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ABSTRACT OF THE DISSERTATION

Some Applications of Randomness in Computational

Complexity

by Luke Friedman

Dissertation Director: Eric Allender

In this dissertation we consider two different notions of randomness and their applica-

tions to problems in complexity theory.

In part one of the dissertation we consider Kolmogorov complexity, a way to for-

malize a measure of the randomness of a single finite string, something that cannot be

done using the usual distributional definitions. We let R be the set of random strings

under this measure and study what resource-bounded machines can compute using R

as an oracle. We show the surprising result that under proper definitions we can in

fact define well-formed complexity classes using this approach, and that perhaps it is

possible to exactly characterize standard classes such as BPP and NEXP in this way.

In part two of the dissertation we switch gears and consider the use of randomness as

a tool in propositional proof complexity, a sub-area of complexity theory that addresses

the NP vs. coNP problem. Here we consider the ability of various proof systems

to efficiently refute randomly generated unsatisfiable 3-CNF and 3-XOR formulas. In

particular, we show that certain restricted proof systems based on Ordered Binary

Decision Diagrams requires exponential-size refutations of these formulas. We also

outline a new general approach for proving proof complexity lower bounds using random

3-CNF formulas and demonstrate its use on treelike resolution, a weak proof system.
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Chapter 1

Introduction

The use of randomness is an important theme that appears throughout theoretical

computer science. Whether there exist languages that are decidable in polynomial-

time by a randomized algorithm but not by a deterministic algorithm is formalized

as the BPP vs. P problem and is one of the central open problems in computational

complexity. One of the notable successes of complexity theory over the last few decades

has been a long line of research (including [Yao82, NW94, IW01]) giving strong evidence

that these two complexity classes in fact coincide – and therefore that at this level of

generality the use of randomness does not offer any advantage. However, at finer levels

of gradation randomness is provably beneficial; for instance, it has been shown that

any deterministic comparison-based algorithm for finding the median of n elements will

make at least 2n comparisons in the worst case [BJ85], whereas there is a randomized

algorithm that always succeeds and makes at most 1.5n comparisons both in expectation

and with high probability [FR75]. And in other contexts randomness is completely

integral; important applications such as cryptography, interactive proofs, and property

testing, to name just a few, could not even exist without the use of randomness.

Randomness is not only useful as an applied tool, but also has emerged as an

important tool in the analysis of algorithms and protocols, and in general as a proof

technique in theoretical computer science. There are many examples where randomness

can be used to prove theorems for which more constructive techniques do not seem

to suffice, or at least provides a way of significantly simplifying other known proofs.

Often in these cases the computational objects themselves being considered in the

proof on the surface seem to be wholly deterministic. The most basic example of

this phenomenon is the probabilistic method, championed by Paul Erdős and used
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throughout mathematics, by which an object with a given property is shown to exist

by randomly choosing the object from some distribution and then proving that with

positive probability the object will have the given property. One classic example of a

sophisticated variant of this approach in computational complexity is the use of random

restrictions to prove circuit lower bounds [FSS84, Has86]; these circuit classes have no

explicit randomness in their definitions, but randomness can be used in the analysis to

understand their strength. In this dissertation we give two applications of this approach

of injecting randomness in non-obvious ways into the analysis of problems in order to

prove theorems in computational complexity. The dissertation is split into two largely

independent parts, using two very different notions of randomness and ways in which

it is employed.

In Chapters 2 and 3 we consider the set R of Kolmogorov random strings: those

strings for which there is no short description according to some fixed universal reference

machine. (In fact, we consider two related notions of R: RC , the random strings

according to the “plain” Kolmogorov complexity, and RK , the random strings according

to the “prefix” complexity). Specifically, we study what extra power is afforded to a

resource-bounded machine if it is given the set R as an oracle. Previous work had shown

that in this setting R can provide additional power: For instance, it had been shown

that any language computable in nondeterministic exponential time (NEXP) can be

computed by a nondeterministic polynomial-time (NP) machine with oracle access to

R [ABK06a], and any language computable in randomized polynomial time (BPP) can

be computed by a polynomial-time machine with truth-table (i.e. non-adaptive) oracle

access to R [BFKL10].

Although these results were intriguing, it was not clear exactly how to interpret

them – how could one hope to understand the limits to the power that the oracle R

provides to resource-bounded machines when the set R itself is an uncomputable set?

The main contribution of this first part of the dissertation is to show that in fact, if

the problem is formulated correctly, one can provide meaningful upper bounds to the

power of R as an oracle. In Chapter 2 we show the first result in this direction, from

[AGF13]. Roughly speaking, we show that for any decidable language L, if for every
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universal reference machine U there exists a polynomial-time machine that can compute

L when given nonadaptive oracle access to RK defined with respect to the machine U ,

then L is contained in PSPACE. (We are also able to lift this result to get an anal-

ogous exponential-space upper bound (EXPSPACE) that holds for nondeterministic

polynomial-time machines).

In Chapter 3 we tackle the problem of whether we can improve this PSPACE upper

bound to more closely match the known BPP lower bound. Specifically, we explore

the possibility of improving the PSPACE upper bound to a PSPACE ∩ P/poly upper

bound using an approach described in [ADF+12]. This attempt yields both positive and

negative results. On the one hand, we show that the approach cannot work for the set R

as originally intended, and that new ideas will be needed to get a P/poly upper bound

in this case. However, we are also able to show that if we consider a time-bounded

variant of Kolmogorov complexity in the definition of the random strings, then in fact

the intuition behind the approach does yield the desired P/poly upper bound, and that

the PSPACE upper bound and BPP lower bound still hold in this setting as well.

Although there is still a significant gap between the known lower bounds and upper

bounds, this work suggests the tantalizing possibility of exactly characterizing standard

complexity classes such as BPP or NEXP in this unusual way, as the set of languages

computable by a resource-bounded machine with oracle access to the Kolmogorov ran-

dom strings. (Note that while randomness is a main feature of the class BPP, there

is no explicit reference to randomness in a class such as NEXP). Such an exact char-

acterization might allow us to harness tools from computability theory that up to this

point did not seem applicable to problems in complexity theory. Although such ideas

are extremely speculative at this point, it is at least conceivable that this could lead to

new class separations or a new way to attack the BPP vs. P problem.

In the second part of the dissertation, we shift our focus to an entirely different type

of randomness, and an entirely different sub-area of computational complexity called

propositional proof complexity. In propositional proof complexity, the main task is to

show that a given family of tautological propositional formulas T does not have small

proofs in a given proof system P , for various T and P . Equivalently, as we do in this
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dissertation, we can consider families of unsatisfiable formulas and argue about the

size of the smallest refutations of these families in a given proof system. One of the

main motivations for studying propositional proof complexity is that it can be viewed

as a way of making gradual progress towards separating nondeterministic polynomial-

time (NP) from co-nondeterministic polynomial time (coNP), which would immediately

imply a separation of P from NP. Another motivation is that results about specific proof

systems also have consequences for related classes of SAT solving algorithms. There are

also many connections between propositional proof complexity and circuit complexity

and there is a rich interplay between the two fields.

The main families of unsatisfiable formulas we focus on in this dissertation are

randomly generated 3-CNF formulas, in which each clause of the formula is chosen

uniformly at random from all possible clauses over n variables. For large enough clause

density, with high probability such formulas will be unsatisfiable. The intuition is that

random formulas lack structure and will therefore be hard to refute in any proof system.

Again, thematically, the proof systems themselves are entirely deterministic, but our

hope is to use randomness to reason about their power.

In Chapter 4 we consider a specific proof system based on Ordered Binary Decision

Diagrams that was introduced by Atserias et al. in [AKV04]. Kraj́ıček proved lower

bounds for a strong variant of this system using a method called feasible interpolation

[Kra07], and Tveretina et al. proved lower bounds on the size of refutations of a

natural combinatorial family of formulas called the pigeonhole formulas in a restricted

version of this proof system [TSZ10]. We prove the first lower bounds for restricted

versions of this proof system with respect to random formulas. Specifically, we show

that with high probability a randomly chosen 3-CNF formula with clause density above

the satisfiability threshold requires exponential-size refutations in a restricted version of

this proof system. (We also show that with high probability a randomly chosen 3-XOR

formula with clause density above the satisfiability threshold requires exponential-size

refutations in another restricted version of this proof system).

In Chapter 5 we propose a general framework for proving lower bounds for proof

systems using random 3-CNF formulas. Unlike most of the known techniques, this
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framework is specifically tailored to work with random formulas and was not adapted

from techniques previously shown to work with constructive families of formulas. After

introducing the framework we demonstrate its use by proving lower bounds for a very

weak proof system called treelike resolution. This is essentially a toy example, as

lower bounds for random formulas in this system (and for strictly stronger systems)

have already been proved using different techniques. However, the hope is that the

framework could eventually be cultivated to prove lower bounds on random formulas

for stronger proof systems for which such lower bounds are unknown.

It is assumed that the reader is familiar with basic concepts and notation from

computational complexity – if not, a good primer is [AB09].

Chapter 2 is largely based on material from [AGF13], Chapter 3 is based on material

from [ADF+12] and [ABFL12a], Chapter 4 is based on material from [FX13], and

Chapter 5 is based on material from [Fri13]. It should be pointed out that two important

theorems from Chapter 3 (Theorems 3.3.2 and 3.3.4), although published in [ABFL12a]

and inspired at least partially by [ADF+12], were originally proved by Harry Buhrman

and Bruno Loff without any contribution from the author of this dissertation.
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Chapter 2

Limits to the Power of Random Strings

2.1 Background on Kolmogorov Complexity

Kolmogorov complexity addresses the following paradox.. Consider an experiment

where a fair coin is flipped a million times, and the result is recorded as a binary

string of 1s and 0s, where a 1 represents heads and a 0 represents tails. Suppose one

is told that the experiment has been conducted twice behind closed doors, resulting in

the following strings:

A: 1011100110101010001000001...

B: 0000000000000000000000000...

In the first case, one would not have much reason to question the integrity of the

experiment (in fact it is the beginning of a string generated by a real computer-simulated

run of this experiment for the purpose of this example). However, even the most trusting

observer would probably refuse to believe that the second sequence was a legitimate

result of such an experiment.

The paradox arises from the fact that a priori each of the two strings has exactly the

same probability of appearing (which we can easily calculate to be 2−1,000,000). Why

then does it seem so much more improbable that string B would appear compared

with string A? A good answer is that we doubt string B because it has a short de-

scription, and intuitively a random string should not have this property. An equivalent

explanation would be that intuitively a random string should not be “compressible”.

Indeed, string B can be described in English words as “one million zeros”, a much more

compact representation than literally writing out the one million zeros, whereas it is

not clear how to describe string A more succinctly than to literally write out the entire
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string.

The goal of Kolmogorov complexity is to formalize this intuition about what makes

an individual finite string random in a way that our normal distributional notions of

randomness cannot, by defining exactly what it means for something to be a valid

“description” of a string. To define Kolmogorov complexity we invoke the normal

Turing machine model in which a machine M takes as input a binary string and, if it

halts, outputs another binary string.

Definition 2.1.1 (Kolmogorov Complexity). The Kolmogorov complexity of a binary

string x with respect to a Turing machine M , denoted by CM (x), is the length of the

shortest string y such that the machine M outputs x on input y. Formally, CM (x) =

min |y| : M(y) = x.

We will define universal Turing machines in terms of Kolmogorov complexity as

follows:

Definition 2.1.2 (Universal Turing Machine). A Turing machine U is a universal

Turing machine if for any Turing machine M there exists a constant cM , depending

only on M , such that for all x, CU (x) ≤ CM (x) + cM .

Note that the standard two-part universal Turing machine U that takes as input

〈M,x〉, a description of a Turing machine M and a string x, simulates M on input

x, and outputs M(x), is one example of a universal Turing machine under this more

general definition. To see this, note that if M(y) = x, then U(〈M,y〉) = x, so we need

only to define cM to be large enough to account for an encoding of the machine M .

The advantage of using universal machines as the reference machines in the definition

of Kolmogorov complexity is that the measure then becomes invariant up to an additive

constant. Indeed, for any two universal Turing machines U and U ′, we have that for all

x, |CU (x)−CU ′(x)| ≤ cU,U ′ for some constant cU,U ′ depending only on the machines U

and U ′. This is an important property, as we would like the “complexity” of a string to

be an absolute property of the string itself and not relative to the underlying reference

machine in the definition of Kolmogorov complexity.
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In many applications, due to this invariance property, the choice of which universal

machine to use as the reference machine is unimportant (although in the application

we will explore later in this chapter, the choice of reference machine will often play a

crucial role). When this is the case, we will sometimes drop the subscript and denote

the Kolmogorov complexity of a string x as C(x), which is shorthand for CU0(x), where

U0 is some canonical universal machine.

We are now ready to define the set of Kolmogorov random strings – those strings

who do not have a description shorter than their own length.

Definition 2.1.3. The set of Kolmogorov random strings with respect to a universal

machine U , denoted by RCU , is the set of all strings x such that the Kolmogorov complex-

ity of x with respect to U is at least the length of x. Formally, RCU = {x : CU (x) ≥ |x|}.

Again, in situations where the particular universal machine used as the reference

machine is immaterial, we will drop the subscript and refer simply to RC .

We now mention a couple crucial properties of the set of Kolmogorov random strings.

For an exhaustive treatment of Kolmogorov complexity, including its applications in

various area of mathematics and computer science, we refer the reader to the standard

textbook [LV08].

• RC is uncomputable. That is, there does not exist a Turing machine M that halts

on every input x and accepts x if and only if x ∈ RC . Note however that RC is co-

computably enumerable. That is, there does exist a Turing machine T that given

any input x, halts and accepts x if x 6∈ RC , and either does not halt or rejects x if

x ∈ RC . T works by simulating in parallel, via a dovetailing procedure, U0(y) for

every string y such that y < |x|, and accepting x if U0 outputs x on any of these

y’s (Remember, U0 is the implicit universal reference machine in the definition

of RC). If there does exists some y such that U0(y) = x, so that x 6∈ RC , then

eventually T will discover this and accept x.

• At least a constant fraction of all strings of length n are Kolmogorov random.

Formally, there exists a constant c such that for all n, |RC | ≥ c2n.
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2.1.1 Prefix Complexity

For the results in this chapter, we will actually need to focus on a popular variant

of Kolmogorov complexity called the prefix complexity. We will henceforth refer to

the version of Kolmogorov complexity described in the previous section as the “plain”

complexity. To define the prefix complexity, we first must define what it means for a

Turing machine to be a prefix machine.

Definition 2.1.4 (Prefix Machine). Let λ denote the empty string. A prefix machine

is a Turing machine M such that, for all x, if M(x) halts then, for all y 6= λ, M(xy)

does not halt. That is, the domain of M is a prefix code.

We can mimic the definitions of the plain complexity in order to define the prefix

complexity, in each case adding the extra condition that all reference machines must

be prefix machines. Thus:

Definition 2.1.5 (Prefix Complexity). We define the prefix complexity of a string x

with respect to a prefix machine M to be KM (x) = min |y| : M(y) = x.

Definition 2.1.6 (Universal Prefix Machine). A prefix machine U is a universal prefix

machine if for any prefix machine M there exists a constant cM , depending only on M ,

such that for all x, KU (x) ≤ KM (x) + cM .

Definition 2.1.7. We define the set of Kolmogorov prefix random strings with respect

to a universal prefix machine U , as RKU = {x : KU (x) ≥ |x|}.

Again, we will use the shorthands K(x) and RK if the choice of universal reference

machine plays a negligible role. Also, if it does not matter which version of the random

strings we are using, we will sometimes refer to the set of random strings simply as R.

It is known that, for some constant c, C(x)− c ≤ K(x) ≤ C(x) + c+ 2 log |x|, and

hence the two versions of Kolmogorov complexity are not very far apart from each other.

Although arguably the definition of the prefix complexity is slightly less natural than

the plain complexity, the prefix complexity retains most of the important properties of

the plain complexity, along with some additional properties that often make it more
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convenient to work with. For instance, the plain complexity is not sub-additive (i.e.

C(x, y) ≤ C(x) + C(y) + c does not hold in general for any constant c), and the

series
∑

x 2−C(x) diverges, which means it cannot easily be converted into a probability

measure. The prefix complexity fixes both of these problems, and is crucial to many

of the applications that originally motivated the discovery of Kolmogorov complexity,

such as studying the complexity of infinite sequences and defining a universal prior

probability measure that could be used as the basis for inductive reasoning. For an in-

depth discussion of the trade-offs between the plain and prefix complexity, see [LV08,

Chapter 3].

2.1.2 The Random Strings as an Oracle

Our main focus in this part of the dissertation is to study what happens when the set

of Kolmogorov random strings is used as an oracle. In order to do this, we need to

recall the definitions for a number of different types of reductions that will be used

throughout this chapter and the next.

• Turing reductions. We say that a language A R-Turing reduces to a language B

(A ≤RT B) if there is an oracle Turing machine in class R that accepts A when

given B as an oracle. (An oracle Turing machine with access to oracle B is a

Turing machine equipped with an extra oracle tape. During its computation, the

machine is permitted to write a string x to the oracle tape and enter a special

oracle state, after which it receives the answer to the query “Is x in the language

B” at the cost of a single time-step). If we write C ≤RT B for a complexity class

C, it means that for all languages A ∈ C, A ≤RT B.

• Truth-table (nonadaptive) reductions. A truth-table reduction is a Turing reduc-

tion with the additional constraint that for a given input the machine computing

the reduction must compute all the queries that it will ask before receiving any

answers to the query. An equivalent definition that we will make use of in this

chapter is the following. For a complexity class R and languages A and B, we say

that A R-truth-table-reduces to B (A ≤Rtt B) if there is a function q computable
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in R, such that, on an input x ∈ {0, 1}∗, q produces an encoding of a circuit λ and

a list of queries q1, q2, . . . qm so that for a1, a2, . . . , am ∈ {0, 1} where ai = 1 if and

only if qi ∈ B, it holds that x ∈ A if and only if λ(a1a2 · · · am) = 1. Specifically,

if the function q is polynomial-time computable, we say that A polynomial-time-

truth-table-reduces to B (A ≤ptt B).

• Monotone, anti-monotone, and disjunctive truth-table reductions. In the scenario

above, if the circuit λ computes a monotone function (i.e. changing any input

bit of the function from 0 to 1 cannot change the output of the function from 1

to 0), then we say that A R-monotone-truth-table-reduces to B (A ≤Rmtt B). If

λ computes an anti-monotone function (i.e. ¬λ is monotone), then we say that

A R-anti-monotone truth-table-reduces to B (A ≤Ramtt B). If λ computes an OR

function (i.e. λ(a1a2 · · · am) = 1 if and only if there exists some ai ∈ B), then we

say that A R-disjunctive-truth-table-reduces to B (A ≤Rdtt B).

In any of these reductions, if no complexity class R is specified then it is implied

that there are no complexity constraints on the machine performing the reduction.

The first main result in this line of research was by Martin in 1966, who showed

that any computably enumerable set is Turing reducible to both RC and RK [Mar66].

Kummer later improved this result by showing that any recursively enumerable set is

in fact disjunctive truth-table reducible to RC [Kum96]. Muchnik and Positselsky then

proved the negative result that for some universal prefix machine U , there is no truth-

table reduction from the halting problem to the overgraph of KU , a function related

to KU that we will define later in the chapter [MP02]. This demonstrated a significant

difference between RK and RC , as Kummer’s result implied that the halting problem

is truth-table reducible to the overgraph of CU , regardless of which universal machine

U is used.

Relatively recently, researchers began to focus on what happens when the machine

with oracle access to the Kolmogorov random strings is resource-bounded. The sur-

prising conclusion was that despite the fact that R is uncomputable, resource-bounded
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machines could extract extra power from these sets. Three curious results in this di-

rection are the following.

Theorem 2.1.8 ([ABK+06b]). PSPACE ⊆ PR

Theorem 2.1.9 ([ABK06a]). NEXP ⊆ NPR

Theorem 2.1.10 ([BFKL10]). BPP ⊆ {A : A≤p
ttR}

All of these results were derived by means of derandomization techniques. We

call these inclusions “curious” because the upper bounds that they provide for the

complexity of problems in BPP, PSPACE and NEXP are not even computable; thus

at first glance these inclusions may seem either trivial or nonsensical.

A key step toward understanding these inclusions in terms of standard complexity

classes is to invoke one of the guiding principles in the study of Kolmogorov complexity:

The choice of universal machine should be irrelevant. Theorems 2.1.8 through 2.1.10

actually show that problems in certain complexity classes are always reducible to R,

no matter which universal machine is used as the reference machine. The inclusions

also hold regardless of whether we consider RC or RK . Combining these insights with

the fact that BPP,PSPACE, and NEXP are all contained in ∆0
1 (the class of decidable

languages), we have

• BPP ⊆ ∆0
1 ∩
⋂
U{A : A≤p

ttRKU }.

• PSPACE ⊆ ∆0
1 ∩
⋂
U PRKU .

• NEXP ⊆ ∆0
1 ∩
⋂
U NPRKU .

The question arises as to how powerful the set ∆0
1 ∩
⋂
U{A : A ≤r RKU } is, for various

notions of reducibility ≤r. Before the results of this chapter, no computable upper

bound was known for the complexity of any of these classes. (Earlier work [ABK06a]

did give an upper bound for a related class defined in terms of a very restrictive notion of

reducibility: ≤p
dtt reductions – but this only provided a characterization of P in terms

of a class of polynomial-time reductions, which is much less compelling than giving
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a characterization where the set R is actually providing some useful computational

power.)

The next two theorems are the main results from this chapter and show that the

class of problems reducible to RK in this way does have bounded complexity; hence it

is at least plausible to conjecture that some complexity classes can be characterized in

this way:

Theorem 2.1.11 ([AGF13]). ∆0
1 ∩
⋂
U{A : A≤p

ttRKU } ⊆ PSPACE

Theorem 2.1.12 ([AGF13]). ∆0
1 ∩
⋂
U NPRKU ⊆ EXPSPACE

A stronger inclusion is possible for “monotone” truth-table reductions (≤p
mtt). We

show that

Theorem 2.1.13 ([AGF13]). ∆0
1 ∩
⋂
U{A : A≤p

mttRKU } ⊆ coNP ∩ P/poly

Combining these results with Theorems 2.1.8 through 2.1.10 we now have:

• BPP ⊆ ∆0
1 ∩
⋂
U{A : A≤p

ttRKU } ⊆ PSPACE ⊆ ∆0
1 ∩
⋂
U PRKU .

• NEXP ⊆ ∆0
1 ∩
⋂
U NPRKU ⊆ EXPSPACE.

In particular, note that PSPACE is sandwiched in between the classes of computable

problems that are reducible to RK via polynomial-time truth-table and Turing reduc-

tions.

Note that the use of the prefix complexity here is crucial. Although we believe that

analogous theorems to all those stated here should hold if RC is substituted for RK ,

we do not know how to prove so. The explicit restriction to ∆0
1 is also important. We

believe these theorems hold even if “∆0
1∩” is erased from the statement of the theorems.

For instance, if A is in
⋂
U NPRKU , we conjecture that A is computable. There are some

preliminary results by Cai, Downey, Epstein, Lempp, and Miller in this direction, but

currently this work is still unpublished [Mil13].

In the next section we prove the main theorems stated above, after which we try to

lend some further perspective to their meaning.
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2.2 Proofs of Main Results

2.2.1 Preliminaries

Before proving our main theorems from this chapter, we introduce a couple of extra

definitions and prove a few propositions that will be needed.

Definition 2.2.1 (Overgraph). If f is a function mapping some domain to the naturals

N, then ov(f), the overgraph of f , is {(x, y) : f(x) ≤ y}.

For instance, ov(KU ) = {(x, y) : there exists an s, |s| ≤ y, such that U(s) = x}

The following definition was used implicitly by Muchnik and Positselsky [MP02]:

Definition 2.2.2 (Prefix Free Entropy Function). A Prefix Free Entropy Function f

is a function from {0, 1}∗ to N such that

•
∑

x∈{0,1}∗ 2−f(x) ≤ 1 and

• ov(f) is computably enumerable (c.e.)

Note that if f is a prefix free entropy function, then 2−f is a special case of what

Li and Vitányi call a Lower Semicomputable Discrete Semimeasure [LV08, Definition

4.2.2]. The Coding Theorem (see [LV08, Theorem 4.3.3]) says that, for any lower semi-

computable discrete semimeasure 2−f there is a universal prefix machine M such that

f(x) ≤ KM (x) − 3. For the case of prefix free entropy functions, one can obtain a

tighter bound (and replace the inequality with equality):

Proposition 2.2.3. Let f be a prefix free entropy function. Given a machine accepting

ov(f), one can construct a prefix machine M such that f(x) = KM (x)− 2.

Proof. Our proof is patterned on the proof of [LV08, Theorem 4.3.3].

Since ov(f) is c.e., there is a bijective enumeration function D : N→ {(x, a) : f(x) ≤

a}. Let D(0) = (x0, a0), D(1) = (x1, a1, ), . . . be this enumeration. We have that for

each x,
∑

i≥f(x) 2−i ≤ 2 · 2−f(x) and therefore

∑
i≥0

1
2

2−ai =
∑
x

∑
i≥f(x)

1
2

2−i ≤
∑
x

2−f(x) ≤ 1
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We identify the set of infinite sequences S = {0, 1}∞ with the half-open real interval

[0, 1); that is, each real number r between 0 and 1 will be associated with the sequence(s)

corresponding to the infinite binary expansion of r. We will associate each pair (xi, ai)

from the enumeration D with a subinterval Ii ⊆ S as follows:

I0 = [0, 1
22−a0), and for i ≥ 1, Ii = [

∑
k<i

1
22−ak ,

∑
k≤i

1
22−ak). That is, Ii is the half-

open interval of length 1
22−ai that occurs immediately after the interval corresponding

to the pair (xi−1, ai−1) that appeared just prior to (xi, ai) in the enumeration D.

Since
∑

i≥0
1
22−ai ≤ 1, each Ii ⊆ S.

Any finite string z also corresponds to a subinterval Γz ⊆ S consisting of all infinite

sequences that begin with z; Γz has length 2−|z|. Given any pair (xi, ai), one can

determine the interval Ii and find the lexicographically first string z of length ai + 2

such that Γz ⊆ Ii. Since Ii has length 2(−ai+1), it is not too difficult to see that such

a string z must exist. (Alternatively, look at the proof of [LV08, Lemma 4.3.3].) Call

this string zi. Observe that, since the intervals Ii are disjoint, no string zi is a prefix of

any other.

We are now ready to present our prefix machine M . Let M be a machine that,

given a string z, uses D to start an enumeration of the intervals Ii until it finds (xi, ai)

such that Γz ⊆ Ii. If it ever finds such a pair, at this point M determines if z = zi, and

if so, outputs xi. Otherwise the machine enters an infinite loop. Since no string zi is a

prefix of any other, M is a prefix machine.

Now consider the shortest string on which M will output x. Let T = {i : xi = x}.

For every j ∈ T there exists a string zj such that M(zj) = x, and the length of zj will

be aj + 2. We have that minj∈T aj = f(x), so KM (x) = f(x) + 2.

Proposition 2.2.4. Let M and M ′ be prefix Turing machines. Then there is a prefix

machine M ′′ such that KM ′′(x) = min(KM (x),KM ′(x)) + 1.

Proof. The domain of M ′′ is {1x : x is in the domain of M} ∪ {0x : x is in the domain

of M ′}.

Proposition 2.2.5. Given any prefix machine M and constant c, there is a prefix

machine M ′ such that KM (x) + c = KM ′(x)
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Proof. The domain of M ′ is {0cx : x is in the domain of M}.

2.2.2 Overview of Proof of Main Theorem

We are ready to prove the main theorem of this chapter, which we now restate.

Theorem 2.2.6 (Restatement of Theorem 2.1.11). ∆0
1 ∩

⋂
U{A : A ≤ptt RKU } ⊆

PSPACE.

Proof. The main idea of the proof can be seen as a blending of the approach of [ABK06a]

with the techniques that Muchnik and Positselsky used to prove Theorem 2.7 of [MP02].

(See also [AFG10] for an alternative exposition of this theorem of Muchnik and Posit-

selsky.)

We will actually prove the statement

∆0
1 ∩
⋂
U

{A : A ≤ptt ov(KU )} ⊆ PSPACE. (2.1)

The theorem follows, since any query “x ∈ RKU ?” can always be modified to the

equivalent query “(x, |x| − 1) 6∈ ov(KU )?”, so

∆0
1 ∩
⋂
U

{A : A ≤ptt RKU } ⊆ ∆0
1 ∩
⋂
U

{A : A ≤ptt ov(KU )}.

To prove the statement (1) it suffices to show that

L ∈ ∆0
1 − PSPACE⇒ ∃ a universal prefix machine U s.t. L 6≤ptt ov(KU ). (2.2)

Let L ∈ ∆0
1 − PSPACE be given. It suffices to show how to incorporate a machine

deciding membership in L into the construction of a universal prefix machine U such

that L 6≤ptt ov(KU ). (As part of this construction, we use a diagonalization argument

designed to foil every ≤p
tt reduction.) To do this we will use the standard prefix com-

plexity function K, together with a function F : {0, 1}∗ → N that we will construct, to

form a function H : {0, 1}∗ → N with the following properties.

1. F is a total function and ov(F ) is c.e.

2. H(x) = min(K(x) + 5, F (x) + 3).
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3.
∑

x∈{0,1}∗ 2−H(x) ≤ 1
8 .

4. L 6≤ptt ov(H).

Claim 2.2.7. Given the above properties, H = KU ′ for some universal prefix machine

U ′ (which by Property 4 ensures that (2.2) holds).

Proof. By Properties 2 and 3 we have that
∑

x∈{0,1}∗ 2−F (x)+3 ≤ 1
8 . Therefore

∑
x∈{0,1}∗ 2−F (x)

≤ 1, which along with Property 1 means that F is a prefix free entropy function. By

Proposition 2.2.3 we then have that F+2 isKM for some prefix machineM . By Proposi-

tion 2.2.5 we have that K(x)+4 is KU ′′ for some universal prefix machine U ′′. Therefore,

by Proposition 2.2.4, H(x) = min(K(x) + 5, F (x) + 3) = min(K(x) + 4, F (x) + 2) + 1

is KU ′ for some universal prefix machine U ′.

It remains to show that for a given computable set L 6∈ PSPACE we can always

construct functions H and F with the desired properties. Let us first informally discuss

the ideas before providing the formal construction.

Our control over H comes from our freedom in constructing the function F . The

construction will occur in stages – at any given time in the construction there will be a

“current” version of F which we will denote by F ∗. Similarly, there will be a “current”

version of K denoted by K∗, which represents our knowledge of K at a given stage. At

all times, H∗, our “current” version of H, will be defined as min(K∗(x) + 5, F ∗(x) + 3).

Originally we set F ∗(x) = 2|x| + 3 and K∗ as the empty function. At each stage

of the construction we will assume that a new element (x, y) is enumerated into ov(K)

according to some fixed enumeration of ov(K). (This is possible since ov(K) is c.e.)

When this occurs K∗ is updated by setting K∗(x) = min(K∗(x), y). (Since K∗ is

a partial function, it is possible that K∗(x) was previously undefined. In this case

we set K∗(x) = y.) Similarly, during the construction at times we will modify F

by enumerating elements into ov(F ). Whenever we enumerate an element (x, y) into

ov(F ), F ∗ is updated by setting F ∗(x) = min(F ∗(x), y).

Let γ1, γ2, . . . be a list of all possible polynomial time truth table reductions from

L to ov(H). This is formed in the usual way: we take a list of all Turing machines and
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put a clock of ni + i on the ith one and we will interpret the output as an encoding of

a Boolean circuit on atoms of the form “(z, r) ∈ ov(H)”.

We need to ensure that L 6≤ptt ov(H). We break this requirement up into an infinite

number of requirements:

Re : γe is not a polynomial-time tt-reduction of L to ov(H).

At stage e of the construction we will begin to attempt to satisfy the requirement

Re. For a particular input x, let γe(x) be an encoding of a circuit λe,x. The output

of the circuit λe,x is determined by the truth values of the atoms “(z, r) ∈ ov(H)”

that label the inputs to the circuit. Define λe,x[H ′] to be the truth value obtained

by taking the circuit λe,x and for each atom “(z, r) ∈ ov(H)” using the truth value

of “(z, r) ∈ ov(H ′)” in its place. In order to satisfy the requirement Re, we would

like to find some x such that λe,x[H] 6= L(x), where L(x) is the characteristic function

of L. The problem is that at a given stage s we can “guess” at the value of λe,x[H]

by computing λe,x[H∗], but in general we cannot know the value of λe,x[H] for sure,

because as H∗ evolves the value of λe,x[H∗] may change. The main difficulty is that the

function K is out of our control and determining whether (z, r) ∈ ov(H) is in general

an uncomputable task.

We do have some influence over the situation though, due to our control of F .

Indeed, for any atom “(z, r) ∈ ov(H)”, we can ensure that the truth value of the

atom is 1 by enumerating (z, r − 3) into ov(F ). (Note that for all x, the value of

H∗(x) can only decrease over time). We have to be careful about making this type

of change though; if we are too liberal in modifying F we may violate the condition∑
x∈{0,1}∗ 2−H(x) ≤ 1/8 in the process. Thus the construction becomes a balancing act

– we will try to use F to satisfy Re while at the same time maintaining the invariant

that
∑

x∈{0,1}∗ 2−H
∗(x) ≤ 1/8 . (In particular, if Fs is the function F ∗ at the beginning

of stage s, for all x we will not want lims→∞ Fs(x) to be very much smaller than K(x)).

As part of our solution, for each Re we will find a suitable witness x and set up

a game Ge,x played between us (making moves by enumerating elements into ov(F )),
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and K, who makes moves by enumerating elements into ov(K). (Even though elements

are obliviously enumerated into ov(K) according to some fixed enumeration we will

treat K as if it is a willful adversary). The witness x will be chosen so that we have

a winning strategy; as long as K continues to make legal moves we can respond with

changes to F (our own legal moves) that both assure that Re is satisfied and that∑
x∈{0,1}∗ 2−H

∗(x) ≤ 1/8. Our ability to find such a witness x follows from our assump-

tion that the computable language L is not in PSPACE; if no such witness exists, then

membership in L reduces to finding which player has a winning strategy in one of these

games, which can be done in PSPACE.

It is possible that K will cheat by enumerating elements into ov(K) in such a way

that it plays an illegal move. In this case we will simply destroy the game Ge,x and

start all over again with a new game Ge,x′ , using a different witness x′. However we will

be able to show that if K cheats infinitely often on games associated with a particular

requirement Re, then
∑

x∈{0,1}∗ 2−K(x) diverges. This contradicts K being a prefix

complexity function. Hence K can only cheat finitely often.1

The requirements R1, R2, R3, . . . are listed in priority ordering. If during stage s a

move is played on a game Ge,x, we say that Re is “acting”. In this case for all e < e′ ≤ s,

if Ge′,y is the game associated with Re′ currently being played, we destroy this game

and start a new game Ge′,y′ with some new witness y′. When this happens we say that

each of the Re′ has been “injured” by Re. The reason this works in the end is that at

some point R1, R2, . . . , Re−1 have stopped acting, so Re will no longer ever be injured

by some higher priority requirement.

2.2.3 Description of the Games

Now let us describe one of the games Ge,x in more depth and provide some analysis

of the game. Let the inputs to the Boolean circuit λe,x (encoded by γe(x)) be labeled

by the atoms {(z1, r1), . . . , (zk, rk)}. Let Xe = {z1, . . . , zk}. Note that the queries

1This reliance on the convergence of
P
x∈{0,1}∗ 2−K(x) is the key reason why our proof does not go

through in the case where we consider the plain complexity C(x) as opposed to the prefix complexity
K(x).



20

in this reduction are of the form: “Is H(zi) ≤ ri?”. If H∗(zi) ≤ ri then we already

know H(zi) ≤ ri, so we can replace that input to the circuit with the value TRUE and

simplify the circuit accordingly. Renumber the z’s, rename k to again be the number

of questions, and rename Xe to be the set of all z’s being asked about. When we are

done we have atoms {(z1, r1), . . . , (zk, rk)} and we know that (∀zi ∈ Xe)[H∗(zi) > ri].

We make one more change to Xe. If there exists an element zi such that zi ∈ Xe and

zi ∈ Xe′ for some e′ < e, then changing H∗ on the value zi during the game Ge,x could

affect the game associated with the requirement Re′ , which would upset our priority

ordering. Hence we will take

Xe = Xe −
⋃
e′<e

Xe′ .

This will ensure that Re cannot injure any Re′ with e′ < e.

While working on requirement Re we will need to evaluate the circuit λe,x. This

will involve answering queries of the form H(z) ≤ r. There will be two types of queries:

• If z ∈
⋃
e′<eXe′ then we answer FALSE, which is the correct value unless the

appropriate Re′ acts. However, if this occurs, then all of the work done on Re will

be wiped out anyway.

• If x ∈ Xe then we answer with the status of H∗(z) ≤ r. The key is that we have

some control over this if the answer is FALSE and may purposely change it.

Let H∗e,x be the function H∗ when the game Ge,x is first constructed. Let ε =

2−e−ie−6. (How ie is determined will be explained later). The game Ge,x is played on a

labeled DAG. The label of each node of the DAG has the following two parts:

1. A function h that maps Xe to N. The function h provides conjectured values

for H restricted to Xe. The function h will be consistent with H∗e,x in that

(∀i)[h(zi) ≤ H∗e,x(zi)].

2. A truth value VAL, which is the value of λe,x assuming that (∀z ∈ Xe)[H(z) =

h(z)]. Note that this will be either YES or NO indicating that either, under

assumption (∀z ∈ Xe)[H(z) = h(z)], λe,x thinks x ∈ L or thinks x /∈ L.
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There is a separate node in the DAG for every possible such function h.

Let us place an upper bound on the size of this DAG. The set Xe contains at most

|x|e queries. For any query zi, H(zi) can take at most 2|zi|+ 6 values (since it is always

bounded by F ∗(zi)+3). Note also that |zi| ≤ |x|e. Thus there are at most (2|x|e+6)|x|
e

possible choices for h. For all large x this is bounded by 2|x|
2e

, so note that we can

represent a particular node in the DAG with |x|2e + 1 bits.

We now describe the start node and how to determine the edges of the DAG.

1. There is a node (h,VAL) where h = H∗e,x restricted to Xe. This is the start node

and has indegree 0.

2. There is an edge from (h,VAL) to (h′,VAL′) if for all zi ∈ Xe, h(zi) ≥ h′(zi) (so

it is possible that H∗ could at some point evolve from H∗e,x to h, and then at a

later point evolve from h to h′.)

The game Ge,x is played between two players, the YES player and the NO player.

Each player has a score, which originally is zero, and represents how much the player

has been penalized so far in the game. (In other words a high score is bad). The game

starts with a token placed on the start node. The YES player goes first (although this

choice is arbitrary), after which the players alternate moves.

On a given turn a player can either leave the token where it is or move the token

to a new node in the DAG. Suppose a player moves the token from a node t to a node

t′, where h is the function labeling t and h′ is the function labeling t′. In this case we

add
∑

zi∈Xe(2
−h′(zi) − 2−h(zi)) to the player’s score.

A player can legally move the token from node t to t′ if

1. There is an edge from t to t′ in the game DAG.

2. The score of the player after making the move does not exceed ε.

The YES player wins if the token ends up on a node such that VAL = YES, and

the NO player wins if the token ends up on a node such that VAL = NO. Note that

because the game is entirely deterministic, for a given game Ge,x, either the YES player
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has a winning strategy or the NO player has a winning strategy. Let val(Ge,x) = 1 if

the YES player has a winning strategy on the game Ge,x and val(Ge,x) = 0 otherwise.

During the actual construction the games will be played between us (the construc-

tion) trying to make the computation go one way, and K (which we do not control)

trying to make it go (perhaps) another way. We will always ensure that we play the side

of the player who has the winning strategy in the game. We will effect our moves by

enumerating elements into ov(F ), which changes F ∗ and hence H∗. (To move the token

to a node labeled with the function h, we modify H∗ so that h equals H∗ restricted

to the set Xe) The K moves will occur when a new element is enumerated into ov(K)

at the beginning of each stage, which changes K∗ and hence H∗. (In this case K is

moving the token to the node in the game DAG labeled by the new H∗).

The key is that the players’ scores measure how much the sum
∑

x∈{0,1}∗ 2−H
∗(x)

has gone up, which we bound by not allowing a player’s score to exceed ε. (Of course K

is oblivious to the rules of the game and will at times cheat – we take this into account

as part of our analysis.) One final note: it is possible that K will simply stop playing

a game in the middle and never make another move. This will not matter to us in the

construction; what is important is that we have a winning strategy and if K does move

we always have a winning response.

2.2.4 The Formal Construction

We now present the formal details of the stage construction.

Stage 0:

• Let F ∗ initially be defined as F ∗(x) = 2|x|+ 3.

• Let K be the standard prefix complexity function, and K∗ initially be the empty

function.

• At all times throughout the construction, we have that H∗(x) = min(K∗(x) +

5, F ∗(x) + 3). (In the case where K∗(x) is undefined, let H∗(x) = F ∗(x) + 3). We

will define Hs to be the function H∗ as it is at the beginning of stage s.
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• For all e, set ie = 0. In the future ie will be the number of times Re has been

injured by the requirements Re′ , 1 ≤ e′ ≤ e− 1.

• Let HEAP be an object that enumerates strings in the normal lexicographical

order. So the first time that HEAP is called it returns the string ‘0’, the second

time it returns ‘1’, then ‘00’, ‘01’, etc.

Stage s (for s ≥ 1):

Let (x′, y′) be the sth element in the fixed enumeration of ov(K). Update K∗ by

setting K∗(x′) = min(K∗(x′), y′). (This automatically updates H∗ as well)

(**) For 1 ≤ e ≤ s we consider requirement Re.

There are two possibilities:

1. There is no game associated with Re in progress. This can occur because either

e = s or because the game associated with Re was destroyed during the last

round.

In this case we continue to get strings from HEAP until a string x is found that

has the following property:

• If we define a new game Ge,x using the current H∗, then val(Ge,x) 6= L(x),

where L(x) is the characteristic function of L.

We will later show in Claim 4 that in a finite number of steps we will always find

such an x.

Once we have found the string x, construct the game Ge,x in the way described

in the previous section and begin the game. For this game, we will play as the

YES player if val(Ge,x) = 1, and as the NO player if val(Ge,x) = 0. (That is, we

will always play as the player who has a winning strategy for the game).

2. The game associated with Re is already in progress (again call this game Ge,x).

There are a few sub-cases to consider.

(a) K has not changed on Xe at all since the last stage. We do nothing.
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(b) K on Xe has changed so much that the move K plays causes his score to

exceed ε (i.e. K “cheats”). In this case we destroy the game Ge,x.

(c) It is our turn in Ge,x, either because the token is on the start node of the

DAG and we are the YES player, or because K on Xe has changed in a way

that his score does not exceed ε, so he has played a legal move.

In this case we play the move dictated by our winning strategy (which we

can assume we have stored or which we can recompute each time). This may

be to do nothing or it may involve moving the token to a new node, in which

case we change H∗ accordingly by enumerating elements into ov(F ).

If either case (b) or (c) occurs, we say that “Re is acting”, in which case for all e′

such that s ≥ e′ ≥ e+ 1: Set ie′ to ie′ + 1 and destroy the game associated with

Re′ . Note: ie does not change in case (b), even though Ge,x is destroyed.

If Re acts then proceed to the next stage. Otherwise return to (**) and process

the next e.

END OF CONSTRUCTION

2.2.5 Wrapping up the Proof of the Main Theorem

Claim 2.2.8. For all e, each Re acts at most finitely often and is satisfied.

Proof. We prove this by induction on e. Assume that the claim is true for all e′ < e.

We show that the claim holds for e. By the inductive hypothesis there exists a stage s′

such that, for all s ≥ s′, for all e′ < e, Re′ does not act at stage s.

Let Ge,x be the game associated with Re at stage s. If Ge,x is never destroyed in a

later stage, then (by construction) Re will be satisfied (since for H = lims→∞Hs, our

winning strategy ensures that γe,x[H] evaluates to YES if and only if x is not in L).

Suppose that Ge,x is destroyed at some point. Then, since by the inductive hypothe-

sis Re cannot be injured by higher priority requirements, by the rules of the construction

it must be that the “player” K cheats on the game Ge,x. In doing this, K is adding at

least ε = 2−e−ie−6 to
∑

x∈Xe 2−K
∗(x) and hence to

∑
x∈{0,1}∗ 2−K

∗(x).
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Once K cheats and destroys the game Ge,x, a new witness x′ is found and a new

game Ge,x′ is started during the next stage. Once again if this game is never destroyed

then Re will be satisfied. If this game is also later destroyed, this means that another

ε = 2−e−ie−6 is added to
∑

x∈{0,1}∗ 2−K
∗(x). The crucial observation is that since ie did

not change, this is the same ε as before.

This process keeps repeating. If the games associated with Re continue to be de-

stroyed indefinitely, then
∑

x∈{0,1}∗ 2−K(x) ≥ ε+ ε+ · · · so it diverges. This contradicts

K being a prefix free entropy function.

Hence eventually there is some game Ge,x′′ that is played throughout all the rest of

the stages. Since the game DAG for Ge,x′′ is finite, this means that eventually Re stops

acting and is satisfied.

Claim 2.2.9.
∑

x∈{0,1}∗ 2−H(x) ≤ 1
8 .

Proof. We have that H = lims→∞Hs, and thus

∑
x∈{0,1}∗

2−H(x) =
∑

x∈{0,1}∗
2−H0(x) +

∑
s≥1

∑
x∈{0,1}∗

(2−Hs+1(x) − 2−Hs(x)).

That is, we can bound the sum by bounding H0 and by bounding the changes that

occur to H over the lifetime of the construction (some of which are made by K, and

some by F ).

Originally H∗(x) = F ∗(x) + 3 = 2|x|+ 6 for all x, so
∑

x∈{0,1}∗ 2−H0(x) = 1
32 .

The total contribution that K can make to
∑

x∈{0,1}∗ 2−H(x) is bounded by the ex-

pression
∑

x∈{0,1}∗ 2−K(x)+5. Since K is a prefix free entropy function, this contribution

is at most 1/32.

Let us now consider the total contribution that F makes to
∑

x∈{0,1}∗ 2−H(x) due

to movements by F on games on which K eventually cheats. On each of these games

F contributes less to
∑

x∈{0,1}∗ 2−H(x) than K, so from the above we can say that the

total contribution that F makes to
∑

x∈{0,1}∗ 2−H(x) while playing these games is at

most 1/32.
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Finally, let us consider the total contribution that F makes to
∑

x∈{0,1}∗ 2−H(x)

due to movements by F on games that are never destroyed, or are destroyed by higher

priority requirements. Consider such games associated with a particular requirement

Re. During the first such game associated with Re, ie = 0, so F can change at most

ε = 2−e−ie−6 = 2−e−6. On the second such game associated with Re, ie = 1, so F

can change at most ε = 2−e−7. Generalizing, we see that the total contribution that F

makes to
∑

x∈{0,1}∗ 2−H(x) on such games associated with Re is

∞∑
i=6

2−e−i = 2−e
∞∑
i=6

2−i = 2−e−5

Hence, the total contribution that F makes to
∑

x∈{0,1}∗ 2−H(x) on games that are never

destroyed, or are destroyed by higher priority requirements is at most
∑∞

e=1 2−e−5 =

1
32 .

Putting all this information together we have that

∑
x∈{0,1}∗

2−H(x) ≤ 1
32

+
1
32

+
1
32

+
1
32

=
1
8

All that remains is to show that whenever a new game associated with Re is con-

structed, a witness x with the appropriate property can be found. Recall that we are

searching for an x such that

• If we define a new game Ge,x using the current H∗, then val(Ge,x) 6= L(x), where

L(x) is the characteristic function of L.

Claim 2.2.10. In the above situation, a witness with the desired property can always

be found in a finite number of steps

Proof. Suppose for contradiction that during some stage s for some e we are not able

to find such an x. Let y be the last string that was taken from HEAP before this

endless search for an x began. This means that for all strings x > y (under the normal

lexicographical ordering), when we construct the game Ge,x, val(Ge,x) = L(x). But this

gives a PSPACE algorithm to decide L, which we now describe.
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Hardwire in the value of L(x) for every x ≤ y. Also hardwire in the function H∗ at

this moment in the construction and Xe′ for all e′ ≤ e. (It is possible to hardwire in

H∗ because at any given moment in the construction only finitely many elements have

been enumerated into ov(F ) and ov(K).)

On an input x ≤ y, refer to the lookup table to decide L(x). On an input x > y, use

the stored values of H∗ and the Xe′ ’s to construct Ge,x and output val(Ge,x). As noted

previously, for all large x we can represent a particular node in the DAG of Ge,x with

|x|2e+1 bits. Despite the fact that there are exponentially many nodes in the graph, an

alternating polynomial-time Turing machine can search for winning strategies on the

DAG, as follows:

Note that the number of moves in the game is bounded by a polynomial in |x|, since

each move in the game involves lowering the value of H∗(z) for one of the polynomially-

many queries z. Thus, to determine if a player has a winning strategy from some game

position C (represented by the circuit λe,x, along with the values of H∗ restricted to

the set Xe that is used in the game Ge,x), it suffices to check if there exists a move for

this player causing the circuit λe,x to take on the desired value, and such that for every

move of the opposing player, there exists a move of this player that again causes λe,x

to take on the desired value, such that . . . until there are no more legal moves possible

for the opposing player. We can represent any state of the game (i.e., the node where

the token currently lies, plus the scores of the players) by a number of bits bounded by

a polynomial in |x|. Given the functions h and h′ for any two nodes in the DAG, along

with the scores of each player, it is easy to determine in polynomial time if it is legal to

move from h to h′, and to compute the scores of each player after the move. (It suffices

to verify that for all z, h(z) ≤ h′(z), and to add up a polynomial number of rationals

of the form a/2b where b = nO(1).) As mentioned above, the length of any path in the

DAG is bounded by a polynomial in n (since the values of h always decrease). Thus,

determining winning strategies is possible in alternating polynomial time.

Since alternating polynomial time is equal to PSPACE [CKS81], this contradicts

the fact that L 6∈ PSPACE.
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This concludes the proof of Theorem 2.2.6.

2.2.6 Proofs of Other Main Results

We now restate and prove the other main results from this chapter.

Theorem 2.2.11 (Restatement of Theorem 2.1.13). ∆0
1 ∩

⋂
U{A : A≤p

mttRKU } ⊆

coNP ∩ P/poly.

Proof. The containment in P/poly comes from [ABK06a].

Note that a reduction showing L≤p
mttRKU corresponds to an anti-monotone reduc-

tion to ov(KU ) (where the only queries are of the form “Is KU (z) < |z|?”) Thus this

same reduction is an anti-monotone reduction from the complement of L to the com-

plement of RKU . If we replace each Boolean function in this anti-monotone reduction

with its complement, we obtain a monotone reduction of L to ov(KU ).

Thus it suffices to show that any set that is ≤p
mtt -reducible to the overgraph ov(KU )

for every U is in NP.

The proof of this containment is almost identical to the proof of Theorem 2.2.6. The

only difference is now we consider an arbitrary language L 6∈ NP, and must show that

when a game Ge,x is constructed corresponding to a polynomial time monotone truth

table reduction γe, determining whether val(Ge,x) = 1 can be computed in NP. Note

that in the monotone case, the NO player of the game has no incentive to ever make

a move, as doing so could only change the value of the circuit λe,x from NO to YES.

Therefore whether the YES player has a winning strategy in the game depends solely

on whether the YES player can legally move the token from the start node to a node u

in the game DAG labeled by YES. This is an NP question – the certificate is the node

u, which as we have seen can be represented by a polynomial number of bits in |x|.

Theorem 2.2.12 (Restatement of Theorem 2.1.12). ∆0
1 ∩
⋂
U NPRKU ⊆ EXPSPACE.

Proof. An NP-Turing reduction can be simulated by a truth-table reduction computable

in exponential time, where all queries have length bounded by a polynomial in the
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input length. Carrying out the same analysis as in the proof of Theorem 2.2.6, but

changing the time bound on the truth-table reductions from polynomial to exponential,

immediately yields the EXPSPACE upper bound.

2.3 Encoding in the Overgraph

We conjecture that our main results can be improved in several ways. In this section,

we consider one type of improvement, and we present some reasons why a different

proof strategy will be required in order to obtain such an improvement.

Theorem 2.2.6 shows that, for every decidable set A outside PSPACE, there is

some universal prefix machine U such that A 6≤ptt RKU . It is natural to ask if there is a

decidable set A such that, for every universal machine U , A 6≤ptt RKU . It is plausible that

this holds for every decidable set A that is not in P/poly, a hypothesis that we explore

more closely in the next chapter. (Some weaker results in this direction have been

proved. It is known that if a decidable set A has high-enough non-uniform complexity,

then for any universal machine U , any ≤p
tt reduction from A to RCU must make at

least n/4 log n queries [ABK06a]. Related questions were also explored by Hitchcock

[Hit10].)

However, the following theorem shows that no such improvement can carry over to

the overgraph ov(RKU ), which suggests that quite different techniques may be required

than were employed in this chapter. (Related observations occur in [MP02, Theorem

2.6].)

Theorem 2.3.1. Let A be a computable set. Then there exists a universal (prefix)

machine U such that A≤p
ttov(CU ) (A≤p

ttov(KU ), respectively).

Proof. We present the proof for ov(KU ). It is clear that the proof carries over also for

the case of ov(CU ).

Let M be the universal prefix machine that defines K(x).

Consider the machine U that does not halt on any input in 00{0, 1}∗, and behaves

as follows on inputs of the form 1d or 01d for any string d:
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1. Simulate M(d), and if it halts, let the output be x (so that K(x) ≤ |d|).

2. Determine if x ∈ A or not.

3. (a) If x ∈ A and |d| is even, then U(1d) = x and U(01d) = ↑.

(b) If x ∈ A and |d| is odd, then U(1d) = ↑ and U(01d) = x.

(c) If x 6∈ A and |d| is even, then U(1d) = ↑ and U(01d) = x.

(d) If x 6∈ A and |d| is odd, then U(1d) = x and U(01d) = ↑.

Note that U is a prefix machine, and that for all x KU (x) ≤ K(x) + 2.

Clearly, x ∈ A if and only if KU (x) is odd. This can be determined by making a

linear number of truth-table queries to ov(KU ).

2.4 Perspective and Open Problems

How should one interpret the theorems presented here?

Prior to this work, the inclusion NEXP ⊆ NPRK was just a curiosity, since it was not

clear that it was even meaningful to speak about efficient reductions to an undecidable

set. Here, we show that if we view RK not as merely a single undecidable set, but as a

class of closely-related undecidable sets (differing only by the “insignificant” choice of

the universal Turing machine U), then the computable sets that are always in NPRK is a

complexity class sandwiched between NEXP and EXPSPACE. The obvious question is

whether this class is actually equal to NEXP (or to EXPSPACE). Any characterization

of a complexity class in terms of efficient reductions to a class of undecidable sets would

raise the possibility of applying techniques from computability theory to questions in

complexity theory, where they had seemed inapplicable previously.

One possible objection to the theorems presented here is that they make use of

universal Turing machines U that are far from “natural”. However, we see little to be

gained in trying to formulate a definition of a “natural” universal Turing machine. Even

basic questions such as whether there is a truth-table reduction from the Halting Prob-

lem to RK depend on the choice of the universal Turing machine U [MP02, ABK06a],
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and the only machines for which the answer is known (positive and negative) are all

decidedly “unnatural”. A detailed study of analogous questions that arise when one

considers other variants of Kolmogorov complexity (such as various types of “monotone”

Kolmogorov complexity) has been carried out by Day [Day09].

All of the positive results, showing that problems are efficiently reducible to RK

hold using a quite general notion of “universal Turing machine”, and we believe that

the approach used here and in [ABK06a] to “factor out” the idiosyncrasies of individual

universal machines is a more productive route to follow.

Alternatively, one can view our results as placing limits on what sets can be proved

to be reducible to RK , using only an “axiomatic” approach to Kolmogorov complexity.

Let us expand on this view. The theory of Kolmogorov complexity (for instance, as

developed in [LV08]) relies on the existence of universal machines U , in order to develop

the measures K and C, but no properties are required of such machines U , other than

that, for any other (prefix) machine M , ∃cM∀xCU (x) ≤ CM (x) + cM (or KU (x) ≤

KM (x) + cM , respectively). The rest of the theory can proceed, using just this axiom

about the machine U that defines C or K.

Our results show that, for any decidable set A outside of EXPSPACE, A cannot

be proven to lie in NPRK without introducing additional axioms describing additional

properties of the universal machine that defines K. One could pursue the same types

of questions that we do in this chapter using a more stringent definition of what con-

stitutes a universal machine, but at the cost of adding additional axioms to the study

of Kolmogorov complexity that in some sense are not strictly necessary.

As mentioned in the introduction to this chapter, we conjecture that our main

theorems hold even if “∆0
1∩” is erased from the statement of the theorems, and if the

plain complexity is substituted for the prefix complexity. However, the proof technique

used in this chapter makes explicit use of the computability of the language L during the

diagonalization construction, and also relies on the fact that K(x) is a prefix-entropy

function, so currently these problems remain open.

The theorems presented here all relativize. For instance, for any computable oracle

B, if A 6∈ PSPACEB, then there is a universal prefix Turing machine U such that
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A 6≤PB

tt RKU . (Note that, for computable oracles B, there is no need to “relativize”

RKU . A similar restatement is possible for noncomputable oracles B, too.) However, it

seems quite possible to us that, say, if it were possible to characterize NEXP in terms of

NPRK , that this might proceed via nonrelativizable techniques. Whether or not these

hopes come to fruition, the types of characterizations of complexity classes investigated

in this chapter are quite different than those that have been studied in the past, and

we hope that new insights will result as new connections are explored.
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Chapter 3

The Time-Bounded Kolmogorov Complexity Case

3.1 Introduction

Let us for notational convenience define a shorthand for one of the new complexity

classes that was introduced in the previous chapter:

Definition 3.1.1 (Deterministic Truth-Table Reductions to the Random Strings: DTTR).

DTTR = ∆0
1 ∩
⋂
U{A : A≤p

ttRKU }

Recall that combining the main theorem of the last chapter with previous results,

we were able to derive the following chain of inclusions:

BPP ⊆ DTTR ⊆ PSPACE ⊆ PRK

A natural question is whether DTTR sits closer to BPP or PSPACE. In [ADF+12] it

was conjectured that DTTR actually characterizes BPP exactly, the idea being that

a polynomial-time truth-table reduction from RK to a decidable language can only

exploit RK as a source of pseudorandomness. As mentioned previously, proving such a

conjecture would allow us to use tools from Kolmogorov complexity to study questions

about the class BPP, and as we will discuss in section 3.6, could possibly even be a

route towards proving BPP = P that avoids some known barriers.

In [ADF+12] it was suggested that a good first step towards proving DTTR = BPP

would be to improve the upper bound from DTTR ⊆ PSPACE to DTTR ⊆ PSPACE ∩

P/poly. Because there are not really natural complexity classes that lie between BPP

and PSPACE∩P/poly, this would be evidence that BPP = DTTR. [ADF+12] actually

lays out an entire strategy for getting this improved upper bound. The idea is to show

that any machine M computing a polynomial-time truth-table reduction from R to a
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decidable language L cannot make use of queries of length greater than O(log n). This

would immediately imply a P/poly upper-bound, as we can encode the answers to all

queries of length at most O(log n) as an advice string of length poly(n), and then give

this advice string to the machine M in place of the oracle R. (The machine M would

answer NO to any of its queries about whether a string of length greater than O(log n)

was in R). [ADF+12] also linked these problems to questions in logic by demonstrating

that if certain true statements were provable in various formal systems of arithmetic,

then the DTTR ⊆ P/poly inclusion would follow via the above strategy.

In this chapter we show that the above approach must fail, or at least that it requires

significant changes. Interestingly, we can also prove that this intuition — that the large

queries can be answered with NO — can be used to show the P/poly inclusion if we

use a time-bounded variant of Kolmogorov complexity, Kt. While demonstrating this

discrepancy we show several other ways in which reductions to RK and RKt are actually

very different; in particular, we construct a counter-intuitive example of a polynomial-

time non-adaptive reduction that distinguishes RK from RKt , for any sufficiently large

time-bound t.

To investigate the time-bounded Kolmogorov complexity setting we define a class

TTRT as a time-bounded analog of DTTR; informally, TTRT is the class of problems

that are polynomial-time truth-table reducible to RKt for every sufficiently fast-growing

time-bound t, and every “time-efficient” universal Turing machine used to define Kt.

We prove that, for all monotone nondecreasing computable functions α(n) = ω(1),

BPP ⊆ TTRT ⊆ PSPACE/α(n) ∩ P/poly.

Here, PSPACE/α(n) is a “slightly non-uniform” version of PSPACE. We believe that

this indicates that TTRT is “closer” to BPP than it is to PSPACE.

It would be more appealing to avoid the advice function, and we are able to do

so, although this depends on a fine point in the definition of time-efficient prefix-free

Kolmogorov complexity. This point involves a subtle technical distinction, and will be

left for the appropriate section. To summarize:

• In Section 3.3 we prove that TTRT ⊆ P/poly, by using the same basic idea of
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[ADF+12]. We further show, however, that this approach will not work to prove

DTTR ⊆ P/poly, and by reversing the logic connection of [ADF+12], this will

give us an independence result in certain extensions of Peano arithmetic.

• Then in section 3.4 we prove that TTRT ⊆ PSPACE/α(n), which is a non-trivial

adaptation of the techniques from [AGF13]. In section 3.5 we show how to get an

analogous result without the super-constant advice term.

In section 3.6 and section 3.7 we discuss prospects for future work.

3.2 Preliminaries

For a set A of strings, let A≤n denote the set of all strings of length at most n in A.

In this chapter, a function t : N → N is called a “time-bound” if it is non-decreasing

and time-constructible. We use the following time-bounded version of Kolmogorov

complexity:

Definition 3.2.1 (Time-bounded Kolmogorov Complexity). For a prefix machine M

and a time-bound t, Kt
M (x) is the length of the smallest string y such that on input y

M halts in fewer than t(|x|) time steps and outputs x.

Let us define what it means for a machine to be “universal” in the time-bounded

setting:

Definition 3.2.2. A prefix machine U is a time-efficient universal prefix machine if

there exist constants c and cM for each prefix machine M , such that

1. ∀x, KU (x) ≤ KM (x) + cM , and

2. ∀x, Kt
U (x) ≤ Kt′

M (x) + cM for all t > t′c.

Then RKt
U

is the set of Kt
U -random strings: {x|Kt

U (x) ≥ |x|}.

Now we can formally define the time-bounded analogue of DTTR:

Definition 3.2.3. TTRT is the class of languages L such that there exists a time bound

t0 (depending on L) such that for all time-efficient universal prefix machines U and for

all time-constructible t ≥ t0, L ≤ptt RKt
U

.
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The proof of Corollary 12 in [BFKL10] shows that, if t ≥ t0 = 222n
, then BPP ≤ptt

RKt
U

, for any time-efficient universal U . This implies:

Theorem 3.2.4 ([BFKL10]). BPP ⊆ TTRT.

Now we prove some basic facts about time-bounded prefix-free Kolmogorov com-

plexity.

Proposition 3.2.5. For any machine M and t′(|x|) > 2|x|t(|x|), the answer to the

query “x ∈ RKt
M

?” can be computed in time t′.

Proof. Simulate the machine M on every string of length less than |x| for t(|x|) steps.

Because there are fewer than 2|x| such strings, the bound follows.

Proposition 3.2.6. Let L ≤ptt RKt
U

for some time-bound t. Then there exists a constant

k such that the language L can be computed in tL(n) = 2n
k
t(nk) time.

Proof. Let M be a machine that computes L by running the polynomial-time truth-

table reduction from L to RKt
U

, and computing by brute-force the answer to any queries

from the reduction. Using Proposition 3.2.5, we have that for large enough k, M runs

in at most tL(n) = 2n
k
t(nk) time, so L is decidable within this time-bound.

It is the ability to compute RKt for short strings that makes the time-bounded case

different from the unbounded case. This will be seen in proofs throughout the chapter.

3.3 How and Why to Distinguish RK from RKt

At first glance, it seems reasonable to guess that a polynomial-time reduction would

have difficulty telling the difference between an oracle for RK and an oracle for RKt ,

for large enough t. Indeed RK ⊆ RKt and in the limit for t→∞ they coincide.

One might even suspect that a polynomial-time reduction must behave the same

way with RKt and RK as oracle, already for modest time bounds t. However, this

intuition is wrong. Here is a counter-example for adaptive polynomial-time reductions.
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Observation 3.3.1. There is a polynomial-time algorithm which, given oracle access

to RK and input 1n, outputs a K-random string of length n. However, for any time-

bound t such that t(n+1)� 2nt(n), there is no polynomial-time algorithm which, given

oracle access to RKt and input 1n, outputs a Kt-random string of length n.

For the algorithm, see [BFNV05]; roughly, we start with a small random string and

then use [BFNV05, Theorem 15] (described later) to get a successively larger random

string. But in the time-bounded case in [BM97] it is shown that on input 1n, no

polynomial-time machine M can query (or output) any Kt-random string of length n:

in fact, M(1n) is the same for both oracles RKt and R′ = R≤n−1
Kt . This is proven as

follows: since R′ can be computed in time t(n) (by Proposition 3.2.5), then any query

of length ≥ n made by MR′(1n) is described by a pointer of length O(log n) in time

t(n), and hence is not in RKt .

3.3.1 Small Circuits for Sets Reducible to RKt

We now prove that TTRT is a subset of P/poly. Actually, we will prove that this holds

even for Turing reductions to RKU , (for every universal Turing machine U):

Theorem 3.3.2 ([ABFL12a]). Suppose A ∈ DTIME(t1) and M : A ≤pT RKt, for some

time-bounds t, t1 with t(n+ 1) ≥ 2nt(n) + 22nt1(2n).1 Then A ∈ P/poly; in fact, if M

runs in time nc, and R′ = R
≤d(c+1) logne
Kt , then ∀x ∈ {0, 1}n MR′(x) = A(x).

Proof. Let `(n) = d(c+ 1) log ne, R′(n) = R
≤`(n)
Kt , and suppose that MR′(n)(x) 6= A(x)

for some x of length n. Then we may find the first such x in time 2`(n)t(`(n)) +

2n+1(t1(n) + O(nc)) (cf. Proposition 3.2.5), and each query made by MR′(n)(x) can

be output by a program of length c log n + O(1), running in the same time bound.

But since A(x) 6= MR′(n)(x), it must be that, with R′(n) as oracle, M makes some

query q of size m ≥ `(n) + 1 which is random for t-bounded Kolmogorov complexity

(because both small and nonrandom queries are answered correctly when using R′

instead of RKt). Hence we have both that q is supposed to be random, and that q can

1For example, if A ∈ EXP, then t can be doubly-exponential. If A is elementary-time computable,
then t can be an exponential tower.
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be output by a program of length < `(n) in time 2`(n)t(`(n)) + 2n+1(t1(n) +O(nc))�

2`(n)t(`(n)) + 22`(n)
t1(2`(n)) ≤ t(`(n) + 1) ≤ t(m), which is a contradiction.

Corollary 3.3.3 ([ABFL12a]). TTRT ⊆ P/poly.

Proof. Let L ∈ TTRT. By the definition of TTRT, L ≤ptt RKt0 for some t0. Using

Proposition 3.2.6, we then have that L is decidable in time tL(n) = 2n
k
t0(nk) for some

constant k. Choose a time-bound t such that t(n + 1) ≥ 2nt(n) + 22ntL(2n). By the

definition of TTRT, since t > t0, we have that L ≤ptt RKt
U0

, from which by Theorem

3.3.2 it follows that L ∈ P/poly.

PSPACE ≤pT RK [ABK+06b], but Theorem 3.3.2 implies that PSPACE 6≤pT RKt for

sufficiently-large t, unless PSPACE ⊆ P/poly. This highlights the difference between

the time-bounded and ordinary Kolmogorov complexity, and how this comes to the

surface when working with reductions to the corresponding sets of random strings. We

wish to emphasize at this point that the proof of the inclusion PSPACE ≤pT RK relies

on the ability of a PRK computation to construct a large element of RK , whereas the

P/poly upper bound in the time-bounded case relies on the inability to use the oracle

to find such a string, in the time-bounded setting.

3.3.2 A Reduction Distinguishing RK from RKt and an Incorrect Con-

jecture

Theorem 3.3.2 shows that a polynomial-time truth-table reduction toRKt for sufficiently-

large t will work just as well if only the logarithmically-short queries are answered

correctly, and all of the other queries are simply answered NO.

The authors of [ADF+12] conjectured that a similar situation would hold if the oracle

were RK instead of RKt . More precisely, they proposed a proof-theoretic approach

towards proving that DTTR is in P/poly: Let PA0 denote Peano Arithmetic, and

for k > 0 let PAk denote PAk−1 augmented with the axiom “PAk−1 is consistent”. In

[ADF+12] it is shown that, for any polynomial-time truth-table reduction M reducing a

decidable set A to RK , one can construct a true statement of the form ∀n∀j∀kΨ(n, j, k)
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(which is provable in a theory such as Zermelo-Frankel), with the property that if, for

each fixed (n,j,k) there is some k′ such that PAk′ proves ψ(n,j,k), then DTTR ⊆ P/poly.

Furthermore, if these statements were provable in the given extensions of PA, it would

follow that, for each input length n, there is a finite subset R′ ⊆ RK consisting of

strings having length at most O(log n), such that MR′(x) = A(x) for all strings x of

length n.

Thus the authors of [ADF+12] implicitly conjectured that, for any polynomial-time

truth-table reduction of a decidable set to RK , and for any n, there would be some

setting of the short queries so that the reduction would still work on inputs of length

n, when all of the long queries are answered NO. While we have just seen that this

is precisely the case for the time-bounded situation, the next theorem shows that this

does not hold for RK , even if “short” is interpreted as meaning “of length < n”. (It

follows that infinitely many of the statements ψ(n,j,k) of [ADF+12] are independent of

every PAk′ .)

Theorem 3.3.4 ([ABFL12a]). There is a truth-table reduction M : {0, 1}∗ ≤ptt RK ,

such that, for all large enough n:

∀R′ ⊆ {0, 1}≤n−1∃x ∈ {0, 1}n MR′(x) 6= 1.

Proof. Theorem 15 of [BFNV05] presents a polynomial-time procedure which, given a

string z of even length n− 2, will output a list of constantly-many strings z1, . . . , zc of

length n, such that at least one of them will be K-random if z is. We use this to define

our reduction M as follows: on input x = 00 . . . 0z of length n having even |z|, we query

each of z, z1, . . . , zc, and every string of length at most log n. If there are no strings of

length at most log n in the oracle, we reject. Else, if z is in the oracle but none of the

zi are, we reject. On all other cases we accept.

By [BFNV05, Theorem 15], and since RK has strings at every length, it is clear that

M accepts every string with oracle RK , and rejects every string if R′ = ∅. However,

for any non-empty set R′ ⊆ {0, 1}≤n−1, let ` ≤ n − 1 be the highest even length for

which R′=` 6= ∅, and pick z ∈ R′=`. Then we will have z ∈ R′=` but every zi 6∈ R=`+2,

hence MR′(00 . . . 0z) rejects.
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In fact, if we let R′ = R≤n−1
Kt , for even n, then for the first x = 00z such that

MR′(x) = 0, we will have z ∈ R′ ⊆ RKt , but each zi can be given by a small pointer in

time O(2n−1t(n− 1)) (again we use Proposition 3.2.5), and hence zi 6∈ RKt for suitably

fast-growing t. Thus MRKt (x) = 0 6= MRK (x), and we conclude:

Observation 3.3.5. If t(n + 1) � 2nt(n), then the non-adaptive reduction M above

behaves differently on the oracles RK and RKt.

3.4 Polynomial Space with Advice

Our single goal for this section is proving the following:

Theorem 3.4.1 ([ABFL12a]). For any computable unbounded function α(n) = ω(1),

TTRT ⊆ PSPACE/α(n).

The proof of this theorem is patterned closely on that of Theorem 2.2.6, although a

number of complications arise in the time-bounded case. There is enough new material

that for completeness we include the entire proof here, despite the fact that there is

some overlap. One can refer to the paper [ABFL12b] for a presentation that is not self-

contained but emphasizes the differences between the proof in the time-bounded case

and the unbounded case. Before proving the theorem we present several supporting

propositions.

Proposition 3.4.2. For any time bound t and time-efficient universal prefix machine

U , ∑
x∈{0,1}

2−K
t
U (x) ≤ 1.

Proof. From the Kraft Inequality (see e.g. [LV08], Theorem 1.11.1),
∑

x∈{0,1} 2−KU (x) ≤

1 for any prefix machine U . For any time bound t and string x, Kt
U (x) ≥ KU (x), so

adding a time bound can only decrease the sum on the left side of this inequality.

Proposition 3.4.3. Let f be a function such that

1.
∑

x∈{0,1}∗ 2−f(x) ≤ 1, and
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2. there is a machine M computing f(x) in time t(|x|).

Let t′(|x|) > 22|x|t(|x|). Then for some M ′, Kt′
M ′(x) = f(x) + 2.

Proof. The proof is similar to the proof of Proposition 2.2.3. Let

E = 〈x0, f(x0)〉, 〈x1, f(x1)〉, . . .

be an enumeration of the function f ordered lexicographically by the strings xi.

We identify the set of infinite sequences S = {0, 1}∞ with the half-open real interval

[0, 1); that is, each real number r between 0 and 1 will be associated with the sequence(s)

corresponding to the infinite binary expansion of r. We will associate each element

〈xi, f(xi)〉 from the enumeration E with a subinterval Ii ⊆ S as follows:

I0 = [0, 2−f(x0)), and for i ≥ 1, Ii = [
∑

k<i 2−f(xk),
∑

k≤i 2−f(xk)). That is, Ii

is the half-open interval of length 2−f(xi) that occurs immediately after the interval

corresponding to the element 〈xi−1, f(xi−1)〉 that appeared just prior to 〈xi, f(xi)〉 in

the enumeration E.

Since
∑

i≥0 2−f(xi) ≤ 1, each Ii ⊆ S.

Any finite string z also corresponds to a subinterval Γz ⊆ S consisting of all infinite

sequences that begin with z; Γz has length 2−|z|. Given any element 〈xi, f(xi)〉, there

must exist a lexicographically first string zi of length f(xi) + 2 such that Γzi ⊆ Ii.

Observe that, since the intervals Ii are disjoint, no string zi is a prefix of any other.

Let M ′ be the following machine. On input z, M ′ runs M to compute the enumer-

ation E until it finds an element 〈xi, f(xi)〉 that certifies that z = zi. If it finds such

an element then M ′ outputs xi.

Suppose that M ′ outputs xi on input z, and let 〈xi, f(xi)〉 be the element of E

corresponding to xi. Before outputting xi, M ′ must compute |〈xj , f(xj)〉| for every

string xj such that xj < xi (under the lexicographical ordering). There are at most

2|xi|+1 strings xj such that xj < xi, so overall this will take less than 22|xi|t(|xi|) time.

M ′ will be a prefix machine, and we have that Kt′
M ′(x) = f(x) + 2.

Proposition 3.4.4 (Analogue to Proposition 2.2.4). Let U be a time-efficient universal

prefix Turing machine and let M be any prefix Turing machine. Suppose that t, t′, and
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t′′ are time bounds and f, g are two time-constructible increasing functions, such that

f is upper bounded by a polynomial, and t′′(|x|) ≥ max{f(t(|x|)), g(t′(|x|))}.

Then there is a time-efficient universal prefix machine U ′ such that

Kt′′
U ′(x) = min(Kt

U (x),Kt′
M (x)) + 1.

Proof. On input 0y, U ′ runs U on input y. If U would output string x on y after s

steps, then U ′ outputs string x after f(s) steps. Similarly, on input 1y, U ′ runs M on

input y. If M would output string x on y after s steps, then U ′ outputs string x after

g(s) steps.

Note that because U is an efficient universal prefix machine, U ′ will be an efficient

universal prefix machine as well.

Proposition 3.4.5 (Analogue of Proposition 2.2.5). Given any time-efficient universal

prefix machine U , time bound t, and constant c ≥ 0, there is a time-efficient universal

prefix machine U ′ such that Kt
U ′(x) = Kt

U (x) + c.

Proof. On input 0cx, M ′ runs M on input x, and doesn’t halt on other inputs.

Proof of Theorem 3.4.1. Fix α, and suppose for contradiction that L ∈ TTRT−PSPACE/α(n).

Let t0 be the time bound given in the definition of TTRT, and assume without loss of

generality that t0(n) is greater than the time required to compute the length of the

advice α(n), and let U0 be some arbitrary time-efficient universal prefix machine. By

the definition of TTRT, L ≤ptt RKt0
U0

. Therefore, by Proposition 3.2.6, L is decidable in

time tL(n) = 2n
k
t0(nk) for some constant k.

Let t∗(n) be an extremely fast-growing time-constructible function, so that for any

constant d, we have t∗(log(α(n))) > 2n
d
tL(n) for all large n. To get our contradiction,

we will show that there exists a time-efficient universal prefix machine U such that

L 6≤ptt RKt∗3
U

. Note that because t∗ > t0, this is a contradiction to the fact that

L ∈ TTRT.

For any function f : {0, 1}∗ → N, define Rf = {x : f(x) ≥ |x|}. We will construct a

function F : {0, 1}∗ → N and use it to form a function H : {0, 1}∗ → N such that:
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1. F is a total function and F (x) is computable in time t∗2(|x|) by a machine M ;

2. H(x) = min(Kt∗
U0

(x) + 5, F (x) + 3);

3.
∑

x∈{0,1}∗ 2−H(x) ≤ 1/8;

4. L 6≤ptt RH .

Claim 3.4.6 (Analogue of Claim 2.2.7). Given the above properties H = Kt∗3

U for some

efficient universal prefix machine U .

By Property 4 this ensures that the theorem holds.

Proof. By Property 3 we have that
∑

x∈{0,1}∗ 2−(F (x)+3) ≤ 1/8. Hence
∑

x∈{0,1}∗ 2−F (x) ≤

1. Using this along with Property 1, we then have by Proposition 3.4.3 that Kt∗3

M ′ = F+2

for some prefix machine M ′. By Proposition 3.4.5 we have that Kt∗
U ′ = Kt∗

U0
+ 4 for

some efficient universal prefix machine U ′. Therefore, by Proposition 3.4.4, with f(n) =

n3, g(n) = n, we find that H(x) = min(Kt∗
U0

(x) + 5, F (x) + 3) = min(Kt∗3

M ′ ,K
t∗
U ′(x)) + 1

is Kt∗3

U for some efficient universal prefix machine U .

All we now need to show is that, for our given language L, we can always construct

functions H and F with the four desired properties.

Let γ1, γ2, . . . be a list of all possible polynomial-time truth-table reductions from

L to RH . This is formed in the usual way: we take a list of all Turing machines and

put a clock of ni + i on the ith one and we will interpret the output on a string x as

an encoding of a Boolean circuit on atoms of the form “z ∈ RH”. (i.e. these atoms

form the input gates of the circuit, and their truth values determine the output of the

circuit.) We will refer to the string z as a query.

As in the proof of Theorem 2.2.6, to ensure that L 6≤ptt RH (Property 4), we need

to satisfy an infinite list of requirements of the form

Re : γe is not a polynomial-time truth-table reduction of L to RH .

As part of our construction we will set up and play a number of games, which will

enable us to satisfy each of these requirements Re in turn. Our moves in the game will



44

define the function F (and thus indirectly H). Originally we have that F (z) = 2|z|+ 3

for all strings z. Potentially during one of these games, we will play a move forcing a

string z to be in the complement of RH . To do this we will set F (z) = |z|−4. Therefore,

a machine M can compute F (z) by running our construction, looking for the first time

during the construction that F (z) is set to |z| − 4, and outputting |z| − 4. If a certain

amount of time elapses (to be determined later) during the construction without F (z)

ever being set to |z| − 4, then the machine M outputs the default value 2|z|+ 3.

3.4.1 Description of the Games

Let us first describe abstractly the games that will be played during the construction;

afterwards we will explain how it is that we use these games to satisfy each requirement

Re. (Note that these games are defined differently than those in the proof of Theorem

2.2.6).

For a given requirement Re, a game Ge,x will be played as followed for some string

x:

First we calculate the circuit γe,x, which is the output of the reduction γe on input

x. Let F ∗ be the function F as it is at this point of the construction when the game

Ge,x is about to be played. For any atom “zi ∈ RH” that is an input of this circuit such

that |zi| ≤ log(α(|x|))−1, we calculate ri = min(Kt∗
U0

(zi)+5, F ∗(zi)+3). If ri < |zi| we

substitute FALSE in for the atom, and simplify the circuit accordingly, otherwise we

substitute TRUE in for the query, and simplify the circuit accordingly. (We will refer

to this as the “pregame preprocessing phase”.)

The remaining queries zi are then ordered by increasing length. There are two

players, the F player (whose moves will be played by us during the construction), and

the K player (whose moves will be determined by Kt∗
U0

). As in the proof of Theorem

2.2.6, in each game the F player will either be playing on the YES side (trying to make

the final value of the circuit equal TRUE), or the NO side (trying to make the final

value of the circuit equal FALSE).

Let S1 be the set of queries from γe,x of smallest length, let S2 be the set of queries
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that have the second smallest length, etc. So we can think of the queries being parti-

tioned into an ordered set S = (S1, S2, . . . , Sr) for some r.

The scoring for the game is similar to that in the proof of Theorem 2.2.6; originally

each player has a score of 0 and a player loses if his score exceeds some threshold ε.

When playing a game Ge,x, we set ε = 2−e−3.

Originally we have that the truth value of all the atoms in the game are TRUE. In

round one of the game, the K player makes some (potentially empty) subset Z1 of the

queries from S1 nonrandom; i.e. for each z ∈ Z1 he sets the atom “z ∈ RH” to the

value FALSE. For any Z1 ⊆ S1 that he chooses to make nonrandom,
∑

z∈Z1
(2−(|z|−6)−

2−(2|z|+3)) is added to his score. As in the proof of Theorem 2.2.6, a player can only

legally make a move if doing so will not cause his score to exceed ε.

After the K player makes his move in round 1, the F player responds, by making

some subset Y1 of the queries from S1 − Z1 nonrandom. After the F player moves,∑
z∈Y1

2−(|z|−4) − 2−(2|z|+3) is added to his score.

This is the end of round one. Then we continue on to round two, played in the same

way. The K player goes first and makes some subset of the queries from S2 nonrandom

(which makes his score go up accordingly), and then the F player responds by making

some subset of the remaining queries from S2 nonrandom. Note that if a query from

Si is not made nonrandom by either the K player or the F player in round i, it cannot

be made nonrandom by either player for the remainder of the game.

After r rounds are finished the game is done and we see who wins, by evaluating

the circuit γe,x using the answers to the queries that have been established by the play

of the game. If the circuit evaluates to TRUE (FALSE) and the F player is playing as

the YES (NO) player, then the F player wins, otherwise the K player wins.

Note that the game is asymmetric between the F player and the K player; the

F player has an advantage due to the fact that he plays second in each round and

can make an identical move for fewer points than the K player. Because the game is

asymmetric, it is possible that F can have a winning strategy playing on both the YES

and NO sides. Thus we define a set val(Ge,x′) ⊆ {0, 1} as follows: 0 ∈ val(Ge,x′) if the

F player has a winning strategy playing on the NO side in Ge,x′ , and 1 ∈ val(Ge,x′) if
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the F player has a winning strategy playing on the YES side in Ge,x′ .

3.4.2 Description of the Construction

Now we describe the construction. In contrast to the situation in the proof of Theorem

2.2.6, we do not need to worry about playing different games simultaneously or dealing

with requirements in an unpredictable order; we will first satisfy R1, then R2, etc. To

satisfy Re we will set up a game Ge,x for an appropriate string x of our choice, and then

play out the game in its entirety as the F player. We will choose x so that we can win

the game Ge,x, and will arrange that by winning the game we ensure that Re is satisfied.

It is possible that the K player will “cheat” on game Ge,x, if our interpretation of the

function Kt∗
U0

, which will determine the moves of the K player, does not translate into

legal moves in the game. In this case we quit the game Ge,x and we play Ge,x′ for some

new x′. However, we will show that the K player cannot cheat infinitely often on games

for a particular e, so eventually Re will be satisfied.

Originally we define the function F so that F (z) = 2|z|+3 for all strings z. Suppose

s time steps have elapsed during the construction up to this point, and we are getting

ready to construct a new game in order to satisfy requirement Re. (Either because we

just finished satisfying requirement Re−1, or because K cheated on some game Ge,x, so

we have to start a new game Ge,x′). Starting with the string 0t
∗4(s) (i.e. the string of

t∗4(s) zeros), we search strings in lexicographical order until we find an x′ such that

(1− L(x′)) ∈ val(Ge,x′). (Here, L denotes the characteristic function of the set L.)

Once we find such a string x′ (which we will prove we always can), then we play out

the game Ge,x′ with the F player (us) playing on the YES side if L(x′) = 0 and the NO

side if L(x′) = 1. To determine the K player’s move in the ith round, we let Zi ⊆ Si

be those queries z ∈ Si for which Kt∗
U0

(z) ≤ |z| − 6. Our moves are determined by

our winning strategy; whenever we play a move that makes a query z nonrandom, we

update the function F so that F (z) = |z| − 4. Note that whenever either of the player

plays a move involving a query z in one of the games (which we have called “making

z nonrandom”), he does make the query z nonrandom in the sense that RH(z) is fixed

to the value 0 for good.
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To finish showing that Property 4 will be satisfied, it suffices to prove the following

three claims.

Claim 3.4.7. If during the construction we win a game Ge,x, then Re will be satisfied

and will stay satisfied for the remainder of the construction.

Proof. Suppose that we win a game Ge,x. Let H∗ = min(Kt∗
U0

+ 5, F ∗ + 3), where F ∗

is the function F immediately after the game Ge,x is completed. Our having won the

game implies that when evaluating the circuit γe,x, while substituting the truth value

of “z ∈ RH∗” for any query of the form “z ∈ RH”, we have that γe,x 6= L(x), which

means that the reduction γe does not output the correct value on input x and thus Re

is satisfied. For any game Ge′,x′ that is played later in the construction, by design x′

is always chosen large enough so that any query that is not fixed during the pregame

preprocessing has not appeared in any game that was played previously, so Ge′,x′ will not

conflict with Ge,x and Re will remain satisfied for the remainder of the construction.

Claim 3.4.8. For any given requirement Re, the K player will only cheat on games

Re,x for a finite number of strings x.

Proof. If the K player cheats on a game Re,x, it means that he makes moves that causes

his score to exceed ε = 2−e−3. By the definition of how K’s moves are determined, this

implies that
∑

z∈Ze,x 2−(Kt∗
U0

(z)−6) ≥ ε, so 2−K
t∗
U0

(z) ≥ ε/64, where Ze,x is defined to

be the set of all the queries that appear in the game Ge,x that are not fixed during

the preprocessing stage. However, for any two games Ge,x and Ge,x′ the sets Ze,x and

Ze,x′ are disjoint, so if K cheated on an infinite number of games associated with the

requirement Re, then this would imply that
∑

z∈{0,1}∗ 2K
t∗
U0

(z) ≥ ε/64 + ε/64 + · · · . But

this divergence would violate Lemma 3.4.2.

Claim 3.4.9. During the construction, for any requirement Re, we can always find a

witness x with the needed properties to construct Ge,x.

Proof. Suppose for some requirement Re, our lexicographical search goes on forever

without finding an x such that (1 − L(x′)) ∈ val(Ge,x′). Then L ∈ PSPACE/α(n),

which is a contradiction.
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Here is the PSPACE algorithm to decide L. Hardcode all the answers for the initial

sequence of strings up to the point where we got stuck in the construction. Let F ∗ be

the function F up to that point in the construction. On a general input x, construct

γe,x. The advice function α(n) will give the truth-table of min(Kt∗
U0

(z) + 5, F ∗(z) + 3)

for all queries z such that |z| ≤ log(α(|x|)) − 1. For any query z of γe,x such that

|z| ≤ log(α(|x|))− 1, fix the answer to the query according to the advice.

If the F player had a winning strategy for both the YES and NO player on game

Ge,x, then we wouldn’t have gotten stuck on Re. Also the F player must have a winning

strategy for either the YES or the NO player, since he always has an advantage over

the K player when playing the game. Therefore, because we got stuck, it must be that

the F player has a winning strategy for the YES player if and only if L(x) = 1. Once

the small queries have been fixed, finding the side (YES or NO) for which the F player

has a winning strategy on Ge,x, and hence whether L(x) = 1 or L(x) = 0, can be done

in PSPACE.

To prove this, we will show that the predicate “The F player has a winning strategy

as the YES player on Ge,x” can be computed in alternating polynomial time, which by

[CKS81] is equal to PSPACE. To compute this predicate, we must determine if for

every move of the K player in round 1, there exists a move for the F player in round 1,

such that for every move of the K player in round 2, there exists a move for the F player

in round 2... such that when the game is finished the circuit γe,x evaluates to TRUE.

We can represent any state of the game (i.e. which of the polynomial number of queries

have been fixed to be nonrandom so far, the score of the players, the current round,

and whose turn it is) by a number of bits bounded by a polynomial in |x|. Also, given a

move by one of the players, it is easy to determine in polynomial time whether the move

is legal and to compute the new score of the player after the move. (It suffices to add

up a polynomial number of rationals of the form a/2b where b = nO(1)). Also, because

there are only a polynomial number of queries in the circuit γe,x, the total number of

moves in the game is bounded by a polynomial. Finally, evaluating the circuit at the

end of the game can be done in polynomial time. Thus the predicate in question can

be computed in alternating polynomial time, which completes the proof.
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The following claim shows that Property 1 is satisfied.

Claim 3.4.10. F (z) is computable in time t∗2(|z|).

Proof. The function F is determined by the moves we play in games during the con-

struction. In order to prove the claim, we must show that if during the construction

we as the F player make a move that involves setting a string z to be nonrandom, then

fewer than t∗2(|z|) time steps have elapsed during the construction up to that point.

The machine M that computes F will on input z run the construction for t∗2(|z|)

steps. If, at some point before this during the construction, we as the F player make z

nonrandom, then M outputs |z| − 4. Otherwise M outputs 2|z|+ 3.

Suppose during the construction that we as the F player make a move that sets a

query z to be nonrandom during a game Ge,x. Note that |z| ≥ log(α(|x|)), otherwise z

would have been fixed during the preprocessing stage of the game.

There are at most 2|x|+1 strings x′ that we could have considered during our lexico-

graphic search to find a game for which we had a winning strategy before finally finding

x. Let s be the number of time steps that have elapsed during the construction before

this search began.

Let us first bound the amount of time it takes to reject each of these strings x′.

To compute the circuit γe,x′ takes at most |x′|k time for some constant k. For each

query y such that |y| ≤ log(α(|x′|)) − 1 we compute min(Kt∗
U0

(y) + 5, F ∗(y) + 3). To

calculate F ∗(y) it suffices to rerun the construction up to this point and check whether

a move had been previously made on the string y. To do this takes s time steps, and

by construction we have that t∗(|z|) ≥ t∗(logα(|x|)) > |x| ≥ |x′| ≥ t∗4(s), so s < |z|.

By Proposition 3.2.5, to compute Kt∗
U0

(y) takes at most 2|y|t∗(|y|) ≤ 2|z|t∗(|z|) time

steps. Therefore, since there can be at most |x′|k such queries, altogether computing

min(Kt∗
U0

(y) + 5, F ∗(y) + 3) for all these y will take fewer than |x′|k2|z|t∗(|z|) time steps.

Then we must compute L(x′), and check whether (1−L(x′)) ∈ val(Ge,x′). Comput-

ing L(x′) takes tL(|x′|) time. By Claim 3.4.9, once the small queries have been fixed

appropriately, computing val(Ge,x′) can be done in PSPACE, so it takes at most 2|x
′|d

time for some constant d.



50

Compiling all this information, and using the fact that for each of these x′ we have

that |x′| ≤ |x|, we get that the total number of timesteps needed to reject all of these

x′ is less than 2|x|
d′

2|z|tL(|x|)t∗(|z|) for some constant d′.

During the actual game Ge,x, before z is made nonrandom the construction might

have to compute Kt∗
U0

(y) + 5 for all queries of γe,x for which |y| ≤ |z|. By Proposition

3.2.5 this takes at most |x|k2|z|t∗(|z|) time.

Therefore, overall, for some constant d′′ the total amount of time steps elapsed

before z is made nonrandom in the construction is at most

T = 2|x|
d′′

2|z|tL(|x|)t∗(|z|) + s < t∗2(|z|).

Here the inequality follows from the fact that t∗(log(α(|x|))) > 2|x|
d
tL(|x|) for any

constant d, and that |z| ≥ log(α(|x|)) .

Finally, to finish the proof of the theorem we need to show that Property 3 is

satisfied.

Claim 3.4.11.
∑

x∈{0,1}∗ 2−H(x) ≤ 1
8 .

Proof. To begin, notice that

∑
x∈{0,1}∗

2−H(x) =
∑

x∈{0,1}∗
2−min(Kt∗

U0
(x)+5,F (x)+3) ≤

∑
x∈{0,1}∗

2−(Kt∗
U0

(x)+5) +
∑

x∈{0,1}∗
2−(F (x)+3).

By Proposition 3.4.2,
∑

x∈{0,1}∗ 2−K
t∗
U0

(x) ≤ 1, so
∑

x∈{0,1}∗ 2−(Kt∗
U0

(x)+5) ≤ 1/32. We

also have that
∑

x∈{0,1}∗ 2−(F (x)+3) = (1/8)
∑

x∈{0,1}∗ 2−F (x). Therefore, it is enough

that
∑

x∈{0,1}∗ 2−F (x) ≤ 1/2, as this would imply that

∑
x∈{0,1}∗

2−H(x) ≤ 1
32

+
1
8
× 1

2
≤ 1

8
.

Let ZF be the set of all those queries that we (the F player) make nonrandom during
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the construction by playing a move in one of the games. We have that

∑
x∈{0,1}∗

2−F (x) =
∑
x∈ZF

2−(|x|−4) +
∑
x 6∈ZF

2−(2|x|+3)

=
∑

x∈{0,1}∗
2−(2|x|+3) +

∑
x∈ZF

(2−(|x|−4) − 2−(2|x|+3))

≤ 1
8

+
∑
x∈ZF

(2−(|x|−4) − 2(2|x|+3)).

Thus it now suffices to show that totF =
∑

x∈ZF (2−(|x|−4)− 2(2|x|+3)) ≤ 1/4. Notice

that totF is exactly the total number of points that the F player accrues in all games

throughout the lifetime of the construction. First let us consider those games on which

the K player cheats. We know that in all these games, the F player accrues fewer

points than the K player, and in particular accrues fewer points during these games

than totK , the total number of points the K player accrues in all games throughout the

lifetime of the construction. Let ZK be the set of all those queries that the K player

makes nonrandom during the construction by playing a move in one of the games. We

have that

totK =
∑
z∈ZK

2−(|z|−6) − 2−(2|z|+3) ≤
∑
z∈ZK

2−(Kt∗
U0

(z)+5) ≤
∑

z∈{0,1}∗
2−(Kt∗

U0
(z)+5) ≤ 1

32
,

where the first inequality uses that for all z ∈ ZK , Kt∗
U0

(z) ≤ |z| − 6, and the last

inequality again comes from Proposition 3.4.2.

Now consider games on which K does not cheat – for each Re there will be exactly

one of these. On each of these games the F player can accrue at most ε = 2−e−3 points.

Thus the total number of points the F player accrues on all games that K does not

cheat on is at most
∑∞

e=1 2−e−3 = 1/8.

Therefore totF ≤ 1/32 + 1/8 ≤ 1/4.

3.5 Removing the Advice

With the plain Kolmogorov complexity function C, it is fairly clear what is meant by

a “time-efficient” universal Turing machine. Namely, U is a time-efficient universal
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Turing machine if, for every Turing machine M , there is a constant c so that, for every

x, if there is a description d for which M(d) = x in t steps, then there is a description d′

of length ≤ |d|+c for which U(d′) = x in at most ct log t steps. However, with prefix-free

Kolmogorov complexity, the situation is more complicated. The easiest way to define

universal Turing machines for the prefix-free Kolmogorov complexity function K is in

terms of self-delimiting Turing machines. These are machines that have one-way access

to their input tape; x is a valid input for such a machine if the machine halts while

scanning the last symbol of x. For such machines, the notion of time-efficiency carries

over essentially unchanged. However, there are several other ways of characterizing K

(such as in terms of partial-recursive functions whose domains form a prefix code, or

in terms of prefix-free entropy functions). The running times of the machines that give

short descriptions of x using some of these other conventions can be substantially less

than the running times of the corresponding self-delimiting Turing machines. This issue

has been explored in detail by Juedes and Lutz [JL00], in connection with the P versus

NP problem. Given that there is some uncertainty about how best to define the notion

of time-efficient universal Turing machine for Kt-complexity, one possible response is

simply to allow much more leeway in the time-efficiency requirement.

If we do this, we are able to get rid of the small amount of non-uniformity in our

PSPACE upper bound.

Definition 3.5.1. A prefix machine U is an f -efficient universal prefix machine if

there exist constants cM for each prefix machine M , such that

1. ∀x, KU (x) ≤ KM (x) + cM ; and

2. ∀x, Kt
U (x) ≤ Kt′

M (x) + cM for all t(n) > f(t′(n)).

In Definition 3.2.2 we defined a time-efficient universal prefix machine to be any

poly(n)-efficient universal prefix machine.

Definition 3.5.2. Define TTRT′ to be the class of languages L such that for all com-

putable f there exists t0 such that for all f -efficient universal prefix machines U and

t ≥ t0, L ≤ptt RKt
U

.
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Theorem 3.5.3 ([ABFL12a]). BPP ⊆ TTRT′ ⊆ PSPACE ∩ P/poly.

Note that TTRT′ ⊆ TTRT, so from Theorem 3.3.2 we get TTRT′ ⊆ P/poly. Also,

the proofs in [BFKL10] can be adapted to show that BPP ⊆ TTRT′. So all we need to

show is the PSPACE inclusion.

Proof of Theorem 3.5.3. The proof is similar to the proof of Theorem 3.4.1, with some

minor technical modifications. Let L be an arbitrary language from TTRT′−PSPACE.

Because TTRT′ ⊆ TTRT, as in the proof of Theorem 3.4.1 we have that L is decidable

in time tL < 2n
k
t′(nk) for some fixed time bound t′ and constant k.

Define f to be a fast enough growing function that f(n) > 2(tL(nd))d for any constant

d, for all large n. By the definition of TTRT′, for this f there exists a t0 such that for

all t ≥ t0, L ≤ptt RKt
U

. Let t∗(n) be a time bound such that for all n, t∗(n) > f(n)

and t∗(n) > t0(n). To get our contradiction, we will show that there exists an f -

efficient universal prefix machine U and constant c > 1 such that L 6≤ptt RKv
U

, where

v(|x|) = 2(tL(t∗(|x|)))c > t0(|x|).

We will make use of the following revised proposition:

Proposition 3.5.4 (Revised Proposition 3.4.4). Let U and M be an nc-efficient uni-

versal prefix Turing machine and a prefix Turing machine respectively. Let t, t′ be time

bounds and f, g be two time-constructible increasing functions, such that g(nc) < f(n).

Let t′′(|x|) = g(t(|x|)) = h(t′(|x|)). Then there is an f -efficient universal prefix machine

U ′ such that

Kt′′
U ′(x) = min(Kt

U (x),Kt′
M (x)) + 1.

Proof. Almost identical to before: On input 0y, U ′ runs U on input y. If U would

output string x on y after s steps, then U ′ outputs string x after g(s) steps. Similarly,

on input 1y, U ′ runs M on input y. If M would output string x on y after s steps, then

U ′ outputs string x after h(s) steps.

Note that because U is an nc-efficient universal prefix machine, U ′ will be an f -

efficient universal prefix machine.

We will construct functions F and H such that
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1. F is a total function such that for all x, F (x) ≤ 2|x|+ 3, and F (x) is computable

in time 2(tL(t∗(|x|)))d by a machine M for some constant d.

2. H(x) = min(Kt∗
U0

+ 5, F (x) + 3).

3.
∑

x∈{0,1}∗ 2−H(x) ≤ 1/8

4. L 6≤ptt RH

Claim 3.5.5 (Revised Claim 3.4.6). Given the above properties H = Kv
U for some

f -efficient universal prefix machine U (which by Property 4 ensures that the theorem

holds)

Proof. By Property 3 we have that
∑

x∈{0,1}∗ 2−F (x)+3 ≤ 1/8. Therefore it holds that

∑
x∈{0,1}∗

2F (x) ≤ 1.

Using this along with Property 1, we then have by Proposition 3.4.3 that Ku
M ′ =

F + 2 for some prefix machine M ′ and constant d′, where u(x) = 2(tL(t∗(|x|)))d′ . By

Proposition 3.4.5 we have that Kt∗
U ′ = Kt∗

U0
+ 4 for some nc

′
-efficient universal prefix

machine U ′. Therefore, by Proposition 3.5.4, H(x) = min(Kt∗
U0

(x) + 5, F (x) + 3) =

min(Kt∗
U ′(x),Ku

M ′(x)) + 1 is Kv
U for some f -efficient universal prefix machine U and

constant c > 1, where v(|x|) = 2(tL(t∗(|x|)))c . (In this last step we are using the fact that

f(n) > 2(tL(nk))k for any constant k to ensure that U is an f -efficient universal prefix

machine by Proposition 3.5.4).

The construction is virtually the same as in the proof of Theorem 3.4.1.

There is one change from the proof of Theorem 3.4.1 in how the games are played.

During the preprocessing step of a game Ge,x, all queries z such that t∗(|z|) ≤ |x| are

fixed according to min(Kt∗
U0

(z) + 5, F ∗(z) + 3).

If we get stuck during our lexicographical search to find a suitable x′ to play the

game Ge,x′ , then this implies that the language L is in PSPACE, since by Proposition

3.2.5, for some constant k fixing all queries z such that t∗(|z|) ≤ |x| according to

min(Kt∗
U0

(z) + 5, F ∗(z) + 3) can be done in |x|k2|z|t∗(|z|) ≤ |x|kt∗(|z|)2 ≤ |x|k+2 time
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(and then it is a PSPACE computation to determine which side the F player has a

winning strategy for).

It remains to prove the following claim.

Claim 3.5.6. F (z) is computable in time 2(tL(t∗(|z|)))d for some constant d.

Proof. Suppose during the construction we as the F player make a move that sets a

query z to be nonrandom during a game Ge,x. Note that t∗(|z|) > |x|, otherwise z

would have been fixed during the preprocessing stage of the game.

As in the proof of Claim 3.4.10, we can bound the total amount of time steps elapsed

before z is made nonrandom in the construction to be at most

T = 2|x|
d
2|z|tL(|x|)t∗(|z|) + s < 2(tL(t∗(|z|)))d

This concludes the proof of Theorem 3.5.3.

3.6 An Approach Towards BPP = P?

It is popular these days to conjecture that BPP = P, and much of this popularity is

owing to results such as those of Impagliazzo and Wigderson [IW97], who showed that

BPP = P if there is a problem in E that requires circuits of exponential size. But note

that a proof that BPP = P that proceeds by first proving circuit size lower bounds

yields much more than “merely” a proof that BPP = P. It also provides a recipe that

one can follow, to start with an arbitrary probabilistic algorithm and replace it with an

equivalent deterministic one of comparable complexity.

Indeed, Goldreich has recently argued that any proof of BPP = P must proceed

along these lines, in that any proof that these classes are equal yields pseudorandom

generators that are suitable for derandomizing BPP [Gol11a, Gol11b].

But there is a catch! Goldreich’s proof requires that the BPP = P question be

phrased in terms of promise problems, rather than using the more traditional definition

in terms of language classes, that we have used here.
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We do not dispute Goldreich’s assertion that the formulation in terms of promise

problems is in many ways more natural and useful than the traditional definition. And

we certainly agree that it would be much more useful to have a recipe for obtaining

derandomizations, rather than merely a proof that a derandomization must exist. But

we find it intriguing that a proof that DTTR = P would prove that BPP = P merely

by showing that there would be a contradiction otherwise, and owing to the highly

non-computable objects in the definition, it is not clear that such a proof would lend

itself to an effective construction of a general-purpose derandomization algorithm. (In

particular, it is not clear that it would yield the equality of the promise classes.) Sim-

ilarly, proving BPP = P by showing that TTRT = P or TTRT′ = P would not seem

to immediately yield derandomization algorithms because of the extremely high time-

bounds used in the definitions of those classes. That is, since any such proofs would

deliver less than a proof that yields a derandomization, it is at least conceivable that

they would be easier to obtain.

We do not wish to suggest that we have any idea of how to obtain such a proof.

After all, we are currently unable even to prove DTTR ⊆ P/poly, or that either TTRT

or TTRT′ is contained in BPP.

Also, it is clear that such a proof must use non-relativizing techniques. For instance,

the work of [BFKL10] shows that, for any decidable oracle B, BPPB is PB-truth-table

reducible to RKU for every U . (There is no need to add an oracle to the definition of

RKU .) Thus it is not true that, for every decidable B, ∆0
1 ∩
⋂
U{A : A≤pB

tt RKU } = PB,

because Heller [Hel86] has presented such a B relative to which BPPB = NEXPB.

3.7 Conclusion

This chapter gave mixed results in the quest to exactly characterize BPP in terms

of resource-bounded reductions to the Kolmogorov random strings. On the one hand

progress was made in the time-bounded Kolmogorov complexity setting, but also it was

shown that similar techniques do not work in the unbounded Kolmogorov complexity

case, and that there are significant differences between RK and RKt in this setting.
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Perhaps a first step towards further progress is to figure out a way to combine the

ideas of this chapter with the techniques of Chapter 2, which take advantage of the fact

that DTTR is defined in terms of the intersection over all universal prefix machines.

The P/poly upper bound for TTRT′ from this chapter (and the related upper bound

for TTRT) holds regardless of which universal machine U is used to define RK , so

really the upper bound holds for a much larger class than is actually being considered.

Although this stronger inclusion worked for a non-uniform upper bound such as P/poly,

certainly this cannot be the case for a uniform upper bound such as BPP, since there are

languages of arbitrarily large uniform time-complexity in the class ∆0
1∩{A : A≤p

ttRKU }

for a specific universal prefix machine U . It appears that new ideas will be needed in

order to prove or disprove BPP = DTTR.
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Chapter 4

Lower Bounds for an OBDD-based Proof System Using

Random Formulas

4.1 Background on Propositional Proof Complexity

Propositional proof complexity is a sub-area of computational complexity concerned

with the following type of question: given a proof system P and an unsatisfiable propo-

sitional formula σ, what is the shortest refutation of σ in P? Here an unsatisfiable

propositional formula is a formula made up of a finite set of Boolean variables and log-

ical connectives such that regardless of how the variables are set to TRUE or FALSE,

the formula always evaluates to FALSE. For our purposes we can restrict attention to

formulas presented in conjunctive normal form (CNF).

A propositional proof system can be formally defined as a polynomial-time function

P such that

∀σ ∈ U ∃y[P (σ, y) = 1]

∀τ 6∈ U ∀y[P (τ, y) = 0]

where U is the set of all unsatisfiable propositional formulas encoded as strings. For

σ ∈ U , we think of y as a proof that σ is unsatisfiable (i.e. a refutation). This definition

captures the intuitive features of a propositional proof system:

• Completeness: It should be possible to refute any unsatisfiable formula.

• Soundness: It should be impossible to refute any satisfiable formula.
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• Efficiency: Verifying whether a refutation is correct should be an efficient pro-

cess.

Note that there is no restriction on the size of a refutation y, only that checking

whether y is correct can be done in polynomial time. If a proof system P has the

additional feature that there exists a polynomial p such that for any σ ∈ U there

exists a correct refutation y of σ such that |y| ≤ p(|σ|), we say that the proof system

P is polynomially-bounded. Cook and Reckhow introduced this abstract notion of a

proof system1 and they also established the following fundamental connection between

propositional proof complexity and the standard computational complexity.

Theorem 4.1.1 ([CR79]). NP = coNP if and only if there exists a polynomially-

bounded proof system.

It is generally conjectured that NP 6= coNP, in which case for every proof system P

there exists certain families of unsatisfiable formulas for which the smallest refutations

in P must be of super-polynomial size. This suggests a natural program: attempt

to show that stronger and stronger proof systems P are not polynomially-bounded as

progress towards showing that NP 6= coNP.

4.1.1 Examples of Propositional Proof Systems

A whole landscape of proof systems of varying strengths has been mapped out and

studied – here we give a brief overview of some important examples (for a more in-depth

look, see for instance the surveys [BP98, Seg07, Kra95].) All of these proof systems are

line-based ; that is, a refutation in the proof system is a sequence of lines, where each

line represents a propositional formula that is satisfiable under the assumption that the

formula being refuted is satisfiable. Although this property is not required according

to the abstract Cook-Reckhow definition of a proof system, almost all concrete proof

systems studied in the literature have this property. Each line is either a representation

1Originally Cook and Reckhow defined proof systems in terms of proofs of tautologies – propositional
formulas that evaluate to TRUE regardless of how the variables are set. But proof systems can be
equivalently defined in terms of refutations of unsatisfiable formulas, and we will use this alternative
formulation throughout the next two chapters, as it will simplify the exposition in our case.
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of one of the clauses of the formula being refuted (called an axiom) or is derived from

previous lines using the sound inference rules of the proof system. The final line of the

refutation represents a contradiction (an obviously unsatisfiable proposition); because

the inference rules of the proof system are sound, this demonstrates that the formula

being refuted in fact must have been unsatisfiable.

There are two fundamental ways in which the proof systems below differ:

1. How are lines of a refutation represented? Proof systems that have more expres-

sive representations tend to have smaller refutations (i.e. be more powerful) than

those systems with less expressive representations. For instance, a proof system

where every line must be a clause is weaker than a proof system where each line

is allowed to be a formula or a circuit.

2. What are the inference rules of the proof system? In other words, what are the

rules by which a new non-axiom line is allowed to be derived from earlier lines?

• Resolution: Resolution is one of the simplest non-trivial proof systems that has

been studied. In a resolution refutation, every line of the refutation is a clause.

There is a single inference rule in the system: A line C ∨D may be derived from

two previous lines C ∨ x and D ∨ x̄, where x is a variable and C and D are

arbitrary disjunctions of literals. The final line of a resolution refutation is the

empty clause, ∅, which is trivially unsatisfiable.

Resolution is a weak system and is one of the few proof systems that is rela-

tively well-understood. There are many families of unsatisfiable formulas based on

combinatorial principles which provably require exponential-size resolution refu-

tations, including formulas based on the pigeonhole principle [Hak85] and Tseitsin

formulas [Tse68]. Randomly generated formulas, which will be defined later and

are our focus in this dissertation, also are exponentially-hard for resolution.

• Frege systems: In a Frege system the lines of the refutation are propositional

formulas. There are a number of derivation rules similar to the ones that may be

found in a standard textbook on propositional logic. For instance, a Frege system
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is generally equipped with a modus ponens rule: The line B may be derived from

the lines ¬A ∨B and A (where A and B are two arbitrary sub-formulas).

Frege systems are very strong; no super-quadratic lower bounds on the size of

Frege refutations are currently known for any family of unsatisfiable formulas.

One can define weaker versions of these systems by restricting the type of formulas

that may constitute a line. For instance, AC0-Frege (also known as constant-depth

Frege), is a system where each line of a refutation must be a constant-depth

formula. Exponential lower bounds for certain families of formulas such as the

pigeonhole formulas are known for this restricted system [Ajt94, PBI93]. One

can actually define stronger versions of Frege systems as well by expanding the

representations; for instance Extended-Frege systems, in which lines are allowed

to be circuits instead of just formulas, is believed by many to be strictly stronger

than regular Frege systems.2 (Although, of course, since we basically have no

lower bounds even for Frege systems, we are very far from being able to prove

such a conjecture).

• Algebraic systems: In algebraic proof systems, lines are generally represented

as equations or inequalities. For instance, in the polynomial calculus system, lines

are represented as polynomial equations of the form Q(x) = 0. To refute an

unsatisfiable formula φ, each clause of φ is first converted to an axiom that is

satisfied if and only if the clause is satisfied. For instance, if C = xi ∨ x̄j ∨ xk is a

clause of φ, then this corresponds to an axiom (1− xi)xj(1− xk) = 0. (For each

variable xi there is also an axiom of the form xi(1− xi) = 0, which enforces that

xi is a 0-1 variable). The two inference rules of the system are:

– Linear combination: From the lines Q(x) = 0 and R(x) = 0, one can

derive the line aQ(x) + bR(x) = 0, where a, b are elements of some field

associated with the proof system.

2The standard way to compare propositional proof systems is by means of polynomial simulations.
A proof system P polynomially-simulates a proof system Q if there exists a polynomial-time function
f such that if π is a refutation of an unsatisfiable formula φ in Q, then π′ = f(π) is a refutation
of φ in P . We can say P is strictly stronger than Q if P polynomially-simulates Q but Q does not
polynomially-simulate P .
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– Multiplication by a variable: From the line Q(x) = 0 one can derive the

line xiQ(x) = 0 where xi is any variable.

The final line of a polynomial calculus refutation is the equation 1 = 0, a con-

tradiction demonstrating that the formula φ was unsatisfiable. Exponential lower

bounds for the polynomial calculus are known for many standard families of

unsatisfiable formulas, such as the pigeonhole principle and random formulas

[Raz98, BSI99].

In the cutting planes system, lines are represented as linear inequalities of the

form
∑n

i=1 aixi ≥ X, where each ai is an integer. In the example above, the

clause C = xi ∨ x̄j ∨ xk would be converted to an axiom xi + (1 − xj) + xk ≥ 1.

The three inference rules of the system are:

– Addition: From the lines
∑n

i=1 aixi ≥ X and
∑n

i=1 bixi ≥ Y , one can derive

the line
∑n

i=1(ai + bi)xi ≥ X + Y .

– Multiplication by a positive integer: From the line
∑n

i=1 aixi ≥ X one

can derive the line
∑n

i=1 caixi ≥ cX for any positive integer c.

– Division by a positive integer: From the line
∑n

i=1 caixi ≥ X, one can

derive the line
∑n

i=1 aixi ≥ dX/ce

The final line of a cutting planes refutation is the contradiction 0 ≥ 1. The cutting

planes system is a strong system; the only known super-polynomial lower bounds

for the system were proved by a reduction to Razborov’s monotone circuit lower

bounds for the clique problem [Raz85] using the feasible interpolation method

[Pud97].

• OBDD-based systems: There are many other proof systems based on different

representations than the ones discussed above. A specific proof system that we

will focus on in this chapter is a proof system where each line is represented by

an ordered binary decision diagram (OBDD), which is a special type of branching

program. The definition of this system and what we know about its limitations

are discussed in detail in section 4.3.
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4.1.2 Proof Complexity and SAT Solving

Building up techniques towards proving NP 6= coNP is not the only reason for studying

proof complexity; studying specific proof systems is independently interesting, partially

due to the importance for real-world applications of developing good algorithms for

solving the satisfiability problem. Because many important optimization problems can

be efficiently encoded as satisfiability instances, an enormous amount of research has

been invested into developing SAT solvers that outperform the trivial exponential-time

brute force algorithm. Proof complexity lower bounds can be used to lower bound the

runtime of certain classes of these solvers.

For instance, many of the best SAT solvers used in practice are variants of the

DPLL algorithm [DLL62, DP60], a simple branching algorithm based on setting a

variable to either TRUE or FALSE and then recursively considering the simplified

formulas that result. It has been shown that from the execution of a DPLL-based SAT

solver on an unsatisfiable formula σ, one can derive a resolution refutation of σ that

has size proportional to the runtime of the solver. This holds even for DPLL-based

solvers that use sophisticated heuristics to choose the order to branch on variables

and “clause learning” to do more efficient backtracking [BKS04]. Thus, any resolution

lower bounds immediately imply lower bounds for the runtime of these algorithms as

well. As noted previously, resolution is one of the simplest and well-studied proof

systems; exponential lower bounds on the size of resolution refutations of many families

of unsatisfiable formulas are known, which proves that any DPLL-based SAT solver

will have exponential runtime on these same families of formulas. This is a general

principle; anytime we derive lower bounds for a propositional proof system on a family

of unsatisfiable formulas, as a byproduct we get lower bounds on the runtime of some

class of co-nondeterministic SAT solving algorithms on those same instances.

4.2 Random Formulas

In this dissertation we focus on the ability of proof systems to refute randomly generated

3-CNF formulas, where each clause is independently and uniformly chosen at random
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from all possible clauses. Random CNF formulas have been studied extensively, both as

a benchmark for measuring in some sense the average case performance of SAT solvers,

and also as a tool for proving proof complexity lower bounds. It is well-known that if

a random 3-CNF formula on n variables is generated with ∆n clauses for large enough

constant ∆, then with high probability the formula will be unsatisfiable [DBM03]. The

lack of structure in these formulas makes them hard to refute; indeed, it is conceivable

that they require exponential-size refutations in any proof system, and since even gen-

erating candidate hard formulas for strong proof systems such as Frege systems can be

difficult (see for instance [Raz03]), they are a natural choice for proving lower bounds.

Another appealing feature of random formulas is that they do not have an analogue

in circuit complexity. Progress on propositional proof complexity has run somewhat

parallel to circuit complexity, usually with breakthroughs in circuit complexity lower

bounds coming first and informing new lower bounds for proof complexity. For in-

stance, the combinatorial lower bounds for constant-depth Frege systems rely on ran-

dom restrictions and a switching lemma adapted from the AC0 circuit lower bounds of

[FSS84, Has86]. Sometimes the connection to circuit complexity is more direct; as men-

tioned before, in the case of the cutting planes system, the only known super-polynomial

lower bounds for any class of formulas rely on a reduction to monotone circuit lower

bounds. Presently, progress in propositional proof complexity lags slightly behind cir-

cuit complexity in the sense that we have some lower bounds for constant depth circuits

with mod gates [Raz87, Smo87, Wil11], but no lower bounds for restrictions of Frege

systems that work with such circuits. Proving circuit lower bounds is notoriously diffi-

cult, and a number of barriers such as relativization, natural proofs, and algebrization

have been identified in that field [BGS75, RR97, AW08]. If a major breakthrough in

proof complexity is to occur anytime soon, such as super-polynomial lower bounds for

Frege systems or the even stronger Extended Frege systems, it is likely that there will

have to be a departure from the paradigm of adapting circuit complexity techniques.

Random formulas are intriguing in this respect because they highlight a major dif-

ference between proof complexity and circuit complexity. In circuit complexity we are

not interested in lower bounds on the circuit size of arbitrary functions, as a trivial
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counting argument shows that a randomly chosen function will have high circuit com-

plexity. Instead, we try to prove lower bounds for explicit functions (usually defined

as functions in some complexity class such as NP). However, it is not clear how to

formulate the notion of a random function in a class like NP in a useful way. On the

other hand, no such trivial counting argument shows that a random formula must have

large proof complexity, and proving that all proof systems require super-polynomial

size refutations of random formulas would be sufficient to show that NP 6= coNP. This

opens up the possibility of employing probabilistic methods and other nonconstructive

techniques to prove proof complexity lower bounds for random formulas that perhaps

cannot be used in the circuit complexity setting.

However, despite their promise, the lack of structure that makes random formulas

potentially useful for proving lower bounds can be an impediment as well. Historically,

lower bounds on random formulas have come only after lower bounds on explicit for-

mulas have already been proven. For instance, the first resolution lower bounds were

for classes of formulas capturing the idea of “counting” such as Tseitin formulas and

propositional encodings of the pigeonhole principle [Tse68, Hak85]. It was only later

that Szémeredi and Chvátal were able to adapt some of these techniques to work for

random formulas as well [CS88]. In the case of constant-depth Frege systems, we have

exponential lower bounds for certain explicit families of formulas like the pigeonhole

principle [Ajt94, PBI93], but no super-polynomial bounds are known for random for-

mulas. Therefore, developing new techniques for working with random formulas is an

important task.

Along with random 3-CNF formulas, in this chapter we will also consider random

3-XOR formulas. Like a 3-CNF formula a 3-XOR formula is a conjunction of clauses,

but each clause is satisfied if and only if exactly one or three of its literals are satisfied.

Unlike in the 3-CNF case, determining satisfiability of a 3-XOR formula is known to be

computable in polynomial time, since such formulas can be equivalently represented as a

system of linear equations over F2, and then an algorithm such as Gaussian elimination

can be used to test the solvability of the system. However, random 3-XOR formulas

retain a lot of the important properties of random 3-CNF formulas, and because they
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are easier to reason about they have been useful in proving lower bounds for weak proof

systems (e.g. [Ale05]).

4.3 OBDD-based Proof Systems

Ordered Binary Decision Diagrams (OBDDs) are data structures for representing Boolean

functions that were originally introduced in [Bry86] and have found a wide variety of ap-

plications in areas of computer science such as VLSI design and model checking. They

have also emerged as a basis for SAT solving algorithms that have been demonstrated

to be competitive on certain classes of formulas with the state-of-the-art DPLL-based

solvers that are generally used in practice [PV04, HD04]. Informally, they are read-once

branching programs where variables must be queried according to a fixed order. Part

of what makes OBDDs so useful is that their relatively rigid structure makes it possible

to manipulate them efficiently, as illustrated by the following theorem:

Theorem 4.3.1 ([Bry86]).

• For any given Boolean function f on n variables and variable order π there is a

unique (up to isomorphism) minimal OBDD computing f .

• Computing the conjunction of two OBDDs can be done in polynomial time.

• Determining whether an OBDD representing a function f1 majorizes an OBDD

representing a function f2 (i.e for all x, f1(x) ≥ f2(x)) is computable in polyno-

mial time .

A proof system based on OBDDs was introduced in [AKV04]. The basic idea of such

a system is simple: Given an unsatisfiable 3-CNF (or 3-XOR) formula F , an OBDD refu-

tation of F with respect to a variable order π is a sequence OBDD1,OBDD2, . . .OBDDt ≡

0, where each OBDDi uses the variable order π and is either the OBDD representation

of a clause from F (an axiom), or is the conjunction of two OBDDs derived earlier (i.e.

OBDDi = OBDDj ∧ OBDDk for some j, k < i). One can also include a weakening

rule, so that OBDDi may also be an OBDD such that OBDDi majorizes OBDDj for

some j < i. Such a refutation system is sound and complete, and because computing
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the conjunction of two OBDDs can be done in polynomial time (as well as determining

whether one OBDD majorizes another in the case of a weakening), verifying whether

a refutation is correct is also polynomial-time computable. Thus these OBDD-based

systems qualify as propositional proof systems in the formal sense introduced by Cook

and Reckhow. The OBDDs representing axioms in this type of refutation are small,

as well as the final OBDD OBDDt. Therefore, if a refutation in one of these OBDD-

based systems has a polynomial number of steps, whether it is polynomial-size or not

depends only on whether one of the intermediate OBDDs computed along the way has

super-polynomial size. The only nondeterministic choices the prover must make are

which variable order π to use, and in what order to combine OBDDs. (If a weakening

rule exists, the prover must also choose when and how to use it). These choices can

be crucial however in determining the size of the refutation; for instance, it is a sim-

ple exercise to show that for certain functions the OBDD representation has size O(n)

according to one variable order yet size Ω(2n) according to another order.

By restricting the options the prover has in making these choices, one can define

different variants of this OBDD-based system that have varying strengths. One reason

for doing so is that no current OBDD-based SAT solver takes full advantage of the power

offered by the underlying OBDD-based proof system in its unrestricted form. This is a

common phenomenon in SAT solving – basing solvers on more powerful proof systems

does not necessarily make the solvers better. The reason is that as the proof systems

become more powerful, trying to deterministically make the nondeterministic choices

of the proof system becomes an increasingly difficult task. This is highlighted by the

fact that the best general purpose SAT solvers in use today are variants of the DPLL

algorithm, which is based on the resolution system, one of the weakest proof systems

that has been studied. In the case of OBDD-based systems, it is not clear how to best

make use of the full weakening rule, and even determining the best variable order to use

in an OBDD representation of a single function is an NP-complete problem [BW96].

Particularly when considering random formulas, because of their symmetry and lack

of structure, it seems unlikely that one variable order would be exponentially better

than another, or even if such a good order did exist that it could be found efficiently.
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However, the sheer number of different possible variable orders make proving such a

fact difficult from a technical standpoint.

From a theoretical point of view, restricting these OBDD systems creates interesting

intermediate systems. It was proved in [AKV04] that allowing unrestricted use of the

weakening rule makes the OBDD proof system as strong as CP*, a variant of the cutting

planes system where coefficients are represented in unary, that is strictly stronger than

resolution and for which the only known lower bounds are based on feasible interpola-

tion. However, if we do not allow weakening the story changes significantly – in this

case there exist certain families of unsatisfiable formulas for which the smallest OBDD

refutations are exponentially larger than the smallest resolution refutations [TSZ10].

Despite this apparent weakness, it has not been proved that the Frege system, a pow-

erful system that could even conceivably be optimal, can polynomially-simulate this

restricted OBDD system. The reason is that the lines of Frege systems are formulas,

which cannot directly simulate the dag-like structure of OBDDs. Thus studying differ-

ent variations of restricted OBDD-based systems is one possible route towards bridging

the gap between systems we know to be weak and those for which we do not have lower

bounds on natural families of formulas.

Kraj́ıček gave exponential lower bounds for the OBDD-based system of [AKV04] in

its full generality using a form of the feasible interpolation method [Kra07], and these

are currently the only lower bounds known for this strongest variant. Tveretina et al.

showed that if the weakening rule is disallowed, then an OBDD-based refutation of the

pigeonhole principle must have exponential size [TSZ10], building upon a similar result

from Groote and Zantema [GZ03], who had also restricted the system to only consider

specific variable orders.

4.4 Statement of Main Results

In this chapter we take a first step towards understanding the limitations of OBDD-

based systems to refute random formulas by proving exponential lower bounds for

certain restricted variants.
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In particular we consider two restricted OBDD-based systems, which we can denote

by OBDD* and OBDD+. In both systems the weakening rule is excluded. In the

OBDD* system the variable order that will be used for the refutation is fixed before

the random formula is chosen. Because random formulas are generated symmetrically

with respect to the variables, without loss of generality we can fix the identity order I

that orders a set of variables x1, x2, . . . xn as x1 < x2 < · · · < xn. In the OBDD* system

the prover has the freedom to combine OBDDs during the refutation in an arbitrary

way. In the OBDD+ system, the prover has the freedom to choose any variable order π

after seeing the random formula φ that is to be refuted. However, during the refutation,

the clauses of φ (represented as OBDDs) must be combined in a predetermined fashion

corresponding to some canonical ordering of the clauses in φ.

The following two theorems are our main results:

Theorem 4.4.1 ([FX13]). Let ∆ be a sufficiently large constant. There exists an ε > 0,

such that with high probability when φ is a random 3-CNF formula on n variables with

clause density ∆n, φ is unsatisfiable and any OBDD* refutation of φ must have size at

least 2εn.3

Theorem 4.4.2 ([FX13]). Let ∆ be a sufficiently large constant. There exists an ε > 0

such that with high probability when φ is a random 3-XOR formula on n variables with

clause density ∆n, φ is unsatisfiable and any OBDD+ refutation of φ must have size

at least 2εn.

The progress we make in this chapter is summarized in Figure 4.1.

4.5 Preliminaries and Notation

We will denote a set of n Boolean variables as {x1, . . . , xn}. A literal xji , j ∈ {0, 1}, is

either a variable or its negation. An assignment α to a set of n variables is a function

3This theorem can be proved almost identically in the case where we consider a random 3-XOR
formula as well. Also, a close inspection of the proof shows that for either the 3-CNF or 3-XOR case,
if instead of fixing the variable order I we allow the prover to fix any set S of 2δn variable orders for
sufficiently small δ before seeing the random formula φ, then to choose one of the variable orders from
S after seeing φ, the theorem still holds in this scenario as well.
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Figure 4.1: A summary of the results from this chapter. We consider different OBDD-based proof
systems, none of which include a weakening rule. The systems differ according to two possible restric-
tions: (1) Is the variable order that will be used in the refutation fixed before the random formula is
chosen? (2) Are the clauses processed in the refutation according to a canonical order in which they
appear in the input formula? We consider both random 3-CNF and random 3-XOR formulas. A check
mark appears in the box corresponding to a given proof system and type of random formula if we prove
exponential lower bounds for this combination in this chapter, and an X appears in the box if proving
lower bounds in this case is still open.

[n]→ {0, 1}, where [n] denotes the set {1, 2, . . . , n}. An assignment α satisfies a literal

xji if and only if α(i) = j.

A clause C is a set of literals. An assignment α satisfies C as a CNF clause if and

only if α satisfies some literal in C, and α satisfies C as an XOR clause if and only if α

satisfies an odd number of literals in C. A 3-CNF (3-XOR) formula F over n variables

is a list of clauses (C1, . . . , Cm), where each of the clauses contains three literals from

variables in the set {x1, . . . xn}. It is satisfied by an assignment α if and only if every

clause in F is satisfied by α as a CNF (XOR) clause. If it is irrelevant whether we are

referring to a 3-CNF formula or a 3-XOR formula, we will often refer to the formula

simply as a 3-formula.

Definition 4.5.1 (Random 3-formula). A random 3-formula φ on n variables with

clause density ∆ is a 3-formula (C1, . . . , C∆n), where each clause Ci is chosen uniformly

at random from all of the 23
(
n
3

)
possible clauses.4

Technically a random 3-formula φ is a fixed formula chosen according to the above

4Defining a random formula in one of the other standard ways, for instance by having the clauses
chosen without replacement, would not affect the results in this chapter.
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process. However, sometimes we will slightly abuse notation and speak about the

probability that φ has a certain property; in this case we are referring to the probability

that a formula chosen according to the distribution defined by the above process has

that property.

Let π be a total order on a set of variables {x1, . . . , xn}. We will refer to π simply

as an order. Alternatively, we can view π as a permutation such that π(i) = j if and

only if the i-th variable in the order of π is xj . We will also write π−1(j) = i to indicate

that π(i) = j. We also define the identity order I such that for all i, I(i) = i.

Let f : {0, 1}n → {0, 1} be a Boolean function on n variables and let z ∈ {0, 1}t for

t ≤ n. We define f |π,z to be the function f ′ : {0, 1}n−t → {0, 1} that is the function f

restricted so that for each 1 ≤ i ≤ t, if π(i) = j, then xj is fixed to the constant value

zi.

Definition 4.5.2 (OBDD). Given an order π on {x1, . . . , xn}, an ordered binary de-

cision diagram with respect to π, denoted by OBDDπ, is a branching program with the

following structure. An OBDDπ is a layered directed acyclic graph with layers 1 through

n+ 1. Layer 1 contains a single root node, and layer (n+ 1) contains two final nodes,

one labeled with the value 0 and the other labeled with the value 1. Every node in layers

1 through n has outdegree two: such a node v on level i has one outgoing edge to a node

on level i+1 labeled with the value 0, and another outgoing edge to a node on level i+1

labeled with the value 1.

An OBDDπ defines a Boolean function {0, 1}n → {0, 1} in the following way. For an

assignment α on n variables, we start at the root node, and for i = 1 to n, advance along

the edge labeled with α(π(i)). When this process is complete, we will have arrived at one

of the final nodes. If this final node is labeled with 0, then we define OBDDπ(α) = 0,

and otherwise we define OBDDπ(α) = 1, where now we are associating α with an n bit

string in the natural way.

|OBDDπ| denotes the size (the number of nodes) of the OBDD.

An important property of OBDDs is that for a given Boolean function f : {0, 1}n →
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{0, 1} and an ordering π, there is a unique minimal OBDDπ up to isomorphism com-

puting f [Bry86]. Thus for a given f we can safely refer to OBDDπ(f) as the OBDD

computing f according to π.

The following simple theorem (and corollary) provide general techniques for proving

lower bounds on |OBDDπ(f)|.

Theorem 4.5.3 ([SW93]). Let f : {0, 1}n → {0, 1} be a Boolean function on n variables

and π an order. Let k = |{f |π,z : z ∈ {0, 1}t}| (i.e., k counts the number of distinct

sub-functions of f that can be produced by fixing the first t variables according to π).

Then the t-th level of OBDDπ(f) contains k nodes.

Corollary 4.5.4 ([TSZ09]). Let f be a Boolean function on n variables and π an order.

Suppose the following conditions hold

1. x1, · · · , xt are the least t variables according to π for some t < n.

2. B ⊆ {1, . . . , t}.

3. z ∈ {0, 1}t.

4. For all x,x′ ∈ {0, 1}t, if x 6= x′ and xi = x′i = zi for all i /∈ B, then there exists

y ∈ {0, 1}n−t such that f(x,y) 6= f(x′,y).

Then |OBDDπ(f)| ≥ 2|B|.

Definition 4.5.5 (OBDD∗π refutation). Given an unsatisfiable 3-formula F and an

order π, an OBDD∗π refutation of F is a sequence

OBDDπ(f1), OBDDπ(f2), · · · , OBDDπ(ft ≡ 0) such that for each fi one of the fol-

lowing conditions is satisfied:

1. fi is a clause of F . (In this case we say that fi is an axiom).

2. fi = fj ∧ fk for some j, k < i.

The size of the OBDD∗π refutation is defined as
∑t

i=1 |OBDDπ(fi)|.

We define S∗π(F) to be the minimum size of any OBDD∗π refutation of F . In this

chapter we focus on π = I and thus will refer to S∗I(F).
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Definition 4.5.6 (OBDD+
π refutation). An OBDD+

π refutation of an unsatisfiable 3-

formula F = (C1, . . . , Cm) is an OBDD∗π refutation where the clauses of F are pro-

cessed one at a time in order. Precisely, an OBDD+
π refutation of F is a sequence

OBDDπ(f1), OBDDπ(f2), · · · , OBDDπ(f2m = 0) where for 1 ≤ i ≤ m, fi = Ci,

fm+1 = C1, and for m + 2 ≤ j ≤ 2m, fj = fj−1 ∧ fj−m. We define S+
π (F) to be the

size of the unique OBDD+
π refutation of F , and we define S+(F) to be the minimum

over π of S+
π (F).

We will make use of the following bounds related to satisfiability thresholds.

Theorem 4.5.7 ([DBM03]). There exists ∆∗ ≤ 4.51 such that for large n, with high

probability a random 3-CNF formula with n variables and clause density ∆ > ∆∗ will

be unsatisfiable.

Theorem 4.5.8 ([DM02]). There exists ∆∗ ≤ 0.91 such that for large n, with high

probability a random 3-XOR formula with n variables and clause density ∆ > ∆∗ will

be unsatisfiable.

We will also need the following lemma, which is a restatement of a result that

appeared in [CS88]. For S a subset of the clauses of a 3-formula F , let var(S) be the

set of all variables that appear in at least one of the clauses of S (ignoring the sign of

the literal). We call a 3-formula F on n variables an (x, y)-expander if for all subsets

S of the clauses of F such that |S| ≤ xn, |var(S)| ≥ y|S|.

Lemma 4.5.9 ([CS88]). For all y < 2 and ∆ > 0, there exists positive x such that

with high probability a random 3-formula on n variables with clause density ∆ will be

an (x, y)-expander.

Finally, we need two results on systems of distinct representatives that follow from

Hall’s marriage theorem. For a clause C, let var(C) be the set of variables appearing

in C, and for a set of clauses S, let var(S) = ∪C∈Svar(C). We say a subset S of

clauses has a system of distinct representatives (SDR) if there is a one-to-one function

σ : S → var(S) such that for all C ∈ S, σ(C) ∈ var(C).
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Lemma 4.5.10 ([Hal35]). Let S be a subset of clauses. S has an SDR if and only if

for all S′ ⊆ S, |var(S′)| ≥ |S′|.

Lemma 4.5.11 ([CS88]). Let S be a set of clauses and V a set of variables. S has an

SDR σ with at most t elements of V in the range of σ if and only if it has an SDR and

for all S′ ⊆ S, |S′| − |var(S′) \ V | ≤ t.

4.6 Proof of the OBDD* Case

The purpose of this section is to prove Theorem 4.4.1, which we now restate.

Theorem 4.6.1 (restatement of Theorem 4.4.1). Let ∆ > 4.51. There exists a constant

ε > 0 such that, with high probability when φ is a random 3-CNF formula on n variables

with clause density ∆, φ is unsatisfiable and S∗I(φ) ≥ 2εn.

The main work in our proof of Theorem 4.6.1 is proving the following lemma.

Lemma 4.6.2. Let ∆ > 4.51. There exist constants δ, ε > 0 such that, with high

probability when φ is a random 3-CNF formula on n variables with clause density ∆,

φ is a (δ, 1.9) expander and the following holds: Let S be any subset of the clauses of

φ such that δn/2 ≤ |S| ≤ δn, and let fS be the conjunction of these clauses. Then

|OBDDI(fS)| ≥ 2εn.

Proof of Theorem 4.6.1. Because ∆ > 4.51, by Theorem 4.5.7 with high probability φ

will be unsatisfiable. Let P = OBDDI(f1), OBDDI(f2), · · · , OBDDI(ft = 0) be an

OBDD∗I refutation of φ. Each fi is a conjunction of some subset of clauses S of φ. Let

|fi| denote |S|.

By Lemma 4.5.9, there exists a constant δ such that with high probability φ is a

(δ, 1.9) expander. By Lemma 4.5.10 this means that any subset S of clauses of φ with

|S| ≤ δn has an SDR. Any set of clauses S that has an SDR σ is satisfiable, since

an assignment that for each clause C ∈ S sets σ(C) to the value that satisfies C will

satisfy S. Therefore, since ft is the constant 0 function, which is trivially unsatisfiable,

|ft| ≥ δn. For every fi that is an axiom, we have |fi| = 1. If fi = fj∧fk for some j, k < i,

then |fi| ≤ |fj | + |fk|. Therefore, for each i ∈ t, |fi| ≤ 2 maxj<i |fj |. This implies that
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there exists i ∈ [t] such that δn/2 ≤ |fi| ≤ δn. By Lemma 4.6.2, |OBDDI(fi)| ≥ 2εn,

so P has size at least 2εn.

The remainder of this section is devoted to proving Lemma 4.6.2. First we prove a

few other lemmas that will be useful towards this goal.

Lemma 4.6.3. Let ∆ > 0 and 0 < δ < ∆ be some constant. There exists ε > 0,

such that with high probability when φ is a random 3-formula on n variables with clause

density ∆, for any set T of εn variables, the number of clauses from φ that contain a

variable from T is less than δn.

Proof. Let T be a set of variables such that |T | = εn. For any constant c > 1, the

probability that a particular clause of φ contains a variable from T is less than 3cε.

Therefore, the expected number of clauses from φ that do not contain a variable from

T is at least (1 − 3cε)∆n. Let b = (1 − 3cε)∆. Let X be the random variable that

counts the number of clauses from φ that do not contain a variable from T . In order

for the number of clauses from φ that contain a variable from T to be less than δn, we

need that bn−X < δn, so X > (b− δ)n = (1− δ
b )bn.

By a Chernoff bound, the probability that X ≤ (1− δ
b )bn is less than e−bn(

δ
b )

2
/2 =

e
−

“
δ2

2b

”
n. The total number of sets of variables that contain exactly εn variables is(

n
εn

)
≤
(
en
εn

)εn =
(
e
ε

)εn. By a union bound, the probability that there exists some set

of variables T with |T | = εn such that more than δn clauses from φ contain a variable

from T is less than

e
−

“
δ2

2b

”
n ·
(e
ε

)εn
.

By choosing a small enough value of ε, this probability is exponentially small in n.

Lemma 4.6.4. Let ∆ > 0 and 0 < δ < ∆ be some constant. There exists ε > 0,

such that with high probability when φ is a random 3-formula on n variables with clause

density ∆, the following property holds: For all sets S of clauses from φ with |S| ≥ δn,

there exists a set of clauses T ⊆ S with |T | = εn such that the clauses in T are disjoint

(i.e. no two clauses of T share a common variable).
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Proof. Let ε′ be the constant that comes out of Lemma 4.6.3 corresponding to δ. Take

a maximal set T ⊆ S such that the clauses in T are disjoint. Let ε = ε′

3 . We have that

|T | ≥ εn, otherwise var(T ) is a set of ε′n variables that appear in at least δn clauses,

which would violate Lemma 4.6.3.

Definition 4.6.5 (splits). Let t be a positive integer less than n and F a 3-formula.

For a clause C ∈ F , we say that t left-splits C according to an order π if there is exactly

one variable xi ∈ var(C) such that π−1(i) ≤ t. In this case we define leftC,t,π = xi.

Similarly, we say that t right-splits C according to an order π if there is exactly one

variable xi ∈ var(C) such that π−1(i) > t, and in this case define rightC,t,π = xi. If t

either right-splits or left-splits C, then we will sometimes simply say that t splits C.

Lemma 4.6.6. Let ∆, δ > 0 be any constants, and for some 0 < ε < 1, let Γε =

{dεne, d2εne, d3εne, · · · , d(1− ε)ne}. Then with high probability when φ is a random

3-formula on n variables with clause density ∆, for any set of clauses S from φ, with

|S| ≥ δn, there exists t ∈ Γε such that at least (δ − 7ε∆)εn of the clauses are left-split

by t according to I.

Proof. Say two variables xi and xj have distance d if |i − j| = d. Let C be a clause

from φ. If all variables from C have pairwise distance at least εn, then some element of

Γε must left-split C according to I. The probability that any two given variables from

C have distance at least εn is at least 1− 2ε, so the probability that all variables from

C have pairwise distance at least εn is at least 1− 6ε.

Therefore the expected number of clauses that are left-split according to I by at

least one element of Γε is at least ∆n(1 − 6ε). Therefore, by a Chernoff bound, with

high probability, for any constant c > 1 − (1 − 6ε) = 6ε, at most c∆n clauses from φ

are not left-split according to I by any element of Γε.

Assume the above property of φ holds and consider an arbitrary set of δn clauses

from φ. By an averaging argument, there exists t ∈ Γε such that (δ − c∆)εn of these

clauses are left-split according to I by t. Choosing c = 7ε completes the proof of the

lemma.
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Lemma 4.6.7. Let ∆ > 4.51, and let δ′ be the constant that comes out of Lemma 4.5.9

such that with high probability a random 3-formula with clause density ∆ is a (δ′, 1.9)

expander. Let δ < δ′ be some constant. There exists constants γ, ε > 0, such that with

high probability when φ is a random 3-formula on n variables with clause density ∆,

the following property holds: For all sets T of clauses from φ, with δn ≤ |T | ≤ δ′n,

there exists S ⊆ T such that

1. |S| = γn.

2. There exists t ∈ Γε such that every clause C ∈ S is left-split by t according to I.

3. The clauses of S are disjoint.

4. T has an SDR σ, such that for every clause C ∈ S, exactly one variable in C is

in the range of σ.

Proof. Suppose the conclusions of Lemma 4.5.9, Lemma 4.6.4, and Lemma 4.6.6 hold

with respect to φ (which occurs with high probability). Let T be a set of clauses from

φ such that δn ≤ |T | ≤ δ′n. By Lemma 4.6.6, there exists a constant ε such that for

λ = (δ − 7ε∆)ε > 0, at least λn clauses from T are left-split by t ∈ Γε according to I.

Call this set of λn clauses U .

By Lemma 4.6.4, for some constant λ′ we can find a set of λ′n disjoint clauses

U ′ ⊆ U . Now we invoke Lemma 4.5.11 to show that there exists an SDR σ for T such

that at most 1.6λ′n of the 3λ′n variables in var(U ′) are in the range of σ. To do this it

suffices to show that for any set of clauses S′ ⊆ T , |S′|− |var(S′)\var(U ′)| ≤ 1.6λ′n. If

|S′| ≤ 1.6λ′n then trivially the inequality is satisfied. Otherwise, if |S′| > 1.6λ′n, then

because ψ is a (δ′, 1.9) expander, |var(S′)| ≥ 1.9|S′|, so

|S′| − |var(S′)\var(U ′)| ≤ −0.9|S′|+ 3λ′n ≤ −1.44λ′n+ 3λ′n ≤ 1.6λ′n

Because there are at most 1.6λ′n variables from var(U ′) in the range of σ, there must

exist a set of clauses S ⊆ U ′, with |S| = 0.4λ′n, such that for every clause C ∈ S,

exactly one variable in C is in the range of σ. This set S satisfies the requirements of

the lemma.
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We are now ready to prove Lemma 4.6.2.

Proof of Lemma 4.6.2. By Lemma 4.5.9, there exists δ > 0 such that with high proba-

bility φ is a (δ, 1.9) expander, and also with high probability the conclusion of Lemma

4.6.7 holds.

Let S be a subset of the clauses of φ such that δn/2 ≤ |S| ≤ δn. Let S′ ⊆ S be the

set guaranteed to exist by Lemma 4.6.7 with the four properties from that lemma, and

σ the corresponding SDR for S. Let leftS′ = {leftC,t,I : C ∈ S′}.

In order to prove the lemma we will make use of Corollary 4.5.4 to show that

|OBDDI(fS)| ≥ 2|leftS′ | ≥ 2εn for some constant ε > 0. Our set B from that theorem

will be leftS′ . Define z ∈ {0, 1}t as follows. For each 1 ≤ i ≤ t such that xi = σ(C) for

some clause C, let zi be the value that satisfies the clause C. Assign all other values of

z arbitrarily.

To finish the proof of the lemma, we need that for all x,x′ ∈ {0, 1}t, if x 6= x′ and

xi = x′i = zi for all i /∈ B, then there exists y ∈ {0, 1}n−t such that φ(x,y) 6= φ(x′,y).

Let x,x′ ∈ {0, 1}t such that x 6= x′ and xi = x′i = zi for all i /∈ B. Let j be an

index such that xj 6= x′j . Let C be the clause from S′ such that xj = leftC,t,I .

Define y as follows. Let p and q be the two indices other than j such that xp and

xq are in the clause C. Define yp−t and yq−t each to be the value that does not satisfy

the clause C. For each clause D 6= C such that D ∈ S′, let r and s be the two indices

greater than t such that xr and xs are in the clause D. Define yr−t and ys−t each to be

the value that satisfies D. For any index i such that t < i ≤ n and xi = σ(E) for some

clause E other than C, define yi−t to be the value that satisfies the clause E. Assign

all other values of y arbitrarily. Note that because the clauses in S′ are disjoint and for

each clause C in S′ exactly one of the variables of C is in the range of σ, it is always

possible to form the partial assignment y according to these rules. (Note in particular

that if σ(E) = x for some clause E /∈ S′, then x /∈ var(S′)).

Either xj satisfies the clause C, or x′j does. Assume without loss of generality that

xj does. Then φ(x′,y) = 0, since the assignment (x′,y) does not satisfy the clause

C. However, φ(x,y) = 1, since the assignment (x,y) satisfies every clause in φ. This
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completes the proof.

4.7 Proof of the OBDD+ Case

The purpose of this section is to prove Theorem 4.4.2, which we now restate.

Theorem 4.7.1 (Restatement of Theorem 4.4.2). Let ∆ > 0.91. There exists a con-

stant ε > 0 such that, with high probability when φ is a random 3-XOR formula on n

variables with clause density ∆, φ is unsatisfiable and S+(φ) ≥ 2εn.

The following three lemmas are needed in the proof.

Lemma 4.7.2. For 0 < ε < 1, let Γε = {dεne, d2εne, d3εne, . . . , d(1 − ε)ne}. Let

∆ > 0.5. There exists ε, δ > 0 such that, with high probability when φ is a random

3-formula on n variables with clause density ∆, the following property holds: For any

order π, there exists some tπ ∈ Γε such that more than δn of the clauses from φ are

split by tπ according to π. 5

Proof. By Lemma 4.5.9, for all y < 2, there exists an x > 0 such that with high

probability φ will be an (x, y) expander. We will pick some y < 2, ε > 0, and δ > 0 to

be determined later in the proof.

Suppose for contradiction that there exists a π such that no t ∈ Γε splits more than

δn of the clauses from φ. Then there exists S ⊆ φ, with |S| ≥ ∆n − δn
ε , such that for

each clause C ∈ S, all the variables from C are contained within an interval of Γε: i.e.

there exists t ∈ {0}∪Γε such that for all xi ∈ C, π−1[i] > t and π−1[i] < t+ εn. In this

case we will say that the clause C is contained in the interval t according to π.

By an averaging argument there exists some t ∈ {0} ∪ Γε and T ⊆ S with |T | ≥

ε(∆n− δn
ε ) = ε∆n− δn such that every clause from T is contained in the interval t.

Suppose that we choose y, ε, and δ in such a way that

1. y < 2

5In fact, using a slightly more complicated first moment argument, one can prove the stronger state-
ment that this lemma holds even if we fix tπ = n/2.
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2. y(ε∆n− δn) > εn.

3. xn ≥ ε∆n− δn

Then this would be a contradiction, because it would imply by the expansion properties

of φ that not all of the clauses from T can in fact be contained in the interval t.

All that remains is to show that we can satisfy these inequalities simultaneously.

In order to simultaneously satisfy the first two inequalities, we must be able to

satisfy the following inequality:

2(ε∆n− δn) ≥ εn

Solving for δ, we get that

2ε∆n− 2δn ≥ εn

2δn ≤ 2ε∆n− εn

δ ≤ ε∆− ε

2

δ ≤ ε(∆− 1
2

)

Note that because ∆ > 1
2 , δ can satisfy this inequality and still be positive.

A stronger condition than the third inequality is that ε ≤ x
∆ . Thus by choosing y to

be sufficiently close to 2, then choosing ε and δ as shown above we get our contradiction

and the lemma is proved.

Lemma 4.7.3. There exists λ > 0 such that, with high probability when φ is a random

3-XOR formula with clause density ∆ = 0.6, φ is a (0.6, 1 + λ) expander.

Proof. This type of calculation is by now standard (see for instance [BSG03], Lemma

5.1), although in our case it is slightly messier than usual because of the more specific

bounds that we need.

Let δ = 0.01 and ∆ = 0.6. Let Ai denote the event that a set of clauses S of size i

has expansion
|var(S)|
|S|

< 1 + δ,
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where i = 1, 2, · · · ,∆n. There are
(

∆n
i

)
such sets of clauses and

(
n

(1+δ)i

)
possible small

vertex sets. The probability for a single edge to fall within the small vertex set is(
(1+δ)i

3

)
/
(
n
3

)
≤
(

(1+δ)i
n

)3
. Thus

Pr[Ai] ≤
(

∆n
i

)(
n

(1 + δ)i

)(
(1 + δ)i

n

)3i

.

We need to bound the probability Pr[Ai] in order to show that

Pr[
∆n∨
i=1

Ai] = o(1).

Since Pr[
∨∆n
i=1Ai] ≤ Pr[

∨ 3√n
i=1Ai] + Pr[

∨cn
i= 3√n+1Ai] + Pr[

∨∆n
i=0.1n+1Ai], where c is a

constant between 0 and ∆ to be determined later, it is enough to show that

Pr[

3√n∨
i=1

Ai] = n−Ω(1) = o(1) (4.1)

Pr[
cn∨

i= 3√n+1

Ai] = n−Ω( 3√n) = o(1) (4.2)

Pr[
∆n∨

i=cn+1

Ai] = 2−Ω(n) = o(1) (4.3)

Using the estimation
(
a
b

)
≤ ( eab )b, we get

Pr[Ai] ≤
(
e∆n
i

)i( en

(1 + δ)i

)(1+δ)i((1 + δ)i
n

)3i

=
[
e2+δ ·∆ · (1 + δ)2−δ · i1−δ

n1−δ

]i
.

Thus

Pr[

3√n∨
i=1

Ai] ≤ 3
√
n · e

2+δ ·∆ · (1 + δ)2−δ · 3
√
n

1−δ

n1−δ

= e2+δ ·∆ · (1 + δ)2−δ · n
2δ−1

3

which tends to 0 as n tends to infinity. This implies (4.1).

In order to show (4.2) and (4.3), we need to use a better approximation for Pr[Ai]:

Pr[Ai] ≤
(

∆n
i

)(
n

(1 + δ)i

)(
(1 + δ)i

n

)3i

=
(∆n)!

(∆n− i)! · i!
· n!

(n− (1 + δ)i)! · ((1 + δ)i)!
·
(

(1 + δ)i
n

)3i
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Using Stirling’s approximation,

√
2πnn+ 1

2 e−n ≤ n! ≤ enn+ 1
2 e−n

we get

Pr[Ai] ≤
e(∆n)∆n+ 1

2 e−∆n

√
2π(∆n− i)∆n−i+ 1

2 e−(∆n−i)
√

2πii+
1
2 e−i

· enn+ 1
2 e−n

√
2π(n− (1 + δ)i)n−(1+δ)i+ 1

2 e−(n−(1+δ)i)
√

2π((1 + δ)i)(1+δ)i+ 1
2 e−((1+δ)i)

·
(

(1 + δ)i
n

)3i

≤ (∆n)∆n+ 1
2

(∆n− i)∆n−i+ 1
2 · ii+

1
2

· nn+ 1
2

(n− (1 + δ)i)n−(1+δ)i+ 1
2 · ((1 + δ)i)(1+δ)i+ 1

2

·
(

(1 + δ)i
n

)3i

= f(i).

Then

ln f(i) = (∆n+
1
2

) ln(∆n)− (∆n− i+
1
2

) ln(∆n− i)− (i+
1
2

) ln i

+(n+
1
2

) lnn− (n− (1 + δ)i+
1
2

) ln(n− (1 + δ)i)− ((1 + δ)i+
1
2

) ln((1 + δ)i)

+3i(ln((1 + δ)i)− lnn) = g(i),

dg(i)
di

=
∆n− i+ 1/2

∆n− i
+ ln(∆n− i)− i+ 1/2

i
− ln i+

(1 + δ)(n− (1 + δ)i+ 1/2)
n− (1 + δ)i

+(1 + δ) ln(n− (1 + δ)i)− (1 + δ)i+ 1/2
i

− (1 + δ) ln((1 + δ)i) + 3(ln((1 + δ)i)− lnn) + 3

= ln(∆n− i) + (1− δ) ln i+ (1 + δ) ln(n− (1 + δ)i)− 3 lnn

+
1

2(∆n− i)
− 1
i

+
1 + δ

2(n− (1 + δ)i)
+ (2− δ) ln(1 + δ) + 3

= ln
(∆n− i)i1−δ(n− (1 + δ)i)1+δ

n3
+

1
2(∆n− i)

− 1
i

+
1 + δ

2(n− (1 + δ)i)
+ (2− δ) ln(1 + δ) + 3.

When i ∈ [ 3
√
n, cn], for large enough n, we have

dg(i)
di

≤ ln
(∆n− i)i1−δ(n− (1 + δ)i)1+δ

n3
+ 4

≤ ln
(∆n)(cn)1−δn1+δ

n3
+ 4

= ln(∆c1−δ) + 4.

In order to make ln(∆c1−δ) + 4 < 0, it is enough to have c = 0.01. This means g(i) is

decreasing in interval [ 3
√
n, cn], which implies f(i) is also decreasing in the same interval.
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Thus

Pr[
cn∨

i= 3√n+1

Ai] ≤ (cn− 3
√
n)f( 3

√
n)

≤ cn · (∆n)∆n+ 1
2

(∆n− 3
√
n)∆n− 3√n+ 1

2 · 3
√
n

3√n+ 1
2

· nn+ 1
2

(n− (1 + δ) 3
√
n)n−(1+δ) 3√n+ 1

2 · ((1 + δ) 3
√
n)(1+δ) 3√n+ 1

2

·
(

(1 + δ) 3
√
n

n

)3 3√n

≤ cn ·
(

∆n
∆n− 3

√
n

)∆n+ 1
2

· (∆n)
3√n · n− 3√n/3−1/6

·
(

n

n− (1 + δ) 3
√
n

)n+ 1
2

· n(1+δ) 3√n · (1 + δ)(2−δ) 3√n−1/2 · n−(7+δ) 3√n/3−1/6

=
cn ·

(
∆n

∆n− 3√n

)∆n+ 1
2 ·∆ 3√n ·

(
n

n−(1+δ) 3√n

)n+ 1
2 · (1 + δ)(2−δ) 3√n−1/2

n(2−2δ) 3√n/3+1/3

= o(1)

which proves (4.2).

In order to show (4.3), for the range cn ≤ i ≤ ∆n, let i = tn where c ≤ t ≤ ∆. In

this case,

f(i) = f(tn) =
(∆n)∆n+ 1

2

(∆n− tn)∆n−tn+ 1
2 · (tn)tn+ 1

2

· nn+ 1
2

(n− (1 + δ)tn)n−(1+δ)tn+ 1
2 · ((1 + δ)tn)(1+δ)tn+ 1

2

·
(

(1 + δ)tn
n

)3tn

=
√

∆
nt
√

(∆− t) · (1− (1 + δ)t) · (1 + δ)
·

[
∆∆ · (1 + δ)(2−δ)t · t(1−δ)t

(∆− t)(∆−t) · (1− (1 + δ)t)1−(1+δ)t

]n
Define

h(t) =
∆∆ · (1 + δ)(2−δ)t · t(1−δ)t

(∆− t)(∆−t) · (1− (1 + δ)t)1−(1+δ)t
.

Using Mathematica, one can show that there exists some constant 0 < γ < 0.970 such

that h(t) ≤ γ holds when c ≤ t ≤ ∆. Therefore

Pr[
∆n∨

i=cn+1

Ai] ≤ Pr[
∆n−1∨
i=cn+1

Ai] + Pr[A∆n]

≤ (∆− c)
√

∆n
c
√

(1− (1 + δ)∆) · (1 + δ)
· γn +

(
n

(1 + δ)∆n

)(
(1 + δ)∆n

n

)3∆n

≤ (∆− c)
√

∆n
c
√

(1− (1 + δ)∆) · (1 + δ)
· γn +

(
e1−(1+δ)∆((1 + δ)∆)3∆

(1− (1 + δ)∆)1−(1+δ)∆

)n
= o(1)
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which shows (4.3).

Lemma 4.7.4. Let ψ be a 3-formula over n variables with clause density ∆ such that

ψ is a (∆, 1 + δ)-expander for some δ > 0. Let U ⊆ ψ be a set of disjoint clauses with

|U | = λn for some λ > 0. Let Ψ be a set of variables and f be a bijection from Ψ to

U such that for all x ∈ Ψ, x appears in the clause f(x). Then there exists ε > 0 such

that there is an SDR σ on ψ for which at least εn of the variables from Ψ are not in

the range of σ.

Proof. Let ε = λδ. By Lemma 4.5.11, we need to show that for any S′ ⊆ ψ, |S′| −

|var(S′)\Ψ| ≤ (λ− ε)n.

By the expansion of ψ and the fact that there is exactly one variable from Ψ in each

clause from U , we have that |var(S′)\Ψ| ≥ (1 + δ)|S′| −min(|S′|, λn).

First suppose that |S′| ≥ λn. Then we have that

|S′| − |var(S′)\Ψ| ≤ |S′| − ((1 + δ)|S′| − λn)

= λn− δ|S′|

≤ λn− δλn

= λn(1− δ)

= (λ− ε)n

Now suppose that |S′| < λn. Then we have that

|S′| − |var(S′)\Ψ| ≤ |S′| − ((1 + δ)|S′| − |S′|)

= (1− δ)|S′|

≤ λn(1− δ)

= (λ− ε)n

Thus in either case |S′| − |var(S′)\Ψ| ≤ (λ− ε)n

Proof of Theorem 4.7.1. Let ∆ > 0.91, and let φ = (C1, C2, . . . , C∆n) be a random

3-XOR formula on n variables with clause density ∆.
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By Theorem 4.5.8, with high probability φ will be unsatisfiable.

Let ψ = (C1, C2, . . . , C0.6n) be the 3-XOR formula that is the first 0.6n clauses of φ.

We will show that there exists ε > 0 such that with high probability OBDDπ(ψ) ≥ 2εn

for any order π. This implies that S+(φ) ≥ 2εn, proving the theorem.

Suppose the conclusions of Lemma 4.7.2, Lemma 4.7.3, and Lemma 4.6.4 hold with

respect to ψ (which occurs with high probability).

By Lemmas 4.7.2 and 4.7.3, there exists a δ such that ψ is a (0.6, 1 + δ)-expander,

and for any order π there exists tπ such that more than δn clauses from ψ are split by

tπ according to π. For a given π, let S be a set of δn clauses from ψ such that every

clause in S is split by tπ according to π.

By Lemma 4.6.4, there exists γ > 0 and T ⊆ S, with |T | = γn, such that the clauses

of T are disjoint. Either γn
2 of the clauses from T are left-split by tπ, or at least γn

2

of the clauses from T are right-split by tπ. We now divide our proof into two cases

depending on which of these is true.

First assume that there exists U ⊆ T , with |U | ≥ γn
2 such that every clause in U is

left-split by tπ. By Lemma 4.7.4, there exists ε > 0 and V ⊆ U , such that

1. |V | = εn

2. There exists an SDR σ on ψ such that no element of leftV is in the range of σ,

where leftV = var(V ) ∩ leftU

(Here U and leftU correspond to U and Ψ from Lemma 4.7.4 respectively.)

Due to the properties of σ, any assignment of the variables of leftV can be extended

to satisfy the formula ψ: Define a function f : {0, 1}|V | → {0, 1}n in such a way that

f(x) = (x,y, z), where

1. x is an assignment to the variables of leftV .

2. y is an assignment to the variables vartπ ,π\leftV , where vartπ ,π are the first tπ

variables of ψ according to the order π.

3. z is an assignment to var(ψ)\vartπ ,π (i.e. the last n− tπ + 1 variables according

to the order π.)
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4. ψ(x,y, z) = 1

For x,x′ ∈ {0, 1}|V | with x 6= x′, let f(x) = (x,y, z) and f(x′) = (x′,y′, z′). We will

show that ψ(x,y, z) 6= ψ(x′,y′, z). This implies that |{ψ|π,w : w ∈ {0, 1}tπ}| ≥ 2|V |,

which by Theorem 4.5.3 implies that |OBDDπ| ≥ 2|V | = 2εn.

By definition we have that ψ(x,y, z) = 1. x and x′ differ on their assignments to

some variable in leftV . Let C ∈ V be the clause containing the variable in leftV on

which x and x′ differ. The other two variables in C are assigned equally in (x,y, z)

and (x′,y′, z), since their values are determined by the assignment z. Therefore C is

not satisfied as a 3-XOR clause by (x′,y′, z), and ψ(x,y, z) 6= ψ(x′,y′, z).

Now we consider the second case, where there exists U ⊆ T , with |U | ≥ γn
2 such

that every clause in U is right-split by tπ.

By Lemma 4.7.4, there exists ε > 0 and V ⊆ U , such that

1. |V | = εn

2. There exists an SDR σ on ψ such that no element of rightV is in the range of σ,

where rightV = var(V ) ∩ rightU

Due to the properties of σ, any assignment of the variables of rightV can be extended

to satisfy the formula ψ: Define a function f : {0, 1}|V | → {0, 1}n in such a way that:

f(z) = (x,y, z), where

1. z is an assignment to the variables of rightV .

2. y is an assignment to the variables var(ψ)\(vartπ ,π∪rightV ) (i.e. the last n−tπ+1

variables according to the order π, not including variables from rightV ).

3. x is an assignment to the variables of vartπ ,π.

4. ψ(x,y, z) = 1

For z, z′ ∈ {0, 1}|V | with z 6= z′, let f(z) = (x,y, z) and f(z′) = (x′,y′, z′). We will

show that ψ(x,y, z) 6= ψ(x′,y, z). This implies that |{ψ|π,w : w ∈ {0, 1}tπ}| ≥ 2|V |,

which by Theorem 4.5.3 implies that |OBDDπ| ≥ 2|V | = 2εn
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By definition we have that ψ(x,y, z) = 1. z and z′ differ on their assignments to

some variable in rightV . Let C ∈ V be the clause containing the variable in rightV on

which z and z′ differ. By definition ψ(x′,y′, z′) = 1, so C is satisfied as a 3-XOR clause

by the assignment (x′,y′, z′). The only variable in C that is assigned by y′ or z′ is the

variable rightC , so the clause C is not satisfied as a 3-XOR clause by (x′,y, z), and

therefore ψ(x,y, z) 6= ψ(x′,y, z).

4.8 Future Work

The obvious open problem is to prove lower bounds for refuting random 3-CNF or 3-

XOR formulas in an OBDD-based refutation system where neither the variable order

nor the order in which clauses are processed in the refutation is constrained. Although

it might seem that one could tweak our techniques to get this result, it may be that

this is more difficult than appears at first glance.

For instance, suppose we tried to use the same approach of focusing in on a particu-

lar OBDD in the refutation of a random 3-CNF formula such that the OBDD represents

the conjunction of about δn clauses, for some appropriately chosen fixed δ, in the hopes

of showing that the OBDD must be of exponential size. In the restricted systems from

this chapter, we were able to choose δ to be an arbitrarily small constant. However, in

the unrestricted system (still without weakening), we would be forced to choose δ to

be greater than about 1/6, because a random formula with clause density just above

the threshold does contain sub-formulas with about n/6 clauses that have small OBDD

representations for some variable order. (For instance, one can look for a large set of

disjoint clauses and then choose a variable order where the variables from each clause

are adjacent in the order). It is much more difficult to reason about sub-formulas in

this regime; for instance, to the best of our knowledge it has not even been proved that

a random 3-CNF formula with clause density just above the threshold with high proba-

bility does not contain an unsatisfiable sub-formula consisting of n/6 clauses (let alone

that all sub-formulas slightly larger than this must have large OBDD representations).
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Certainly one cannot rely on the existence of SDRs when considering sub-formulas with

clause density this close to the threshold.

Making progress will probably require using a more sophisticated analysis of the

structure of random formulas than we do in this chapter. A large amount of research has

been spent investigating the structure of random CNF and XOR formulas with densities

below the respective satisfiability thresholds, including understanding the solution space

structure of such formulas and the occurrence of various phase transitions. (See for

example [Ach09] for a survey of this work, along with more general information about

SAT solving and random formulas). Finding a way to leverage this type of knowledge in

this context is probably a key step towards achieving these more difficult lower bounds.
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Chapter 5

A General Framework for Proving Proof Complexity

Lower Bounds Using Random Formulas

In the previous chapter we focused on variants of a particular OBDD-based proof system

and proved lower bounds for this proof system using random formulas. However, the

high-level approach was not really exclusively geared towards random formulas and the

methods used were specifically tailored to work with OBDD-based systems in a way

that was not obviously generalizable. As mentioned in Section 4.2, it would be good

to have methods that were adapted specially to work with random CNF formulas and

that potentially could be used to attack strong proof systems.

In this chapter we introduce such a general framework for working with random

3-CNF formulas. Conceptually, the high-level approach is simple: The goal is to show

that given a short refutation of an unsatisfiable formula in a proof system P , the

description of the formula can be compressed more than one can compress a random

formula, by algorithmically constructing a suitable encoding. Doing so implies that

random formulas cannot have short refutations in the system P . In essence we are using

a sophisticated counting argument that is specifically tailored to work with random

formulas.

After introducing the general framework, in Sections 5.3 and 5.4 we demonstrate its

use by proving lower bounds for treelike resolution, a restricted version of the resolution

system. We should emphasize from the outset that this result itself is not new; expo-

nential lower bounds for random k-CNFs are already known for treelike resolution, and

in fact for much stronger systems such as general resolution and the RES(k) system.1

1RES(k) is a generalization of resolution whose lines are k-DNFs instead of just clauses [BSW01,
Ale05]. A clause is a 1-DNF and resolution is equivalent to RES(1). RES(k) for constant k > 1 is
strictly stronger than resolution and strictly weaker than constant-depth Frege systems.
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Furthermore, the bounds we derive are not optimal – for the clause density we

choose the best known bounds are of the form 2Ω(n), and we derive bounds of 2n
ε

for

some ε.2

However, it is our hope that the techniques introduced generalize better than current

methods and could be useful for attacking stronger proof systems for which no good

methods currently exist. Wigderson and Ben-Sasson showed that most of the known

resolution lower bounds, including those for random formulas, can be explained in

terms of size-width trade-offs [BSW01]. In this framework, one shows that any short

refutation can be transformed to another refutation where the width of all clauses in

the new refutation (defined as the number of literals in the clause) is small. Then one

derives lower bounds on the size of refuting certain formulas by showing that any such

refutation must contain a clause of large width. This approach is very elegant, but is

hard to generalize since the notion of width is specific to clauses and does not apply to

proof systems that have greater expressive power than resolution. The basic framework

we establish in this paper can be applied to any proof system, and the lower bounds

we derive for treelike resolution do not directly refer to clause width at all.

One other way in which the methods used to prove our treelike resolution lower

bounds seem to be qualitatively different than previous methods is that they are al-

gorithmic in nature. At the most abstract level, in order to establish that random

formulas do not have short refutations, one must identify a property Q that random

formulas have but that formulas with short refutations do not have. The previous res-

olution lower bounds use static properties Q based on the idea of expansion. Given

a CNF formula, we can form a bipartite graph where one set of vertices consists of

the clauses of the formula and the other set of vertices consists of the variables of the

formula, and there is an edge between a clause and a variable if the variable appears in

the clause. For a random formula the resulting bipartite graph will have some type of

explicitly stateable expansion properties that formulas with short resolution refutations

2Although if instead of choosing constant clause density we consider random formulas with n1.5−ε

clauses, in this case the lower bound we can derive using these techniques converges to the optimal
value.
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provably cannot have. On the other hand, in our lower bound proof the property Q is

intrinsically tied to the main coding algorithm of the proof. Our Q also is capturing

some idea related to expansion, but it seems impossible to extract it from the main

algorithm and to state it explicitly as a static property. Perhaps the ability to use these

implicit properties will be useful in dealing with more powerful proof systems.

5.1 Random Formulas and the General Framework

In this section we redefine random formulas in a slightly different way and prove two

simple lemmas that establish our general framework applicable to any proof system.

The following notation will be used throughout the chapter. For a clause C, lits(C)

denotes the set of literals in C, and vars(C) denotes the set of variables in C, ignoring

the sign of the literal. For a k-CNF formula ϕ, the size of ϕ, denoted by |ϕ|, is the

number of clauses in ϕ. We write φ ⊆ ϕ if φ is a subset of the clauses of ϕ.

Definition 5.1.1 (Random 3-CNF Formulas). A random 3-CNF formula φ on n vari-

ables with clause density ∆ is a set of ∆n clauses, where each clause is chosen uniformly

at random without replacement from all of the 23
(
n
3

)
possible clauses.

The main difference between this definition of a random formula and the one from

the previous chapter is that here we demand that no two clauses of the random formula

can be the same. (Here we also view a random formula as a set of clauses as opposed to

an ordered list of clauses). For large n and constant clause density, if we choose clauses

of a random formula with replacement, with high probability the formula will contain

distinct clauses, and therefore for our purposes the two definitions of a random formula

coincide. Nonetheless, explicitly including this condition that clauses of a formula are

distinct will simplify the proofs that follow.

Our first lemma establishes a simple counting method for proving that random

formulas do not have short refutations in a proof system. Recall from Theorem 4.5.7

that ∆∗ = 4.51 is an upper bound on the satisfiability threshold for random 3-CNF

formulas.
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Lemma 5.1.2. Let P be an arbitrary proof system, and c be a constant such that

c > ∆∗. Let Φ be the set of all 3-CNF formulas with at most n variables and exactly

cn distinct clauses. Let Ψ ⊆ Φ be the set of all such formulas that are unsatisfiable and

have refutations of size at most t(n) in P . Let {0, 1}≤k be the set of all binary strings

of length at most k. If there exists an onto function η : {0, 1}≤k → Ψ with

k = log
((

8
(
n
3

)
cn

))
− ω(1)

then with high probability a random 3-CNF formula F with n variables and clause

density c will be unsatisfiable and have no P refutation of size at most t(n).

Proof. Because c > ∆∗, with high probability F will be unsatisfiable.

We have that

log |Φ| = log
((

8
(
n
3

)
cn

))

Therefore, given the assumption, |Ψ| � |Φ|, so with high probability F will be

unsatisfiable and have no P refutation of size at most t(n).

Lemma 5.1.2 shows that if we can “compress” any formula ψ that has a short

refutation, then we can get lower bounds on the size of refutations of random formulas.

Our next lemma says that we can focus our attention on finding some subset of the

clauses of ψ that are compressible. Suppose we encode a 3-CNF formula with cn clauses

by individually encoding each clause (in other words, writing down each of the three

variables in the clause and the signs of the literals). Then altogether the encoding

would be of size about 3cn log n, since writing down a variable takes about log n bits.

Of course, by considering the clauses altogether instead of individually, we can save

on our encoding; as it turns out it is possible to encode an arbitrary 3-CNF formula

with cn clauses using about 2cn log n bits, which is about 2 log n bits per clause. (This

calculation is based on counting the total number of such formulas and taking the

logarithm of this number). The following lemma says that if given a formula ψ with
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a short refutation we are always able to find some subset of m > 0 clauses of ψ that

can be encoded using (2 − ε)m log n bits, then this suffices to get the lower bounds of

Lemma 5.1.2.

Lemma 5.1.3. Let P, c, n,Φ,Ψ,F be as in Lemma 5.1.2.

Let Φm be the set of all sets of m clauses.

Suppose there exists a constant ε > 0 and a family of functions {ρm}, 1 ≤ m ≤ cn,

such that

1. ρm : {0, 1}(2−ε)m logn → Φm

2. For all ψ ∈ Ψ there exists ϕ ⊆ ψ and ρm such that ϕ is in the range of ρm

Then with high probability F will have no P refutation of size at most t(n).

Proof. By Lemma 5.1.2, it suffices to construct an onto function η : {0, 1}≤k → Ψ with

k = log
((

8
(
n
3

)
cn

))
− ω(1)

Let ψ ∈ Ψ. By assumption there exists 1 ≤ m ≤ cn and ϕ ⊆ ψ such that ρm(x) = ϕ

for some x ∈ {0, 1}(2−ε)m logn. Let ψ− be the clauses of ψ that are not in ϕ. The total

number of 3-CNF formulas with at most n variables and exactly cn−m distinct clauses

is (
8
(
n
3

)
cn−m

)
Therefore ψ− can be uniquely represented by a binary string y of size

log
((

8
(
n
3

)
cn−m

))
We will define η(x◦y) = ψ, where ◦ is the concatenation function. η is well defined;

as it turns out, the larger m is the shorter the string x ◦ y will be, so the length of

the string x ◦ y contains the information about where the delimitation between x and

y occurs.

Clearly η is onto, so all that remains is to show that

|x ◦ y| ≤ log
((

8
(
n
3

)
cn

))
− ω(1)
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We have that

|x ◦ y| = log
((

8
(
n
3

)
cn−m

))
+ (2− ε)m log n

= log
((

8
(
n
3

)
cn−m

))
+ 2m log n− εm log n

Therefore, it suffices to show that

log
((

8
(
n
3

)
cn

))
− log

((
8
(
n
3

)
cn−m

))
≥ 2m log n− o(m log n)

Let (n)k denote the falling factorial. We have that

log
((

8
(
n
3

)
cn

))
− log

((
8
(
n
3

)
cn−m

))
= log

(
((4/3)(n)3)!

(cn)!((4/3)(n)3 − cn)!

)
− log

(
((4/3)(n)3)!

(cn−m)!((4/3)(n)3 − cn+m)!

)
= log((cn−m)!) + log(((4/3)(n)3 − cn+m)!)− log((cn)!)− log(((4/3)(n)3 − cn)!)

= −
cn∑

i=cn−m+1

log i+
(4/3)(n)3−cn+m∑
i=(4/3)(n)3−cn+1

log i

≥ −m log(cn) +m log((4/3)(n)3 − cn+ 1)

= −m log n+ 3m log n− o(m log n)

= 2m log n− o(m log n)

5.2 Resolution and the DPLL system

In this section we formally define the resolution system and the DPLL system, which

corresponds to treelike resolution.

A resolution refutation of an unsatisfiable CNF formula ϕ is a sequence of clauses

C = C1, C2, . . . Ct, where Ct = ∅, the empty clause, and each Ci is either a clause from

ϕ or is derived from two clauses Cj , Ck, with j, k < i, using the following resolution rule

A ∨ x1, B ∨ x0

A ∨B
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Here Cj = A ∨ x1, Ck = B ∨ x0, Ci = A ∨ B, A and B are arbitrary sets of literals,

and x is an arbitrary Boolean variable. Because the resolution rule is sound and the

empty clause is trivially unsatisfiable, such a sequence of clauses is a proof that ϕ is

unsatisfiable. One can also show that resolution is complete; any unsatisfiable 3-CNF

formula has a resolution refutation of size at most 2n, where the size of a resolution

refutation is defined to be the number of clauses in the sequence.

It is natural to represent a resolution refutation π of a formula ϕ as a rooted directed

acyclic graph π with nodes in π corresponding to the clauses in C. In this representation,

the root of π is the clause ∅, the leaves of π are clauses of ϕ, and there are edges going

from Cj and Ck into Ci if Ci was derived from Cj and Ck. (The graph π cannot

necessarily be uniquely determined from C, since it is possible that a clause from C can

be legally derived in multiple ways). If there exists a π corresponding to C such that the

outdegree of every node in π other than the root is one, then we say that C is a treelike

refutation. In some cases the smallest treelike resolution refutation of a formula ϕ can

be exponentially larger than the smallest general resolution refutation of ϕ [BSIW04].

Tseitsin proved the first super-polynomial resolution lower bounds for a restricted

form of resolution called regular resolution (a system strictly more powerful than tree-

like resolution) in the late 1960’s, using a class of contradictions based on the fact that

the sums of degrees of an undirected graph must be even [Tse68]. Almost two decades

passed before Haken proved the first super-polynomial bounds for general resolution,

using a class of contradictions based on the pigeonhole principle [Hak85]. Soon after,

Szémeredi and Chvátal proved the first resolution lower bounds for random CNFs us-

ing techniques adapted from Haken’s proof [CS88]. Later, Ben-Sasson and Wigderson

unified all of these previous results under the size-width trade-off framework [BSW01].

The best lower bounds for random 3-CNFs with n variables and clause density c > ∆∗

are of the form 2Ω(n), which is tight up to the multiplicative factor in the exponent.

We now describe the DPLL proof system:

Definition 5.2.1 (DPLL system). A DPLL refutation π of an unsatisfiable 3-CNF

formula ϕ is a binary rooted tree. Each interior node of π is labeled with a variable x,

and the two edges entering such a node are respectively labeled with x0 and x1. For a
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given node a in π, we associate with a the set ρ(a) that consists of the literals labeling

the path from the root to a. Every leaf node b is labeled with a clause from ϕ whose

literals are a subset of ρ(b).3 The size of π is the number of nodes in π.

We will make a couple of assumptions about the structure of a DPPL refutation.

Let π be a DPLL refutation of a formula ϕ. For a node a in π, let tree(a) be the

subtree of π with root a.

Suppose an interior node a is labeled with the variable x. Then child1(a) denotes

the node in π connected to a by an edge labeled with x1, and child0(a) denotes the node

in π connected to a by an edge labeled with x0. Also, tree1(a) denotes tree(child1(a)),

the subtree rooted at child1(a), and tree0(a) denotes tree(child0(a)), the subtree rooted

at child0(a).

Definition 5.2.2 (Normal form). We say a DPLL refutation π is in normal form if

the following conditions are satisfied:

1. Along any path from the root of π to a leaf node, no two nodes are labeled with

the same variable

2. Let a be an interior node in π labeled by a variable x. Then there exists some

leaf node in tree1(a) labeled by a clause containing the literal x1, and there exists

some leaf node in tree0(a) labeled by a clause containing the literal x0.

Lemma 5.2.3. If there exists a DPLL refutation of a formula ϕ of size s, then there

exists a normal form DPLL refutation of ϕ of size at most s.

Proof. Let π be a DPLL refutation of a formula ϕ that is not in normal form. Suppose

that condition 1 is violated, so that along some path from the root to a leaf node there

are two nodes a and b, each labeled with a variable x. Without loss of generality, assume

that a is above b in π, and that b is in tree1(a). Then if we modify π by replacing the

3In the usual setup a leaf node b is labeled with a clause that only contains literals whose negations
are in ρ(b). This corresponds more closely to the DPLL algorithm, where one branches on variables
and backtracks after finding a clause that is falsified by the current restriction of the variables. Our
definition is equivalent and will ease notation.



97

subtree tree(b) with the subtree tree1(b), π will still be a valid DPLL refutation of ϕ,

and the size of π will decrease. We can iterate this process until condition 1 is satisfied.

Now suppose that condition 2 is violated. Let a be an interior node in π labeled by a

variable x, and without loss of generality suppose that there is no leaf node in tree1(a)

that contains the literal x1. Then if we modify π by replacing the subtree tree(a) with

the subtree tree1(a), π will still be a valid DPLL refutation of ϕ and the size of π will

decrease. We can iterate this process until condition 2 is satisfied.

Our interest in the DPLL system stems from the following connection to treelike

resolution (see [Kra95] for instance).

Theorem 5.2.4. An unsatisfiable k-CNF formula ϕ has a DPLL refutation of size s

if and only if it has a treelike resolution refutation of size s.

Proof sketch. Given a graph π corresponding to a treelike refutation C of ϕ, we can

create a normal form DPLL refutation π′ of ϕ with the exact same node and edge

structure as π. The leaf nodes of π′ will be labeled the same as in π. Suppose an

interior node a of π has edges entering it from nodes b and c, and that a, b, and c

correspond to the clauses Ca, Cb, and Cc in C respectively. Furthermore, suppose that

in C Ca is derived from Cb and Cc by resolving on the variable x, and that x1 is in Cb

and x0 is in Cc. Then in π′, a will be labeled with the variable x, the edge going from

b to a will be labeled with x1 and the edge going from c to a will be labeled with x0. If

we form π′ this way it will be a valid normal form DPPL refutation of ϕ.

Similarly, if π′ is a normal form DPLL refutation of ϕ, we can create a treelike

resolution refutation C of ϕ such that |C| = |π′|. We will build C inductively using the

tree π′. For each leaf node in π′ labeled with a clause C, we add C to C. Suppose an

interior node a in π′ has edges going into it from nodes b and c, and that Cb and Cc are

the clauses already in C corresponding to the nodes b and c. Furthermore, suppose a is

labeled with the variable x. Then we add Ca to C where Ca is the clause derived from

Cb and Cc by resolving on x. If we form C this way, it will be a valid treelike resolution

refutation that has a corresponding graph π with the same node and edge structure as

π′.
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5.3 Statement of the Main Theorem and Description of the Coding

Algorithm

We are now ready to state our main theorem from this chapter.

Theorem 5.3.1. Let c > ∆∗ be any constant. There exists a δ such that, with high

probability, if F is a random 3-CNF formula with n variables and cn clauses, then F

does not have a DPLL refutation of size at most 2n
δ
.

Corollary 5.3.2. Let c > ∆∗ be any constant. There exists a δ such that, with high

probability, if F is a random 3-CNF formula with n variables and cn clauses, then F

does not have a treelike resolution refutation of size at most 2n
δ
.

Proof of Theorem 5.3.1. By Lemma 5.1.3, we can reduce the proof to the following

problem. We are given some unsatisfiable 3-CNF formula ϕ that has at most n variables

and exactly cn distinct clauses. Furthermore, we are guaranteed that ϕ has a DPLL

refutation of size at most 2n
δ
. We must show that we can find some subset of m

clauses of ϕ, for 1 ≤ m ≤ cn, such that we can encode these m clauses using at most

(2− ε)m log n bits for some ε > 0. Our code must be independent of ϕ in the sense that

we must use the same code for any such input to our problem.

Let π be the lexicographically first normal form DPLL refutation of ϕ of size at

most 2n
δ
. We have no time constraints, so finding π is not an issue.

Our solution will be to design a coding algorithm ENCODE that traverses the tree

π and always outputs a transcript code that is of size at most (2 − ε)m log n bits and

encodes m > 0 clauses of ϕ. ENCODE will work by repeating the following steps:

ENCODE(π)

1 Get next clause C

2 Encode C

3 Make cache deletion decisions

4 Check halting condition

Let us first informally discuss the basic ideas behind ENCODE.
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As part of the algorithm, each time ENCODE reaches line 1 it must produce a new

clause to encode. In order to do this, ENCODE will start at the root and perform a

depth-first traversal of π. Whenever there is a choice of whether to move to the left child

or the right child, the traversal will go in the direction of the subtree of smaller size,

breaking ties arbitrarily. When the traversal reaches a leaf node labeled by a clause C, if

C has not yet been encoded previously during the algorithm ENCODE will return this

clause C (and continue the depth-first traversal from this point the next time it must

get a clause). Otherwise, ENCODE backtracks and continues the depth-first traversal

until a clause C ′ is found that has not yet been encoded previously.

Once a clause C has been found that has not previously been encoded, ENCODE

must encode C in line 2. Throughout its execution, ENCODE maintains a transcript

code that will be the output of the algorithm. ENCODE also maintains a “cache” of

variables that starts off empty and will be used to encode clauses. The following three

types of operations are recorded in code:

1. Adding a new variable to the cache

2. Encoding a clause C of ϕ

3. Deleting a variable from the cache

In order for ENCODE to encode the clause C, it first must ensure that all the

variables in var(C) are in the cache. Let X ⊆ var(C) be the variables that are not

currently in the cache. ENCODE adds each x ∈ X to the cache one at a time and

records this in code. To record entering a variable x in the cache, ENCODE must write

log n bits to code to describe x.4

Once all the variable in var(C) are in the cache, ENCODE encodes the clause C

by indexing the three variables in var(C) in the cache and using three extra bits to

specify whether each variable appears as a positive or negative literal in C. To do this

ENCODE must write 3 log |cache|+ 3 bits to code, where |cache| is the current size of

the cache.

4Also, whenever an operation is recorded in code the type of operation must be specified. But this
will only take a constant number of extra bits per clause encoded and will not affect our analysis.
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Next, in step 3, ENCODE makes a decision about whether or not to delete some

variables from the cache. If ENCODE decides to delete a variable x from the cache,

it does this and then records this operation in code by writing log |cache| bits to code

specifying x.

Finally, in step 4, ENCODE decides whether or not to halt. If it halts then the

algorithm ends and ENCODE outputs code. Otherwise, the algorithm continues again

at step 1.

Note that at any time during the execution of ENCODE, the current state of code

implicitly defines cache, the variables that are in the cache at the current time, and

clauses, the set of clauses in ϕ that have already been encoded.

Let us now give some intuition behind how ENCODE can compress the description

of a set of clauses of ϕ. Suppose ENCODE only halts after it has traversed the entire tree

π. Also, suppose we are able to ensure that the size of cache stays small throughout

the execution of ENCODE (let us say |cache| ≤ O(log n)), and we can ensure that

whenever a variable x is entered into the cache, it is accessed twice during an encode

operation before it is deleted from the cache.

Then, since every time a clause is encoded exactly three variables are accessed from

the cache, we get that the number of times a variable is added to the cache is at most

(3/2)m, where m is the number of clauses that are encoded. Also, because the cache

never grows to be bigger than O(log n), recording all the encode and deletion opera-

tions to code will together take at most O(m log log n) = o(m log n) bits. Therefore,

including the add variable operations, when ENCODE halts and outputs code it will

have length at most (3/2)m log n + o log(n) bits, which is at most (2 − ε)m log n bits

for an appropriately chosen ε. The assumptions we make here are unrealistic, but this

will be the intuition underlying how we define the cache deletion decisions and halting

condition of ENCODE.

In order to describe further details of ENCODE we will need some more definitions.

Definition 5.3.3 (Encoding definitions). Let a be an interior node of π. If during the

depth-first traversal of ENCODE a has not yet been reached we say that a is unreached.
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If ENCODE is in the process of traversing either tree0(a) or tree1(a) but has not yet

traversed the other subtree, we say that a is in phase 1. If ENCODE is in the process

of traversing either tree0(a) or tree1(a) and has already finished traversing the other

subtree, we say that a is in phase 2. If ENCODE has finished traversing all of tree(a),

then we say that a is finished.

Let a be an interior node of π labeled by a variable x. Then edge1(a) denotes the

edge labeled by x1 entering a, edge0(a) denotes the edge labeled by x0 entering a, and

we say that edge1(a) and edge0(a) are partner edges.

Let leaf be a leaf node in π labeled by a clause C. Suppose xi ∈ lits(C). Then along

the path from the root of π to leaf there must be some node a labeled with the variable

x. If at some point during the execution of ENCODE the depth-first traversal reaches

leaf and causes ENCODE to encode C, we say that edgei(a) was covered by C, and

from that point on we say that the edge edgei(a) has been covered. For some node b,

if leaf is in tree(b), we say that edgei(a) was covered during the traversal of tree(b).

(Note that this does not imply that edgei(a) is in tree(b).)

As a first try, let us define the cache deletion decisions of ENCODE as follows.

Suppose ENCODE has just encoded a clause C in step 2 containing the literals xi, yj , zk

that labels a leaf node leaf in π. In step 3 ENCODE now has to decide which if any

variables to delete from the cache. The only variables that ENCODE will consider

deleting are the variables x, y, and z. To decide whether to delete each of the variables,

ENCODE will consider them one at time, using the following protocol.

Suppose ENCODE is deciding whether to delete the variable x. Because xi ∈

lits(C), there must be a node a on the path from the root to leaf that is labeled by

the variable x. Because ENCODE just encoded the clause C, the depth-first traversal

is in the process of traversing treei(a), so a is in phase 1 or in phase 2. If a is in phase

2 then delete x from the cache, and if a is in phase 1 then do not delete x from the

cache.

The logic behind such a protocol is as follows. We know that because π is in normal

form (see Definition 5.2.2), there is some leaf node leaf1 in tree1(a) labeled by a clause
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C1 containing the literal x1. Similarly, there is some leaf node leaf0 in tree0(a) labeled

by a different clause C0 containing the literal x0. The hope is that if we wait to delete

x from the cache until after both C0 and C1 have been encoded, then we can ensure

that every time a variable is added to the cache it is accessed twice during an encode

operation before it is deleted from the cache like in our hypothetical situation from

before.

The problem with this strategy is that although we have the guarantee that leaf0

and leaf1 exist in tree(a), we do not have the guarantee that when ENCODE begins

traversing tree(a) both C0 and C1 have not been encoded previously during the algo-

rithm. Indeed, it may be the case using this cache deletion decision protocol that x is

entered into the cache while a is in phase 1 but no clause containing x is ever encoded

while a is in phase 2 or vice versa, in which case x may only be accessed once for an

encode operation before it is deleted from the cache. However, in order for this to be

the case, it must be that x was entered into the cache previously during the algorithm

and then removed. This suggests a strategy for dealing with these bad situations: if we

can predict when such a situation will occur, we should not delete x from the cache the

first time around, so that it will still be waiting there when we need to access it again.

This motivates our second try at defining the cache deletion decisions of ENCODE.

This time the protocol will be more complex. As part of the cache deletion decisions

ENCODE will color edges of π in order to keep track of information that will be needed

to make optimal decisions (and which will be used in our analysis of the algorithm).

ENCODE will also maintain a counter count that starts at 0 and will be used to define

a new halting condition.

The coloring is based on a case analysis and may seem arbitrary; it will be helpful to

remember that the purpose of the coloring is to keep track of those situations where a

variable may be entered into the cache and only accessed once for an encode operation

before being deleted from the cache. In general, the colors have the following meaning:

• All edges start off colored black. If an edge is black, it means that it has not yet

been covered during ENCODE.
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• When an edge is covered during ENCODE, it is colored green if its partner edge

has not been covered yet and would never be covered during ENCODE, even if

ENCODE was allowed to traverse all of π (i.e. ENCODE did not stop in the

middle of the traversal because of a halting condition)

• When an edge is covered during ENCODE, it is colored white if it has not been

covered previously, and its partner edge has already been covered or would be

covered during ENCODE at some point if ENCODE was allowed to traverse all

of π.

• When an edge is covered during ENCODE, if it is then colored blue it means the

edge had already been covered previously during ENCODE.

Every time an edge is colored (or recolored) either green or blue, ENCODE will

increment count. The new halting condition will be to halt if count ≥ 12nδ, or if

ENCODE finishes traversing all of π, whichever comes first. (This halting condition

prevents the cache from getting too large, as we will see later in the analysis).

We now give the new cache deletion decisions protocol in full detail. Again the setup

is as follows: we are assuming that ENCODE has just encoded a clause C containing

the literal xi that labels a leaf node leaf . ENCODE is now deciding whether or not

to delete the variable x from the cache. We know there exists a node a on the path

from the root of π to leaf labeled with the variable x, and that a is either in phase 1

or phase 2. The edge edgei(a) has just been covered.

We will break up the protocol into two cases, depending on whether a is in phase 1

or phase 2.

First suppose a is in phase 1. We now consider the following sub-cases, which are

listed in priority ordering since they are not completely disjoint. (For instance, both

sub-case 1 and sub-case 2 could occur, in which case ENCODE follows the rules of

sub-case 1).

1. Let C be the set of all clauses labeling a leaf node in tree1−i(a). Let C′ ⊆ C be the

set of all such clauses that have not yet been encoded during ENCODE. Suppose
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∀D ∈ C′, x 6∈ var(D). This means that when ENCODE later traverses tree1−i(a),

it will not encode any clause containing x. (Note that every clause labeling a leaf

node in treei(a) that contains x contains the literal xi, and every clause labeling

a leaf node in tree1−i(a) that contains x contains the literal x1−i, so for the rest

of the time a is in phase 1 whether or not C′ contains a clause with the variable

x will not change.) In this case ENCODE colors (or recolors) edgei(a) green,

increments count, and removes x from the cache.

2. edgei(a) is black. ENCODE colors edgei(a) white and leaves x in the cache.

3. edgei(a) is not black. ENCODE colors (or recolors) edgei(a) blue, increments

count, and leaves x in the cache.

Now suppose a is in phase 2. We consider the following sub-cases (this time the

sub-cases are disjoint). Note that in all these sub-cases x is always removed from the

cache.

1. edge1−i(a) is black. Since ENCODE has already traversed all of tree1−i(a), this

means that edge1−i(a) will never be covered during ENCODE. In this case EN-

CODE colors (or recolors) edgei(a) green, increments count, and removes x from

the cache.

2. edgei(a) is black and edgei−1(a) is not black. ENCODE colors edgei(a) white and

removes x from the cache.

3. edgei(a) is not black and edge1−a(a) is not black. ENCODE colors (or recolors)

edgei(a) blue, increments count, and removes x from the cache.

We are not quite done yet. ENCODE now is keeping track of the information it

needs, but it is not using this information to make optimal cache deletion decisions yet.

The actual coding algorithm we will use will be the following algorithm ENCODE′.

ENCODE′ first runs ENCODE as we have defined it above, but throws away its output.

Let ENCODE1 denote this first execution of ENCODE. Let colored be the set of edges
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in π that are colored either green or blue during ENCODE1. Let var-colored be the

set of variables that label one of the edges in colored (ignoring the sign of the literal).

ENCODE′ then runs ENCODE again. Let ENCODE2 denote this second execution

of ENCODE. The traversal, coloring, and halting condition will be the same as in

ENCODE1. Therefore ENCODE2 will halt at the same point that ENCODE1 does.

The only difference between ENCODE2 and ENCODE1 is that ENCODE2 has the

following modification to the cache deletion decisions protocol of ENCODE.

Suppose that ENCODE2 has just encoded a clause containing the literal xi and

is deciding whether to delete x from the cache. If x ∈ var-colored, and later on in

ENCODE2 an edge from colored labeled with x (ignoring the sign of the literal) will be

colored (or recolored) green or blue, then ENCODE2 leaves x in the cache regardless

of what the cache deletion decisions protocol calls for. This is well-defined, since the

coloring is the same in ENCODE1 and ENCODE2 and they halt at the same time and

we have already run ENCODE1. Otherwise ENCODE2 makes cache deletion decisions

according to the protocol of ENCODE. The output of ENCODE′ is the output of

ENCODE2.

5.4 Analysis of the Coding Algorithm

5.4.1 The Balanced DPLL Case

We continue the proof of Theorem 5.3.1 by analyzing ENCODE′. Our goal is to show

that for some ε > 0 the output of ENCODE2, code, has length at most (2 − ε)m log n

bits, where m is the number of clauses encoded in code. (Note that from code we can

reconstruct every clause that is encoded in code.)

In this section, to clarify the main ideas, we will do the analysis for a simplified

case, where we assume that π is a balanced DPLL refutation, i.e. any path from the

root of π to a leaf node has length at most O(log n). In the next section we will do the

analysis for the more general case, where π may be unbalanced.

The main challenge in the unbalanced case will be to prove Lemma 5.4.2, which

states that the cache never grows to be too large during ENCODE1. From there it will
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be easy to show that the cache never grows to be too large during ENCODE2, which

will be the key to proving that the output of ENCODE′ is sufficiently short. In the

balanced case, proving Lemma 5.4.2 is much simpler.

Let us break an execution of ENCODE into discrete time steps. We say that EN-

CODE is at time t = 0 at the beginning of the algorithm, and every time ENCODE

performs an action such as taking a step in the depth-first traversal, adding a variable

to the cache, encoding a clause, or deleting a variable from the cache, we increment t

by 1. If ENCODE is at time t of its execution, then node(t) denotes the last node that

was visited during the depth-first traversal of ENCODE, ρt denotes the set of nodes

along the path from the root of π to node(t), and cache(t) denotes the set of variables

that are in the cache at time t. Also var(ρt) denotes the set of variables that label some

node in ρt.

The following lemma will help us prove Lemma 5.4.2.

Lemma 5.4.1. Suppose ENCODE1 is at time t of its execution. Then

y ∈ cache(t)⇒ y ∈ var(ρt)

Proof. Let y be a variable such that y 6∈ var(ρt). Suppose y is added to the cache

at some time t′ < t in order for ENCODE1 to encode some clause C containing the

literal yi that labels a leaf node leaf . Then there exists a node a on the path from

the root of π to leaf that is labeled by y, and a 6∈ ρt since y 6∈ var(ρt). Examining

the cache deletion decision protocol of ENCODE1, we see that if y is not deleted from

the cache immediately after C is encoded, it is because a is in phase 1 and there is

another clause C ′ containing the literal y1−i labeling some leaf node leaf ′ in tree1−i(a)

that had not yet been encoded by time t′. (Remember that in ENCODE1 we use

the cache deletion decisions protocol of ENCODE without the extra modifications of

ENCODE2). Because a 6∈ ρt, ENCODE1 will have traversed all of tree1−i(a) by time

t. So at some time t′′ such that t′ < t′′ < t, ENCODE1 will encode C ′. At this time

a will be in phase 2, so, according to the cache deletion decisions of ENCODE1, y will

immediately afterwards be removed from the cache. This proves that if y 6∈ var(ρt),

then y 6∈ cache(t)
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Lemma 5.4.2. During an execution of ENCODE1 the cache never contains more than

14nδ variables

Proof. Suppose ENCODE1 is at time t of its execution. By lemma 5.4.1, |cache(t)| ≤

|var(ρt)|. Because π is balanced, we have that |var(ρt)| ≤ O(log n), so |cache(t)| ≤

O(log n) ≤ 14nδ for large n.

Corollary 5.4.3. During an execution of ENCODE2 the cache never contains more

than 26nδ variables

Proof. The only difference between ENCODE1 and ENCODE2 is that variables from

var-colored are potentially kept in the cache in ENCODE2 when they would be removed

in ENCODE1. We have that |var-colored| ≤ |colored| ≤ 12nδ due to the halting

condition of ENCODE. Therefore the cache at time t in ENCODE2 can contain at

most 12nδ more elements than the cache at time t in ENCODE1.

Corollary 5.4.4. Let endcache be the set of variables in the cache when ENCODE2

halts. Then |endcache| ≤ 14nδ.

Proof. The cache deletion decision protocol of ENCODE2 is such that if ENCODE2

halts at time t, its cache at time t is the same as the cache of ENCODE1 at time t.

Suppose ENCODE2 has halted and outputted code. We are ready to bound |code|,

the length of code in bits. Let T = t1, t2, . . . tl be a list of the instances during EN-

CODE2 in which a variable was written to the cache, ordered chronologically. Let

var(ti) be the variable that was added to the cache at time ti. Note that it is possible

that var(ti) = var(tj) for some i 6= j. Let num(ti) be the number of times the variable

var(ti) was accessed from the cache for an encode operation after time ti before being

removed from the cache (including the time var(ti) is accessed immediately after being

added to the cache at time ti) Let num-colored be the number of times that an edge is

colored (or recolored) green or blue during ENCODE2.

Lemma 5.4.5.

l ≤
∑l

i=1 num(ti)− num-colored+ |endcache|
2
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Proof. Suppose at time t of its execution ENCODE2 had just encoded a clause C

containing the literal xi that labels a leaf node leaf . Then there exists a node a on the

path from the root of π to leaf that is labeled with the variable x. After encoding C,

during the cache deletion decisions when ENCODE2 decided whether to delete x from

the cache, ENCODE2 colored the edge edgei(a) some color.

Suppose first that ENCODE2 colored edgei(a) blue. This means that x ∈ var-colored

and edgei(a) had been covered previously, so some clause C ′ 6= C containing xi had

been encoded at some time t′ < t. Then, according to the cache deletion decisions

protocol of ENCODE2, when C ′ was encoded the variable x must have been left in the

cache and would still be there at time t when C was encoded.

Similarly, suppose ENCODE2 colored edgei(a) green. Again, this implies that

x ∈ var-colored. Also, because edgei(a) is colored green it means that at the time

ENCODE2 began traversing tree(a), tree1−i(a) did not contain any leaf node labeled

with a clause C ′ containing the literal x1−i that had not already been encoded. But

because π is in normal form (see Definition 5.2.2), there must exist some leaf node in

tree1−i(a) labeled with a clause C ′ containing the literal x1−i that had already been

encoded previously. Then, according to the cache deletion decisions protocol of EN-

CODE2, when C ′ was encoded the variable x was left in the cache and would still be

there at time t when C was encoded.

Therefore, if edgei(a) was colored green or blue, num(ti) was incremented for some

ti without adding any new element to T .

Now suppose that edgei(a) was colored from black to white, but that x 6∈ endcache.

Then there exists a clause C ′ labeling a leaf node leaf in tree1−i(a) that contains the

literal x1−a and had not been encoded by time t (let leaf be the first node labeled by

such a C ′ that ENCODE2 would reach during the traversal of tree1−i). It may be that

in order to encode the clause C ENCODE2 had to add x to the cache, in which case

a new tj would have been added to the list T . But according to the cache deletion

decision protocol of ENCODE2, x would have remained in the cache until C ′ was

encoded, and since x 6∈ endcache, it must be that C ′ was encoded before ENCODE2

halted. Therefore num(tj) ≥ 2.
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Putting all this information together, we get that

l∑
i=1

num(ti) ≥ 2l + num-colored− |endcache|

from which the claim follows.

Let m be the total number of clauses encoded in code. Then m =
∑l

i=1 num(ti)/3.

The total length of code is the cost of documenting every addition and deletion of a

variable to/from the cache, plus the cost of encoding the m clauses by indexing three

elements of the cache per clause, plus a constant number of bits per clause that is

encoded. There can be at most 3m variables added to the cache during ENCODE2,

so altogether there can be at most 3m total deletion operations recorded in code. By

Corollary 5.4.3, the cache never grows to be larger than 26nδ during ENCODE2, so

altogether these deletion operations contribute at most 3δm log n+O(m) bits to |code|.

Similarly, the encode operations will together contribute at most 3δm log n+O(m) bits

to |code| as well. Therefore in total, the deletion and encode operations will contribute

at most 6δm log n+O(m) bits to |code|.

Each time a variable is added to the cache it takes log n bits to document this, so the

total number of bits needed to document all the cache insertions is l log n. Therefore

we have that |code| ≤ l log n+ 6δm log n+O(m).

Now suppose that ENCODE traverses all of π before halting. In this case |endcache| =

0. Using Lemma 5.4.5,

|code| ≤ l log n+ 6δm log n+O(m)

≤

(∑l
i=1 num(ti)− num-colored+ |endcache|

2

)
log n+ 6δm log n+O(m)

≤ 3
2
m log n+ 6δm log n+O(m)

≤
(

3 + 12δ
2

)
m log n+O(m)

Otherwise suppose that ENCODE halts before traversing all of π. In this case we

have that num-colored = 12nδ and, by Corollary 5.4.4, |endcache| ≤ 14nδ. Therefore,
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using Lemma 5.4.5 and the fact that m ≥ num-colored/3 = 4nδ we get that

|code| ≤ l log n+ 6δm log n+O(m)

≤

(∑l
i=1 num(ti)− num-colored+ |endcache|

2

)
log n+ 6δm log n+O(m)

≤
(

3m+ 2nδ

2

)
log n+ 6δm log n+O(m)

≤
(

7m
4

)
log n+ 6δm log n+O(m)

Therefore,

|code| ≤ max
((

3 + 12δ
2

)
m log n+O(m),

(
7m
4

)
log n+ 6δm log n+O(m)

)
Choosing δ small enough we get that |code| ≤ (15/8)m log n, which is (2− ε)m log n

for ε = 1/8.

5.4.2 The Unbalanced DPLL Case

In this section we redo the analysis of the coding algorithm for the more general case

where π is not assumed to be balanced.

The only difference between the balanced and the unbalanced case is that the proof

of Lemma 5.4.2, which states that the cache never grows to be too large during EN-

CODE1, is far more complicated; the rest of the analysis goes through as before. In the

balanced case we crucially used the fact that any path in π can contain at most O(log n)

nodes, so that immediately we have that |var(ρt)| ≤ O(log n). In the unbalanced case

var(ρt) can contain up to Ω(n) variables, so we must argue that despite this only a

small number of these variables can be in the cache at the same time.

First we prove a combinatorial lemma that we will need later on.

Let T be a rooted binary tree, where each edge is colored black or white. We call

T properly colored if for every interior node a of the tree, the two edges entering a are

the same color.
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Consider the following one-player coloring game: T originally starts off colored all

black, except for two edges lying on some path P from the root of T to a leaf node in

T that are colored white and are called the initial edges of the game. On each turn the

player is allowed to color three black edges in T white provided they all lie on the same

path from the root of T to a leaf node in T . The player wins if he is able to properly

color T .

Lemma 5.4.6. It is impossible to win the coloring game

Proof. Call an interior node a in T bad if the two edges entering a are different colors.

A proper coloring implies that there are no bad nodes in T . Let W be the set of black

edges entering a bad node (every bad node has exactly one black edge entering it). We

can assume without loss of generality that on each turn the player colors white some

edge in W . To see this, let edge be an edge that is in W before move i. In order for

the player to win, on some move j ≥ i, edge must be colored white. Suppose the player

wins, and let σ be the winning sequence of moves that the player plays. If the order

of moves in σ is transposed in any way, it will still be a winning sequence of moves.

Therefore we can exchange move j with move i, so that on move i edge is colored white.

We claim the following two invariants are maintained throughout the game:

1. Let {edge1, edge2} ⊆W . Then there does not exist a path in T from the root to

a leaf node that contains both edge1 and edge2.

2. For two edges edge1 and edge2, let anc(edge1, edge2) denote the least ancestor

of edge1 and edge2 (i.e. the farthest node from the root such that any path from

the root that includes edge1 must pass through anc(edge1, edge2) and any path

from the root that includes edge2 must pass through anc(edge1, edge2)). Let

{edge1, edge2} ⊆ W . Consider the two edges going into anc(edge1, edge2). One

of these two edges is colored white.

Let a and b denote the two bad nodes at the start of the game, and e and f the

two elements of W at the start of the game. Because the two initial edges lie on the

path P , invariant 1 will be satisfied at the beginning of the game. Also, anc(e, f) will
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be either the node a or the node b, so invariant 2 will be satisfied at the beginning of

the game as well.

Now suppose on some move the player colors white some edge1 ∈W . By invariant

1, this move can only “fix” one bad node, so it will create two new bad nodes bad1

and bad2 in T . Let bad1B be the black edge entering bad1 after this move and bad1W

the white edge entering bad1. Similarly let bad2B be the black edge entering bad2 after

the move and bad2W the white edge entering bad2. (bad1B and bad2B will be the new

members of W ).

First consider the relationship between bad1B and bad2B. Because there exists some

path from the root to a leaf node in T that contains both bad1W and bad2W , there will

be no path from the root to a leaf node in T that contains both bad1B and bad2B, so

these two edges will not violate invariant 1 after the move. Also, because there exists

some path from the root to a leaf node in T that contains both bad1W and bad2W ,

either bad1W or bad2W will be going into anc(bad1B, bad2B), so bad1B and bad2B will

not violate invariant 2 after the move either.

Now consider some arbitrary edge edge2 ∈ W that was in W before the move, and

suppose for contradiction that after the move edge2 violates invariant 1 with one of the

new members of W , say bad1B. This means that bad1B and edge2 lie along the same

path P ′. edge2 cannot be above bad1B in P ′, because in this case edge2 and edge1

are both on some path, which would violate the fact that invariant 1 held before the

move. Therefore bad1B is above edge2 in P ′. We know that edge1 and bad1W lie on

some path P ′′ since they were part of the same move. If edge1 is above bad1W in P ′′

then again edge2 and edge1 are both on some path, which would violate the fact that

invariant 1 held before the move. Therefore edge1 is below bad1W in P ′′. But in this

case bad1 is the node anc(edge1, edge2), which is a contradiction since by invariant 2

one of the edges going into anc(edge1, edge2) was already white before the move.

Now we show that edge2 and bad1B do not violate invariant 2 after the move ei-

ther. Because every path from the root that goes through edge1 must pass through

anc(edge1, edge2), and edge1 and bad1W lie along some path from the root to a leaf

node since they are part of the same move, after the move there will be some path P ′
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containing bad1W that goes through the node anc(edge1, edge2). Suppose that bad1W

is below anc(edge1, edge2) in P ′. Then anc(edge2, bad1B) = anc(edge1, edge2) so in-

variant 2 will not be violated by edge2 and bad1B after the move since invariant 2

held before the move. Otherwise suppose that bad1W is above anc(edge1, edge2) in P ′.

Then bad1W is one of the edges going into anc(edge2, bad1B), so after the turn one of

the edges going into anc(edge2, bad1B) is white and invariant 2 will not be violated by

edge2 and bad1B in that case either.

By invariant 1, after every move |W | increases by 2, so the player can never win.

We now give some definitions and prove a couple smaller lemmas that will allow up

to prove Lemma 5.4.2 in the unbalanced case.

For a node a ∈ ρt such that a 6= node(t), we define childρt(a) to be the child node

of a that is in ρt, edgeρt(a) to be the edge connecting a and childρt(a), and treeρt(a)

to be tree(childρt(a)). Similarly, we define childρ̄t(a) to be the child node of a that

is not in ρt, edgeρ̄t(a) to be the edge connecting a and childρ̄t and treeρ̄t(a) to be

tree(childρ̄t(a)).

Let phase1(t) ⊆ ρt be the set of nodes in ρt that are in phase 1 at time t, and

phase2(t) ⊆ ρt be the set of nodes in ρt that are in phase 2 at time t. (All nodes in ρt

will either be in phase 1 or phase 2 at time t.)

Note that the following two lemmas refer to ENCODE1, the first execution of EN-

CODE by ENCODE′ whose output is ignored.

Lemma 5.4.7. At time t of ENCODE1, |phase1(t)| ≤ nδ.

Proof. Suppose for contradiction there are more than nδ nodes in ρt in phase 1. Con-

sider a node a ∈ ρt that is in phase 1. Then, because the depth-first traversal always

moves toward the subtree of smaller size, size(treeρt(a)) ≤ size(treeρ̄t(a)). Therefore,

because there are more than nδ nodes in ρt in phase 1, π must have size greater than

2n
δ
, which contradicts the fact that π is supposed to have size at most 2n

δ
.

Definition 5.4.8. For an interior node b in π, let var(b) be the variable labeling b and

edges(b) be the set of edges that lie on the path from the root of π to b.
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Lemma 5.4.9. Suppose ENCODE1 is at time t of its execution, and let b ∈ phase2(t).

Suppose edgeρ̄t(b) is covered at some point during the traversal of treeρ̄t(b) by a clause

C, and neither edgeρ̄t(b) nor any edge in treeρ̄t(b) is colored green or blue during the

traversal of treeρ̄t(b). Then some edge in edges(b) is covered during the traversal of

treeρ̄t(b).

Proof. Suppose for contradiction that edgeρ̄t(b) is covered at some point during the

traversal of treeρ̄t(b), that neither edgeρ̄t(b) nor any edge in treeρ̄t(b) is colored green

or blue during the traversal of treeρ̄t(b), and that no edge in edges(b) is covered during

the traversal of treeρ̄t(b).

Define an instance of the coloring game from Lemma 5.4.6 as follows. treeρ̄t(b) will

be the tree T of the coloring game. The other two edges that are covered by C during

the traversal of treeρ̄t(b) are the initial edges of the game. Since by assumption no edge

in edges(b) is covered during the traversal of treeρ̄t(b), they will both be in T . Also,

because any edges covered by C must lie on a single path, they will both lie on a single

path as required by the definition of the coloring game.

Let the player’s moves be defined by the clauses that are encoded during the traversal

of treeρ̄t(b) other than C. Because b ∈ phase2(t), by time t ENCODE1 has already

traversed all of treeρ̄t(b). For every clause C ′ that is encoded, the player plays a move

where he colors white the three edges of T that correspond to the three edges covered

by C ′. Note that every time the player colors three edges white they lie on a single

path, and by the assumption that no edge in edges(b) is covered during the traversal

of treeρ̄t(b) and that edgeρ̄t(b) is not colored green or blue, they also all lie within T .

Also, no edge in treeρ̄t(b) is ever colored blue, so the player does not ever illegally

color the same edge twice. Furthermore, the player wins this coloring game; if there

were a bad node a in T after the player was done making all his moves, then, according

to the cache deletion decisions protocol of ENCODE1, either edge0(a) or edge1(a) would

have to have been colored green during ENCODE1, which contradicts the assumption

that no edge in treeρ̄t(b) is colored green.

But this is a contradiction, since by Lemma 5.4.6 it is impossible to win the coloring
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game.

We are now ready to restate and prove the main lemma in the unbalanced case.

Lemma 5.4.10 (Restatement of Lemma 5.4.2). During an execution of ENCODE1 the

cache never contains more than 14nδ variables

Proof. Suppose ENCODE1 is at time t of its execution.

The high level strategy for proving Lemma 5.4.10 is as follows. By Lemma 5.4.1

a variable can only be in the cache at time t if it is var(ρt). We will define a set of

nodes that we will call good, and establish a one-to-one mapping η from good nodes to

elements of var(ρt) that cannot be in the cache at time t. Then, by lower bounding

the number of good nodes, we also lower bound the number of elements of var(ρt) that

cannot be in the cache at time t, and thus we get an upper bound on the number of

variables that can be in the cache at time t.

As part of this process we will need to define another one-to-one mapping ν from

instances where an edge has been colored (or recolored) green or blue in ENCODE1 to

nodes in π.

Now we give the details. Let b ∈ phase2(t). We will consider a number of disjoint

cases.

1. Suppose that var(b) has not ever been entered into the cache by ENCODE1

during the traversal of tree(b). In this case, we say b is a good node and define

η(b) = var(b).

2. Suppose that during the traversal of treeρ̄t(b) an edge edgeρt(a) ∈ edges(b) was

covered for some a ∈ phase2(t) at time t′ < t. Furthermore, suppose edgeρt(a)

was black before it was covered. Then, because a ∈ phase2(t), according to the

cache deletion decisions protocol of ENCODE1, var(a) will be removed from the

cache, and it cannot be in the cache at time t. We will therefore call b a good node

and define η(b) = var(a). Note that once an edge is covered it will be colored

something other than black and cannot ever become black again, and also that
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for two nodes b, b′ ∈ ρt, the trees treeρ̄t(b) and treeρ̄t(b′) are disjoint. Therefore

η can only map a single node to var(a), so the property that η is one-to-one is

maintained.

Suppose that in addition when edgeρt(a) was covered, it was colored from black

to green. Then we will say that a is responsible for coloring an edge and define

ν(edgeρt(a), t′) = a. This is an important point and is part of why these definitions

are so involved; notice that in this case both an edge is colored either green or

blue and a variable is popped out of the cache. The calculations in our analysis

will be delicate enough that we must take special care to associate these instances

with two different nodes through η and ν, or else the math would not go through.

3. Suppose that during the traversal of treeρ̄t(b) an edge edge is covered at time

t′ < t, where edge is either in treeρ̄t(b) or edge = edgeρ̄t(b). Furthermore, suppose

that after edge is covered it is colored either green or blue. Then we say that b is

responsible for coloring an edge and define ν(edge, t′) = b.

4. Suppose that during the traversal of treeρ̄t(b) an edge edge ∈ edges(b) was covered

for some time t′ < t. Furthermore, suppose edge was not black before it was

covered (i.e. it had been covered previously), so that after it was covered it was

recolored either green or blue. Then we say that b is responsible for coloring an

edge and define ν(edge, t′) = b.

5. Suppose that during the traversal of treeρ̄t(b) an edge edgeρt(a) ∈ edges(b) was

covered for some a ∈ phase1(t) at time t′ < t. Furthermore, suppose edgeρt(a)

was black before it was covered, and then colored white immediately afterwards

as part of the cache deletion decisions. Note that in this case, because a is in

phase 1, the variable var(a) will not be removed from the cache according to

the cache deletion decisions protocol of ENCODE1. In this case we say that b is

responsible for covering a phase 1 edge.

Note that as we have defined η and ν, they are both one-to-one mappings.

Now let us attempt to count the number of good nodes. Let b ∈ phase2(t). Suppose
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that b is not responsible for coloring an edge and is not responsible for covering a phase

1 edge.

If var(b) has not ever been entered into the cache during the traversal of treeρ̄t(b),

then by item 1 above b is a good node. Otherwise the edge edgeρ̄t(b) must have been

covered during the traversal of treeρ̄t(b). To see this, note that if edgeρ̄t(b) were not

covered during the traversal of treeρ̄t(b), then edgeρt(b) would have to have been covered

during the traversal of treeρt(b) in order for var(b) to be in the cache. But then,

according to the cache deletion decisions protocol of ENCODE1, edgeρt(b) would be

colored green, and so by item 2 above, b is responsible for coloring an edge, which

contradicts our assumption.

Also, neither edgeρ̄t(b) nor any edge in treeρ̄t(b) was colored green or blue during

the traversal of treeρ̄t(b), otherwise by item 3 above b would be responsible for coloring

an edge. Therefore, by Lemma 5.4.9, some edge ∈ edges(b) was covered during the

traversal of treeρ̄t(b). edge must have been black before it was covered, or else by

item 4 above b would have been responsible for coloring an edge. Then we know that

edge = edgeρt(a) for some a ∈ phase2(t), otherwise b would be responsible for covering

a phase 1 edge, which contradicts our assumption. Therefore, by item 2 above, b is a

good node in this case as well.

We have that the number of nodes that are responsible for coloring an edge can be

at most 12nδ, due to the halting condition of ENCODE. Also, by Lemma 5.4.7 we have

that |phase1(t)| ≤ nδ, so there can be at most nδ nodes responsible for covering a phase

1 edge.

Therefore we get the following lower bound on the number of good nodes

(# of good nodes ) ≥ |phase2(t)| − 12nδ − nδ

= (|ρt| − |phase1(t)|)− 13nδ

≥ |ρt| − 14nδ

By Lemma 5.4.1 a variable can only be in the cache at time t if it is in ρt. Because η

is a one-to-one mapping between good nodes and elements of ρt that cannot be in the
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cache at time t, we get that

|cache(t)| ≤ |ρt| − (|ρt| − 14nδ)

= 14nδ

5.5 Open Questions

The main open question is whether these methods can be extended to prove lower

bounds for stronger systems than treelike resolution. An important first step is to

prove general resolution lower bounds; although exponential lower bounds for general

resolution refutations of random CNFs already exist, this would be progress towards

showing the validity of these new methods. So far the author has been unsuccessful at

this attempt, although he is optimistic that it is doable.

The reason why the proof in this paper does not extend immediately to the general

resolution case is that it relies crucially on the fact that every time ENCODE takes a

step in its depth-first traversal, because it always moves towards the smaller subtree,

it is “cutting off” at least half of the proof tree. This property is used to prove Lemma

5.4.7, which is subsequently used to prove the main lemma, Lemma 5.4.10, which says

that the cache never grows to be too large. In the general resolution case, if we take a

step in a depth-first traversal, it is possible that the majority of the proof graph is still

reachable regardless of which child node we choose to go to, so there is no way to “cut

off” at least half of the proof graph as before.5

The proof of Theorem 5.3.1 is messy at times, particularly in the description of the

cache deletion decisions protocol of ENCODE and the proof of Lemma 5.4.10. Is it

possible to simplify the coding algorithm or its analysis in the treelike resolution case?

Is it possible to adjust the framework in order to match the optimal treelike resolution

bounds? Perhaps these improvements would clarify how to extend the proof to the

general resolution case.

5However, one can easily extend the proof of the balanced DPLL case to work for balanced resolution
refutations, where the proof graph only contains paths of length at most O(logn).
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It would also be good to better understand to what extent these techniques are qual-

itatively different from the standard techniques that have been used to prove resolution

lower bounds. Is the idea of constructing coding algorithms to indirectly generate proof

complexity lower bounds fundamentally new and potentially powerful, or is it in some

way just a re-framing and obfuscation of older techniques? Are there limits to how

strong a proof system we can potentially apply these techniques to?
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