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ABSTRACT OF THE THESIS

Formulation and validation of a population balance model 
for powder mixing process

by Joyce John

Thesis Director: Dr. Rohit Ramachandran

Pharmaceutical processing is much more stringent with regulatory requirements for the 

processing and handling stages and the product quality specifications must be met at 

every step during the manufacturing operation. In the pharmaceutical manufacturing, the 

unit operation that is one among the most widely used, is the powder blending operation.

The scope of this work is to characterize and document the complex powder blending 

process by means of a robust predictive model and use it to enhance operational 

efficiency and improve on the established monitoring and control strategies.

The implementation of QbD (Quality by Design) strategies [1] to continuous processing

stages allows for improved process control, higher cost-efficiency without compromising 

on the quality or efficacy of the final product. It also would alleviate the need for further 

scale up studies. In this work, a population balance model (PBM) has been formulated 

and validated to model the complex dynamics within a continuous powder mixing 

process, with the focus on the blending operation taking place within pharmaceutical 

tablet manufacturing. PBM modeling was selected to model the blending unit operation 

as it not only serves as a dynamic and highly effective tool, but also due to its relative 

computational simplicity. 
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The model was designed to determine the critical quality attributes (such as RTD 

(residence time distribution), API composition and RSD (relative standard deviation) of 

the product by incorporating the key process parameters such as the impeller RPM, 

dimensions of the blender  and design parameters such as the number of compartments 

(both axial and radial), etc. The model obtained has been subsequently validated to check 

the fit between the predicted values of these CQAs (Critical Quality Attributes) against 

experimentally obtained data during the same time intervals.  The model has the potential 

use for process improvement by implementation in a PAT (Process Analytical 

Technique) system for designing improved monitoring, control and optimization 

techniques. [2]
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Chapter1

Introduction

In the pharmaceutical industry, the regulatory environment nature is much more stringent 

than in any other process industry, in terms of process operation, handling and final 

product requirements in terms of purity, efficacy and quality. [3] Powder feeding, 

blending, milling, granulation, tableting and coating are the typical continuous processing 

stages used for the production a pharmaceutical oral solid dosage form. It is important to 

have a sound understanding of each and every one of these unit operations in order to 

achieve the desired operation level. Among these processes, powder blending operation, 

is probably the most basic and extensively used unit operation. The unpredictability of 

this process is primarily due to the lack of understanding between the material properties 

and it’s relation to process performance, due to which each drug formulation is 

considered unique from the rest. To overcome this challenge, a quantitative method was 

preferred over an empirical methodology to get a more accurate prediction. In addition, 

non-predictive effects of process models or inefficient control strategies could result in 

high degree of variability within the process and the product may fail to meet the required 

specifications. [4, 5] The characterization by means of a robust predictive model to 

explain the complex dynamic behavior occurring within the mixer is essential for

improving the design, monitoring, analysis and control of the process.
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Powder mixing is the act of bringing bulk material within intimate contact with one 

another so as to obtain a uniform blend consistency. [6] The blending primarily occurs as 

a combined result of convective and diffusive velocity gradients produced within the 

mixer. It is regarded as one of the most important unit operations since it decides the final 

product composition, uniformity and consistency. 

The predictability of the behavior within of powder processing units, especially in 

granular flow is still rudimentary and this attributed to the lack of governing equations 

under specified conditions. In this operation, the bulk nature is decided by the highly 

chaotic micro-scale particle interaction but due to the lack of specific equations, the 

particle- particle and particle –blender wall interaction is a bit more tedious to analyze 

and results in complexity of the model. As a result, most pharmaceutical process 

developers resort to a uni-variate trial and error methodology which is both expensive 

and time consuming since it is a multi- variable complex process. [2]

The FDA (Food And Drug Administration) highly recommends the implementation of 

QbD (Quality by Design) principles alongside PAT (Process Analytical Technology) 

tools [7, 8, 9, 10, 11, 12, 13] for process monitoring by either in-line, at-line or off-line 

sensing. It serves to improve not only the process, but also its monitoring and control by 

performing a holistic risk based assessment of both the product and the process. Quality 

by design principle employs the design space concept in which predictive modeling is 

carried out in which the inputs such as equipment variations and other manufacturing 

inputs are kept within an acceptable range so that the product obtained is well within the 
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required specifications. [3, 14] PAT tools ensures timely monitoring and analysis of the 

system by monitoring the CPPs (Critical Process Parameters) affecting the Critical 

Quality attributes (CQA) of the product. This in-line/off line sensing allows for a timely 

intervention by process alteration or control to be carried out in case of inconsistency 

during product formation, reduces losses due to production of rejects/ineffective. This is 

crucial in operation of large plants as a well-timed sensing and intervention eliminates the 

need to carry out further corrective processing stages and subsequent loss of time, cost 

and labor. It also ensures higher test efficiency and consistency in product formation. [11, 

15]  

Regulatory authorities and pharmaceutical manufacturers are lately noting a shift in trend 

from frozen batch processes towards developing equation based continuous processing

techniques for drug design and development. Most of the established processes in the 

industry are batch processes, and any transition would require process remodeling, 

revalidation and regulatory approval, all of which require time and money. In addition, 

there is also an age-old and popular mindset that only batch processes deliver products 

meeting product specifications. This notion is slowly changing. The use of continuous 

mode of operations makes further scale up easier as the same equipment can be used for 

large and small scale operations [5], additionally the lesser plant area requirement allows 

a reduced plant footprint and is much more environment- friendly. [16, 17, 18, 19] It also 

enables us to get higher yields in theory and is considered to be less labor intensive and 

much more energy efficient. [14, 19, 20, 21, 22, 23, 24]  It is noted that among the batch 
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processes, those that have multi-purpose equipment incorporated operate more efficiently

in comparison with single-purpose equipment [25, 26, 27]. 

Though there are several noted advantages to shifting to continuous mode, the relative 

complexity of the process for processes involving several variables poses a major 

drawback to process understanding and control. If the parameter estimation or process 

prediction fails or ineffective control mechanisms [4, 5] are employed, the losses incurred 

from a continuous mode may be far more than a batch mode of operation. [2, 28] In 

addition continuous mode of operation means the equipment maintenance and cleaning 

will be more expensive as the setup must be dismantled, cleaned and reassembled [14], 

which requires skilled manpower and poses time constraints.  Flow sheet modeling of 

continuous processes can be performed which enables it to be accurately designed, 

optimized and can be used for simulating the functioning of a real plant [12].

In pharmaceutical blending process that deals with fine cohesive powders, the prime 

reason for blend inconsistency is largely attributed to aggregation and segregation, which 

can occur within the mixer. These phenomena cause smaller particles to form 

agglomerates under the presence of cohesive forces. It prompts particle segregation due 

to differences in the mobility of the agglomerates, thereby affecting the homogeneity [6]. 

Segregation causes the separation of distinct particles within the blender resulting in

blend inconsistency and quality issues. A design space concept can provide an efficient

framework for modeling the complete dynamics within the blender. In this technique, all 

the parameters considered should lie within a well-defined design space. This technique 
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can improve cost, time and labor efficiency of process and product development. [7, 29, 

30, 31]. Software programs such as gPROMSTM (Process systems enterprise), GAMS

(GAMS Development Corporation), DEM (Discrete Element Modeling), etc. are used for 

this purpose. [2]

The continuum and constitutive models [25], statistical models [32, 33, 34], the Monte-

Carlo methods [35], compartment models [36, 37], RTD models [38, 39, 40, 41], DEM 

[41], hybrid models [43, 44] are some of the modeling techniques in use today. Among 

these DEM (Discrete Element Modeling) technique is the most fundamental modeling 

approach that describes particle level physic, by considering each particle as a discrete 

entity. It allows us to track the individual particle trajectories and particle collisions can 

be modeled. Each particle’s motion (translational or rotational) is based on Newton’s 

Laws of Motion. In DEM, a finite number of particles are considered to interact via 

several contact and non- contact forces. [2, 45]

From literature we can see documented work done on the dynamics of mixing [2, 46, 47, 

48, 49, 50, 51, 52, 53, 54] towards understanding the bulk flow and particle behavior 

occurring within the blender. In order to study the fluid-particle interactions, DEM was 

coupled with computational fluid dynamics [2, 55, 56, 57]. DEM method was also used 

to study the blending dynamics of different blender types such as rotational mixers [58, 

59, 60, 61, 62], helical mixers [63, 64, 65, 66] and rotor type mixers [67, 68, 69, 70], etc. 
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Though DEM has been extensively used to study and model blending behavior, there is 

still potential for work to be done in characterizing the dynamic behavior of granular 

materials and the nature of particle-particle or particle-fluid interactions, especially for 

blenders handling cohesive powders. It can be noted that PBM has been employed to 

study the flow properties of processes such as crystallization [71, 72, 73, 74] and 

granulation [75, 76, 77, 78, 79, 80, 81, 82, 83]. There is scope for work to be done 

towards introducing PBM modeling for blending. The framework has been validated 

using experimental data and subsequent statistical analysis of the results was conducted. 

The population balance framework has several advantages such as it is computationally 

less time consuming than DEM modeling alone. [2, 84, 85]

1.1. Objective

The reported work has been aimed at developing a novel and dynamic multi-dimensional 

PBM framework for blending process. The model has been validated against 

experimental data. Since the model involved several parameters, detailed optimization 

based parameter estimation has been carried out to obtain their optimum values. The 

optimization framework has been formulated on GAMS (General Algebraic Modeling 

System) which is a robust modeling optimization tool. The flux ratios between any two 

compartments have been estimated after optimizing the critical quality attributes (RSD, 

RTD and API composition).  
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Chapter 2

Systematic Framework

It is very important to identify which critical process variables are to be optimized in 

order to validate the model. There were several stages which are used to develop this 

model- optimization framework and the first stage involves structuring the problem

definition in terms of the process specifications. The purpose of such a detailed 

framework is to develop a mathematical model representing a continuous blending 

operation. In order to do so the blender has been divided into several compartments or 

bins. Mass balance equations are used to express the powder flow among these 

compartments. The parameters that need to be estimated should then be identified and for 

our model, we have considered the flux ratios as the key parameters to be estimated. 

Owing to the dynamic nature of the model, the parameters need to be estimated for each 

point of time. 

The CQA (Critical Quality Attributes) of the blend such as the RTD (Residence Time 

Distribution), the API composition and the RSD (Relative Standard Deviation) are the 

variables used to evaluate the blending performance. A series of experiments were 

carried out in order to obtain data sets of these variables as a function of time. The next 

stage involves the selection of the proper optimization tool. The time required to run the 

optimization program is the most important consideration due to the multi-dimensional 

and dynamic nature of the problem. Hence the optimization framework has been solved 

using a built-in solver within the software called GAMS (General Algebraic Modeling 
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System). The designed model has been validated against experimental data sets. The 

model shows considerable accuracy in tracking these data. Figure 1 is the schematic 

representation of the steps which were followed. [2]

Figure 1: Schematic of optimization framework



9

Chapter 3

Model Description

This section provides a brief description of how the model has been formulated 

mathematically.

3.1. Population Balance Model (PBM)

The Population Balance Equation which was used was adapted from [86]:

   ∂
∂t F(x, z, �) + ∂

∂୶ ቂF(x, z, �) d୶
dtቃ + ∂

∂୸ ቂF(x, z, �) d୸
dtቃ

=  R୊ormation − RDepletion                                                                                                        (1)

F(x, z, t) is the population distribution function, x is the vector of internal coordinates 

used to express the particle size and z is the vector of external co-ordinates used to 

represent spatial position of the particles and t is the time. The term 

డ
డ௫ ቂܨ(࢞, ,ࢠ (ݐ ௗ࢞

ௗ௧ቃ accounts for the rate of change of particle distribution due to change in 

particle size. The term 
డ

డ௭ ቂܨ(࢞, ,ࢠ (ݐ ௗࢠ
ௗ௧ቃ accounts for the rate of change of particle size 

distribution with respect to spatial co-ordinates. Particles are formed due to nucleation, 

aggregation and breakage phenomena. ܴி௢௥௠௔௧௜௢௡ and ܴ஽௘௣௟௘௧௜௢௡ stand for particles being 

formed and depleted respectively due to the above mentioned phenomena. In this case, 

we have assumed no size change occurring (either by breakage or formation) since we are 

considering mixing of non-cohesive particles. [2, 14] The PBM after modification is 

given as:
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డ
డ௧ ,ࢠ)ܨ] [(ݐ + డ

డ௭ ቂࢠ)ܨ, (ݐ ௗࢠ
ௗ௧ቃ = 0                                                                                              (2)

3.2. Mixing Model Formulation

The equation for blending can be written as:

డி(௡,௫,௬,௧)
డ௧ + డ

డ௫ ,݊)ܨ] ,ݔ ,ݕ [ݐ݀/ݔ݀ (ݐ +  డ
డ௬ ,݊)ܨ] ,ݔ ,ݕ [ݐ݀/ݕ݀ (ݐ = ݓ݋݈݂݊ܫ −        (3)ݓ݋݈݂ݐݑܱ

                                                                                                                     

Here x is the spatial co-ordinate in the axial direction, y is the spatial co-ordinate in radial 

direction, n is the counter representing number of components and t is the time. In this 

model two components namely a single API and excipient are used, hence n=1 represents 

the API and n=2 represents the excipient.

Cartesian coordinates were used instead of polar coordinates since we are neglecting the 

curvature term from our model. The terms dx/dt and dy/dt represent the axial and radial

fluxes respectively. The axial flux can be categorized as forward or backward flux. 

Forward axial flux will move the particles to the next compartment whereas the backward 

flux will move the particles to the previous compartment. Inflow is the feed rate of 

components into the mixer. If we are considering m x m compartments within the

blender, then the outflow term will be ∑ ∑ ,݊)ܨ ݉, ,௠௔௫ݔ ,ݕ (ݐ ௙ܸ௠௬ୀ12௡ୀ1 . It is the particle 

number flux and has units of no. of particles/m2s. Here Vf represents the forward flux 

term (m/s) and F is particle density (no. of particles/m3). The value of n in the mixing 
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model can be changed in order to represent the mixing of more than 2 components within 

the blender. [2] 

3.3. Modeling Methodology of the Blender

The blender has been divided into several compartments or bins. Mixing occurs as a 

result of convective and dispersive forces, but in this case the mixing taking place as a 

result of dispersion has been ignored. Mixing due to dispersion is due to spatial 

concentration gradient within the blender and convective mixing is due to the mechanical 

movement of the blades or any other movable parts of the blender. A literature review has 

been conducted prior to this work and it has been seen that dispersive term is very less

than the convective term based on the work reported by Portillo et al. 2008. Hence in this 

model a similar assumption has been adopted and the mixing occurring as a result of 

dispersion is neglected. The blender considered here is cylindrical with rotating blades. 

As the motion of the blades is mainly responsible for moving the powder in the system 

hence the assumption is justified. 

The particles are considered as discrete entities moving from one compartment to another

resulting in an exchange of mass between the compartments. This has been represented as 

the particle number. Particles can either move forward to the compartment lying ahead of 

it or backward to the one behind it. In comparison, at fixed axial location, radial mixing 

conserves the total number of particles. This model inputs are only the flux values, which 

are a function of particle diameter, density and geometry, hence these information do not 

need to be supplied to the model. The values of the flux terms are determined 
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experimentally. Since these values vary with spatial position and particle type, for the 

optimization framework, they have been replaced by flux ratios. Flux ratio is defined as 

the ratio of the fluxes of any two compartments between which particle transfer occurs 

and it is used to denote the relative number of particles interchanged between any two 

compartments. For axial flux ratios, it assumes values of -1 (backward flux) and 1 

(forward flux). Here we have used an assumption that 50% of the mass flux from any 

radial compartment moves to the compartment above it and 50% move to the 

compartment below it. In this model we have considered the average radial flux; hence it 

takes a value between 0 and 1. [2]

For a single component, the mass balance can be simplified according to the equation 

given below:

డி(௫,௬,௧)
డ௧ =  ௏೑[ிೣ షభ,೤,೟ିிೣ ,೤,೟]

∆௫ ݐ∆ + ௏್[ிೣ శభ,೤,೟ି ிೣ ,೤,೟]
∆௫ ݐ∆ + ௥ܸ [ிೣ ,೤శభ,೟ାிೣ ,೤షభ,೟ି2ிೣ ,೤,೟]

∆௬ (4)         ݐ∆ 

Here Vf , Vb , Vr denotes the forward, backward and radial flux terms respectively.

The critical quality attributes (CQA) namely the API composition, residence time 

distribution (RTD) and relative standard deviation (RSD) can be defined as given below. 

The composition of the final mixture in terms of mean API composition yAPI is given as:

஺௉ூݕ = ∑ ி(஺௉ூ,௫೘ೌೣ,௬,௧)೤೘ೌೣ೤సభ∑ ∑ ி(௡,௫೘ೌೣ,௬,௧)೤೘ೌೣ೤సభ೙೘ೌೣ೙సభ                                                                                          (5)
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In the above equation, the numerator and denominator represents the total number of API 

particles and the total number of both API and excipient particles coming out of the last 

compartments, respectively, at any point of time. xmax and ymax represents the maximum 

number of grids in the axial and radial directions respectively. Since we have considered 

only 2 components the value of nmax is 2.

The RSD is used as a measure of the degree of blend homogeneity and it is calculated by 

use of a tracer. The homogeneity of samples retrieved from the outflow is measured by 

calculating the variability in the tracer concentration. The Relative Standard Deviation 

(RSD) of the tracer concentration is given as:

ܦܴܵ = ඨ∑(೤೔ష೤ೌೡ೒)మ
(೙షభ)

௬ೌೡ೒                                                                                                            (6)

Residence time distribution (RTD) is a measure of the time spent by the fluid elements 

within the blender. It is denoted as E(t). In other words it captures the non-ideality 

associated with the flow. RTD can be found as:

(ݐ)ܧ = ௬஺௉ூ(௧)
∫ ௬஺௉ூ(௧)ௗ௧∞బ                                                                                                             (7)
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3.4. Numerical Technique

The entire system is discretized into several sub-groups or sub-populations and the 

population distribution function is formulated for each of these semi-lumped sub-groups. 

A finite volume technique is used for the discretization.

The population balance equation has been integrated over the domain of the sub-groups 

and then re-cast into finite volumes. The integro partial-differential equation is then 

reduced to a set of ODEs (ordinary differential equations) which can then be integrated 

using first order Euler method. [2, 80]
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Chapter 4

Experimental Set-up

This section provides a brief discussion on the methodology adapted to obtain 

experimental data for model validation studies. The experimental set-up has been adopted 

from the work of Vanarase et al. [85]

4.1. Process and Equipment Description

The continuous mixer used for the study has been manufactured by Gericke (Model 

GCM 250) having a length and diameter of 300 mm and 100 mm respectively with 

alternately arranged blade set. Twelve triangular shaped blades are mounted on the 

impeller with equal spacing in between and an angle of 20 degrees. Few blades are 

forward facing which would move the powder forward while the rest are backward facing 

which would move the powder in reverse direction. A semicircular disc or weir is placed 

at the exit in order to control the fill level of the powder or the powder hold-up in the 

mixer. The weir angle is maintained at 20 degrees. The feeders used are Loss-In-Weight 

(LIW) type, manufactured by Schenck AccuRate. The two components namely the API 

and excipient particles are being continuously fed as two inlet streams. The blended 

product is being continuously withdrawn at the outlet. [2, 85]

4.2. Materials and Methods

Materials used for the experiment are Avicel PH-200 (FMC biopolymer) and 

Acetaminophen (Mallinckrodt). Here Avicel PH-200 and Acetaminophen are the 
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excipient and API respectively. Pure Acetaminophen is highly cohesive in nature, 

therefore it has been pre-blended with 0.25% of silicon dioxide to reduce its stickiness 

and improving flowability. A Nicolet Antaris NIR spectrometer (Thermo Fisher) has 

been used for sampling. ‘TQ Analyst’ has been used for calibration model development. 

Spectral data is thus obtained using the software ’Omnic’. Spectral data has been filtered 

using a Norris derivative filter. The value of coefficient of correlation (R2) and root mean 

squared error of prediction (RMSEP) was 0.9831 and 0.239 respectively. These values 

indicate a good fit of the spectral data. [2, 85]

4.3. RTD Measurement

Avicel has been fed into the system until steady state has been achieved, following 

which, Acetaminophen is introduced into the inlet stream in the form of an instantaneous 

pulse. The tracer concentration at the outlet is maintained well above the detection limits 

of the NIR method. Samples are collected and analyzed by NIR spectroscopy at different 

time points and this experimental data collected was used for model validation studies. 

[2, 85].
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Chapter 5

Parameter Estimation and Optimization

The optimization framework has been solved using GAMS. Since RTD is a different set 

of experiment, hence the RTD data has been fitted separately. The blender optimization 

model is non-linear with 10101 number of constraints and 22561 number of variables. 

The Hessian of the Lagrangian has 5800 elements on the diagonal, 37256 elements below 

the diagonal and 19660 nonlinear variables. [2]

The solver chosen is CONOPT, which is a non-linear programming algorithm software 

available on GAMS and it is effective for handling large and sparse model. CONOPT 

follows a non-linear programming algorithm based on a generic GRG (Generalized 

reduced gradient) algorithm. The details of this algorithm have been explained by A. 

Drud [86, 87]. Since the model is likely to have multiple solutions, hence initial guesses 

have been provided so that the solution can be obtained in an appropriate region. This 

also reduces the time involved in finding the feasible solution. The objective function has 

been scaled in order to fix good search directions.

The run time for the simulation is set at 100seconds. The blender has been divided into a 

5 x 5 compartment system with a total of 25 compartments. The flux ratios are classified 

into three namely forward, backward and radial fluxes. Therefore there are a total of 

15000 flux ratios to be estimated. [2]
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5.1. Parameter Estimation

The dynamic population balance model after discretization can be represented as [80]:

y(t,p)= f(y(t,p),p), ∀ ݐ ε (0, ��)                                                                                        (8)

y(0,p)=yo                                                                                                                        (9)

Where y is the population distribution function and p are the model parameters. The 

model parameters in this case are the forward, backward and radial flux ratios between 

any two compartments.

Least square fitting has been used for parameter estimation. The objective is to decrease

the squared error between the models predicted xpredicted and the experimental data xexpt. 

The data are usually the RSD and API composition measured at different time points and 

they can be obtained by the algebraic manipulation of the states such that x(t, p)=g 

(y(t,p)).

The objective function can be formulated as shown below:

(݌)ߗ = ∑ ฮݔ௣௥௘ௗ௜௖௧௘ௗ (ݐ௜, (݌ − ,௜ݐ) ௘௫௣௧ݔ ฮ2௡௜ୀ1(݌                                                         (10)

Where n is the total number of points.

Gradient based optimization techniques are used to minimize ߗ. The model sensitivities 

డ௬ೕడ௣ೖ are integrated along with the model states y over the time domain, which are given as 

shown below:
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డ௬
డ௣ ,ݐ) (݌ =  డ௙

డ௬ ,ݐ) (݌ డ௬
డ௣ ,ݐ) (݌ + డ௙

డ௬ ,ݐ) ,(݌ ,ε  (0 ݐ∀ ௙)                                                  (11)ݐ

డ௬
డ௣ (0, (݌ = 0                                                                                                                   (12)

5.2. Objective Function Formulation

The RSD and API composition data were obtained from the experiments. The RSD and 

API composition have values of different orders. Therefore the objective function for 

RSD is multiplied by a constant k to facilitate convergence. Individual objective 

functions can be formulated for each of the critical quality attributes as shown below:

(݌)஺௉ூ ௖௢௠௣௢௦௜௧௜௢௡ߗ = ∑ ฮ ݕ஺௉ூ ௣௥௘ௗ௜௖௧௘ௗ(ݐ௜, (݌ − ฮ2௡௜ୀ1(௜ݐ) ஺௉ூ௘௫௣௧ݕ                            (13)

(݌)ோௌ஽ߗ = ∑ ฮ ܴܵܦ ௣௥௘ௗ௜௖௧௘ௗ(ݐ௜, (݌ − ฮ2௡௜ୀ1(௜ݐ) ௘௫௣௧ ܦܴܵ                                                (14)

The overall objective function can then be formulated as:

(݌)௢௧௔௟்ߗ = (݌)ோௌ஽ߗ  + (15)                                                                     (݌)஺௉ூ௖௢௠௣௢௦௜௧௜௢௡ߗ

Since RTD measurement is a completely different set of experiment, hence the objective 

function has been formulated and optimized separately as shown in:

(݌)ோ்஽ߗ = ∑ ฮܧ௣௥௘ௗ௜௖௧௘ௗ (ݐ௜, (݌ − ฮ2௡௜ୀ1(௜ݐ)௘௫௣௘௥௜௠௘௡௧௔௟ܧ                                               (16)
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(ݐ)ߪ =  ௬ಲು಺(௧)
∫ ௬ಲು಺(௧)ௗ௧∞బ                                                                                                                   (17)

5.3. Statistical Analysis

In order to test the robustness of the model, statistical tests have been conducted. A brief 

discussion on the various statistics which we considered in order to understand how 

effectively the model can fit the experimental data have been provided below. 

The Pearson correlation coefficient (R): The correlation coefficient measures the 

strength of a linear relationship or the degree of association between the model predicted 

and experimental data. It can take any value between -1 and +1. A value of +1 will

indicate a straight line between the experimental and predicted data.

ܴ =  ∑ (௫௜ି௫)(௬௜ି௬)೙೔సభ∑ (௫௜ି௫)మ ∑ (௬௜ି௬)మ೙೔సభ೙೔సభ                                                                                             (18)

Error sum of squares (SSE): It is a measure of the accuracy of predictions from model. 

Lower the value, better the model.

ܧܵܵ = ௜ݕ)∑  − ௜)2                                                                                                      (19)ݔ

Regression sum of squares (SSR): It is another measure for predicting the accuracy of 

the model. 
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ܴܵܵ = ݅ݔ)∑  − (20)                                                                                                        2(ݕ

Coefficient of correlation (R2) and adjusted R2: It gives the extent of variance or 

fluctuation of the predictable variable. It is a measure of the certainty with which 

predictions can be made from the model. It can take any value between 0 and 1. If R2 is 

equal to 1, it will indicate that regression line perfectly fits the data. However a large 

value of R2 does not always imply that the model is a good one. For example, adding a 

variable to the model will always increase the  value of R2 regardless of whether the 

additional variable is statistically significant or not. To overcome this drawback, adjusted 

R2 is often used. Its value is not affected by addition of any new variable to the model. 

Adjusted R2 has the same significance as the R2.

ܴ2 =  ͳ − ௌௌா
ௌௌ்                                                                                                                (21)

Where ܵܵܶ = ௜ݕ)∑  −  )2
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Chapter 6

Results and Discussion

Data have been collected by varying the blender speed. Mixer RPM is one of the 

important processing parameters as far as the blend quality is concerned. Mixer RPM 

affects the degree of axial and radial mixing. Residence time distribution model has been 

formulated and validated separately. RTD (Residence Time Distribution) decreases with 

increase in mixer RPM. Whenever a process is started, the system stays in unsteady state 

initially and then reaches steady state gradually. Usually the product obtained during 

unsteady state is discarded. But in this work the entire dynamics of the system has been 

considered starting from time t=0 to final end time point. Therefore none of the 

experimental data points have been neglected. 

It can be seen that the experimental data sets are chaotic. This may be due to the presence 

of certain non-idealities in the system (i.e. clogging of particles due to poor equipment 

geometry, wear and tear etc.) or measurement errors. 

This model has been developed for a generalized mixing operation for free flowing 

powders (no aggregation or coagulation are present) and hence no non-ideality has been 

introduced in the model. Therefore a polynomial trend line has been fitted to the 

experimental data sets to obtain a smooth response. The averaging function for the trend 

line is an nth degree polynomial where n=2 or 3. The model is validated for the fitted 

trend line. The model simulations were performed on an 8GB RAM, 2.94 GHz desktop.
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Figure 2(a): Fractional API Composition versus Time at mixer outlet

Figure 2(b): RSD versus Time at mixer outlet
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In a continuum phase such as a fluid, a perfect steady-state is possible because the inlet 

and outlet flowrates can match exactly, which is not possible with discrete particles. 

Hence the concept of perfect steady state is not realised in powder system. There are 

several ways in which any two particles can interact with each other as well as with the 

blender wall. Hence the particle-particle interactions and particle-wall interactions will 

have a pronounced effect on the powder flow. The idea of perfect steady state is not 

realized in powder system which is also evident from the experimental results. In case of 

powders, the output fluctuates about a mean. [14, 88] In this case, the simulation has been 

run for few minutes and the dynamics of the blender over the entire simulation time has 

been studied. The initial data can be removed (where the fluctuations are more), but in 

this study all the data points have been retained. 

6.1. Fractional API Composition and RSD

The model has been validated for four experimental data sets. Each experimental set 

provides with data for RSD and API Composition. A linearity test has also been 

conducted for each case by plotting model predicted data versus experimental data.

6.1.1. Experiment 1

This data set has been obtained for a feed rate of 20 kg/ hr and blender speed of 40 RPM. 

Figure 2(a) and Figure 2(b) show the comparison between the experimental and model 

predicted values of API composition and RSD respectively. Figure 3(a) represents the 

linearity relationship between the experimental and model predicted data for API 
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composition. Figure 3(b) represents the linearity relationship between the two data sets 

for RSD. Table 1 gives the value of the statistical parameters.

As shown in Figure 2(a), the predicted API composition is matching exactly with the 

experimental data (trend line) with very minor error. This can be further verified with the 

linearity plot as shown in Figure 3(a), where a straight line between predicted API 

composition and experimental data can be seen. It is reflected in statistical analysis (see 

Table 1) as well. The R value is found to be 0.999805 indicating that the predicted API

composition has a very strong linear relationship (straight line) with the experimental API

composition. High value of R2 (0.999388) and adjusted R2 (0.99382) indicates a very 

high certainty in prediction of API composition. A very low value of SSE (0.000176) and

SSR (0.001341) further verifies the accuracy of the model. Fig. 2(b) as well as statistical

analysis (see Table 1) shows that the model is tracking the experimental RSD data (trend

line) very well. Furthermore, Figure 3(b) as well as the statistical analysis indicates that

the predicted RSD and experimental RSD have a strong linear relationship (R= 

0.999411). Value of R2 (0.998497) and adjusted R2 (0.998482) are very high which

means that through this model RSD could be predicted with high certainty. In this case

the change in the initial and final values of RSD and API composition over the entire 

time period are 18.05% and 30.5% respectively.
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Figure 3(a): Linearity plot of experimental versus predicted data for API composition

Figure 3(b): Linearity plot of experimental versus predicted data for RSD
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API Composition

Correlation

R2

Adjusted R2

SSR

SSE

0.999805

0.999388

0.99382

0.001341

0.000176

Relative Standard Deviation (RSD)

Correlation

R2

Adjusted R2

SSR

SSE

0.999411

0.998497

0.998482

0.000607

3.61 E-5

Table 1: Statistics for experimental set-1
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6.1.2. Experiment 2

This data set has been obtained for a feed rate of 20 kg/ hr, blender speed of 200 RPM but 

with the API concentration of 5%. Figure 4(a) and Figure 4(b) represent the comparison 

for API composition and RSD respectively. Figure 5(a) and Figure 5(b) show the 

linearity relationship for API composition and RSD respectively. Table 2 gives the value 

of the statistical parameters. As desired for a good model, the values of R (0.999366), R2

(0.997179) and adjusted R2 (0.997151) are very close to unity while the values of SSR 

(0.003026) and SSE (0.000897) are very close to zero. Similarly, predicted RSD and

experimental RSD (trend line) have a good agreement as shown in Figure 4(b). Figure 

5(b) shows a good linear relationship between predicted and experimental RSD. 

Statistical analysis further verifies strong linearity (R= 0.999346), good RSD prediction

certainty (R2= 0.998425, adjusted R2= 0.998409) and a good model fitting (SSR= 

0.003148, SSE= 0.000971). In this case, the change in the initial and final values of RSD 

and API values over the entire time period are 44.4% and 41.43% respectively.

Figure 4(a): Fractional API composition versus time at mixer outlet
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Figure 4(b): Fractional RSD versus time at mixer outlet

Figure 5(a): Linearity plot between experimental and predicted values for API 
composition 
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Figure 5(b): Linearity plot between experimental and predicted values for RSD 
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API Composition

Correlation

R2

Adjusted R2

SSR

SSE

0.999366

0.997179

0.997151

0.003026

0.000897

Relative Standard Deviation (RSD)

Correlation

R2

Adjusted R2

SSR

SSE

0.999346

0.998425

0.998409

0.0003148

0.000971

Table 2: Statistics for experimental set-2
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6.1.3. Experiment 3

Another experimental trial has been repeated for the same blender speed of 200 RPM 

maintaining the feed rate at 20 kg/hr. Figure 6(a) is a comparison of the experimental and 

model predicted data for API composition and Figure 6(b) is the plot for RSD. Figure 

7(a) and Figure 7(b) are the plots of linearity relationship for API composition and RSD 

respectively. Table 3 gives the value of the statistical parameters. Very high values of R 

(0.998423), R2 (0.996064) and adjusted R2 (0.996024) and very low values of SSR

(0.001232), SSE (0.000149) shows a good fit of the mathematical model as well as high 

certainty in prediction of API composition. The match of predicted RSD with the

experimental data can be seen in Figure 6(b) where a small deviation from the trend line 

has been observed. The statistical analysis (see Table 3) also reflects this. Values of R2

(0.656826) and adjusted R2 (0.653324) indicate an average certainty in prediction of

RSD. Figure 7(a) represents the linearity relationship between the experimental and 

model predicted data for API composition. Figure 7(b) represents the linearity 

relationship between the two datasets for RSD. In this case the change in the initial and

final values RSD and API values over the entire time period are 0.00046% and 0.36% 

respectively. Since several data points are repeated over time, hence an average of the 

values has been taken to represent the linearity relationship.
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Figure 6(a): Fractional API composition versus time at mixer outlet

Figure 6(b): RSD versus time at mixer outlet
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Figure 7(a): Linearity plot between experimental and predicted values for API 
composition 

Figure 7(b): Linearity plot between experimental and predicted values for RSD 
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API Composition

Correlation

R2

Adjusted R2

SSR

SSE

0.998423

0.996064

0.996024

0.001232

0.000149

Relative Standard Deviation (RSD)

Correlation

R2

Adjusted R2

SSR

SSE

0.996931

0.656826

0.653324

0.15131

0.022438

Table 3: Statistics for experimental set-3
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6.1.4. Experiment 4

This data set has been obtained for a feed rate of 20 kg/ hr, blender speed of 320 RPM. 

Figure 8(a) and Figure 8(b) are the plots for API composition and RSD as obtained 

experimentally and predicted from the model. Figure 9(a) and Figure 9(b) show the 

linearity relationship for API composition and RSD respectively. Table 4 gives the value 

of the statistical parameters. In this case also, several data points are repeated over time, 

hence an average of the values have been taken to represent the linearity relationship. 

Relationship between the experimental and model predicted data for API composition. 

Figure 7(b) represents the linearity relationship between the two datasets for RSD. In this 

case the change in the initial and final values RSD and API values over the entire time 

period are 0.00046% and 0.36% respectively. Since several data points are repeated over 

time, hence an average of the values has been taken to represent the linearity relationship.

Figure 8(a): Fractional API composition versus time at mixer outlet
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Figure 8(b): RSD versus time at mixer outlet

Figure 9(a): Linearity plot between experimental and predicted values for API 
composition 
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Figure 9(b): Linearity plot between experimental and predicted values for RSD 
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API Composition

Correlation

R2

Adjusted R2

SSR

SSE

0.987291

0.973382

0.973111

0.00369

0.001355

Relative Standard Deviation (RSD)

Correlation

R2

Adjusted R2

SSR

SSE

0.974142

0.940338

0.939729

0.007651

0.005737

Table 4: Statistics for experimental set-4
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6.2. Residence Time Distribution

RTD study was conducted for blender speed of 254 RPM at two different feed rates.

6.2.1 Experiment 1

The blender speed is 254 RPM and feed rate is maintained at 30 kg/hr. Figure 10 shows 

the comparison between the experimental and predicted data. Figure 11 is the linearity 

plot. Table 5 gives the statistics of the model.

Figure 10: RTD versus time for a feed rate of 30 kg/hr
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Figure 11: Linearity plot for RTD at a feed rate of 30 kg/hr

RTD

Correlation

R2

Adjusted R2

SSR

SSE

0.815995

0.540216

0.494238

0.058952

0.034753

Table 5: Statistics of RTD run-1
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6.2.2 Experiment 2 

The blender speed is kept as 254 RPM whereas the feed rate is increased to 45 kg/hr. 

Figure 12 gives the comparison between the experimental and predicted data. Figure 13 is 

the linearity plot. Table 6 gives the statistics of the model.

Figure 12: RTD versus time for a feed rate of 45 kg/hr

Figure 13: Linearity plot for RTD at a feed rate of 45 kg/hr
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RTD

Correlation

R2

Adjusted R2

SSR

SSE

0.831781

0.625658

0.57218

0.028012

0.005493

Table 6: Statistics of RTD run-2
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Chapter 7

Conclusion

The aim of this study is validation of the model with experimental results. The parameter 

values have not been reported because there are 5000 parameters estimated in each 

experiment. The parameters estimated are the fluxes: Forward flux (Ff), backward flux ( 

Fb ) and radial flux (Fr). The dimensions of fluxes are given as: 

Number of time step x Number of components x Number of axial compartments x 

Number of radial compartments= 100 x 2 x 5 x 5=5000. 

So there are 5000 parameters to be estimated for each experimental set. It is difficult to 

report 5000 parameters for each set. Table 7 gives an example of the parameter value 

estimations(for only the first five sets) for Experiment 3.

Ff (Absolute 
Magnitude)

Fb (Absolute 
Magnitude)

Fr (Absolute 
Magnitude)

0.009 0.02 0.052
0.01 0.02 0.049
0.008 0.02 0.050
0.01 0.02 0.051
0.009 0.02 0.047

Table 7: Parameter values for Experiment 3 for the first five sets.

API composition and RSD have been validated together whereas RTD has been validated 

separately. This is because the two experiments are conducted in different manner. In 

case of RTD experiment, API is injected as pulse whereas under normal operational 



45

schedule, both API and excipient are allowed to run simultaneously. The flux ratios 

obtained in two cases are different. Flux ratios can be defined as the ratio of fluxes of any 

two compartments between which particle transfer is taking place. It is also a function of 

the total number of particles being exchanged between the compartments. Hence the 

parameter values obtained from RSD/API composition and RTD are different.

The parameter values may vary as a function of flow rate and speed.  But the authors [14, 

88] would not comment on the exact trend of variation with change in flow rate and 

speed due to absence of enough experiments conducted under different conditions. A 

proper DOE should be constructed with experiments done under different flow rate 

conditions and blender speed to be able to come up with an exact trend of variation. The 

aim of this work is to validate the model only.

A multi-dimensional population balance model (PBM) for mixing has been developed 

and validated. PBM has been shown to be an effective tool for tracking the blending 

dynamics in terms of the key properties such as API composition and RSD. The 

optimization framework developed is dynamic. It is shown to be able to track several 

experimental runs taken by varying the process parameters. The flux ratios between any 

two compartments have been optimized. This proves that the model is robust. The 

statistical analysis showed that the model predicted data matched well with the 

experimental data and showed high prediction accuracy.
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The developed model has wide range of applications in continuous pharmaceutical 

manufacturing process. Future work includes the integration of mixing model in 

continuous tablet manufacturing process as well as design and implementation of process 

monitoring and control system for the same.
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