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Dr. Kevin Chen 

 

The overall aim of my research dealt with the understanding of regulatory 

elements in various systems (most important, in humans) through two research projects 

1) a study of RNA Binding Proteins in S. cerevisiae and 2) a study of piRNA in humans. 

My first project involved the study of RNA Binding Proteins – thought to play a 

role in post-transcriptional translation in mammals. The algorithms miReduce and 

PhyloGibbs were used towards the prediction of binding sites for these proteins in S. 

cerevisiae. The putative binding sites found with the algorithms miReduce and 

PhyloGibbs warrant more extensive analysis, but further work needs to be done to 

determine the importance of secondary structure conservation inherent in many 

functional RNAs. 

The second project examined the nature of piwi-interacting RNA (piRNA). 

piRNA are small noncoding RNA that are found in animals thought to act as regulatory 

elements in the germ-line. This study in particular considers possible forces of selection 

on piRNA through the analysis of their copy number variation in humans. Three human 

populations were included in the data used: Europeans, Yorubans, and Chinese/Japanese. 

Results from our methods support a hypothesis of negative selection on piRNA; they 

were presented in a publication co-authored by Dr. Kevin Chen and myself [11]. 
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I. Introduction – RNA Binding Proteins 

RNA Binding proteins (RBPs) are thought to play a significant role in the gene 

interaction network of mammals in the form of post-transcriptional regulation [1]; as of 

2008, relatively few RBPs had been systematically studied despite their hypothesized 

importance. In the summer of 2010 I began studying the prediction of RBP motifs and 

binding sites in S. cerevisiae. My project aimed to predict sequence specificity of RBPs, 

predict binding sites in the genome for RBPS, and analyze SNPs at the binding sites for 

evidence of correlation between sequence and gene expression variation.  
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II. RNA Binding Proteins 

Prediction of Regulatory Elements 

Towards the prediction of regulatory elements, [2] provides the algorithm 

miReduce, which bases the prediction on correlation between input sequences and input 

gene expression data. The algorithm returns statistically significant k-mers, where k-mers 

are sequences of fixed length k, with k determined by the user. In the particular case of 

sequence specificity for RBPs, 3' and 5' UTRs are hypothesized to be regions of interest 

[1]; we suggest that using 3' and 5' UTRs of S. cerevisiae [3] and RIP chip data [1] as the 

input for miReduce will predict RBP sequence specificity. miReduce outputs a list of 

statistically significant k-mers, sequences of fixed length k nucleotides, with k 

determined by the user. In this case we chose to search for 7-mers for the forty RBPs 

examined in the RIP chip data.  

In order to validate the results of miReduce 7-mers were checked against motifs 

represented as Position Weight Matrices (PWMs) – matrices which contain the 

nucleotide distribution per site of a fixed length sequence. Two PWM sets, [1] and [4], 

base their sequence specificity prediction on computational methods distinct from 

miReduce. I scored 7-mers against each set of PWMs; in order to control for background 

noise, randomly selected 7-mers from the original UTRs were also scored against the 

PWM sets. Any cases in which miReduce suggested a significantly scoring 7-mer with 

respect to the background distribution was noted. The significantly scoring 7-mers 

yielded by miReduce for 3' UTRs had at least one such score for each RBP in a set of 

high confidence RBP sequences which [1] identified from the literature. We did not 

believe the 7-mers resulting from the 5' UTRs to be biologically relevant, and the 
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remainder of the analysis focuses on the 3' UTR predictions. As a final processing step to 

construct our own list of high confidence results, cases were noted when significantly 

scoring 7-mers from both [1] and [4] were identical for a given particular RBP. 

To search for binding sites, we utilized a method from [5] which looked for 

evidence of selection on regulatory elements by comparing conserved elements from 

genome alignments of five yeast species. We downloaded the multiple alignment for 

these strains against S. cerevisiae from the UCSC and utilized an in house computer 

program to find all conserved 7-mers ranked by z-score [6]. Due to the low number of 

conserved instances in all alignments save for that between the two closest strains, only 

the global alignment between S. cerevisiae and S. paradoxus were included in the 

following analysis. I used the high-confidence list of 7-mers from the aforementioned 

processes and obtained conservation information for each predicted sequence. There were 

four RBPs which were significantly conserved across S. cerevisiae and S. paradoxus, 

with two of them being conserved in a large number of genes. 

 

Remarks on miReduce 

Though the results from a multiple linear regression scheme to predict RBP 

sequence specificity and binding sites has yielded compelling results, other methods of 

prediction may be superior for the prediction of RNA binding sites. matrixReduce [2] 

predicts the sequence specific binding affinity of a transcription factor in the form of a 

Position Specific Affinity Matrix (PSAM) and could easily be used for our analysis. 

Alternatively [8], using Drosophila as their organism of choice, develops probabilistic 

modeling upon which they build the algorithm Ahab. Ahab expands the work of previous 
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computational methods [9] in which the goal is to determine whether a sequence is more 

likely made by sampling from known weight matrices or a background distribution. Ahab 

in particular is an HMM constructed from PWMs of interest; in [8], they search the entire 

genome of Drosophila to find regulatory elements with specific PWMs for cis-regulatory 

modules – it was the first algorithm of its kind to have reasonable success in predicting 

regulatory elements in multi-cellular Eukaryotes. 

 

Use of PhyloGibbs in RNA Binding Protein binding site prediction 

 At this point, the above analysis was redone except the algorithm PhyloGibbs was 

used instead of miReduce. PhyloGibbs uses a Bayesian Markov-chain Monte-carlo 

approach to discover those sequences which are likely to be transcription factor binding 

sites. The benefit is that this approach takes into account the phylogenetic relationship of 

the underlying species (whereas, with miReduce, we had to incorporate another filtering 

step in order to look for conservation across species). It was thought that looking for 

exact conservation - even though it was between S. cerevisiae and S. paradoxus, may 

have been too stringent a requirement, and resulted in putative RNA binding protein site 

7-mers which were not enriched when compared to background 7-mers. 

 

Methods 

 Using 3' UTRs and RIP chip data from S. cerevisiae we predict motifs for RBPs 

using two different approaches. The first involved the algorithm miReduce, which runs a 

multiple linear regression on S. cerevisiae UTRs and emits statistically significant k-mers 

(sequences of fixed length k). These k-mers were compared to motifs found in the 

literature, and a pairwise alignment of S. cerevisiae and a closely related species, S. 
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paradoxus, were searched for conserved instances. The second approach utilized a 7-way 

alignment of yeast UTRs and a phylogenetic tree as input to PhyloGibbs, which uses a 

Gibbs Sampler to search the space of putative regulatory motifs for binding sites which 

occur in UTRs. The putative binding sites from both approaches were searched for SNPs, 

and compared against a background distribution. 

 

Results 

  From the list of 7-mers generated by miReduce, there were four which were 

significantly conserved across S. cerevisiae and S. paradoxus, with two of them being 

conserved in a large number of genes. The instances of these 7-mers in the 3'UTRs of S. 

cerevisiae and S. paradoxus were searched for SNPs and compared via a shuffling 

scheme against background 7-mers; the results of this method suggest that utilizing a 

multiple linear regression may not be the ideal way to identify putative binding sites for 

RBPs in S. cerevisiae. 

 The putative binding sites identified by PhyloGibbs have a SNP density which is 

lower than the background SNP density of the 3' UTRs; this suggests that a more careful 

examination of the PhyloGibbs motifs could identify multiple binding sites for RBPs. 

 

Conclusion on RNA Binding Proteins 

 The putative binding sites produced by miReduce and PhyloGibbs are promising, 

but further work needs to be done to determine the importance of secondary structure 

conservation inherent in many functional RNAs. In addition to the algorithms used, there 

exists a variety of methods to predict binding specificity utilizing Stochastic Context Free 

Grammars (SCFGs) which take into account secondary structure. Implementations 
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include the program EvoFold, which takes a multiple alignment and phylogenetic tree as 

input to search conserved sequences for significantly scoring secondary structures.  

 Ultimately, I think that the project is worth pursuing (perhaps as a rotation 

project) - especially if you have someone who is capable of running and understanding 

the SCFG algorithms in the literature. A good paper to review is [10], which you 

originally sent me many months ago. Within, they mention secondary structure used to 

discover RNA binding protein target sites.  

 That said, the above paper [10] does a reasonable job of discovering putative 

RNA binding protein sites. Anything done would most likely only be complementing the 

work done in this paper. As such, it may not be worth the time and effort to pursue this 

project any further, given the amount of novel research you will get out of following it to 

completion. 

 For further information and data / code used, please see Dr. Kevin Chen.  
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III. Introduction -- piRNA and Copy Number Variation in Humans 

 

The following data and the analysis thereof were used in the publication co-

authored by Dr. Kevin Chen and myself, [11]. For any supporting information including 

computer scripts and datasets, please contact Dr. Kevin Chen. 

piRNA are small noncoding RNA that are found in animals thought to act as 

regulatory elements in the germ-line. This study in particular considers possible forces of 

selection on piRNA through the analysis of their copy number variation in humans [12]. 

The data used, from Conrad et. al [13], contained copy numbers from three human 

populations: Europeans, Yorubans, and Chinese/Japanese (CEU, YRI, CHBJPT 

respectively). 
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IV. piRNA and Copy Number Variation in Humans 

To begin the analysis I classified the CNV based on the elements they overlapped. 

For example, any coding region which (even partially) overlaps a CNV classifies it as a 

coding CNV. To the same end, any piRNA which overlaps a CNV classifies it as a 

piRNA CNV, etcetera. 

 

Minor Allele Frequencies 

 Our first step involved examining the distribution of minor allele frequencies for 

the three different populations, separating CNV by the aforementioned classification 

scheme. It became evident that the information from the CHBJPT population contained 

too much noise to reliably analyze (see Figure 1). However, the CEU and YRI 

populations have distributions of minor allele frequencies which could indicate negative 

selection (Figure 2, 3; [11]). 

 

 

McDonald-Kreitman test 

 

What follows is a table containing the various numbers on unique/nonunique 

nucleotide counts for the various elements from the study. Please note: above, if any one 

base pair from a piRNA overlapped a CNV we classified the entire CNV as a piRNA 

overlap. In contrast for the Mcdonald-Kreitman test, my computer script counted 

overlaps on a base by base case. Note that there are 135,576,995 unique coordinates from 

the CNV dataset (not shown in Table 14). 
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Element Total 

Basepairs 

Unique 

Basepairs  

Unique overlapping 

CNV 

piRNA 764786 551879 66210 

RNA Genes 942570 937441 75929 

miRNA 63575 63451 3208 

snoRNA/miRNA 107918 107202 9655 

LINE 252646811 252342528 13556553 

Table 1. nucleotide counts for elements in study 

 

For our purposes, we have 92,414,015 intergenic coordinates – defined as any 

coordinate in a CNV which does not overlap one of the above functional elements. We 

back into this number by considering that there are 43,162,980 unique functional 

coordinates in all CNV: 135,576,995-43,162,980 = 92,414,015. With this information we 

conducted a McDonald-Kreitman test using CNV as our polymorphism data, and using 

estimated divergence. Roughly, the estimation of divergence data entailed sampling non-

overlapping subsequences from 1) piRNA and 2) intergenic regions. These subsequences 

were aligned to 1) the human genome, and 2) the reference chimp genome; if a 

subsequence alignment count differed between humans and chimpanzees, the 

subsequence was considered diverged [11]. 

 

 

 

Matrix setup for the chi-squared test: 

          [,1]              [,2] 

[1,]     estimated piRNA bp diverged        piRNA overlapping CNV (Table 14) 

[2,]     estimated intergenic bp diverged         intergenic bp overlapping CNV 
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The R output: 

 

> matrix 

          [,1]     [,2] 

[1,]     41967    66210 

[2,] 182486266 92414015 

> chisq.test(matrix) 

 

 Pearson's Chi-squared test with Yates' continuity correction 

 

data:  matrix  

X-squared = 36872.44, df = 1, p-value < 2.2e-16 

 

> 182486266 / 92414015 

D(int)/P(int) = 1.97466 

 

 > 41967/66210 

 D(piRNA)/P(piRNA) = 0.634 

 

 The chi-squared test shows that the two ratios are significantly different, which 

supports our hypothesis of negative selection for piRNA. This conclusion meshes with 

our interpretation above of the minor allele frequencies as being consistent with negative 

selection [11]. 

 

If we look at only those CNV which contain no functional elements, there are 41182769 

polymorphic intergenic coordinates. The R output: 

 

> matrix 

          [,1]     [,2] 

[1,]     41967    66210 

[2,] 182486266 41182769 

> chisq.test(matrix) 

 

 Pearson's Chi-squared test with Yates' continuity correction 
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data:  matrix 

X-squared = 131688.2, df = 1, p-value < 2.2e-16 

 

> 182486266/41182769 

D(int)/P(int) = 4.431132 

 

 

BLAT Analysis 

 To further strengthen our analysis, I next examined the derived allele frequencies 

for the various CNV by using BLAT [14] to align 400 basepair subsequences of the CNV 

to the chimp genome. Even using a score of 360 – allowing for 4 mismatches in an 

alignment, the vast majority (greater than ~85%) of the CNV have counts of 2.  

 The tables below show the number of CNV which were successfully aligned with 

the chimp genome using BLAT. These CNV were divided into gains (Table 2) and losses 

(Table 3) using the number of Chimp hits as the ancestral state. If the CN in humans was 

greater than that of the Chimp, it was considered a gain. Towards that end, if the CN in 

humans was less than that of the Chimp, it was considered a loss 
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Numbers represent CEU,CHBJPT,YRI sample sizes 

BLAT Score 

Cutoff 

RefSeq Intergenic Repeats RNA Genes piRNA 

360 236, 93, 168 185, 90, 147 75, 25, 45 18, 14, 27 35, 24, 34 

365 235, 93, 172 181, 89, 147  72, 24, 45  17, 13,  22 36, 24, 36 

370 232, 93, 174 178, 86, 144 74, 26, 46 19, 13, 28 40, 26, 35 

375 224, 88, 167 163, 75, 131  71, 23, 46 20, 12, 23 36, 21, 34 

380 209, 88, 159 145, 71, 123 66, 24, 47 20, 11, 23 35, 21, 31 

385 182, 80, 141 109, 55, 98   56, 23, 40  17, 8, 22 37, 20, 31 

390 144, 62, 104 75, 41, 61   50, 17, 31 15, 6,  13 30, 13,  23 

Table 2. SAMPLE SIZES – GAINS 

     

 Table 2. highlighted areas –  

orange indicates the best p-values (From Table 4, 6)  

yellow indicates the graph that we considered to have the most reasonable 

 trade-off between sample size and lack of noise. 

 

Numbers represent CEU,CHBJPT,YRI sample sizes 
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Numbers represent CEU,CHBJPT,YRI sample sizes 

BLAT 

Score 

Cutoff 

RefSeq Intergenic Repeats RNA Genes piRNA 

360 639, 369, 

901 

185, 599 

1575,  

278, 169, 

445 

25, 11, 27 38, 22, 42 

365 635, 368, 

893 

1013, 596, 

1573 

279, 167, 

443 

24, 11, 27 36, 19, 40 

370 631, 369, 

881 

986, 578, 

1548 

271, 162, 

434 

25, 12, 28 33, 16, 35 

375 620, 360, 

869 

957, 555, 

1510 

269, 157, 

426 

23, 11, 27 33, 17, 37 

380 605, 355, 

844 

907, 524, 

1415 

255, 151, 

400 

26, 13,  28 31, 18,  33 

385 520, 321, 

732 

758, 455, 

1176 

219, 134,  

345 

21, 11, 22 32, 20, 31 

390 370, 220, 

521 

536, 327, 785 149, 94, 237 15, 8, 18  24, 16, 26 

Table 3. SAMPLE SIZES – LOSSES (CEU,CHBJPT,YRI) 

 Table 3. highlighted areas –  

orange indicates the best p-values (From Table 5)  

yellow indicates the graph that we considered to have the most reasonable 

 trade-off between sample size and lack of noise. 

 

 

 

BLAT 

Score 

Cutoff 

CEU 

p-value 

Kolmogorov-

Smirnov, Wilcoxon 

YRI 

p-value 

Kolmogorov-Smirnov, 

Wilcoxon 

CHBJPT 

p-value 

Kolmogorov-Smirnov, 

Wilcoxon 

375 0.02778, 0.01320 0.4484, 0.6658  0.3543, 0.2051 

380 0.07201, 0.0302 0.4484, 0.6658 0.2809, 0.1811 

385 0.05538, 0.02138 0.3672, 0.6295 0.1499, 0.2248 

Table 4. P-values – piRNA versus all repeats, gains only 

 

 Table 4. tests the derived allele frequency distribution differences between piRNA 

and repeated regions in the human genome (Figure _). The orange highlight has both tests 

showing as significant at the alpha = 0.03 level, though one should note that the sample 
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size for the piRNA is a bit low for the CHBJPT population (22 piRNA CN classified 

CNV – Table 2). This may not matter, because the graphs for the CHBJPT population are 

odd, and it is doubtful we will find any significant p-value.  

 

BLAT 

Score 

Cutoff 

CEU 

p-value 
Kolmogorov-

Smirnov, Wilcoxon 

YRI 

p-value  
Kolmogorov-Smirnov, 

Wilcoxon 

CHBJPT 

p-value 

Kolmogorov-Smirnov, 

Wilcoxon 

375 0.2147, 0.07644 0.01574, 0.005635 0.3079, 0.3434 

380 0.4699, 0.2729 0.01574, 0.005635 0.4983, 0.4766 

385 0.4673, 0.3005 0.0652, 0.02127 0.3781, 0.1599 

Table 5.  P-values – piRNA versus all repeats, losses only 

 

The above shows cases where at least one p-value (either Wilcoxon or KS or 

both) is significant in terms of losses (Figure _). 

 

BLAT 

Score 

Cutoff 

CEU 

p-value 

Wilcoxon 

YRI 

p-value 

Wilcoxon 

CHBJPT 

p-value 

Wilcoxon 

375 3.31E-003 5.93E-001 3.98E-003 

380 1.15E-002 5.93E-001 1.69E-003 

385 2.50E-002 5.52E-001 2.32E-003 

Table 6. P-values – piRNA versus intergenic CNV, gains only 

 

 I have the same output as above, using different BLAT parameters. However, 

there is a tradeoff for allowing more liberal matching criteria. While one could obtain 

more CNV  matches, it might allow highly repetitive regions in the Chimp genome to be 

overrepresented. In general, this has the effect of adding tails to the end of the loss 

distributions. 
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Additional Loss Information 
 

 The following tables show more a one sided Wilcoxon test comparing piRNA 

CNV to repeat CNV (Table 7), and intergenic (Table 8). 

 

Wilcoxon one sided test, H_a = piRNA < repeats 

BLAT 

Score 

Cutoff 

CEU 

p-value 

YRI 

p-value 

CHBJPT 

p-value 

375 0.07644 0.005635 0.3434 

380 0.2729 0.005287 0.4766 

385 0.3005 0.02127 0.1599 

Table 7. P-values piRNA versus repeats – losses 

 

 

 

Wilcoxon one sided test, H_a = piRNA < intergenic 

BLAT 

Score 

Cutoff 

CEU 

p-value 

YRI 

p-value 

CHBJPT 

p-value 

375 0.00E+000 0.0005253 0.1815 

380 0.1010 0.0004742 0.3476 

385 0.1080 0.005243 0.07698 

Table 8. P-values piRNA versus intergenic – losses 

 

 These results show that the median difference between the two populations is not 

zero – in fact, the median for the piRNA CNV distribution is significantly lower from the 

intergenic CNV distribution. The results shown are for comparison with  

 

Bootstrapping gains 

 We wanted to check our results using bootstrapping. In the below tables, the 

cutoff indicates the frequency threshold used in the bootstrapping – that is, a cutoff of 

0.60 means that any CNV overlap-gain with frequency above 0.60 could be sampled. A 
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sample size equivalent to the total number of piRNA for a given population was taken 

from the Repeat distribution and the Intergenic distribution of frequencies. The p-value 

indicates the number of instances (out of 30,000) in which the Repeat/Intergenic samples 

had counts of high frequency gains which were greater than the number of high 

frequency gains for piRNA. 

 You'll notice that in all cases the Intergenic p-values are much better than those 

attained from the Wilcoxon/KS tests above. Additionally the p-values are significant for 

repeats in CEU and CHBJPT (at 0.60) and for YRI at a cutoff of 0.80.  

 

 An estimated cutoff of 0.80 or 0.85 is reasonable. 

 

 CEU CEU CHBJPT CHBJPT YRI YRI 

Cutoff Repeats Intergenic Repeats Intergenic Repeats Intergenic 

0.6 0.000633 0 0.0214 0.0001 0.1208 0.0375 

0.7 0.00186 0.0 0.2513 0.0032 0.0741 0.0309 

0.8 0.00596 0.0 0.0695333 0.00056 0.02026 0.0096 

0.85 0.0139 0.000066 0.029466 0.00003 0.0907333 0.0445 

0.9 0.0022 0.0 0.071533 0.000166 0.101733 0.03583 

0.95 0.0029666 0.035833 0.274 0.00406 0.0577 0.01386 

Table 9. estimated P-values – bootstrapping (gains) 
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Bootstrapping Losses 
 

Bootstrapping for losses used the same scheme for the previous bootstrapping on 

gains. That is, 30,000 subsamples were taken at the various cutoffs, and the p-value is 

indicative of the number of times that there were more low frequency repeats/intergenic 

CNV than low frequency piRNA. 

It appears that this results in better p-values for CEU, but for the YRI (even 

though at all cutoffs we see significant results) the results from the Wilcoxon test(s) are 

better.  

 

 

 CEU CEU CHBJPT CHBJPT YRI YRI 

Cutoff Repeats Intergenic Repeats Intergenic Repeats Intergenic 

0.40 0.177 0.0653 0.3378 0.2437 0.0233 0.016866 

0.30 0.2165666 0.083933 0.38703 0.349366 0.01866 0.0120 

0.20 0.028733 0.01013 0.14466 0.13276 0.042866 0.014233 

0.15 0.0223 0.0072 0.1432 0.10903 0.01666 0.004866 

0.10 0.031333 0.0202 0.383733 0.198233 0.02166 0.0038 

0.05 0.079466 0.047133 0.172 0.0806 0.0477 0.0153 

Table 10. estimated P-values – bootstrapping (losses) 
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V. Appendix 

 

Figures 

 The following graphs were created through an in-house computer script coded by 

myself. They were subsequently used in [11]. 

 
   Figure 1 
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   Figure 2 

 

 
   Figure 3 
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   Figure 4 

 

 
    Figure 5 



21 

 

 

 

 

    Figure 6
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