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ABSTRACT OF THE THESIS 

OPTIMAL PROCUREMENT POLICY FOR  

COST CONSCIOUS RETAILER 

By SICONG HOU 

Thesis Director: 

Professor Melike Baykal-Gürsoy 

Manufacturers whose products primarily relay on expensive raw materials 

need to make well informed procurement decisions in order to reduce their 

production costs. Decision making is especially difficult when there is uncertainty 

about the raw material cost as well as the product demand. This research considers 

an optimum procurement and production planning problem under uncertainty. 

Basic raw material is a rare metal with a dynamically and stochastically changing 

price. The manufacturer has the dual sourcing option: buy from the spot market; or 

to sign long term contracts. Long term contracts can be signed only at the beginning 

of every year with a yearly duration. In addition, the contract price depends on the 

average spot price during some interval. We first consider a simplified version of the 

problem without long-term contract, and assume a base-stock procurement and 

inventory control policy. We model the problem as a Markov chain and present 

some numerical examples demonstrating the effect of various parameters on the 

optimum base-stock value. Then, we investigate a case with dual procurement 

option, and present our results. 
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Chapter 1 

Introduction 

Procurement problems, particularly direct procurement problems 

concerning mainly raw material and production goods, are becoming more and 

more prominent in supply chain management these days because they greatly affect 

the total expenditure of many companies. This is especially true when the raw 

material is an expensive rare metal. This research considers an optimum 

procurement and production planning problem under raw material price and 

demand uncertainty. The raw material used to produce an intermediate product is a 

rare metal with dynamically and stochastically changing prices. The demand for the 

intermediate product is also random but reasonably stationary. 

The manufacturer has dual sourcing options; they can either buy from the 

spot market, or sign a long term forward contract. That is, dual sourcing is 

comprised of forward contract buying and spot market buying. Forward contract 

buying provides a long term stable supply at a fixed price for a fixed delivery time. 

While spot buying, although is more flexible with the delivery times and the order 

quantity, is more risky and uncertain. For instance, you might not able to purchase a 

large volume when the price is good because other companies already took the 

advantage first. According to Zhang et al. (2011), in recent years spot markets have 

emerged for a wide variety of commodities, and companies are starting to use it to 
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incorporate with the traditional forward contracts especially in dynamic random 

access memory procurements. The market has been a mix of private, bilateral 

contracts and spot market trading for years, where 80% of the intermediate 

products are sold through a fixed price long term contract. 

For large manufacturers, especially in chemical and pharmaceutical 

industries whose products primarily relay on expensive raw materials, their 

production costs can be largely reduced if good strategies be adopted when making 

procurement decisions. However, these complex strategies of decision making are 

very difficult considering the demand uncertainty and randomness of the raw 

material costs. Most of the mathematical models fail to predict a jump or slump on 

the prices because sudden events that cause such a jump or slump to happen are 

impossible to predict sometimes. Relatively, the demand of products is also 

uncertain but may be easier to predict since we have a more stable requirement for 

the materials globally. Thus the strategy that is applied in order to compensate the 

possible failure of forecasting raw material price becomes very important for the 

dual sourcing scenario.  

In Chapter 2, we present the literature survey. Chapter 3 considers a 

simplified model of the procedure for a problem without long term contract. The 

effect of various parameters on the optimum order quality is investigated. A case in 

which both long term contract and spot buying are available is studied in Chapter 4 

with real world data and situations. Finally, in Chapter 5, conclusions and future 

research are discussed. 
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Chapter 2 

Literature Review 

Many optimization approaches based on periodic updates have been used in 

commodity procurement. Secomandi and Kekre (2009) consider the problem of 

reselling the commodity back to the market in the forward process. They suggest 

not only to update the forward price, but also to update the demand forecast. Thus 

the whole dynamic optimization can provide a better solution overall. Optimal cost 

value function is provided through a Markov decision process formulation. 

For a typical periodic-review inventory control model with stochastic 

demand, Goel and Gutierrez (2012) characterized the optimal procurement policy 

and developed a computational algorithm to obtain the optimal policy thresholds. 

The model they developed has a total cost consists of procurement cost and a 

market-determined economic cost of holding inventory, and this economic cost can 

be significantly reduced according to the numerical results from this paper. Also 

they considered a dynamic program with a risk-neutral valuation approach for 

minimizing the total procurement cost.  

In comparing the forward contract with the total order quantity commitment, 

the latter is more flexible according to the paper of Zhang, Chen, Hua and Xue 

(2011). Hence, it is easier to use it and take advantage of the dual sourcing. In this 
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paper they suppose a stochastic demand and the spot price can be stationary or 

non-stationary, but it is independent of the demand process. 

Two of the papers focused on a dual sourcing scenario of periodic-review 

inventory model. First one by Inderfurth, Kelle and Kleber (2013) assume random 

stationary demand and a capacity reservation contract for the sourcing. In this 

modeling part, they used dynamic programming recursive equations. However, 

when formulating the models, this paper focuses more on the structure analysis, 

because of the special reservation capacity decision needed to be considered. The 

model can be extended to be optimal for infinite horizon, too. A heuristic approach 

is used for determining iterative parameters step by step. The second one by Seifert, 

Thonemann and Hausman (2004) mentioned that in these problems the demand 

and the spot price are usually positively correlated, and thus assume a bivariate 

distribution rather than a normal distribution. Their paper then deals with dynamic 

pricing and determines the contract-to-spot ratio for purchases, where in spot 

market we need to consider a hedging situation since it allows salvage. Based on the 

assumed distribution, we can adjust the multiplier of the deviation to set different 

policies for different level of risks you wish to take. Also, a spot price premium case 

was studied, as well as a pure contract sourcing case.  

Other two papers focused on a multi-period model with a single product. 

Nagarajan and Rajagopalan (2009) first consider a comprehensive environment and 

the equilibrium order quantities have the special property such that each player 

ignores the strategy of his opponent under reasonable conditions on the cost 
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parameters. Secondly, they show that under certain conditions, the equilibrium 

quantities in the finite horizon game can be reduced to a multi-period single-

product inventory model for each player. Then they approach to the equilibrium by 

proving the deterministic demand identifies a unique Nash equilibrium while 

stochastic demand derived from a decoupling result. Thus, the equilibrium 

strategies of two players is simply to solve a single-product in n-period stochastic 

inventory model with partial backlogging instead of lost sales, where the demand of 

non-substituting customers from the current period is back logged to the next 

period.  

Hwang and Hahn (2000) studied a periodic review inventory model for a 

single perishable product and demand rate of the item is dependent on the current 

inventory level. The proof first shows some properties about the ordering quantity. 

Since the item have a fixed life time, two different kind of order up to values are 

introduced depending on the outdated items. They approach to solve the two 

different situations by using linear programming and then apply enumeration 

method which has a similar approach to dynamic programming. 

The last optimal procurement policy paper we reviewed here by Polatoglu 

and Sahin (2000), studied a (s,S) type inventory control model under price-

dependent demand relationship. The main difference in the model of this paper is 

that the price is a decision variable here and brings two opposing cost-related 

effects. The solution approach is also dynamic programming. However, an n-period 

pseudo-profit function is introduced instead. And finally, the problem is solved by 
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investigating the critical inventory level of (s,S) under certain sufficient condition. 

Some special situations such as No-fixed-ordering-cost, Non-stationary extensions 

and deterministic demand are also considered in the end of this paper. 
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Chapter 3 

A simplified Markov Chain Model of the Inventory/Production 

Control of a Cost Conscious Retailer 

In this section our goal is to build a Markov chain model for base-stock type 

procurement policies, and then analyze the effects of various parameters on the 

optimum order quantity. Dual sourcing will not be considered in this chapter but 

will be discussed in detail in Chapter 4.  

 

3.1 Assumptions and Notations 

We begin modeling by making some necessary assumptions for the 

inventory/production control policy. The procurement policy is adopted depending 

on the price level and the inventory on hand. We assume the order of each month’s 

operations are as follows: Production facility consumes items from the inventory to 

meet demand, notice demand is always met here since we have the minimum 

inventory level that is equal to the maximum daily demand. Then we observe the 

current price level and the number of items in stock, in order to decide on how 

many items to purchase. Lastly, after we finish the purchasing stage, we check our 

new inventory level and set it as the next inventory level.  
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To simplify the problem, we assume only two price levels: H, denoting the 

state of high price level, and L, denoting the state of low price level. The unit cost for 

low price level is denoted as YL and for high price level is denoted as YH.  

Let C(n) denote the raw material price at time n. Assume that the price 

transition probability matrix P is given as follows: 

 H L 

H 1-a a 

L b 1-b 

 

Table 3.1: Price Inventory transition probability matrix 

Here, a denote the conditional probability that the price will be low at the next time 

period given that it is currently high, i.e., a = P{C(n + 1) = L / C(n) = H}. b is 

similarly defined as b = P{C(n + 1) = H / C(n) = L}. 

Also, we assume that there are historical data such that we could use to 

obtain information about the price distribution. Assume that the historical data 

indicates that in the long-run 20% of the time the price is at the high state and 80% 

of the time it is at the low state. Next, we set the expected cycle length to be 25 days 

which means in every 25 days we will have the above probability distribution for 

the high and low prices.  

P= 
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We assume the demand for raw material is distributed in a very simplified 

fashion; demand on day n is equal to 1 item with probability p and 2 items with 

probability (1-p). That is, let Dn denote the demand quantity at time n, we have: 

P{Dn = 1} = p, P{Dn = 2} = 1 − p 

When the price is low, we purchase enough items to stock up to the 

maximum inventory of K items. When the price is high, we do not purchase unless 

the number of items we have on hand are less than the maximum daily demand. 

More specifically, if the price level is high we only purchase when the inventory 

level is below 2 and if so, we purchase to bring the inventory level back to the 

minimum of 2 items.  

Lastly, we assume that the total cost of inventory/production management 

consists of the inventory holding cost and the procurement cost, where the holding 

cost is $h/day per item and the procurement cost is the total cost of all the 

purchases made.  

 

3.2 Model Description 

 Now we are ready for the modeling of our inventory management 

problems. The objective of our model is to optimize the inventory/production policy 

we utilized, and therefore to minimize the expected total cost under such a policy. 

Later on we will see that the expected total cost is decided by the base-stock value, 
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which is K. However, we would like to obtain the actual values of a and b before we 

calculate the expected total cost and start the optimization. 

 Let πH and πL denote the stationary probability of price states H and L 

respectively. In Table 3.1 matrix we can obtain all the transition probabilities 

between the states by having the following relations: 

�

πH = 0.2 and πL = 0.8
a ≥ 0, b ≥ 0

[πH, πL] = [πH, πL] ∗ �1 − a a
b 1 − b�

 

⟹ a = 4b ⋯ ⋯ ⋯ ⋯ ⋯ (1)  

and a ≥ 0, b ≥ 0 

Next, we use the fact that the cycle length is on the average of 25 days, where 

20% of a cycle is at the high state, and 80% of a cycle is at the low state, in order to 

calculate the exact a and b values. Let the first day be day 0 and since a cycle is 25 

days, next cycle starts at day 25. Consider the probability that the first time a high 

state goes to low state; it is exactly the probability for the number of consecutive 

days that a high state stay at high, before it goes to low. The corresponding expected 

values for the number of consecutive days at the high state before it goes to low is 

exactly equal to the total number of days at high state. 

P {X=n} = P {the first time H goes to L at day n} = (1 − a)n ∗ a 
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Let X denotes the number of consecutive days at H before it goes to L in one 

cycle.  Since we know that for a geometrically distributed random variable X, the 

expected value is: 

E(X) =
1 − a

a
 

It means that the expected number of days at H is equal to 1−a
a

 as well. 

Similarly, we can obtain the expected number of days at L is equal to 1−b
b

. Now, we 

also know that the expected cycle length is 25days, so: 

1 − a
a

+
1 − b

b
= 25 ⋯ ⋯ ⋯ ⋯ ⋯ (2) 

We can then obtain a, b values by combining equations (1) and (2) above, 

getting results for the price transition probability matrix: 

a =
20

108
, b =

5
108

 

 Now we can start to build the detailed model of the inventory control 

problem. We want to have this matrix because we can then use it to compute the 

expected total cost which is ultimately what we intend to optimize. Let 

{C(n)I(n)} n ≥ 0 denote the two-dimensional state, where C(n) is the price state and 

I(n) is the inventory on hand at the beginning of nth time period. For example, Hm 

denotes the state of high price level with inventory of m items, and similarly Lm 

denotes the state of low price level with inventory of m items.  
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The matrix size of the probability transition matrix of {C(n)I(n)} n ≥ 0 

depends on the base-stock value K. Thus the matrix will be defined as Pk This also . 

implies that our main optimization of the procurement policy is based on value K as 

well. 

 First, let K =2 which is the minimum case, we have the following matrix that 

is similar to Table 3.1:  

 H2 L2 

H2 1-a a 

L2 b 1-b 

 

Table 3.2: Price Inventory transition probability matrix for K=2 

Next, we let K=3 and obtain the Table 3.3 below. However, we notice that the 

states H3 and  L2 are not accessible from any states, not even themselves. This 

means their values are zeros so we do not have to consider them at all. Thus we 

should simplify the matrix in a more compact fashion on the following:  

 H2 H3 L2 L3 

H2 1-a 0 0 a 

H3 1-a 0 0 a 

L2 0 0 0 0 

L3 b 0 0 1-b 

 

P2 = 

P3 = 
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⟹ 

 H2 L3 

H2 1-a a 

L3 b 1-b 

 

Table 3.3: Price Inventory transition probability matrix for K=3 

Notice the above matrix is very similar to the Table 3.2 matrix the inventory 

levels. Then we look at Table 3.4 for K=4 below, in this case we have the probability 

to jump to either  H2  or  H3  from  L4  , because the demand consumptions 

are P{Dn = 1} = p and P{Dn = 2} = 1 − p. We show only the simplified matrix after 

we deleted all the columns and rows of inaccessible states:  

 H2 H3 L4 

H2 1-a 0 a 

H3 1-a 0 a 

L4 b*(1-p) b*p 1-b 

 

Table 3.4: Price Inventory transition probability matrix for K=4 

 Next, let us look at K=5 and K=6 on Table 3.5, where a pattern on the price 

inventory transition probability matrix can be found. Because when we reach a low 

state, we always purchase up to stock level K, therefore there will always be only 

P3 = 

P4 = 
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one low state that is accessible, the LK. In contrast, we will never be able to reach HK 

because no states could ever access HK. 

 H2 H3 H4 L5 

H2 1-a 0 0 a 

H3 1-a 0 0 a 

H4 (1-a)*(1-p) (1-a)*p 0 a 

L5 0 b*(1-p) b*p 1-b 

 

 H2 H3 H4 H5 L6 

H2 1-a 0 0 0 a 

H3 1-a 0 0 0 a 

H4 (1-a)*(1-p) (1-a)*p 0 0 a 

H5 0 (1-a)*(1-p) (1-a)*p 0 a 

L6 0 0 b*(1-p) b*p 1-b 

 

Table 3.5: Price Inventory transition probability matrix for K=5 and K=6 

 

Lastly we conclude the detailed price inventory transition probability matrix 

for K ≥ 6 in the following Table 3.6: 

 

P6 = 

P5 = 
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 H2 H3 H4 … H(K − 1) LK 

H2 1-a 0 0 … 0 a 

H3 1-a 0 0 … 0 a 

H4 (1-a)*(1-p) (1-a)*p 0 … 0 a 

… … … … … … … 

H(K − 1) 0 0 (1-a)*(1-p) (1-a)*p 0 a 

LK 0 0 0 b*(1-p) b*p 1-b 

 

Table 3.6: Price Inventory transition probability matrix for K ≥ 6 

Finally, we will define the expected total cost in one cycle with respect to K. 

Also, we let the probability of states with high price level and m items in inventory 

denote as πHm, while the probability of states with low price level and m items 

denote as πLm. We have:  

E (total cost)  =  E (inventory cost)  +  E (procurement cost)       ⋯ ⋯ ⋯ ⋯ ⋯ (3) 

And: 

E (inventory cost) = h ∗ [(k ∗ πLK) + �(i ∗ πHi

K−1

i=2

)]       ⋯ ⋯ ⋯ ⋯ ⋯ (4) 

Also: 

E (procurement cost) = E (procurement cost on YL) + E (procurement cost on YH)  



16 
 

 
 

With: 

E (procurement cost on YL)

= YL ∗ [πLK ∗ (1 − b) ∗ [1 ∗ p + 2 ∗ (1 − p)] + YL ∗ �{πHi

K−1

i=2

∗ a

∗ [(k − i + 1) ∗ p + (k − i + 2) ∗ (1 − p)]}        ⋯ ⋯ ⋯ ⋯ ⋯ (5) 

E (procurement cost on YH) 

= YH ∗ {πH2 ∗ (1 − a) ∗ [1 ∗ p + 2 ∗ (1 − p)] + πH3 ∗ (1 − a)

∗ [0 ∗ p + 1 ∗ (1 − p)]}        ⋯ ⋯ ⋯ ⋯ ⋯ (6) 

Therefore, we plug in the equations (4), (5), (6) into equation (3) to get the 

expected total cost function below: 

E (total cost) = h ∗ [(k ∗ πLK) + �(i ∗ πHi

K−1

i=2

)] + YL ∗ [πLK ∗ (1 − b) ∗ [1 ∗ p + 2 ∗ (1

− p)] + YL ∗ �{πHi

K−1

i=2

∗ a ∗ [(k − i + 1) ∗ p + (k − i + 2) ∗ (1 − p)]}

+ YH ∗ {πH2 ∗ (1 − a) ∗ [1 ∗ p + 2 ∗ (1 − p)] + πH3 ∗ (1 − a) ∗ [0 ∗ p

+ 1 ∗ (1 − p)]}        ⋯ ⋯ ⋯ ⋯ ⋯ (7) 

In equation (7), parameters a, b, p, h, YLand YH are all actual values. Also, 

 πHiand πLK are variables that depend on the value of K. Thus the expected total cost 

depends solely on the base-stock value K, which means to optimize the expected 

total cost we simply need to optimize the value of K. 
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3.3 Optimization 

After obtaining the expected total cost function, we will begin this section 

with the minimization of the expected total cost and solve the optimal 

inventory/production management problem with respect to K. That is, we will be 

able to optimize our procurement policy if we can find the optimal value of the base-

stock value K*.  

In order to minimize equation (7) with respect to K, we need to first obtain 

all the stationary probability of state πHi and πLK,   i = 2 … k − 1. We can do so by 

analyzing the price inventory transition probability matrices. For K=2, the 

stationary probability of the matrix is obtained by solving the balance equations and 

the normalization equations.  

�
(1 − a) ∗ πH2 + b ∗ (πL2) = πH2

a ∗ πH2 + (1 − b) ∗ πL2 = πL2
πH2 + πL2 = 1

 

Thus, we apply a linear transformation to the above system of linear equations, so 

that they are represented in the matrix form equations: 

⟹ �1 1
a −b� ∗ �

πH2
πL2

� = �1
0� 

Notice one of the equations above is redundant when we are performing the 

transformation. 

 Similarly, we approach the other equations respect of K in the same way and 

present their matrix equations in the following: 



18 
 

 
 

When K= 3, 

� 1 1
−a b� ∗ �

πH2
πL3

� = �1
0� 

Notice in this case the solutions for the states are essentially the same as K=2 case. 

When K=4, 

�

1 1
−a 1 − a

1
b ∗ (1 − p)

0 −1
a a

b ∗ p
−b

� ∗ �
πH2
πH3
πL4

� = �
1
0
0
0

� 

However, we notice that in the above matrix, 

[−a 1 − a b ∗ (1 − p)] + [0 −1 b ∗ p] = [a a −b] 

This means there exist linear dependency between the rows, and thus we can 

reformulate the equations for K=4 again after omitting the linearly dependent row: 

�
1 1 1

−a 1 − a b ∗ (1 − p)
0 −1 b ∗ p

� ∗ �
πH2
πH3
πL4

� = �
1
0
0

� 

We will do this linear dependency check for all the other cases and 

reformulate them in a cleaner fashion when necessary. So when K ≥ 5, in general 

we will have: 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 1 1
−a 1 − a

1 1
(1 − a) ∗ (1 − p) 0

0 −1
0 0

(1 − a) ∗ p (1 − a) ∗ (1 − p)
−1 (1 − a) ∗ p

⋯
⋯

1
0
0
0

⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋮
0 0 ⋯ ⋯

b ∗ (1 − p)
⋯ b ∗ p ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

∗

⎣
⎢
⎢
⎢
⎢
⎡

πH2
πH3
πH4

⋮
⋮

πL(K−1)
πLK ⎦

⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡
1
0
0
⋮
0
0⎦

⎥
⎥
⎥
⎥
⎤
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  Since the solutions of πHi and πLK, i = 2 … k − 1 can be solved from above 

nonhomogeneous matrix equations with p = 0.5 and the values of a = 20
108

, b =

5
108

 we obtained before. We can finally compute equation (7) with respect to K by 

substituting the values of all the πs. Also, recall we assumed the following 

parameters for calculations before: YL = 15,  YH = 25, h = 0.5.  

 In order to find the optimum K*, we use complete enumeration. We utilize 

Matlab to numerically evaluate the expected total cost for K=1, 2, 3, 4… until the 

minimum cost value is detected, since the cost is monotonically changing with 

respect to K. In our case, the optimum base-stock value K*=9 with E (total cost) =

23.89.  

The details of the coding from Matlab program for a general case that K ≥ 5 

can be found at Appendix A. 

 

3.4 Numerical Results 

Next, we present numerical results showing the effect of various parameters 

on optimum base-stock value K*. We choose parameters πH, YH, p and h, then we 

present their influences in pairs on the sensitivity of K*. 

Firstly, we begin by changing the stationary probability of high states, πH and 

high price value, YH. Let πH = 10%, 20%, 40%, 80%, and YH=20, 25, 50, 100. Since 

increasing the probability of high states, and increasing high price value would force 
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the procurement policy to be more efficient at the low price state, both suggests an 

increase in the optimal base-stock value, K*. Table 3.7 presents K* values in 

response to the changes in πH and YH while keeping p and h constant. Figure 3.1 

presents the visualization of such response for K*. We can see that K* is more 

sensitive to  πH than YH. 

 

 YH 

πH 

20 25 50 100 

10% 4 5 7 10 

20% 7 9 14 19 

40% 16 20 31 41 

80% 63 70 92 114 

 

Table 3.7: Effect of πH and YH on K* 
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Figure 3.1: Visualization of the dependence of K* on πH and YH 

 

Next, we change the stationary probability of high states πH  and the 

probability (1-p) that demand is equal to 2 items and then evaluate K*. We let 

πH = 10%, 20%, 40%, 80% and 1-p=0.2, 0.5, 0.7, 0.9. Table 3.8 provides K* values to 

the changes in πH and (1-p) while keeping YH and h constant. Figure 3.2 presents 

the visualization of such response for K*. We see that (1-p) only have a small impact 

on K* compared to  πH. Thus K* is more sensitive to  πH than (1-p). 
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1-p 

πH 

0.2 0.5 0.7 0.9 

10% 4 5 6 6 

20% 7 9 10 10/11 

40% 16 20 22 25 

80% 56 70 81 91 

 

Table 3.8: Effect of πH and 1-p on K* 

 

Figure 3.2: Visualization of the dependence of K* on πH and 1-p 
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Next, we change the stationary probability of high states πH and the holding 

cost of h and then evaluate K*. We let πH = 10%, 20%, 40%, 80% and h=0.1, 0.5, 2, 5. 

Table 3.9 provides K* values to the changes in πH and h while keeping YH and (1-p) 

constant. Figure 3.3 presents the visualization of such response for K*. We see that 

both πH and h have considerable influence on K*. Thus K* is sensitive to both πH 

than h. 

 

h 

πH 

0.1 0.5 2 5 

10% 10 5 2 2 

20% 21 9 2 2 

40% 45 20 4 4 

80% 121/122 70 26 4 

 

Table 3.9: Effect of πH and h on K* 



24 
 

 
 

 

Figure 3.3: Visualization of the dependence of K* on πH and h 

 

Next, we change high price value YH and the probability (1-p) that the 

demand is equal to 2 items and then evaluate K*. We let  YH=20, 25, 50, 100 and 1-

p=0.2, 0.5, 0.7, 0.9. Table 3.10 provides K* values to the changes in  YH and (1-p) 

while keeping πH and h constant. Figure 3.4 presents the visualization of such 

response for K*. We see that (1-p) only have a small impact on K* compared to YH. 

Thus K* is more sensitive to  YH than (1-p). 
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1-p 

 YH 

0.2 0.5 0.7 0.9 

20 6 7 8 8 

25 7 9 10 10/11 

50 11 14 16 17 

100 16 19 21 24 

 

Table 3.10: Effect of 1-p and YH on K* 

 

Figure 3.4: Visualization of the dependence of K* on 1-p and YH 
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Next, we change high price value YH and the holding cost of h and then 

evaluate K*. We let  YH=20, 25, 50, 100 and h=0.1, 0.5, 2, 5.  Table 3.11 provides K* 

values to the changes in  YH and h while keeping πH and (1-p) constant. Figure 3.5 

presents the visualization of such response for K*. We see that  YH have some impact 

on K*, and h have even greater influences on K*. Thus K* is more sensitive to h 

than YH. 

 

h 

 YH 

0.1 0.5 2 5 

20 19 7 2 2 

25 21 9 2 2 

50 26 14 4 2 

100 31 23 9 4 

 

Table 3.11: Effect of h and YH on K* 
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Figure 3.5: Visualization of the dependence of K* on h and YH 

 

Lastly, we change the holding cost of h and the probability (1-p) that the 

demand is equal to 2 items and then evaluate K*. We let h=0.1, 0.5, 2, 5 and 1-p=0.2, 

0.5, 0.7, 0.9. Table 3.12 provides K* values to the changes in h and (1-p) while 

keeping πH and YH constant. Figure 3.6 presents the visualization of such response 

for K*. We see that (1-p) only have a small impact on K* compared to h. Thus K* is 

more sensitive to h than (1-p). 
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h 

1-p 

0.1 0.5 2 5 

0.2 17 7 2 2 

0.5 21 9 2 2 

0.7 23 10 4 2 

0.9 26 10/11 4 2 

 

Table 3.12: Effect of h and 1-p on K* 

 

Figure 3.6: Visualization of the dependence of K* on h and 1-p 
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In summary, we can conclude that the sensitivity of K* is contributed mostly 

by  πH and h, and moderately by YH, while the impact of p on K* is rather small 

compared to the others. Table 3.13 shows the changes in K* by keeping one 

parameter constant and raising the value of the others. In conclusion, for solving the 

optimal procurement policy regarding optimal K* value, we find the percentages of 

different price states and the holding cost are the most important factors to be 

considered. The price values of states are next to consider, while the probability of 

different demand consumptions has relatively less impact on the system. 

 

K* πH ↑  YH ↑ p ↑ h ↑ 

πH  ↑ ↓ ↓ 

 YH ↑  ↓ ↓ 

p ↑ ↑  ↓ 

h ↑ ↑ ↓  

 

Table 3.13: Effect of πH, YH, h and p on K* 
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Chapter 4 

A Case Study 

4.1 Introduction 

 We consider a company, producing an intermediate material that is 

used in manufacturing military as well as consumer products. An expensive rare 

metal is required in the production as the raw material. Since the intermediate 

material is used in manufacturing military products, we do not allow any back 

ordering or lost sales. The procurement problem of rare metal, Y, is to minimize the 

total cost of the company including inventory holding, spot buying and contract 

buying costs during a finite time horizon.  

We have made our case study based on the following assumptions: The 

procurement frequency is monthly. Spot buying is a purchase made in the current 

month and contract buying is a purchase made at the beginning of every year that 

lasts 12 months. That means if we make a long term contract at the beginning of the 

year, we pay the total cost at the beginning and receive a delivery every month 

throughout the year. Let C(m) denote the spot price at month m, C’(m) denote the 

contract price at month m, Q(m) denote the total contract amount for the year of 

month m and S(m) denote the amount of spot buying at month m. Assume that the 

contract price has a discount of d dollars per kg on the spot price. All purchases are 

made at the beginning of the month while demands, D(m), come after the purchases 
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are in the beginning of the month as well. At the end of the month we count the new 

inventory level I, also notice all costs at the present have an interest rate of r% as 

discount factor and the holding cost are h dollars per kg. It is required that we keep 

the inventory level at least twice as large as the last month’s demand. Also, we 

assume the inventory level starts with initially 1000kg of rare metal Y, and there is a 

capacity limit for spot buying so that the maximum amount that could be bought 

every month is 3000kg.  

We use a monthly updated linear/dynamic programming model to optimize 

this procurement problem. However, some of the data we need are the predicated 

values that are coming from a time series autoregressive integrated moving average 

(ARIMA) model. The ARIMA model can be used to predict a series of future values 

when previous values over a certain time period is available. It fits the distribution 

of past data and builds a model to predict future values. More details of the times 

series model and ARIMA model can be found in Brockwell & Davis (2002). We use 

ARIMA to predict the demand and spot price for a 24month time period in 2010-

2011. We utilize the actual data for those 2 years to validate our forecasting model. 

Lastly, we present the optimum procurement policy and compare it to the actual 

procurement policy of company X. 
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4.2 Data Preparation and Forecasting  

The raw data sets we obtained from company X are weekly reports of the 

spot prices offered from Asian Metal, monthly consumption reports of the final 

product, frequency reports of company X’s purchasing history and their monthly 

inventory report. 

As the first step of the data preparation, we focus on building a forecasting 

model to predict spot prices. So, it is necessary to clean the weekly spot price data 

and sort them by dates from 1/1/2001-7/30/2012. We could pivot the report to 

monthly now but since we want to use a time series model, more historical data is 

always better. Thus we keep it as weekly until we finish the prediction part and then 

we will turn the data into a monthly report. Figure 4.1 presents this weekly 

historical data for spot prices with a trend line. It shows rare metal Y spot price is 

very volatile since its usage is relatively narrow and is affected heavily by global 

politics. Its price is also affected by disasters, for example 2011 Japan’s earthquake 

and tsunami at Tōhoku made the price jump greatly from March to May as shown on 

the figure because Japan is a large consumer of rare metal Y. 
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Figure 4.1: Weekly historical data of spot prices 

Also, we want to make sure that the time series model is indeed a good 

choice here for our regression analysis and forecasting. So we attempt to find if 

there exists a liner/nonlinear relation between the data variables we have so far, 

which are the spot prices, consumptions, purchases and inventory. However, a 

correlations matrix and regression results would suggest there are no significant 

relations exist between the variables and maybe we should look into the relations 

between past week spot prices and current week spot prices. Then we see a strong 

linear relation between last week and current week spot prices with an adjusted R 

square > 0.95 here. So this confirms that we should consider a times series model 

for forecasting because of the strong relations between past and current week spot 

prices.  
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To start the time series analysis, initially we would like to examine the 

autocorrelation (AC) plot and partial autocorrelation (PAC) plot with a default 95% 

confidence level on the weekly historical data (Figure 4.2). Also, notice that ARMA is 

used to build a stationary linear time series model while ARIMA is used to build a 

non-stationary linear model with trend in the mean. Combing Figure 4.1 and Figure 

4.2, we can see that our data is probably non-stationary. Also from Figure 4.2 we can 

see a large set of correlated lags that suggests an ARIMA with 1-difference. Thus we 

might prefer an ARIMA model than an ARMA model for our data but that requires 

further investigation and comparison of both models, which we will perform on 

later stages. 
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Figure 4.2: AC and PAC plots of original data 

 

So next we perform 1 differencing and mean subtraction on the original spot 

prices data and obtain the residuals as new data on Figure 4.3. Let C(m)�  denote the 

mean subtracted price at month m, C denote mean value of the spot prices and W(m) 

denote the new residual price at month m. 

C(m)� = C(m) − C 

W(m) = C(m)� − C(m − 1)�  
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Figure 4.3: 1-differenced and mean subtracted data of spot prices 

 

Again we check its AC and PAC plots (Figure 4.4) which shows a good result 

with value of 1 as the correlation ratio for the first lag. Similarly if we do 2-

difference and mean subtract on the data we get a worse result on the lags because 

of over-differencing. This indicates us to use the ARIMA model with exactly one time 

differenced. Next we can proceed to build our ARMA/ARIMA model with all the 

above information. 
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Figure 4.4: AC and PAC plots of 1-differenced and mean subtracted data 
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Let C(m)�  denote the predicted spot price on month m, C′(m)�  denote the 

predicted contract price on month m, W(m) denote the 1-differenced data on month 

m, and d is a discount of contract price. Following are the formulas that we are going 

to use for our times series ARMA/ARIMA modeling: 

W(m) = C(m)� − C(m − 1)�  

C′(m)� = C(m)� − d 

For a ARMA(p,q) model with autoregressive of order p and moving average 

of order q on our data we will have: 

C(m)� = �(Φi

p

i=1

· C(m − ı)� ) + �(Θi

q

i=1

·  ε(m − i))  +  ε(m) 

Where, ε(m) is white noise, Φi + Θi ≠ 0 for all i, where Φi and Θi are parameters to 

be determined by the ARMA model we build to fit for data. 

Also for a generalized ARIMA(p,1,q) model with autoregressive of order p, 1-

differenced and moving average of order q on our data we will have: 

W(m) = �(Φi

p

i=1

· W(m − i)) + �(Θi

q

i=1

·  ε(m − i))  +  ε(m) 

⟹ C(m)� − C(m − 1)�

=  Φ1 · �C(m − 1)� − C(m − 2)� � + Φ2 · �C(m − 2)� − C(m − 3)� � + ⋯

+ Φp · �C(m − p)� − C(m − p − 1)� � + �(Θi

q

i=1

·  ε(m − i))  +  ε(m) 
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⟹ C(m)� =  C(m − 1)� + Φ1 · C(m − 1)� − Φ1 · C(m − 2)� + Φ2 · C(m − 2)� − Φ2

· C(m − 3)� + ⋯ + Φp · C(m − p)� − Φp · C(m − p − 1)� + �(Θi

q

i=1

·  ε(m

− i))  +  ε(m) 

⟹ C(m)� =  C(m − 1)� · (1 + Φ1) + � C(m − ı)� · (Φi

p

i=2

− Φi−1) − Φp · C(m − p − ı)�

+ �(Θi

q

i=1

·  ε(m − i))  +  ε(m) 

Here, ε(m) is white noise, Φi + Θi ≠ 0 for all i, and Φi and Θi are parameters to be 

determined by the ARIMA model we build to fit for data. 

Now we will use some statistical software to test our ARMA/ARIMA models 

and see which one will fit best for our data. Here we are using SPSS, Eviews, R and a 

time series plugin for Excel to compare their results, and therefore choose the 

relatively better fit among all.  

Firstly we show the “autoarima” function from SPSS’s ARIMA fit and 

predictions on Figure 4.5, the X axis stands for the week number as time period and 

the Y axis stands for the rare metal spot price. Also in the later ARMA/ARIMA model 

figures from different software fits and predicts, unless specified, the X axis is 

always the time line for week number and the Y is always the spot price.   
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Figure 4.5: SPSS “autoarima” fit and forecast 
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Next let us look at Eviews’ ARMA(1,1) model on Figure 4.6, where for the 

first graph, the left Y axis is the residual thresholds and the right Y axis is the spot 

price. And the second graph is the forecasting plot for the spot price of 12 periods 

with a two standard deviation line. 

 

Figure 4.6: Eviews ARMA(1,1) fit and forecast 
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Next we will exam the ARMA model from the time series add-in of Excel, that 

is ARMA(3,1) on Figure 4.7. Also we adjust the time period range a little here with 2 

months less comparing to the previous model to see how it reflects on the new one. 

 

 

Figure 4.7: Excel ARMA(3,1) fit and forecast 
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Lastly, a GARCH model (Figure 4.8) using R to build is also considered here 

but the fits are significantly worse than all the ARMA/ARIMA models and thus 

should not be our choice. Again we adjust the time period range with 2 months less 

to see how it reflects on the new one. 

 

 

Figure 4.8: R GARCH fit and forecast 
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In summary, the time series model we choose to use for our forecasting 

should not only be a best fit of past data, but also a most accurate and correct model 

for forecasting data. Notice that from all of the above models we see a huge misfit 

around week 500-540. That is around year 2011 when Tōhoku earthquake and 

tsunami happened in Japan and its aftermath affected the market price of rare metal 

Y. We understand that such an unpredictable event happened all the time but it 

should not affect our model in a general sense. Now considering the fitting part, we 

conclude that ARMA(3,1) from Excel and “autoarima” from SPSS have a better 

performance. In order to see which forecast data performs better, since year 2010-

2011 are the most unpredictable two years, we take the historical data from 2001-

2009 and let all models to forecast 2010-2011 data to compare them with the actual 

data we have. Therefore although both ARMA(3,1) and “autoarima” were providing 

models with good fit for past data, “autoarima” from SPSS showed us a better 

forecasting ability. Thus we choose “autoarima” function from SPSS to do our 

forecasting with the results below on Table 4.1. As you can see, in a long turn, the 

price forecasting could make a large error comparing to the actual values. However, 

in our dynamic model for optimization we would only require for the next time 

period predicted value which usually is accurate enough and acceptable. 

We can also do similar analysis on the demand forecasting part which 

contains a much smaller historical data set. Since we assume the company is always 

going to fulfill the demand, demand values are not as sensitive as the price. Thus we 

omit the procedures of the demand forecasting and provide the result directly on 

Table 4.2 below.  
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Table 4.1: Predicted price from SPSS “autoarima” 

 

Table 4.2: Predicted demand from SPSS “autoarima” 

Spot 
Buy 
Price

Date
Per
iod

 
Actu
al  P1  P2  P3  P4  P5  P6  P7  P8  P9  P10  P11  P12  P13  P14  P15  P16  P17  P18  P19  P20  P21  P22  P23  P24 

(2010)1 P1 560 560
2 P2 560 560 560
3 P3 560 561 560 560
4 P4 560 561 561 560 560
5 P5 549 562 561 561 560 549
6 P6 530 562 562 561 561 523 530
7 P7 517 563 562 561 561 511 527 517
8 P8 529 563 563 562 561 502 522 509 529
9 P9 554 564 563 563 562 495 518 502 544 554

10 P10 566 565 564 563 562 490 516 498 550 566 566
11 P11 623 565 565 564 563 485 514 494 555 575 575 623
12 P12 754 566 565 564 564 482 512 491 559 582 582 697 754

(2011)1 P13 950 567 566 565 564 479 510 488 562 586 587 738 834 950
2 P14 1039 567 567 566 565 476 509 485 564 590 591 769 893 1044 1039
3 P15 1070 568 567 566 566 473 508 483 565 593 594 791 932 1116 1112 1070
4 P16 1190 569 568 567 566 471 507 481 566 596 596 808 963 1175 1171 1082 1190
5 P17 1362 569 569 568 567 469 505 479 567 598 599 825 992 1230 1227 1102 1347 1362
6 P18 1390 570 569 568 567 466 504 477 569 600 601 839 1017 1277 1274 1122 1453 1439 1390
7 P19 1390 571 570 569 568 464 503 475 569 602 603 850 1036 1313 1312 1139 1540 1514 1409 1390
8 P20 1390 572 571 570 569 462 502 473 570 604 605 862 1055 1350 1349 1158 1630 1590 1442 1399 1390
9 P21 1377 572 571 570 569 459 501 471 571 606 607 873 1074 1384 1384 1176 1714 1661 1474 1416 1395 1377

10 P22 1361 573 572 571 570 457 499 469 572 608 609 884 1092 1416 1416 1195 1792 1726 1505 1436 1409 1370 1361
11 P23 1297 574 573 572 571 455 498 467 573 610 611 895 1109 1446 1447 1214 1866 1786 1535 1458 1427 1376 1343 1297
12 P24 1227 575 574 572 571 453 497 465 574 611 612 904 1124 1472 1474 1231 1928 1837 1562 1479 1445 1387 1341 1221 1227

Demand

Date
Per
iod

Actu
al D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 D21 D22 D23 D24

(2010)1 D1 654 654
2 D2 388 841 388
3 D3 523 858 608 523
4 D4 621 868 798 754 621
5 D5 794 878 806 793 720 794
6 D6 863 888 813 801 781 822 863
7 D7 1084 899 821 808 788 798 821 1084
8 D8 1085 909 829 815 794 805 811 955 1085
9 D9 689 919 836 822 801 812 818 854 925 689

10 D10 1150 929 844 829 807 819 825 862 879 749 1150
11 D11 917 939 852 836 814 825 832 870 888 857 1062 917
12 D12 778 950 859 844 820 832 839 878 897 865 915 848 778

(2011)1 D13 902 960 867 851 827 839 846 887 906 873 924 907 873 902
2 D14 786 970 874 858 833 846 853 895 915 881 934 916 908 922 786
3 D15 764 980 882 865 840 853 860 903 923 889 943 925 916 920 852 764
4 D16 924 990 890 872 846 860 867 911 932 896 953 934 925 928 913 869 924
5 D17 850 1001 897 880 853 867 874 920 941 904 962 943 934 937 921 911 939 850
6 D18 856 1011 905 887 859 873 881 928 950 912 971 951 942 946 929 919 925 881 856
7 D19 929 1021 913 894 866 880 888 936 958 920 981 960 951 955 938 927 933 924 911 929
8 D20 891 1031 920 901 872 887 895 944 967 928 990 969 959 963 946 935 942 932 929 938 891
9 D21 877 1041 928 908 878 894 902 953 976 935 999 978 968 972 954 943 950 940 937 939 916 877

10 D22 1037 1052 935 915 885 901 910 961 985 943 1009 987 977 981 962 951 958 948 945 947 942 923 1037
11 D23 1115 1062 943 923 891 908 917 969 994 951 1018 996 985 989 971 959 966 955 953 954 950 946 1002 1115
12 D24 1023 1072 951 930 898 915 924 977 1002 959 1027 1004 994 998 979 967 974 963 960 962 957 953 965 1020 1023
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4.3 Modeling 

After we did our data preparation including the data forecasting, we had all 

the data we need for the model. Now we have all the data including actual demand, 

predicted demand, actual spot price, predicted spot price, actual contract price, 

predicted contract price, actual procurement purchases and actual inventory levels. 

Notice for the spot price and demand in our dynamic programming, they will not all 

be the actual values but as a hybrid of both actual values and predicted values. And 

with the updates move on, our dynamic system will substitute the old predicted 

values with the recently obtained actual values and require new predicted values 

from ARMA/ARIMA forecasting model.  

Next, we shall start to build our linear programming model to minimize the 

expected total cost of each month. 

Total cost of month m: 

T(m) = �

C(m) · S(m) + C′(m) · Q(m) + h · I(m),
for m is a beginning month of the year

C(m) · S(m) + h · I(m), for m otherwise

 

C′(m) and Q(m) are determined by the beginning of the year since it is a long term 

contract price and will be decide at the beginning of month 1, 13, 25…etc. 

The following constraints will ensure the validity of the assumptions.  
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Inventory level of month m: 

I(m) = I(m − 1) + S(m) + Q(m) − D(m) 

I(m) ≥ 1
2
 D(m − 1) 

Procurement policy of month m:  

0 ≤ S(m) ≤ 2 

Q(m) > 0 

Contract buy and spot buy relations at month m: 

C′(m) = C(m) − d 

With this linear program of every month m, we can then extend it to a multi 

period mathematical programming model with the objective of minimizing the total 

cost of all time periods in a finite horizon. Let M be the total number of months. Thus, 

we have the mathematical programming model as the following. 

Minimize the total cost of all M months considering interest rate r: 

 T(M) = � �
1

1 + r�
m

[C(m) · S(m) · +h · I(m)]
M

m=1

+ � �
1

1 + r�
f

C′(f) · Q(f)
f=1,13,25…

 

Such that: 

I(m) = I(m − 1) + S(m) + Q(m) − D(m) 

I(m) ≥
1
2

D(m − 1) 
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C′(m) = C(m) − d 

0 ≤ S(m) ≤ 2, Q(m) > 0 

Notice that all the values can be imported from our data preparation stage, and then 

plugged into the above system starting for m=1…M. 

This means we have to run the linear programming repeatedly while 

updating the predicted data and plug in new actual data to solve the problem M 

times until the end. We approach to do so by using Xpress Mosel while 

incorporating it with updated ARIMA models imported from SPSS. Now let us try 

our algorithm based on all the assumptions we have made before and test its 

efficiency for the year of 2010-2011, since they are the most unpredictable years, 

and would sort of serve us as the worst case scenario. In this case M=24 and 

January of 2010 will be m=1.  

The codes we use to build the above single time period model in Xpress 

Mosel can be found in Appendix B, where the spot price C and demand D are in a 

hybrid fashion containing both actual values from historical data and predicted 

values from ARIMA model. 

 

4.4 Optimization Result 

Eventually, we want to compare our optimum procurement policy with the 

actual procurement company X made during 2010-2011 and by inserting different 
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interest rate or holding cost we can also simulate the policy under different 

scenarios. Here we would like to show one of the most basic scenarios with h = 10, 

d = 50 and r = 0.0006. Also, since it is a simulation for year 2010-2011, M = 1…24 

and F = 1…2. Since we are doing this linear programming optimization with updates, 

only every month’s spot buying strategy will be adopted and the inventory will rely 

on the actually demand in the future rather than the predicted values from ARIMA 

model. That is, using the new spot price we observe, demand predictions from the 

ARIMA model and the policy we have adopted last month via the linear 

programming model, we run the linear program to compute a new inventory level, 

thus decide on the order quantity. The linear programming model is applied 

repeatedly in order to provide the next month’s procurement policy as well as 

calculate the new inventory level. Eventually, we will reach our last time period and 

then we can consolidate the entire spot buy, contract buy and inventory level 

control record for all months.  

In summary, by running the above Xpress Mosel model over 24 months with 

each time importing a new updated data from ARMA/ARIMA, we have the result for 

every month’s spot buying and contract buying amount, as well as the inventory 

levels. Finally, the optimum expected total cost is: $15,922,901, with a total 

purchase of 21937 kg of rare metal Y and average of $726/kg, the detailed optimal 

policy is at the following.  

Spot buying quantity of month 1-24: all zeros kg.  

Contract buying quantity of year 2010 and 2011: 11167kg and 10770kg.  
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Inventory level of the month 1-24: 1276kg, 1819kg, 2227kg, 2536kg, 2673kg, 

2740kg, 2587kg, 2432kg, 2674kg, 2455kg, 2468kg, 2621kg, 2616kg, 2728kg, 2861kg, 

2835kg, 2882kg, 2924kg, 2892kg, 2899kg, 2919kg, 2780kg, 2562kg, 2437kg.  

When we compare the optimum procurement policy to company X’s actual 

purchases, we see that they have made a total purchase of 19983kg of rare metal Y 

and total cost of $17,165,381 with average purchase of $ 859/kg, we have spent 7.8% 

less on the total cost and 18.3% less per kg on rare metal of Y while doing more 

purchasing. Thus, it strongly suggests that our approach would provide 

considerable savings for the total cost. 
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Chapter 5 

Conclusions 

 In this thesis, we study various methods for optimal procurement policy 

under different circumstances of our own. Firstly, in chapter 3, we use a policy that 

its form is given as a base-stock policy and try to find the best base-stock value K*. 

Also, we investigate the impact of various parameters on the optimal base-stock 

value. Secondly, in chapter 4, we approach a real life scenario where we have to 

provide an optimal procurement policy from historical data. We applied time series 

modeling to provide raw material price and demand forecasts that will be used in a 

mathematical program. This mathematical program is solved recursively by 

updating the price and demand forecasts at each time step. In this case study, we 

show that inventory/procurement costs can be reduced by implementing our 

algorithm. In future, we plan to investigate properties and structure of the optimum 

policy for procurement and production planning. We are especially interested in 

threshold type policies that are easy to implement. 
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Appendix A 

The coding for the expected total cost respect to different values of K in 

Matlab when K ≥ 5 is below. 

%K >= 5 

function total = totalcost(K)  

  

% Parameters 

a = 20/108; 

b = 5/108; 

p = 0.5; 

k = K-1; 

h = 0.5; 

YL = 15; 

YH = 25; 

  

% Build the matrix 

A = [ones(1,k); zeros(1,k); zeros(k-2,1) (diag(-ones(1,k-2))+diag((1-

a)*p*ones(1,k-3),1)+diag((1-a)*(1-p)*ones(1,k-4),2)) zeros(k-2,1)]; 

  

A(2,1) = -a; 

A(2,2) = 1-a; 
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A(2,3) = (1-a)*(1-p); 

  

A(k-1,k) = b*(1-p); 

A(k,k) = b*p; 

  

B = zeros(k,1); 

B(1) = 1; 

  

% Solve all the pi 

mypiT = A\B; 

  

mypi = (mypiT)'; 

  

display(mypi); 

  

% Calculate total cost with respect K 

total1 = 0; 

total2 = 0; 

for i = 2:k 

    total1 = h*(mypi(k)*K+sum(i*mypi(i-1))); 

    total2 = YL*(mypi(k)*(1-b)*(p+2*(1-p)))+YL*sum(mypi(i-1)*a*((K-i+1)*p+(K-

i+2)*(1-p))); 

end 
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total3 = YH*(mypi(1)*(1-a)*(p+2*(1-p))+mypi(2)*(1-a)*(1-p)); 

  

total = total1 + total2 + total3; 

  

display(K); 
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Appendix B 

The coding in Xpress Mosel of a single time period mathematical model with 

data imported from ARIMA is below. 

model ModelName 

uses "mmxprs"; 

  

!parameters 

declarations 

M = 1..24 !insert all time periods 

F = 1..2 !insert the number of years 

h = 10 !insert holding cost here 

r = 0.0006 !insert interest rate here 

d = 50 !insert contract buy discount here 

C: array(M) of real 

dC: array(F) of real 

D: array(M) of real 

end-declarations 
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!import data from ARIMA model 

initializations from 'OptimalPolicy.dat' 

C D 

end-initializations 

 

!setup values 

declarations 

S: array(M) of mpvar 

Q: array(F) of mpvar 

I: array(M) of mpvar 

end-declarations 

 

!constraints 

dC(1):= C(1) - d 

dC(2):= C(13) - d 

!insert more if there are more time period 
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I(1)= 1000 + S(1) + Q(1)/12 - D(1) 

forall(m in 2..12) I(m)= I(m-1) + S(m) + Q(1)/12 - D(m) 

forall(m in 13..24) I(m)= I(m-1) + S(m) + Q(2)/12 - D(m) 

!insert more if there are more time period 

 

forall(m in 2..24) I(m) >= 2 * D(m-1) 

!insert more if there are more time period 

 

forall(m in M) S(m) <= 3000 

forall(f in F) Q(f) >= 0 

 

!objective 

cost:= dC(1) * (1/1+r)^1 * Q(1) + dC(2) * (1/1+r)^13 * Q(2) + 

!insert more if there are more time period 

sum(m in M) C(m) * (1/1+r)^m * S(m) + 

sum(m in M) h * (1/1+r)^m * I(m)  
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!solve 

minimize(cost) 

 

writeln("Begin running model") 

writeln("The minimum of the total cost is: ", getobjval) 

forall(m in M) writeln("Spot buy quantity of month(", m, "): ", getsol(S(m))) 

forall(f in F) writeln("Contract buy quantity of year(", f, "): ", getsol(Q(f))) 

forall(m in M) writeln("Inventory level of the month(", m, "): ", getsol(I(m))) 

writeln("End running model") 

 

end-model 
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