ◦ g = f . We know that

ψA(Γ) is onto, with kernel R.

Notice that for any path π in Γ, we have

pf,π =
∞∑
i=0

f(e(π, i))ti ∈ A[t].

Since pf,π1 = pf,π2 in A[t] for any π1 ≈ π2, it follows that f(e(π1, i)) = f(e(π2, i)) in A

whenever π1 ≈ π2 and 0 ≤ i ≤ ||π1|| − 1. It follows that e(π1, i)− e(π2, i) ∈ ker(ψA) for

all π1 ≈ π2 and 0 ≤ i ≤ ||π1|| − 1. Thus R ⊆ kerψA, and ψA factors uniquely through

A(Γ) as ψA = φ ◦ψA(Γ). Thus φ is the unique Γ-labeling map from A(Γ) to A, and our

proof is complete.
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2.3 Presentation of A(Γ) as a Quotient of T (V+)

In the case where Γ = (V,E) has a unique minimal vertex ∗, we can choose a distin-

guished edge ev = (v, w) for each vertex v ∈ V+, where V+ = (V \ V0). By following

this sequence of distinguished edges down through the graph, we can associate to each

vertex v a distinguished path πv = (e1, e2, . . . , e|v|) from v to ∗, where e1 = ev, and

where ei = eh(ei−1) for each 1 < i ≤ |v|. This symbol πv will also occasionally be used

to designate the vertex path (t(e1), t(e2), . . . , t(e|v|), h(e|v|)).

We can define a map φ : T (V+) → A(Γ), taking each vertex v to the sum of the edges

in πv. That is, if πv =
(
e1, . . . , e|v|

)
, then φ(v) = e1 + . . . + e|v|. Let e = (v, w) be an

arbitrary edge in E. Then the path obtained by adding the edge e onto the beginning

of the path πw will start at v and end at ∗, just like the path πv. Thus we have

Pπv = (t− e)Pπw .

If πv =
(
e1, . . . , e|v|

)
and πw =

(
f1, . . . , f|w|

)
, this gives us

e1 + e2 + . . .+ e|v| = e+ f1 + f2 + . . .+ f|w|.

Clearly, this implies that e = φ(v)− φ(w), and so φ is a surjective map from T (V+) to

A(Γ).

It follows that there exists a presentation of A(Γ) as a quotient of T (V+). To obtain a

generating set of relations, we take the map ψ : T (E)→ T (V+) defined by

ψ((v, w)) =

 v − w if w 6= ∗

v if w = ∗

If we define ẽ(π, i) = ψ(e(π, i)), then we have A(Γ) = T (V+)/RV , where RV is the ideal

generated by the set

{ẽ(π1, i)− ẽ(π2, i) | π1 ≈ π2 and 0 ≤ i ≤ ||π1|| − 1} .

2.4 A Basis For A(Γ)

Here we will recall the basis for A(Γ) given by Gelfand, Retakh, Serconek, and Wilson

in [4]. Let Γ = (V,E) be a layered graph. For every ordered pair (v, k) with v ∈ V
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and 0 ≤ k ≤ |v|, we define ẽ(v, k) = ẽ(πv, k). We define B1 to be the collection of all

sequences of ordered pairs

b = ((b1, k1), . . . , (bn, kn)),

and for each such sequence, we define

ẽ(b) = ẽ(b1, k1) . . . ẽ(bn, kn).

Given (v, k) and (v′, k′ with v, v′ ∈ V , 0 ≤ k ≤ |v|, and 0 ≤ k′,≤ |v′|, we say that (v, k)

“covers” (v′, k′), and write (v, k) � (v′, k′) if v > v′ and |v| − |v′| = k.

Define B to be the collection of sequences

b = ((b1, k1), . . . , (bn, kn))

of ordered pairs such that for any 1 ≤ i < n, (bi, ki) 6� (bi+1, ki+1). In [4], Gelfand,

Retakh, Serconek, and Wilson show that {ẽ(b) : b ∈ B) is a basis for A(Γ).

2.5 Uniform Layered Graphs

Most of the examples we work with here are uniform layered graphs, defined as follows:

Definition 2. For each v ∈ V>1, we define an equivalence relation ∼v on S(v) to be the

transitive closure of the relation ≈ on S(v) given by w ≈v u whenever S(w)∩S(u) 6= ∅.

A graph Γ is said to be a uniform layered graph if for any v ∈ V>1, all elements of

S(v) are equivalent under ∼v.

It will sometimes be useful to be able to consider one of the following equivalent defi-

nitions:

Proposition 2. Let Γ be a layered graph. Then Γ is uniform if and only if for any

v, x, x′ with x l v and x′ l v, there exist seqences of vertices x0, . . . , xs and y1, . . . , ys

such that

i) x = x1 and x′ = xs.

ii) For all i such that 0 ≤ i ≤ s we have xi l v.
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iii) For all i such that 1 ≤ i < s, we have yi l xi−1 and yi l xi.

Proof. This follows directly from the definition of the relation ∼v.

Proposition 3. Let Γ be a layered graph with unique minimal vertex ∗. Then Γ is

uniform if and only if for any two vertex paths (v1, v2, . . . , vn) and (w1, w2, . . . , wn)

with v1 = w1 and vn = wn = ∗, there exists a sequence of vertex paths π1, π2, . . . , πk,

each path beginning at v1 and ending at ∗, such that for 1 ≤ i < k, the vertex paths πi

and πi+1 differ by at most one vertex.

Proof. We will induct on n, the number of vertices in the paths. The result clearly

holds for n = 1, 2.

Let Γ be a uniform layered graph, let n > 2, and assume that the result holds for all

paths with fewer than n vertices. Let (v1, v2, . . . , vn) and (w1, w2, . . . , wn) be paths

satisfying v1 = w1 and vn = wn = ∗. By Proposition 2, there exist sequences of vertices

x0, . . . , xs and y1, . . . , ys such that

i) x = x1 and x′ = xs.

ii) For all i such that 0 ≤ i ≤ s we have xi l v.

iii) For all i such that 1 ≤ i < s, we have yi l xi−1 and yi l xi.

Let y0 = v3, and let ys+1 = w3. Then for 0 ≤ i ≤ s, our induction hypothesis tells us

that there exists a sequence of vertex paths πi1, π
i
2, . . . , π

i
ki

such that

a) π0
1 = (v2, . . . , vn) and πks = (w2, . . . , wn).

b) For 1 ≤ i ≤ s− 1, πi1 = xi ∧ πyi and πiki = xi ∧ πyi+1 .

c) For 1 ≤ j < ki, the paths πij and πij+1 differ by only one vertex.

The path-sequence that we wish to obtain is given by

v1 ∧ π1
1, (v1, x1) ∧ π1

2, . . . , (v1, x1) ∧ π1
k1 , (v1, x2) ∧ π2

1, . . . , (v1, x2) ∧ π2
k2 , . . .

. . . , (v1, xs) ∧ πs1, . . . , (v1, xs) ∧ πsks = (w1, w2, . . . , wn).
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Conversely, suppose that for any pair of vertex paths (v1, . . . , vn) and (w1, . . . , wn)

satisfying v1 = w1 and vn = wn = ∗, we have a sequence of vertex paths π1, . . . πk

beginning at v1 and ending at ∗ such that for 1 ≤ i < k, the vertex paths πi and πi+1

differ at at most one vertex.

Let v, x, and x′ be vertices in Γ such that x l v and x′ l v. Then v ∧ πx and v ∧ πx′

are paths which both start at v and end at ∗. Thus there exists a sequence of paths

π1, . . . , πk beginning at v and ending at ∗, and differing in each step by at most one

vertex, such that π1 = v∧πx and πk = v∧πx′ . For 1 ≤ i ≤ k, let xi be the second vertex

on path πi, and let yi be the third vertex on path πi. Then the sequences x1, . . . , xk

and y2, . . . , yk−1 satisfy conditions i-iii from Proposition 2.

We will also find the following corollary useful.

Corollary 4. Let Γ be a uniform layered graph with unique minimal vertex ∗. Then for

any two vertex paths (v1, v2, . . . , vn) and (w1, w2, . . . , wn) with v1 = w1, there exists a

sequence of vertex paths π1, π2, . . . , πk, each path beginning at v1, such that for 1 ≤ i < k,

the vertex paths πi and πi+1 differ by at most one vertex.

In [6], Retakh, Serconek, and Wilson prove that for a uniform layered graph Γ with

unique minimal vertex ∗, A(Γ) ∼= T (V+)/RV , where RV is the ideal generated by

{v(w − u)− u2 + w2 + (u− w)x : v ∈ V>1, u, w ∈ S(v), x ∈ S(v) ∩ S(w)}.

2.6 The Associated Graded Algebra grA(Γ)

Let V be a vector space, with filtration

V0 ⊆ V1 ⊆ V2 ⊆ . . . ⊆ Vi ⊆ . . .

such that V =
∑

i Vi. Then V is isomorphic as a vector space to the graded vector

space
⊕

i V[i], where V[0] = V0, and V[i+1] = Vi+1/Vi.

If W is a subspace of V , then we have

(W ∩ V0) ⊆ (W ∩ V1) ⊆ . . . ⊆ (W ∩ Vi) ⊆ . . . ,
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with W =
∑

i(W ∩Vi). It follows that W is isomorphic as a vector space to the graded

vector space
⊕

iW[i], where W[0]
∼= (W ∩ V0), and for each i,

W[i+1]
∼= (W ∩ Vi+1)/(W ∩ Vi) ∼= ((W ∩ Vi+1) + Vi)/Vi.

Thus W[i+1] is isomorphic to the subspace of V[i+1] given by

{w + Vi | w ∈W ∩ Vi+1}.

We can think of this as the collection of “leading terms” of elements of W ∩ Vi+1.

Now consider the algebra T (V ) for some graded vector space V =
⊕

i V[i]. Every

element of T (V ) can be expressed as a linear combination of elements of the form

v1v2 . . . vn, where each vt is homogeneous—that is, vt ∈ V[k] for some k. For each

homogeneous v ∈ V[k], we will write use the notation |v| = k. The grading of V induces

a filtration

T (V )0 ⊆ T (V )1 ⊆ . . . ⊆ T (V )i ⊆ . . .

on T (V ), with

T (V )i = span{v1 . . . vn : |v1|+ . . .+ |vn| ≤ i}.

Clearly this filtration induces a grading T (V ) =
⊕

i T (V )[i], where

T (V )[i] = span{v1 . . . vn : |v1|+ . . . |vn| = i}.

Let I be an ideal of T (V ), and consider the algebra A = T (V )/I. The filtration on

T (V ) will induce a filtration

A0 ⊆ A1 ⊆ . . . Ai ⊆ . . .

on A. If I is homogeneous with respect to the grading on T (V ), then A inherits this

grading. Otherwise, we can consider a structure called the associated graded algebra,

denoted grA and given by

grA =
⊕

A[i],

where A[0] = A0, A[i+1] = Ai+1/Ai, and where multiplication is given by

(x+Am)(y +An) = xy +Am+n.
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The associated graded algebra grA is isomorphic to A as a vector space, but not nec-

essarily as an algebra.

For A = T (V )/I, we can understand the structure of grA by considering the graded

structure of the ideal I. As a vector space, I is isomorphic to the vector space grI =⊕
(grI)[i], where (grI)[0] = I ∩ T (V )0, and

(grI)[i+1] = {w + T (V )i : w ∈ I ∩ T (V )i+1} ⊆ T (V )[i].

If we think of T (V ) as the direct sum
⊕
T (V )[i], then we can think of grI as the

collection of sums of leading terms of elements of I. This is a graded ideal in the

graded algebra T (V ). From [6], we have the following result:

Lemma 5. Let V be a graded vector space and I an ideal in T (V ). Then

gr(T (V )/(I)) ∼= T (V )/(gr(I)).

In the case of the universal labeling algebra A(Γ) for a layered graph Γ with unique

minimal vertex, we have A(Γ) = T (V+)/RV , where T (V+) is the tensor algebra over the

vector space generated by the vertices in V+. This means that A(Γ) inherits a filtration

from T (V+), given by

T (V+)i = span{v1 . . . vn : |v1|+ . . .+ |vn| ≤ i}.

We will refer to this as the vertex filtration. This means that A(Γ) has an associated

graded algebra grA(Γ).

2.7 Basis for grA(Γ)

In [4], a basis for grA(Γ) is constructed as follows: For each b ∈ B1, with |ẽ(b)| = i

with respect to the vertex-filtration, define e(b) = ẽ(b) +A(Γ)i−1 in grA(Γ). Then for

any distinct b and b′ in B, we have e(b) 6= e(b′), and the set {e(b) : b ∈ B} is a basis

for grA(Γ).

With a little extra notation, we can describe this basis in another way.



13

Definition 3. For every ordered pair (v, k) with v ∈ V , 0 ≤ k ≤ |v| with πv =

(v1, v2, . . . , vn) as a vertex path, we define a monomial

m(v, k) = v1v2 . . . vk ∈ T (V+).

For each b = ((b1, k1), . . . , (bn, kn)) ∈ B1, we define

m(b) = m(b1, k1) . . .m(bn, kn).

Proposition 6. Let Γ be a layered graph, and let φ be the quotient map from T (V+)

to T (V+)/grR ∼= grA(Γ). Then for all b ∈ B1, we have φ(m(b)) = e(b).

Proof. We know that for (v, k) with v ∈ V , 0 ≤ k ≤ |v|, and with vertex path πv =

(v1, . . . , vn), we define e(v, k) by

(t− (v1, v2))(t− (v2, v3)) . . . (t− (vn−1, vn)) =

|v|∑
i=0

e(v, i)ti.

Thus we have

ẽ(v, k) =
∑

1≤i1<i2<...ik<n

(
vi1 − v(i1+1)

)
. . .
(
vik − v(ik+1)

)
,

and the highest-order term of ẽ(v, k) with respect to the vertex filtration is the monomial

v1v2 . . . vk, or m(v, k). It follows that e(v, k) = φ(m(v, k)), and so by extension we have

e(b) = φ(m(b)) for all b ∈ B1.

Corollary 7. For any distinct b and b′ in B, we have φ(m(b)) 6= φ(m(b′)), and the

set {φ(m(b)) : b ∈ B} is a basis for grA(Γ).

Notice that any monomial a ∈ T (V+) is expressible as m(b) for some b ∈ B.

Definition 4. Let a = v1, . . . vl be a monomial in T (V+). Borrowing terminology

from [3], we define s(a), the skeleton of a, to be the sequence of integers (n1, . . . , nt)

satisfying

i) n1 = 1.

ii) If nk < l + 1, then

nk+1 = min
(
{j > nk : vj < vnk or |vj | 6= |vnk |+ nk − j} ∪ {l + 1}

)
.
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iii) t = min{i : ni = l + 1}.

We define ba ∈ B to be

((vn1 , n2 − n1), (vn2 , n3 − n2), . . . , (vnt−1 , nt − nt−1))

It is easy show from these definitions that m(ba) = a.

2.8 A Presentation of grA(Γ) For Uniform Layered Graphs

If Γ is a uniform layered graph, then RV is generated by

{v(w − u)− u2 + w2 + (u− w)x : v, u, w ∈ V+, u, w ∈ S(v), x ∈ S(v) ∩ S(w)}.

The discussion in section 2.6 tells us that grRV contains the set of leading terms:

{v(w − u) : v, u, w ∈ V+, u, w ∈ S(v)}.

Call the ideal generated by this set Rgr. The map φ : T (V+) → T (V+)/grR factors

uniquely through T (V+)/Rgr, giving us

T (V+)
φ′−→ T (V+)/Rgr

φ′′−→ T (V+)/grR.

We will use this notation for these three maps in the discussion that follows.

Proposition 8. Let Γ be a uniform layered graph. If (v1, . . . , vn) and (w1, . . . , wn) are

vertex paths in Γ with v1 = w1, then

φ′(v1 . . . vn) = φ′(w1 . . . wn)

Proof. Let (v1, . . . , vi−1, vi, vi+1, . . . vn) and (v1, . . . , vi−1, v
′
i, vi+1, . . . vn) be two vertex

paths, differing by only one vertex. Since vi, v
′
i l vi−1, we have vi−1(vi − v′i) ∈ Rgr.

Thus if we consider

φ′(v1 . . . vi−1vivi+1 . . . vn)− φ′(v1 . . . vi−1v
′
ivi+1 . . . vn),

we find that it is equal to

φ′(v1 . . . vi−2(vi−1(vi − v′i))vi+1 . . . vn),
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which is zero, since vi−1(vi−v′i) is in the kernel of φ′. This simplification, in combination

with Corollary 4 and the uniformity of Γ give us our result.

Proposition 9. Let Γ = (V,E) be a uniform layered graph, and let a be a monomial in

T (V+). Then there exists a monomial a′ ∈ T (V+) such that φ′(a) = φ′(a′), and ba′ ∈ B.

Proof. Let Γ = (V,E) be a uniform layered graph, and let a = v1, . . . , vl be a monomial

in T (V+) with skeleton (n1, . . . , nt). If ba /∈ B, then there exists 1 < i < t such that

(vni−1 , ni − ni−1) |= (vni , ni+1 − ni).

We will induct on l − ra, where

ra = min{ni : (vni−1 , ni − ni−1) |= (vni , ni+1 − ni)} ∪ {t}

If l − ra = 0, then ba ∈ B. Now assume that l − ra > 0, and that the result holds for

all monomials with larger r-values.

We have

a = v1 . . . v(n(ra−1)−1)m(vn(ra−1)
, nra − n(ra−1))vnra . . . vl

Since we have

(vn(ra−1)
, nra − n(ra−1)) |= (vnra , nra+1 − nra),

we know that there exists a vertex path (w1, . . . , wh) with w1 = vn(ra−1)
and wh = vnra .

From Proposition 8, we know that

φ′
(
m
(
vn(ra−1)

, nra − n(ra−1)

))
= φ′ (w1 . . . wh−1) ,

and that

φ′(w1, . . . , wh) = φ′
(
m
(
vn(ra−1)

, nra − n(ra−1) + 1
))

.

It follows that

φ′
(
m
(
vn(ra−1)

, nra − n(ra−1)

)
vnra

)
= φ′

(
m
(
vn(ra−1)

, nra − n(ra−1) + 1
))

.

Thus we have φ′(a) = φ′(a′), where

a′ = v1 . . . v(nra−1−1)m
(
vn(ra−1)

, nra − n(ra−1) + 1
)
v(nra+1) . . . vl
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Say a′ = v′1, . . . v
′
l, and s(a′) = (n′1, . . . , n

′
t′). By construction, we have

(i) vi = v′i for 1 ≤ i ≤ nra .

(ii) nj = n′j for j < nra .

(iii) n′ra ≥ nra + 1.

Together, (i) and (ii) tell us that

(
v′n′i−1

, n′i − n′i−1

)
6|=
(
v′n′i
, n′i+1 − n′i

)
for i < n′ra . Thus if

ra′ = min{n′i : (v′n′i−1
, n′i − n′i−1) |= (v′n′i

, n′i+1 − n′i)} ∪ {t′},

then ra′ ≥ n′ra > nra . Thus by the inductive hypothesis there exists a monomial

a′′ ∈ T (V+) with φ′(a′) = φ′(a′′) and ba′′ ∈ B. We have φ′(a) = φ′(a′′), and this

completes our proof.

Proposition 10. For any distinct b and b′ in B, we have φ′(m(b)) 6= φ′(m(b′)), and

the set {φ′(m(b)) : b ∈ B} is a basis for T (V+)/Rgr.

Proof. For any b ∈ B, we have φ(m(b)) = φ′′ ◦ φ′(m(b)). Thus the elements of

{φ′(m(b)) : b ∈ B}

are distinct and linearly independent by Corollary 7. Since the set

{a ∈ T (V+) : a a monomial}

spans T (V+), it follows that the set

{φ′(a) : a a monomial}

spans T (V+)/Rgr. Thus the set

{φ′(m(b)) : b ∈ B}

spans T (V+)/Rgr as a consequence of Proposition 9. This gives us our result.
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Corollary 11. The associated graded algebra grA(Γ) is isomorphic to T (V+)/Rgr,

where Rgr is the ideal generated by the set

{v(w − u) : v, u, w ∈ V+, u, w ∈ S(v)}

Proof. For any b ∈ B, we have

φ′′(φ′ (m(b)) = φ(m(b)).

Since φ′′ maps a basis of T (V+)/Rgr bijectively onto a basis of grA(Γ), it follows that

φ′′ is a bijection, and thus an isomorphism.

2.9 The Quadratic Dual B(Γ)

We begin this section by recalling the following definitions, as presented in [5]:

Definition 5. An algebra A is called quadratic if A ∼= T (W )/〈R〉, where W is a

finite-dimensional vector space, and 〈R〉 is an ideal generated by some subspace R of

W ⊗W .

Definition 6. If R is a subspace of W ⊗W , then R⊥ is the subspace of (W ⊗W )∗

generated by the set of elements x ∈ (W ⊗W )∗ such that for all y ∈W ⊗W , we have

〈x, y〉 = 0.

Definition 7. Let A ∼= T (W )/〈R〉 be the quadratic algebra associated to some partic-

ular subspace R ⊆ W ⊗W . The quadratic dual A! of A is defined to be the algebra

T (W ∗)/〈R⊥〉.

When Γ is a uniform layered graph with unique minimal vertex, grA(Γ) ∼= T (V+)/RV

is a quadratic algebra with quadratic dual T ((V+)∗)/(RV )⊥. Since RV is generated by

{v(w − u) : v ∈ V>1, u, w ∈ S(v)},

(RV )⊥ is generated by the collection of x∗y∗ ∈ (V+)∗ ⊗ (V+)∗ such that

〈x∗, v〉〈y∗, w − u〉 = 0

for all v ∈ V>1 and u,w ∈ S(v). In [1], Duffy shows that this is the ideal generated by

{v∗w∗ : v 6mw} ∪

{
v∗
∑
vmw

w∗

}
.
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Changing the generators of our algebra, we define B(Γ) = T (V+)/RB, where RB is the

ideal generated by

{vw : v 6mw} ∪

{
v
∑
vmw

w

}
.

Notice that B(Γ) ∼= T ((V+)∗)/(RV )⊥, the quadratic dual of grA(Γ). Throughout much

of this paper, we will focus our attention on the algebra B(Γ).

2.10 Using A(Γ) and B(Γ) as Layered Graph Invariants

To each layered graph Γ, we have associated an algebra A(Γ). It is natural to ask how

this algebra behaves when considered as an invariant of layered graphs. Unfortunately,

if we only consider its structure as an algebra, it is not a particularly strong invariant.

Consider the two graphs below:

x y z

x

y

z

Γ Γ'

We have A(Γ) ∼= A(Γ′) ∼= F 〈x, y, z〉. This is unfortunate, as one would hope that

an invariant of layered graphs would be able to distinguish between graphs with dif-

ferent numbers of layers, or graphs whose layers have a different number of vertices.

This clearly does neither. To capture these properties, we will need to consider some

additional structure on A(Γ).

Notice that A(Γ) is a quotient of T (V+) by a homogeneous ideal. Thus there is a grading

on A(Γ) given by A(Γ) =
⊕
A(Γ)[i], with

A(Γ)[i] = span{v1v2 . . . vi : v1, . . . , vi ∈ V+}.
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A(Γ) also has a filtration given by the level of the vertices in the graph. So A(Γ) =⋃
A(Γ)i, where

A(Γ)i ≤ span

{
v1v2 . . . vj :

j∑
k=1

|vk| ≤ i

}
.

When we allow ourselves to consider these pieces of structure, we obtain an invariant

that can distinguish between graphs that have layers of different sizes.

Definition 8. We say Γ ∼A Γ′ if and only if there exists an isomorphism φ : A(Γ) →

A(Γ′) which preserves both the grading and the filtration described above.

Proposition 12. If Γ = (V,E), Γ′ = (V ′, E′), and Γ ∼A Γ′, then |Vi| = |V ′i | for all

i ∈ N.

Proof. We have

|Vi| = dim
((
A(Γ)1 ∩A(Γ)[i]

)
/
(
A(Γ)1 ∩A(Γ)[i−1]

))
and

|V ′i | = dim
((
A(Γ′)[1] ∩A(Γ′)i

)
/
(
A(Γ′)[1] ∩A(Γ′)i−1

))
.

Any isomorphism φ : A(Γ) → A(Γ′) that preserves the grading and the filtration will

map the subspace from the first expression onto the subspace in the second expression.

The result follows.

Similarly, B(Γ) has a double grading given by

B(Γ)m,n = span

{
v1 . . . vm :

m∑
i=1

|vi| = n

}
.

Definition 9. We say Γ ∼B Γ′ if and only if there exists an isomorphism φ : B(Γ) →

B(Γ′) which preserves the double grading.

Notice that whenever B(Γ) and B(Γ′) are defined, we have

(Γ ∼A Γ′)⇒ (Γ ∼B Γ′).

Thus ∼B gives us a coarser partition of these layered graphs. In particular, if the ∼B

equivalence class consists of a single isomorphism class, then so does the ∼A equivalence

class. If the ∼B equivalence class of a certain graph is small and easy to describe, we
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know that the ∼A equivalence class is contained in this small, easily-describable set of

layered graphs.

2.11 Notation and Formulas for Layered Graphs

Let Γ be a layered graph. Recall that whenever there is a directed edge from v to w,

we write v m w, and say that v “covers” w. S(v) is the set {w : v m w}.

Definition 10. Throughout this work, we will use the following notation: For any

subset T ⊆ Vn,

(i) S(T ) =
⋃
t∈T S(t), the set of all vertices covered by some vertex in T .

(ii) I(T ) =
⋂
t∈T S(t), the set of vertices covered by every vertex in T .

(iii) N(T ) = I(T ) \ S
(
T
)
, the set of vertices covered by exactly the vertices in T .

(iv) ∼T is the equivalence relation obtained by taking the transitive closure of the

relation

RT = {(v, w) : ∃t ∈ T, {v, w} ⊆ S(t)}.

(v) CT is the collection of equivalence classes of Vn−1 under ∼T .

(vi) kT = |CT |.

(vii) kTT = kT − |Vn−1|+ |S(T )|.

Notice that kTT is also the number of equivalence classes of S(T ) under ∼T . Since

∅ ⊆ Vn for multiple values of n, we will use the notation ∅n to indicate that ∅ is being

considered as a subset of Vn.

Proposition 13. If Γ is a layered graph, and A ⊆ Vn, then we have the following:

(i) |Vn−1| = k∅n

(ii) |Vn−1 \ S(A)| = kA − kAA,

(iii) |S(A)| = k∅n − kA + kAA
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Proof. Statement (i) follows immediately from the definition of kA. Statement (ii)

follows from the definition of kAA. Statement (iii) follows easily from statements (i) and

(ii).

Proposition 14. If A ⊆ Vn, then

|I(A)| =
∑
B⊆A

(−1)|B|(kB − kBB)

Proof. We know that I(A) =
⋂
t∈A S(t), so

|I(A)| =

∣∣∣∣∣⋂
t∈A

S(t)

∣∣∣∣∣
=

∣∣∣∣∣∣
(⋃
t∈A

S(t)

)∣∣∣∣∣∣
= |Vn−1| −

∣∣∣∣∣⋃
t∈A

S(t)

∣∣∣∣∣
= |Vn−1| −

∑
∅6=B⊆A

(−1)|B|−1

∣∣∣∣∣⋂
t∈B

S(t)

∣∣∣∣∣
= |Vn−1|+

∑
∅6=B⊆A

(−1)|B|

∣∣∣∣∣⋂
t∈B

S(t)

∣∣∣∣∣
=

∑
B⊆A

(−1)|B|
∣∣∣S(B)

∣∣∣
=

∑
B⊆A

(−1)|B|(kB − kBB)

Proposition 15.

|N(A)| =
∑
B⊇A

(−1)|B|−|A|
(
kB − kBB

)
Proof. N(A) is the collection of vertices in Vn−1 that are covered by all vertices in A,



22

but not by any of the vertices in A, so

N(A) = I(A) ∩ S
(
A
)

= I(A) ∩

⋃
t∈A

S(t)


= I(A) \

⋃
t∈A

S(t)



Therefore we have

|N(A)| = |I(A)| −

∣∣∣∣∣∣I(A) ∩

⋃
t∈A

S(t)

∣∣∣∣∣∣
= |I(A)| −

∣∣∣∣∣∣
⋃
t∈A

(I(A) ∩ S(t))

∣∣∣∣∣∣
= |I(A)| −

∣∣∣∣∣∣
⋃
t∈A

I(A ∪ {t})

∣∣∣∣∣∣
= |I(A)| −

∑
∅6=C⊆A

(−1)|C|−1

∣∣∣∣∣⋂
t∈C

I(A ∪ {t})

∣∣∣∣∣
= |I(A)| −

∑
∅6=C⊆A

(−1)|C|−1|I(A ∪ C)|

By Proposition 14, this gives us

=
∑
C⊆A

(−1)|C|

 ∑
B⊆A∪C

(−1)|B|
∣∣∣S(B)

∣∣∣


=
∑

B⊆A∪C
C⊆A

(−1)|B|+|C|
∣∣∣S(B)

∣∣∣

=
∑
B⊆Vn

|A\B|∑
i=0

(−1)|B|+|B∩A|+i
(∣∣A \B∣∣

i

) ∣∣∣S(B)
∣∣∣

=
∑
B⊇A

(−1)|B|+|A|
∣∣∣S(B)

∣∣∣
=

∑
B⊇A

(−1)|B|−|A|
(
kB − kBB

)
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Chapter 3

Isomorphisms of B(Γ)

3.1 The Algebra B(Γ)

Recall that B(Γ) = T (V+)/RB, where RB is the ideal generated by

{vw : v 6mw} ∪

{
v
∑
vmw

w : v ∈ V

}
.

This algebra has a double grading given by

B(Γ)m,n = span

{
v1 . . . vm :

m∑
i=1

|vi| = n

}
Definition 11. For notational convenience, we define Bn = B(Γ)1,n =

{∑
v∈Vn αvv

}
,

the linear span of the vertices in Vn.

Definition 12. Given an element a =
∑

v∈Vn αvv ∈ Bn, let Aa = {v ∈ Vn : αv 6= 0}.

Then we define

i) S(a) = S(Aa)

ii) I(a) = I(Aa)

iii) ∼a=∼Aa

iv) ka = kAa

v) kaa = kAaAa

3.2 The Subspaces κa

Definition 13. For each element a ∈ Bn, we define a map

La : Bn−1 → B(Γ)



24

such that La(b) = ab. We define κa be the kernel of the map La.

Looking at the ideal R, it is clear that for any v ∈ Vn, we have

κv = span

(
{w : w 6lv} ∪

{∑
wlv

w

})

It follows that if |S(v)| > 1, then for any vertex w, we have w ∈ S(v) if and only if

w /∈ κv when both v and w are considered as algebra elements. We can also obtain the

following results about the structure of κa:

Lemma 16. For any nonzero a =
∑

v∈Vn αvv in Bn,

κa =
⋂
αv 6=0

κv

Proof. Clearly, if b ∈
⋂
αv 6=0 κv, then b ∈ κa, which implies that

⋂
αv 6=0 κv ⊆ κa.

To obtain κa ⊆
⋂
αv 6=0 κv, we note that B(Γ) can be considered as a direct sum of vector

spaces

B(Γ) = F
⊕
v∈V+

vB(Γ),

where F is the base field. If b ∈ κa, then

∑
v∈Vn

αvvb = 0,

and so we must have vb = 0 for every v such that αv 6= 0. Thus we have b ∈
⋂
αv 6=0 κv,

and hence κa ⊆
⋂
αv 6=0 κv.

Proposition 17. For any a =
∑
αvv ∈ Bn,

κa = span

{∑
w∈C

w : C ∈ Ca

}

Proof. In light of Lemma 16, this statement reduces to showing that for any subset

A ⊆ Vn, ⋂
v∈A

κv = span

{∑
w∈C

w : C ∈ CA

}
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We have

⋂
v∈A

κv =
⋂
v∈A

(
span

(
{w : w 6lv} ∪

{∑
wlv

w

}))

=
⋂
v∈A


 ∑
w∈Vn−1

βww

 : βw = βw′ if {w,w′} ⊆ S(v)


=


 ∑
w∈Vn−1

βww

 : βw = βw′ if {w,w′} ⊆ S(v) for some v ∈ A


=


 ∑
w∈Vn−1

βww

 : βw = βw′ if {w,w′} ⊆ C ∈ CA


= span

{∑
w∈C

w : C ∈ CA

}

Often it will be useful to be able to refer to κA for a subset A ⊆ Vn:

Definition 14.

κA =
⋂
v∈A

κv.

Notice that κA = κa for a =
∑

v∈A v ∈ Bn.

From Proposition 17, it is easy to see that the following corollaries hold:

Corollary 18. For any a ∈ Bn, dim(κa) = ka, and for any A ⊆ Vn, dim(κA) = kA.

Corollary 19. For any a ∈ Bn, |S(a)| = |Vn−1|−ka+kaa, and |S(A)| = |Vn−1|−kA+kAA

In general, we cannot recover information about kaa from B(Γ), but in the special case

where v is a vertex in Vn, we have kvv = 1, and so |S(v)| = |Vn−1| − kv + 1.

We make the following observations about κa:

Proposition 20. Let a =
∑
αvv ∈ Bn, and let w be a vertex in Vn such that αw 6= 0.

Then the following statements are true:

i) κa ⊆ κw

ii) ka ≤ kw

iii) S(w) ⊆ S(a)
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We have equality in i) if and only if we have equality in ii). If |S(w)| > 1, then we

have equality in iii) if and only if we have equality in i) and ii). In the case where

|S(w)| = 1, then equality in iii) implies equality in i) and ii), but the other direction of

implication does not hold.

Proof. All this is obvious from Lemma 16 and Proposition 17, except that κa = κw

implies S(a) = S(w) in the case where |S(w)| > 1. Suppose κa = κw. Notice that for

u ∈ Vn−1 we have u ∈ S(a) if and only if u /∈ κa, and u ∈ S(w) if and only if u /∈ κw.

Thus u ∈ S(a) if and only if u ∈ S(w), so S(a) = S(w).

3.3 Isomorphisms from B(Γ) to B(Γ′)

Let Γ = (V,E), and Γ′(W,F ) be uniform layered graphs. Here we consider B(Γ) =

T (V+)/R and B(Γ′) = T (W+)/R′. A natural question to ask is which doubly graded

algebra isomorphisms between T (V+) and T (W+) induce isomorphisms between the

doubly graded algebras B(Γ) and B(Γ′). The answer turns out to be fairly simple:

Theorem 21. Let Γ = (V,E) and Γ′ = (W,F ) be uniform layered graphs with algebras

B(Γ) = T (V+)/R and B(Γ′) = T (W+)/R′ resepectively, and let

φ : T (V+)→ T (W+)

be an isomorphism of doubly graded algebras. Then φ induces a doubly graded algebra

isomorphism from B(Γ) to B(Γ′) if and only if κφ(v) = φ(κv) for all v ∈ V .

For this result, we will need the following lemma:

Lemma 22. Let Γ = (V,E) and Γ′(W,F ) be uniform layered graphs, and let

φ : T (V+)→ T (W+)

be an isomorphism of doubly graded algebras. Then the following are equivalent:

(i) For any a ∈ Bn, φ(κa) = κφ(a).

(ii) For any v ∈ Vn, φ(κv) = κφ(v).
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Proof. Clearly, we have (i) ⇒ (ii). To show that (ii) ⇒ (i), let

a =
∑

αvv.

We know from Lemma 16 that

κa =
⋂
αv 6=0

κv.

Since φ is a bijection, this implies that

φ(κa) =
⋂
αv 6=0

φ(κv) =
⋂
αv 6=0

κφ(v)

Let φ(v) =
∑
βv,ww. Then

κφ(v) =
⋂

βv,w 6=0

κw,

and

φ(a) =
∑(

αv

(∑
βv,ww

))
=
∑

αvβv,ww,

so we have

φ(κa) =
⋂
αv 6=0
βv,w 6=0

κw = κφ(a)

Proof of Theorem 21. For the purposes of this proof, we will let Bn = B(Γ)1,n, and

B′n = B(Γ′)1,n. We wish to show that φ(R) = R′ if and only if κφ(v) = φ(κv) for all

v ∈ Vn. We have

R = 〈ab : a ∈ Bn, b ∈ κa or b /∈ Bn−1〉

and so

φ(R) = 〈φ(ab) : a ∈ Bn, b ∈ κa or b /∈ Bn−1〉.

We also have

R′ = 〈ab : a ∈ B′n, b ∈ κa or b /∈ B′n−1〉.

Suppose that κφ(v) = φ(κv) for all v ∈ V+. Then by Lemma 22, we have κφ(a) = φ(κa)

for any a ∈ Bn. This means that for any a, we have κa = φ−1(κφ(a)), and thus

κφ−1(a) = φ−1(κa).
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Let ab be one of the generators of R. Then a ∈ Vn and either b ∈ κa or b /∈ Bn−1. If

b ∈ κa, we have

φ(ab) = φ(a)φ(b)

We know φ(b) ∈ φ(κa) = κφ(a), so φ(ab) ∈ R′. Otherwise, b /∈ Bn−1, and so we have

φ(a) ∈ B′n and φ(b) /∈ B′n−1, so φ(a)φ(b) = φ(ab) is in R′. It follows that φ(R) ⊆ R′.

Any element of R′ takes the form ab, for a ∈Wn and b ∈ κa or b /∈ B′n−1. If b ∈ κa, we

have

ab = φ(φ−1(a)φ−1(b))

We know that φ−1(a) ∈ Vn, and φ−1(b) ∈ φ−1(κa) = κφ−1(a). Thus φ−1(a)φ−1(b) ∈ R,

and so ab ∈ φ(R). If b /∈ B′n−1, then we have φ−1(a) ∈ Bn and φ−1(b) /∈ Bn−1, and so

φ−1(ab) ∈ R. It follows that ab ∈ φ(R), and so R′ ⊆ φ(R). This means that R′ = φ(R).

Conversely, suppose κφ(v) 6= φ(κv) for some v ∈ Vn. Then there must be some a such

that

a ∈
(
κφ(v) \ φ(κv)

)
∪
(
φ(κv) \ κφ(v)

)
If a ∈ (κφ(v)\φ(κv)), then we have φ−1(a) /∈ κv, so vφ−1(a) /∈ R. However, we also have

a ∈ κφ(v), so φ(vφ−1(a)) = φ(v)a ∈ R′. Since φ is a bijection, this means R′ 6= φ(R).

If a ∈ (φ(κv) \ κφ(v)), then vφ−1(a) ∈ R, but φ(vφ−1(a)) = φ(v)a /∈ R. Since φ is a

bijection, R′ 6= φ(R).
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Chapter 4

Upper Vertex-Like Bases

We are interested in studying the equivalence classes of layered graphs under ∼A and

∼B. As previously discussed, for uniform layered graphs Γ and Γ′, whenever Γ ∼A Γ′,

we also have Γ ∼B Γ′, so for now we will focus on the relation ∼B. Suppose that for

a particular graph Γ, we are given the doubly-graded algebra B(Γ), but no additional

information about the graph. What information about Γ can we recover?

If we could somehow identify the vertices in B(Γ), we could recover quite a bit of

information. In particular, we would know S(v) for every vertex v of degree greater

than 1. Unfortunately, it is not always possible to recover the vertices from the algebra.

Consider the following graph Γ:

a b

c d

1

*

It is easy to verify from Proposition 21 that the algebra map φ given by

φ(v) =

 a+ b if v = a

v if v ∈ V+ \ {a}

is an automorphism of B(Γ) which does not fix the vertices. Thus we cannot, in

general, identify which elements of B(Γ) are the vertices. However, it is possible to
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find a collection of algebra elements that in some sense “act like” the vertices. In this

chapter, we will give a construction for these elements.

4.1 Upper Vertex-Like Bases

We will continue to use the notation Bn for B(Γ)1,n, the linear span of Vn in B(Γ).

Definition 15. If Γ = (
⋃∞
i=0 Vi,

⋃∞
i=1Ei) is a layered graph, then the restriction of

Γ to n is

Γ|n =

(
n⋃
i=0

Vi,

n⋃
i=0

Ei

)

Notice that if Γ is a uniform layered graph, then so is Γ|n, and that B(Γ|n) is the

subalgebra of B(Γ) generated by
⋃n
i=1 Vi.

Definition 16. A basis L for Bn is called an upper vertex-like basis if there exists

a doubly-graded algebra isomorphism

φ : B(Γ|n)→ B(Γ|n)

such that φ fixes
⋃n−1
i=0 Vi, and φ(Vn) = L.

Proposition 23. A basis L for Bn is upper vertex-like if and only if there exists a

bijection φ : Vn → L such that κv = κφ(v) for all v ∈ Vn.

Proof. This follows from Theorem 21. Define

φ′ : T

(
n⋃
i=0

Vi

)
→ T

(
n⋃
i=0

Vi

)
to be the graded algebra isomorphism given by

φ′(v) =

 v if v ∈
⋃n−1
i=0 Vi

φ(v) if v ∈ Vn

Notice that φ′ fixes all of B(Γ|n−1). Since κv ⊆ Bn−1, we have φ(κv) = κv. Thus

κv = κφ(v) is exactly the condition we need for φ′ to induce an isomorphism on B(Γ|n).

Conversely, if L is upper vertex-like, then there exists φ : B(Γ|n)→ B(Γ|n) which fixes⋃n−1
i=0 Vi. The restriction of φ to Vn is a bijection from Vn to L. Theorem 21 tells us

that φ(κv) = κφ(v). Since φ fixes κv, we have our result.
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Since an upper vertex-like basis L for Bn is indistinguishable from the actual set of

vertices in B(Γ|n), the collection of κ-subspaces associated with L is identical to the

collection associated to the actual vertices. For convenience, here we will use the nota-

tion κ(a) rather than κa.

Proposition 24. Let Γ = (
⋃∞
i=0 Vi, E) be a uniform layered graph, and let L be an

upper vertex-like basis for B(Γ)1,n. Then there exists a bijection

ψ : Vn → L

such that for any A ⊆ Vn, we have

κ

(∑
v∈A

v

)
= κ

(∑
v∈A

ψ(v)

)

Proof. Since L is upper vertex-like, there exists an isomorphism

φ : B(Γ|n)→ B(Γ|n)

which fixes Vi for 1 ≤ i ≤ n − 1, and takes Vn to L. Let ψ = φ|Vn . Since φ(κ(a)) =

κ(φ(a)) for any a ∈ Bn, we have

φ

(
κ

(∑
v∈A

v

))
= κ

(
φ

(∑
v∈A

v

))
= κ

(∑
v∈A

φ(v)

)
= κ

(∑
v∈A

ψ(v)

)
,

and since φ fixes all elements of B(Γn−1), we have

φ

(
κ

(∑
v∈A

v

))
= κ

(∑
v∈A

v

)

The result follows.

This allows us to recover some information about the structure of the graph Γ from the

algebra B(Γ).

4.1.1 Example: Out-Degree of Vertices

If L = {b1, . . . , bdim(Bn)} is an upper vertex-like basis for Bn and dim(κbi) = d, then

there exists v ∈ Vn with dim(κv) = d. We have

|S(v)| = Vi − d+ 1,
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and so Γ must have a vertex in Vn with out-degree dim(Bn)− d+ 1. In fact, since we

can calculate dim(κbi) for all 1 ≤ i ≤ dim(Bn), these upper vertex-like bases allow us to

calculate the degree sequence of the entire graph. More precisely, this argument gives

us

Proposition 25. Let Γ be a directed graph, and let L be an upper vertex-like basis for

Bn ⊆ B(Γ). Then multiset {|S(v)| : v ∈ Vn} is equal to the multiset

{dim(Bn)− dim(κb) + 1 : b ∈ L},

and thus can be calculated from B(Γ).

4.1.2 Example: Size of Intersections

Let L = {b1, . . . , bdim(Bn)) be an upper vertex-like basis for Bn, and suppose we have

dim(κbi) = di, dim(κbj ) = dj , and dim(κbi ∩ κbj ) = dij . Then we have vi and vj such

that dim(κvi) = di, dim(κvj ) = dj , and dim(κvi ∩ κvj ) = dij . By Proposition 14 and

Corollary 18, we can conclude that

|I({vi, vj})| = dim(Bn)− (di − 1)− (dj − 1) + dij − k
{vi,vj}
{vi,vj}

= dim(Bn)− di − dj + dij +
(

2− k{vi,vj}{vi,vj}

)
If the intersection is nontrivial, then 2 − k{vi,vj}{vi,vj} = 1. Otherwise, 2 − k{vi,vj}{vi,vj} = 0. We

cannot calculate k
{vi,vj}
{vi,vj} from B(Γ), as we’ll see in Chapter 6. However, we can conclude

the following:

Proposition 26. Let Γ be a layered graph, let L be an upper vertex-like basis for

Bn ⊆ B(Γ), with bijection φ : Vn → L satisfying κφ(v) = κv for every v ∈ Vn. Then

|I({vi, vj}| = dim(Bn)− dim(κφ(vi))− dim(κφ(vj)) + dim(κφ(vi+vj)) + 1

if the value on the right is greater than or equal to 2. Otherwise I({vi, vj}) is 0 or 1.

4.2 Constructing an Upper Vertex-Like Basis

Our goal in this section is to prove the following theorem, which shows that we can

construct an upper vertex-like basis for Bn using only the information given to us by
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the doubly-graded algebra B(Γ). Our main result is the following theorem:

Theorem 27. Let L =
{
b1, b2, . . . , b|Vn|

}
be a basis for Bn, such that for any i and

for any a ∈ (Vn \ span{b1, . . . , bi−1}), we have kbi ≥ ka. Then L is an upper vertex-like

basis.

This construction resulted from an attempt to prove Proposition 25, that the out-degree

sequence of Γ can be calculated from the doubly-graded algebra B(Γ). The argument

relies heavily on the chain of subspaces

F|Vn−1| ⊆ F|Vn−1|−1 ⊆ . . . F2 ⊆ F1 = Bn

given by

Fi = span{v ∈ Vn : kv ≥ i}

We will use this notation for the duration of this section. Recall that from Corollary 25,

we know that for any a ∈ Bn, we have

|S(a)| = |Vn−1| − ka + kaa.

For a vertex v, we know that kvv = 1, so we have

|S(v)| = |Vn−1| − kv + 1,

and thus

Fi = span{v ∈ Vn : |S(v)| ≤ |Vn−1| − i+ 1}

Thus if it is possible to calculate the dimension of the Fi from the information given

to us by the doubly-graded algebra B(Γ), then we can also calculate the out-degree

sequence. We have the following result:

Proposition 28. For i = 1, . . . , |Vn−1|, let Fi be defined as above. Then we have

Fi = span{a ∈ Bn : ka ≥ i}

Proof. Clearly, Fi ⊆ span{a ∈ Bn : ka ≥ i}. To obtain the opposite inclusion, suppose

a ∈ Bn satisfies ka ≥ i. We know from Proposition 20 that

a ∈ span{v ∈ Vn : kv ≥ ka} ⊆ Fi,

and so span{a ∈ Bn : ka ≥ i} ⊆ Fi, and our proof is complete.
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This gives us our result about out-degree, but it falls short of giving us a construction

for an upper vertex-like basis. According to Proposition 23, an upper vertex-like basis

for Bn will consist of a linearly independent collection of algebra elements whose κ-

subspaces “match” the κ-subspaces of the elements of Vn. Proposition 28 gives us the

tools that we need to construct a basis whose κ-subspaces have the correct dimensions.

Definition 17. We say that a basis {x1, . . . , xdim(V )} for a vector space V is compat-

ible with the chain of subspaces

V0 ⊆ V1 ⊆ V2 ⊆ . . . ⊆ V

if for each i, span{x1, . . . , xdim(Vi)} = Vi.

Lemma 29. Let L be defined as in Theorem 27. Then L is compatible with

F|Vn−1| ⊆ F|Vn−1|−1 ⊆ . . . F2 ⊆ F1 = Bn.

Proof. Recall that Fi is spanned by {v ∈ Vn : kv ≥ i}. Thus if j < dim(Fi), then there

exists v ∈ Fi \ span{b1, . . . , bj}, and this v will satisfy kv ≥ i. Thus by the definition of

L, we have kbj+1
≥ kv ≥ i. Thus

span{b1, . . . , bdim(Fi)} ⊆ span{a ∈ Bn : ka ≥ i} = Fi,

and so

span{b1, . . . , bdim(Fi)} = Fi

This shows that the κ-subspaces of L have the correct dimension. Our next goal is to

show that the κ-subspaces of L all appear as κ-subspaces associated to vertices.

Lemma 30. Let L be a basis for Bn satisfying the hypothesis of Theorem 27. Then

for each b ∈ L, there exists w ∈ Vn such that κb = κw.

Proof. According to Proposition 20, any element a ∈ Bn is in span{v ∈ Vn : κv ⊇ κa}.

Thus either there exists w ∈ Vn with αw 6= 0 and κa = κw, or we have

a ∈ span{v ∈ Vn : κv ) κa} ⊆ span{v ∈ Vn : kv ≥ ka + 1} ⊆ Fka+1
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By Lemma 28, this gives us

a ∈ span{b ∈ L : kb ≥ ka + 1},

and so a /∈ L.

It follows that for any b =
∑

v∈Vn βvv ∈ L, there exists w ∈ Vn such that βw 6= 0 and

κb = κw.

All that remains is to show that the multiplicity with which each κ-subspace appears

in L matches the multiplicity with which it appears in Vn.

Lemma 31. Let L be a basis for Bn, satisfying the hypothesis of Theorem 27. Then

for each w ∈ Vn, we have

|{b ∈ L : κb = κw}| = |{v ∈ Vn : κv = κw}|

Proof. Notice that

{b+ Fkw+1 : b ∈ L, kb = kw}

and

{v + Vkw+1 : v ∈ Vn, kv = kw}

are both bases for the space Fkw+1/Fkw . We know that for each b ∈ L with κb = κw,

we have b ∈ span{v ∈ Vn : κv ⊇ κw}, and so

span {b+ Fkw+1 : b ∈ L, κb = κw} ⊆ span {v + Fkw+1 : v ∈ Vn, κv = κw}

A simple dimension argument now gives us

Corollary 32. Let L be a basis for Bn satisfying the hypothesis of Theorem 27. Then

for each w ∈ Vn, we have

|{b ∈ L : κb = κw}| = |{v ∈ Vn : κv = κw}|

Now we are ready to prove that L is an upper vertex-like basis.
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Proof of Theorem 27. By Corollary 32, we know that for every w ∈ Vn, we have

|{b ∈ L : κb = κw}| = |{v ∈ Vn : κv = κw}|

Thus there exists a bijective map φ : Vn → L such that κφ(v) = κv.
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Chapter 5

Uniqueness Results

Upper vertex-like bases allow us to find the collection of κ-subspaces associated to the

vertices, and to count the multiplicity of each of these κ-subspaces. However, there are

cases in which we can do even better—identifying the linear span of a particular vertex

in B(Γ). Recall that for any a ∈ Bn,

a ∈ span{v ∈ Vn : κv ⊇ κa}

Thus if there exists a vertex w ∈ Vn such that

{v ∈ Vn : κv ⊇ κw},

then for any element b of an upper vertex-like basis L for Bn satisfying κb = κw, we

have b ∈ span{w}. In cases where this condition is fairly common, this allows us to

almost entirely determine the structure of Γ from the algebra B(Γ).

We will use both poset and layered-graph notation in the discussion that follows. We

will identify the poset P with the layered graph associated to its Hasse diagram. For

ease of notation, we will use the notation P≥j for
⋃
i≥j Pi.

5.1 Non-Nesting Posets

Definition 18. Let P be a ranked poset with a unique minimal vertex ∗. We will say

that P has the non-nesting property if for any two distinct elements p and q with

out-degree greater than 1, we have S(p) 6⊆ S(q).

Theorem 33. Let P be a finite poset with the non-nesting property, such that |S(p)| > 1

whenever ρ(p) > 1. If Q is a poset with Q ∼B P , then P≥2
∼= Q≥2
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Proof. Suppose there is a doubly graded algebra isomorphism from B(P ) to B(Q). We

will equate the vertices in B(P ) with their images in B(Q), allowing us to work entirely

inside the algebra B(Q).

For each level i, we can find an upper vertex-like basis Li for Bi. The construction of

Li depends on the algebra, not on the original poset, so Li is upper vertex-like for both

P and for Q. That is to say, there exist two bijections

φi : Li → Pi and ψi : Li → Qi

such that κφi(A) = κA and κψi(A) = κA for every A ⊆ Li.

Define ξi : Pi → Qi by ξi = φ−1
i ◦ ψi. This is a bijection, and for any A ⊆ Pi, we have

κξi(A) = κφ−1
i (ψi(A)) = κψi(A) = κA

For any q ∈ Qi, a ∈ Bi, we know from Theorem 20 that κa = κq if and only if

a ∈ span{r ∈ Qi : κr ⊆ κq} = span{r ∈ Qi : S(q) ⊆ S(r)}

For i > 1, the non-nesting property tells us that the rightmost set is equal to span{q},

and so a is a constant multiple of q. In particular, for each p ∈ Pi, ξi(p) is a scalar

multiple of p. We will write ξi(p) = αpp.

Now define a bijection

ξ : P≥2 → Q≥2

such that ξ(p) = ξi(p) for every p ∈ Pi. We claim that this is an isomorphism of posets.

To prove this, we must show that for any r ∈ P≥2, we have r ∈ S(p) if and only if

ξ(r) ∈ S(ξ(p)).

Let p ∈ Pi for i > 2. We know that

κp = span

 ∑
r∈S(p)

r

 ∪ {r : r /∈ S(p)}

 ,

and that |S(p)| > 1. It follows that for r ∈ Pi−1 we have r ∈ S(p) if and only if r /∈ κp.

A similar argument shows that ξ(r) ∈ S(ξ(p)) if and only if ξ(r) /∈ κξ(p). This gives us(
r ∈ S(p)

)
⇔
(
r /∈ κp

)
⇔
(
αrr /∈ κp

)
⇔
(
ξ(r) /∈ κξ(p)

)
⇔
(
ξ(r) ∈ S(ξ(p))

)



39

Corollary 34. Given any finite atomic lattice P whose Hasse diagram is a uniform

layered graph, the poset P≥2 is determined up to isomorphism by B(P ).

Proof. Since P is a finite lattice, it has a unique minimal element 0̂. Since P is atomic,

any element p of rank two or greater satisfies |S(p)| > 1. All that remains is to show

that P satisfies the non-nesting property.

Suppose p and q are elements of P with S(p) ⊆ S(q). Then either p and q are both

atoms and S(p) = S(q) = 0̂, or we have
∨
S(p) = p and

∨
S(q) = q. This means that

p ∨ q =
(∨

S(p)
)
∨
(∨

S(q)
)

=
∨
S(q) = q,

and so we have q ≥ p. Since S(p) = S(q), we know that ρ(p) = ρ(q), and so it follows

that q = p.

5.2 The Boolean Algebra

The Boolean algebra satisfies the non-nesting property. This makes it fairly easy to

show that it is uniquely identified by its algebra B(Γ).

Proposition 35. Let 2[n] be the Boolean lattice, and let Γ be another uniform layered

graph with Γ ∼B 2[n]. Then Γ and 2[n] are isomorphic as layered graphs.

Proof. Let 2[n] be the Boolean lattice, and let Γ = (V0 ∪ . . . ∪ Vn, E) be a uniform

layered graph with unique minimal vertex such that there exists an isomorphism of

doubly-graded algebras from B
(
2[n]
)

to B(Γ). We equate the vertices in B
(
2[n]
)

with

their images in B(Γ). For each i > 2, define ξi as in the proof of Theorem 33. Then

since 2[n] is a finite atomic lattice, the map

ξ : 2[n]
≥2 → Γ≥2

given by ξ(p) = ξi(p) for p ∈
(

[n]
i

)
is an isomorphism of posets. We would like to define

an extension ξ′ of ξ, such that ξ′ is an isomorphism from 2[n] to Γ.
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We will use the following in our construction:

Claim 1: For every w ∈ V1, we have |{v ∈ V2 : v 6mw}| =
(
n−1

2

)
.

Claim 2: For every A ⊆ V2 with |A| =
(
n−1

2

)
, we have dim(κA) > 1 if and only if there

exists w ∈ V1 with A = {v ∈ V2 : v 6mw}.

We will begin by proving Claim 1. We know that ξ satisfies κξ(p) = κp for any p ∈
(

[n]
2

)
.

Since |S(p)| = 2 for every p ∈
(

[n]
2

)
, Corollary 25 gives us

dim(κp) = n− 1

for all p ∈
(

[n]
2

)
, and thus

dim(κv) = n− 1

for all v ∈ V2. This tells us that |S(v)| = 2 for all v ∈ V2.

Furthermore, for any p 6= q in
(

[n]
2

)
, we have κp 6= κq. Since ξ is a bijection, this tells us

that κv 6= κw for any v 6= w in V2. Thus S(v) 6= S(w) whenever v 6= w in V2. We have

|V1| = dim(B1) = n,

and

|V2| = dim(B2) =

(
n

2

)
,

so each possible pair of vertices in V1 appears exactly once as S(v) for some v ∈ V1. It

follows that for any w ∈ V1, |{v ∈ V2 : v 6mw}| is exactly the number of pairs of vertices

in V1 that exclude w. There are exactly
(
n−1

2

)
such pairs. This proves Claim 1.

To prove Claim 2, we begin by associating to each subset A ⊆ V2 a graph GA with

vertex set V1, and with edge set

{S(v) : v ∈ A}.

Corollary 18 implies that kA counts the number of connected components of GA. If the

connected components have sizes i1, i2, . . . , ikA , then we have

|A| ≤
(
i1
2

)
+

(
i2
2

)
+ . . .+

(
ikA
2

)
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Thus if |A| =
(
n−1

2

)
, then(

n− 1

2

)
≤
(
i1
2

)
+

(
i2
2

)
+ . . .+

(
ikA
2

)
.

Notice that for i ≥ j ≥ 1, we have(
i

2

)
+

(
j

2

)
= i(i− 1) + j(j − 1)

≤ i(i− 1) + i(j − 1)

≤ i(i− 1) + (j − 1)(j − 2) + i(j − 1)

≤
(
i

2

)
+

(
j − 1

2

)
+ i(j − 1)

=

(
i+ j − 1

2

)
,

with equality if and only if j = 1. This gives us

|A| =
(
n− 1

2

)
≤
(
n+ 1− kA

2

)
,

which implies that kA ≤ 2. If kA = 2, we have(
n− 1

2

)
≤

(
i

2

)
+

(
j

2

)
≤

(
i+ j − 1

2

)
=

(
n− 1

2

)
,

where i and j are the sizes of the two connected components of GA, with i ≥ j. The

inequality in the second line is an equality if and only if j = 1. Thus when |A| =
(
n−1

2

)
and kA > 1, GA consists of one isolated vertex w, together with the complete graph on

V1 \ {w}. Thus A is exactly the collection of vertices {v ∈ V2 : v 6mw}, which proves

Claim 2.

Now we are prepared to prove the theorem. For each i ∈ [n], let Ai =
(

[n]\{i}
2

)
, and

let Ai = ξ(Ai). Since κAi = κAi , we have kAi = kAi = 2. Since |Ai| = |Ai| =(
n−1

2

)
, Claim 2 tells us that for each i ∈ [n], there exists a unique wi ∈ V1 such that

Ai = {v ∈ V2 : v 6m wi}. We define our function ξ′ : 2[n] → Γ so that

ξ′(p) =


∗ if p = ∅

wi if p = {i}

ξ(p) else
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We wish to show that this function is an isomorphism of posets.

First, notice that for i 6= j, we have κAi 6= κAj . This implies that Ai 6= Aj , and so

wi 6= wj . Thus ξ′ is a bijection.

To show that ξ′ preserves order, we must show that whenever i ∈ [n] and p ∈
(

[n]
2

)
, we

have wilξ′(p) if and only if i ∈ p. If i ∈ p, then ξ′(p) /∈ Ai. Since Ai = {v ∈ V2 : v 6mwi},

it follows that wi l ξ′(p). Conversely, if i /∈ p, then ξ′(p) ∈ Ai, and so wi 6lξ′(p). It

follows that ξ′ is an isomorphism of partially ordered sets, and so Γ ∼= 2[n].

5.3 Subspaces of a Finite-Dimensional Vector Space over Fq

Proposition 36. Let X be an n-dimensional vector space over Fq, the finite field of

order q, and let PX be the set of subspaces of X, partially ordered by inclusion. Let Γ

be another uniform layered graph with Γ) ∼B PX . Then Γ and PX are isomorphic as

layered graphs.

Proof. The case where n ≤ 2 is trivial, so we will assume that n ≥ 3. We will use

Pi to denote the collection of i-dimensional subspaces of X. Let Γ = (V0 ∪ V1 ∪ . . . ∪

Vn, E) be a uniform layered graph with unique minimal vertex such that there exists

an isomorphism from B(PX) to B(Γ). Once again we will equate the vertices in B(PX)

with their images in B(Γ), and we will define ξi as in the proof of Theorem 33. Again

our poset PX is a finite atomic lattice, so the map

ξ : (PX)≥2 → Γ≥2

is an isomorphism of posets. Again we are looking for an extension ξ′ of ξ that is an iso-

morphism from our whole poset PX to Γ. Our proof will mirror that of Proposition 35,

and we will make use of the following two facts:

Claim 1: For every w ∈ V1, we have

|{v ∈ V2 : v 6mw}| = (qn − q2)(qn−1 − 1)

(q − 1)(q2 − 1)
.
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Claim 2: For every A ∈ V2 with

|A| = (qn − q2)(qn−1 − 1)

(q − 1)(q2 − 1)
,

we have kA > 1 if and only if there exists w ∈ V1 with A = {v ∈ V2 : v 6mw}.

We begin by proving Claim 1. We know that P2 consists of (qn−1)(qn−1−1)
(q−1)(q2−1)

planes. It

follows that V2 consists of (qn−1)(qn−1−1)
(q−1)(q2−1)

vertices. If we wish to show that

|{v ∈ V2 : v 6mw}| = (qn − q2)(qn−1 − 1)

(q − 1)(q2 − 1)
,

it will suffice to show that

|{v ∈ V2 : v m w}| = (qn − 1)(qn−1 − 1)

(q − 1)(q2 − 1)
− (qn − q2)(qn−1 − 1)

(q − 1)(q2 − 1)
=

(qn−1 − 1)

(q − 1)

Let v, v′ ∈ V2 with v 6= v′. Since ξ is a bijection, we have ξ−1(v) 6= ξ−1(v′). Since two

planes intersect in a unique line, we have

|I({ξ−1(v), ξ−1(v′)})| = 1.

By Proposition 26, this means that

dim(Bn)− k{ξ−1(v)} − k{ξ−1(v′)} + k{ξ−1(v),ξ−1(v′)} + 1 = 1

Since kA = kξ(A) for any A ⊆ P2, this gives us

dim(Bn)− k{v} − k{v′} + k{v,v′} + 1 = 1,

and another application of Proposition 26 gives us

I({v, v′}) ≤ 1

for any v 6= v′. Each plane in P2 contains q+ 1 lines. It follows that each vertex v ∈ V2

satisfies |S(v)| = q + 1. Thus if we have w ∈ V1 such that

|{v ∈ V2 : v m w}| > (qn−1 − 1)

(q − 1)
,

then there must exist at least

q

(
qn−1 − 1

q − 1
+ 1

)
+ 1 =

qn + q2 − q − 1

q − 1
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distinct vertices in V1. However, we know that

|V1| =
qn − 1

q − 1
<
qn + q2 − q − 1

q − 1
,

so it follows that

|{v ∈ V2 : v m w}| ≤ (qn−1 − 1)

(q − 1)

for all w ∈ V1. We have

∑
w∈V1

|{v ∈ V2 : v m w}| = (q + 1)|V2|

= (q + 1)

(
(qn − 1)(qn−1 − 1)

(q − 1)(q2 − 1)

)
=

(
(qn − 1)

(q − 1)

)(
(qn−1 − 1)

(q − 1)

)
= |V1|

(
(qn−1 − 1)

(q − 1)

)
It follows that

|{v ∈ V2 : v m w}| = (qn−1 − 1)

(q − 1)

for each w ∈ V1, and Claim 1 is proved.

We know that any two planes in P2 intersect in exactly one line. Thus for any A ⊆ P2,

we have

κA = span

 ∑
l∈S(A )

l

 ∪ {w ∈ V1 : w /∈ S(A )}

 ,

and thus dim(κA ) = |P1| − |S(A )| + 1 for all A ⊆ P2. In particular, when |A | =

(qn−q2)(qn−1−1)
(q−1)(q2−1)

, we have kA > 1 if and only if A is the collection of planes which do

not contain a particular line l. There are (qn−1)
(q−1) such subsets. This means that there

are exactly (qn−1)
(q−1) subsets A ⊆ V2 with |A| = (qn−q2)(qn−1−1)

(q−1)(q2−1)
and kA > 1. Since there

are |V1| = (qn−1)
(q−1) subsets of the form {v ∈ V1 : v 6mw} for some w ∈ V1, this must be

the complete list of subsets A ⊆ V2 with |A| = (qn−q2)(qn−1−1)
(q−1)(q2−1)

and kA > 1. This proves

Claim 2.

Now we can construct our extension ξ′. For each point p ∈ P1, define Ap to be the

collection of lines in P2 which do not contain p, and let Ap = ξ(Ap). Since κAp = κAp , we
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have kAp = 2, and thus there exists a unique wp ∈ V1 such that Ap = {v ∈ V2 : v 6mwp}.

We define our function ξ′ : PX → Γ as follows:

ξ′(x) =


∗ if x = ∅

wx if x ∈ P1

ξ(x) else

Since κAp 6= κAq whenever p 6= q in P1, we know that ξ′(p) 6= ξ′(q), and thus ξ′ is a

bijection.

All that remains is to show that for p ∈ P1 and l ∈ P2, we have wp l ξ′(l) if and only

if p ∈ l. If p ∈ l, then ξ′(l) /∈ Ap, and since Ap = {v ∈ V2 : v 6mwp}, it follows that

wp l ξ′(l). Conversely, if p /∈ l, then ξ′(l) ∈ Ap, and so wp 6lξ′(p). It follows that ξ′ is

an isomorphism of partially ordered sets, and that Γ ∼= PX .
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Chapter 6

Two-Layered Graphs

We will call the layered graph Γ = {V,E} a two-layered graph if V = V0 ∪ V1 ∪ V2. It

seems reasonable to focus some attention on the collection of two-layered graphs with

unique minimal vertices, since their structure is especially simple. We will begin by

showing that if Γ is a two-layered graph with a unique minimal vertex, then Γ can be

determined up to isomorphism from the values of kA and kAA for A ⊆ V2.

6.1 Structure of Two-Layered Graphs

Proposition 37. Let Γ and Γ′ be two-layered graphs with unique minimal vertices ∗

and ∗′. If there exists a bijection φ : V2 → V ′2 such that |N(A)| = |N(φ(A))| for all

A ⊆ V2, then Γ ∼= Γ′.

Proof. Notice that the sets N(A) such that A ⊆ V2 form a partition of V1, and that

the sets N(φ(A)) such that A ⊆ V2 form a partition of V ′1 . Since |N(A)| = |N(φ(A))|

for all A ⊆ V2, there must exist a bijection

ψ : V → V ′

satisfying the following three conditions:

i) ψ(∗) = ∗′

ii) ψ(v) = φ(v) for all v ∈ V2

iii) ψ(w) ∈ N(φ(A)) = N(ψ(A)) if and only if w ∈ N(A).

We claim that ψ is a graph isomorphism from Γ to Γ′.
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Let (x, y) be an edge in Γ. If x ∈ V1 and y = ∗, then (ψ(x), ψ(y)) is clearly an edge in Γ′.

If x ∈ V2 and y ∈ V1, then y ∈ N(A) for some A containing x. Thus ψ(y) ∈ (N(ψ(A)),

and ψ(x) ∈ ψ(A), so (ψ(x), ψ(y)) is an edge in Γ′.

Let (ψ(x), ψ(y)) be an edge in Γ′. If ψ(x) ∈ V ′1 and ψ(y) = ∗′, then x ∈ V1 and y = ∗,

so (x, y) is clearly an edge in Γ. If ψ(x) ∈ V ′2 and ψ(y) ∈ V ′1 , then ψ(y) in N(ψ(A)) for

some A containing X. This means that y ∈ N(A), so (x, y) is an edge in Γ.

In fact, we have the following stronger statement:

Proposition 38. Given a set V and a function N : P(V )→ N, we can construct a two-

layered graph Γ such that V is the set of vertices in the second layer, and |N(A)| = N(A)

for any A ⊆ V . This graph is unique up to isomorphism.

Proof. Let V2 = V . For each A ⊆ V2, define a set n(A) such that |n(A)| = N(A). Let

V1 =
⋃
n(A), and for v ∈ V2, w ∈ n(A), let v m w if and only if v ∈ A. Set w m ∗ if

and only if w ∈ V1. Then n(A) = N(A) for all A ⊆ V2, so |N(A)| = N(A). Uniqueness

follows from Proposition 37.

This means that a two-layered graph Γ can be given by the ordered pair (V,E), where

V is the collection of vertices and E is the collection of edges, or by the ordered pair

(V2,N), where V2 is the collection of top-level vertices, and N : P(V2)→ N.

6.2 Blueprints For Two-Layered Graphs

Propositions 15 and 37 give us the following corollary:

Corollary 39. Let Γ and Γ′ be two-layered graphs with unique minimal vertices ∗ and

∗′. If there exists a bijection φ : V2 → V ′2 such that kA = kφ(A) and kAA = k
φ(A)
φ(A) for all

A ⊆ V2, then Γ ∼= Γ′.
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Recall that kAA represents the number of equivalence classes of S(A) under the rela-

tion ∼A. Equivalently, we could consider the graph G = (V2, E∼), where

E∼ = {{v, v′} : S(v) ∩ S(v′) 6= ∅}

Then kAA is the number of components of the induced subgraph on A. Clearly, the kAA

will be entirely determined by the values of k
{x,y}
{x,y} for x 6= y ∈ Vn.

Thus complete information about a two-layered graph Γ can be given by the ordered

triple (V2, E∼,k), where k : P(V2)→ N is the function given by k(A) = kA.

Definition 19. We call an arbitrary triple of the form (V, , E∼,k) with V a set, E∼ a

collection of two-element subsets of V , and k : P(V2)→ N a blueprint.

Definition 20. Given such blueprint (V,E∼, k), and a subset A ⊂ V , we define the

following:

i) (kβ)A = k(A)

ii) (kβ)AA is the number of connected components of the subgraph of (V,E∼) induced

by A.

iii) Sβ(A) = (kβ)∅ − (kβ)A + (kβ)AA

iv) Iβ(A) =
∑

B⊆A(−1)|B|
(

(kβ)B − (kβ)BB

)
v) Nβ(A) =

∑
B⊇A(−1)|B|−|A|

(
(kβ)B − (kβ)BB

)
When there is no chance of ambiguity, we will drop the β in the subscript.

Definition 21. We say that a blueprint β = (V,E∼,k) is graph-inducing if N(A) ≥ 0

for all A ⊆ V , since we can construct a two-layered graph by taking (V,N). We call

this the graph induced by β.

Definition 22. We call a blueprint β = (V,E∼,k) valid if there exists a two-layered

graph Γ = (V0 ∪ V1 ∪ V2, E) and a bijection φ : V2 → V such that k(φ(A)) = kA for all

A ⊆ V2, and {φ(x), φ(y)} ∈ E∼ if and only if S(x) ∩ S(y) 6= ∅.

In this case, Γ is isomorphic to the graph induced by β, and we say that β validly

induces Γ.
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Proposition 40. Let Γ be a layered graph, validly induced by a blueprint β = (V,E∼,k).

If we identify the the second layer of vertices in Γ with V , we have

i) (kβ)A = kA

ii) (kβ)AA = kAA

iii) Sβ(A) = |S(A)|

iv) For nonempty A, Iβ(A) = |I(A)|

v) N(A) = |N(A)|

Proof. All of this is clear from the definitions.

Valid blueprints must satisfy certain properties. Clearly if β is valid, then it is also

graph-inducing, and the values of the five functions described above must all be positive.

In addition, we have the following:

Proposition 41. If β = (V,E∼, k) is valid, then k(A) ≥ k(B) whenever A ⊆ B.

Proof. Let Γ be the graph induced by β. Then k(A) = kA, and k(B) = kB. It is clear

from the definition of kA and kB that whenever A ⊆ B, kA ≥ kB.

Proposition 42. Let β be a valid blueprint. If

(kβ)∅ − (kβ){x} − (kβ){y} + (kβ){x,y} > 0,

then (kβ)
{x,y}
{x,y} = 1.

Proof. Since β is valid, (kβ)
{x,y}
{x,y} = 1 if and only if I({x, y}) 6= ∅. We have

I({x, y}) =
(

(kβ)∅ − (kβ)∅∅

)
−
(

(kβ){x} − (kβ)
{x}
{x}

)
−
(

(kβ){y} − (kβ)
{y}
{y}

)
+
(

(kβ){x,y} − (kβ)
{x,y}
{x,y}

)
= (kβ)∅ −

(
(kβ){x} − 1

)
−
(
(kβ){y} − 1

)
+
(

(kβ){x,y} − (kβ)
{x,y}
{x,y}

)
=

(
(kβ)∅ − (kβ){x} − (kβ){y} + (kβ){x,y}

)
+ 2− (kβ)

{x,y}
{x,y}

If (kβ)∅ − (kβ){x} − (kβ){y} + (kβ){x,y} > 0, then

I({x, y}) ≥ 3− (kβ)
{x,y}
{x,y},
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and since (kβ)
{x,y}
{x,y} ∈ {1, 2}, this means

I({x, y}) ≥ 1,

and so (kβ)
{x,y}
{x,y} = 1.

6.3 Removing Edges from Blueprints

If two graphs Γ and Γ′ have the same blueprint, then they are isomorphic, and so clearly

B(Γ) = B(Γ′). We also know that given just the algebra B(Γ) of a particular graph Γ,

we can find an upper vertex-like basis L for V2, so we have a bijection φ : V2 → L with

k(A) = kφ(A) for any A ⊆ V2. This means that the only piece of the blueprint for Γ

that is not necessarily recoverable from B(Γ) is E∼.

Definition 23. If β = (V,E∼,k) is a blueprint and x, y ∈ V , with x 6= y, we define

β \ {x, y} = (V,E∼ \ {x, y},k)

We ask the question: If β = (V,E∼,k) is a valid blueprint and {x, y} ∈ E∼, under

what circumstances is β \ {x, y} a valid blueprint? And how are the algebras of the

corresponding graphs related?

We can identify some situations in which β \{x, y} cannot be a valid blueprint. A fairly

simple one is the following:

Proposition 43. If β = {V,E∼, k} is a valid blueprint with Iβ({x, y}) ≥ 2 for some

x, y ∈ V , then β \ {x, y} is not a valid blueprint.

Proof. We know that

Iβ\{x,y}({x, y}) =
(

(kβ)∅ − (kβ)∅∅

)
−
(

(kβ){x} − (kβ)
{x}
{x}

)
−
(

(kβ){y} − (kβ)
{y}
{y}

)
+
(

(kβ){x,y} − (kβ)
{x,y}
{x,y}

)
= (kβ)∅ −

(
(kβ){x} − 1

)
−
(
(kβ){y} − 1

)
+
(
(kβ){x,y} − 1

)
,
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and that

Iβ\{x,y}({x, y}) =
(

(kβ\{x,y})∅ − (kβ\{x,y})
∅
∅

)
−
(

(kβ\{x,y}){x} − (kβ\{x,y})
{x}
{x}

)
−
(

(kβ\{x,y}){y} − (kβ\{x,y})
{y}
{y}

)
+
(

(kβ\{x,y}){x,y} − (kβ\{x,y})
{x,y}
{x,y}

)
= (kβ)∅ −

(
(kβ){x} − 1

)
−
(
(kβ){y} − 1

)
+
(
(kβ){x,y} − 2

)

It follows that Iβ\{x,y} > 0. If β \ {x, y} were valid, it would follow that {x, y} ∈

E∼ \ {x, y}. Clearly this is not the case, and so we conclude that β \ {x, y} is not a

valid blueprint.

Other situations in which β \ {x, y} cannot be a valid blueprint involve cycles in the

graph (V,E∼). For instance, if this graph includes a triangle with vertices, x, y, and z,

such that I(x, y, z) = ∅ in the graph induced by β, then β \ {x, y} will not be valid.

Proposition 44. Let β = {V,E∼, k} be a valid blueprint, and let x, y, z ∈ V . If({x,y,z}
2

)
⊆ E∼ and I({x, y, z}) = ∅, then β \ {x, y} is not a valid blueprint.

Proof. Let I = Iβ, k = kβ, and I′ = Iβ\{x,y}, k
′ = kβ\{x,y}. Then

I′({x, y, z})− I({x, y, z}) =

 ∑
B⊆{x,y,z}

(−1)|B|
(
(k′)B − (k′)BB

)
−

 ∑
B⊆{x,y,z}

(−1)|B|
(
kB − kBB

)
We know that I({x, y, z}) = 0, and that (k′)A = kA for any A ⊆ V , so this gives us

I′ ({x, y, z}) =
∑

B⊆{x,y,z}

(−1)|B|
(
kBB − (k′)BB

)
=

(
k∅∅ − (k′)∅∅

)
−
(
k
{x}
{x} − (k′)

{x}
{x}

)
−
(
k
{y}
{y} − (k′)

{y}
{y}

)
−
(
k
{z}
{z} − (k′)

{z}
{z}

)
+
(
k
{x,y}
{x,y} − (k′)

{x,y}
{x,y}

)
+
(
k
{x,z}
{x,z} − (k′)

{x,z}
{x,z}

)
+
(
k
{y,z}
{y,z} − (k′)

{y,z}
{y,z}

)
−
(
k
{x,y,z}
{x,y,z} − (k′)

{x,y,z}
{x,y,z}

)
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All of these values are easy to calculate, and we find that

I({x, y, z}) = −1

If β \ {x, y} were a valid blueprint, then all values of I′ would be non-negative, so we

can conclude that β \ {x, y} is not valid.

We can also show that if (V,E∼) contains as an induced subraph a cycle of length

greater than 3, the removal of any of the edges of the cycle will result in an invalid

blueprint.

Proposition 45. Let β = {V,E∼, k} be a valid blueprint. Suppose there exist x, y, and

x1, . . . xn with n ≥ 2 such that the collection of edges in the subgraph of (V,E∼) induced

by {x, x1, . . . , xn, y} is

{{x, y}, {x, x1}, {x1, x2}, . . . , {xn−1, xn}, {xn, y}}

Then β \ {x, y} is not a valid blueprint.

To show this it will be useful to have the following:

Lemma 46. If β = (V,E∼, k) is a valid blueprint, and A ⊆ V , then

β|A =

(
A,E∼ ∩

(
A

2

)
, k|P(A)

)
is also valid.

Proof. Let β = (V2, E∼,k), and let Γ = (V0 ∪ V1 ∪ V2, E) be a graph induced by β. For

A ⊆ V2, define Γ′ to be the subgraph of Γ induced by the set of vertices V0 ∪ V1 ∪ A.

We claim that β|A induces Γ′.

Let φ : A→ A be the identity map. Clearly for any B ⊆ A we have

kB = k(B) = k|A(B),

and for any x 6= y ∈ A,

{φ(x), φ(y)} = {x, y} ∈ E∼ ∩
(
A

2

)
if and only if {x, y} ∈ E∼, which is true if and only if S(x) ∩ S(y) 6= ∅. Thus β|A is a

valid blueprint, inducing Γ′.
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Now we can prove Proposition 45.

Proof of Proposition 45. Let β = {V,E∼,k} be a valid blueprint. By Lemma 46, we

may assume that

V = {x, x1, . . . , xn, y}

and that

E∼ = {{x, y}, {x, x1}, {x1, x2}, . . . , {xn−1, xn}, {xn, y}}

Let N = Nβ, k = kβ, N′ = Nβ\{x,y}, and k′ = kβ\{x,y}. We have

N(V )−N′(V ) =
∑
B⊆V

(−1)|B|
(
(k′)BB − kBB

)
We know that N(V ) = 0, and that

(k′)BB − kBB =

 1 if {x, y} ⊆ B 6= V

0 else

Thus we have

−N′(V ) =
∑

{x,y}⊆B 6=V

(−1)|B|

=
n−1∑
i=0

(−1)i
(
n

i

)
= (−1)n+1,

so

N′(V ) = (−1)n

If n is odd, then β \ {x, y}, is not graph inducing, and so clearly cannot be valid. If n

is even, then the graph induced by β \ {x, y} must have a vertex in N(V ). This implies

that S(x) ∩ S(x2) 6= ∅, but we have {x, x2} /∈ (E∼ \ {x, y}). Thus β \ {x, y} cannot be

valid.

Suppose β and β \ {x, y} are both valid blueprints. What can we say about the graphs

that they induce? What about the algebras associated to those graphs?
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Proposition 47. Suppose β = (V,E∼, k), and β\{x, y} are both valid blueprints. Then

there exists exactly one set A ⊆ (V \ {x, y}) such that

Nβ({x, y} ∪A) = 1

For all other B ⊆ (V \ {x, y}), we have

Nβ({x, y} ∪B) = 0

Furthermore, for any B ∈ V , we have

Nβ\{x,y}(B) =


Nβ(B)− 1 if B = ({x, y} ∪A) or B = A

Nβ(B) + 1 if B = ({x} ∪A) or B = ({y} ∪A)

Nβ(B) else

Proof. For ease of notation, we will let k = kβ, and k′ = kβ\{x,y} for the duration of

this proof.

We will begin by establishing the existence and uniqueness of the set A. Let Γ =

({∗} ∪ V1 ∪ V,E) be the graph induced by β. Since {x, y} ∈ E∼, there exists some

vertex w ∈ V1 such that xm w and y m w. If we take

A = {v ∈ V : v m w},

then we have Nβ(A) ≥ 1.

If there were another set B ⊆ V \ {x, y}

Nβ({x, y} ∪B) ≥ 1,

or if we had any set A ⊆ (V \ {x, y}) with

Nβ({x, y} ∪A) > 1,

then there would exist at least two vertices w and w′ in V1 which were covered by both

x and y. Thus we would get Iβ({x, y}) ≥ 2. However by Proposition 43, this would

imply that β \ {x, y} is not a valid blueprint. It follows that Nβ(A) = 1, and that for

any other B ⊆ (V \ {x, y}), Nβ(B) = 0.
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It remains to show that the values of Nβ\{x,y} listed above are correct. Clearly, kBB =

(k′)BB unless {x, y} ⊆ B. Since N(A ∪ {x, y}) = 1, we know that there exists some

w ∈ V1 such that vmw for every v ∈ A. It follows that the subgraph of (V,E∼) induced

by A is the complete graph on A. This means that if {x, y} ⊆ B and there exists

z ∈ A ∩B, then kBB = (k′)BB.

We claim that if {x, y} ⊆ B and A ∩ B = ∅, then (k′)BB = kBB + 1. To prove

this, we need to show that x and y are in two different connected components of(
B, (E∼ \ {{x, y}}) ∩

(
B
2

))
, the subgraph of (V,E∼ \ {{x, y}}) induced by B. Clearly

there is no edge from x to y. If there exists z ∈ B such that {x, z} and {z, y} are both

in E∼, then the graph induced by β has a triangle on the vertices x, y, and z. Since

z /∈ A, then the vertex shared by x and y is not shared by z, so I({x, y, z}) = 0. But

this would imply that β \ {x, y} is not valid by Proposition 44.

Thus if there is a path from x to y in
(
B,E∼ ∩

(
B
2

))
, it must have length greater

than two. Let (x, x1, . . . , xn, y) be a minimal such path. Then the subgraph of (V,E∼)

induced by these vertices is a cycle of length greater than three. This again would imply

that β \ {x, y} is not valid, by Proposition 45.

Thus it must be the case that if {x, y} ⊆ B and A ∩ B = ∅, then x and y are in two

different connected components of
(
B,E∼ ∩

(
B
2

))
, and thus (k′)BB = kBB + 1.

We have

Nβ(C)−Nβ\{x,y}(C) =
∑
B⊇C

(−1)|B|−|C|
(
(k′)BB − kBB

)
,

and we have established that

(k′)BB − kBB =

 1 if {x, y} ⊆ B and A ∩B = ∅

0 else

It follows that

Nβ(C)−Nβ\{x,y}(C) =
∑

B⊇(C∪{x,y})
B∩A=∅

(−1)|B|−|C|

If A 6⊆ C, then the set {B : C ⊆ B and B ∩A = ∅} = ∅, so

Nβ(C)−Nβ\{x,y}(C) = 0
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If A ⊆ C and C ∩ (A ∪ {x, y}) 6= ∅, then

Nβ(C)−Nβ\{x,y}(C) =

|A|−|C\{x,y}|∑
i=0

(−1)i
(∣∣A∣∣− ∣∣C \ {x, y}∣∣

i

)
= 0,

since
∣∣A∣∣− ∣∣C \ {x, y}∣∣ > 0.

Thus we have proved our result for all but the four exceptional cases, all of which are

easy:

Nβ(A ∪ {x, y})−Nβ\{x,y}(A ∪ {x, y}) =
∑
B⊇A
B∩A=∅

(−1)|B|−|A+2| = 1

Nβ(A ∪ {x})−Nβ\{x,y}(A ∪ {x}) =
∑
B⊇A
B∩A=∅

(−1)|B|−|A+1| = −1

Nβ(A ∪ {y})−Nβ\{x,y}(A ∪ {y}) =
∑
B⊇A
B∩A=∅

(−1)|B|−|A+1| = −1

Nβ(A)−Nβ\{x,y}(A) =
∑
B⊇A
B∩A=∅

(−1)|B|−|A| = 1

Finally we can state exactly when, for a given valid blueprint β, β \ {x, y} is also valid:

Theorem 48. Let β = {V,E∼, k) be a valid blueprint, and let {x, y} ∈ E∼. Then

β \ {x, y} is a valid blueprint if and only if

i. Whenever
({x,y,z}

2

)
⊆ E∼, I({x, y, z}) > 0.

ii. For any n > 1 distinct x1, . . . , xn, not equal to x or y, the subgraph of (V,E∼)

induced by x, y, x1, . . . , xn is not a cycle.

iii. There exists a unique A ⊆ (V \ {x, y}) such that Nβ(A ∪ {x, y}) = 1. For all

other sets B ⊆ (V \ {x, y}), we have Nβ(A ∪ {x, y}) = 0.

iv. Nβ(A) > 0.

Proof. We have already shown that all of these conditions are necessary. We would like

to show that they are sufficient. Let β = (V2, E∼,k) be a blueprint satisfying all of
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these conditions. Let Γ = (V0 ∪ V1 ∪ V2, E) be the graph induced by β. By condition

iii, there exists a unique vertex w ∈ V1 such that w l x and w l y. Then

A = {v ∈ V2 | v m w} \ {x, y}

By condition iv, there exists at least one vertex w′ ∈ N(A). We delete the edge (x,w)

and replace it with the edge (x,w′) to obtain a new graph Γ′ = (V0 ∪ V1 ∪ V2, E
′). We

wish to show that β \ {x, y} is valid, inducing Γ′.

We will need to distinguish the k, N and S functions associated to Γ from those asso-

ciated to Γ′, so we will use k′, N ′, and S′ for the latter.

Our bijection from V2 to V2 will be the identity. We need to show that k(B) = (k′)B

for all B ⊆ V2, and that {a, b} ∈ (E∼ \ {x, y}) if and only if S′(a) ∩ S′(b) 6= ∅.

We know that k(B) = kB. Thus we need to show that (k′)B = kB for all B ∈ V2.

Case 1: If x /∈ B, then clearly (k′)B = kB.

Case 2: If x ∈ B and there exists z ∈ B ∩ A, then we have z m w and z m w′, so

S′(B) = S(B). If y ∈ B, then there exists a path from y to x through z, so (k′)BB = kBB .

If y is not in B, then (k′)BB = kBB trivially. In either case, we have

|S(B)| − |S′(B)| = k∅ − kB + kBB − (k′)∅ + (k′)B − (k′)BB

and so

0 = (k′)B − kB

Case 3: If x ∈ B, B ∩ A = ∅, and y /∈ B, then no element of B other that x covers

w or w′. Thus S′(B) = (S(B) \ {w}) ∪ {w}, and |S′(B)| = |S(B)|. Again (k′)BB = kBB

trivially, so we get (k′)B = kB as above.

Case 4: If x ∈ B, B∩A = ∅, and y ∈ B, then in Γ, both x and y cover w, and no element

of B covers w′. In Γ′, only y covers w, and now x covers w′, so S′(B) = S(B)∪{w′}, and

|S′(B)| = |S(B)|+ 1. Since B∩A = ∅, we know that x and y are in different connected

components of the subgraph of (V2, E∼ \ {x, y}) induced by B. Thus (k′)BB = kBB + 1,

and we get (k′)B = kB, as above.
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So we have established that (k′)B = kB for all B ⊆ V2. Now we must show that

{a, b} ∈ (E∼ \ {x, y}) if and only if S′(a) ∩ S′(b) 6= ∅. This is clearly true unless one

of the vertices is x, and we have a situation where S(x) ∩ S(t) = {w} for some vertex

t 6= y. However, if this is the case, then t ∈ A, and so tmw′, so S′(x)∩S′(t) = w′. This

gives us our result.

6.4 Nonisomorphic Graphs With Isomorphic Algebras

Theorem 49. Let β = (V2, E∼, k) be a valid blueprint such that β \{x, y} is also valid.

Let Γ = (V0 ∪ V1 ∪ V2, E) be the graph induced by β, and let Γ′ be the graph induced by

β \ {x, y}. Then B(Γ) ∼= B(Γ′).

Proof. According to Theorem 48, we may assume without loss of generality that Γ′ =

(V0 ∪V1 ∪V2, E
′), where E′ = E \ (x,w)∪ (x,w′), where w and w′ are defined as above.

We will need to distinguish between κv when v is being considered as a vertex of Γ,

and when it is being used as a vertex of Γ′, so we will use κ(v) for the former and κ′(v)

for the latter. Similarly, we define S to be the S-function associated to Γ, and S′ to

be the S-function associated to Γ′. We will find it useful to use the following notation:

Sx = S(x) \ w, and Sy = S(y) \ w.

We define a set

T =
(
{u ∈ V1 : u ∈ S(v) for some v with S(v) ∩ S(x) 6= ∅} \ {w,w′}

)
We define an isomorphism φ : T (V+)→ T (V+) such that φ fixes V1 \ {w,w′}, and

φ(w) = w −
∑
u∈T

u

φ(w′) = w +
∑
u∈T

u

We wish to show that φ induces an isomorphism ψ : B(Γ) → B(Γ′). This will be the

case if φ(κ(v)) = κ′(v) for all v ∈ V2.
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We have

κ(x) = span

S(x) ∪

 ∑
u∈S(x)

u


 ,

so

φ(κ(x)) = span

(S(x) \ {w′}
)
∪

{
w′ +

∑
u∈T

u

}
∪

 ∑
u∈S(x)

u−
∑
u∈T

u




Since Sx ⊆ T , this gives us

φ(κ(x)) = span

(S(x) \ {w′}
)
∪

{
w′ +

∑
u∈T

u

}
∪

w − ∑
u∈(T \Sx

u


 ,

and since (T \ Sx) ⊆
(
S(x) \ {w′}

)
, this means that

φ(κ(x)) = span

((
S(x) \ {w′}

)
∪

{
w′ +

∑
u∈Sx

u

}
∪ {w}

)

= span

S′(x) ∪

 ∑
u∈S′(x)

u




= κ′(x)

Thus the condition holds for x. We also have

κ(y) = span

S(y) ∪

 ∑
u∈S(y)

u




Since w′ ∈ N(A), we know that w′ /∈ S(y). Therefore,

φ(κ(y)) = span

(S(y) \ {w′}
)
∪

{
w′ +

∑
u∈T

u

}
∪

 ∑
u∈S(y)

u−
∑
u∈T

u




Notice that S(y) ∩T = ∅. Thus T ⊂
(
S(y) \ {w′}

)
, and so

φ(κ(y)) = span

(S(y) \ {w′}
)
∪ {w′} ∪

 ∑
u∈S(y)

u




= span

S(y) ∪

 ∑
u∈S(y)

u




= κ′(y)

Thus the condition holds for y. Now take an arbitrary v ∈ (V2 \ {x, y}).
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Case 1: S(v) ∩ S(x) = ∅. In this case S(v) ∩T = ∅, and {w,w′} ⊆ S(v), so

φ(κ(v)) = span

((
S(v) \ {w,w′}

)
∪

{
w −

∑
u∈T

u

}
{
w′ +

∑
u∈T

u

}
∪

 ∑
u∈S(v)

u




= span

(S(v) \ {w,w′}
)
∪
{
w,w′

}
∪

 ∑
u∈S(v)

u




= span

S(v) ∪

 ∑
u∈S(v)

u




= κ′(v)

Case 2: v ∈ A. In this case, both w and w′ are in S(v), so the
∑

u∈T u terms cancel

easily, and φ(κ(v)) = κ′(v) with no additional work.

Case 3: v /∈ A, and S(v) ∩ S(x) 6= ∅. In this case, we have S(v) ⊆ T , so

φ(κ(v)) = span

((
S(v) \ {w,w′}

)
∪

{
w −

∑
u∈T

u

}
{
w′ +

∑
u∈T

u

}
∪

 ∑
u∈S(v)

u




= span

(S(v) \ {w,w′}
)
∪

w − ∑
u∈(T \S(v))

u

w′ + ∑
u∈(T \S(v))

u

 ∪
 ∑
u∈S(v)

u


 ,

And since (T \ S(v)) ⊆
(
S(v) \ {w,w′}

)
, this gives us

φ(κ(v)) = span

(S(v) \ {w,w′}
)
∪
{
w,w′

}
∪

 ∑
u∈S(v)

u




= span

S(v) ∪

 ∑
u∈S(v)

u




= κ′(v)



61



62

Chapter 7

Hilbert Series and Graded Trace Generating Functions of

Direct Products of Posets

As we stated before, the algebra A(Γ) has a natural graded structure inherited from

T (E). In this chapter, we will explore the Hilbert series and graded trace generating

functions of A(Γ) for several important classes of layered graphs. Some background on

incidence algebras and generalized layered graphs will be useful for this discussion.

7.1 Incidence Algebras and the Möbius Function

Let P be a locally-finite poset. That is to say, for any p, q ∈ P , the set {r : p ≤ r ≤ q}

is finite. Fix a field F . The incidence algebra I(P ) of P is the set of functions

f : P × P → F

satisfying f(p, q) = 0 whenever p 6≤ q in P . Addition is given by

(f + g)(p, q) = f(p, q) + g(p, q),

and multiplication is given by

(fg)(p, q) =
∑
p≤r≤q

f(p, r)g(r, q).

If we define VP to be a vector space over F with basis P , then each f ∈ I(P ) extends

uniquely to a linear map

f ′ : VP ⊗F VP → F
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given by setting f ′(p⊗ q) = f(p, q) for any p, q ∈ P . Thus it is easy to see that I(P ) is

isomorphic to the algebra of linear maps

f ′ : VP ⊗F VP → F

satisfying f(p⊗ q) = 0 whenever p 6≤ q, with addition given by

(f ′ + g′)(p⊗ q) = f ′(p⊗ q) + g′(p⊗ q),

and multiplication map defined by

(f ′g′)(p⊗ q) =
∑
r∈P

f(p⊗ r)g(r ⊗ q).

Notice that since {r : p ≤ r ≤ q} is finite, this will always be a finite sum. For our

purposes, we will identify I(P ) with this algebra of linear maps.

The multiplicative identity in this algebra is the function δ given by

δ(p⊗ q) =

 1 if p = q

0 else

One combinatorially important function in I(P ) is the zeta function ζ, given by

ζ(p⊗ q) =

 1 if p ≤ q

0 else

This is invertible in I(P ). Its inverse is called the Möbius function, and denoted µ.

It can be constructed recursively by taking

µ(p⊗ p) = 1

for all p ∈ P , and

µ(p⊗ q) = −
∑
p≤r<q

µ(r ⊗ q).

In this way, we obtain

(µζ)(p⊗ p) = ζ(p⊗ p)µ(p⊗ p) = 1 = δ(p⊗ p),
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and

(µζ)(p⊗ q) =
∑
p≤r≤q

µ(p⊗ r)ζ(r ⊗ q) = µ(p⊗ q) +
∑
p≤r<q

µ(r ⊗ q) = 0 = δ(p⊗ r).

Notice that this implies that µ(p⊗ q) depends entirely on the interval [p, q], and can be

calculated without full information about the poset P .

Example: If P = 2[n], the Boolean algebra, we have

µ(p⊗ q) =

 (−1)|q|−|p| if p ≤ p

0 else

Proof. Clearly if p 6≤ q, then µ(p⊗q) = 0. If p ≤ q, then the interval [p, q] is isomorphic

to 2[|q|−|p|]. So it will suffice to show that for the lattice 2[n], we have

µ(∅ ⊗ [n]) = (−1)n.

This is clearly the case for n = 0, since µ(∅ ⊗ ∅) = 1. Using this as a base case, we can

induct on n. If the result holds for all smaller numbers, then we have

µ(∅ ⊗ [n]) = −
∑
S([n]

µ(∅ ⊗ S)

= −
n−1∑
i=0

(−1)i
(
n

i

)
= (−1)n

This gives us our result, and our proof is complete.

We wish to consider a generalization of the incidence algebra. For a locally-finite ranked

poset P and a vector space VP with basis P , we define Iz(P ) to be the set of functions

f : VP ⊗F VP → F [z]

satisfying f(p⊗q) ∈ Fz|q|−|p| for p, q ∈ P with p ≤ q in P , and f(p⊗q) = 0 for p, q ∈ P

with p 6≤ q. Iz(P ) is an algebra with addition given by

(f + g)(p⊗ q) = f(p⊗ q) + g(p⊗ q)
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and

(fg)(p⊗ q) =
∑
r∈P

f(p⊗ r)g(r ⊗ q).

This algebra has identity element δz, given by

δz(p⊗ q) =

 1 if p = q

0 else

It also has a generalized zeta function given by

ζz(p⊗ q) =

 z|q|−|p| if p = q

0 else

This generalized matrix is invertible in Iz(P ), with inverse µz given by

µz(p⊗ q) = µ(p⊗ q)z|q|−|p|

Notice that I1(P ) is the usual incidence algebra, with δ1 = δ, ζ1 = ζ, and µ1 = µ.

We will use the notation δPz , ζPz , and µPz when we wish to make the specific poset P

explicit.

For our purposes, P will be finite. In this case, each element f ∈ Iz(P ) corresponds to

a unique matrix M(f) = [fpq] with rows and columns indexed by elements of P , and

with fpq = f(p ⊗ q). Most of our concrete calculations will be done in this context,

because it reduces the calculation of µz from ζz to matrix inversion. In this context,

for v, w ∈ VP , we have

f(v ⊗ w) = vTM(f)w.

In particular, f(1⊗ 1) is the sum of the entries of M(f).

7.2 Generalized Layered Graphs

In our discussion of graded trace generating functions, it will be useful to be able to

refer to the notion of a generalized layered graph. A more thorough development of

these ideas can be found in ??.
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Definition 24. A generalized layered graph is a directed graph Γ = (V,E) such

that V = V0 ∪ V2 ∪ . . . ∪ Vn, and such that for every e ∈ E, |t(e)| > |h(e)|. We define

l(e) = |t(e)| − |h(e)| to be the length of the edge e.

An algebra A(Γ) can be constructed, generalizing the notion of the universal labeling

algebra to generalized layered graphs. The construction is presented in detail in in ??.

To each edge e, we associate l(e) generators a1(e), a2(e), . . . , al(e)(e). We take

E# = {ai(e) : e ∈ E, 1 ≤ i ≤ l(e)},

and associate a polynomial Pe ∈ T (E#)[t] to each e ∈ E, given by

Pe(t) = 1 +

l(e)∑
i=1

(−1)iai(e)t
i.

We form an ideal of relations R, generated by the relations obtained by taking any two

paths (e1, . . . , en) and (f1, . . . , fm) with t(e1) = t(f1) and h(en) = h(fm) and setting

Pe1Pe2 . . . Pen = Pf1Pf2 . . . Pfm

A(Γ) is defined to be T (E#)/R. Notice that if Γ is a layered graph, this is entirely

equivalent to the construction described in Chapter ??.

7.3 Hilbert Series and Graded Trace Functions of A(Γ)

Recall that given a graded algebra A =
⊕
Ai, the Hilbert series is the polynomial

H(A, z) =
∑
i

dim(Ai)z
i,

the generating function for the dimension of the graded pieces. A linear basis for A(P )

is calculated in [4], and in [7], it is used to calculate the Hilbert series for A(P ). The

result is given by

H(A(Γ), z) =
1− z

1− zµPz (1⊗ 1)
,

where 1 =
∑

p∈P p ∈ VP . Note that since P is finite, this is a finite sum. In ??, we see

that this formula holds for generalized layered graphs as well.
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In [1], Duffy shows that this generalization can be used to calculate the graded trace gen-

erating functions of certain automorphisms of A(P ). Any automorphism σ of a graded

algebra A =
⊕
Ai will act on each graded piece of A as a vector space automorphism.

The graded trace generating function of σ acting on A is

Trσ(A, z) =
∑
i

Tr(σ|Ai)zi

If σ′ : P → P is an automorphism of the poset P , then σ′ will induce an automorphism

σ of the algebra A(Γ). Such automorphisms fix the linear basis defined by Retakh,

Serconek, and Wilson in [4], and this means that the trace of σ on each of the graded

pieces will be equal to the number of fixed basis elements in that particular piece. If

we define P σ to be the subposet of P containing only the elements of P that are fixed

by σ′, then

Trσ(A(P ), z) =
1− z

1− zµPσz (1⊗ 1)
,

the Hilbert series of the algebra A(P σ).

7.4 Hilbert Series of Direct Products of Posets

If P and Q are ranked posets, then their direct product P ×Q is the ranked poset with

order given by

(p, q) ≥P×Q (p′, q′)

if and only if p ≤P p′ and q ≤Q q′, and rank function given by

|(p, q)|P×Q = |p|P + |q|Q.

The Hilbert series of the universal labeling algebras of direct products of posets take

on a particularly nice form:

Theorem 50. Let P and Q be finite ranked posets. Then

H(A(P ×Q), z) =
1− z

1− z (µPz (1P ⊗ 1P ))
(
µQz (1Q ⊗ 1Q)

)
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The vector space VP×Q is naturally isomorphic to VP⊗VQ, and under this isomorphism,

1P×Q maps to 1P ⊗ 1Q.

Iz(P )⊗ Iz(Q) is the collection of module maps

φ : VP ⊗ VP ⊗ VQ ⊗ VQ → F [z]

satisfying

φ(p⊗ p′ ⊗ q ⊗ q′) ∈ Fz|p′|−|p|+|q′|−|q|

whenever p ≤ p′ and q ≤ q′, and

φ(p⊗ p′ ⊗ q ⊗ q′) = 0

otherwise. This corresponds to the set of maps

φ′ : (VP ⊗ VQ)⊗ (VP ⊗ VQ)→ F [z]

satisfying

φ′((p⊗ q)⊗ (p′ ⊗ q′)) ∈ Fz|(p′,q′)|−|(p,q)|

whenever p ≤ p′ and q ≤ q′, and

φ′((p⊗ q)⊗ (p′ ⊗ q′)) = 0

otherwise. In this form, it is clear that Iz(P ) ⊗ Iz(Q) ∼= Iz(P × Q). Under this

isomorphism, ζP×Qz corresponds to ζPz ⊗ ζ
Q
z , and µP×Qz corresponds to µPz ⊗ µ

Q
z . Thus

if we identify (VP ⊗ VQ)⊗ (VP ⊗ VQ) with (VP ⊗ VP )⊗ (VQ ⊗ VQ), we find that

µP×Qz (1P×Q ⊗ 1P×Q) =
(
µPz
(
1P ⊗ 1P

)) (
µQz
(
1Q ⊗ 1Q

))
Thus we can conclude that

H(A(P ×Q), z) =
1− z

1− z (µPz (1P ⊗ 1P ))
(
µQz (1Q ⊗ 1Q)

)
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7.5 Graded Trace Functions and Direct Products

Let P be the direct product of n copies of Q, and let σ be the automorphism of P

which cyclically permutes the copies of Q in P . Then (q1, q2, . . . , qn) ∈ P is fixed by σ

if and only if q1 = q2 = . . . = qn. Thus P σ is isomorphic to Q as a poset, but with the

ranking of each element multiplied by n. For ease of notation, we will call this poset

×nQ. We have

ζ
×nQ
z = ζQ(zn)

In general, if P = Qn, there is a natural action of Sn on P , permuting the copies of Qn.

Let σ ∈ Sn with cycle decomposition σ1 . . . σr, and let ij be the length of the cycle σj .

Then P σ ∼=
(×i1Q)× . . .× (×irQ). In this case,

Trσ(A(P ), z) =
1− z

1− z
∏r
j=1 µ

Q

(zij )
(1Q ⊗ 1Q)

More generally, suppose P =
∏n
k=1Qk. Let σ be any automorphism of P which per-

mutes the copies of isomorphic Qk. Again, we can break σ into cycles σ1 . . . σr, with ij

the length of the cycle σj . Then

Trσ(A(P ), z) =
1− z

1− z
∏r
j=1 µ

(Qj)

(zij )

(
1Qj ⊗ 1Qj

)
7.6 Example 1: The Boolean Algebra

Let P = {x, y}, with x > y. The Boolean algebra 2n is a product of n copies of P . We

have

M(ζPz ) =

 1 z

0 1

 .
It follows that

M(µPz ) =

 1 −z

0 1

 ,
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and thus

µPz (1⊗ 1) = 2− z,

and so the Hilbert series of 2n is given by

H(A(P ), z) =
1− z

1− z(2− z)n

If σ is an automorphism of P permuting the n intervals, with cycle decomposition

σ1 . . . σr, with each cycle σj of length ij , then

Trσ(A(P ), z) =
1− z

1− z
∏r
j=1

(
2− zij

)
7.7 Example 2: Factors of n

If n = ps11 p
s2
2 . . . pskk for k distinct primes p1, . . . , pk, then the poset of factors of n,

ranked by number of prime factors, can be decomposed as a product of k chains of

lengths s1, s2, . . . , sk.

If P = {x1, . . . , xr}, with xi ≤ xj if and only if i ≤ j, and |xi| = i, then

M(ζPz ) =



1 t t2 · · · tr

0 1 t · · · tr−1

0 0 1 · · · tr−2

...
...

...
. . .

...

0 0 0 · · · 1


,

and so

M(µPz ) =



1 −t 0 · · · 0

0 1 −t · · · 0

0 0 1
. . .

...

...
...

...
. . . −t

0 0 0 · · · 1


It follows that

µPz (1P ⊗ 1P ) = s+ 1− sz,



71

and so the Hilbert series of the poset of factors of n is given by

H(A(P ), z) =
1− z

1− z
∏k
i=1(si + 1− siz)

If σ is an automorphism of P permuting the chains of the same length, with cycle

decomposition σ1 . . . σr with each cycle σj of length ij permuting cycles with length rj ,

then

Trσ(A(P ), z) =
1− z∏r

j=1

(
sj + 1− sjzij

)
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Chapter 8

Some Results for Young Lattices

Definition 25. The Young lattice, denoted Y , consists of all nonincreasing inte-

ger sequences (λ1, λ2, λ3, . . .) with only finitely many nonzero entries. Given λ =

(λ1, λ2, λ3, . . .) and γ = (γ1, γ2, γ3, . . .) in Y , we define λ ≥ γ if and only if λi ≥ γi

for all i.

It is often convenient to visualize such the elements of Y using Young diagrams. The

Young diagram of an element λ = (λ1, λ2, λ3, . . .) of Y consists of a collection of boxes

arranged into rows, with λi boxes in the i’th row. For example, the Young diagram of

the sequence (4, 3, 3, 1, 0, . . .) is

Given λ = (λ1, λ2, λ3, . . .) and γ = (γ1, γ2, γ3, . . .), we have λ ≥ γ if and only if the

Young diagram for γ sits inside the Young diagram for λ. In this context it is easy to

see that Y is a lattice. The join of two elements λ ∨ γ is the union of the two Young

diagrams, and the meet λ ∧ γ is the intersection.

It is also clear that Y is a ranked poset. Given λ = (λ1, λ2, λ3, . . .), we have |λ| =∑∞
i=1 λi. The zero sequence is the unique minimal element of rank zero.

We cannot calculate Hilbert series and graded trace functions for the whole poset Y .

Since Y is an infinite poset, the number of generators of A(Γ) is also infinite, which

means that the graded pieces will not have finite dimension. This means that in order
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to calculate Hilbert series and graded trace functions, some reasonable finite sublattice

of Y must be considered.

In this chapter, we will focus on the sublattice Ym×n ⊆ Y consisting of all elements of

Y whose Young diagrams have at most m rows, with at most n blocks in each row.

That is, Ym×n consists of sequences λ = (λi)
∞
i=1 such that λi = 0 for all i > m, and

λi ≤ n for all i.

This sublattice arises naturally in algebraic geometry. It is isomorphic to the lattice of

Schubert varieties in the Grassmannian G(m,n), ordered by containment.

8.1 Calculating µ on the Young Lattice

In this section, we will use the interpretation of µ as a function

µ : P × P → F,

defined recursively by

µ
(
λ, λ

)
= 1,

and

µ
(
λ, γ

)
= −

∑
λ<ξ≤γ

µ
(
ξ, γ
)
.

Definition 26. We define the relation � on Y such that for λ = (λ1, λ2, . . .) and

γ = (γ1, γ2, . . .), we have γ � λ if

(i) λ ≤ γ

(ii) Whenever λi > γi, we have λi = γi + 1 > λi+1

Notice that the above definition essentially states that γ � λ if and only if the Young

diagram for γ can be obtained from the Young diagram of λ by cutting off some subset

of its corners. So in the figure below, if the diagram on the left is the Young diagram

of λ, then the Young diagram of any γ satisfying these conditions is going to look like

the diagram on the right, with some subset of the shaded squares missing.
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γ λ

Proposition 51. Let λ, γ ∈ Y . If γ � λ, then µ(γ, λ) = (−1)|λ|−|γ|. Otherwise,

µ(γ, λ) = 0.

Proof. Suppose γ � λ. Then γ can be obtained from λ by removing some subset

of the free corners of its Young diagram. The interval [γ, λ] consists of all possible

intermediate steps. This will be isomorphic to the Boolean lattice 2[|λ|−|γ|], and thus

µ(γ, λ) = (−1)|λ|−|γ|.

Also notice that the collection of λ with λ � γ is precisely the interval
[
γ,
∨
δmγ δ

]
.

In order to obtain a contradiction, we will assume that λ is an element of Y with

minimal rank such that

i) λ ≥ γ

ii) λ 6� γ

iii) µ(γ, λ) 6= 0

Let ζ =
∨
ξ∈D ξ, where

D =

ξ ∈ Y : ξ ∈

γ,∨
δmγ

δ

 and ξ < λ


It is not difficult to see that ζ ∈ D. Thus D = [γ, ζ]. We know that

µ(γ, λ) = −
∑

γ≤δ<λ

µ(γ, δ)

Minimality of λ tells us that

µ(γ, λ) = −
∑
ξ∈D

µ(γ, ξ),

and since D is isomorphic to a Boolean lattice, it follows that µ(γ, λ) = 0, giving us

our contradiction.
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8.2 Hilbert Series

Now consider the sublattice Ym×n ⊆ Y consisting of all elements of Y whose Young

diagrams have at most m rows, with at most n blocks in each row. That is, Ym×n

consists of sequences λ = (λi)
∞
i=1 such that λi = 0 for all i > m, and λi ≤ n for all i.

Fact 1. The Hilbert series h(z) for A(Ym×n) is given by

1− z
1−

∑
k≥0

(
m
k

)(
n
k

)
(1− z)k

Proof. Recall that for any poset P , the Hilbert series for A(P ) is given by

h(z) =
1− z

1− zµPz (1⊗ 1)
,

with µPz given by

µPz (p⊗ q) = µ(p, q)z|q|−|p|.

It follows that

µPz (1⊗ 1),=
∑
p,q

µ(p, q)z|q|−|p|

Given our analysis of the behavior of µ on the poset Y , the Hilbert series for A(Ym×n)

will be given by

1− z
1−

∑
i(−1)iXizi

,

where Xi is the number of intervals [γ, λ] in Y with |λ| − |γ| = i and µ(γ, λ) 6= 0. Thus

we are interested in calculating these Xi.

First, we notice that any element of Y can be defined uniquely by the placement of its

corners. We use the notation (x, y) to indicate the x’th row and the y’th column. If the

corners of λ = (λ1, λ2, λ3, . . .) are at (a1, b1), (a2, b2), . . . , (ak, bk), for a1 < a2 < . . . < ak,

then

λi =


a1 if i ≤ a1

bj if aj−1 < i ≤ aj

0 if i > ak

Notice that the ascending sequence of a’s must be paired with a corresponding descend-

ing sequencd of b’s, so in fact the Young diagram can be defined entirely by a set of
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k rows and k columns in which the corners appear. Thus the number of diagrams in

Ym×n with k corners is
(
m
k

)(
n
k

)
.

For any λ ∈ Y , the collection of γ such that µ(γ, λ) is nonzero is precisely the collection

of γ that can be obtained by removing some subset of the corners of γ. The collection

of γ such that, in addition, |λ| − |γ| = i is the collection of γ that can be obtained by

removing a subset of the corners of size exactly i. Thus if λ has k corners, the number

of γ such that |λ| − |γ| = i and µ(γ, λ) 6= 0 is precisely
(
k
i

)
.

Thus we have Xi =
∑

k≥i
(
m
k

)(
n
k

)(
k
i

)
, and so

∑
i

(−1)iXiz
i =

∑
i

(−1)i

∑
k≥i

(
m

k

)(
n

k

)(
k

i

) zi

=
∑
k

(
m

k

)(
n

k

)∑
i≤k

(−1)i
(
k

i

)
zi

=
∑
k

(
m

k

)(
n

k

)
(1− z)k

This completes our proof.

8.3 Graded Trace of Young Lattices

The Young lattice Y , and the lattices Yn×n defined in the previous section have a single

automorphism σ which takes each partition λ = (λ1, λ2, . . .) to its conjugate partition

λ′ = (λ′1, λ
′
2, . . .), where λ′i = |{j : λj ≥ i}|. The collection of partitions which are fixed

under σ is exactly the collection of partitions whose young diagrams are symmetric

across the diagonal

Example: The partition (5, 4, 4, 3, 1) is symmetric across the diagonal, and thus will

be fixed by the automorphism σ.
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Proposition 52. Let Yn×n be as defined above, and let σ be the isomorphism taking

each partition to its conjugate. Then

Trσ(A(Yn×n), z) =
1− z

1− z
(∑

k(1− z2)k
((

n
2k

)
+ (1− z)

(
n

2k−1

)))
In order to prove this, we will need to explore the Möbius function of Y σ

n×n, the lattice of

symmetric Young diagrams. We can put these partitions in one-to-one correspondence

with strictly decreasing sequences x = 〈x1, x2, x3, . . .〉, where xi is the number of blocks

in the i’th column and beyond in the i’th row of the Young diagram. So for instance,

the partition (5, 4, 4, 3, 1) corresponds to the sequence 〈5, 3, 2〉

5

3

2

If we consider the poset Y σ
n×n, the lattice of partitions corresponding to symmetric

Young diagrams with at most n rows and columns, we find again that the intervals (y,x)

such that µ(y, x) 6= 0 correspond to a partition y whose Young diagram is obtained

from the Young diagram of x by removing some collection of the corners of x, this time

removing symmetric pairs together.

So if x is the diagram on the left, then µ(y,x) 6= 0 if y is one of the partitions obtained

by deleting some subset of the pairs labeled with a and b and the singleton labeled c.

a

a

b

b
c

yx

More formally,
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Proposition 53. Let x and y be partitions with symmetric young diagrams represented

by the strictly decreasing sequences 〈x1, x2, . . .〉 and 〈y1, y2, . . . , 〉 as described above.

Suppose x and y satisfy

i) yi ≤ xi for all i.

ii) If yi < xi, then yi = xi − 1.

iii) If yi < xi, then either yi+1 = 0 or yi+1 = yi − 1.

Then µ(y,x) = |{i : yi < xi}|. Otherwise, µ(y,x) = 0.

Proof. Just as before, if x and y satisfy conditions i-iii, then the interval [x,y] is

isomorphic to a Boolean lattice, and it is easy to verify that µ(y,x) = |{i : yi < xi}|.

Given a particular y, the collection of x such that x and y satisfy i-iii is precisely the

interval
[
y,
(∨

vmy v
)]

. Suppose x is an element which is minimal with respect to the

following three conditions:

a) x ≥ y

b) x and y do not satisfy i-iii

c) µ(y,x) 6= 0.

Let z =
∨

w∈D w, where

D =

{
w ∈ Y σ : w ∈

[
y,

(∨
vmy

v

)]
and w < x

}

We find that D = [y, z]. Minimality of x tells us that µ(y,x) = −
∑

w∈D µ(y,w), and

since D is isomorphic to a Boolean lattice, this gives us µ(y,x) = 0. This contradiction

completes our proof.

With this fact in place, we can prove Proposition 52

Proof of Proposition 52. We are interested in finding

∑
x≤y

µ(x,y)z|y|−|x|,
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where the ranking is inherited from the original poset Yn×n.

Each symmetric Young diagram in Yn×n can be represented by a strictly decreasing

sequence of positive integers, where the first is less than or equal to n. We can also

think of this simply as a subset S of n. Each gap in the sequence 1, 2, 3, . . . ,maxS

is going to create a pair of symmetric corners. If 1 /∈ S, there will be one more pair

of symmetric corners. If 1 ∈ S there will be an additional unmatched corner on the

diagonal.

If we wish to count the number of diagrams with a certain collection of corners, we can

think of encoding S as follows: We define a subset TS by

TS = {i : i ∈ S} ∪ {i : i− 1 ∈ S, i /∈ S} ∪ {i : i− 1 /∈ S, i ∈ S}

Any S yields a TS ⊆ [n+ 1], and any even-sized subset of [n+ 1] has an interpretation

as a unique corresponding S.

If |TS | = 2k and 1 /∈ TS , then the Young diagram corresponding to S has k symmetric

pairs of corners, and no corner along the diagonal. Thus there are
(
n
2k

)
such diagrams.

Each of these is the top of
(
k
i

)
intervals of length 2i, and no intervals of odd length.

The Möbius function of each of these intervals is (−1)i.

If |TS | = 2(k + 1) and 1 ∈ TS , then the Young diagram corresponding to S has k

symmetric pairs of corners and a single corner on the diagonal. There are
(

n
2k−1

)
such

diagrams. Each of these is the top of
(
k
i

)
intervals of length 2i, and

(
k
i

)
intervals of

length 2i+1. The Möbius function of the intervals of even length is (−1)i. The Möbius

function of the intervals of odd length is (−1)i+1.
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It follows that

∑
x≤y

µ(x,y)z|y|−|x| =
∑
k

(
n

2k

)∑
i

(
k

i

)
(−1)iz2i

+
∑
k

(
n

2k − 1

)∑
i

(
k

i

)
(−1)iz2i

+
∑
k

(
n

2k − 1

)∑
i

(
k

i

)
(−1)i+1z2i+1

=
∑
k

(1− z2)k
((

n

2k

)
+ (1− z)

(
n

2k − 1

))

The result follows.
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