Staff View
Modeling binder removal in ceramic compacts

Descriptive

TitleInfo
Title
Modeling binder removal in ceramic compacts
Name (type = personal)
NamePart (type = family)
Incledon
NamePart (type = given)
Matthew L.
NamePart (type = date)
1989-
DisplayForm
Matthew Incledon
Role
RoleTerm (authority = RULIB)
author
Name (type = personal)
NamePart (type = family)
Matthewson
NamePart (type = given)
M John
DisplayForm
M John Matthewson
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
chair
Name (type = personal)
NamePart (type = family)
Haber
NamePart (type = given)
Richard A
DisplayForm
Richard A Haber
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Klein
NamePart (type = given)
Lisa
DisplayForm
Lisa Klein
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = corporate)
NamePart
Rutgers University
Role
RoleTerm (authority = RULIB)
degree grantor
Name (type = corporate)
NamePart
Graduate School - New Brunswick
Role
RoleTerm (authority = RULIB)
school
TypeOfResource
Text
Genre (authority = marcgt)
theses
OriginInfo
DateCreated (qualifier = exact)
2013
DateOther (qualifier = exact); (type = degree)
2013-05
Place
PlaceTerm (type = code)
xx
Language
LanguageTerm (authority = ISO639-2b); (type = code)
eng
Abstract (type = abstract)
Binder is often added to ceramic systems to provide mechanical strength to the green bodies during processing. The binder removal sequence for an individual system is difficult to predict due to the thermal reaction and mass transport of the volatile products. The objective of this work is to use computational methods to predict the kinetics of binder removal as a function of composition, particle size, pore size and tortuosity, temperature, body size and shape, etc.. The model will be used to predict the composition, temperature, and pore pressure as a function of time, position within the body, and heating sequence parameters. This will provide the ability to predict optimum heating sequences that minimize processing time and energy input while avoiding harmful high internal pressures and temperatures. Since there are many binder systems in use, a few specific cases will be considered. TGA (thermogravimetric analysis) of binders will be used to measure kinetics parameters that are inputs for the computational model. A framework will be developed to assess the binder removal sequence for a binder and ceramic system. The input for the model, computed in COMSOL Multiphysics, will be determined through analysis of TGA weight loss data and green body characterization. A set of tools will be presented that assist in the fitting of the TGA data, including the binder degrading into multiple species, higher order reactions, parallel and series reactions, etc.. The use of these ideas and tools will allow the modeler to better predict the heating sequence required for a ceramic and binder system to successfully remove all binder material.
Subject (authority = RUETD)
Topic
Materials Science and Engineering
RelatedItem (type = host)
TitleInfo
Title
Rutgers University Electronic Theses and Dissertations
Identifier (type = RULIB)
ETD
Identifier
ETD_4605
PhysicalDescription
Form (authority = gmd)
electronic resource
InternetMediaType
application/pdf
InternetMediaType
text/xml
Extent
ix, 56 p. : ill.
Note (type = degree)
M.S.
Note (type = bibliography)
Includes bibliographical references
Note (type = vita)
Includes vita
Note (type = statement of responsibility)
by Matthew L. Incledon
Subject (authority = ETD-LCSH)
Topic
Binders (Materials)
Subject (authority = ETD-LCSH)
Topic
Ceramic materials
Identifier (type = hdl)
http://hdl.rutgers.edu/1782.1/rucore10001600001.ETD.000068883
RelatedItem (type = host)
TitleInfo
Title
Graduate School - New Brunswick Electronic Theses and Dissertations
Identifier (type = local)
rucore19991600001
Location
PhysicalLocation (authority = marcorg); (displayLabel = Rutgers, The State University of New Jersey)
NjNbRU
Identifier (type = doi)
doi:10.7282/T3KH0KW7
Genre (authority = ExL-Esploro)
ETD graduate
Back to the top

Rights

RightsDeclaration (ID = rulibRdec0006)
The author owns the copyright to this work.
RightsHolder (type = personal)
Name
FamilyName
Incledon
GivenName
Matthew
Role
Copyright Holder
RightsEvent
Type
Permission or license
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2013-04-09 11:06:22
AssociatedEntity
Name
Matthew Incledon
Role
Copyright holder
Affiliation
Rutgers University. Graduate School - New Brunswick
AssociatedObject
Type
License
Name
Author Agreement License
Detail
I hereby grant to the Rutgers University Libraries and to my school the non-exclusive right to archive, reproduce and distribute my thesis or dissertation, in whole or in part, and/or my abstract, in whole or in part, in and from an electronic format, subject to the release date subsequently stipulated in this submittal form and approved by my school. I represent and stipulate that the thesis or dissertation and its abstract are my original work, that they do not infringe or violate any rights of others, and that I make these grants as the sole owner of the rights to my thesis or dissertation and its abstract. I represent that I have obtained written permissions, when necessary, from the owner(s) of each third party copyrighted matter to be included in my thesis or dissertation and will supply copies of such upon request by my school. I acknowledge that RU ETD and my school will not distribute my thesis or dissertation or its abstract if, in their reasonable judgment, they believe all such rights have not been secured. I acknowledge that I retain ownership rights to the copyright of my work. I also retain the right to use all or part of this thesis or dissertation in future works, such as articles or books.
Copyright
Status
Copyright protected
Availability
Status
Open
Reason
Permission or license
Back to the top

Technical

RULTechMD (ID = TECHNICAL1)
ContentModel
ETD
OperatingSystem (VERSION = 5.1)
windows xp
Back to the top
Version 8.5.5
Rutgers University Libraries - Copyright ©2024