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Popular research on mathematics performance differences often lead researchers to
produce student-focused, social, and biological based theories that attempt to address
these differences. This paper analyzes the contributions of classroom atmospheres to the
"gender problem" in mathematics and proposes potential approaches to addressing this
matter in mathematics education. The study begins with a discussion of crucial related
issues, such as the extent and impact of the mathematics-science overlap and the roots of
mathematical inquiry. This is followed by the introduction of a new, flexible, inclusive
mathematics, which integrates these critical issues with the paper's guiding questions and
calls upon the pedagogical theories of Paulo Freire, feminist standpoint theory, and
poststructuralist approaches. Next, specific ideas and methods for the implementation of
the proposed pedagogy are provided, as well as a discussion of potential
counterarguments and resistance to its implementation in classrooms. Finally, the paper
concludes with the implications of this shift, which include, but are not limited to, the

possibility of breaking down entrenched gender stereotypes and boundaries.
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Chapter 1
Introduction

The goal of this thesis is to create a feminist pedagogy designed specifically
for mathematics classrooms. Students entering mathematics classrooms bring their
own unique viewpoints and experiences with the subject, yet most common
pedagogical practices today fail to take the great variety of identities in the
classroom into account. This project will aim to create a feminist pedagogy that not
only recognizes these identities, but also acknowledges their pedagogical
importance to creating an atmosphere that is conducive to learning mathematics. In
doing so, important questions will be addressed, such as: What does a feminist
pedagogy of mathematics look like, why is a feminist pedagogy of mathematics
necessary, and what are the possible implications of such a pedagogy? These three
questions will be the main questions that this project aims to answer.

In the rest of this chapter, [ will explore the current state of mathematics
education in the United States, considering its international ranking as well as the
number of math degrees awarded, to whom they are awarded, and how those
numbers compare to the overall number of post-secondary degrees that are
awarded. [ will also consider what has been done in the past and what is being done
now to improve those numbers. Finally, [ will turn to a review of research
conducted to probe the relation between gender and mathematics.

The second chapter of this thesis questions the discipline of mathematics
itself in producing gendered practitioners. I consider the overlap between science

and mathematics, which is an important distinction to make, as well as outlining and



questioning so-called mathematical ways of thinking, and what happens when
mathematics is questioned at a foundational level.

In the third chapter, I create a feminist pedagogy of mathematics after
reviewing various feminist pedagogical texts relevant to this project. After mapping
the contours of a feminist pedagogy of mathematics, I discuss its implications for
math education.

The final chapter reviews the central arguments of the previous chapters and
discusses the future impact my feminist pedagogy in mathematics, and identifies

areas for future research.

The Status of Mathematics

Much of the research in mathematics education today responds to the release
of statistics concerning student performance on standardized tests, with data being
compiled that focuses on elementary school students to post-secondary students.
According to the most recent report published by Aud et al. (2012) for the National
Center for Education Statistics (NCES), the average scores on the National
Assessment of Educational Progress (NAEP) mathematics test for students in the
4th- and 8t grades have noticeably increased between 1990 and 2011. While most
might see this as a sign of positive changes in mathematics education, other issues
raise troubling questions. There is a startling trend in this data that becomes visible
when the distribution percentages are examined. In 1990, fifty percent of students
in the 4th grade tested below basic levels, while forty-eight percent of 8t grade

students tested below basic levels (Aud et al., 2012, p.65). This data indicates that



fewer students were testing below basic levels in 8th grade than students in the 4t
grade, which implies slight improvement. In the year 2000, thirty-five percent of 4th
grade students and thirty-seven percent of 8th grade students were testing at below
basic proficiency levels in the NAEP mathematics achievement levels (Aud et al,,
2012). Somewhere between 4t and 8th grade, an additional two percent of the
students failed to test at basic levels. To put it in more simple terms, they fell behind.
Compared to the numbers for 1990, this is a four percent swing. By 2011, fewer
students than ever were testing below basic proficiency levels, yet the number of
students who fell from proficient or basic levels to below basic levels between 4t
and 8th grade was at its peak. Only eighteen percent of 4th graders tested below basic
levels while twenty seven percent of 8t grade students did so (Aud et al., 2012). The
only group that increased between 4th and 8th grade was the number of students
who tested at advanced levels, and that was by a marginal amount (Aud et al,, 2012).
Comparative statistics for students in 12th grade were unavailable.

Looking at mathematical performance at an international level is also
intriguing. The NCES report examines the results of a test taken by 15-year old
students that is designed to compare international test scores, called the Program
for International Student Assessment (PISA). The 34 countries that the results from
the United States were compared to are all members of the Organization for
Economic Cooperation and Development (OECD), representing most of the world’s
top and emerging economies (Aud et al., 2012). The report looked at PISA scores
from OECD countries and the United States from 2003 and 2009. In 2009, all OECD

countries had a higher percentage of students test at advanced levels than the



United States (Aud et al.,, 2012, p. 68). When each group’s results are compared to
the 2003 results, it is clear that the United States’ percentage of students testing at
high levels did not improve, while OECD percentages actually decreased (Aud et al,,
2012). When it came to students who tested at levels that are indicative of basic
skill sets required to manage everyday life situations, the United States’ percentage
of students testing at this level decreased between 2003 and 2009. The percentages
for OECD countries increased slightly. In 2009, the difference between the United
States and the OECD countries was not “measurably different” (Aud et al,, 2012, p.
68). What these data indicate is that for students performing at a basic level, the
United States and the OECD countries are closer than many popular reports might
lead society to believe.

When it comes to university achievement in mathematics, one might think
that students avoid math like the plague after looking at the numbers of
mathematics and statistics degrees awarded. In the 2009-10 academic year, nearly
1.7 million Bachelor’s degrees were conferred in the United States (United States
Department of Education 2011, table 290). Out of all those degrees, only sixteen
thousand mathematics and statistics degrees were awarded, or less than one
percent of the total number of Bachelor’s degrees. The United States Department of
Education (USDE) broke those total numbers down by sex, revealing that although
women earned approximately fifty-two percent of all Bachelor’s degrees, they only
earned forty-three percent of the mathematics and statistics Bachelor’s degrees
(USDE 2011). Compared to other fields, the forty-three percent number is low,

considering that women earned between fifty to eighty-five percent of the degrees



awarded in the five most popular fields: business, management, marketing, and
personal culinary services; social sciences and history; health professions;
education; and psychology (Aud et al.,, 2012). At the Master’s level, a similar
situation can be seen. Women earned approximately forty percent of Master’s
degrees awarded in mathematics and statistics, and sixty percent of all the Master’s
degrees earned in 2009-10 (Aud et al., 2012). The most marked drop-off occurs
between the percentage of degrees earned by women at the Master’s and Doctoral
level. Women earned roughly fifty-two percent of all Doctoral degrees, yet they
earned only thirty percent of the Doctoral degrees awarded in mathematics and
statistics (USDE 2011). Unfortunately the data were not broken down by sex and
race, so it is impossible to tell how many of these degrees went to those who would
be classified as female and as a minority.

How do these numbers reflect the status of women in the various fields
related to Science, Technology, Engineering, and Mathematics (STEM)? The
American Association of University Women (AAUW) addressed that question in Hill,
Corbett and St. Rose’s (2010) report concerning the progress women are making in
the STEM fields. Hill, et al. (2010) acknowledge that women are in fact making
progress in STEM fields, with progress defined as having an increasing number of
women in the classrooms and workplaces of these fields. Gains have been made,
however the smallest gains are in fields such as engineering, computer science, and
physics, all of which can rely quite heavily on mathematics (Hill, et al., 2010). What
hinders the progress of girls and women? Learning environments, societal beliefs,

experiences with mathematics, and self-confidence issues can all lead to girls to shy



away from mathematics, as well as other science-related classes and careers (Hill, et
al.,, 2010).

The statistics discussed above and the report produced by the AAUW
demonstrate the need to get more women and girls involved in traditionally male
fields, like STEM fields, but there are deeper questions. What causes these gender
differences? Why is the change or progress so slow? What is the situation like in
classrooms today that produce these results? Researchers have advanced several
explanations regarding the differences in participation between genders, ranging
from social theories addressing factors that influence students’ performance on
mathematical assessment tests to highly controversial biological theories of
difference. In the next section these theories will be discussed and analyzed. [ begin
with a review of the literature that questions and critiques the legitimacy of
biological accounts of gender differences in mathematical performance before
moving to a review of socially-based explanations and then to a discussion of what

is being done to address the gender issue in mathematics.

Competing Accounts of Gender Difference in Mathematics

There are two schools of thought surrounding the cause of differences in
gender performance in mathematics: biological origins, and social explanations. The
goal of this section is to map out the arguments made by both sides, and to provide a
review of the critiques of the highly contentious biological arguments. It is
important to understand these two points of view to trace the development of

research on gender and mathematics. The end of this section will focus the



discussion on social differences in performance based on research conducted in
mathematics classrooms. Firstly, however, I turn to the biology-based theories.
Biological theories of difference regarding the gender disparities in
mathematics participation and performance on evaluations are surprisingly popular
given their controversial nature. Although several studies claim to document
biological bases for gendered performances in math, no research that claims to have
found a physical trait that impacts mathematical performance has been duplicated.
Despite the failure to replicate and thereby validate these claims, many proposed
theories, such as the one regarding brain lateralization, or the way thoughts are
processed across the left and right hemispheres of the brain, are still incorporated in
many biology textbooks. In Jones and Lopez’s (2006) biology textbook about human
reproductive biology, for example, the chapter titled “Brain Sex” lays out all the
ways the male and female brain differ, and they hint at cognitive effects of these
differences. Jones and Lopez (2006) discuss functional brain differences that occur
after the introduction of adult hormones during puberty, and how these hormones
have “an activational effect on organized sex differences in the brain” (p. 464). These
hormones then supposedly have an effect on how males and females process
information, including mathematical information. These theories are not limited to
texts that focus strictly on biology. In Blakemore, Berenbaum, and Liben’s (2009)
textbook discussing gender development, biological theories regarding sex
differences are mixed in with social theories, despite contradictory information
within the text itself. For example, Blakemore, Berenbaum and Liben (2009) report

in one sentence that sex differences based on biology are usually not found when



results are analyzed for statistical significance, then they go on to say immediately
afterwards that some differences are found depending on what measure of
mathematical performance was tested. If such a contradiction occurred in a paper or
textbook that was discussing socially-based theories, it would be disregarded by the
academic community immediately.

Other theories that have a basis in biology occasionally pop up in research.
Beaujean, Firman, Attai, Johnson, R. Firman, and Mena (2011), for example,
examined behavioral traits like conscientiousness, extraversion, and openness to
experiences in math performance. What they found was that the aforementioned
traits are related to each other, and that they are related to each individual person’s
general intelligence level. Beaujean, et al. (2011) note that empirical evidence
concerning these traits is often mixed, yet they still draw conclusions from this data.
It is also important to point out that behavioral traits can be biologically based and
socially derived, thus further problematizing their research. In The Mirage of a
Space Between Nature and Nurture, Evelyn Fox Keller (2010) demonstrates that it is
all but impossible to determine how much of human behavior is driven by genetic
programming and how much is driven by social programming. Andrew Penner
(2008) similarly questions how much weight should be given to biological
arguments by examining international data on mathematical achievement scores.
Penner (2008) concludes that differences in gender performance can and do vary
greatly on an international scale, and that strictly biological explanations of these
differences cannot account for all of the differences, meaning that social

explanations factor in as well.



Some scholars have systematically challenged biological theories. Rebecca
Jordan-Young (2010) carefully and methodically challenged biological theories of
sex difference in her book The Flaws in the Science of Sex Difference, critiquing
everything from the types of experiments that are used by biological researchers to
the developmental flexibility of our genetics. Jordan-Young questions the answers
that the “science of sex differences” provides. She argues that scientists who test for
biological differences actually use quasi-experiments instead of true experiments,
and draw their conclusions from those results. Often these experiments must be
repeated several times, since they are quasi-experiments, and in order to be
accurate they should have the same results each time. Jordan-Young emphasizes
that “scientific research contributes to, rather than simply reveals, the meaning of
phenomena that are studied,” (p. 10) including the so-called phenomena of
mathematical performance being impacted by a person’s biological sex. She also
argues that social aspects, such as what types of questions scientists are asking and
what is deemed relevant at the time, influence all biological research and thus the
published results. Jordan-Young (2010) goes on to point out that while hormones
may influence the way the brain is organized, these effects are not permanent. In
fact, the transformation of interests into skills is the result of taking an initial
propensity for a task or subject, like math, and increasing that trait, which often
occurs through social reinforcement. Jordan-Young copious examination of the
flaws informing biologistic claims about sex differences in the brain supplements
earlier works by Carol Tavris (1992) and Anne Fausto-Sterling (1992). In her

contestation of biological explanations, Tavris notes that biological shortcomings or
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differences can be overcome with effort. They are in no way permanent. Similarly,
Fausto-Sterling (1992) takes on a wide variety of biological theories regarding
differences between men and women in addition to the issue related to the
supposed difference in mathematics performance, questioning once again
researchers’ objectivity and the validity of scientific results. Wigfield and Byrnes
(1999) examined research that was conducted by Royer, Tronsky, Chan, Jackson,
and Marchant III (1999) on the different speeds at which males and females are able
to recall mathematical information, criticizing the results and questioning their
conclusions that math fact-retrieval speeds are the source of gendered performance
differences on mathematical assessments.

In contrast to the problematic claims about biological bases of gendered
math performance, social theories regarding differences in mathematical
performance are better supported by evidence. Researchers suggest that
theoretical concepts like stereotype threat, stereotype lift, and math anxiety can
explain differences in performances. Moreover, these results can be easily
replicated, unlike biological arguments. All three of these concepts were developed
after long-term study of students’ mathematics performances. Stereotype threat and
stereotype lift both focus on the effects of activating students’ gender identities
prior to requiring them to complete a math test. When student genders are
activated prior to testing, female students’ performances are lower than their
typical scores, whereas male students’ scores increase (Hyde, Lindberg, Linn, Ellis &
Williams, 2008; Hyde, Else-Quest, & Linn 2010; Walton & Cohen, 2003). Hyde, et al.

(2010) further analyze other effects of gender stereotypes surrounding
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mathematical performance, noting that activating these stereotypes in students can
lead to high levels of math anxiety, which impairs performance, and lowers
confidence levels. The concept of stereotype threat was developed somewhat later
than the conceptualization of math anxiety in the early 1970’s (Englehard, 1990;
Spencer, Steele & Quinn, 1999). Recently a study conducted by Cvencek, Meltzoff,
and Greenwald (2011) revealed that students begin showing gendered ideas of
mathematical performance as early as the second grade. In a study published by
Neuville and Croizet in 2007, the research showed how the salience of a student’s
gender identity could impair mathematical performance in seven- and eight-year
old girls in the United Kingdom. Neuville and Croizet (2007) found that the children
in their study exhibited signs of perpetuating stereotypes regarding mathematical
performance, and that they were just as susceptible to the stereotype threat and lift

effects as older children.

Classroom-Based Theories

While the above research focused mainly on students and their performance
on mathematics tests, another body of research examines the mathematics
classroom itself. When the center of research on gender and mathematics shifted
from biological to social theories, the classroom became the empirical subject,
according to Stephen Lurman (2000). What happened when the central object of
study shifted from the individual to classroom atmospheres and experiences?
Scholars attended to issues of voice, identity, and agency in math classrooms, linking

them to various inequalities, and suggesting strategies for reform. Some studies
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investigated the influence of peer groups on students’ mathematical attitudes. An
article by Crosnoe, Riegle-Crumb, Frank, Field, and Muller (2008) spotlighted the
effect peers had on course selection. They found that the year before a student
graduates is the most crucial time span for future development in mathematics, and
since who students associate with is important, this time is an extremely important
time to provide extra encouragement and support for girls in order for them to
continue enrolling in higher mathematics courses. In another analysis of peer
groups in mathematics classrooms, Barnes (2000) discussed the effect masculinities
could have on collaborative mathematics groups. Barnes argued that collaborative
settings help lower the rate of disaffection in girls, and that they provide a more
equitable environment by not allowing male students to dominate and demand the
majority of the instructor’s attention. Group work also allows for a deeper
understanding of the course material (Barnes, 2000).

Another focus of the research into issues inside of mathematics classrooms
looks at actual student experiences. In the early eighties Buerk (1982) started the
trend on focusing on gendered experiences in the mathematics classroom by
focusing on the experiences of women. Seeking to explain why women chose to no
longer engage with mathematics, Buerk (1982) found that more often than not
women associated feelings of embarrassment with common mathematical tasks that
students are asked to do in classrooms everywhere. Competitions at the board,
timed tests, and even classroom use of flash cards engendered experiences of
embarrassment, which was felt by women years after they had happened. Given the

commonality of these types of assignments in math pedagogy, there is a widespread
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detrimental effect on female students. When asked, the women interviewed for the
project described mathematics as “rigid, removed, aloof, and without any human
ties, rather than... [something] discovered and developed.” Women also tended to
perceive math as a “collection of answers rather than a dynamic process that is alive
and changing” (Buerk, 1982, p. 20). Realizing that this was a problem, Buerk (1982)
suggested that mathematics be taught in ways that allow for creativity, flexibility,
and alternative ways of thinking. Renold (2006) found similar findings nearly
twenty-five years after Buerk’s article was published. Renold also argued that
despite recent and major shifts in educational policies, gendered inequalities and
stereotypes persist. Despite two decades of research suggesting the harmfulness of
gender stereotypes, the stereotypes continued to circulate in math classrooms.

Boaler and Sengupta-Irving (2006) came to a similar conclusion in a study
that also focused on girls’ experiences in mathematics classrooms. Boaler and
Sengupta-Irving (2006) critiqued programs that were aimed at improving girls’
performance in mathematics, arguing that such programs root the problem firmly in
the girls themselves, instead of the classroom culture. They concluded by saying that
the focus of research should be less on the subjects themselves, and more on the
systems that are in place that produce inequalities. Similarly, Renold (2006) called
for higher awareness of hidden curriculums and the dangerous normalizing nature
of classrooms.

With the proposed solutions and reforms focusing less on the students and
more on the classroom atmosphere, researchers began investigating those who are

in charge of the classrooms: the teachers. While researchers like Wood (1994) and
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Nickson (2004) focused on how teachers were actually teaching mathematics, other
researchers like Ball and Bass (2000) and Brown, Jones, and Bibby (2004) studied
teachers’ attitudes towards and knowledge of mathematics. Ball and Bass (2000)
argued that adequate mathematics instruction relies on the “the development of
pedagogical method” (p. 85) and a sufficient knowledge of the subject being taught.
Brown, Jones, and Bibby (2004) took this type of analysis in a slightly different
direction, interviewing teachers who were still in training about their relationship
with mathematics. In their work, Brown, et al. (2004 ) found that while teachers
want to make a difference in students’ lives, they are also aware of the pressure of
educational policies that emphasize standardized testing. They were concerned
about negative job consequences if they failed to conform to requirements,
particularly in mathematics subjects with which they are not always comfortable.
Investigating how teachers were actually teaching mathematics, Wood
(1994) contended that inquiry-based classrooms yield better results when it comes
to student understanding of the material when compared to traditional classrooms.
She argued that inquiry-based mathematics classrooms allowed for different beliefs
among students about their roles in the classroom, thus increasing their
responsibility to themselves and others in class, and creating the possibilities for
deeper understanding. This method of instruction is a way to acknowledge the
imbalance in power distribution of mathematics classrooms while addressing it
simultaneously. Wood (1994) noted that inquiry-based classrooms, which allowed
for open discussion of the material, were uncommon in mathematics pedagogy, but

they had unexpected benefits. Wood pointed out that open discussion could create
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conflict among students, but in the act of resolving the conflict, students were
exposed to alternate perspectives and ways of thinking. Nickson (2004) focused her
book on traditional teaching and learning in mathematics classrooms, where
teachers maintained full authority to elaborate concepts. Presenting mathematical
principles and axioms as black and white with no room for flexibility allows no
scope for subjectivity in the mathematics classroom, going so far as to call it a
problem that should be avoided. Is subjectivity in mathematics classrooms really
detrimental to students? What is being lost if subjectivity is left behind?

Wood'’s (1994) article and Nickson’s (2004) book anticipated later
discussions of student voices and subjectivity in the mathematics classroom.
Subsequent researchers developed concepts of student voices, identities, agency
and subjectivity in greater detail. When it comes to the debate over subjectivity
versus objectivity in the mathematics classroom, Evans and Tsatsaroni (1994)
suggest that if a discussion is taking place on anything other than the material or
content, then a move is already being made away from objectivity, towards
subjectivity. As a move toward the subjective occurs, the classroom moves away
from the traditional nature of mathematics itself. In a study designed to determine
whether allowing for subjectivity improves student performance, Evans and
Tsatsaroni (1994) found that using language to attribute student positions in
regards to the subject could actually be helpful. In doing so, it is important, they
argue, that teachers should know more about their students than just their name
and their current grade, and they should be aware of the multiple meanings that

students could draw from attempts at trying to relate mathematics to students’ lives
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outside the classroom. However, not all researchers believe that there is a place for
subjectivity in mathematics classrooms. Gough (2001) argue that objectivity is not
something that should be lost in the mathematics classroom, and that using feminist
standpoint theory could allow for a more objective analysis of material and data,
since more than one viewpoint would be examined. If objectivity were increased at
the expense of subjectivity, who would benefit? Anyone? The discourse surrounding
objectivity and subjectivity in mathematics will be further explored in chapter two.
Somewhere lost in the objectivity /subjectivity debate is the importance of
students’ identification with mathematics itself. Walshaw (2005) documented a
single female student’s experiences in mathematics, tracing how she created an
identification with the subject, and showing how conflicting that identification could
be. The student discussed her struggle to identify with mathematics, noting how
gender differences in treatment in math classrooms played a role in that struggle.
Walshaw (2005) argues that the girl’s conflicting identification with mathematics
was created through a combination of school discourses and practices that are often
at odds with one another. In a call for changes in mathematics education, Walshaw
(2005) states: “Mathematical understanding is a complex phenomenon, in which
gender and history [with the subject] play a major part” (p. 30). Taking the
importance of identity formation a step further, Boaler and Greeno (2000) state that
traditional teaching methods turn students off of or away from mathematics at a
very critical juncture in their intellectual identity development. In their critique of
theories regarding how mathematical knowledge is produced, Boaler and Greeno

(2000) argue that “the practices of learning mathematics define the knowledge that
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is produced” (p. 172). Contrary to previous lines of thinking that posit that learning
mathematics leads to mathematical knowledge, Boaler and Greeno suggest that
pedagogical practices matter, being an active agent in the learning process is
important to the development of deeper learning and understanding, which in turn
leads to more positive experiences and identities with mathematics itself. Boaler
and Greeno back up their claims by citing data that the highest scoring math

) o«

students’ “attainment progressively deteriorated as their mathematics teaching
became more procedural” (p. 185). Most of the students whose performance
deteriorated were female. Traditional pedagogical practices contribute to and
preserve inequalities in mathematical attainment. When students are given greater
agency and voice in the classroom, like in the inquiry-based classrooms discussed by
Wood (1994), deterioration in performance can be avoided.

Very little research addresses the factors that contribute to inequalities in
mathematics education and how to remedy them. Yet the few studies available
provide thorough and thoughtful discussions of the issue. Robert Mura (1995)
analyzed the links between various feminist theories and mathematics, criticizing
four approaches and theories: the intervention perspective, the segregation
perspective, the discipline perspective, and the feminist perspective (p. 155). The
first approach, the intervention perspective, places the problems within
mathematics classrooms squarely on the shoulders of the students. The segregation
perspective highlights issues that crop up when boys and girls interact in the

classroom, citing coeducation as the source of many problems. Mathematics as a

discipline comes under fire in the third approach. Mura (1995) describes
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mathematics as a place where the construction and maintenance of privilege occurs.
The feminist perspective analyzes the gendered nature of teaching and learning.
Mura (1995) endorses the feminist approach as a means of fostering equality in
learning through equal treatment. According to Mura (1995), a radical feminist
pedagogy is sensitive to women'’s psychology, and diminishes the hierarchy between
teachers and students, creating a more equal atmosphere.

Elaine Howes (2002) further develops the arguments for a feminist
pedagogy. In her book (2002), Howes argued that feminist theories and pedagogies
bring certain elements to educational settings that are excluded by mainstream
national standards and strategies, such as the experiences and perceptions of
women and minorities. In order for “students to feel that their ideas are valued, it is
necessary to develop an environment in which all students feel welcome to...speak”
(Howes 2002, 6). Howes knows that a feminist pedagogy faces challenges because it
would mean upsetting the balance of power between the student and the teacher, as
well as other hierarchical systems. Sue Willis (1995) also takes up the question of
upsetting that power balance and giving more agency to students as key to gender
reform in mathematics. In contrast to mainstream reforms that rely on
standardized testing, Willis points out that the bigger issue is “lack of agency
encouragement” (187) in students. With little to no agency, students lose the ability
to question course materials, and are relegated to sitting and learning in silence. The
relative rigidity of this type of mathematics education results in inequalities
described by Mura (1995) that are much more dangerous. Challenging these

classroom issues by using a feminist pedagogy is extremely important. As Willis
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(1995) sees it, change is necessary, and without it, “those already privileged in
mathematics can continue to control and define what constitutes mathematics in

school” (p. 195).

Conclusion

Mainstream programs have been designed to educate the public on the
current status of mathematics and to identify strategies to improve performance in
the fields of science, technology, and engineering. Change the Equation is one such
program. This program is designed to raise awareness of the issues in the STEM
fields and to improve their quality within the United States. The organization is
attempting to increase corporate philanthropy, and to engage and encourage young
students in the STEM subjects to change the low rates of participation. While their
goals are aimed at the STEM disciplines at large, Change the Equation also provides
information and statistics on gender disparities in participation and achievement
within STEM fields. The National Math and Science Initiative (NMSI) also aims to
improve the number of students enrolled in STEM classes and to raise the number
of students who eventually pursue STEM careers. They too provide some
information on gender issues within STEM fields, but they fail to discuss these issues
and promote them in a way similar to Change the Equation. Although these
programs clearly identify the importance of improving U.S. performance in
recruiting students to the STEM disciplines, STEM numbers are not improving,
particularly when it comes to the participation of women and minorities in these

fields.
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Creating a feminist pedagogy designed specifically for mathematics could be
part of the solution to the problems the NMSI and Change the Equation are trying to
fix. Feminist pedagogy could supplement mainstream approaches in addressing
gender inequalities that remain ever present in STEM fields. Deploying research
findings by scholars such as Boaler and Sengupta-Irving (2006), Buerk (1982), and
Renold (2006), feminist pedagogy might succeed in making mathematics attractive
to girls and to students of color. This thesis explores the contours of a feminist
pedagogy in mathematics education. To begin this exploration, it is important to
consider certain aspects of the mathematics discipline to show that mathematics is

not the straightforward, objective subject that many people perceive it to be.
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Chapter 2

Introduction

Common stereotypes of mathematics held by a large part of society
generally paint it as a discipline that is pure, true, natural, and objective. Only the
most intelligent people are capable of studying it at high levels. Mathematics is seen
as being a firm, unflawed foundation, upon which the other sciences are built. It's
seen as scary, intimidating, complicated, and foreign. In mathematics, the answer is
either right or wrong, with no middle ground. The question is: do these words
accurately describe the discipline of mathematics? The goal of this chapter will be to
explore that very question, and to point out issues with gender within the discipline,
as well as many contradictions that arise within it.

This chapter will begin with a section that discusses the importance of
separating math from the other sciences, specifically in regard to critiques of the
sciences, as well as science and mathematics’ purpose and symbolism in society.
Following that will be an examination of the various types of mathematical inquiry
that occur, which will include historical elements. The questioning of mathematics
itself will come next, and will be largely built upon the issues mentioned while
outlining mathematical inquiries. The chapter will conclude with a section that
centers upon the questions that need to be asked in order to create a new, inclusive

type of mathematics.
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Examining the Extent of the Mathematics-Science Overlap

Science is a vast umbrella, under which fall many categories. The importance
and symbolism vary by field. Science in general, according to Bauchspies, Croissant,
and Restivo (2006), is a primary source of knowledge, or something from which
what society considers knowledge is created and built upon. The scientific method
is relied upon to legitimize scientific knowledge. Bauchspies et al. (2006) argue that
the results of the scientific method of inquiry tend to come in the form of factual
statements, scientific theories, and that science itself is a vast “social institution
grounded in an explanatory strategy that does not have recourse to paranormal,
supernatural, or transcendental causes” (p. 5). Basically, science is based on field-
specific investigations that generate replicable results that can be achieved again by
another scientist using the same methodology. What might be controversial about
their definition of science would be the labeling of it as a social institution. Science is
painted to be this objective, pure pursuit of knowledge that is resistant to outside
biases and influences, so Bauchspies et al.’s (2006) labeling of it as a social
institution insinuates the very opposite of this concept, and that it is in fact
susceptible to societal expectations and manipulations.

Mathematics is also method-driven; yet critiques of mathematics content and
methods tend to differ from that of the other sciences. Feminist scholarship across
the natural and social sciences has documented gender bias in methodology and in
research findings. For example, several years ago, medical research suggested that
signs and symptoms of a heart attack were different for women than they were for

men, with women’s symptoms being subtler than men’s symptoms (McSweeney et
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al,, 2003). This research was borne out of critiques of the studies conducted on heart
disease, and how results of studies conducted mainly on men were generalized for
the entire population despite the lack of female participants. Results of this critique
include the institution of many rules and requirements regarding sex and gender
based research and analysis in medical studies, particularly pharmaceutical studies
(Greyson, Becu, & Morgan, 2010). Can similar critiques be made regarding
mathematics? According to Bauchspies et al. (2006), “mathematical objects must be
treated as things that are produced by or manufactured by social beings through
social means in social settings and given social meanings” (p. 14), but actually doing
so can be quite difficult. Critiques of mathematics that are similar to scientific
critiques cannot be made as easily, and that is where a separation of mathematics
from the other sciences needs to be made.

While mathematics falls under the umbrella that describes all of the sciences
as objective, truthful, pure, etc,, it is a distinctly different field from the other
sciences. Mathematical content, whether it comes from the applied mathematics
fields or pure mathematics, does not necessarily deal with content that has a direct
impact on living objects. Even in applied mathematics, formulas that deal with
probability generating functions can be used to predict the odds of drawing all
consonants or four consonants and three vowels in an initial Scrabble tile draw,
which is fun, but doesn’t necessarily have an impact on society at large. Oftentimes,
when people, whether academics or professionals are discussing anything that has
to do with science, mathematics is an implied part of the sciences, but it's not always

clear if mathematics is indeed meant to be included. Sandra Harding (2004) wrote
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an article that discussed and critiqued socially relevant philosophies of science, but
in doing so, she mentioned mathematics briefly, in passing, or not at all. In her
discussions, it was unclear as to just how much of her argument could be applied to
mathematics in addition to the other sciences. Feminist scholars, particularly the
feminist empiricists, have been working in the field of Feminist Science Studies to
point out and eliminate the biases from scientific research, such as those that appear
in research questions, research methods, and conclusions drawn from the results
(Damarin, 1995). Can feminists document bias in mathematics, given that
mathematicians’ methods are not always similar to other scientists’? Damarin
(1995) suggests that scientific research critiques are sometimes stretched to cover
mathematics, and yet this approach tends to critique the science involved in the
study of mathematics and gender. That is an important step in addressing the extent
of the overlap between mathematics and science, but it is not enough. Mathematics
itself merits its own research and criticisms.

Scientific critiques that include mentions of mathematics are not entirely
unjust, irrelevant, or inaccurate, given that the sciences can be fairly reliant upon
mathematics at various points in research efforts. Mathematicians can also utilize
scientific sources in their research, but it's not always necessary. In fact,
mathematical research and discovery can exist outside the realm of scientific
discovery, but the same cannot necessarily be said for the other scientific fields.
Mathematics is the foundation upon which the other sciences are built. As
mathematician George David Birkhoff (2004) saw it, there are five ascending levels

of what is called science: mathematical, physical, biological, psychological, and
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social. Mathematics was not placed on the foundational level for no reason. Being at
the bottommost level is an illustration of how mathematics is related to the sciences,
but yet can function entirely as its own entity, without being reliant upon any other
level or type of science. Birkhoff (2004) goes on to say that each level of science has
its own language (number, matter, organism, mind, society), and that they are all
independent of one another.

Historians of mathematics and historians of science appear to realize the
distinction between mathematics and science. Tony Mann (2011) points out that the
history of mathematics and the history of science remain unattached at the present
moment. This may not be entirely accurate, given that many well-known historical
scientific figures worked on scientific and mathematical issues, such as Isaac
Newton, who made significant contributions to both calculus and physics. The lack
of a connection between the two histories might be due to a lack of mathematics-
specific historian projects and job availability when compared to scientific
opportunities (Mann, 2011). If these historians recognize the need to provide a
distinction between mathematics and science, what is stopping other academics, or
even practicing mathematicians from writing about such issues? Mathematics is
indeed a science, but it is its own type of science, and many of the popular sciences,
such as chemistry, biology, human biology, and physics often rely upon
mathematical theorems and equations to conduct their work. There are some cases
where mathematics and the sciences are completely unattached, like when it comes
to their respective histories, but such separations are rare. Mathematics and those

who perform it are unique in the world of science, from their methods to their end



26

product. The next section will discuss the unique methods of mathematical inquiry,
as well as what qualifies as mathematical knowledge, and issues within these

practices and ways of thinking.

Mathematical Inquiry and Thinking

Mathematical thinking is often viewed to be logical, objective, and thoroughly
rational, generating results that are truthful, absolute, and pure. Mathematics itself
is thought to be an intense and individual pursuit that is intellectually demanding.
To an extent, it is. However, mathematical findings are not always a result of a
rigorous effort put into a mathematical proof by a lone mathematician sitting at a
desk with only crumpled up papers containing incorrect solutions for company. The
results are a combination of many aspects of mathematical inquiry that often
include collaboration and cooperation. In this section, those elements of
mathematical inquiry will be explored, as well as ways of mathematical thinking,
contradictions within those lines of thinking, and how to move towards a cultural
approach to mathematics.

Mathematical inquiry and thinking are rigorous and logical, but that is not
the entire story. First, it is important to recognize the ways in which mathematicians
think and operate, as described by mathematicians themselves. Famed
mathematician Jules Henri Poincaré (2004) describes the ideal method of
mathematical discovery and invention as moments of inspiration that follow
moments where the mind is resting and not thinking about anything that is

remotely related to the mathematical task at hand. These moments of inspiration
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and rest are preceded by thorough concentration on a topic or issue, and after
exhaustion of the available trains of thought for the mathematician (Poincaré,
2004). In other words, mathematicians work hard on a problem, reach a point
where they can go no further, and take a break. The result of the break, in Poincaré’s
case, was that the next step or complete solution would appear in the conscious part
of his brain from his subconscious mind. To Poincaré, the subconscious plays a role
in mathematical invention, since the subconscious utilizes intuition, which is
something that the conscious brain of the mathematician does not do. Of course, the
verification of the results, which is an essential part of proving mathematical
theorems and postulates, is the last step in this process, and it involves a second
period of rigorous, conscious work.

Poincaré’s model of work is often associated with “pure mathematics,” which
is distinguished from applied mathematics. Mathematician Mary Cartwright (2004)
suggests that such abstract thinking is associated with pure mathematics, in
contrast with applied thinking, which is the key to applied mathematics. Applied
mathematical thinking involves the application of mathematical theorems to real-
life situations, or creating mathematics based on its applicability in other fields, such
as engineering and business. Cartwright (2004) describes the essential basis of
mathematics as the employment of various symbols to interpret the meaning of the
universe. Pure mathematics creates those symbols and defines what they represent,
and applied mathematics involves operations conducted on those symbols and on

objects in everyday life.
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The type of thought and the type of mathematics performed depends on
what field a mathematician is in. Proficiency in one school of mathematics does not
necessarily signify proficiency in the opposite school (Otte, 2007). In fact, students
of one school of thought often struggle to learn the mathematical concepts from the
opposing point of view (Otte, 2007). What makes the two areas of mathematics so
different and difficult to understand? Michael Otte (2007) argues that it is due to
contradistinctions and controversies between synthetic and analytic mathematics.
Synthetic mathematics would be what Cartwright called applied mathematics, like
statistics, analysis, geometry, and mechanics, since they are all based on
observations and experience. Analytic mathematics would be pure mathematics that
relies heavily on deduction, like ordinary differential equations, linear algebra, and
other abstract mental constructs.

This kind of disconnect between subcategories of mathematics can lead to an
exclusion of otherwise capable mathematicians from one field or the other, based
solely upon their perceived skill set. This only feeds the popular belief regarding
mathematics as a lone pursuit. Leone Burton (2004) investigated the ways that
mathematicians conducted their work, among other things, and found that the ways
mathematicians viewed their methods and how they actually performed their
research were very different. She found that although mathematicians might have
preferred the fabled solitary pursuit in mathematics, the most common or even
normal method was to work collaboratively with another mathematician or two. In
fact, the number of complaints among those studying mathematics was positively

correlated with the advancement in levels of abstraction (Burton, 2004).
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There are many debates among mathematicians and philosophers about the
nature of mathematics and its foundation. Mathematical naturalists posit that
mathematical knowledge exists in the world independent of the human mind, and
that mathematicians discover it through experience (Kitcher 1988). Where
Platonists argue that math is discovered through rigorous training of the mind,
formalists suggest that math is created (Henrion 1997). Mathematical apriorists
insist that mathematical knowledge is deduced at a theoretical level, not through
observation or experience (Kitcher 1988). David Hume took particular interest in
this topic regarding differences between apriority and induction in mathematical
thought. In An Enquiry Concerning Human Understanding, Hume makes it clear that
a priori arguments are analytical, involving tautological claims that are true by
definition. “Pure” mathematics involve only analytical statements (Bayne, 2000).
Smit (2010) points out that Hume was skeptical about the power of inductive logic
and reasoning, insisting that both were fallible. Induction or generalizations based
on observation are central to synthetic mathematics, linking applied mathematics
that which is experienced or observed.

The distinction apparent between inductive and deductive methods is a
crucial one. Mathematical proofs provide an excellent mechanism through which to
see this difference. Inductive proofs, by definition, are those that rely on multiple
observations to provide support for their conclusions. In other words, inductive
proofs rely on proving that more than one case of the theorem is true. In contrast, a
deductive proof relies on inferences derived from syllogisms involving general laws,

principles or theorems.
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Some philosophers argue that the majority of mathematics is based on
deductive methods, but can a mathematical argument utilize both inductive and
deductive rationales? Sherry (2006) believes that it is possible, based on the work of
Hungarian philosopher Imre Lakatos’ three moments of mathematical reasoning.
Sherry noted that Lakatos argued that mathematicians first use induction in order to
find conjectures, theorems and postulates to prove. Next, mathematicians form and
review informal proofs of those conjectures, theorems, and postulates, or put them
through a series of “thought-experiments.” The third and final step is the
formalization of the informal theory in such a way that they are deducible “by
formal transformations of the axioms” (Sherry, 2006, p. 490). Using Lakatos’ view,
inductive and deductive methods can be employed simultaneously, which might
then classify a single piece of mathematics that utilizes both as both analytic and
synthetic. Mathematicians such as Cartwright might believe that analytic and
synthetic mathematics are relegated to two different spheres, which might not
always be the case. This is one example of how mathematicians from different
schools of thought often disagree with each other on the most basic theoretical
levels regarding mathematics. Although popular stereotypes depict mathematics as
true, pure, and simple, the field itself is characterized by controversies and debates.

There are also contradictions within mathematical subject matter itself, for
example, consider Euclidean and non-Euclidean geometry. Euclidean geometry is
what is taught in most schools, and it's based on the concepts of straight lines,
parallel lines, angles, and set distances. Non-Euclidean geometry disregards the

rules regarding parallel lines set out in Euclidean geometry, focusing on geometric
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ideas involving elliptic and hyperbolic curves. The laws governing the geometry of
curved lines seemingly contradict Euclidean geometric laws, which are based on
straight lines and their intersections. However, both fall under the mathematical
category of geometry. Furthermore, while non-Euclidean geometry denies
particular facets of Euclidean geometry, it still complements and advances other
areas, thus they are not completely contradictory to one another.

In addition to these issues, there are ongoing debates concerning the
usefulness of histories of mathematics to the entire discipline. Why the debate?
Mathematical histories tend to incorporate outside influences in their discussions of
mathematical developments, including societal factors of the particular time period
they are analyzing that could have influenced that development. Mathematicians
often object to mathematical historians’ claims that mathematical developments are
related to philosophical and social contexts (Fried, 2007). As Michael Fried (2007)
says, “the question of history raises the possibility of different ways of thinking
about mathematics and the study of history itself highlights different, especially
culturally influenced, ways of thinking in mathematics” (p. 205). There are often
several ways to solve a particular problem, like the more than one hundred proofs
of the Pythagorean theorem (a2 + b? = c?), so why is having more than one
perspective on mathematical developments detrimental to the subject? Would it not
in fact benefit those who study mathematics, making the subject appear to be more
flexible and relatable, instead of fixed and rigid?

In fact, one interesting historical story in mathematics centers on the history

of the concept of the infinite, or infinity. As Howes and Rosenthal (2001) argue, the
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time of the discovery of infinity, from its acceptance to it's split into dualisms of
mind and matter, can be closely tied to the creation and evolution of gendered
dualisms. They state that mathematical historians date infinity back to the time of
the Greek philosopher Zeno, although the interesting conceptual evolutions did not
occur until the time of Pythagoras. In the pre-Pythagorean times, the infinite was
thought to be “immanent in the physical world as well as representative of the
spiritual [world]” (Howes & Rosenthal, 2001, p. 180). Greek philosopher
Anaximander led the thinkers at the time, and the physical-divine infinite was not a
disjunction of man and woman, but in fact represented a unity. Then the
Pythagoreans came along, and split the cosmos and human existence into gendered
dualisms, suggesting that the main operating axiom was male and as such, greater
than female (male > female), and “elements homologous with the female [were] to
be shunned or feared” (p. 181). In this scheme, masculine elements were those that
could be classified has having or being a limit, odd, single, right, straight, light, good,
and square; female elements were unlimited, even, plural, left, crooked, dark, bad, or
oblong (Howes & Rosenthal, 2001, p. 182). Thus the Pythagoreans transformed
Anaximander’s concept of the infinite or apeiron, as an ungendered, wholistic entity
encompassing both physical and divine to one structured by binaries of good or bad,
dark or light, physical or spiritual, male or female. According to Howes and
Rosenthal (2001), Aristotle took up this work and completed the splitting of infinity
into two concepts: the potential and the actual (p. 183). Marziarz and Greenwood
define the potential infinite as “something which is always becoming without ever

reaching a final form” (as cited in Howes & Rosenthal, 2001, p. 183). According to
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Aristotle, the actual was necessarily finite. In the process of making his argument,
Aristotle separated mathematics from the actual physical world, and banished the
concept of actual infinity from mathematics. Because infinity was equated with the
feminine, Aristotle banished the feminine from mathematics (Howes & Rosenthal,
2001, p. 183).

The incorporation of values associated with classical Greece is only one
possible way of thinking about the effects of culture on mathematical thinking. Many
culturally diverse histories of mathematics are possible, especially given the
phenomenon of simultaneous discovery. At the same moment that Pythagoras was
discovering his most famous theorem, simultaneous discoveries were being made in
Africa and China. In an article for The New Yorker, Malcolm Gladwell (2008) points
out that not only does simultaneous discovery happen, it actually happens quite
often:

This phenomenon of simultaneous discovery—what science historians call
“multiples”—turns out to be extremely common. One of the first
comprehensive lists of multiples was put together by William Ogburn and
Dorothy Thomas, in 1922, and they found a hundred and forty-eight major
scientific discoveries that fit the multiple pattern. Newton and Leibniz both
discovered calculus. Charles Darwin and Alfred Russel Wallace both
discovered evolution. Three mathematicians “invented” decimal fractions.
Oxygen was discovered by Joseph Priestley, in Wiltshire, in 1774, and by Carl
Wilhelm Scheele, in Uppsala, a year earlier. Color photography was invented
at the same time by Charles Cros and by Louis Ducos du Hauron, in France.
Logarithms were invented by John Napier and Henry Briggs in Britain, and by
Joost Biirgi in Switzerland...For Ogburn and Thomas, the sheer number of
multiples could mean only one thing: scientific discoveries must, in some
sense, be inevitable. They must be in the air, products of the intellectual
climate of a specific time and place. It should not surprise us, then, that
calculus was invented by two people at the same moment in history. Pascal
and Descartes had already laid the foundations...For that matter, the
Pythagorean theorem was known before Pythagoras; Gaussian distributions
were not discovered by Gauss.
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Despite these variances, one person is often given credit for these discoveries in
school texts. In most cases, a white, European male is credited with major
intellectual discoveries. Who is responsible for determining what qualifies as
legitimate mathematical knowledge, and who determines who is capable of doing
mathematics? In the context of U.S. education, it has been predominantly men who
have made such determinations. Male dominance in the field of mathematics can
dissuade others, specifically women, from entering the field.

What would it take to make mathematics more welcoming to those who have
traditionally been turned away? What would happen if the history of mathematics
were a more essential part of mathematics education? Claudia Henrion (1997)
argues, “if there is one lesson that is clear from the history of mathematics, it is that
questioning even the assumptions that seem most obvious and fundamental can
lead to profound new ideas and visions” (p. 262). The next section will build upon
this very idea, and the questions that were raised in this chapter, and will further
question mathematics itself. Inaccurate stereotypes, the lack of diversity, the notion
of truth, and the view of mathematics as objective will all be questioned and

investigated.

Creating a New Type of Mathematics

Starting at the theoretical level, the most important question that can be
asked is what constitutes mathematical knowledge? As Lorraine Code (1991) has
noted, knowledge itself can be defined as a convention rooted in the practical

judgments of a community of fallible inquirers who struggle to resolve theory-
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dependent problems under specific historical conditions. What, then, could be
labeled as a mathematical “fact” or mathematical knowledge? Bauchspies, Croissant,
and Restivo (2006) analyzed what comprises a scientific fact. They point out that
science operates by demarcating between truth and falsity, yet within the realm of
contingency, few truths are indisputable. For example, scientists suggest that matter
exists in three states: solids, liquids, and gasses. Yet, there are substances that
complicate this, such as mayonnaise or Jell-O. They exhibit properties of liquids by
taking the shape of the container they are in, yet when removed from the container,
they do not become fluid; they retain their general shape. A mathematical equivalent
of what many assume to be a fact is that two plus two always equals four. This is not
always true, given that the sum depends entirely on the base being used, or if a total
summation is not being used, the solution could range from zero to four. So does
that mean that all facts are debatable? Possibly. When pieces of information labeled
as facts are first introduced, questions tend to arise, but “with the passage of time
they generally become unquestioned” (Bauchspies et al., 2006, p. 20). This does not
necessarily mean these propositions are inherently true, merely that with the
passing of time, they tend to become more accepted, so long as they are able to
withstand contestation. In the eyes of Bauchspies et al. (2006), facts of any kind are
highly influenced by the community, and yet those who challenge accepted facts are
often excluded from the community. In mathematics, some axioms are accepted
universally, such as m, or pi, being an irrational number that when written as a
decimal, never ends, or that dividing any number by zero is impossible. However,

the same is not true for all mathematical axioms.
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Earlier in this chapter, Euclidean and non-Euclidean geometry were
mentioned. In Euclidean geometry, a main operating theorem states that all the
measured angles of every triangle add up to one hundred and eighty degrees. In
non-Euclidean geometry, all of the angles of a triangle add up to more than one
hundred and eighty degrees. Another example of an indeterminate axiom is
Fermat’s Last Theorem. Fermat wrote his theorem in the margin of a book in the
1630s, but failed to write a proof, citing a lack of available space in which to write it.
The theorem stated that for the equation a» + b» = c?, no two positive integers could
be plugged in to make it true when the degree of n was greater than the number
two. For centuries, this theorem was accepted as true, despite the fact that Fermat
never provided a proof, and mathematicians worked tirelessly to either prove or
disprove it. An acceptable proof was not officially published until 1995, when the
British mathematician Andrew Wiles successfully proved the theorem. The full
story, however, is that many famous mathematicians could successfully prove
portions of the theorem, including Leonhard Euler, Adrien-Marie Legendre, Johan
Carl Gauss, Augustin-Loius Cauchy, and Sophie Germain, but only Wiles receives the
credit for solving it completely (Singh, 1997; Vandiver, 1946). If someone were to
say that it is a fact that Andrew Wiles successfully proved the theorem, would there
have to be an asterisk, given that he built upon the successful pieces of proofs from
other mathematicians, and relied on the help of others to prove it? When and under
what conditions, are certain properties of triangles obtained? Are mathematical

properties and their truthfulness dependent upon other conditions?
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What is accredited as fact can change over time. For instance, it was not long
ago that Pluto was a planet, but that “fact” has changed. There is also the example of
pre-Galilean “fact” that the sun revolved around the Earth, which was based on the
science of the time. This indicates that what are assumed to be facts or truths have a
basis on cultural context, and thus must never simply be accepted without
questioning. It is essential to question the idea of truth, especially in regards to
mathematics, given that truth is often complex and multilayered (Harrison, 2001).
After all, mathematical proofs that are accepted as being true and accurate have
been disproven years later, like the four-color theorem. Even famed mathematician
Kurt Gédel had a theorem proven incorrect after an error was discovered in his
proof.

For many years, it was simply accepted as truth that girls were incapable of
performing mathematics. For this reason, they were discouraged early on from its
study by parents and university admissions officers as well as by mathematicians
themselves (Hersh & John-Steiner, 2011). Harrison (2001) argues that social
contexts of the time influence mathematical study, particularly in relation to gender
and mathematics, and as those influences change, so do the so-called solutions to
the supposed girl “problem” in mathematics.

Recognition of the cultural and societal influences on mathematics is vital,
particularly for those who are interested in increasing diversity in the field of
mathematics. Wilder (2004) argues that by recognizing these influences, a better
understanding of the nature of mathematics would be obtained. A culturally-attuned

approach to mathematics could not only generate multiple solutions to pressing
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mathematical problems, but it could also encourage current mathematical outsiders
to continue to engage with the subject. It would change the content of mathematical
histories, allowing historians to investigate cultural variances and influences more
systematically (Wilder, 2004). For example, the phenomenon of mathematical
evolution and diffusion could be thoroughly explored. An example of diffusion can
be seen in the borrowing of the concept of zero by the Chinese from the Hindus
(Wilder 2004). If it were acceptable for mathematical historians to acknowledge
these types of conceptual migrations, it would foster a new understanding of
mathematics as a collaborative endeavor. Stereotypes regarding mathematics and
mathematicians might disappear, and along with them stereotypes about who has
the capabilities to become mathematicians. The types of experiences of mathematics
students at various levels depicted by Burton (2004) might change, becoming less
anxiety inducing, and more conducive to learning. By creating a more flexible and
inclusive mathematics, perhaps feminists would be able to cross the boundary that
exists between women'’s studies and mathematics that Suzanne Damarin (2008)
pointed out, and work with mathematicians to create an even better mathematics.
To move toward this new mathematics, questioning is not enough. Pedagogical
methods need to change as well, which is where a feminist pedagogy of mathematics

would come in to play.
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Chapter 3
Introduction

Rethinking traditional notions, practices and approaches to mathematics is
an essential step in the creation of a feminist pedagogy of mathematics. The
realization that there are cultural and historical elements in mathematics opens new
possibilities. Mathematical problem solving is a human endeavor. Humans are
imperfect. They make mistakes, they miscalculate, and they assume incorrect facts
are true. As the human element in mathematical reasoning is recognized, it
becomes clear that mathematics is imperfect, fallible, and open to revision.

What this chapter aims to do is to answer the question of what happens
when math becomes and is accepted as more fluid and open to contextual variation.
What can be done to change students’ and teachers’ perspectives and relationships
in regards to mathematics, to make it more positive? Can a pedagogy be created to
utilize this new mathematics, one that includes anyone and everyone? In order to
answer these questions, this chapter will first provide an overview of previous
pedagogies that have attempted to address classroom inequalities on racial, classed,
and gendered lines. Building upon this work, the next section will be where my idea
of a feminist pedagogy designed specifically for mathematics classrooms will be
created. A section discussing the possible critiques and resistance to such a

pedagogy will conclude the chapter.
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Previous Pedagogical Revolutions

Popular pedagogical theories are not designed with the goal of advancing
white male students by stomping on women and minorities in the classroom, but
that can sometimes be the result. Pedagogies that are focused on inclusion and
ending cycles of oppression are not a fix-all solution to these pedagogies, but they
are certainly a step in the right direction. One of the biggest influences to this day
over these types of pedagogies is Paulo Freire’s (2011), Pedagogy of the Oppressed.
In it, Freire (2011) describes ways in which those who are oppressed can take
control over their own lives by empowering themselves through education. It
involves students acknowledging their status as an oppressed citizen or member of
society, and utilizing their own experiences to create their own discourse when
describing their situations, instead of using the language and discourse of their
oppressors. Freire critiques the methods of education at the time of writing, which
is still in widespread use today, describing the lecture and memorization techniques
as a banking concept based on making knowledge deposits into the students’ brains.
The students rely explicitly on the instructor for their knowledge, which requires
them to be passive learners, and creates an unequal power dynamic inside the
classroom. The way around this dynamic, according to Freire (2011), is through the
establishment of dialogue. He argues that dialogue is based on collaboration, union,
and organization to undo the division and manipulation utilized by the oppressors.
[t is up to the oppressed individual to make this change, and to learn from and

problematize their status in society in order to change it.
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Despite its groundbreaking and highly influential content, Freire’s work was
not the be-all, end-all of liberatory or critical pedagogical theories. While it pointed
out many issues with education, it could be seen as being too generalized, since not
all oppressed peoples experience their oppression in the same ways. Sue Jackson
(1997) carefully considers Freire’s work, and finds it to be both useful and limiting
in a pedagogical sense. She critiques Freire’s discussion of the universality of the
educational theory he proposes in Pedagogy of the Oppressed, noting that the book
fails to “give sufficient concentration to difference, to the conflicting needs of
oppressed groups or the specificity of people’s lives and experiences” (Jackson,
1997, p. 464). Jackson (1997) also questions the lack of consideration of the
possibility that the oppressed can also be someone else’s oppressors: “Oppressed
men, for instance, still oppress women; oppressed white women still oppress black
women, and so on” (p. 464). Another scholar who takes issue with Freire’s work is
Kathleen Weiler (1991). She notes that Freire uses his own pedagogical concepts,
and bases his knowledge on his beliefs and experiences, but that this pedagogical
theory falls a bit short when analyzed with feminist theories in mind. She also
addresses Freire’s assumptions that see all oppressed people as the same, and how
it fails to address the different struggles that various oppressed groups might face.
Weiler (1991) addresses Freire’s usage of the masculine, mostly in reference to “the
immediate oppressor of men—in this case, bosses over peasants or workers” (p.
453). Furthermore, she argues that:

What is not addressed is the possibility of simultaneous contradictory

positions of oppression and dominance: the man oppressed by his boss could
at the same time oppress his wife, for example, or the White woman
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oppressed by sexism could exploit the Black woman. By framing his

discussion in such abstract terms, Freire slides over the contradictions and

tensions within social settings in which overlapping forms of oppression

exist. (p. 453)

Freire’s work is not entirely problematic, and it in fact provides important concepts
to consider when creating a feminist pedagogy. Clearly, however, more is needed in
order to expand upon his ideas to create a truly inclusive pedagogy that could bring
about social change. That's where other feminist pedagogical theories come in to
play.

While some feminist pedagogical theories utilize standpoint theory, others
argue for a poststructuralist approach. Sandra Harding (2004) defends the value of
using standpoint theory, especially in regards to philosophies of science, since
standpoint theory allows for an engagement with the sciences themselves, by
pointing out the biases in research and by realizing that some social locations that
differ from the norm can actually provide alternate perspectives and advance
scientific knowledge. Wylie (2003) also argues for standpoint theory, stating that
those who are oppressed “may know different things or know some things better
than those who are comparatively privileged” (p. 26). According to Wylie, the goal of
standpoint theory itself, outside of educational theories, is to understand “how the
systematic partiality of authoritative knowledge arises...and to account for the
constructive contributions made by those working from marginal standpoints
(especially feminist standpoints) to countering this partiality” (p. 26). In other
words, standpoint attempts to understand and address how mainstream knowledge

is only deemed important and worth knowing by those who hold the power already,
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and that members that are lower on the social order scale could contribute
knowledge in order to counteract the previous partial knowledge. Standpoint
theory is not without it’s critics, though. For example, Elam and Juhlin (1998)
discuss Sandra Harding’s works on standpoint theory, and point out the apparent
contradictions within her various texts. The entire chapter that is written by Elam
and Juhlin (1998) is spent pointing out flaws in the logic of creating new scientific
knowledge based on partial knowledge from different social strata.

In addition to the standpoint feminist theorists, there are also those in the
poststructuralist camp. Poststructuralism as a theory focuses on the plurality of
things such as gender, instead of dualisms, and separates itself from claims of
objectivity made by structuralists. For example, a poststructural argument related to
gender education research such as Dillabough’s (2001), would look at things that
relate to the nature of gender itself, and how gender is taught inside classrooms
through educational discourses that are often restrictive. Dillabough (2001)
highlights the relationship between a student’s identity and his/her concept of
difference, and how creating their identity inside of the classroom can reinforce
differences. Tisdell (1998) also argues for a poststructuralist approach to feminist
pedagogies, since it highlights positionality, and issues that can arise from it, as well
as its emphasis on problematizing the notion of truth.

The two feminist theories mentioned above are not always in agreement, and
that has, at times, left feminist pedagogies open and exposed to outside criticism. As
Gaby Weiner (2006) points out, feminist pedagogical work has raised important

questions dealing with issues of power, representation, and authority in the
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classroom. She notes that these pedagogies have focused on classroom methods,
questioning the use of personal experience (or the lack thereof) in the classroom at
the individual, student, and teacher level. These pedagogies do not however, come
without their fair share of criticisms. Weiner (2006) found that several criticisms
pointed out the presumption that there will be similar viewpoints and experiences
in the classroom, and that feminist theories themselves could be seen as too broad
or as misrepresenting other types of feminists.

Does that mean that a feminist pedagogy of math is not possible, or that it is
useless? Not necessarily. In fact, Weiner (2006) even discuses the importance of
creating a feminist pedagogy that remains flexible and is dynamic, that way it does
not get stuck in one of the problematic categories that is easy to criticize. She argues
that an adequate pedagogy would “produce action that is both predictable, arising
out of specific social and cultural contexts, and unpredictable due to the variety of
circumstances that confront [the dispositions or principles]” (Weiner, 2006, p. 90).

There have been critiques of mathematics pedagogies themselves, although
they might not necessarily be labeled feminist. Peter Appelbaum’s (1995) book, for
example, Popular Culture, Educational Discourse, and Mathematics, examines
popular culture’s influence on mathematical practice, despite popular opinions of
mathematics believing it to be an incorruptible discipline. As evidenced by
discussions in the previous chapter, all intellectual subjects, even mathematics, are
subject to social and cultural influences, and Appelbaum (1995) provides evidence.
He cites the concept of the “superteacher” that is thrust upon society in print, film,

etc., and notes that a teacher becomes a “superteacher” by getting those so-called
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“unteachable” students to learn an apparently difficult subject. Once society sees the
successes of these teachers, they begin to wonder why all teachers cannot
accomplish such tasks. Appelbaum (1995) also raises the question of why these
students are labeled as unteachable in the first place. Typically, these students are
minorities who would fall under the oppressed category that Freire (2011)
describes. The superteacher comes in, gives them a voice and power over their own
education, and miraculously discovers that they can in fact be taught. Another work
of Appelbaum’s (2002) addresses the disparities in education along racial and
cultural lines. He argues, in reference to mathematics, that in order for reform to
occur, the key must be, “as in other areas of education, they say, are poststructural
analyses and semiotics, the incorporation of a range of perspectives and voices that
have been previously unheard, and new kinds of questions from different points of
view” (Appelbaum, 2002, p. 4). This indicates a combination of both
poststructuralist and standpoint theory ideologies.

One example of work that is classified as feminist and focuses strictly upon
mathematics would be that of Leone Burton (1995). Burton (1995) focuses on
addressing the lack of diversity in the mathematics field, and how increased
diversity might influence the types of research being conducted in mathematics.
This work led her to write a book years later, Mathematicians as Enquirers: Learning
about Learning Mathematics, which focuses on the processes through which
mathematicians learn, and that is compared to the ways in which mathematics is
broadly taught to non-mathematicians at lower levels. Burton (2004) found that

common pedagogical practices in mathematics rely heavily on texts, which lead the
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students to be entirely dependent upon the instructor in acquiring the necessary
mathematical knowledge. She found that although many mathematicians report that
they prefer working in a more isolated environment, they in fact work
collaboratively more often than they work in isolation. The contradiction in this
approach occurs in the teaching styles of these mathematicians. Burton (2004)
found that while they may work collaboratively, the mathematicians interviewed for
her research still created and encouraged individualistic and competitive classroom
environments. This classroom dynamic was one reason that Burton cited for the
students complaining about pedagogical experiences and classroom environments
at higher rates that other elements, like subject matter. Significant differences were
found in the power distribution between males and females in the mathematics
community, which Burton (2004) argues, eventually have consequences on those
students learning mathematics. She proposes an epistemological model to address
the issues she uncovered in her research that contains five categories: person and
cultural-social relatedness, aesthetics, intuition and insight, different approaches,
and connectivities (Burton, 2004, p. 182). In her model, learners need to know that
they’re in control, and that they can express agency over their own learning. Moving
forward and building upon the ideas discussed in this section will be imperative to
creating a feminist pedagogy for mathematics. The next section will build upon
these ideas, as well as the ideas discussed in the section of the previous chapter that
focused on a new mathematics, in order to create a feminist pedagogy for

mathematics that is inclusive and applicable in classrooms.
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A Feminist Pedagogy for Mathematics

Problems with the ways in which mathematics are taught are not a new
phenomenon. Mathematician Jacques Hadamard (2004) reflected on how
mathematics was taught at secondary levels of education, and was a strong advocate
for the heuristic method of instruction. The heuristic method is a method of
instruction derived from the Socratic method of engaging in dialogue with students
in order for them to learn (Hadamard, 2004). The heuristic method enables the
students to discover and learn on their own, so in Hadamard’s case, he wanted
students to be able to deduce mathematical knowledge for themselves. This is a
strict divergence from the typical lecture style of higher mathematics, where
students sit at attention and absorb every word the instructor says while taking
copious amounts of notes. That style of teaching merely places all the power,
authority, and agency over students’ educations in the hands of the teacher. In this
feminist pedagogy of mathematics, students have more control over their education.

One of the most important aspects of a feminist pedagogy for mathematics is
keeping it feminist, since it is labeled as such. Elements typical to a feminist
pedagogy for any subject include, but are not limited to: humanizing the content
matter, and raising awareness and addressing issues of inequalities in voice, power,
and agency (Becker, 1995; Boaler & Greeno, 2000; Maher & Tetrealt, 2001). In order
to do this in mathematics, it requires a flexible, changing mathematics, similar to the
one described in chapter 2. In order for students to have the ability to have more
control over their educational experience, and to express their agency over their

learning, they need to be able to grapple with a discipline that is not set in stone.
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Students need to experience a mathematics where mistakes happen, where a rich
history is evident, other than just the Eurocentric version of mathematical history. A
feminist pedagogy for mathematics would include historical content, and realize
that the Mayans developed some mathematical concepts, such as the concept of
zero, before many Europeans, how the Chinese borrowed the concept of zero from
the Hindus, and how the Mayans and the Hindus developed their concepts of zero
separately (Appelbaum, 1995; Wilder, 2004). Historical perspectives about
mathematics can make the subject itself or even specific subsections of mathematics
that are particularly abstract more relatable and easier to understand, since that
history provides context (Otte, 2007). By hearing about the development of a
particular theorem, postulate, or probability, or the methods through which
mathematicians themselves conduct work, realizing mathematicians spend years
and years working on a single problem or proof, students would realize that if
mathematics doesn’t come to them easily, it doesn’t mean that they can’t do it at all
(Burton, 2004). The teachers themselves need to be shown to be imperfect and not
all knowing, and that they can, and often do, make mathematical mistakes (Becker,
1995).

Mathematics needs a pedagogy that emphasizes inclusion along gendered,
racial, and classed lines. An intersectional approach to a mathematical pedagogy
would make it a feminist pedagogy. Ways to organize a classroom to include
everyone in learning are not simple. Solar (1995) identifies several areas and
objectives that are imperative to establishing an inclusive pedagogy: eliminating

discriminatory teaching practices (which might first involve becoming aware of
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such practices), creating an equal learning environment, establishing a balanced
curriculum, and encouraging equal participation. These sound vague, or like obvious
conclusions, but research has found that the inequalities that exist in the classroom,
particularly the mathematics classroom, have not changed much over the past few
decades (Solar, 1995). Change is necessary, if only to increase the mathematical
opportunities for those who desire them. Maher (1999) makes an argument for a
feminist model of educational change, simply because other, previous models have
been too male-centric. Other models of progressive pedagogies have proven to be
lacking when giving attention to gender issues, which is why they are placed at the
forefront of this feminist mathematical pedagogy. In order to create an inclusive,
feminist pedagogy, the power dynamics in the classroom need to be explored and
explained. This exploration begins with the person who is in charge of the
classroom. As Maher (1999) argues, “We need a pedagogy in which the ideals of
unity and inclusion are linked to actively challenging the barriers to those ideals
posed by the gendered, raced, and classed relationships of power in the classroom.
In order to articulate such a pedagogy, we have to look at the teacher” (p. 43). By
looking at the teacher, the responsibility of creating social change and an equitable
classroom falls to them, and how they set up the power and authority dynamic
between themselves and their students.

When examining the teachers’ authority in a mathematics classroom, it is
important to consider two elements: the development of a particular pedagogical
method, and a teacher’s comfort and working knowledge of the subject at hand (Ball

& Bass, 2000). In order for a teacher to be comfortable with an alternative or radical
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pedagogy, s/he needs to be comfortable with the content. Without that comfort,
they must rely on the old methods of teaching, which distributes the vast majority of
the classroom power to them, taking away the agency of the students in the process,
turning them into passive, dependent learners. When teachers who are not
particularly comfortable with mathematical subject matter, or who are not
comfortable with the previously mentioned alternative form of mathematics, are in
control of classrooms, they tend to prefer to spoon feed their students mathematical
knowledge, since that method appeared to work for them (Boaler & Greeno, 2000).
This type of discomfort or unwillingness to veer off from the norm only perpetuates
the problems that already exist in mainstream mathematical pedagogies,
particularly in reproducing inequalities in the classroom and in attainment levels
(Boaler & Greeno, 2000). When teachers are willing to relinquish some of the
control and authority in the classroom and engage with alternative pedagogies,
positive results emerge.

In this model, power becomes redistributed in the classroom, and more is
placed at the disposal of the students. However, it is a perilous balance. Everyone in
the classroom, teachers and students, should be given responsibilities as knowers
and learners of mathematical content, therefore creating an atmosphere that
emphasizes equality and agency over learning (Maher & Tetrealt, 2001). It is
possible to teach the content while allowing for the questioning of it, simultaneously
(Maher & Tetrealt, 2001). By placing some power in the hands of the students, it
also creates a space for what the students deem to be important and what kind of

mathematical knowledge they value (Hodkinson, 2005). Learning can often be seen
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and experienced as an individual phenomenon, so it is important that students have
the power to control part of that phenomenon, and that they don’t rely entirely upon
the teacher.

In order to create a more equitable and accessible mathematical learning
environment, Becker (1995) argues that mathematics needs to be humanized. In
other words, mathematics needs to be taken down off of the untouchable “objective
subject” pedestal and brought down to a level where biases are revealed, and
framed in such a way that students can relate to it. In particular, the different voices
in a mathematical classroom need to have a space to be heard and appreciated, since
different students’ voices will come from different places, depending on their social
location. By valuing individual voices and acknowledging the various positionalities
of students, it makes room for the personal in mathematics classroom, allowing for
personal viewpoints instead of requiring that they be left behind. However, it is
important to overemphasize underprivileged voices, and to not discount the male
voice (Maher & Tetrealt, 2001). When allowing for voices in the classroom, it is
important to value all of them, as well as their experiences with mathematics itself.
The teachers’ voice in the classroom is also important to consider, since the ways in
which their voice is used tend to convey power and control inside the classroom
(Arnot, 2006). Madeleine Arnot (2006) also notes the ways in which voice
expression allows the students in the classroom to express agency over their
learning, and become creators, knowers, and authors of knowledge.

In their arguments for the healthy creation of identity and agency in the

mathematics classroom, Boaler and Greeno (2000) point out that traditional
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teaching methods often end up turning students off of mathematics at critical times
in the development of their intellectual identities, and this is often a result of the
loss of their agency, and results in the loss of their perceived ability to succeed in
mathematics. Being an active agent plays an essential role in the deeper learning of
mathematics, and that creates more positive experiences and identities in students
with the subject itself (Boaler & Greeno, 2000). Why is creating positive experiences
through an unconventional pedagogical approach so crucial? Boaler and Greeno
(2000) observed, “[the highest attaining mathematics students’] attainment
progressively deteriorated as their mathematics teaching became more procedural,”
(p- 185) and most of those students whose performances declined were girls. In
order to retain those girls, as well as encourage others to achieve and maintain high
attainment in mathematics, their voices need to be heard, and their agency needs to
not be controlled and dominated by the instructor. Being passive learners only
serves as a detriment to students’ educational potential.

The incorporation of elements of feminist pedagogies as well as
mathematical histories into actual classroom practices is not simple or
straightforward. A crucial first step in putting this theory into practice would be the
initial setup of the classroom. This has a dramatic impact on the overall classroom
environment, and establishes the expected roles of the student and the teacher. In
order to create a feminist atmosphere, the teacher could begin by laying out the
ideal environment that would be achieved, namely one that values each person’s
voice and agency, and the distribution of power between the students and the

teacher. The teacher could work with students to create a set of classroom



53

guidelines and expectations, which would allow for a certain flexibility within the
classroom, and for ways for the students to speak up for themselves and their
preferred level of participation and style of learning. Working with the students in
this way would also let them lay out the expectations they have for the teacher, in
addition to themselves. It is also a way that each voice could be heard. Obviously,
this would be much harder to do with elementary-aged students, but it could be
adapted to accommodate the level of discipline and authority the teacher deems
necessary in the classroom. In this instance, the teacher might choose to describe
the classroom expectations, and create a list of guidelines that reflect the feminist
principles valued in this pedagogical approach.

In addition to the creation of the classroom environment, this feminist
pedagogy requires that students experience mathematics as real and relatable. This
could be done in a few different ways. The teacher could focus on making
mathematical content more applicable to students’ lives, incorporating
mathematical history into the lessons, or a combination of both. According to Boaler
(2000), students need concrete situations in which to learn and apply their
mathematical knowledge. The type of activity students would undertake in order to
accomplish this would depend on their level in school. For example, Gerofsky (2001)
proposes that educators create a relatable mathematics by asking students to create
word problems based on recently taught principles that are directly related to real
life experiences that they or someone else could face every day. This type of
approach would be more suited for more advanced students, such as those in

middle or high school. By using this method, students are not simply recreating
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word problems created by other people in their own terms; they are examining
their lives and applying mathematical concepts to them.

While issues of power and authority might not be as complicated at
elementary levels as they are in higher levels, the privileging and marginalizing of
different voices remains critical, as does creating a mathematics that can be related
to by students. Digiovanni (2004) argues that at elementary levels, it is important to
look for information, particularly mathematical information, which is often left out
or left behind. She argues for the inclusion and representation of women in
mathematics, as well as minorities, which can be as simple as hanging posters that
paint a diverse picture of mathematics and mathematicians, in order for all of the
students to see that mathematics is available to everyone, not just a select few.

The incorporation of historical content into mathematical lessons is also an
essential element of this pedagogy. There is a decent amount of work about how this
can be done. Fauvel and van Maanen’s (2000) book, History of Mathematics
Education, for example, details the ways in which history could be incorporated into
mathematics classrooms. Jankvist (2009) identifies three main approaches to using
history in mathematical lessons: the illumination approach, the modules approach,
and the history-based approach. The illumination approach is, at its most basic level,
more or less about adding historical tidbits to mathematics lessons and stirring.
However, Jankvist does describe different scales on which this can be done. On a
small scale, which would be more suited to elementary-aged students, examples of
including mathematics history include covering things such as names, dates, famous

works and events, time charts, and biographies. The medium example would be
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including things such as “famous problems and questions, attribution of priority,
facsimiles, etc.” into mathematics lessons (Jankvist, 2009, p. 245-6). The largest
example Jankvist provides is the inclusion of mathematic epilogues to each chapter’s
material that covers particular aspects of the history of that particular concept or
principle.

The second method Jankvist (2009) describes is the modules approach. This
approach contains “units devoted to history, ...often based on [particular
mathematical] cases” (p. 246). This method also ranges in size, going from short
modules that take particular aim at specific categories that are designed to match up
with specific sections of the mathematics curriculum, to medium modules that focus
on the reading of mathematical texts and/or original sources to learn how concepts
were developed, to the large modules, which are full courses dedicated to
mathematical history. The modules approach is very similar to the illumination
approach, in that the size or scope of the module used is dictated by the ages of the
students being taught.

The third and final method is the history-based approach. This approach is
“directly inspired by or based on the development of mathematics,” where the
historical development of mathematics is not necessarily openly or overtly
discussed (Jankvist, 2009, p. 246). The example that Jankvist provides is based on
the teaching of number sets. Using the history-based approach to teaching number
sets, historical development of those sets would determine the order in which they
are taught, with the order being: natural numbers, positive rational numbers, some

positive irrational numbers, zero and negative numbers, the remaining real
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numbers, and finally complex numbers. Jankvist (2009) states that the scope and
type of approach used in the classroom is dependent upon the ages of the students.
This would indicate that younger students might receive a lower amount of
historical content in their mathematics lessons, but that as they advanced, the
amount of history would increase as well.

Katz (1997) argues that it is up to the teachers to determine the best
historical approach to use with their students. Although in order for the teachers to
choose the appropriate method, they must be knowledgeable about mathematical
history, that way they are “ale to pull out the details relevant to the particular class
and arrange in the best way. One cannot follow the history blindly if one is to use it
for pedagogy” (Katz, 1997, p. 63). Furinghetti and Paola (2003) also believe that in
order to properly incorporate mathematical history into the classroom, the teacher
needs to be competent in several areas. These areas include mathematics,
mathematics education, history, education and communication (p. 40).

By incorporating mathematical history into a feminist mathematical
classroom environment, several results are achieved. The classroom is a more open,
equal, and comfortable environment, and mathematical content becomes
humanized, and thus more accessible. Students are granted a certain level of agency
and authority over their learning, but yet the collaborative aspect of the feminist
pedagogy appears to be lacking. By incorporating historical content into
mathematical instruction, group projects or work could be assigned that encourage
collaboration between students. For example, examine Clark’s (2012) work on

understanding concepts from multiple perspectives through history. She focuses on
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the concept of completing the square, and the proof of this method that was written
by al-Khwarizmi. Completing the square is typically associated with algebraic
equations and the Greek mathematician Diophantus’ algebraic proof, but al-
Khwarizmi’s proof is a geometrical one. In order to incorporate historical elements
as well as encourage collaborative work among students, the teacher could task
students to try working with competing algebraic and geometric equations, while
assigning students to two groups. The first group of students would solve it using
the typical algebraic format; the second group of students would solve the same
equation using the geometric method used in al-Khwarizmi’s proof. After both
groups were finished, they would switch methods and solve a second equation. At
the end, a discussion could take place about the benefits of each method, and how it
helped increase students’ understandings of the concept. Students would be
working together in order to solve the problem, be exposed to the ways in which
mathematics has evolved, and they would be exposed to multiple ways of finding
the same solution (Clark, 2012; Furinghetti, 2007). The multiple methods that
students would be exposed to would allow students to find the method that works
best for them, thus increasing the likelihood that they will understand the material,
and decreasing the need for memorization for the purpose of regurgitation on
standardized tests (Clark, 2012). Further implications of this mathematical
pedagogy will be explored in the next chapter.

By redistributing power, creating space for marginalized voices, and bringing
personal experiences into the mathematics classroom, a new type of pedagogical

method is created. It is one that is specific to mathematics, and it is designed to help
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students overcome the obstacles and inequalities that have been present in
mainstream mathematical pedagogies. This pedagogy utilizes a mathematics that
has social and cultural history and context, and therefore becomes more relatable
and understandable to the students trying to learn it. It allows for students to create
an identity in relation to mathematics, and a more positive identity than was
possible in the past. The key to this entire pedagogy is enabling students and

teachers to become active agents in the creation of mathematical knowledge.

Possible Resistance to this New Pedagogy

Such a radical pedagogy as described in the previous section would not be
accepted without resistance. Skeptics of pedagogies that are so far from the norm
would be quick to challenge this approach, citing concern about relying on research
that uses gender as the main research variable (see Hammersley, 2001), or the ever-
popular varying political climate and changing standardized testing. Peter
Appelbaum (2002) even goes so far as to identify the three areas that pose the
biggest problem to alternative pedagogies, including those that value diversity, in
education: assessment methods, classroom management, and grouping practices (p.
41). While these critiques may be justified, since there will never be any such thing
as a perfect pedagogy, the above pedagogy is strong enough and flexible enough to
overcome those criticisms.

Michael Apple (2000) discusses all the various mathematics reforms that
were taking place at the time his work was published, focusing mainly on the shift to

neoliberal and neoconservative lines of thinking and resulting movements. He cites
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the free market ideology that stimulated this shift in thinking, and how it impacted
curricular design, development, and implementation. Apple (2000) also points out
the limitations of these policies, arguing that these competition-inspiring policies
change attitudes regarding students, shifting them from what the school can do for
the student to what the student can do for the school. Critics of the mathematics
pedagogy might see it as reversing this thinking, putting the focus back on what the
school can do for students, which goes against popular politics today. If something
isn’t working, however, why continue to follow along in that train of thought? Why
not try something new and different, and possibly end up with a better solution?
Trying new things might be intimidating and unpredictable, but in order to achieve
a more equitable society, it might be what is necessary. Previous politics and the
resulting policies have only limited opportunities for new ways of knowing, and this
raises questions about the availability of “alternative progressive policies and
practices in curriculum, teaching and evaluation” (Apple, 2000, p. 257). So while
those advocating for a more conservative approach to education might critique this
alternative pedagogy, those critiques are coming from a place that is not necessarily
receptive to it in the first place.

Critiques from the feminist side of things would also occur. Liz Newberry
(2009) in particular questions the use of students’ experiences in the classroom in
pedagogical theories, mainly through the idea of conflict. She argues that feminist
pedagogies themselves are responsible for worsening situations that are already
prone to conflict, since many of them depend on the involvement of student

experiences. Experiences can vary greatly, and therefore should not be immediately
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classified as “uncontestable knowledge” (Newberry, 2009, p. 249). Newberry does
not deny the value of experience in classroom settings, but merely questions its
placement at the forefront of educational policy. This is just one example of many
different types of resistance from within feminism itself. Just as there are many
fields within mathematics, there are many different types of feminism, and not all of
the different types will agree with the others, so resistance to and criticism of this

mathematics pedagogy, in some form, will appear.

Conclusion

Feminist pedagogies have been around for a decent length of time, and a
select few have broached the topic of mathematics pedagogies with feminist
elements. There are different feminist theories used to create feminist pedagogies,
such as standpoint theory and poststructuralism, with each having their own issues
that they deem the most important. The pedagogy above designed specifically for
mathematics will most likely have its problems, but hopefully it is the basis of better
work moving forward. The challenge will be in overcoming those problems and
tackling the other forms of resistance to it that will appear. Perhaps it is a small step
towards bridging the gap that exists between mathematics research and women’s
studies research (Damarin, 2008). Perhaps it is a method of teaching that will allow
for more women and minorities to participate in higher mathematics. The
conversation surrounding women and minorities in mathematics needs to change,
and perhaps this pedagogy is one way of changing that conversation. As Suzanne

Damarin (2008) argued, “the study of gender by educators and psychologists has
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been largely a study of female failure to succeed in mathematics [has been pointed
out by Mary Beth Ruskai]. If true, this is a serious matter; an understanding of
gender and mathematics that has no place for successful women is obviously
seriously flawed” (p. 109). Ideally, this pedagogy would be a way of correcting these
flaws. Other possible implications of the pedagogy will be explored further in the

next chapter.
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Chapter 4

Summary of the Previous Chapters

At the beginning of this project, I set out to create and discuss a feminist
pedagogy designed specifically for mathematic classrooms. Creating a math-specific
feminist pedagogy would be a great start in helping to create and sustain a more
equitable mathematics discipline. In order to achieve this goal, I began by exploring
and establishing the current status of student achievement in mathematics. While
fewer students are categorized as testing at below basic levels today when
compared to the same statistic from twenty years ago, more students are failing to
maintain basic levels of mathematical achievement, and they fall below basic levels
(Aud et al,, 2012). Compared to the scores from 1990, this is a change, since twenty
years ago, as students got older, fewer of them scored below basic level of
achievement (Aud et al., 2012). I then discussed the research that has been
conducted that examined gender differences in performance in mathematics, and
the resulting theories that attempt to explain these differences. While biological
theories continue to circulate, they have been systematically refuted by feminist
scholars. Social explanations of these differences are more promising, and they were
the main bases of research utilized for this project. These included classroom-based
theories that examined everything from student interaction patterns and peer
influences to teacher’s practices and preferences. Finally, I discussed popular
programs that are in place.

Chapter two was an exploration of the relationship between math and the

other sciences, and just how much of an overlap exists between them. It attempted
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to answer the question of just how applicable critiques of science are to
mathematics, and why critiques of science might not always cover mathematics as
well. Mathematics is the foundation upon which the other sciences are built, yet its
biases are not pointed out or addressed nearly as often as it occurs in for the other
sciences like human biology and physics. I then considered claims about methods of
mathematical inquiry and thinking, relying on opinions advanced by
mathematicians themselves, or research conducted with mathematicians as the
main participants. Mathematical thinking puts a premium on rigor, and anything
that looks as though it was not rigorously explored or explained, or generated an
inadequate proof has been marginalized as falling short of the mathematical ideal.
pointed out that mathematicians have a habit of ignoring the role that insight and
intuition play in their work, focusing instead on the conscious efforts they devote to
their problems, even though they rely heavily on subconscious thoughts and
intuitions (Burton, 2004). I also demonstrated that the field of mathematics is less
stable than sometimes imagined, introducing different types of mathematics, such as
Euclidean and non-Euclidean geometry, as well as contradictions between the ways
mathematicians believe they work and how they actually work. The usefulness of
mathematical histories was also analyzed. By disregarding mathematical history, or
marginalizing it, social and cultural influences over the subject are being ignored
and overlooked; creating the illusion of a discipline that is objective, pure, and full of
unquestionable absolutes. By exploring mathematical histories and supporting
them, mathematics becomes culturally diverse, erasing the Eurocentric view that

has been painted for decades. I then suggested the benefits of culturally-attuned
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mathematics that would be flexible, aware of fallibility, contingency, and change,
and accessible to everyone, regardless of race, class, or gender.

The third chapter focused mainly on pedagogical strategies, particularly
feminist ones. Past attempts at revolutionary pedagogies were discussed, paying
particular attention to Paulo Freire’s (2011) book, Pedagogy of the Oppressed. Freire
(2011) criticized traditional approaches to teaching, addressing the issues
surrounding the dependency of students upon their teachers for knowledge. While
his ideas were revolutionary at the time, feminist scholars like Jackson (1997) and
Weiler (1991) critically assess Freire’s work, and point out issues with the
generalizations made about the oppressed. [ then examined other feminist
pedagogies developed outside the field of mathematics. Yet I also introduced
mathematics-specific pedagogies, which might not be labeled feminist, but address
issues of diversity in mathematics education. I then outline and discuss my feminist
pedagogy for mathematics, basing it on emphasizing equality, inclusion, power
relations, teacher and student agency, and voice. This pedagogy was also built upon
the concept of the culturally-attuned mathematics. The application of a pedagogy
requires a certain maturity of students, but particular elements can still be applied
to elementary aged classrooms. A brief discussion of possible sources of and reasons

for resistance to this pedagogy concludes the chapter.

Possible Implications
My feminist pedagogy for mathematics education clearly has potential to

shape educational practices. However, it is important to look at the possible
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implications it could have at a theoretical level as well. For example, Paul Ernest
(1995) outlined the cycle of gender inequalities in mathematics in order to illustrate
the impact gender inequalities can have on students’ lives. The cycle can technically
start at any point, given that it is circular, but for discussion purposes, I will start at
the top of the diagram. At the top is “gender stereotyped cultural views, including

maths=male,” (Ernest, 1995, p. 457, Fig. 1).

School/College Society-at-large

Gender Stereotyped cultural views
including
rmathematics=masculine

v N

Lack of equal opportunities in Confirmation of gender
learning mathematics stereotyping

v *

Girls’ stereotyped perceptions of / Reproduction of gender
mathematics and own math inequality in society
abilities

v *

Women's Lower participation
rate in mathematics Women in Lower paid work

Unequal opportunities in entry to
study and work Fig. 1

The cycle, as seen in the figure above, creates a lack of equal opportunities to learn
mathematics, which then creates stereotypes surrounding girls and mathematics,
impacting their performance. This in turn impacts the participation rates of women
in mathematics, causing them to be lower, leading to inequalities in the

opportunities in higher levels of school and even job opportunities. Thus, women
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end up with lower wage jobs, which further reproduces gender inequalities in
society at large. Those resulting inequalities serve as a confirmation of sorts of the
gender stereotyping that had been taking place, which then circles back around, and
causes mathematics to be stereotyped as a male subject (Ernest, 1995).

If the feminist pedagogy for mathematics were implemented in classrooms,
girls might not face unequal mathematical learning opportunities, which would
prevent them from developing mathematical identities that are built upon
stereotypes that tell them that they cannot do something just because they are
females. This could encourage them to continue on with their mathematics
education, carrying them to higher levels of mathematics, and opening up more
higher paid job opportunities. This would counteract the aforementioned
reproduction of gender inequalities in society, and thus fail to confirm particular
gender stereotypes that are so prevalent in society. Circling back to the beginning,
the failure to confirm those gender stereotypes could impact the continuing belief of
mathematics as being a gendered subject. In other words, it could undo the entire
cycle. As Damarin (2000) states:

[T]he development of mathematical interest and skill is seen as promoting an

individual’s status within the society as well as her or his contribution to

national economics, security and progress. From this perspective, the relative
absence of women from mathematical endeavors is seen as evidence for the

lesser power of women. (p. 74)

This is merely speculation, but if mathematics were made available to everyone,

instead of just a select portion of the population, the chances of this happening are

not entirely nonexistent. In fact, changing how mathematics classrooms operate
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could prevent the question of why gender stereotypes in math continue to exist
from ever needing to be asked (Cheryan, 2012).

Taking this a step further, if a more diverse group of people were to be
encouraged to continue on in their mathematics education, or if they realized that
they need not fear the advanced mathematics required at higher levels of science
education, the diversity in the scientific fields could also change. The numbers of
women in the STEM fields outside of mathematics remain dismal, as reported by the
AAUW, and this pedagogy might just be one way that more women and minorities
can be encouraged to seek out higher degrees in physics and chemistry (Hill et al.,
2010). Suzanne Damarin (2000) highlighted the ways in which the mathematically
able are marked, with those who succeed in mathematics who are not supposed to
succeed (read: women) being labeled as deviants. After all, mathematicians
themselves are labeled by society as being different, which marks them as being not
normal, so when a competent woman in mathematics comes along, she falls under
the marked categories of being a mathematician as well as being a woman, which
combine to make her an undesirable person to society and to the mathematics
community (Damarin, 2000). If a feminist pedagogy were installed in mathematics
classrooms, both males and females could avoid the distinction of being marked
different or as deviant, and change the power constructions that are related to
mathematics.

The research conducted in the classrooms that examines students’
experience with mathematics could experience a radical shift, as well. Previously,

such studies have found that in traditional classrooms, the mathematical
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experiences of girls has been negative, even traumatic, and the construction of their
mathematical identities is negatively impacted, often resulting in a failure to pursue
higher mathematics (Buerk, 1982; Lim, 2008). Instead, results reported from
feminist mathematics classrooms might resemble those found by Anderson (2005).
In her work, Anderson (2005) performed a case study, where she interviewed
teachers involved with a summertime mathematics program that had explicitly
stated feminist pedagogical practices. The program was an all-girls program that
placed an emphasis on individual responsibility for learning, as well as creating a
collaborative environment in which the girls could learn. The students interviewed
for the project reported at the end of the program that they felt as though the
teachers worked with them and provided constructive criticism and encouragement
instead of negative responses, and the overall atmosphere was less stressful than a
typical mathematics classroom (Anderson, 2005).

The application of a feminist pedagogy of mathematics, on a grand scale but
basic level is important, merely for the sake of improving society’s mathematical
literacy, or numeracy. Numeracy is extremely important and necessary to function
as a useful and informed member of society (Crowe, 2010). Crowe (2010) argues
that numeracy is particularly important to issues related to social studies, as the
manipulation of data and percentages is common, and if members of society are
unfamiliar or uncomfortable with this particular type of mathematics, they will fail
to see through the shroud of misinformation. This is particularly relevant in the
world of politics, given the overload of information that is thrust upon the populace

over time. Numerical breakdowns of how tax dollars are spent are published,
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analyzed, and criticized by politicians, and voters have a tendency to rely on various
interpretations (whether they are accurate or not), and base their decisions off of
those instead of doing the work for themselves.

The examples of the impact of a feminist pedagogy of mathematics discussed
above, both theoretical and practical, are only a small portrayal of what could
happen. To paraphrase the chaos theory, changing one relatively small thing, such as
the way in which mathematics is viewed and taught in schools, could cause ripple
effects, and change things in ways that no one could ever predict. Further research
into the matter could reveal more implications. Other research could apply this
educational theory in an actual classroom, and track the results. Perhaps other
feminist scholars could critique it, add to it, and build it into a truly powerful
feminist pedagogy for mathematics. The possibilities are nearly as endless as the

possible implications of putting it into place in a classroom.

Conclusion

Throughout this project, ideas surrounding gender and mathematics
research have been explored. Previous attempts at correcting the problems facing
mathematics students have helped, but none have broken through to the
mainstream, and have been problematic. The emphasis of a process-oriented
mathematics over a results-oriented mathematics has been tried before, but not
necessarily with other feminist elements in play as well (Rodgers, 1995). This
project is merely one possible solution to a problem that needs to be solved. The

implications of a feminist pedagogy for mathematics that is actually implemented in
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a classroom are important to consider, and although at this point they are only
theoretical, they could still indicate the profound impact on mathematics education
that this pedagogy could have. It is only one cog in the wheel of the movement that
is striving for a more equal society, but who knows the impact that it could have.
With this pedagogy, the opportunity is there to change the narratives of otherwise

marginalized students, and that in itself is invaluable.
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