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Adults are prone to treating percents, one representational format of rational 

numbers, as novel cases of natural number.  This suggests that percent values are not 

differentiated from natural numbers; a conceptual shift from the natural numbers to the 

rational numbers has not yet occurred.  This is most surprising, considering people are 

inundated with rational numbers all around them, from the “% Daily Values” on nutrition 

labels to sales and discounts in stores to the constant ups and downs of gas prices.  From 

an early age, humans have a rather robust concept of natural number, but this earlier 

knowledge seems to act as a barrier to future learning of rational number.  While 

participants performed better on one-statement problems with a single percent, they 

ignored the principles of rational number when presented with two-statement percent 

problems.  For example, using rational numbers involves dropping the successor 

principle, a principle that applies to the natural numbers.  Problems presented 

algebraically gave participants great difficulty, though performance improved when 

subjects were able to replace the variable y with a natural number (100).  When using a 

numerical hint (substituting in a value during a training phase), participants still did not 
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improve their performance on algebra problems in posttest.  Error analyses revealed a 

strong tendency for students to interpret the problems as novel examples of natural 

number problems.  This research discusses the failure to understand percents in light of 

overuse or failure to apply the natural number successor principle, division, false 

cognates, and the absence of knowledge that relates multiple rational number 

representations to a common underlying knowledge structure.  The amount of previous 

math experience is also correlated with the ease of moving between natural number and 

rational number concepts. 
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I. Introduction 
 

“Mathematics is written for mathematicians” (Copernicus, 1543).  

 

It is commonplace to hear adults say, “Oh I’m just not good at math” with a 

dismissive wave of the hand and no sign of shame or embarrassment (Willingham, 2009). 

Our society has accepted the idea that math is not for everyone (Stevenson & Stigler, 

1992).  This perception contrasts with almost all research findings with young children, 

be it done by Mathematics educators, Cognitive Scientists, Psychologists, Linguists, or 

Neuroscientists.  All agree that when children start school, they know quite a bit about 

the mathematical role of counting, ordering, addition and subtraction with the positive 

natural numbers.  However, this facility does not guarantee the subsequent learning about 

rational numbers, whether these are in fraction, decimal or percent formats. 

The research that bears on my dissertation shows that people consistently make 

errors in equations with rational numbers, be these about the mechanics, the rules, the 

language, the symbols, and/or the algorithms of mathematics.  More often than not, 

people treat rational number formats as if they were novel cases of natural number 

problems and do so without checking if the answer actually makes sense in the context of 

the problem (e.g., a 20% increase in x followed by a 20% decrease in x results in x).  This 

research takes a closer look at this tendency by uncovering the source of the errors.  

Doing so signals a major concern of cognitive scientists, the nature of conceptual change.  

It also contributes to the observation of mathematical illiteracy on the part of many adults 

in this country.  While most people living in numerate environments typically develop 

some sense of natural number, this does not guarantee their ability to “do math” in novel 
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situations (Carraher, Carraher, & Schliemann, 1985). As is the case of language, at an 

early age we possess some knowledge of the core domain of natural number, which lays 

the groundwork for attending to learning about the verbal instantiation of verbal counting 

and its relation to natural number arithmetic and one’s ability to use verbal counting 

(Gelman & Gallistel, 1978).  This is the case even though the inputs for early 

mathematical learning are more variable than are those for language learning (Gleitman 

& Papafragou, 2004).  Although many children arrive at school with an ability to count as 

well as add and subtract, the relation of mathematical knowledge to its symbols and 

format typically requires teaching in a classroom or work environment.  The continued 

development of mathematical knowledge depends on the child’s dedicated effort as well 

as well-prepared inputs. 

In this chapter, I discuss the differences between natural number and rational 

number, with a focus on percent formats.  While humans have an innate concept of 

natural number, rational numbers are novel concepts that involve a new mental 

representation (Carey, 2009; Gelman, 1991).  As a result, the odds are that the input will 

be assimilated to existing knowledge structures.  This sets up the need for a conceptual 

change. 

The focus of the dissertation is on the rational number format, one that is very 

much present in the everyday environment, including the discussion of increase and 

decrease of budgets, newspaper ads of sales, up and down costs of gas, and so on.  I 

emphasize the importance of understanding and differentiating natural and rational 

numbers, as well as illustrate the underlying difficulties with rational number concepts.   
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In Chapter 2, I ask which types of rational number representations are more easily 

understood than others and look at performance differences in problems dealing with a 

single percent statement (e.g. an increase of 20%) versus a two-statement problem where 

the second statement is dependent upon the outcome of the first (e.g. an increase of 20% 

later followed by a decrease of 30%).  In Chapter 3, I present a study aimed at improving 

performance on two-statement percent problems by providing hints to students.  Perhaps, 

students need to be reminded that they can do these problems.  All of the studies in this 

dissertation are concerned with the conditions that might bring out an understanding of 

rational numbers.  The ultimate goal is to determine whether college students can do the 

problems once they are given practice trials.  If they are not successful, their errors are 

carefully analyzed to gain insight regarding the barriers to conceptual change.  Thus, in 

Chapter 4, I explore the patterns of errors that occurred in Chapter 3.  In Chapter 5, I sum 

up the conclusions as well as consider the implications of these results for various 

research topics.  A possible framework for the learning to use percents with 

understanding is also suggested. 

The next section of the introduction discusses conceptual development in the 

number domain as it is viewed in Developmental Psychology and Cognitive Science.  

The research leaves little room to doubt that humans do have a number sense, which 

develops “on the fly,” without formal teaching.  In providing a brief overview of the 

differences between the domains of the natural numbers and the rational numbers, I 

highlight the underlying difficulties involved in moving on from natural number 

understanding.  I discuss difficult areas of mathematics where even educated adults 

continue to make many errors with rational numbers, across several formats.  Examples 
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are provided to illustrate the extensive infiltration of these errors in our everyday life.  

Finally, research that helps get beyond these errors will be explored and considered.   

 

Conceptual development: the participant as the active learner 

A recurring theme throughout my work is the question of conceptual change and 

development – can students successfully shift from learning about one concept (natural 

numbers) to another one (rational number representations of percents)?  Conceptual 

development is most likely to be achieved when existing conceptual structures overlap 

with new ones.  Restructuring of existing knowledge structures is needed when new 

information is incompatible with the existing knowledge (Carey, 2009; Carey & Spelke, 

1994; Gelman & Williams, 1998; Vosniadou, 1994).  When the new framework or 

structure does not readily map onto available cognitive structures, it becomes more likely 

that the problem’s information will be misconstrued; inevitably, errors will occur 

(Hartnett & Gelman, 1998). 

Our cognitive development relies on our ability to gain knowledge by using 

and/or constructing mental representations; we are active participants in our own 

development.  This constructivist theory of learning allows us to create meaning from 

different experiences as we build upon our own knowledge structures.  But there is a 

problem with the student as the learner.  They can interpret data in ways that do not 

overlap with what is intended by those who offer inputs.  If the learner already has a 

mental structure than can assimilate the data, then uptake is very likely.  But if what is 

offered does not fit, then the risk of misinterpretation is very high.   
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Numbers 

From a formal perspective, there are several kinds of numbers.  These form a 

hierarchy with complex numbers at the top and their subdivision into real and imaginary 

numbers.  Within the real number system, there are rational and irrational numbers.  

Rational numbers are numbers that can be expressed as the ratio of two cardinal integers 

or the division of one cardinal number by another.  Integers include both positive and 

negative values (…–3, –2, –1, 0, 1, 2, 3,…).  Thus, the subsets that fall under the 

umbrella of rational numbers include the whole numbers (0, 1, 2, 3…), natural numbers 

or counting numbers (1, 2, 3…), zero, negative numbers (-1, -2, -3…), and fractions (½, 

¾, etc).  Irrational numbers are those numbers that cannot be expressed as the ratio of two 

integers and which include, but are not limited to, examples such as non-repeating 

decimals (.349681884…) and radicals (√2).  

The difference relevant to this paper is the discrete nature of natural numbers 

versus the continuous nature of rational numbers.  The concept of number is greatly 

expanded when moving from natural numbers to rational numbers.  The conceptual 

framework that must be constructed is unlike the one with the natural numbers; rather, it 

must be embedded into the existing knowledge structure (Gelman, 1991).  Natural 

numbers are discrete in that no two numbers can have the same successor.  In contrast, 

rational numbers are defined by the relationship between two integers; thus, there are an 

infinite and continuous number of divisions possible between any two numbers (Gelman, 

1991).   

It is important to note that zero is a non-positive, non-negative, integer, whole 

number, and rational number.  It is not categorized as a natural number until it becomes 
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part of the group of positive and negative integers under addition and subtraction.  The 

acceptance of zero as a number is a late development; the related acceptance of negative 

integers occurred even later.  For a long time, the Greeks refused to accept negatives, 

zero, irrational numbers and complex numbers (e.g., imaginary numbers) as part of their 

number system since they could not construct a physical representation of these numbers.  

The number zero was finally accepted in the sixteenth century (Boyer, 1944).  Near the 

end of the nineteenth century, a formal approach was introduced to include and accept 

these entities in the definition of number – even if they do not refer to counted items.  A 

formal definition of cardinal numbers requires that there be a number that serves as the 

identity element such that when it is added to an integer “a”, the value of a is unchanged.  

Zero is also essential in order for natural number arithmetic to be closed (i.e., so that a – a 

= –a + a = Additive Identity Principle).   

The meaning of zero changes when division is considered; it raises the question of 

what it means (or rather, does not mean) to divide by zero.  The concept of zero and the 

properties of zero are extremely relevant to the discussion of moving from natural 

number concepts to rational number ones (in particular, see the section entitled 

“Importance of understanding division and its relationship to rational numbers”). 

Research is mixed on the acquisition of natural numbers and rational numbers (for 

a review, see Carey, 2009).  There are many arguments for when the counting numbers 

are learned and what other mental structures need to be in place to learn about rational 

numbers; the mental structures for rational numbers are inconsistent with those for 

natural numbers (e.g., the successor principle must be dropped, division is closed, etc.).  
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While there is a great deal of evidence supporting innate constructs of natural number 

(e.g., Gallistel & Gelman, 1992), a division occurs in addressing these other arguments.   

However, the purpose of this section is not to argue when nor how we develop 

concepts of natural number.  In fact, as will be seen in my research (Chapters 2 and 3), 

children and adults are so proficient with natural numbers that this presents them with a 

possible stumbling block to their learning about other classes of number.  An 

overwhelming number of adults default to natural numbers when thinking about rational 

number data.  

 

The difficulty to shift from natural numbers to rational numbers 

Conceptual development occurs when existing conceptual structures are 

consistent with new ones.  Thus, learning the counting numbers and their governing 

principles of addition and subtraction can be a gateway into learning about more 

advanced and related concepts, for example, that there is no end to the natural numbers.  

Yet, as will soon be discussed, rational numbers differ from natural numbers in many 

ways that conflict with the existing cognitive framework for natural numbers.  The reason 

for this can be attributed, in part, to the different principles underlying the different types 

of number.  I focus on one principle, in particular, to account for children’s and adults’ 

great difficulty with rational numbers – the successor principle.  

 

The role of the successor principle in number concepts – in children and in adults 

The successor principle states that for every natural number there is a unique 

number that comes “next.”  Children acquire knowledge about natural numbers and their 
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successors much more easily than with numbers containing rational number notation.  

With the natural numbers, the most primitive way to gauge emerging counting skills in 

children is to see if they use as many counting tags as there are items to be counted.  

Touching objects is a very important part of learning to count – it helps children keep 

separate the counted from the to-be-counted items (Gelman & Gallistel, 1978).  This is 

not the case with rational numbers.  When looking at fractions, for example, children 

between 5 to 7 years old are not successful on the task of rank ordering fractions from the 

smallest to the largest (Hartnett & Gelman, 1998).  The problem: rational numbers do not 

have unique successors.  There is no longer a unique “next” after every number.  

Children are extremely reliant on count-based strategies, ones that only work to render a 

fraction in special part-whole contexts.  Yet, there is an infinite number of numbers that 

fall between any two rational numbers.  Further, the numbers in the numerator and 

denominator no longer indicate individual succession; now the numbers on the “top” and 

on the “bottom” must be viewed together in order to arrive at a new type of rational 

number, one that is generated by dividing the numerator by the denominator.  For 

instance, 3 is greater than 2, but 1/3 is not greater than 1/2.  Thus, it is not surprising that 

children are not very good at explaining the relationship between the numerator and the 

denominator in fractions, much less explain why there are two numbers in a fraction 

(Hartnett & Gelman, 1998; Smith, Solomon, & Carey, 2005).  This failure also 

perpetuates the difficulty in ranking fractions from smallest to largest.  In ordering tasks 

with rational numbers, unlike integers, it is extremely difficult to think about what comes 

next.   
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In trying to rank order numbers, first-, second-, and third-grade children sorted a 

set of cards labeled with representations of whole numbers, zero, or fraction 

representations equivalent to one called “mathematical wholes” (e.g., 2/2, 15/15, etc.).  

But they did not put the mathematical wholes where they placed “1”, emphasizing that 

these fractions are treated as novel examples of natural number even though they are 

equivalent (Gelman, 2000).  To be successful on such tasks, children must understand 

that there are an infinite number of answers that might come after a fraction, such as ¼.  

There is no unique “next” number.  What is perhaps even harder to understand, is that 

there are an infinite number of answers for what comes next after a decimal, such as .25.  

Immediately, .26 might come to mind, but what about .255… what about .259… what 

about .25000001? 

Smith et al. (2005) further investigated this question.  Children were shown two 

cards with quantities on them and were asked to choose the card with the larger value.  

They received values such as .65 versus .8, 2.09 versus 2.9 and 1/75 versus 1/56.  The 

importance of the relationship between the numerator and denominator was ignored such 

that children judged 1/75 as larger than 1/56, justifying their response by ignoring the 

numerator (i.e., 75 is larger than 56).  They falsely stated that a value of 2.09 is larger 

than 2.9 because the value has more digits.  Judging .65 as greater than .8 occurred as 

well, except when students recognized place value and added a 0 to represent .8 as .80.  

Those who interpreted these decimals as percents or as money seemed to perform better.  

Overall, the results were analogous to those from similar studies (e.g., Gelman, 1991) and 

show that children are making whole number errors. 
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Comparable misinterpretations are found in adults.  Drawing from three 

populations of older students (upper secondary level, student teachers, and math majors at 

the university level), Merenluoto and Lehtinen (2002) asked participants how many 

values were between two given natural numbers.  Many students said that the answer 

could not be defined.  When probed with “what value comes next?” some responded with 

“the one with the most decimals;” meanwhile, most student teachers and a small number 

of math majors consistently responded with “add one,” a clear indication of the successor 

principle in operation.  With these responses, a conflict exists between the discrete nature 

of natural numbers and the continuous nature of rational numbers.  

The treatment of rational number values as ones about natural number are very 

real and very present in everyday life.  One such example is in the medical field.  When 

getting treated with chemotherapy, a family member of mine was looking through her 

blood charts.  She was questioning how many values are between 9.9 and 10 – when does 

it becomes 10, when does it become 10.2, etc.?  The answer is not a simple one as 

illustrated by earlier examples and the continuous nature of rational number.  In the 

context of my relative, she was looking at her hemoglobin scale and comparing her 

current level to past levels.  She knew that her doctor wanted her number to be above 10; 

falling below this number might have warranted a transfusion.  Is being 0.1 below the 

designated level enough of a difference to be concerned?  For that reason, she wanted to 

know how much distance there was between 9.9 and 10 in order to gauge if this 

discrepancy was dangerous.  Ultimately, for this example, the unit of measurement is the 

decision criteria and the resolution of the numerical scale can suggest what the decision 

threshold should be.  Indeed, understanding measurement and what counts as a 
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meaningful unit of difference is critically related to the interpretation of a rational 

number. 

In sum, not being able to count objects tangibly by “adding 1” might account for 

the failure to shift to learning about rational numbers.  Rational numbers are not about 

discrete entities.  There is not a comparable system for these concepts of quantities as 

there is for the system of natural numbers since they do not always represent collections 

of countable objects.  Indeed, the strong tendency of young children to count “things” 

makes it very difficult.  This is true of all numbers that are not the natural numbers (e.g., 

negative numbers).  Thus, new strategies to order numbers must be derived.  These new 

strategies are constructed by overlapping new knowledge structures with existing 

knowledge structures. 

 

Importance of understanding division and its relationship to rational numbers 

Understanding division and the infinite divisibility of numbers between 0 and 1 is 

directly relevant to moving from a natural number concept to a rational number concept 

(Smith et al., 2005).  When a division symbol is found between two integers, the final 

value is not defined by any one of those integers, but instead it is defined by the 

relationship between the two.   Division in itself helps define rational numbers, as can be 

seen from examples such as “2.1 children in the average American household” or “2/17 

cut to the budget.”  But division, a closed operation, is itself a difficult concept to grasp.  

In order for division to be closed, which entails that any natural number divided by any 

other number produces a unique number of the same set, it is necessary to add rational 
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numbers to the concept of number.  This notion is clearly problematic for many people 

who seem to hold the false belief that you can throw away the denominator.   

Smith et al. (2005) asked children if they could “get” to zero by repeatedly 

dividing by 2.  Responses showed that children treated repeated division of a number 

akin to natural numbers that are repeatedly subtracted.  The same pattern occurs in adults 

(in Chapters 2, 3, and 4).  Some students even believed that the answer would eventually 

result in a negative value, though the initial dividend was positive.  This response is 

indicative of believing that the number line has gaps and is not in fact “dense” – that is, 

there is an infinite number of values found between any two numbers on a number line, 

which represents a continuous quantity. This is a stark contrast to a number line with only 

natural numbers. 

Carey (2009, p. 352-359) cites the two Quinean conceptual systems (Quine, 1960) 

to explain the importance of acquiring the idea of infinite divisibility to rational numbers.  

In the first, students are able to make comparisons, add, subtract and multiply.  It is not 

until a developmental shift occurs to the second that they are able to fully understand 

division as the inverse of multiplication; consequently, the student’s foundational concept 

of number is threatened and must change.  By separating the concept of division from 

subtraction, Carey points out the very nature of number and its principles must be 

reconceptualized.   One cannot equate successive subtractions with the operation of 

division any more than one can equate successive additions with multiplication.  A new 

knowledge structure, or what Gelman (2009) dubs a noncore domain, must be built.  It is 

well known that this is a very difficult task, one that takes time as well as effort on the 

part of both the learner and the teacher. 
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False cognates interfere with number concepts 

Rational numbers provide a new framework for looking at the natural numbers.  

As previously mentioned, natural numbers are a subset of rational number.  The number 

2, as a natural number, represents two objects or entities.  However, when this same 

number 2 is treated as a rational number, it represents a division relationship between two 

values, 2 and 1, 4 and 2, 6 and 3, etc. (Merenluoto & Lehtinen, 2004). 

The previous example illustrates how multiple meanings can be paired with one 

and the same word, e.g., “bat” (made of wood, or flies at night).  Understanding 

mathematics can be compared to learning a language.  In fact, while the notation systems 

are not the same, there is still much that is similar as regards the underlying concepts in 

language and mathematics.  Language itself is a domain that is made up of principles at 

various levels and, accordingly, it has rules about its entities and how they combine 

(Gelman, 2002).  Principles are organized to dictate what are acceptable combinations of 

syntax, semantics, and morphology.  You find this in math, just as you do in language. 

Fully mastering the verbal counting system does not guarantee understanding of 

all numerical and mathematical concepts.  In fact, often the language of math introduces 

false cognates for rational numbers: multiplying no longer means “gets bigger” (e.g., 

3*(1/3) = 1, a value smaller than the original value of 3).  A fraction of a number does not 

refer to a countable entity (as in, “each teacher has 22 1/3 students in his/her class”).  A 

value of 9.10 (nine point ten) does not come after 9.9 (nine point nine).  The latter error is 

very similar to one that children make in counting: “thirty eight, thirty nine, thirty ten…” 

The language “point ten” interferes with the rational number representation (9.1). 
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Children have a difficult time understanding the formal concept of inverse 

relations, that as one quantity increases, another decreases (Piaget, 1952).  This is yet 

another example of false cognates seen in the environment surrounding them.  The faster 

a parent drives, the shorter amount of time it will take to get to the destination.  Given a 

set amount of food, the amount of food available per person decreases with an increasing 

amount of guests at a party.  Understanding such concepts might contribute to beginning 

to understand division (Bryant, 1997; Squire & Bryant, 2003).  Misconceptions might be 

attributed to falsely applying a positive relationship or an opposite relationship (switching 

the relation) between the divisor and the quotient.  Making an opposite error could mean 

the child is incorrectly assuming that a larger divisor results in a larger quotient, along 

with not understanding what the denominator means in a fraction (Smith et al., 2005); in 

comparing two groups, children might believe the bigger group will get ‘more’ because 

of the perceptual salience of a larger versus smaller group (Squire & Bryant, 2003). 

Not only is the language of number riddled with false cognates, but so are the 

symbols.  While children do understand the value of cardinality is increased or decreased 

as a result of addition and subtraction (Sarnecka & S. Gelman, 2004), they have trouble 

understanding the new values of number once a symbol is introduced.  The expression 

2/4 can occur in both mathematics and music.  In mathematics, this symbol is equivalent 

to 4/8, 200/800, 4/16, etc.  In music, 2/4 is approximately equal to 6/8, where two triplets 

are to be played within two beats (Gelman & Brenneman, 1994).  The meaning of these 

symbols is tied up with the domain.  In mathematics, when a number is preceded by a 

negative sign, the larger the integer, the smaller the numerical value actually is. 
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To be specific, the understanding of a rational number requires knowing that there 

are domain-specific notations with their own meaning.  Recall the earlier example of 

division and the fact that the separate numerals of 4 and 9 take on new meaning when 

joined by a division sign.  This entails recognizing that a fraction is really a tri-partite 

symbol.  Similarly, there are symbolic formats for decimals and percents.  To further 

complicate matters, it turns out that percent statements do not refer to the exact same 

value as fractions. Thus, it may come as no surprise that some confusion about the 

notation ensues.   

 

The importance of multiple representations of number in concept learning  

The domains of mathematics have principles, symbols, and combination rules that 

are in place for a reason – they dictate the syntax of the language of math.  When the 

relationship between equivalent representations is not recognized, errors inevitably 

follow.  Earlier, I spoke of the student having to build a new conceptual construct when 

novel information does not fit the existing framework.  Structural mapping supports 

learning about data that fit what is already known.  The mind finds it easiest to learn more 

about that which it already knows; thus, a relationship must be made between the novel 

concept and an existing one.  So, it is no surprise that young learners actively engage 

their environment with any available structures, even if they are but of skeletal form (e.g., 

as in Gelman, 2000).  In rational numbers, the relationship between counting and the 

arithmetic representation might be very difficult to attain.  Here, what is already known 

of the natural numbers and their structure conflicts with the principles of a rational 

number and almost serve as a “barrier” instead of a “bridge” to later learning, as 
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demonstrated by Hartnett and Gelman (1998).  This evidence conveys the difficulties that 

exist in understanding equivalent forms of mathematical representations.   

It is critical to recognize the range of problems to which a concept may apply.  

Often, children are taught a very specific set of problem types that fall under the umbrella 

of one number concept.  It limits their ability to apply a concept to a novel problem when 

that concept seems restricted.  Perhaps, children simply need more practice with a more 

expansive breadth of examples.  Learning from at least two mathematical examples that 

are similar to a test problem has been shown to yield better performance than when 

learning from just one (Craig & Ryan, 2010; Gick & Holyoak, 1983; Zur, 2003).  Gick 

and Holyoak found that, in addition to solving two comparable problems, putting them 

side-by-side to compare allowed for easy transfer and thus, greater improvements on 

subsequent tests.  Similarly, Zur showed that children were able to successfully solve a 

second problem in a set more rapidly than the first problem; she explained that the 

children were able to recognize an arithmetic relationship between the two problems and 

transfer a mathematical principle from one to the next.  Rittle-Johnson and Star (2007) 

further showed that comparing alternative solution methods has great value conceptually 

and procedurally for seventh-grade students.  This articulation helps contribute to higher-

order thinking (Zaslavsky & Shir, 2005), which entails critical thinking and problem 

solving skills.  

Alternatively, Wu (2009) discussed what can happen when multiple examples of 

the same number concept are not taught alongside one another.  He pointed out that while 

finite decimals are merely a special class of fractions, fractions and decimals are taught 

separately in schools rather together.  This results in either: a) leading students to believe 
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that these numbers cannot be related to each other, or b) avoiding an opportunity for 

students to realize that these numbers are related to each other.  In any case, it cripples 

the student’s ability to easily move from one representation to another.  Further research 

(Kellman, Massey, Roth, Burke, Zucker, Saw, Aguero, & Wise, 2008) suggested that 

instead of introducing the simpler concept first, multiple concepts could be presented 

from the beginning so that the students might learn to perceive the relation between the 

alternative representations from the outset.  This contrasts with common classroom 

approaches where simpler concepts are first introduced and then built upon to create 

more complex concepts. 

In my research (in Chapters 2 and 3), training exercises and hints were designed 

to promote recall and demonstrate transfer between problems with different rational 

number representations.  The idea was that students had not thought about the problems 

in a long time and needed a probe or hint.  The assumption was that students at a good 

state university might not have used their knowledge for awhile. 

 

Consistent mathematical errors in our environment 

People are not always aware of their current knowledge and how new knowledge 

may contradict it.  If they do not recognize a need for changing their existing knowledge 

structure, learning is jeopardized; they will be more likely to ignore the demands of a 

novel problem and default to existing knowledge (Gallistel, 2007; Vosniadou, 1999).  

One such example is Leron’s (2010) bat and ball problem: “A bat and a ball cost $1.10 in 

total. The bat costs a dollar more than the ball. How much does the ball cost?”  This 

problem was originally introduced in Daniel Kahneman’s 2002 Nobel Prize speech, as 
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well as being further explored by Kahneman and Frederick (2005), the latter a former 

MIT Sloan School of Management professor now at Yale University.  They were 

astonished to find that less than half of 3,000 subjects from eight different universities 

were able to correctly answer 5 cents.  Instead, students went with their first instinct of 10 

cents.  Just to get an idea of some of the numbers and the subjects’ intellectual abilities, 

50% of Princeton students (47/93) and 56% of University of Michigan students (164/293) 

gave the wrong answer.  So why do so many people who meet requirements for 

admissions to prestigious universities err on such a simple problem?  One reason might 

be that students defaulted to natural number arithmetic by failing to consider the 

relationship between the bat and ball.  In their mind, the ball was represented as x and the 

bat was represented as $1 such that x + $1 = $1.10.  The final cost (x + x + 1 = $1.10) 

was dependent upon this relationship; one quantity was mapped onto another.  This error 

might also be associated with heuristics and biases, namely, attribute substitution.  Often, 

humans find it easier to rely on the automaticity of an intuitive judgment system, rather 

than reflect on more complicated problem (Kahneman, 2011). 

Being able to understand the mathematical equivalences of different rational 

number representations becomes extremely relevant to consumers, especially around the 

holiday shopping season.  During Black Friday (2011), known as the busiest shopping 

day of the year in the United States, one store offered consumers 40% off their entire 

purchase for the day.  Come the weekend, a new deal was offered where shoppers could 

get $30 off a purchase of $75 or more.  Many shoppers might have seen this value of $30, 

a numerical number instead of a rational number (i.e., percent) and smacked their 

foreheads, thinking they should have waited for this sale.  But in actuality, no more 
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money was being saved.  In fact, the customer was at a disadvantage if his/her purchase 

cost even one cent more than the $75 needed to get the discount.  As 30/75 = 40%, a 

shopper would receive the same (if not a worse) discount than if they had shopped on 

Black Friday.  And, of course, it follows that the store strategically marks their 

merchandise as $69.50, $74.50 or $79.50, just to name a few, so that the consumer has to 

spend more than the $75 in order to get the discount.  The question becomes: how do 

shoppers decide what has more value – the percent of discount or the actual dollar 

amount discount?  The answer is directly related to their knowledge of equivalent rational 

number representations. 

 

“Percent” as a rational number 

The previous example focuses attention on percent as a rational number format.  

The concept of “percent” as a number is interesting in and of itself.  A percent, such as 

40%, is visibly a number, but it only makes sense in terms of some referent or base value.  

The context defines “how much.”  For instance, the possibility of a university incurring a 

1% budget cut might send some (most likely, the university’s employees) into an uproar 

while others might not blink an eye.  The 1% is contingent upon the base value.  So, if the 

budget is 1.2 billion, a 1% cut means the university loses 120 million in funding!  While 

1% seems like a “small” number, 120 million certainly does not seem as insignificant.  

Yet, the two are equal.  How can that be?  Davis (1988) defines the representation of a 

percent as a function, much like a fraction where the relation between two variables or 

numbers is compared.  People often think of 50% as ½ and sometimes fail to 

acknowledge that it is ½ of another value, ultimately yielding an entirely new number.  
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Thus, percent is a variable number whose value is dependent upon a base value, which 

can be ever–changing.  Further, the meaning of the base value is tied to the domain.  To 

illustrate, consider the time signature of 2 over 4 (2/4) in music.  In music, 2/4 is equal to 

6/8, but not 600/1200 (Gelman & Brenneman, 1994).  Intervals are controlled by the 

theory of timing in music and not mathematical equivalences.  This additional example 

further stresses that the domain matters, as does the representation (Gelman & 

Brenneman, 1994).  

Jacobs and Gelman (2010) show that adults, for the most part, fail to calculate 

two-statement percent problems dealing with increases and decreases.  Other research 

also has shown that people treat percents as a function of addition or subtraction of 

natural numbers, without taking into account that there is a multiplicative factor.  This 

overextension of a mathematical rule is similar to another one mentioned earlier: when 

children apply the simple addition rule for whole numbers to fractions, instead of finding 

the least common denominator.  Colby and Chapman (2011) designed their study around 

two promotional statements on a sign in the Bronx Zoo eco-restroom: 1) “A standard 

flush toilet uses 99% more water than a toilet that uses foam,” and 2) “Uses half as much 

water.”  Did the Zoo mean to be redundant (as 99% more is equal to 1.99 times as much 

as the eco-toilet which is almost equal to “twice as much”) or did they instead mean that 

the eco-toilet uses “1% of the amount used by the regular toilet?”  The two are not 

equivalent; thus, the point of reference is pivotal.  The direction from the referent, or base 

value, is just as important.  Consider costs: moving from a less pricey item “x” to one that 

is 99% more will result in a more expensive item that is 199% of x (100% represents the 

original x plus “99% more of x”), a ratio of about 2:1.  In contrast, moving from a more 
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expensive item to one that is 99% less results in an item that is 1% of the original cost x, 

a ratio of about 1:100.  Results from the study demonstrated that people tend to see 99% 

as almost as big as possible; it is close to 100%, which is erroneously believed to be a 

cap.  Yet, it is simply a little less than twice as much as the original price. 

Adults make this same error of using the wrong mathematical rule when looking a 

percent scale.  As another example, in order to regain a 33% loss, as occurred in the 

2000-2001 U.S. recession, a 50% gain would be needed to at least recover that loss.  

Kruger and Vargas (2008) attribute these errors to biases in judgment that increase 

especially as motivation decreases.  The authors set out to show that while identical 

percents do not correspond to identical magnitudes, it is incorrect to also assume that 

different percents correspond to different magnitudes.  In other words, if $150 is the 

referent, 33% less yields $100, whereas if $100 is the referent, 50% more yields $150.  

Yet, if an identical starting value of $100 is the referent for a 33% loss and a 50% gain, 

the resulting magnitudes are quite different ($67 and $150, correspondingly).  These 

errors are analogous to treating the values as natural numbers rather than rational 

numbers.  The result: undesirable consequences for the investor.  Kruger and Vargas 

showed that the perceived differences can downplay a riskier investment or cause a 

mediocre investment to look more attractive than it really was; ultimately, the framing 

manipulation greatly influenced the consumer’s purchasing decisions. They found that 

subjects were more likely to perceive a greater discount when given a less expensive 

referent as compared to when the more expensive item is the referent.  The authors offer 

the loss aversion component of prospect theory as another interpretation of their 

experiments (Kahneman & Tversky, 1979).  In mathematics and in logic, we learn that if 
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A is X greater than B, then B must be X less than A.  Adults who overextend this rule 

when X equals a percent (as in Kruger & Vargas, 2008) are incorrectly applying natural 

number arithmetic (addition and subtraction) where it is not warranted. 

 

Overview of dissertation research 

This review served as an update on certain assumptions illustrating that the 

psychology of number has been studied in a number of ways.  First, humans are equipped 

with a sense of positive natural number under addition and subtraction, much as they are 

endowed with an ability to learn language.  Results from previous studies, along with the 

ones in the subsequent chapters, reveal a strong tendency for individuals to resist 

instruction about rational numbers.  The error analyses for problems couched in percent 

terms help demonstrate that there needs to be a way to accomplish a conceptual change.  

The errors reveal a robust trend of children and adults alike to incorrectly reinterpret the 

problems as if they were confronted with a format for natural number.  In doing so, they 

also illustrate a failure of understanding regarding equivalence classes of rational number.   

It remains an open question as to whether schooling, in the interim, impacts this 

tendency to default to a natural number solution.  The focus here is on the fact that many 

well-educated adults do not understand rational numbers.  This is true with all 

representations, whether they be fractions, decimals, or percents.  Much of my research 

centers specifically on college students’ interpretation of percents and the errors made in 

their calculations with them.  A main result is that a significant number of these students 

have little understanding of the different formats of these numbers.   
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In two-statement problems with successive percent increases and decreases, I 

expect adults to default to treating these values as natural numbers if they have not made 

the conceptual move from natural number concepts to rational number concepts.  This is 

to say that their earliest competence will have interfered with their ability to learn more 

complex math concepts like percents and fractions.  Since we do not have the innate 

ability to represent advanced concepts in math, I further expect a student’s previous math 

experience to influence the errors made.  By exploring different learning and training 

activities, students are able to see more than one example of a given problem; thus, (as in 

Chapter 3) they should be able to not only represent a problem at the algebraic level, but 

should also be able to move fluently between levels and representations.  Finally, by 

taking a closer look at the patterns of conceptual errors (Chapter 4), I propose a 

framework for training studies about percents that encompasses the lessons learned from 

the previous and current research as well as the theories in Cognitive Science (Chapter 5).  

As the concept of number is greatly expanded when moving from natural to rational 

numbers, the conceptual framework that must be constructed is different from the one 

with natural numbers so as to embed it into the existing framework. 
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II. Exploring errors in one- and two-statement percent problems 
 

 
 
 

The focus of this chapter is on the errors discussed in Chapter 1.  To follow up, I 

ran a pilot study with a relatively small number of college students.  They had an 

unexpected amount of difficulty working with percents.  This finding provided the 

motivation for the two follow-up studies with large samples.  The small pilot study and 

the first of the two subsequent studies are reported in this chapter.  The second one is 

presented in Chapter 3.  All studies focus on exploring the extent of difficulty 

undergraduates have with rational numbers, when they are presented in problems 

containing percents.   

I hypothesized that students would make errors with the various representations of 

rational number, especially when they are in algebraic formats.  In the Two-Statement 

Percent Study below, I expected participants to perform better on problems dealing with 

numerical values as this more closely resembles examples in the world around us. 

 

Study 1: Pilot Study 

A small training study was run with Psychology undergraduate students.  Students 

(N = 27 undergraduates (25 females)1) were presented one-statement percent problems 

with fraction, decimal, and percent and bar graph formats.  Examples of these are shown 

in Figure 2.1.1.   

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 The bias for females was not expected. 
2 Natural number is a subset of rational numbers. 
3 SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of 
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.  The data analysis and 
output for the chapter was generated using SAS software, Version 9.3 of the SAS System for Unix. 
Copyright, SAS Institute Inc. SAS and all other SAS Institute Inc. product or service names are registered 
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Of particular interest was whether errors could reflect the use of incorrect rules 

and principles that underlie the participant’s choice of algorithms for achieving answers.  

If so, these errors would be informative about the kinds of mathematical syntactic rules 

that were at risk. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.1.1. Examples of representational formats used in the pretest and posttest of the pilot 
study. The same word problems are given in this particular figure to highlight the different 
formats of rational number representations.  The actual word problems seen each varied in 
content (i.e., problems pertaining to cost, health, ownership, etc.), representational format (e.g., 
fraction, decimal, percent), and rational number values (e.g., 0.80, 2/5, 10%).  
*Note: Bar graphs were used in this pilot study. 
 

 

• The	  stock	  you	  invested	  in	  in	  2002	  has	  now	  decreased	  by	  .80	  of	  its	  original	  
value	  x.	  	  What	  is	  the	  new	  value	  of	  the	  stock?	  	  Please	  represent	  your	  ?inal	  
answer	  in	  decimal	  form.	  	  	  

Decimal	  example	  

• The	  stock	  you	  invested	  in	  in	  2002	  has	  now	  increased	  by	  2/5	  of	  its	  original	  
value	  x.	  	  What	  is	  the	  new	  value	  of	  the	  stock?	  	  Please	  represent	  your	  ?inal	  
answer	  in	  fractional	  form.	  

Fraction	  example	  

• The	  stock	  you	  invested	  in	  in	  2002	  has	  now	  increased	  by	  10%	  of	  its	  original	  
value	  x.	  	  Please	  draw	  a	  new	  bar	  on	  the	  graph	  below	  so	  that	  its	  height	  shows	  the	  
stock’s	  value	  now	  (in	  “2009”).	  

Percents	  and	  graphs	  example	  

Example	  of	  graph	  given	  with	  “percents	  and	  graphs”	  format	  *	  
	  

	  

x	  

draw	  new	  
value	  here	  

2002	   2009	  
Year	  

Stock	  investment	  
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Most often, we see percents represented in terms of decimals.  Less frequently, 

but still somewhat often, we see them represented as fractions.  The decision to use bar 

graphs, instead of another type of visual format such as a pie chart or a line graph, etc., 

followed from a desire to make the problems across representational formats as similar in 

structure as possible.  Further, bar graphs are frequently seen in public media (e.g., the 

business section of newspapers). 

The study was run in three phases as a pretest-training-posttest design.  The test 

items were presented on paper and individuals could take as much time as they wanted.  

Questions on the pretest and posttest presented percent word problems containing one of 

three types of numerical formats: each participant saw two decimal problems, two 

fraction problems, and two bar graph / percent problems in each the pretest and posttest 

(see Figure 2.1.1 for examples).  Only one format appeared per question.  Training varied 

between participants so that they were exposed to practice with decimal formats 

(“decimal training”) or fraction formats (“fraction training”) between pretest and posttest.  

The training consisted of a worksheet that guided participants through analogous 

numerical and algebraic problems in the format of the training condition to which they 

were randomly assigned.   

 

Were some formats easier to use than others? 

Undergraduates performed significantly better on questions paired with bar 

graphs (M =80.60% of students answered these questions correctly) than on those with 

decimal (M = 53.30%) or fraction (M = 60.10%) formats for their pretest and posttest 

items, χ2(2, N = 27) = 11.41, p = .003.  By definition, a bar graph is a visual display of 
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data; the length of its bars is equal to the frequency of each element in a set of data.  

Thus, a plausible explanation for this finding might very well be that converting problems 

a value that resembles frequency, in the form of bar graphs, causes the problem to be 

easier to comprehend (Brase, Cosmides, & Tooby, 1998; Hoffrage, Gigerenzer, Krauss, 

& Martignon, 2002).  The other two formats dealing with rational number (i.e., decimals 

and fractions) presented considerable difficulty to students.   

 

Effects of training on performance 

While decimal training (Figure 2.1.2, left panel) had little to no effect on 

performance across representations, fraction training (Figure 2.1.2, right panel) yielded 

significant improvements from pretest to posttest in every category: decimal (M = 

25.00% correct to M = 53.60%), fraction (M = 35.70% to M = 57.10%), and bar graph 

with percent (M = 67.90% to M = 89.30%).   

 
Figure 2.1.2.  Pilot study: training and test interaction.  Though there were few participants, a 
mixed logistic regression was run with accuracy (correct/incorrect) as the dependent variable (as 
in previous work by Jacobs & Gelman, 2010).  Not only was there an effect of training (p = .049), 
but there was also an interaction of test (pretest versus posttest) and training on accuracy (p = 
.031).  Fraction training (right panel) seemed to improve performance across representations from 
pretest to posttest moreso than decimal training (left panel). 
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An explanation for this might be in part, due to the exposure of multiple representations.  

As decimals are often the preferred representational format for percents, perhaps 

exposing participants to another representation of which they are less familiar, helped aid 

their conceptual understanding of using percents. 

 

Two-statement percent problems 

The study also included additional algebra problems in the pretest and in the 

posttest that were comprised of two-statement percent problems (e.g., a 50% increase of y 

and then later, a 50% decrease off the “new” amount) which were different from the one-

statement problems (e.g., a 30% decrease of y or a 10% increase of y).  One of these two-

statement problems appeared in the pretest and another of these problems appeared in the 

posttest.  In the two-statement problems, the effect of the second percent was dependent 

upon the outcome of the first percent statement.  When two percent values appeared in a 

problem, participants did not perform nearly as well as they had when a single percent 

statement was presented in a problem.  Less than 25% of the participants were able to 

successfully answer the two-statement percent problem. 

The next study is dedicated to a focused follow-up of this class of errors. 

  

 

Study 2: Two-Statement Percent Study 

The results of the pilot study led to the hypothesis that students would perform 

poorly on percent problems containing two statements (i.e., where the second percent 
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statement is dependent upon the result of the first).  The results in the current study 

replicate and extend the findings on individual problems with both percent increases and 

decreases.  Two-statement percent problems also varied on whether they contained an 

algebraic or numerical representation of a value.  This study was not a pretest – posttest 

study; rather, it consisted of three questions.  

In addition, there were two different numerical values across problems (either 

50% or 30% appeared in each question) to determine whether values other than 50% 

increased error rates, possibly which people make without realizing it.  Also of interest 

was whether the individuals changed the problems from a percent representational format 

to another format.   Finally, individuals with higher math SAT scores and more previous 

math background (math level) were expected to do better overall. 

 

Method 

Participants 

Data with a large, heterogeneous population was collected on two-statement 

percent problems with successive increases and/or decreases (e.g., “The cost of an item 

increases by 50%.  It later decreases by 50%.  What is the final cost of the item in terms 

of x?”).  Data was collected from a secure online computer system (in a prescreen) from 

1648 participants who had signed up for experiments in the Psychology department at a 

large university with a diverse population.  Only data from adults (defined as being at 

least 18 years old) were looked at in this study as the IRB considers a participant under 

the age of 18 to be a child and thereby requires different approval.  Thus, 19 participants 
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(<18 years old) were excluded from the final data set, leaving N = 1629 adults (807 

females, 822 males). 

Participants’ previous mathematical knowledge (math level) was obtained for 

subsequent data analyses.  Students were grouped in one of two categories: 1) below 

Calculus 1 (663 participants), or 2) Calculus 1 and above (942 participants). 24 of the 

participants did not type in a response for previous math course.  Participants were also 

grouped by their Math SAT score (see Figure 2.2.1).  378 of the 1629 participants did not 

report their Math SAT scores.  

 

Figure 2.2.1.  Participants’ (N = 1629) math SAT scores revealed a normal distribution, 
representative of the diverse population at this large university.  A subset of the group consisted 
of students who did not report their scores (n = 378); they were labeled as “N/A.” 
 
 
 
Materials and Design   

 Participants answered three test questions and additional demographic questions 

in an online prescreen necessary to partake in Psychology studies at Rutgers University – 

New Brunswick.  The items within this particular block of questions were randomized.  
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Question.  I manipulated the type of question with the aim to further explore the 

preliminary results found in pilot data, by looking at successive percent increases and/or 

decreases (Figure 2.2.2).  In earlier pilot work, there was no order effect of direction (i.e., 

“increase by __% then decrease by __%” vs. “decrease __% then increase __%”) within a 

problem with multiple percent processes.  Thus, all questions in this study were phrased 

as first a percent decrease and then a percent increase.  The 50% – Algebraic question, 

was the same 50% increase/decrease algebraic question that also appeared in the pilot 

study.  The 50% – Numerical question embedded numerical values within the 50% – 

Algebraic question.  And the 30% – Algebraic question was similar to the 50% – 

Algebraic, only it presented 30% values rather than 50% values.  The order in which 

these questions were seen was randomized. 

 

Figure 2.2.2.  The three questions seen by all participants (N = 1629) in the Two-Statement 
Percent Study.  These questions were randomized in a prescreen task on the computer.  
Participants typed in their responses, which were not limited in length.  Red font is used in this 
paper to illustrate the differences between questions; in the actual task, the font was black.   
 
 

• The original cost of an object is "y" dollars. At first, that cost is reduced by 50%. 
Later that new cost is then increased by 50%. Please represent the final cost of 
the object using the variable "y".  	  

50%	  –	  Algebraic	  question	  

• The original cost of an object is $100 dollars. At first, that cost is reduced by 50%. 
Later that new cost is then increased by 50%. What is the final cost of the object?	  

50%	  –	  Numerical	  question	  

• The original cost of an object is "y" dollars. At first, that cost is reduced by 30%. 
Later that new cost is then increased by 30%. Please represent the final cost of 
the object using the variable "y".  	  

30%	  –	  Algebraic	  question	  
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Coding.  To start, 4887 responses to the test questions (1629 participants x 3 

questions) were coded separately by two coders; inter-rater reliability was greater than 

99.88%.  Disagreements were coded again by a third coder and this information was used 

to resolve the differences.  All three coders had extensive mathematical backgrounds.  

The tasks facing the coders were separated into the following categories: 

i. Accuracy.  Responses were grouped into one of two categories, correct or 

incorrect, for performance on each of the 3 questions. 

ii. Response representation.  Since the participants were given open-ended 

questions, their responses were sorted according to type of representation: 

decimal, fraction, percent, integer (which includes an “invisible” 

coefficient of “1” in front of a variable), multiple representations, verbal 

expression or statement, and “none of the above.” 

 

 

Results 

There were several major findings in this study.  As accuracy responses were 

correct or incorrect, chi-square tests within a logistic regression were used to evaluate 

performance.   

 

How did accuracy differ between questions? 

First, there was an effect for type of question (χ2(1, N = 1629) = 152.39, p < 

.0001); undergraduates’ accuracy was higher when dealing with numerical values rather 

than algebraic representations (50% – Algebraic: M = 54.57% correct, 50% – Numerical : 
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M = 75.14%, 30% – Algebraic: M = 37.57%; see Figure 2.2.3).  Here, as compared to the 

pilot study, when more than sixty times as many adults were asked to give an algebraic 

solution to a 50% – Algebraic problem, only 892 out of 1629 participants were accurate.  

Performance was even worse when the same question was asked with other percent 

values (e.g., 30% in 30% – Algebraic), dropping to only 612 out of the 1629 participants 

arriving at a correct answer.  Interestingly, when students were able to use a numerical 

value of $100 (i.e., in “Calculate with original price of $100”), their performance 

increased and 1224 out of the 1629 participants were accurate.   

 

 

Figure 2.2.3.  Mean accuracy on three questions (N = 1629).  While participants performed better 
on the 50% – Numerical question than the other two, notice that no question results in scores at 
ceiling. 
 
 
 
Was there an effect of math SAT or math level on accuracy? 

A logistic regression was run with accuracy as the dependent variable, question 

type as the within-subject independent variable and math SAT as a continuous covariate.  
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With the exclusion of participants who did not provide their math SAT score, an 

otherwise normally-distributed population yielded an effect for math SAT score, χ2(1, N 

= 1629) = 142.41, p < .0001.  Those with lower math SAT scores showed poorer 

performance across questions.  An interaction was also found for math SAT and question, 

χ2(1, N = 1629) = 45.57, p < .0001, where the effect of question type was smaller for 

those participants with higher math SAT scores. (Figure 2.2.4) 

 
Figure 2.2.4. Effect of math SAT score and question on accuracy.  Bars represent the three 
questions and are organized by math SAT score.  Students with higher scores performed better on 
the questions. 
 
 
 

A logistic regression was then run with accuracy as the dependent variable, 

question type as the within-subject independent variable and math level as a continuous 

covariate.  Not only was there an effect for math level for those students who reported 

their scores (χ2(1, N = 1605) = 22.34, p < .0001), but there was also an interaction of 

math level and question (χ2(2, N = 1629) = 6.57, p = . 0375).  Of the 942 participants 

who have taken at least Calculus I, 69.32% answered the 50% – Algebraic question 
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correctly, 82.91% answered the 50% – Numerical question correctly, and 49.89% 

answered the 30% – Algebraic question correctly.  Out of the 663 participants who have 

taken a math course lower than Calculus I, 34.99% answered the 50% – Algebraic 

question correctly, 64.71% answered the 50% – Numerical question correctly, and 

21.12% answered the 30% – Algebraic question correctly.  The effect of question type 

was smaller for participants who had taken Calculus I than for those participants who had 

taken below Calculus I.  

 

Did response representation influence accuracy? 

Next, I looked at the types of representations that participants used when 

expressing their answers.  Figure 2.2.5 shows the number of participants using each of 

the six representation types.  It is evident that most answers were represented in a decimal 

format (e.g., 0.75y).  Indeed, the six representation types differed in their frequency, 

(χ2(6, N = 1629) = 551.66, p < .0001).  In addition, the distribution across the 

representation types differed between the two algebraic problems (χ2(6, N = 1629) = 

144.65, p < .0001, Figure 2.2.5) with the 30% – Algebraic problem showing more 

decimal and fewer fraction representations than the 50% – Algebraic problem.  
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Figure 2.2.5.  Patterns of response representation: with which representation did participants (N = 
1629) respond?  The majority of responses were rewritten as decimal representations.  Those who 
did not fit in any of the six categories were coded as “N/A.” 
 

Was there a gender difference on accuracy?  

Chi-square tests revealed gender differences on accuracy across all three of the 

test questions.   Men outperformed women on the 50% – Algebraic question (64.2% 

correct compared to 44.7% correct; χ2(1, N = 1629) = 62.46, p < .0001), the 50% – 

Numerical question (81.6% correct compared to 68.5% correct; χ2(1, N = 1629) = 37.44, 

p < .0001) and the 30% – Algebraic question (48.5% correct compared to 26.4% correct; 

χ2(1, N = 1629) = 85.15, p < .0001).   

 
 
What was the effect of showing “scratch work” on accuracy?  

As the responses were typed into a computer, a surprising number of participants 

showed an extensive amount of scratch work, working out the problem in full, rather than 

computing the final answer with mental math (e.g., as in Anderson, Reder, Simon, 1996; 

Lave, 1988).  Some responses were simplified (e.g., (¾)y, .75y) and others were left 

unsimplified (e.g., (75/100)y, .50y + .25y, (y – .5y) + .5(y – .5y)).  Thus, a category called 
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“work shown” was created.  Participants were grouped into two groups: those who 

illustrated the processes by which they arrived at the correct or incorrect answer (whether 

it be addition, subtraction, multiplication, division, FOIL-ing {a mnemonic for a series of 

ordered distributive processes}, a combination of these, and/or a verbal description) were 

coded as “showed work” and those who simply gave a final answer were coded as “did 

not show work.” 

Whether or not participants showed their scratch work yielded the opposite effect 

of what would be expected. Those who did not show work actually performed better, 

resulting in an effect of work shown on accuracy (χ2(1, N = 1629) = 12.54, p < .0001). 

Participants who did not show their work in the 50% – Algebraic question were more 

likely to arrive at the correct answer than those who did show their work.  In the 30% – 

Algebraic question, participants were also more likely to arrive at the correct answer if 

they did not show their work than those who did.  (Figure 2.2.6) 

    

Figure 2.2.6.  Work shown on accuracy in two-statement percent problems (computer task). 
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DISCUSSION 

When increase and decrease problems were presented individually in one-

statement percent problems, there was no significant difference between participants’ 

performance on increase problems versus participants’ performance on decrease 

problems.  However, the results from the 50% and 30% successive increase and decrease 

problems in the Two-Statement Percent Study hint at more difficulty with problems 

involving multiple processes.   What are the reasons for this discrepancy? 

For the 50% increase/decrease problem (as well as the 30% – Algebraic question), 

the most frequent incorrect responses given were “x,” “it remains ‘x’ dollars, the original 

cost at the start of [season],” or “back to the original price.”  An interpretation of this 

result stems from participants incorrectly treating these problems as natural number 

arithmetic problems where x + y – y = x, or more specifically, x + 50 – 50 = x.  This error 

was illustrated in students’ incorrect raw answers (for some examples, see Figure 2.2.7).  

It demonstrates a failure to move from natural number concepts to rational number 

concepts.  These results provide a very strong clue that these adults would not be very 

good at dealing with any two-statement percent problem with the following format: (cost) 

decreased by x% and (cost) increased by x%.   

 The answers given to these increase and decrease problems are quite astounding.  

This kind of example occurs in everyday life and yet, the results here strongly suggest a 

lack of understanding, quite possibly due to the influence of simple rules of arithmetic.  

The errors committed reflect a real problem with comprehending figures about the stock 

market, a budget and almost anything that is numerically-related to a person’s daily life.  
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Figure 2.2.7. Examples of students’ incorrect responses on the 50% – Algebraic question.  Each 
line represents a different student’s response.  All students’ work shows their default to natural 
number arithmetic.   
 

 

We know there is a strong tendency of elementary school children to interpret 

fraction problems as natural number problems (see Chapter 1).  It has remained an open 

question as to whether school, in the interim, impacts this tendency to default to a natural 

number solution.  Unlike elementary school children who have been in a curriculum 

trajectory that has involved various kinds of instruction about rational numbers (Common 

Core State Standards Initiative, 2010), adults do get a great deal of experience with 

percent increase and decrease problems in their everyday life, along with any higher math 

courses they have taken.  Thus, the seeming robustness of the tendency to default to a 

natural number solution is most surprising.   

Consequently, the results in the current study revealed that math knowledge level, 

along with math SAT scores, might be important predictors of success.  This may be the 

result of more experience with numbers and algebraic formats and, hence, more fluency 

and familiarity with mathematics, especially as it appears in our daily lives.  From the 

findings in this study, it follows that either more math background has a positive 

y – .50 + .50 = y�

y + (1/5)y – (1/5)y = y �

y – (1/2)y = (1/2)y ” then “ (1/2)y + (1/2)y = 1y �

y – (y x .50) + (y x .50)�

[y – (y*0.50)] + [y + (y*0.50)] �

(y*.5) – 50 + ((y*.5) + 50) �

 y – (y / 50) + (y / 50) �
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influence on participants’ ability to solve novel problems or that those with the ability to 

solve these problems are more likely to take more advanced math courses.  Similar 

results have been found in previous research.   

In general, participants struggled across questions, especially those dealing with 

algebraic values rather than numerical ones.  The ability to “plug in” a specific numerical 

value (e.g., $100) might explain higher performance on the 50%–Numerical question as 

compared to the other two non-numerical questions.  Plugging in a value is most 

applicable to what is done in everyday life.  Substituting a numerical value in for a 

variable was employed even in solving the 50% – Algebraic and 30% –Algebraic 

questions.  In fact, giving an integer (or natural number) response was the second most 

common response representation (Figure 2.2.5).  

The responses for the two algebra problems were overwhelmingly written in 

decimal even though each question was presented in a percent format.  In Chapter 3, I 

take advantage of this result by presenting some participants with both algebraic and 

numerical problems to see if exposure to more than one format increases their 

performance.   

Researchers assume that simple arithmetic is relatively easy for children to learn 

about because it is based on a core domain of positive integers that combine with addition 

(Gelman, 1998).  More complex concepts, like fractions and percentages, etc., do not 

map onto existing concepts (e.g., Carey, 2009; Gallistel & Gelman, 1992; Gelman, 1991).  

But understanding alternative concepts of number and their formats (e.g., fractions) is 

critical for effectively working with algebraic techniques.  It is widely known among 

educators that rational numbers are a watershed.  Children who cannot master them are 



	  
	  

	  

41 

 

unlikely to go on to learn mathematics.  They no longer can resort to their fingers as a 

counting prop and diagrams of pizza pies (which appears frequently in textbooks across 

the United States) are really part-whole counting props.  In comparing students of both 

high and low math abilities across Key Developmental Understandings (KDU) 

constructs, Simon (2006) stresses that it is crucial to understand the idea of a rational 

number (here, a fraction) as a quantity, rather than an arrangement.  For example, 

whether a student is splitting a square into two triangular halves or a square into two 

rectangles, the half that is a rectangle and the half that is a triangle are each half of the 

same whole so they are equivalent.  While, students can easily learn that the parts must be 

equal, they need to understand correspondence between numerator and denominator.  The 

difficulty lies in understanding fractions as a quantity.  The same difficulty was seen with 

percents in this study. 

Concerning the rules governing math principles and their operations, there was a 

significant demonstration of a failure to understand the logic of multiplying by a percent.  

Similar to Kintsch and Greeno’s (1985) findings, false cognates may be hindering student 

performance.  A problem that involves increasing by a percent might convey processes of 

addition rather than of multiplication.  This might be a plausible error since multiplication 

can be converted to the repeated addition of integers.  Division differs, however.  Errors 

in the Two-Statement Percent Study were sometimes the result of not understanding 

division.  One example, where a 50% decrease was represented as “y/50” (Figure 2.2.7), 

illustrates the student’s difficulty with concepts of division, decrease, and percent.  What 

is happening here?  Apparently, the rational number was erroneously converted to a 

natural number.  Yet, that is not possible since nonzero rational numbers are closed under 
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division such that another nonzero rational number always results.  So, while students 

seem to understand that the base value y must be more if increased and less if decreased, 

they err in retrieving the knowledge structure consistent with the rational number input 

(Hartnett & Gelman, 1998).   

In response to the algebraic questions, many participants entered work on the 

computer.  This provided the coders some insight as to how they arrived at the final 

answer.  Therefore, “work shown” was coded for insight about the nature of the students’ 

errors.  It turned out that those who showed work (compared with those who did not 

show any work at all) did not know what they were doing.  Individuals who showed their 

work often made mistakes, contrary to what is usually taught and assumed in 

Mathematics Education.  However, in this study, participants had to type their responses.  

It is quite possible that participants might have put more scratch work down on paper 

before keying their responses into the computer; thus, their final answer did not reveal 

how much work was needed.  In the following study (in Chapter 3), a switch was made to 

paper and pencil tests in order to make it easier for people to show their work.  As will be 

seen, coders were better able to arrive at an error-coding scheme by looking at the scratch 

work that was made alongside a question.  Of interest is whether the solution paths 

detected will align with the expert – novice distinction.  That is, do successful individuals 

recognize the relevant information from the problem and employ efficient solution 

strategies, and do poor performing individuals incorporate irrelevant information into 

their lengthier solution strategies?  Retrieving relevant information can greatly affect 

student performance.  Examples of efficient versus inefficient strategies from the Two-

Statement Percent Study can be seen in Figure 2.2.8 (Patel, Jacobs & Gelman, 2011).  
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Here, lengthier solutions were characterized by employing the addition rule and shorter 

solutions were characterized by the multiplication rule (with addition performed 

mentally).  Either way, the results on what is seen in work shown will have implications 

for theories of conceptual change. 

In sum, the findings relating to the default to natural number in the current study 

were surprising given the participants are at a good college.  Perhaps, they were surprised 

to encounter the test items in the same preliminary test pool with a large number of social 

psychology items.  If so, simply providing a hint in between a pretest and posttest should 

help them catch on and perform better.  This is done in the study presented in Chapter 3.  

The hint also serves a second purpose: it offers people a second notational format. 

Overall accuracy, problem-solving representational formats, and types of errors will be 

specific areas of analysis. The focus will be on specific error patterns, the effect of 

problem-solving representational formats, and types of problems that everyone finds 

easy. The data found in my studies highlight the fact that even undergraduates can have 

persistent problems with rational number concepts and notations.  
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Figure 2.2.8  Efficient versus inefficient solution strategies that appeared in Patel, Jacobs, and 
Gelman (2011).  Given a problem where there is a cost decrease of 50% followed by a cost 
increase of 50%, the answer, using an algebraic term of “y”, would be .75y.  However, instead of 
using an efficient multiplicative process (e.g., y * (.5) * (1.5)), beginners choose a complicated, 
less efficient additive process (e.g., (y – .5y) + (y – .5y)*(.5)).  Though both responses are correct, 
the latter yields more errors when it comes to simplifying an equation. 
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III. Two-Statement Hint Study 
Part I: Hint strategies 

 
 

Introduction 

Teaching students to recognize different methods for solving a problem helps 

them develop a greater understanding of concepts (Gelman, 1986).  Although the 

processes that lead up to a solution might be different, they must all share common 

principles and honor the underlying constraints on any algorithm.  Often, children 

memorize techniques for arriving at these solutions.  Accordingly, they tend to have more 

success on one solution technique than on another.  This was illustrated in Chapter 2 – 

participants were more successful on numerical problems than on algebraic problems.   

The algebraic problems require students to represent their responses in a rational 

number format of their choosing, as there is often more than one correct solution 

representation.  As an example, a 20% decrease could be re-represented in decimal 

notation (e.g., y – .20y = .80y), in fraction notation (e.g., y – (1/5)y = (4/5)y), etc.  

However, the nature of the problem changes when a student is asked to “plug in” a value, 

as in the 50% – Numerical problem.  Substituting in a value (e.g., 100) for the variable y 

causes the rational number (e.g., .80y) to take on the format of a natural number2: 100 – 

20 = 80.  Students who do not fully understand rational numbers might not realize that 

they are still working with a rational number problem.  Those who have undergone a 

conceptual change from natural numbers to rational numbers can more easily recognize 

the similarities of the solution structures than those who have not; thus, they are more 

fluent in moving between the representations.  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2 Natural number is a subset of rational numbers. 
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As the participants in my studies were all adults, it must be assumed that they 

have learned about rational number.  This aligns with the Common Core State Standards 

(2010) for math; students should be able to solve real-life and mathematical problems 

using numerical and algebraic expressions and equations.  Relevant to these dissertation 

studies, one standard “CCSS.Math.Content.7.EE.B.3” provides an example that 

demonstrates the conversion between formats:  “If a woman making $25 an hour gets a 

10% raise, she will make an additional 1/10 of her salary an hour, or $2.50, for a new 

salary of $27.50.”  This example illustrates what a student should know by the time they 

leave the seventh grade. 

Participants have been taught rational number concepts in school and they have 

also had experience with these values in every day life.  Therefore, perhaps only a 

reminder is needed to provide a hint for solving these problems.  In the current study, I 

utilized a concept on which students were more successful (e.g., natural number concepts 

in Chapter 2) and employed it as a hint between a pretest and a posttest of rational 

number problems (e.g., substituting in a value for the variable).  I hypothesized that 

providing a numerical hint might cue participants to recognize the similar knowledge 

structures between the numerical and rational number problems; thus, their performance 

would increase on posttest.  As in the previous chapter, it was also of interest to look at 

the variables affecting participants’ accuracy, such as showing one’s work, math level, 

and solution strategies.  
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Method 

Participants 

 The participants were 134 undergraduates from a large university with a diverse 

population.  Participants were recruited from undergraduate Psychology courses and were 

compensated through either extra credit in their respective courses or through fulfillment 

of a required number of credits all Psychology students at this university must take.  Six 

participants voluntarily withdrew and four participants were excluded due to incomplete 

data, leaving N = 124 (81 females, 43 males).  57 participants (44f, 13m) were at a Math 

level below Calculus I, 46 (27f, 19m) took Calculus I, and 21 (10f, 11m) took Calculus II 

or higher.  All participants were at least 18 years old, fulfilling IRB requirements in place 

for this study.  Human subjects’ approval and all informed consents were obtained before 

the study began.  

 

Design and Procedure 

The study involved four phases in which participants were asked to answer 

questions with paper and pencil, and without the use of a calculator.  Phase I served as a 

pre-test, Phase II as a hint phase, Phase III as a post-test, and Phase IV as a collection of 

demographic information, previous math background information, and confidence levels.  

There were 8 test questions in each test phase (Phase I and Phase III), 4 questions in the 

hint phase (Phase II), and 5 questions in Phase IV.  Similar to the Chapter 2 studies, other 

variables of interest included previous math level, math SAT score, gender, time (to 

complete the tasks), and confidence level in performance.   
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Test was a within-subjects variable in which all participants saw both a pre-test in 

Phase I and a post-test in Phase III.  The 16 test questions consisted of algebraic word 

problems following the general format of “There are y units.  y is increased by (__)%.  y 

is then decreased by (__)%.  What is the final value, in terms of y?”  This follows the 

same question structure that appeared in my earlier studies.  All questions were 

approximately the same number of words and same length so length of question would 

not be a factor.  Additionally, the language used for mathematical procedures was 

identical in each problem (i.e., the use of “decrease” instead of “discount” and “increase” 

instead of “improved” or “rose”).  Questions were counterbalanced for the variable order 

so that participants in order 1 saw questions A-H (see Table A.1) in their pre-test and 

questions I-P in their post-test.  Participants in order 2 saw questions I-P as their pre-test 

and A-H as their post-test.  Direction (a decrease by a percent followed by an increase by 

a percent, or vice versa) and the size of the percent values seen were also counterbalanced 

in the questions seen in each test (pre and post).  For percent, two-digit values that end in 

0 were used (10%, 20%, …80%) and participants saw different combinations of these 

values; each percent pair was seen only once.  These combinations were also 

counterbalanced for “large-small,” a variable defined by whether a large percent or a 

small percent is seen first in the problem  (see Table 3.1 below).   

 
The problems and the task 

Before beginning, participants were walked through an overall description of 

what would be seen and what was expected of them.  They were reminded that this was 

not a test and that there was more than one way to solve the problems.  Participants were 

encouraged to use the ample space provided on sheets of paper to show their work if 
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needed.  The experimenters told participants that the researcher’s goal was to look at how 

undergraduates solve these problems.  They were also given the option to share their 

email addresses if they were interested in learning about the results of the study in the 

future.  Students were encouraged to take as much or as little time as needed and were 

timed for how long they took to do the problems.  

 Participants were told not to go back to a previous section (e.g., Phase I) once 

they moved onto a new one (e.g., Phase II).  As most of the participants were run in either 

groups of two or larger, they were all asked to sign an honor code; certain aspects of the 

environment, such as honor codes, make morality more salient and can encourage honest 

actions. Simply exposing participants to a moral code can drastically reduce cheating; 

signing a moral code can eliminate it entirely (Shu, Gino, & Bazerman, 2011).  

 
Table 3.1  
Test design with phase layout 
     
Phase for Order 1 Question Percent Direction Phase for Order 2 
Pre-test A 50%, 10% * Increase, Decrease Post-test 
Pre-test B 40%, 60% Decrease, Increase Post-test 
Pre-test C 20%, 30% Increase, Decrease Post-test 
Pre-test D 70%, 20% * Decrease, Increase Post-test 
Pre-test E 80%, 40% * Increase, Decrease Post-test 
Pre-test F 30%, 70% Increase, Decrease Post-test 
Pre-test G 60%, 50% * Decrease, Increase Post-test 
Pre-test H 10%, 80% Increase, Decrease Post-test 
     
Post-test I 40%, 70% Increase, Decrease Pre-test 
Post-test J 50%, 80% Decrease, Increase Pre-test 
Post-test K 30%, 10% * Increase, Decrease Pre-test 
Post-test L 10%, 60% Decrease, Increase Pre-test 
Post-test M 80%, 20% * Increase, Decrease Pre-test 
Post-test N 20%, 40% Increase, Decrease Pre-test 
Post-test O 60%, 30% * Decrease, Increase Pre-test 
Post-test P 70%, 50% * Increase, Decrease Pre-test 
Note: The problems were counterbalanced so that some questions had a larger percent appearing before a 
smaller percent* (e.g., 80% increase followed by 40% decrease) and other questions had a smaller percent 
appearing before a larger one (e.g., 30% increase followed by 70% decrease).  The table also illustrates that 
Direction and Test were counterbalanced.   
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Hint Phase 

There were two groups in the hint phase (Phase II) and participants were 

randomly assigned to one of the two. 

i. Control.  The control condition involved repetition of what was seen in the 

pre-test, a continuation of problems presented in an algebraic format (i.e., 

“Solve in terms of y”).  There were 4 questions in this condition.  No feedback 

was given.  Repetition was chosen as the control because that has been what is 

customarily taught and encouraged in many math classes.  Two versions of 

this group condition, order 1 and order 2, counterbalanced test. 

ii. Numerical hint.  There were also 4 questions in this condition, only instead of 

seeing “y,” participants saw a numerical value (e.g., 100 tickets).  No 

feedback was given here, either.  Two versions of this group condition, order 

1 and order 2, counterbalanced test. 

 

Coding responses   

The codes were established by studying the participants’ data sheets.  A small 

sample of responses was compared by at least two coders to define levels for each 

variable; thereafter, responses were coded with set guidelines by one experimenter.  

Student work on each problem was coded for: 

i. Accuracy.  Responses were coded as correct or incorrect on each of the 16 

questions appearing in Phase I and Phase III. 

ii. Work shown.  All participants’ responses for the 16 questions in both phases 

were coded into one of the three levels: 
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a. Showed no work 

b. Showed a little work (i.e., simple arithmetic or one to two non-

repeating lines of work) 

c. Showed a lot of work (i.e., more than two lines of non-repeating work) 

 

Results 

Data were analyzed using general linear models that were run using the proc 

genmod command in SAS/STAT® software.3  This procedure is used to fit a generalized 

linear model (GLM) to the data by maximum likelihood estimation of the parameter 

vector β.  As there were multiple dichotomous dependent variables (the 16 questions), a 

binary distribution (dist = bin command) and a logistic (link = logit) were embedded into 

the general linear models.  Therefore, this procedure fit a model to repeated categorical 

responses that were correlated and clustered; the output yielded generalized estimating 

equations (GEE), an extension of the GLM.  Accordingly, quasi-likelihood estimation 

was used rather than maximum likelihood estimation.  A quasi-likelihood estimate of β 

arises from the maximization log likelihood estimation without assuming that the 

response is normally distributed.  As the GEE is an estimating procedure, empirical 

estimates of the standard errors and covariances were looked at and compared with the 

model-based estimates (the latter was done using chi-square tests and likelihood ratio 

tests).  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3 SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of 
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.  The data analysis and 
output for the chapter was generated using SAS software, Version 9.3 of the SAS System for Unix. 
Copyright, SAS Institute Inc. SAS and all other SAS Institute Inc. product or service names are registered 
trademarks or trademarks of SAS Institute Inc., Cary, NC, USA. 
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The strategy for variable selection entailed fitting a sequence of models, 

beginning with the simplest.  The importance of each additional explanatory variable was 

assessed and then kept (if important) or removed from the model (if it made it weaker).  

Additionally, nonparametric tests such as chi-square tests were used to look at differences 

between variables and Spearman’s rank order correlation coefficient (i.e., Spearman’s 

rho) was used to look at the relationship strength between variables. (See Table B.1 for 

correlations.) 

While math SAT scores and math levels were collected from participants, both 

were not included in the GEE model as they were quantifying similar measures (rs[91] 

= .52, p < .0001).  Thus, each variable was added to the model separately to measure its 

importance; math SAT score resulted in a weaker model whereas the inclusion of math 

level generated a stronger model.  Math level was also more highly correlated with 

accuracy (rs[124] = .48, p < .0001).  Therefore, math level was used in the analyses rather 

than math SAT score.  

 

The GEE model 

Preliminary analyses were run in an effort to exclude design variables such as 

order, direction, the number fifty, and the large-small comparison from the GEE model.  

These variables were looked at across all questions rather than across subjects.  Hence, 

the large N is attributed to 124 participants times the number of questions answered (out 

of 16).  There was no effect of order on accuracy (χ2(1, N = 1979) = 1.14, n.s.).  In other 

words, there was no difference for whether participants received questions A through H 

first or I through P first in this study.  There were also no effects on accuracy of having 

50% in the problem (χ2(1, N = 1979) = 0.17, n.s.), nor for direction on accuracy (χ2(1, N 



	  
	  

	  

53 

 

= 1979) = 0.78, n.s.), nor for large-small on accuracy (χ2(1, N = 1979) = 0.12, n.s.).  Thus, 

the variables of order, direction, fifty, and large-small were not included in the GEE full 

model.  

In the full model below (Table 3.2), I looked at the empirical estimates of hint 

phase, hint phase score, test, work shown, math level, and gender on accuracy.  Gender 

was not significant (β = -0.20, Z = -0.61, n.s.).  Contrary what was expected, there was no 

interaction of hint phase and test such that performance was no different in the pretest 

and the posttest, regardless of membership in the hint phase groups (control group or hint 

group).  No reliable interactions were included in the table below as they lessened the 

strength of the models.    

 

Table 3.2 
GEE parameter estimates: Full model (N = 124)  

Output of hint phase, hint phase score, test, work shown, math level, and gender on accuracy  
Parameter β SE (β) 95% Confidence Limits Z  
(Intercept) -1.35 0.45 -2.23    -0.46 -2.98***  
Hint phase -1.12 0.35 -1.81    -0.43 -3.19**  
Hint phase score 1.12 0.14 0.85    1.38 8.15***  
Test                        post 0.16 0.16 -0.15    0.47 0.98  
Test                        pre (ref.)      
Work shown 1.09 0.23 0.65    1.54 4.80***  
Math level 0.92 0.21 0.51    1.33 4.37***  
Gender -0.20 0.32 -0.83    0.43 -0.61 
       
Note. ‘*’ = p < .05, ‘**’ = p<.01, and ‘***’ = p < .001 
 

Hint phase, hint phase score, work shown, and math level were all significant 

predictors of accuracy.  Students’ accuracy was consistent across questions such that 

there was no difference between their pretest and posttest (test) accuracy (χ2(1, N = 1979) 

= 1.07, n.s.) and thus, there was no effect of test, (β = 0.16, Z = 0.98, n.s.).  Figure 3.1 

shows that the majority of participants scored the same number of questions correct on 
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the posttest as on the pretest (χ2(1, N = 832 correct responses) = 0.10, n.s.); this was the 

case for the control group (176 correct responses on pretest, 191 correct responses on 

posttest) and for the hint group (228 correct responses on pretest, 237 correct responses 

on posttest).  

 
(a) 
(b) 

 
 
Figure 3.1.  Test consistency in hint phase groups.  (a) The top panel reveals that the majority of 
participants received posttest scores similar to their pretest scores.  There is a slight skew to the 
left for the hint group.  (b) In the bottom panel, cumulative relative frequency graphs also show 
little to no difference between the control group (in blue) and the hint group (in red) across the 8 
questions in pretest (left) and 8 questions in posttest (right). 
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Hint phase and hint phase score 

Unexpectedly, the control condition (i.e., repetition) for hint phase seemed to be a 

greater cause of accuracy than the hint condition where participants were given a 

numerical hint, according to the full GEE model in Table 3.2 (β = -1.12, Z = -3.19, p = 

0.001).  Yet, a chi-square test follow-up revealed no differences between hint phase 

groups on overall percent accuracy across all sixteen questions (χ2(1, N = 1979) = 2.25, 

n.s.) (see top panel of Figure 3.2).   

 
 

 
Figure 3.2.  The effects of type of hint and hint score on accuracy.  The top panel reveals no 
difference in performance between the control and numerical hint phases.  The bottom panel 
demonstrates how correctly answering more questions in the hint phase was positively related to 
total accuracy across pretest and posttest.  
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In taking a closer look, participants who were more accurate on the hint phase 

problems also tended to do well on the pretest and posttest problems (β = 1.12, Z = 8.15, 

p < 0.001).  There was also a significant difference between the hint phase scores on 

accuracy across all questions, lending further support to the findings in the GEE model 

(χ2(4, N = 1979) = 677.06, p < .0001) (see bottom panel of Figure 3.2). 

 
 
Math level 

Math levels contributed to accuracy scores such that a student with a higher math 

level was more likely to be accurate (β = 0.93, Z = 4.50, p < .0001) (Figure 3.3). 
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Figure 3.3. The top panel shows the percent accuracy by math level across all questions.  The 
bottom panel shows the mean total correct out of the 16 questions given (where math level 1 
refers to below calculus I, 2 refers to calculus I, and 3 refers to calculus II or higher). Participants 
with more math experience were more likely to be accurate on questions. 
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questions.  However, unlike the results in Chapter 2 where there were only two levels 

(showed work or did not show work), three levels were scored in the current experiment.  

Apparently, providing paper and pencil facilitated this tendency to show work.  The 

results in the current study differed from those in the previous study such that answers 

here were more accurate if participants showed more scratch work than none at all or too 

little (χ2(2, N = 1978) = 230.51, p < .0001) (see Figure 3.4).  Only 5.4% of the answers 

that occurred without showing work were correct (n = 15 responses).  By contrast, 44.3% 

of answers showing a little work were correct (n = 633) and 67.9% showing a lot of work 

were correct (n = 184).   

 
Figure 3.4. Accuracy by work shown.   
 
 
 
Gender 

Gender was not a significant predictor for accuracy across the sixteen test 

questions as seen in the GEE model.  However, a chi-square test did reveal an effect of 

gender on accuracy, such that males were more accurate (M = 8.98, SE = 1.03) than were 
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nature of this work to attempt to account for the different outcomes for the different 

measures.  

 

Confidence ratings and completion time on accuracy   

Responses on the sixteen questions were collapsed within participants to yield 

total number of questions correct.  Using Spearman’s rho (rs), correlations were run to 

measure the strength of the relationships.  Confidence ratings were highly correlated with 

the total number of questions correct across pretest and posttest (rs[124] = .59, p < .0001).  

Participants who were more accurate were also more likely to be confident in their 

accuracy.  The relationship of completion time to accuracy was just barely significant 

(rs[124] = .18, p = .041), such that participants who took longer to complete the tasks had 

a greater number of questions correct across pretest and posttest. 

 

Ceiling effects 

Removing the 19 participants who scored at ceiling during pretest (all eight 

questions correct) revealed that the hint phase condition no longer significantly affected 

accuracy (β = -0.52, Z = -1.32, n.s.) (see Table 3.3).  Of these 19 participants, 12 were in 

the control group and 7 were in the hint group.  With this smaller population (N = 105), I 

looked at output models for the two hint phase groups separately; a model was run for the 

control (no hint) group (Table B.2) and another model was run for the hint group (Table 

B.3).  In the control group, now there was no effect of work shown on accuracy (β = 0.39, 

Z = 1.00, n.s.) nor was there an effect of math level on accuracy (β = 0.15, Z = 0.55, n.s.).  
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In the hint group (Table B.3), there were still effects of these variables on accuracy, 

similar to the results found in Table 3.2 and Table 3.3. 

 
Table 3.3 
GEE parameter estimates: Model without pretest ceiling group (N = 105)  

Output of hint phase, hint phase score, test, work shown, math level, and gender on accuracy  
Parameter β SE (β) 95% Confidence Limits Z  
(Intercept) -4.51 0.73 -5.94    -3.08 -6.18***  
Hint phase -0.52 0.39 -1.29    0.25 -1.32  
Hint phase score 0.87 0.14 0.59    1.15 6.03***  
Test                        post 0.20 0.19 -0.18    0.57 1.02  
Test                        pre (ref.)      
Work shown 1.17 0.23 0.72    1.63 5.08***  
Math level 0.78 0.21 0.36    1.20 3.65***  
Gender -0.05 0.35 -0.73    0.63 -0.14 
       
Note. ‘*’ = p < .05, ‘**’ = p<.01, and ‘***’ = p < .001 
 

 

Discussion 

Overall, numerical hints did not help participants significantly improve their 

performance any more than pure repetition (the control condition in the hint phase).  In 

fact, students who were performing well on the pretest continued to perform well on the 

posttest and students who were performing poorly on the pretest continued to perform 

poorly on the posttest.  Given the depth of natural number errors, it is unlikely that 

students simply forgot what they once knew.  This suggests that a more intensive training, 

with multiple kinds of data will be needed to accomplish learning.  

Initially, hint phase (control {no hint} group or hint group) was shown to be a 

significant predictor of accuracy because it included those participants who scored at 

ceiling on pretest (and accuracy measured performance throughout the task, not only on 

posttest).  In removing those participants, the hint phase was no longer significant, 

supporting the results showing no difference between the control and hint groups, and 
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little to no difference between the pretest and posttest scores.  There happened to be more 

participants scoring at ceiling in the control group (where there also appeared to be more 

success), so removing these students resulted in no difference between the hint phases. 

The failure to remind participants during the hint phase also relates directly to the 

misunderstanding of rational number and the principles underlying this type of number.  

Specifically, the inability to see natural number as a type of rational number concerns the 

successor principle.  The successor principle states that there is always a unique next but 

students must recognize that this is impossible for rational numbers – there are an infinite 

number of values between any two rationals.  Understanding rational numbers does not 

call for replacing the current notion of a successor for natural numbers but it does require 

giving it up for rational numbers.  

“The process of extending the number concept to rational numbers requires meta-
conceptual awareness of the differences in the two kinds of numbers, conscious 
thinking in constructing a parallel mental model for numbers, and metacognitive 
control in the selection to appropriate rules of operation depending on the task at 
hand” (Merenluoto & Lehtinen, 2004).   
 

In order to connect a novel concept to an existing knowledge structure, different mental 

formats must be in place (Carey, 2009).  From the results in this study, it is clear that 

many students have not managed to construct the new format required for rational 

numbers. 

The default to use natural number is a potent case of students’ difficulty of getting 

beyond what they know well.  Rational numbers are interpreted as novel cases of natural 

number, given the lack of knowledge about non-core knowledge regarding rational 

numbers.  Mastery of complex numbers, such as rational number, requires considerable 

work on the part of the learner as well as a teacher who can move individuals forward 
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with relevant lessons.  The trick is to think of relevant lessons – ones that overlap at least 

to some extent with natural number.  Otherwise, a conceptual move from natural numbers 

(core knowledge) to rational numbers (non-core knowledge) is not likely to take place 

(Gelman, 2009; Gelman & Gallistel, 1978).  What is a bit surprising is how many 

students might have so little experience working with rational numbers that they default 

to using natural numbers. 

It is also possible, as Merenluoto and Lehtinen (2004) suggest, that earlier failures 

experienced in mathematics also involved undetected defaults to discrete numbers.  If so, 

this would mean that such students kept failing in their math classes, even if they really 

tried.  The outcome could be an aversion to taking any more mathematics in school. 

Showing one’s work in this study may have helped individuals monitor their 

errors and correct them.  It could be that paper and pencil tests are preferable to 

computerized ones for this very reason.  For students who made errors, their work 

allowed us to pinpoint a pattern of errors.  When one works on a computer, it is hard to 

check, erase, and start over again.  Therefore, computer versions of the task favor those 

who know the correct answer and do not have to work through a problem.  This 

conjecture deserves attention in future research.  For now, we move onto analyzing 

students’ work and the relation of some variables of interest. 

Chapter 4 takes a closer look at these patterns and at the nature of the errors and 

finds a ubiquitous tendency for those who err to default, one way or another, to natural 

number arithmetic.  
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IV. Two-Statement Hint Study 
Part II: Error patterns 

 

The data discussed in this chapter are the errors made by participants whose 

success and failure tendencies were reported in Chapter 3.  In addition to scoring error 

rates, I went on to do an analysis of the nature of errors produced during the two-

statement percent problems.  The code captures different levels of errors.  Analyses of 

these allowed us to determine that subjects with limited math backgrounds had a robust 

tendency to interpret the problems as if they were novel cases of natural number.  

 

Introduction 

Percent and percentage are sometimes used interchangeably, but this is not always 

appropriate.  Recall from Chapter 1 that percent can be defined in terms of a function 

(Davis, 1988) that requires a referent, or a base value, in order to take on meaning.  

Percent can be expressed by the symbol “%” and is used most frequently when preceded 

by a number (e.g., 20%).  In contrast, “percentage” often refers to the product when 

taking a percent of a base value.  In other words, (percent)*(base value) = percentage 

(e.g., 20% x 50 = 10).  The percentage refers to a relationship rather than symbol or a 

function.  In the above example, 50 can be called the base value, the referent, or the 

“whole,” just to name a few terms.  Depending on the circumstances, there are also many 

different names for percentage (or in the previous example, “10”) such as the percent 

change, the “discount,” and the “part.”  

In my studies, I frequently use algebraic values for the base amount so that 20% is 

the percent and (20%)y, or .20y (represented as a decimal), is the percentage. The new 
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value results from the addition of the percentage to the base value if there is an increase 

occurring (y + .20y) or from the subtraction of the percentage from the base value if a 

decrease takes place (y – .20y).   

Conceptually, what should happen when there is more than a single percent 

statement in the problem (as in both Chapter 2 and 3)?  The student must recognize that 

this is a novel problem dealing with rational numbers.  The format of the problem needs 

to be redefined so that in the second step of the process the “new value 1” takes place of 

the (original) base value.  Table 4.1 broadly outlines three solution strategies seen in 

students’ work (from Chapter 3).  In the second step of these problems, percent B is 

based on the new value rather than the original base value.  An advanced problem-solver 

may opt to find the solution in fewer steps as illustrated in the table below.  The use of a 

beginner’s solution is very piece-wise without an obvious goal, where the student 

painstakingly and vigilantly breaks the problem into parts.  The intermediate solution 

strategy eliminates two of the steps in the beginner’s solution and demonstrates 

understanding that the base value is increased or decreased as a function of itself (rather 

than add or subtract the percentage back to the base value).  Yet, the participant still fails 

to master the shortest solution path.  To move from the intermediate level to the more 

advanced solution strategy, the mechanics of the proof require one substitution of nv1 

(the new value after the first process) in place of the (original) base value.  The 

application of multiplying three values demonstrates knowledge of the multiplicative, 

additive, and distributive properties. 
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Table 4.1  
Problem solving strategies for two-statement percent problems 
Solution strategies Example: 40% increase of y followed 

by 10% decrease of new value 
Beginner strategy  

Step 1:  (percent A)(base value) = percentage A 
Step 2:  base value ± percentage A = new value 1 (“nv1”) 
Step 3:  (percent B)(nv1) = percentage B 
Step 4:  nv1 ± percentage B = new value 2 (“nv2”) 

 

Step 1:  (.40)(y) 
Step 2:  y + .40y 
Step 3:  (.10)(y)(y + .40y) 
Step 4:  (y + .40y) – (.10)(y)(y + .40y) 

Intermediate strategy  
Step 1:  (base value)(1 ± (percent A)) = nv1 
Step 2:  (nv1)(1 ± (percent B)) = nv2 

 

Step 1:  (y)(1 + .40) 
Step 2:  (1.40y)(1 – .10) 

Advanced strategy  
Step 1: (base value)(1 ± (percent A))(1 ± (percent B)) = nv2 
 

Step 1:  (y)(1 + .40)(1 – .10) 

 

Here, it is important to note briefly a topic mentioned earlier that is of interest to 

math educators and cognitive scientists, alike – the novice-expert distinction.  As it turns 

out, the distinction of the strategies in Table 4.1 are reminiscent of the novice-expert 

distinction.  However, too many mistakes were made for students to be considered 

novices as discussed in the literature (e.g., Simon & Simon, 1978).  Thus, the beginner 

strategy is only consistent with the definition of a novice in that becoming more skillful 

on a task (e.g., using an advanced strategy) depends upon gaining more experience.  

While there is almost always more than one way to solve a problem, it is quite obvious 

that some strategies are quicker and more efficient than others.  As illustrated in Chapter 

2, beginners were identified by their unnecessarily long solution strategies in a computer 

task; participants were more prone to making errors.  However, Chapter 3 revealed that 

showing work was an important predictor in accuracy in a paper and pencil task.  That 

does not necessarily mean that experts are the students who show more work; it simply 

means that until students are comfortable taking shortcuts (e.g., the advanced strategy), 
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longer solutions (e.g., the beginner or intermediate strategies) can help them keep track 

and even check their work.  These longer solution strategies can contain extraneous 

and/or redundant information, underscoring our guess that they are not akin to expert 

solutions.  While all students have important prior knowledge about these domains, more 

advanced students are able to quickly identify similar relations in the domain of 

mathematics.  

Additionally, the open-ended design of the response section allowed for the 

identification of certain errors, especially those categorized as conceptual errors.  

Students who make conceptual errors demonstrate the inability to move from one concept 

to another; they are unable to move the concept and the mathematics forward together.  

This is evidence for the person to have achieved a conceptual change.  

The factors of interest to the current study are embedded in the solution strategies 

seen earlier (Table 4.1).  In looking at work shown, I identified the type of error made 

and the location of the error in considering that these problems essentially are comprised 

of two parts.  It was also of interest to follow up on the natural number arithmetic error.  

Whereas in Chapters 2 and 3, I referred to a 50% increase followed by a 50% decrease as 

a 50% – Algebraic or a 50% – Numerical problem, the problems in this study differ.  

Here, the percents in each problem are always different numerical values from one 

another.  Moving forward, I refer to each problem by abbreviating the direction of each 

percent.  For example, the shorthand notation for a 60% decrease followed by a 10% 

increase shall be called “60dec~10inc.”  “30inc~40dec” references a problem with a 30% 

increase followed by a 40% decrease. 
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Method 

Participants 

 The participants were the same sample as those in the Two-Statement Hint Study 

(Chapter 3).  

Design and Procedure 

Each participant was given 8 questions in Phase I and 8 questions in Phase III.  Phase 

II, the hint phase, and Phase IV, the collection of demographic information, was not 

coded any further than was previously described in Chapter 3.  As the 16 responses in 

Phase I and Phase III were previously coded for accuracy (correct or incorrect), only 

incorrect answers were looked at in the current chapter to find patterns of errors.  

Coding responses.  Student work was grouped by: 

i. Error location by problem part.  For problems where the participants showed 

work (see Chapter 3), the solution to each problem involved two steps.  

Therefore, incorrect responses were coded as: 

a. Error on only the first part of the problem 

b. Error on only the second part of the problem 

c. Error on final simplification of the problem (correct setup but wrong 

final answer due to simplification/ addition/ subtraction error in last 

step) 

d. Entire problem incorrect (both parts were wrong) 

ii. Type of error. Participants’ incorrect responses were labeled according to the 

type of error committed.  In the cases where a single error could not be 

isolated, multiple codes were given.  Codes “a” through “d” were considered 
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conceptual errors and codes e through g were considered calculation errors.  

The codes were: 

a. Natural number arithmetic error (NNA error)  

i. Sublevels are exemplified below in Table 4.2 using 

40inc~70dec as a problem example 

Table 4.2 
Levels of natural number arithmetic error 
Level of NNA error Example of NNA error Explanation of error 
Level 1  
(Beginner level error) 
 

+ .40y – .70y = –.30y 
+ .40y – .70y = .30y 

Addition/subtraction of percentages (sometimes 
ignoring the direction) 

Level 2  
(Intermediate level error) 
 

y + .40y – .70y = .70y First part correct; for second part, participant 
incorrectly subtracted percent of initial base value 
rather than calculating the percent of the new base 
value before addition/subtraction 
 

Level 3 
(Advanced level error) 
 

(y + .4y) + (y – .7y)) Percentages calculated correctly; incorrect last 
step of addition/ subtraction operation rather than 
multiplication 
 

 
 
b. Failure for brackets or order of operation error 

c. Multiplication / division of given percents (e.g., “.20*.30*y for a 

20dec~30inc problem) 

d. Missing decimal 

e. Incomplete answer (e.g., participant takes percent of variable but fails 

to add or subtract it from original quantity)  

f. Missing variable 

g. Final simplification error (usually with addition, multiplication, etc.) 

h. Incorrect values used or ambiguous answer given 
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Results 

Error analyses tell us what type of issues participants encounter and how they 

interpret the problem.  A rather large percentage of the students defaulted one way or 

another – some made less conspicuous natural number errors while others made more 

obvious mistakes.  Below, I look at the location of these errors and the types of errors. 

 

Were errors more common in one part of the problem than in another (i.e., error 

location)? 

The percent problems required two separate operations on the two percents 

presented.  Step 1 involved calculating the percentage of the first base value and then 

adding or subtracting the original base value.  The result was a new value.  Step 2 

involved calculating the percentage of this new value and adding or subtracting the 

percentage to or from that new value.  The result was a second new value.  Above (Table 

4.1), I discussed expected solution strategies that would be used to look at participants’ 

work.  If students showed work, it allowed experimenters to code a student’s solution as 

correct in the first and second parts of the problems (and likewise, as incorrect).   

How was each part of the problem coded?  While the intermediate solution clearly 

shows the problem separated into two parts, the other strategies may not be as clear.  In 

the beginner solution, the first two steps focus on the first percent and thus comprise the 

first part of the problem; the second two steps focus on the second percent for the second 

part of the problem.  If a participant used the advanced solution strategy, getting each part 

of the problem correct would require having the correct multipliers (or multiplicands).  If 

both parts of the problem were incorrect, or if the participant yielded an incorrect final 
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answer with no work shown, the code “entire problem incorrect” was assigned.  An 

additional code, “final simplification error,” was used when the participant’s incorrect 

final answer resulted from an error in the final simplification step, most often from an 

addition or multiplication error; otherwise, the student gave the correct problem structure 

and values.   Differences can be seen between questions and between and within 

participants in Figure 4.1. 

A Friedman’s test was run to test for differences between the locations of errors. 

There was a significant difference in the number of errors on each question depending on 

the location of the error, χ2(16) = 45.65, p < .001 (Figure 4.1).  Post-hoc analysis with 

Wilcoxon signed-rank tests was conducted with a Bonferroni correction applied, resulting 

in a significant level of p < .008 (.05/(6 tests)).  Median (IQR) error location levels for the 

first part incorrect, second part incorrect, final simplification step incorrect, and all 

incorrect were 1.00 (0 to 2.75), 25.00 (22 to 29.25), 3.00 (3 to 4.75), and 41.00 (39.25 to 

44.50), respectively.  The first part incorrect was statistically different from the second 

part incorrect (Z = -3.52, p < .001), the final simplification step incorrect (Z = -2.94, p < 

.001), and the entire problem incorrect (Z = -3.52, p < .001).  The second part incorrect 

was statistically different from the final simplification step incorrect (Z = -3.52, p < .001) 

and the entire problem incorrect (Z = -3.52, p < .001).  Lastly, there was a difference 

between the final simplification step incorrect and the entire problem incorrect (Z = -3.52, 

p < .001). 
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(a) 
(b) 

 

Figure 4.1. Error location by (a) question in the top panel and by (b) individual participants (N = 
124) in the bottom panel.  Each question is labeled A through P and corresponds to how they 
appear in Table A.1. 124 participants answered questions A, B, C, D, I, J, K, L, M, N, O, P.  123 
participants answered questions E, F, G, H.   
 

 

Was there a specific type of error that was more common than another? 

Coding for type of error on each question allowed the experimenters to assign a 

name to every type of error that was made.  Most participants made one key error that 
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resulted in their incorrect final response.  However, there were a small number of 

students within each question that were not assigned only one error code.  Because of the 

small n, all responses with more than one error were consolidated into its own category. 

 The isolated errors were separated into two groups – those that conveyed 

conceptual misunderstanding and those that were computational/ calculation errors (see 

Figure 4.2).  Conceptual errors consisted of natural number arithmetic (NNA) errors, 

failure for brackets and order of operation errors, multiplying or dividing the given 

percents, missing decimal(s), and incomplete answers.  Computational errors included 

missing variable(s) and final simplification errors.  Items that did not fit in these groups 

were incorrect and ambiguous values / responses. 

 
Figure 4.2.  Error types.  Errors showed both conceptual and computational errors.  The most 
significant conceptual error, natural number arithmetic, was further split into 3 levels. 

Er
ro
r	  T
yp
es
	   CONCEPTUAL	  ERRORS	  

Natural	  number	  
arithmetic	  error	  

Level	  1	  

Level	  2	  

Level	  3	  Failure	  for	  brackets	  
(order	  of	  operation	  error)	  

Multiplication	  or	  division	  
of	  given	  percents	  

Missing	  decimal	  

Incomplete	  answer	  

COMPUTATIONAL	  ERRORS	  

Missing	  variable	  

Final	  simpli?ication	  error	  
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In looking at the total number of conceptual and computational errors made 

within each participant, a Wilcoxon signed-ranks test showed a significant change 

between the two groups of errors (Z = -6.56, p < .001).  Seventy-three participants made 

more conceptual errors than computational ones, 26 made more computational than 

conceptual errors, and with 25 students, there were no differences in the type of error 

made.   Within each of these groups, patterns of errors emerged as can be seen in Figures 

4.3 and 4.4.  

A Friedman’s test was run to test for differences between the conceptual errors.  

There was a significant difference in the number of errors on each question depending on 

the type of conceptual error, χ2(16) = 55.10, p < .001 (Figure 4.3).  The mean number of 

incorrect responses on each of the sixteen questions revealed the large gap between NNA 

errors (M = 40.69, SD = 3.61) and the others: bracket error (M = 0.88, SD = 0.72), 

multiplication/division of given percents (M = 4.19, SD = 1.80), missing decimal (M = 

0.44, SD = 0.51) and incomplete responses (M = 1.94, SD = 1.34).  A post-hoc analysis 

was not run given the small n for all errors other than the NNA error; there was no 

overlap between error types.  

A Friedman’s test revealed a significant difference between the two 

computational errors, χ2(16) = 16.00, p < .001 (Figure 4.4).  More errors were found due 

to simplification errors in the final step (M = 5.37, SD = 3.32) than due to missing a 

variable (M = .06, SD = .25).  Due to the small n, a post-hoc analysis was not run.   
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Figure 4.3. Conceptual errors by question.  Across all questions, the natural number arithmetic 
error was the most common.  Each question is labeled A through P and corresponds to how they 
appear in Table A.1. 124 participants answered questions A, B, C, D, I, J, K, L, M, N, O, P.  123 
participants answered questions E, F, G, H. 
 
 

 
Figure 4.4. Computational errors by question. Each question is labeled A through P and 
corresponds to how they appear in Table A.1. 124 participants answered questions A, B, C, D, I, 
J, K, L, M, N, O, P.  123 participants answered questions E, F, G, H. 
  

 
Did natural number arithmetic errors differ from one another? 

A large subset of students made a recurrent and widespread type of error across 

all questions.  In Chapters 2 and 3, I called this error the “natural number arithmetic 
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error” and I continue to do so here, sometimes with the shorthand “NNA error.”  In the 

previous section, each incorrect response was coded with only one error code (e.g., 

decimal error or NNA error or bracket error).  There were a very small number of 

responses that warranted multiple codes but, because of the small n, these responses were 

not included in earlier analyses (see Figures 4.3 and 4.4).  Now, in looking specifically at 

NNA errors, I chose to include all NNA errors whether they appeared in isolation or 

alongside another error.  An example of this might be the student who responded with “+ 

40 – 70 = 30,” for a 40inc~70dec problem.  This particular response had three error codes 

(NNA error, missing variable, and missing decimal) and was included in the subset of 

NNA errors that is now presented. 

There were three types of errors that were broken down within this code.  Within 

almost every question, a Level 2 error (e.g., “y + .40y – .70y” for a 40inc~70dec) was the 

most common error, followed closely by a Level 1 type of error.  There were very few 

Level 3 errors.  As described in coding responses in Methods, a Level 3 error entailed 

incorrectly applying a final arithmetic step (using addition or subtraction rather than 

multiplication).  Participants making a Level 3 error did get the individual parts of the 

problem correct.  

There was a significant difference between the levels of natural number arithmetic 

errors, such that some error levels were more frequent than others, χ2(16) = 30.13, p < 

.001 (Figure 4.5).  Post-hoc analysis with Wilcoxon signed-rank tests was conducted with 

a Bonferroni correction applied, resulting in a significant level set a p < .016 (.05/(3 

tests)).  Medians (IQR) for the Level 1, Level 2, and Level 3 errors were 17.00 (15.25 to 

19.75), 24.00 (23.00 to 26.00), and 0.00 (0 to 1.00), respectively.  Level 1 was 



	  
	  

	  

76 

 

statistically different from both Level 2 (Z = -3.29, p < .001) and from Level 3 (Z = -3.52, 

p < .001). Level 2 was also significantly different from Level 3 (Z = -3.53, p < .001). 

 
Figure 4.5. Levels of natural number arithmetic errors by question.  Each question is labeled A 
through P and corresponds to how they appear in Table A.1. 124 participants answered questions 
A, B, C, D, I, J, K, L, M, N, O, P.  123 participants answered questions E, F, G, H. 
 

 

 

Discussion 

 

There is evidence that participants are good at solving percent problems with one-

statement – or at least, they do not perform as poorly as when solving a problem with two 

statements.  A very interesting pattern existed in the location of the errors in these two-

statement percent problems.  While many participants were able to get the first part of the 

problem correct, the second part yielded a great deal of errors.  Students recognize that 

the first part of the problem involves a new knowledge structure, but fail in recognizing 

that same need for the second part.  Instead, they revert to their core knowledge of natural 

number. 
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In the second stage of the problem, students might have had the correct numerical 

values in place, but they failed at using the new value 1 (nv1) as the new base value in the 

second part of the problem.  Rather, the participants added or subtracted the percent of 

the original base value, as illustrated in this 80inc~40dec problem: (y + (y*.80)) – (.40)*y.  

Within error location, a third level was created in order to describe students who made 

simplification errors such as subtracting instead of adding: (y – .10y) + .60(y – .10y) = .9y 

+ .60(.90y) = .36y.  In this 10dec~60inc problem, the work is correct but the final 

distribution should have yielded 1.44y, not .36y.  This level of error was also accounted 

for when coding for type of error.  This finding further supports the results in Chapter 2 

and demonstrates that participants are much better at dealing with a one-statement 

percent problem than a two-statement problem.  It becomes even clearer that there is a 

problem when participants try to combine the percents with addition and subtraction 

rather than treat them as values that should be multiplied.  

The default to natural numbers is undeniably evident in my research.  As 

predicted, the natural number arithmetic errors were, by far, the most common type of 

conceptual error made. The three levels of this type of error were created to narrow down 

and categorize any differences (see Table 4.2 in Methods).  Making a Level 1 error 

corresponded to having the least amount of conceptual knowledge about how to set up 

and solve the problem.  In this level of error, participants combined two percentages with 

addition or subtraction.  Many students held false cognates and directly translated the 

words increase and decrease as key words for the positive and negative signs: a 50% 

decrease was –.50y and an 80% increase was +.80y.  This violation occurred in each part 

of the problem, and so it followed that a 50dec~80inc problem translated to –.50y +.80y.  
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Depending on the participant’s adherence to the laws of addition and subtraction, this 

might have simplified to .30y or 1.3y.  In problems where the decrease was a larger 

percent than the increase, some participants took liberties in treating the expression as an 

absolute value (such that for a 30dec~20inc, responses might have been +.10y, –.10y, or 

.50y).  In the previous examples, it is clear that students do not recognize percent as a 

type of number different from a natural number. 

The Level 2 NNA error coincided with making an error on the second part of the 

problem.  For a 50dec~80inc, one participant wrote “30% more than y originally was,” or 

algebraically, y + .30y. That is akin to saying y – .50y + .80y = 1.3y, which was consistent 

with a Level 2 NNA error.  Most participants making this error responded with the latter 

expression of y – .50y + .80y.  In contrast to Level 1, participants in Level 2 had some 

idea that a percent of the base value must be added to or subtracted from that original 

base value in order get the new value.  They knew the base value played a role other than 

just calculating the percentage.  They recognized a novel concept and treated the first part 

of the problem as a rational number problem. Thus, students correctly calculated the 

percent change (the percentage added to/subtracted from the base value) and found a new 

value.  However, the default to a natural number strategy soon occurred.  After correctly 

calculating the second percent of the new value, participants failed to add that percentage 

back to that new value.  Conceptually, the participant understood what the final value 

should look like in the first step (e.g., the result of a percent decrease or increase).  The 

failure lay in the second step where the student’s final answer was the new percentage 

rather than the second new value. 
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Lastly, with a Level 3 natural number arithmetic error, participants understood the 

direction of each percent change, but they incorrectly used addition rather than 

multiplication to find the final answer.  False cognates may be responsible.  As 

multiplication with rational numbers does not always yield a larger product, students may 

default to addition which always results in a larger number when dealing with positive 

numbers (rational or natural).  Using the same 50dec~80inc problem as above, a Level 3 

response resulted in (.5y + 1.8y) when the answer should be (.5y)(1.8).  

I now turn to discuss the language of symbols and their principles in mathematics.  

The order of operations in mathematics is analogous in many ways to the comma usage 

in language.  A problem such as 20/10/5 yields an entirely different interpretation when 

you insert parentheses to form 20/(10/5).  Similarly, we can change the interpretation of 

“eats shoots and leaves” [like a panda] by inserting commas to form “eats, shoots, and 

leaves” [like a mobster] (Truss, 2006).  In the current research, a participant who made a 

bracket placement error unknowingly violated the orders of operation.  In a 20inc~30dec 

problem, (y +.20y) – (.30 x .20y + y) was an incorrect response due to missing 

parentheses around (.20y + y) in the latter part of the problem.  This translates to an order 

of operation error since the participant did not uphold the rule of distribution – the 

percent, 30%, cannot be multiplied by only the percentage of the original base value, but 

rather must be multiplied by the entire new value, .20y + y.  Thus, we see that, with 

bracket errors, there is a failure of order rules.  These order rules are akin to tree 

branching rules that organize which values are constrained under a certain set of 

procedures, and in what order those procedures should be calculated.  This becomes a 

serious problem with algebra.     
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In looking at the raw data, there were many addition and subtraction errors.  For a 

decrease in percentage, a common error was seen in switching the order of subtraction 

(e.g. a 60% decrease erroneously became .60y - y).  This demonstrates a poor 

understanding of the commutative property. 	  While A + B = B + A exemplifies the 

commutative property of addition, there is no such commutative property for subtraction 

since A – B ≠ B – A.  Two entities can be switched and still equal each other when 

adding or multiplying, but the same cannot be said for subtraction or division.  Not 

understanding subtraction also led some participants to express a decrease (of 60%) as –

.60y. 

When reasoning about mathematical statements is absent, errors can show up in 

the failure to honor the structure of the processes.  For example, errors can result from 

incorrectly lining up decimals in addition and subtraction (Rittle-Johnson, Siegler, & 

Alibali, 2001), or, in multiplication, as a failure to shift sequential rows one number at a 

time to the left (Wu, 2009).  Both types of error demonstrate misinterpretations of 

rational number; specifically, these errors suggest that the basic concept of place values 

might not be understood.  Other multiplication errors might be caused by using an 

unnecessarily lengthy strategy, when a more efficient strategy can, by definition, be 

quicker and also can demonstrate an understanding of the mathematical axioms at task.  

While students often incorrectly apply a previously learned strategy to a new problem 

(Hiebert & Carpenter, 1992; Hartnett & Gelman, 1998), sometimes they simply choose a 

drawn-out method to fit the problem into a familiar algorithm and fail to re-represent the 

problem more efficiently.	  
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In terms of efficiency, moving easily between representational formats is not just 

recommended, but rather it is integral to developing the concept of rational number.  It 

provides more opportunities for students to recognize that rational numbers are different 

from natural numbers.  By comparing equivalent values in various formats, students are 

able to connect similar relations.  In participants’ scratch work, the majority re-

represented percents (e.g., 40%*y) as decimals (e.g., .40y).  Whether or not students do 

this because of over-exposure or over-familiarity with decimals (e.g., due to school-based 

math), or because of competence limitations (e.g., because fractions are difficult), 

remains a question.  However, moving from percents to decimals as well as to other 

formats sometimes resulted in the incorrect re-representation of a value.  This incorrect 

translation seemed to occur more when there was a decrease.  A few participants 

translated a 20% decrease to (1/2)y, demonstrating difficulty with the concept of a 

fraction.  Others represented a decrease by placing the percent’s numerical value in the 

denominator of a fraction (e.g., (1/40)y for a 40% decrease) and represented an increase 

of 40% as .40y (without adding this percentage to y).  A 40% decrease should be y – .40y 

= .60y or (60/100)y or (3/5)y.  Somehow, decrease translated to “put value in 

denominator” and increase translated to “put value in numerator as a ratio to 100.”  A 

40% increase should be y + .40y = 1.40y or (140/100)y or (7/5)y.  Only 1.40y in the 

increase problem bears some resemblance to the actual solution.  The increase would be 

correct if asked to give the percentage rather than the new value. 

As illustrated in the advanced strategy (Table 4.1), the most efficient solution 

strategy for a two-statement percent problem is to multiply two values such as (.60y) and 

(1.60) for a 40dec~60inc problem.  Participants seemed to look for this shortcut method, 
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but failed to recognize the principles underlying percents; thus, errors resulted (e.g., 

(.40y)*(.60y) for a 40dec~60inc problem).  Some participants got the first part of the 

problem correct, but then multiplied (if the problem called for an increase) or divided (if 

the problem called for a decrease).  In this scenario, a 40dec~60inc problem resulted in 

(.6y)(.6) where the first part was correct and a 50inc~10dec problem resulted in 

(1.5y)/(.1), where only the first part is correct. 

Ignoring the problem’s question (“what is the new/ final value”) also resulted in 

what experimenters called incomplete final answers.  The students understood they 

needed to calculate a percent change, but then failed to add or subtract it back to the 

original value.  An example is (y + .80y)(.40) for an 80inc~40dec problem. Notice that 

the student found the percentage (or “discount”) of the new amount but failed to subtract 

it from the new 1.8y value.  Thus the problem was considered incomplete. 

An aside.  While the focus of this dissertation was not on computational errors, it 

should come as no surprise that they resulted from hasty calculations or from neglecting 

to check one’s own work.  A short list of examples from students’ work follows in Table 

4.3.  The most common computational error occurred in the final simplification step of 

the problems when participants showed their work.   

 
Table 4.3 
Computational mistakes in students’ work 
Problem Student’s raw work Error explanation 
10inc~20dec 
 

1.1 – .8(1.1y)   
= 1.1y – .3y  
= .8y 
 

Final simplification error: Correct structure but 
incorrect multiplication when distributing 

80inc~40dec 
 

(y + .80) – .40 
 

Missing variable  
 

30inc~10dec 
 

(y + .3y ) * (y – .1y) 
= 1.3y + .9y 
 

Final simplification error; did not follow through 
with multiplication  
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Conclusions 

Overall, the errors made on two-statement percent problems were very 

informative.  It is evident that students have at least a rudimentary understanding of what 

a decrease or increase means.  Decrease means less than (the original) and increase 

means more than (the original).  Furthermore, as seen within the natural number 

arithmetic errors, it is possible that students have an internal concept that taking a percent 

of a base value yields a value smaller than the original base amount.  Yet, instead of 

multiplying by a fraction (<|1|), students subtract to convey the idea that the final amount 

must be smaller.  Thus, a major problem lies in false cognates – the translation of 

decrease and increase to corresponding mathematical symbols and the conceptual 

framework surrounding these processes.  

When students learn a new mathematical representation (e.g., percents), their 

expectations about what is true may get in the way of what actually is true and relevant to 

the task at hand (Walkington, Sherman, & Petrosino, 2012).  Before learning about 

rational numbers, the rules governing basic mathematical operations must be in place.  

Otherwise, errors will no doubt occur.  As seen here, participants might hold the 

expectation that calculating the percent yields not only the percentage but also the new 

value.  With a decrease or discount problem, when you take a percent of a base value, 

you do wind up with a value less than the original.  That is the expectation.  But 

expectations about what the result should be and intuition can get in the way.  In this 

study, the intuition of increasing and decreasing percents translated (more often than not) 
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to adding and subtracting percents.  There was a default to natural numbers and intuition 

was wrong.  

Failure in expectations or intuitions will frustrate students to make necessary 

connections between a familiar solution model and the demands of a novel problem.  

This increases the chance that they will treat the problems as disconnected rather than 

ones with related representations.  In failing to recognize the problems as novel, it 

follows that students will default to natural numbers.  Thus, learning would be most 

effective if it supported the development of strategies that connected concepts of natural 

number to those of rational number.  I discuss teaching and learning strategies to improve 

students’ understanding in Chapter 5. 
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V. Contributions to a framework for understanding percents  

	  

The kinds of errors that students make are informative about what to teach, 

correct or remind students about the nature of percents.  Errors can show us the 

components of what it means to arrive at the correct answer and to do something right.  I 

have shown that the difficulty with percent problems is due to what is known in 

Cognitive Science as a failure in conceptual change – in this case, a failure to realize that 

rational numbers are a different kind of number than are natural numbers (or the counting 

numbers).  The formal properties of natural and rational numbers are different and even 

contradictory.  Whereas natural numbers are expressed as unique whole numbers, each of 

which has a unique successor, rational numbers are written as tripartite symbols and lack 

unique successors.  Further, different operations involve different conditions regarding 

closure.  Any natural number added to any other natural number always yields another 

natural number.  However, the same is not true for one natural number divided by 

another.  To accomplish closure under division, it is necessary to acknowledge the 

existence of decimals, another kind of representation of a fraction.  Put differently, 

various arithmetic facts do not stand alone; they are embedded in structures that are 

defined by different structures.  Further, the evidence supports the idea that natural 

numbers and their learning constitute a core domain, that is, one that leads to early 

learning without formal instruction (Gelman, 2000).  The more that is known about a 

domain, the easier it is to understand and recognize novel problems. 

Rational numbers are not part of the natural number core domain.  Instead, they 

are considered as an example of non-core domains, the kind that requires formal 
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instruction and dedicated work on the part of the learner.  Therefore, it should be 

expected that students will make mistakes.  They might even fail to recognize their 

mistakes and, instead, treat problems as novel cases to which to apply their knowledge of 

natural numbers.   

In mathematics, a problem is facilitated when we can draw similar relations to 

other familiar problems.  Simply stated, new knowledge is easier to gain if we can make 

connections to facts and methodology already in place (Hartnett & Gelman, 1998).  

Learning is jeopardized when those connections are not made.  Success in making the 

shift from natural numbers to percents depends on students’ ability to attend to only the 

relevant features of the problem and block out the noise of irrelevant features (Chi, 

Feltovich, & Glaser, 1981).  In Chapter 4, the advanced solution strategy (see Table 4.1) 

demonstrates the student’s aptitude for consolidating mathematical processes and arriving 

at the most efficient solution strategy, both in length and solution time.  This is one 

objective in learning – the student should eventually be able to recognize comparable 

methods and choose the more efficient method to solve the problem.  In contrast, the 

beginner might show an excessive amount of work or sometimes no work at all.  Often, 

the beginner defaults to natural number arithmetic because a) (s)he does not realize that 

the demands of the novel concept require a new knowledge structure for learning to take 

place, or possibly because b) reverting to what one knows is simply easier.  

Learning comes in progressive stages that are dependent upon conceptual change 

in an individual.  Since division is a process that gives people great difficulty, let me 

illustrate this with a basic example learned in elementary school – how do we move from 

adding to multiplying and then back to more complex processes of adding values that 
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have been multiplied?  Once the basic concepts (e.g., the algorithms and the place rules) 

involved in the processes of addition and multiplication of natural numbers are 

understood, it is then important for children to learn (and, to some degree, memorize) the 

single-digit multiplication table.  Knowing these products can facilitate multiplying other 

natural numbers, no matter how large or how many.  This same idea can be applied 

generally to a complex problem.  If a student is able to automatically retrieve the answers 

to a simple subtraction process, (s)he can then focus more of his/her working memory on 

a more complicated problem of long division (Lee, Ng, & Fong Ng, 2009; Clarke, Ayres, 

& Sweller, 2005; Mayer, 2001; also see Sweller, van Merriënboer, & Paas, 1998, for a 

review).  However, as mentioned earlier, calling upon the numerical combinations that 

yield the correct division answer is not an easy task in itself.  Overall, the lack of 

automaticity with basic arithmetic facts and procedures interferes with success on various 

advanced math problems.  

Fluency and accuracy should be considered together – as students are introduced 

to more advanced concepts, the basic building blocks are assumed to already be in place 

(Kellman et al., 2008).  Not understanding the material, or taking too long to understand 

it, may impede a student’s progress.  Throughout these dissertation studies, students 

misinterpreted the data in a way that highlighted their difficulty to overlap percent 

formats with what is already known about natural number formats.   The default to 

natural number arithmetic in the two-statement percent problems (Chapters 2 and 3) 

illustrates that they have not yet made the conceptual move from natural number to 

rational number concepts.  The failure to remind participants by providing a hint (Chapter 
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3) also begs the question as to whether they ever fully acquired these concepts in the first 

place.   

In Chapter 2, students were more proficient with using natural numbers than they 

were with using rational numbers (percents) in an algebraic context.  The relative ease 

that comes along with using natural numbers seems to serve as a major obstacle once 

presented with other number formats.  Among students who struggled to separate natural 

number concepts from rational number ones, a widespread default to natural number 

followed (Chapter 4).  These errors are much like false autobiographical memories – they 

are not intentional but a result of an active mind’s engagement of a given context. 

Perhaps, this coincides with the problems that students encounter when trying to 

apply school-based mathematics procedures to real world problems (Masingila, 

Davidenko, & Prus-Wisniowska, 1996; Walkington et al., 2012).  In our every day lives, 

we are presented problems with multiple representational formats (e.g., “Take $10 off 

your purchase after taking 10% off the price”) and there are often multiple methods that 

can be employed to arrive at a solution.  The framework below suggests the use of 

different solution methods to strengthen a greater understanding of concepts (e.g., 

Gelman, 1986); not including different methods and/or formats fosters a disconnect 

between mathematical concepts rather than encourages linking similar relations. While 

the solution processes might be different, they must share the common mathematical 

principles that underlie understanding.  It therefore would seem to follow that students 

should be taught to share and compare multiple representations.  This recommendation is 

a part of the curriculum recommended in the United States by the Common Core State 

Standards (2010).   
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Finally, false cognates may play a large role in the default to natural numbers.  In 

the previous chapter, many of the conceptual errors were due to a default to natural 

number arithmetic error, where participants added a percent to another percent or to 

another value when they should have multiplied it by a base value.  One suspicion is that 

this error may be attributed to a misunderstanding of the language, “increase” and 

“decrease.”   When students read a word problem, they are really decoding the meanings 

and inferring missing information from the text.  In Kintsch and Greeno (1985), the 

authors assumed that children knew the meaning of abstract mathematical terms such as 

“have, give, all, more, less, etc.”  Understanding the meanings of these words were 

essential in order to solve the problem.  Similarly, in percent problems, words such as 

“increase” and “decrease” need to be understood contextually.  Natural number 

arithmetic errors revealed that participants correctly translated these words to mean 

“more” or “less” than the base, but then defaulted to adding and subtracting.  

Multiplication and division can also cause an increase and a decrease to occur, though 

there are more restrictions when dealing with non-natural numbers (e.g., the closed nature 

of division).  These false cognates are addressed in the proposed framework. 

 

Proposals for teaching, development and learning 

In Table 5.1, I summarize the findings in my studies by offering a framework, in 

the form of a related set of proposals, for introducing two-statement algebraic percent 

problems.  This framework might allow students to proceed from what is known to what 

is not known.  A problem involving multiple processes presumably requires that the 

problem solver invoke specific existing knowledge about the use of one-statement 
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percent problems and their representations.  With minor modifications, the same 

framework can be used for one-statement percent problems. 

The suggested learning framework compares processes with percents to those 

with natural numbers in similar word problems.  Comparisons are used as they promote 

deeper understanding of the links between abstract concepts and solution models 

(Kintsch & Kintsch, 1995; Hattikudur & Alibali, 2011).  Beginners are encouraged to 

show their work and talk through the problems with their peers; being an active learner is 

essential to learning and development (e.g., National Science Foundation, 1996; Springer, 

Stanne, & Donovan, 1999).  Also highlighted is the importance of allowing time for 

students to produce and discuss various ways to problem solve amongst each other 

(Stigler & Hiebert, 1999; Rittle-Johnson & Star, 2007).  The comparison structure 

addresses difficulty with natural number as it relates to the successor principle and false 

cognates, and encourages learning with multiple examples.  It is designed as a bridge 

between learning about single percent processes and processes involving more than one 

percent.  These models are not recommended as substitutions for introductory models; 

rather, one-statement percent problems should be addressed before or alongside the 

models below.   

An outline of the learning framework follows (see Table 5.1).  The rationale for 

each step is explained as they relate to Cognitive Science, previous research and the 

findings in this dissertation:  

1) Compare and contrast models have been known to increase students’ 

understanding of concepts (e.g., Gelman, 1969; Gentner, Loewenstein, & 

Thompson, 2003; Kellman et al., 2008), making them more flexible problem-
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solvers (Star & Rittle-Johnson, 2009).  Put side-by-side, the student is able to 

see almost identical wording of a problem with natural naturals compared to 

one with percents.  The structure is the same, yet the values (here, 20 and 20% 

and 10 and 10%) hold different meanings.   

2) The student is asked to think about what the final answer should be – greater 

than, less than, or equal to the original value.  This step provides a way to 

predict and later check the final answer (as in Zur & Gelman, 2004).  Providing 

reference points allows students to set an expected estimate and later see if 

their answer violates their expectation. 

3) A major difference between the problems can be seen in getting students to 

recognize that the percent acquires meaning once “attached,” or applied, to the 

base value (e.g., y).   

4) The student is then asked to define the operational processes that correspond to 

the increase and decrease.   

5) A solution expression is created.  Students can note the difference between 

natural number solutions and rational number solutions. 

6) Students are not required to stay within the confines of the problem – they can 

be encouraged to think about different scenarios in which the outcome might 

be the same or different.  It is important to make these models applicable to the 

real world – a world where the outputs are always changing based on varying 

inputs.  Giving children personal standards, also known as a reference point 

strategy, helps the values becomes meaningful (Joram, Subrahmanyam, & 
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Gelman, 1998).  However, these points of reference should be of a continuous 

nature rather than that of a part-whole relationship. 

 
Table 5.1   
Proposed learning framework: Differentiating between two-statement natural number problems 
and two-statement percent problems 
 Natural number process 

 
Percent process 

1) Present word problem John buys y apples from one 
market.  After going to another 
market, the number of apples he 
has increases by 20.  Later that 
day, his friends come over and 
the number of apples decreases 
by 10.  How many apples does 
John now have? 
 

Jane buys y apples from one 
market.  After going to another 
market, the number of apples 
she has increases by 20%.  Later 
that day, her friends come over 
and the number of apples 
decreases by 10%.  How many 
apples does Jane have now? 
 

2) Compare y to final 
amount 

First new amount should yield a 
result greater than y 
 

Final amount should be greater 
than y 

3a) Establish 
independent or 
dependent meaning of 20 
 

Independent Dependent (on base value y) 

3b) Establish 
independent or 
dependent meaning of 10 
 

Independent Dependent (on new resulting 
value from first process) 

4) Define operational 
meaning of increase and 
decrease   
 

Add then subtract Multiply then add, multiply then 
subtract 

5) Generate solution 
expression 

y + 20 – 10  
 
 

(y(.20) + y) – (.10) (y(.20) + y)  
or (1.20)(.90)y   * 

6) Encourage creative 
thinking and group 
discussion:  Is it possible 
for the final amount to 
be less than y?  How?  
 

Ex: “When his friends eat more 
than y + 20 apples,” “If John 
started out with less than y 
apples,” etc.   

Ex: “When Jane starts with 0 
apples” 

* Note: Here is an opportunity to introduce different representations: “How did we get from 20% 
to .20?  Are there other ways to represent 20%?  Would these be proper substitutions?  Why or 
why not?” 
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It is important to note that, in some cases, natural number arithmetic can be applicable to 

percent problems with multiple processes.  An example of an acceptable situation might 

be two coupons that are both applied to the base value (or, the original price).  If 20% is 

taken off the base, x, and 10% is taken off the base, x, the results yields (x – .20x) – .10x, 

which displays natural number arithmetic characteristics.  This exception emphasizes 

how critical it is to stress the difference between the two usages of number and to teach 

them alongside one another.  The goal is to get students to recognize key components of 

each type of problem so they do not default to what is most familiar. 

 
 
Closing statements 

Learning rational numbers is quite difficult.  The default to natural number 

arithmetic in adults was seen throughout my work and thus, it emphasizes the great need 

for creating new learning models for students.  The learning model suggested in this final 

chapter took into consideration the results of previous research, current research, and the 

lessons from both Cognitive Science and Mathematics. 

 With or without schooling, everyone has a sense of numbers, but only of the 

natural numbers as they are part of a knowledge structure in our core domain.  The work 

presented in this dissertation allows us to see the continued pervasive failure for adults to 

make the shift from natural number concepts to those dealing with rational numbers (e.g., 

percents in my studies).  As conceptual change must take place to move between these 

different number concepts, considerable effort is needed from the learner.  This turns out 

to be quite difficult as it is the principles that are changing.  The learner must constantly 

overcome demands of a novel problem by recognizing that it does not fit in a current 
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knowledge structure.  And even then, the learner may continue to default to natural 

number and false cognates.  By learning about the novel concept alongside a comparable 

one (or two), it is possible that (s)he may develop into a flexible problem solver and thus, 

have an easier time transferring between similar items.  Accordingly, learning with 

multiple equivalent formats may help students recognize that rational numbers are in a 

class of their own, different from the natural numbers.  In sum, developing a more 

successful framework for teaching rational numbers is critical in helping people 

understand that rational numbers, especially percents, are not natural numbers. 

 

 

  



	  
	  

	  

95 

 

APPENDIX A 
Stimuli 

 
 
Table A.1  
Test questions from Chapters 3 and 4   
 
Question Question content 

 
A In 2009, a large university accepted y student applicants.  In 2010, due to a large number of 

applicants, the university increased the number accepted by 50% of y.  In 2011, the university 
then decreased that number by 10%.  How many applicants did the university accept in 2011, 
in terms of y? 
 

B A private company normally hires y new employees every year.  Due to budget cuts, the 
number of hires had been decreased by 40%.   At the last minute, the company received a large 
donation, allowing them to then increase the number of hires by 60%.  How many employees 
can this company now hire, in terms of y? 
 

C A cereal box normally contains y cheerios.  The cereal company increases the number of 
cheerios by 20% of y.  After packaging costs rise, the company then decreases the number of 
cheerios by 30%.  How many cheerios can now be found in the cereal box, in terms of y? 
 

D The original price of an item in a department store is listed as y dollars.  The price of the item 
is decreased by 70% of y and sells very well.  Therefore, the store decides to increase the 
discounted price by 20%.   What is the final cost of the item, in terms of y?  
 

E Sally owns y acres of land.  She inherits more land, increasing her new plot by 80% of y.  
Several years later, she decides to sell some of her land, decreasing it by 40%.  How much land 
does she now own, in terms of y? 

F While warming up for a race, John’s heart-rate was y beats per minute (bpm). During the race, 
his heart-rate increased by 30% of y.  His heart-rate then decreased by 70% while he was 
stretching.  What is John’s heart-rate while he was stretching, in terms of y? 
 

G A patient has an illness that causes her temperature to be y degrees Fahrenheit.  The doctors 
prescribe a medication and her temperature decreases by 60%.  Since it is too low, another 
medication is prescribed, which increases her temperature by 50% from what it had dropped 
to.  What is the patient’s new temperature, in terms of y? 
 

H In the middle of the semester, a student had accumulated y points towards his final grade.  
After factoring in extra credit assignments, his points increased by 10% of y.  Due to many 
absences and missing assignments, his points then decreased by 80%. What is the final number 
of points he has, in terms of y? 
 

I In 2007, a football stadium sold y seats.  After a winning season, the number of seats sold 
increased in 2008 by 40% of y.  In 2009, the stadium was undergoing construction so the 
number of seats sold decreased by 70% of what it had been in 2008.  How many seats were 
sold in 2009, in terms of y? 
 

J A company has y employees in their database.  When the company switches ownership, it 
decreases the number of employees by 50%.  A few years later, there is room for expansion 
and the company increases its size by 80%.  How many employees does the company now 
have, in terms of y? 
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K A vegetable bag normally contains y lentil beans.  The company increases the number of lentils 
by 30% of y.  After packaging costs rise, the company then decreases the number of lentils by 
10%.  How many lentil beans can now be found in the vegetable bag, in terms of y? 
 

L The original price of an item in a department store is listed as y dollars.  The price of the item 
is decreased by 10% of y and sells very well.  Therefore, the store decides to increase the 
discounted price by 60%.   What is the final cost of the item, in terms of y?  
 

M Sheryl owns y paintings.  She moves to a large house and buys more paintings, increasing the 
number by 80% of y.  Several years later, she moves to a smaller apartment and sells the 
paintings, decreasing the number by 20% of what she had in her house.  How many paintings 
does she now own, in terms of y?  
 

N Joe weighs y pounds.  To get ready for wrestling season, he needs to increase his weight by 
20% of y.  Once wrestling is over, he decides to lose weight for the summer and decreases his 
weight by 40%. What should Joe’s weight be for wrestling season, in terms of y?  
 

O A patient’s white blood cell count is y.  He takes a medication that causes his cell count to 
decrease by 60%.  He follows up with additional medication, which increases his white blood 
cell count by 30% from what it had dropped to.  What is the patient’s new white blood cell 
count, in terms of y? 
 

P Several years ago, the price of gas was y dollars per gallon.  During the recession, the price of 
gas increased by 70% of y.  When the economy starts booming again, the price of gas is 
expected to decrease by 50% of the cost during the recession.  When the economy booms, 
what will be the expected price of gas per gallon, in terms of y?   
 

 
Note. Questions A-H appeared in Order 1 as the pre-test and in Order 2 as the post-test.  Questions I-P 
appeared in Order 1 as the post-test and in Order 2 as the pre-test. 
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APPENDIX B 
Analyses 

 
Before analyses were run in Chapter 3, Spearman’s correlation coefficients were 

computed to look at the relationship between the variables of interest.  Table B.1 displays 
all of these correlations. 
 
Table B.1  
Correlations among Chapter 3 study variables 
 
 Accuracy Math level Math 

SAT 
Hint phase 
group 

Hint phase 
score 

Showed 
work 

Gender 

Accuracy 
 

 ______ 0.39*** -0.05* 0.03 0.58*** 0.33*** -0.21 

Math level 
 

  ______ 0.11*** 0.01 0.28*** 0.20*** -0.24*** 

Math SAT 
 

   ______ 0.01 -0.06** -0.05* -0.15*** 

Hint phase 
group 
 

     ______ 0.29*** -0.05* -0.16*** 

Hint phase score 
 

      ______   0.27*** -0.31*** 

Showed work 
 

      ______ 0.02 

Gender 
 

       ______ 

Note. ‘*’ = p < .05, ‘**’ = p<.01, and ‘***’ = p < .001 
 
 

After removing participants who were scoring at ceiling on the pretest, the two 
hint phase groups were looked at separately.  Output for the control group, in Table B.2, 
revealed that showing work and math level were no longer significant predictors of 
accuracy.  In the hint group, in Table B.3, there still exist effects of these variables on 
accuracy. 
  
 
Table B.2 
GEE parameter estimates: Control (no hint) group without pretest ceiling group (N = 45)  
   Output of hint phase score, test, work shown, math level, and gender on accuracy  
Parameter β SE (β) 95% Confidence Limits Z  
(Intercept) -3.49 0.78 -5.02    -1.97 -4.50***  
Hint phase score 1.14 0.14 0.87    1.40 8.39***  
Test                        post 0.46 0.34 -0.20    1.12 1.38  
Test                        pre (ref.)      
Work shown 0.39 0.39 -0.37    1.15 1.00  
Math level 0.15 0.28 -0.40    0.71 0.55  
Gender -0.46 0.44 -1.33    0.41 -1.04 
       
Note. ‘*’ = p < .05, ‘**’ = p<.01, and ‘***’ = p < .001 
 



	  
	  

	  

98 

 

 
Table B.3 
GEE parameter estimates: Hint group without pretest ceiling group (N = 60) 
    Output of hint phase score, test, work shown, math level, and gender on accuracy  
Parameter β SE (β) 95% Confidence Limits Z  
(Intercept) -5.27 0.96 -7.16    -3.39 -5.48***  
Hint phase score 0.53 0.23 0.08    0.97 2.32*  
Test                        post 0.06 0.25 -0.43    0.55 0.25  
Test                        pre (ref.)      
Work shown 1.81 0.28 1.25    2.36 6.37***  
Math level 0.95 0.25 0.46    1.44 3.81***  
Gender -0.30 0.45 -1.19    0.59 -0.66 
       
Note. ‘*’ = p < .05, ‘**’ = p<.01, and ‘***’ = p < .001 
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