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ABSTRACT OF THE THESIS 

 

Development and Application of Covariate Based Reliability Models: 

Utilizing Constrained Maximum Likelihood Optimization 

By Robert Kosaka 

Thesis Director: 

Dr. David Coit 

 

In this research, a difficult yet practical problem of modeling failures as functions 

of stress profiles was addressed. Failures, both system and component based, can in many 

cases be explained in terms of the stresses experienced. These stresses are crucial in 

understanding the reliability of the component or system. If the underlying stresses can be 

determined, it becomes possible to create reliability models that incorporate them. In 

many cases reliability models can be made independent of stresses or in terms of a single 

stress. In this scenario the process of building the respective reliability model is not 

complex. These simple scenarios that have a limited number of stresses do not 

necessarily demand a rigid algorithm. When creating a reliability model for a single, or 

perhaps a system that experiences two stresses, trial-and-error is sufficient. Problems 

arise however when a system undergoes an excessive number of different stresses. These 

stresses all impact the system differently, and thus they must be modeled accordingly. 

Such a trial-and-error method would not be practical or appropriate. The primary goal of 

this research is to develop algorithms that can systemically approach these situations. In 

the case of the research, the system under study experiences a variable load profile. This 
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algorithm aims to create an approach that can accurately capture the system reliability, 

while factoring in the system stresses.     

US Navy NAVAIR, in recent time, has had an increased interest in studying 

system and component reliability. This is in part due to the large amount of resources that 

corrective actions and preventative maintenance require. These failures however, are 

based on the current system stress profile. Currently, the Navy has plans for a changing 

stress profile, as there will be a change in air wing composition. This changing stress 

profile is predicted to negatively impact system reliability. It is possible however, to 

create predictive models using the current and past failure data. This modeling approach 

utilizes a two parameter Weibull distribution to account for a changing stress profile. 

Inputs into this model are the anticipated composition of the naval air wing.  
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1.0 Introduction 

Analyzing reliability data is a multi-step process that can give insight related to 

design decisions, as well as creating maintenance policies. Failures of a component, in 

most cases, can be traced to environmental conditions, material properties, or stresses. 

The importance of this is that it allows for the determination of causation for the 

respective failure. This correlation of stress or environmental condition allows for the 

usage of reliability modeling.  

This research thesis is intended to evaluate the different modeling approaches applied 

to data obtained from loading systems with quantifiable loading patterns. Every use of 

this system is unique with respect to the stresses seen by the system. This data makes it 

possible to then create stress and failure distributions to describe past events. In the case 

of the system under study, the stress profile is anticipated to undergo a shift in the near 

future.  

Given that there is a changing stress profile, it is important from the user’s 

perspective to understand the possible impact. The primary focus of this research is to 

create an approach to develop predictive models using such data. Given the past failure 

data, and the known shift, it is possible to create such models. This research aims at 

developing multiple approaches to address this situation by creating predictive, stress-

based reliability models.  

1.2 Background 

 A primary source of sponsorship and information is NAVAIR, or Naval Air 

Systems Command. This division of the government provides system support and 
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technological development for the US Navy. The division that has been working directly 

with this research is located in Lakehurst NJ. This division specializes in support 

equipment for launcher and recovery gear for aircraft carriers. Together, these systems 

allow for the usage of aircraft on carriers.  

The recovery gear, also known as arresting gear, is the system that is responsible 

for allowing aircraft to land on aircraft carriers. The primary components of this system 

include pendants, purchase cables, sheaves, and the arresting engine. Purchase cables are 

cables strung across the deck of the ship and are what the aircraft attach to when landing. 

The arresting engine absorbs shock of the aircraft attaching to the purchasing cables. 

Sheaves direct the purchasing cable and ensure that it has an unobstructed path. Pendants 

are the components that attach to the plane itself, and are located on the purchasing cable. 

The launcher, or catapult, is the system responsible for accelerating the aircraft to 

take-off speed. Due to the limited runway distance, additional acceleration from the 

catapult is necessary. The system itself consists of two large cylinders, each of which 

contains a piston. These pistons are forced down their respective tube by means of steam 

pressure. After take-off the pistons are decelerated by a component known as the water 

brake. This component uses water pressure to resist the force of the incoming piston. 

Air wing composition is critical in the performance of a carrier’s operations. The 

air wing is comprised of different types of aircraft, each of which performs a unique role. 

Aircraft currently in use include; F/A-18E/F, F/A-18C, EA-6B, E-2C, C-2, and T-45. 

Each of these aircraft when launched or arrested, has a unique stress profile, because of 

this, each aircraft impacts system degradation differently.  
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1.3 Problem Statement 

 Over the course of time, the US Navy has phased out older aircraft and replaced 

them with more advanced successors. These newer aircraft are not only more complex, 

but they are also much heavier than their predecessors. This is due to both design, as well 

as the payload of electronics and weapons. Newer aircraft generally carry more weapons, 

as well as more fuel due to a changing mission profile. This trend is expected to increase 

over the next twenty years. A major concern is possible impact this trend may have on 

component reliability. There exists much concern within the Navy that this increasing 

trend will have a negative impact on component reliability. Because of this, predictions 

of component reliability must be made for the future state to verify these concerns.  

1.4 Study Objective 

 The initial objective of this research is to develop reliability models as a function 

of system stresses. This is possible due to the available failure data of the system’s 

components. Each failure in the system can be described by system stresses. The analysis 

of stresses, and the importance of their impact, is being determined with the aid of in-

service engineers. These models are based on the two-parameter Weibull distribution, 

with the scale parameter being a mathematical function of the respective stresses. In 

doing this, it becomes possible to make future predictions of system reliability.  

Such predictions also aid in creating optimal preventative maintenance policies to 

reduce unexpected corrective actions. The current maintenance and replacement policies 

are designed for historic air wings. That is to say that the composition or aircraft that they 

were designed to accommodate are no longer in use. In-service engineers anticipate that 

these maintenance and replacement policies are not applicable to the current and 
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predicted usage of the carrier systems. Because of this, updated policies must be created 

based on current and predicted system usage. These policies can be estimated from the 

created reliability predictions.  

2.0 Literature Review 

 A study of published research studies was conducted to understand current 

modeling techniques and replacement policies. These research works include-stress based 

reliability modeling, optimal replacement, accelerated life testing, as well as their 

respective applications. These research studies provide insight into the underlying 

methods of this research. 

2.1 Data Mining and Component Replacement 

 Component replacement is essential to maintain an operating system. This can 

however, be expensive and time consuming. Because of this it can be beneficial to 

determine or predict when replacements are necessary. Work done by Letourneau et al 

(1991) sought to create predictive models from aircraft sensor data. Their work used 

flight and performance data from aircraft to develop models. These models were not all 

inclusive however, and could only be done for specific aircraft components. Figure 1 

shows the process from the data collection to the final model.  



5 

 

 

 

 

 

Figure 1: Information Flow Diagram (Letourneau et al, 1991) 

 Letourneau et al (1991) state that sensor data must be filtered and properly 

selected to correctly utilize their approach. This is necessary due to the random false 

readings of the sensors. They state that random sampling is not appropriate, as it is 

essential to select data near a replacement interval. Replacement data is mined from a 

database that contains all maintenance activity. This database includes information 

regarding the component, time of replacement, and a textual description of the actions 

taken. Figure 2 is a visual representation of how the data is accessed while in the 

databases. It can be seen that there exist different datasets, each with a unique set of 

properties.  
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Figure 2: Data Storage and Access (Letourneau et al, 1991) 

 The data that was collected was then used to create reliability models. To infer 

these models, techniques such as decision trees, rough sets, regression, and neural 

networks could be used. Letourneau et al (1991) also state that depending on the 

technique used, additional preprocessing could be required. This additional preprocessing 

includes normalizing the attributes, creating new attributes, selection of the most suitable 

attributes, or usage of discrete continuous attributes.  

 The components under study could be replaced for one of two reasons, the first 

being regular maintenance. This regular maintenance is imposed by aerospace 

regulations, or the airline’s policy. In this case the component has not technically failed 

and is being prematurely removed from the system. The second type of replacement is 

when the component has reached a deteriorated state and must be replaced. Letourneau et 

al (1991) state that this second type of replacement requires predictive models. 
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Furthermore they state that these models can only be created when there exists sufficient 

failure data.  

 Letourneau et al (1991) explain that this approach is not all inclusive, and does 

not detect all possible failure modes. Failures due to poor maintenance, as well as due to 

design flaws, cannot accurately be detected with this approach. This is in part due to a 

lack of data concerning maintenance actions and design of components. They state that 

this does not raise concerns, as failures due to these modes are not common.  

 A reward function was developed which generated a reward for predicting the 

correct outcome. In the most basic form the reward threshold were fixed values between 

0 and 1. In application, they varied the reward threshold for different instances. Each 

component had a distinct function that computed the reward of predicting a correct result. 

For this case, a correct result was a replacement time at a specific time less than the 

expect failure, referred to as the target interval. Figure 3 shows a graph of the reward 

function. It can be seen that the reward is generated when the replacement it performed 

within a specific interval before the failure.  

 

Figure 3: Reward Threshold (Letourneau et al, 1991) 
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 A scoring metric was developed to determine the performance of the model. This 

evaluates the coverage of a model by looking at the distribution of alerts over the failure 

cases. This scoring metric can be seen in Equation 1. The term scorei is the score form 

the reward function for the i
th

 instance classified. NbrDectected is the number of 

replacement cases that have at least one positive prediction in the target interval. 

NbrOfCases is the total number of replacements for a given component. The term 

SignSumOfScores is the sign of the first term in the expression.  

 
1

p
SignOfSumOfScores

i

i

score score NbrDetected NrbOfCases


 
  
 
                       (1) 

2.3 Age Replacement of Components 

 Work done by Das and Acharya (2004) proposed two alternative policies for 

preventative replacement of a component with degrading performance. The components 

under study show signs of occurrence of a fault, and operate for a given time with 

degraded performance, before failure. Time between fault occurrences is termed as delay 

time. The two policies for replacement are age replacement during delay time policy 

(ARDT), and opportunistic age replacement during delay time policy (OARDT). Each 

policy has distinct advantages and disadvantages. 

  Replacement policies are intended to ensure maximum utilization of component 

life. While age replacement has advantages over block replacement and group 

replacement, it requires continuous tracking of component service life. This can be a 

difficult task, especially if there are there numerous systems that are comprised of 
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multiple components. Options to overcome this, including on-line instruments, are often 

expensive to purchase and implement.  

 In many cases components have indicators before a failure. These include 

increases in temperature, vibration level, increased defects in final products, as well as 

other indicators. These are referred to by Das and Acharya (2004) as fault indicators in 

their study. Fault indicators, in many instances, do not require the usage of complex and 

costly monitoring devices. These attributes are often captured during routine system or 

component maintenance. They state that these indicators do not imply an immediate 

failure, but a degradation of the component. There exists a lag time between the 

discovery of the fault indicator and the final failure of the component.  

 Age replacement during delay time policy requires the usage of these fault 

indicators. In this policy, replacement is done following the detection of a fault indicator. 

The goal is to minimize the long run cost per unit time by finding the optimal 

replacement time.  The long run cost per unit time is given by Equation 2. 

 
( )expected cost during life cycle

expected length of life cycle ( )

where:

( ) Long run cost per unit

d d
d d

d d

d d

C t
G t

L t

G t

 



                                        (2) 

 Das and Acharya state that the expected cost in a renewal cycle is the sum of 

expected preventative replacement cost, the expected failure replacement cost, and the 

expected cumulative degradation cost per renewal cycle. To express this Equation 3 is 

used. Cr is expressed as the expected cumulative degradation cost over a renewal cycle. 



10 

 

 

 

 

( ) [1 ( )] ( ) { (min( , ))}d d p H d f H d r dC t C F t C F t C H t                            (3) 

 A similar set of equations was developed for OARDT, which can be seen in 

Equations 4 and 5. In the case of OARDT, the cost of a renewal cycle is the sum of the 

expected cumulative degradation costs and the expected replacement cost. 

( )expected cost during life cycle with opportunistic replacement
( )

expected legnth of life cycle with opportunistic replacement ( )

od d
od d

od d

C t
G t

L t
          

(4) 

0( ) (min( , )) [1 ( )] ( )od d r d H d f H dC t C H t Y C F t Y C F t Y                           (5) 

2.4 Modeling Failure Rate with Respect to the Number of Load Applications  

Research done by Wang et al (2007) sought to model the failure rate of 

components as a function of load applications. This was done by taking static strength 

failure and fatigue failure as the backgrounds, and in turn, the dynamic reliability models 

with and without degradation could then be derived. The failure rate of each component 

modeled, with respect to the number of load applications, is made possible by these 

reliability models. They found that it was possible to model these failure rates for systems 

with and without degradation. From their work they found that without degradation, both 

reliability and the failure rate decrease with respect to the number of loads applied. 

 The first step in their approach was to develop reliability model for a component 

under repeated random load. They sought to create reliability models, where life is 

measured by the number of load applications. There were two scenarios for this 

approach, with and without degradation of strength. Wang et al (2007) state when 
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strength is not impacted by loads, the loading profile can be simplified. This special case 

occurs when a component undergoes n random loads and does not fail under the 

maximum load. From this it can be concluded that the reliability when load is applied n 

times equal the maximum load of the n load samples applied a single time. When this 

concept was applied to a reliability model, Equation 6 was developed. In this fδ(δ) 

represents the pdf of a random variable with original strength δ.  

 

 

1

0 0

0

( ) ( ) ( ) ( )  

( ) ( ) ( )

n

s s

n

s

R n f n F x f x dx d

R n f F d







 

  









 


                                               (6) 

 In the case of degenerative strength, each load decreases the strength of a 

component a certain amount. In practice the degree of degradation is relative to the 

magnitude of the load. When the magnitude of the loads experienced is constant, the 

residual strength of the component can be modeled as a function of the magnitude of the 

load and the number of load applications.  

 Wang et al (2007) modeled the residual strength when the variance of the 

magnitude of loads was constant. µs is the mean load and is a constant value, 
s

N  is the 

fatigue life corresponding to the load level s, and c is the material coefficient. From this 

Equation 7 can be formed.  

( )

s

c

n s

n

N

   
 

    
 
 

                                                            (7) 

 From the residual life model it can be determined whether the n
th

 load cycle 

causes a failure of the component. This can be seen in Equation 8, which extends 



12 

 

 

 

 

Equation 7. In this model An represents the event that a component does not fail after the 

n
th

 load.  

   
( 1)

( 1)
0

| ( )
n

n s s nP A f s ds F


 


                                                  (8) 

 Using Equations 7 and 8 it is possible to develop a reliability model that 

incorporates both strength and stress. Wang et al (2007) created a reliability model that 

considers both the original strength δ, which is a random variable with pdf fδ(δ). The 

reliability for a component, when random load is applied n times is defined by Equation 

9. 

( 1)

0 0
1

0
1

( ) ( ) ( )

( ) ( ) ( , 1)

i
n

s

i

n

s

i

R n f f s dsd

R n f F i d







 

  











 

 



                                          (9) 

The failure rate for a component without degradation, when plotted against 

number of load cycles, had a partial bathtub curve and can be seen in Figure 4. In the case 

of the system with degradation, the reliability of the component had a much more 

pronounced decrease which is located in Figure 5. Likewise it was found that the failure 

rate curve was a bathtub shape. This outcome is to be expected, as the effects of 

degradation should have an undesirable impact on the failure rate, i.e., higher failure rate.  
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Figure 4: No Degradation pdf (Wang et al, 2007) 

 

Figure 5: Degradation pdf (Wand et al, 2007) 

2.4 Reliability Models Considering Operating Conditions 

 Research conducted by Prasad (2002) modeled proportional hazard rates to 

investigate the effects of diagnostic variables on a system’s life. He states that in many 

cases failure time is only considered when modeling reliability. He states that it is 

important to consider factors such as the type of failure and the various stresses in the 

reliability function. When factored into the reliability model, these are known as 

covariates and the model is known as a proportional hazard model. In his work two types 
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of data were studied; renewal process data and non-renewal process data. Different 

approaches to estimation of cumulative hazard rate function include parametric and non-

parametric models. In his research goodness-of-fit was used to verify the assumption of 

the proportional hazard model. Parametric models including the Weibull distribution or 

Power Law process are fitted to check results obtained using non-parametric models. In 

his work, Prasad (2002) uses failure data of electro-mechanical equipment utilized in a 

mine. One of the goals in his research was the development of optimal preventative 

maintenance intervals for the equipment under study.  

 The hazard rate of equipment, in proportional hazard modeling, is a function of 

time and system covariates. It is the product of an unspecified baseline hazard rate λ0(t) 

and an exponential function comprised of covariates. This can be seen in Equation 10. In 

this equation z is a vector consisting of covariates. The term β is a vector of regression 

coefficients. The baseline hazard function is not fitted into a specific model and is of non-

parametric form. It represents the hazard function when all covariates take on a value of 

zero.   

0( , ) ( ) exp( )t z t z                                                           (10) 

 In order to estimate the regression coefficients the partial likelihood function must 

be maximized. The partial likelihood is the product over all failure times of the 

conditional probability of failure of the item, which failed at time ti. For the proportional 

hazard models, the partial likelihood function can be seen in Equation 11.  di is the 

number of tied failure times, which is small when compared to the number of items j in 

the risk set at time ti. Once estimated, the values of β are tested for significance. This 
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ensures that each covariate has an effect on the behavior of the system. From this the 

reliability equation can be created, as seen in Equation 12. This reliability equation is a 

function of both time and covariates.  

exp( ) exp( )

:

Partial Likelihood

i

i

d

i j

j NFi

L z z

where

L

 


   
   

   





                                          (11) 

exp( )

0( , ) ( ) zR t z R t                                                       (12) 

 Prasad (2002) explains that the parametric modeling approach is vital in situations 

where extrapolation of results is necessary to predict failure rates under different 

conditions than those under study. He states that if failure data is reasonably modeled by 

a parametric distribution, the parametric approach will provide better information when 

assessing properties of the baseline hazard function. The Weibull distribution, according 

to Prasad, is known to fit many failure processes well. Equation 13 shows this reliability 

function as a function of covariates. In this function zi are explanatory variables, or 

covariates, where z0=1. The values of ai and the shape parameter δ are unknown and must 

be estimated. The hazard function is denoted by Equation 14.  

 

0

( ) exp exp
k

i i

i

R t t a z





    
    

    
                                          (13) 

 1( , ) ( )t z t z
                                                   (14) 
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 In block replacement maintenance activities are carried out at regular intervals of 

time. This is done regardless of previous planned maintenance actions. It is assumed that 

planned maintenance action brings the system to a renewed condition. An unplanned 

maintenance action, however, retains the system in the bad-as-old condition. If c is the 

average cost of planned maintenance, and d is the average cost of maintenance, the 

average cost per unit time is defined by Equation 15. E(N(t),z) is the expected number of 

failures in the time interval (0,t] and c/d is the cost ratio.  

     ( ) ( ), / ( / ) ( ), /C t c d E N t z t d c d E N t z t                               (15) 

2.6 Mixed Weibull Model 

 Mixed Weibull models can be used to represent a component that experiences 

multiple failure modes. This is illustrated in the work done by Attardi et al (2008), who 

studied the reliability of automotive components. In their work they studied components 

installed in different car types, which in turn yielded different operating conditions. 

Because of this, the failure time of each component was considered a random variable 

with a bimodal probability density function that is also dependent on a vector of 

covariates that index the operating conditions. This vector of covariates translates back to 

the Weibull model, where the scale parameter is a function of this vector. Attadari at al 

(2008) developed an algorithm for maximum likelihood estimation to test the 

significance of covariates as well as constrict a regression model.  

To develop the parametric model a set of assumptions were developed. These 

assumptions assured that the application of the model was valid and that the results had 
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meaning. From these assumptions, the survival function can be developed as is seen in 

Equation 16. This model is based on the following assumptions.  

 The reference population is a mixture of two subpopulations, each with an 

unknown mixture. 

 Each subpopulation represents a unique failure mode, and an item in a 

subpopulation can have only one failure mode.  

 Items in the reference population experience different operating 

conditions.  

 Due to the fact that car dealerships do not conduct post-mortem analysis, it 

is impossible to determine what subpopulation an item belongs to after 

failure.  

 The survival function of items is a two-parameter Weibull model based on 

proportional hazards model. Covariates only act on the scale parameter.  
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                                         (16) 

 The set of grouped data is composed of M=3 subsets of grouped data, each 

representing a different operating condition. This is then indexed by a vector of 

covariates xm (m=1,2,3). The likelihood function for used is this research is denoted in 

Equation 17. 
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 Using these equations, and the approaches outlined in their research, Attardi et al 

were able to determine the effects of different operating conditions using a mixed 

Weibull model. Their approach concluded that only one of the factors influenced the 

model significantly. This ability to model the impact of operating conditions, as well as 

determine their significance, is quite profound.  

2.7 Reliability Modeling With Failure Statistics  

 Work done by Zhang and Gockenbach (2007) used failure data to develop 

reliability models for electrical components. In their work they modeled reliability due to 

electrical stress, mechanical stress, temperature, and time. They state that the proposed 

models accurately predict reliability and failure rates based on these factors. The models 

created were not only parameterized with a large amount of statistical data, but also 

determined by aging tests and breakdown tests available for the probabilistic assessment. 

 Evaluation of the failure statistic is dependent on both the quality and quantity of 

the available data. In their work, Zhang and Gockenbach (2007) had failure data from a 

long range of time periods. Despite this, information on specific damage was difficult or 

impossible to acquire. A primary goal for their research was to collect robust historical 

failure data to develop a failure statistic. This detailed failure statistic would provide 

information about the conditions of the electrical equipment whose failure probability can 

be modeled.  
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 Accurately modeling the reliability of the component utilized multiple reliability 

models. These include the Arrhenius model, and the inverse power model. These two 

models were used to relate the system stresses in terms of reliability of the components. 

An electro-thermal model was created by combining these two concepts and can be seen 

in Equation 18. 

( )

0 0 0 0( ) ( ) , 1 1 (1)n bt m BTL L E E M M e T                                      (18) 

This is done assuming that the aging rate under the combined stresses is the product of 

the aging rates under each single stress.  E, M, T, and L are the electrical, mechanical, 

thermal, and lifetime factors. E0 and M0 are the scale parameters for the lower limits of 

the stresses and L0 is the lifetime at these lower limits.   

 When dealing with the aging of insulating materials, subjected to thermal, 

electrical, and mechanical stresses, the Weibull function was used. Determining the 

likelihood of failure P(L) at given stresses is compared with the shape parameter α. This 

can be seen in Equation 19, where L63% is the failure time for the failure probability of 

63% as a function of lifetime L. This Weibull function works well with stochastic 

accidents according to Zhang and Gockenbach’s research.  

63%( ) 1 exp ( )P L L L                                                        (19) 

 When combining stresses, the probabilistic failure becomes denoted by Equation 

20. In this function, the influences of thermal, electrical, and mechanical stresses have 

been substituted into the model. It can be seen that each term has an exponential impact 

on reliability. This model is more robust as it takes into account the system stresses.  
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 When applied, the models that Zhang and Gockenbach (2007) provide a means of 

connecting physical and statistical processes of component failures. Their approach was 

deemed useful to assess the reliability of a component, as well as clarify the causes of the 

failure. Of all the models created, time-dependent failure rate demonstrated the most 

significant results. The results from this model showed the dependency of the failure rate 

on component age and on the maintenance history. Their work also determined that 

different components had different significance of system stresses. Components such as 

transformers and housing were impacted by temperature. Zhang and Gockenbach (2007) 

state that in practice each failure can be activated in a defined usage interval, and that 

components can have different failure modes depending on time. Due to this a time-step 

mixture of the reliability model could potentially result in a better model of the failure 

rate.  

2.8 Accelerated Life Testing 

 Accelerated life testing is a common practice for determining component or 

system reliability, while using conditions that differ from operating conditions. This in 

generally done due to cost and time constraints of the experiment. In some cases a 

component can have a very long life at its operating stress, and this in turn would make 

analyzing this in the form of an experiment time consuming. To bypass this, the same 

experiment is run at stresses higher than that of the operating stresses. This, in theory, 

yields a shorter time to failure therefore reducing the time of the experiment.  
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 The two primary analytical components in accelerated life testing are a life 

distribution and a life-stress model. Failure data from the experiment is used to estimate 

the parameters of the life distribution. It is also important to fit the correct distribution to 

the failure data. This distribution can vary depending on the type of component as well as 

the types of stresses involved. Some of the common distributions used for accelerated life 

testing include: Weibull, exponential, normal, or Gaussian.  

 Life-stress relationships are used to relate test conditions to the operating 

conditions. There exist a multitude of different types of life-stress models, some of the 

common being: general-log linear, Eyring model, and Arrhenius model. Each of these has 

a specific application and should be applied situationally. The Arrhenius model, for 

example, is commonly used for accelerated life tests that involve temperature as the 

stress. In the case of this research the general log-linear approach is used. This is due the 

fact that it allows for a vector of stresses to be used. The relationship can be seen in 

Equation 21. It can be seen that the α, coefficients in the equation are the model 

parameters, where X is a vector of stresses. This allows for a different degree of impact 

depending on the stress. It is this key factor that gives the general log-linear its versatility. 
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j j
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L X e
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
                                            (21) 

A primary goal of this research is determining reliability of a component at a 

different, and more stressful, state. Research done by Mettas (2005) analyzed usage data 

to create predictive models. In his work he posed the question: “How do I utilize my 

customer’s usage data information?” He states that there are different types of customer 
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usage data, each requirement needs a different treatment. Mettas (2005) explains that 

depending on the customer, the stress applied to the system or component can vary. From 

this, a usage profile can be developed and applied to models.  

In his work Mettas (2005) analyzed a motor that experienced three distinct loads 

based on customer usage. The loads experienced by the motor were 6, 8, and 12 pounds. 

Failure data was collected for each operating condition and was recorded in terms of 

cycles-to-failure. From this a Weibull probability plot was developed, as can be seen in 

Figure 6.  Each line indicates a different stress level. The use stress is a separate stress 

defined by Mettas and has a value of 7. The Weibull-inverse Power model was fitted to 

the failure data, and the respective parameters were estimated.  

 

Figure 6: Weibull Plot for Multiple Stresses (Mettas, 2005) 
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After constructing the model using test data, customer surveys were conducted to 

determine the actual stress levels customers used. This differs from traditional 

experimentation, that would have used a mean of the test stresses. The values of this 

survey allowed for the creation of a revised model, whose pdf can be seen in Figure 7. 

This revised model and use stress allowed for more accurate predictions of the motors 

reliability. 

 

Figure 7: pdf Based on User Stress (Mettas, 2005) 

2.9 RAMS Conference Submissions 

 Research conducted by Hada et al (2011) focused on system reliability models 

with changing load profiles. Their research was the ground work for this thesis and was 

submitted to the 20111 RAMS conference. In their work Hada et al sought to create 

reliability models as a function of system stresses. The goal was to predict reliability 

based on predicted future state stresses.  
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 Johnson et al (2012), utilized concepts in this thesis in their research submitted to 

the 2013 RAMS conference. In this submission they used constrained maximum 

likelihood optimization to develop covariate based reliability models. The primary focus 

of their  submission was the development of the modeling techniques.  

3.0 Research Plan  

The following sections outline the details of research conducted pertaining to this 

thesis. These topics include: construction of reliability models, reliability predictions, and 

model building processes. Work done in these areas was done in regards to research 

conducted with NAVAIR. Models and techniques used were applied to situations and 

datasets provided by NAVAIR.  

Data for Navy Components/Systems 

 Currently in the Navy there exist two main information sources for catapult data: 

ASRL and logbooks. ASRL is a database that contains the launch information for every 

aircraft that is launched from the carrier. The information recorded includes aircraft type, 

weight, and end speed. Information is collected electronically and immediately stored 

within the system. The weight of the aircraft includes both the aircraft itself, as well as its 

payload. The end speed is the speed of the aircraft before separation from the catapult.  

 Logbooks are the maintenance logs kept by the carrier’s crew. These contain all 

the maintained actions performed, and give a detailed explanation of the actions 

performed. Logbooks have been mined for failure data, which was then stored in a 

database. This database allows for instantaneous access to failure data for any catapult 
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component. This information is critical in developing reliability models for the 

components under study.  

Software 

 Software used to estimate parameters, as well as make reliability predictions, have 

been provided by Reliasoft. The Reliasoft software suite specializes in software used for 

reliability analysis and accelerated life testing. Software included in this suite include: 

Weibull++, BlockSim, and ALTA.  These different software packages each specialize in 

a different aspect of reliability analysis. Weibull++ is used for fitting distributions to 

reliability data that is not stress dependent. Stress-based models are be made with the aid 

of ALTA. This software processes failure data that has corresponding stresses. The 

models that ALTA creates are a function of use stresses, or system stresses. Both 

programs allow for the fitting of various distributions. BlockSim is software that allows 

for the creation of reliability-based system simulations. Together, these different software 

packages allow for a complete reliability analysis of a system or component.  

3.1 Previous Work 

 Preliminary models to describe system reliability, with respect to system stresses, 

have produced mixed results. These models were the building blocks to the approach 

outlined in this research. The models developed include using mean aircraft weight, mean 

end speed, mean stresses and respective standard deviations, and a percentile based 

approach. 

 The general approach for these models is based on the Weibull distribution. This 

is done because of the general behavior of the system. Mechanical systems that 
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experience an increasing failure rate are often described by a Weibull distribution. 

Historically their usage has been successful when applied to failure data of these systems. 

The Weibull model used is the two parameter distribution. Due to limited data, the 

estimation of additional parameters is not advisable or in this case necessary, making the 

selection of the three parameter Weibull not favorable. In these approaches, the stresses 

believed to impact reliability are addressed in the scale parameter of the distribution. By 

making the scale parameter a function of these stresses, they can potentially have an 

impact on reliability of the component. The shape parameter is not a function of stresses 

however; doing so would imply a change in failure mode. This general approach can be 

seen in Equation 22. The x terms in the model are the system stresses and the values of α 

and β are estimated from the failure data. Stress values are input into the model and 

determined by usage profiles. In practice, a negative value of an αj term indicates a 

negative impact on reliability. A positive value for an αj term indicates that the stress 

does not impact the model or it improves reliability. This outcome generally implies that 

the data cannot accurately describe the failure in terms of the respective stress.  
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 A model using mean weight was developed to factor in aircraft weight into the 

reliability model. This approach used a two parameter Weibull distribution, with the scale 

parameter as a function of mean weight. Equation 23 shows the general form of the 
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reliability model. Requirements for this model included failure data, in which the mean 

weight for the respective failure interval was known. An illustration of this can be seen in 

Figure 8. Determining the mean weight for a given interval was done by cross-

referencing a failure from logbooks with usage information from ASRL. Logbooks 

provided the installation and failure times and ASRL provided the aircraft weight for the 

launches in the interval. Once determined, the mean weight for the interval as well as the 

number of cycles were used as inputs into ALTA.  

 

Figure 8: Failure Description 
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 The primary disadvantage of this approach was that it did not include end speed 

into the reliability model. This was a concern to in-service engineers, who deemed that 

this was an important factor. Because of this, a supplemental approach was created which 
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factored in both weight and end speed. The general form of this model can be seen in 

Equation 24. In this model the Weibull scale parameter is a function of both weight and 

end speed.  
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 Despite producing promising results, a model factoring in mean weight and end 

speed was deemed not entirely appropriate. This was due to the discovery that weight and 

end speed were correlated. Because of this, the confidence of the parameter estimation 

was reduced. In doing so it was decided that the model with mean weight and end speed 

was undesirable.   

 These simple models can be applied to any system or component that experiences 

recorded stresses and failures. The application is not limited to aircraft carrier 

components by any means. Furthermore these models can potentially be enhanced by 

adding the standard deviation of stresses to the model. In some cases a high variation in 

stresses could lead to a decrease in system of component reliability. An example of this 

model can be seen in Equation 25. 
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3.2 Classification of Stresses 

 Due to the correlation concerns involving mean weight and end speed, there 

existed a need for an alternative method for classifying launches while still using both 

stresses. This need was met with the introduction of binning, which grouped launches 

based on weight and end speed combinations. By grouping launches based on weight and 

end speed it was possible to indirectly factor in the two different stresses. This binning 

and classification can only be done with the aid of personnel knowledgeable with both 

the system as well as the stresses within the system. Bins cannot be arbitrarily made, and 

doing so would generate inaccurate results.  

Data binning is a critical aspect in the model building process. The general idea of 

data binning is grouping similar system loads based on their respective stresses. By 

grouping multiple loads in a single bin it is implied that they all affect the system in a 

similar manner. The main advantage of grouping loads into bins is that it makes 

parameter calculations easier. The alternative to this approach would be to have every 

unique load factored into the reliability model separately. By reducing the number of 

loads, the number of respective covariates is reduced in the reliability model. Due to the 

limited data available, the binning approach makes model building and parameter 

estimation much more feasible.   

Figure 9 represents a sample binning diagram, where each color represents a 

separate bin. It can be seen that bins are determined by their thresholds of two different 

stresses. In practice it is possible to have fewer or more stresses to determine bin 

groupings. If a certain load is within the bin thresholds it is considered to be part of that 

bin.  
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Figure 9: Binning Diagram 

 Mathematically each bin represents a percentage of the total number of loads seen 

in a given interval. This can be seen in Equation 26, where xi is the percentage of loads in 

bin i. These bin percentages can then be used for reliability analyses. In the case of 

constrained optimization, these are the primary inputs into both ALTA and the reliability 

function.   

total number of loads in bin 

total number of loads in interval
i

i
x                                       (26) 

The application of bins in the reliability function can be seen in Equation 27. It 

can be seen that reliability model is a function of both bin percentages and time. The 

scale parameter of the two parameter Weibull is a function of bin percentages. Because of 

this, any shift in usage has an impact on component reliability.   
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3.3 Constrained Maximum Likelihood Optimization 

The general purpose of this approach is to create a stepwise approach to model 

building in which the data itself determines the optimal form. This approach uses the two 

parameter Weibull distribution, with the scale parameter a function of stress. The stresses 

of the system  use a binning-based approach. They must be similar and able to be 

grouped. If the system stresses cannot be binned, this approach is not valid and cannot be 

used. It is also important to note that an initial set of bins must be defined prior to this 

approach. This process does not aid in the initial creation of bins. Also, it is vital to 

understand the relationship between bins. By this it is meant that the relative impact from 

one bin to another must be known. In this section’s example, for instance, it is known that 

relative bin stress increases in ascending bin order. Other cases it might be the reverse, 

but it still must be taken into consideration. Without this knowledge it is impossible to 

properly use this technique.  Figure 10 shows the general flow of the process.  

 



32 

 

 

 

 

 

Figure 10: Constrained Process Flow 

3.3.1 Model and Constraints without Baseline 

It is important to first declare the objective and constraints of the model.  One key 

point to note is without the use of a baseline the αj coefficients do not have to be 

negative. Instead they should follow the constraints shown in Equation 28. The general 

concept of these constraints is that the αj values must have descending values. This is 

because historical information for this example indicates that as bins ascend the relative 

stress increases. These constraints are the basis on which the entire approach is based on.  

The number of αj terms, n, in the initial constraints is equal to the number of initial bins 

created. 
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It is also worth noting that the αj terms in Equation 28 are related to the two parameter 

Weibull function, which is illustrated in Equation 29. The value of αj indicates the impact 

a given bin has on component reliability.   
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Step 1: Initial Run  

 Step 1 involves solving the ALTA model without the usage of constraints. By this 

it is meant that the model is run with every parameter, or in this case bin, being used. 

This outputs all of the necessary information to evaluate the constraints outlined in 

Equation 28. Table 1 shows a sample output of alphas for a binning scenario with n bins. 

It can be seen that each bin has a corresponding αj. In the event that the model does not 

run when attempting to estimate n alpha values, a different approach using a baseline 

must be used. This approach is outlined in Section 3.3.2 of this document.   

Table 2: Alphas from Initial Run 

Bin 1 Bin 2 Bin 3 … Bin n 

         …    

 

Compute Constraint Violations 

 After the completion of Step 1, the outputted alphas are used to compute the 

constraint violations. These violations show to what extent the alphas digress from the 
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given rules. Equation 30 outlines the process for computing constraint violations.  By this 

it is meant that the difference between each set of alphas is computed. This approach 

holds true for any binning scenario; however the number of violations computed would 

change.  
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Determine the Highest Constraint Violation 

 Once all of the constraint violations have been computed the next step is to find 

the largest value of   .  This can be seen mathematically in Equation 31. The rationale 

behind this is that the largest    is causing the most damage to the model. By finding the 

maximum    it is possible to locate the cause;   .  The corresponding alpha parameter is 

then renamed to avoid confusion. This can be seen in Equation 30. 
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Add Additional Constraint 

 The results of Step 3 indicate what bins must be addressed. Unlike other modeling 

techniques parameters cannot simply be eliminated from the model. Therefore, a different 

approach must be taken. This new approach is to combine the two bins that created the 

largest value of   . This is mathematically shown in Equation 32. The reason for this 

stems from the constraint violations. These violations indicate that ALTA cannot 
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distinguish one parameter from the other. Because they cannot be differentiated the 

logical assumption would be to combine them. 

1k k                                                                           (32)
 

These new alphas are applied to the reliability model in Equation 33. It can be 

seen that bins k and k+1 now share a common alpha value. This combination approach 

translates back into the original data set. By this it is meant that the failure data from bin 

k is added to bin k+1 to create a single bin. The failure data being combined is the 

percentages for each bin for the respective failure. 
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                                      (33) 

Step 5: Return to Step 1 

Once the data set has been combined in the appropriate manner the entire process 

is repeated. This is done continually until there are no constraint violations or every bin 

has been combined. Once there are no violations the final form of the model has been 

obtained. In the event all the bins converge into one bin an alternative approach is 

needed. Such a scenario implies that the impact of each bin, in terms of reliability, is 

indistinguishable. 

3.3.2 Model and Constraints (with Baseline)  

The general approach to this method remains the same with the usage of a 

baseline. The selection of the baseline is important, and should be based on professional 

advice. The general theory of the baseline is to compare the impact of each bin to a 

selected bin. It is therefore most sensible to select the least stressful bin that contains 
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loads in it. With the addition of the baseline comes the addition of constraints. These can 

be seen in Equation 34. It is shown that the addition of a baseline forces all alphas with a 

subscript greater than the baseline to be negative.  Once these initial constraints have 

been created the remaining steps are the same for this method.  
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 A strength of this baseline approach comes from an intrinsic problem when 

estimating parameters using ALTA. Due to a lack of sufficient failure data, estimating 

every parameter of the model in the initial run is often times impossible. Doing so yields 

a system error thus making the approach outlined in Sections 3.3.1 impossible. The 

addition of the baseline bypasses this by never asking the software to estimate a complete 

set of model parameters.  

3.4 Constrained Method Results 

 Upon receiving failure data from NAVAIR thorough analysis was conducted to 

understand the behavior of the data. These analyses included descriptive statistics, 

histograms, and time series plots. Histograms were created to understand the frequency of 

different stress levels for different time periods. The different time periods represent the 

time before and after additional squadrons of F-18E/F’s were added. The time study was 
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conducted to determine if there was a noticeable shift in stress levels over time. After the 

completion of the preliminary tests, models were built using the failure data.  

 Histograms were created for multiple aircraft carriers deployed by the Navy, these 

include: CVN 74, CVN 75, CVN 76. For the purpose of this analysis CVN 75 is or 

primary importance. This is due to the fact that CVN 75 at this time has the most reliable 

failure data. The histograms created for this ship can be seen in Figures 11 and 12. Figure 

11 represent the frequency of different aircraft weights before the additional squadrons of 

F-18E/F were added. From these histograms it can easily be seen that the additional 

squadrons has a noticeable impact on the distribution of weight. This outcome reinforces 

the statements from in-service that the additional squadrons had a noticeable impact in 

terms of weight. An additional set of histograms were created to analyze end speed. 

Despite the prediction that it too would show an increase after the addition of squadrons, 

there was not. This stress did not show any visible shifts post addition of F-18E/F’s.  

 

Figure 11: Histograms of Weight Pre-Addition 
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Figure 12: Histogram of Weight Post-Addition 

 Histograms were also created to analyze shifts in bin usage over time, which can 

be seen in Figures 13, 14, 15, and 16. Each graph represents a different catapult on CVN 

75. Within each graph, bins are analyzed over three different time periods. This was done 

to understand the impact of air wing composition in pin usage. It can be seen that the 

most stressful bin is bin 7. It has a downward trend. Bin 6 however, has a much more 

pronounced upward trend. Form this it can be seen that the overall usage of more 

stressful aircraft increases over time.  

 

Figure 13: CVN 75 Cat 1 Bin Histogram 
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Figure 14: CVN 75 Cat 2 Bin Histogram 

 

Figure 15: CVN 75 Cat 3 Bin Histogram 

 

Figure 16: CVN 75 Cat 4 Bin Histogram 
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When modeling the failure data the constrained approach took precedence over 

models such as mean weight and end speed. In these models the initial binning 

classification had seven distinct bins. From these, the approach combined similar bins 

using failure data provided by NAVAIR. Components included in this study include nose 

gear launcher, bridle tensioner, water brake, and improved piston assembly. These 

components were selected due to the fact that they had failure data available at the time 

of this study. The baseline approach was used for this study, as the lack of a baseline led 

to errors in the initial step of the constrained approach.  

 The nose gear launcher successfully used the constrained approach and the results 

can be seen in Equation 35 and Table 2. Equation 35 shows the final form of the model, 

in which all but bins 6 and 7 have been combined into the base line. From this it can be 

concluded that only the most stressful bins have a negative impact on reliability. This 

model was then used to predict a future mean life, in cycles, based on an anticipated 

usage pattern. The results from this can be seen in Table 2. It can be seen that the more 

stressful future state, that has an increase in heavy aircraft, negatively impacts the 

reliability of the nose gear launcher.  
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Table 3: Mean Life Predictions for NGL 

Time Period Mean life (cycles) 

2003 to 2008 583 

2008 to 2012 554 



41 

 

 

 

 

  

The water brake also successfully utilized the constrained approach and produced 

similar results. The final form of the model can be seen in Equation 36. This model is 

slightly different in the sense that three bins have a negative impact on component 

reliability. In this model bins 5, 6, and 7 all impact component reliability in a negative 

manner. Bins 1 through 4 all have been combined with the baseline. Table 3 shows the 

mean life predictions for the future usage profile, and indicates that mean life is 

anticipated to decrease.  
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Table 4: Mean Life Predictions for WB 

Time Period Mean life (cycles) 

2003 to 2008 1134 

2008 to 2012 1054 

  

The bridle tensioner in a similar manner to that of the nose gear launcher 

completed the constrained approach. It also formed a model with two significant bins i.e., 

bins 6 and 7. This model can be seen in Equation 37. Mean life predictions were also 

made using this model and are located in Table 4. Once again the mean life is anticipated 

to decrease in the more stressful future state.  
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Table 5: Mean Life Predictions for BT 

Time Period Mean life (cycles) 

2003 to 2008 846 

2008 to 2012 808 

  

Unlike the previous components the improved piston assembly was not able to 

use the constrained approach. This is most likely due to insufficient failure data for the 

component. This component had the least failure data collected when compared to the 

others. Because of this a simple Weibull model was fit to the failure data. The results of 

this can be seen in Table 5.  

Table 6: Parameters for IPA Weibull Model 

Beta Eta LK 

.819 666.8 -283.33 

 

 

Summary of results 

 The results of the constrained approach have proved that the algorithms used can 

produce working reliability models.  In all but one case there were successful in 

estimating the parameters necessary for an applicable reliability model. The method was 

also able to determine if the reliability model was not an appropriate fit for the data. This 
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was evident in the case of the improved piston assembly, which failed to conform to the 

constraints of the algorithm. These models that the constrained approach has generated 

form the groundwork of further reliability assessments.   

4.0 Parameter Estimation Utilizing Constrained Nonlinear Optimization Search 

 An alternative approach to using ALTA is to use Excel to find the optimal set of 

model parameters as well as bin groupings. This can be done by correctly applying the 

nonlinear optimization tools supplied in the Excel solver package. This software package 

has the ability to compute nonlinear optimization. While the algorithm is not exactly the 

same as ALTA, the estimation process is similar.  

 The purpose of estimating the parameters in an entirely new approach has two 

main benefits. Firstly, it allows for the verification of the parameter estimations that 

ALTA provides. In theory, both approaches should have similar results for the αj 

parameters of the scale parameter. This is in part because the Excel method is subject to 

the same constraints as the ALTA model. The estimation is also derived from the same 

data set and the reliability model being used remains the two-parameter Weibull. Slight 

discrepancies are to be expected however. This is due to the fact that ALTA and Excel 

utilize different optimization algorithms.  

The second benefit is that this approach is completely automated, that is to say 

that the grouping of the bins is not a manual process. Results from the Excel process that 

agree with the manual ALTA process would indicate that the stepwise process of the 

constrained method did not negatively affect the model. A possible drawback to using the 

constrained approach is that the linear approach to the combinations of bins bypasses a 
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superior model. Because the Excel method blindly searches for the optimal model, it is 

possible that this method could find a different optimal solution.  

Approach 

 The general approach to this method is the same as the approach outlined for 

constrained likelihood estimation; however it is automated by means of nonlinear 

optimization. The constraints previously outlined remain the same, and are used in the 

nonlinear optimization process.  Equation 38 shows the constraints used for the 

optimization process. It can be seen when compared to Equation 28 that they remain the 

same. The constraints used in both methods indicate that as the value of n increases, the 

value of the respective αj term should decrease. This stems from the fact that the 

corresponding bin stress increases as the value of n increases. These constraints are 

implemented by the comparison of cell values in Excel and are not explicitly stated in the 

spreadsheet.  
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 The objective function for the nonlinear optimization is the log-likelihood 

function. Due to the nature of the problem, it is in this case easier to work with the natural 

logarithm of the likelihood function. Equation 39 shows the objective function for the 

optimization process. It can be seen that the objective function is the sum of the logarithm 

of the pdf at each failure time. For the purposes of this application, the objective function 
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is maximized. At the optimal maximum solution, the correct parameters are obtained. 

This objective function is subject to the constraints outlined in Equation 38. Similar to the 

constraints, this equation is not visible in the spreadsheet and is instead imbedded in a 

specified cell.  
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The combination of the objective function and constraints can be seen in Equation 

40. This is the backbone of the optimization process and what is inputted into Excel. 

When inputted, the constraints and objective function take on a slightly different from 

however. The constraints in the equation are imbedded in the Excel solver function and 

the objective function is imbedded in a cell. This format can be applied to any 

component, given that there is failure data with the necessary stress data.  
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4.1 Optimization Spreadsheet 

 An Excel spreadsheet was created to compute the nonlinear optimization. This 

spreadsheet can be seen in Figure 17. Spreadsheets were created for each of the primary 

catapult components; nose gear launcher, improved piston assembly, bridle tensioner, and 

water brake. All the necessary information used in the nonlinear optimization process is 

contained in these spreadsheets. Cells in the CTF column are the recorded failure times in 

cycles. Columns labeled X1 through X7 are the bin percentages for each corresponding 

failure. These data fields are populated from collected failure data and are not variables.  

The scale parameter column, η, is calculated for each individual failure. This 

parameter is a function of bin percentages and the αj values. This is illustrated 

mathematically in Equation 41. Because the scale parameter is a function of the alpha 

values, its value changes throughout the optimization process. The pdf is also calculated 

for each individual failure and the equation for this is shown in Equation 42. From pdf 

column the natural logarithm of the pdf is computed in a separate column. The column of 

natural logs of the pdf’s is then summed; this is the objective function for the 

optimization process. This summation is located in the cell labeled “sum”.  
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Figure 17: Excel Worksheet 
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 Multiple cells in this spreadsheet are variables that change as the optimal solution 

is determined. The columns CTF and X1 through X7 are constants that do not change for 

a particular failure event. The data for these columns are collected from logbooks then 

inputted into the spreadsheet. The values of the αj parameters are decision variables for 

the nonlinear optimizations. In the initial stage these values are nominally set to zero. β is 

also a decision variable and changes as the optimal solution is determined. In the initial 

stage this parameter is set to 1. The initial values for the αj parameters and shape 

parameter give the optimization process a starting location. η and the pdf are functions of 

the previously mentioned terms..  

 Constraints are not explicitly stated in the spreadsheet. Instead they are declared 

in the solver function. These constraints are outlined in Equation 38, but can be seen in 
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Figure 18. In this each cell represents the corresponding alpha term for the given 

constraint. Figure 19 also shows the selected cells for the decision variables. For this 

nonlinear optimization, the alpha parameters are the decisions variables. In previous 

iterations of this method β was also a decision variables, however this led to problems in 

the optimization process. By having the αj parameters the decision variables it allows for 

this approach to both estimate the distribution parameters as well as groups bins. After 

the optimization is run, any bins with the same alpha values are considered to be 

combined. This grouping essentially the same as the constrained approach, however the 

grouping is automated and does not require human intervention.  

 

Figure 18: Excel Constraints 

 

Figure 19: Decision Variables 

4.2 Comparison Analysis 

 A comparison of results collected from ALTA and Excel was performed. The 

purpose of this was to determine if the αj parameters have similar values as well as if the 

bins have similar groupings. Results were collected for the NGL, IPA, BT, and WB from 
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both methods. Tables were created to illustrate the comparison of areas of interest. 

Reliability predictions for each method were computed to determine if there was a 

significant difference in each method’s results.  

Nose Gear Launcher 

 Table 6 contains the outputs from both the Excel and ALTA approaches. Both 

approaches were able to create final models that adhere to the model constraints. It can be 

seen that the groupings of bins are identical. This implies that the bins that were created 

by the ALTA grouping algorithm were replicated with the nonlinear optimization in 

Excel. This is an important finding as it gives significant credit for the optimal bin 

groupings. The αj values for both outputs are similar, although there is a small 

discrepancy. This difference can possibly be attributed to the different optimization 

algorithm used by the methods. It is also important to note that all alpha values are 

negative, a requirement to have a meaningful model. 

Table 7: NGL Outputs 

Alpha α0 α1 α2 α3 α4 α5 α6 α7 

Excel 6.661 0 0 0 0 0 -.690 -.690 

ALTA 6.328 0 0 0 0 0 -.592 -.592 

 

Table 7 shows how reliability predictions differ for each model and a percent 

difference was computed. A reliability prediction was done at 500 cycles for each method 

and bin percentages were based on current aircraft usage. The results indicate that the 

ALTA model generates more pessimistic results than that of the Excel model. The 
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difference between the two predictions is also greater that for other components. The 

difference in the alpha parameter estimation is amplified, as it is an exponential term in 

the reliability model. Despite this the methods did not create reliability predictions that 

varied in an extreme manner.  

Table 8: NGL Comparison 

 R(500) 

Excel .556 

ALTA .453 

% Difference 18.4% 

 

Improved Piston Assembly 

 The results for the Improved Piston Assembly are located in Table 8. Both of 

these approaches produce results indicating that this data set could not produce a complex 

model. Both the Excel and ALTA version’s final models produced final models with 

extremely negative αj terms. α7, in both cases, was found to be too negative to be 

realistic. The Excel version also returned an extremely positive value for bin 1’s αj 

parameter. In terms of caparison these results are beneficial. The two approaches came to 

the same conclusion that the data could not be modeled as a two parameter Weibull with 

covariates.  
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Table 9: IPA Outputs 

Parameter α0 α1 α2 α3 α4 α5 α6 α7 

Excel 7.821 4.486 0 0 0 0 0 -6.510 

ALTA 8.004 0 0 0 0 0 0 -5.41 

 

Bridle Tensioner 

 In the case of the bridle tensioner, both approaches created working models in 

their final iterations. The results from the Excel and ALTA approaches are located in 

Table 9. This final model, in both cases, has bins 6 and 7 grouped together. This is an 

important finding as it shows that the nonlinear optimization and manual groupings came 

to the same conclusions. These results are similar to that of the NGL which also had an 

agreement with both methods. It can also be seen that the αj values are similar in 

magnitude. There is a slight difference, however this could be attributed to different 

optimization algorithms. These results are still favorable as the αj values do not vary 

greatly between the two methods.  

Table 10: BT Outputs 

Parameter α0 α1 α2 α3 α4 α5 α6 α7 

Excel 6.987 0 0 0 0 0 -.638 -.638 

ALTA 6.723 0 0 0 0 0 -.537 -.537 

 

 A comparison of reliability was done for the two models. Reliability predictions 

were made and compared at a time of 500 cycles and results can be seen in Table 10. 
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Values for bin percentages were created form the average values found in real failure 

data. These results indicate approximately a 10% difference in reliability estimation. This 

difference is much lower than the differences computed for the nose gear launcher, which 

had an 18.4% difference. It can be seen that the ALTA reliability prediction is more 

pessimistic than that of the Excel model. This stems from the varying αj values that were 

computed.  

 

Table 11: BT Comparison 

 R(500) 

Excel .644 

ALTA .576 

% Difference 10.6% 

 

Water Brake 

 The Water Brake data also produced similar results for both the Excel and ALTA 

methods. The results from the Excel and ALTA methods are located in Table 11. The 

final form of each model conformed to the requirements for a working model. All αj 

values were negative and in descending magnitude. In each case bins 5 through 7 were 

combined into a single bin. Bins 1 through 4 were also combined into a baseline bin. 

These results are similar to previous results including the NGL, and IPA in which both 

methods produced the same binning combinations. While the αj values are not as close as 

previous components, they do not differ greatly.  
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Table 12: WB Outputs 

Parameter α0 α1 α2 α3 α4 α5 α6 α7 

Excel 7.96 0 0 0 0 -1.808 -1.808 -1.808 

ALTA 7.69 0 0 0 0 -1.081 -1.081 -1.081 

 

 The reliability predictions for the water brake can be seen in Table 12. It can be 

seen that these predictions are much closer than previous components. The difference in 

reliability is under one percent, which is a significant finding. This difference in 

reliability estimation is much lower than the nose gear launcher and bridle tensioner, 

which had differences of 18.4% and 10.6% respectively. Such a small difference 

indicates that this model and approach fits the data extremely well. From this it can be 

concluded that both methods create the same bin groupings as wells as extremely close 

reliability predictions.  

Table 13: WB Comparison 

 R(500) 

Excel .701 

ALTA .697 

% Difference 0.55% 

 

4.3 Comparison Results 

 From this comparison it is evident that both approaches yield similar results. In all 

cases both approaches grouped bins in an identical manner. Similarly, αj values for both 
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approaches were found to be quite similar. The only component that had significantly 

different αj values, the IPA, could not create a working model for either method. 

Furthermore reliability estimations using the same bin percentages and cycle values 

yielded similar results. The estimated reliability was found to be reasonably close for all 

components that produced a working model. The results of this comparison imply that the 

algorithm used in the constrained approach, using ALTA, produces similar results to that 

of nonlinear optimization. Furthermore it indicates that the manual process of grouping 

bins does not negatively impact the final results of bin groupings.  

5.0 Future Possible States 

 Due to the nature of the system, there exist multiple possible future states of 

system stresses. By this it is meant that the loading profile at a future time is not known 

with absolute certainty. There are however, known possible future states that could 

potentially exist. These are known from historic information, known mission profiles, and 

anticipated changes in air wing composition. Changes in air wing composition are caused 

by the phasing out of older aircraft, as well as the addition of more combat specific 

aircraft. These possible profiles can be used in determining the possible future state 

reliabilities by quantifying them as inputs into the created reliability models.    

 These future states can be simulated to determine their impact on system 

performance. Currently within NAVAIR there exists concern that the addition of heavy 

aircraft, along with combat operations, could significantly decrease the operational 

reliability of the carrier catapults. Another concern expressed by NAVAIR is that their 

current maintenance polices will not be able to address the increase in system failures. By 



55 

 

 

 

 

creating system level simulations, rather than single components, analyses can be 

conducted to assess the overall reliability. These simulations are able to determine if there 

are negative impacts on system reliability, as well as if the current maintenance policies 

can maintain system operation.  

Simulation Software 

 To simulate the launcher system, BlockSim, a Reliasoft software, was used. This 

software allows for the simulation of multi-component systems whose reliability can be 

expressed mathematically. BlockSim also allows for integration with ALTA, thus 

allowing for the direct implementation of reliability models. The software is capable of 

determining availability, number of failures, criticality, as well as maintenance policies. 

For the purposes of this study, mean time to failure and number of system downing 

events are of primary concern. These two factors will show if the changes in stress 

profiles directly impact system reliability. 

5.1 Simulation Approach 

 The catapult system is comprised of four primary components, all of which have 

been previously addressed in Section 1.2. These components include the nose gear 

launcher, bridle tensioner, improved piston assembly, and water brake. Because each of 

these is critical to the operation of the system, the system can be considered to be series 

in nature. Figure 20 illustrates this series system. From this it can be concluded that if any 

component fails it causes an entire system failure.  

 The reliability of these components can be determined by their respective 

reliability models. These were created using the constrained approach, and verified using 
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the Excel method. Each component has a unique model, but all experience the same 

stress values. Equations 43 through 46 show the reliability models for each component. 

These equations, along with the known future stresses, enable for the determination of 

future state reliability. 

 The simulation has multiple assumptions that make the application of modeling 

techniques easier. Firstly, corrective actions are assumed to be deterministic. This is 

primarily due to the fact that a record of repair times is not available. Also, the repair 

time and availability of the system is not of primary concern. The main point of interest is 

the impact of the stress profile on reliability. The second assumption is that there exist a 

set number of future states. By this it is meant that there is not a continuous distribution 

of future state stresses. This assumption makes the modeling process much simpler. 

Instead of a continuous spectrum, a set of probable states will be simulated. Having a 

continuous state distribution would be extremely difficult using the available software 

packages. Lastly for the initial simulation, preventative actions are be ignored. This is 

because in this initial simulation the goal it to solely determine the impact of system 

stresses on component reliability. By adding in preventative maintenance actions the 

impact of system stresses can be hidden. A supplement simulation, that includes and 

analyzes preventative actions, is located in Section 6. 

 The final goal of the simulation approach is the creation of optimal maintenance 

polices. These are based on the results of the simulations run for each future state. After 

each scenario is run, an optimal maintenance policy is created. This policy will attempt to 

complete a preventative maintenance action before a corrective action must be 

performed. Such policies can be created within the Blocksim software. After maintenance 
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policies have been created for each possible future state, they are weighted based on the 

probability of the respect states occurrence. This weighing action creates a generalized 

maintenance policy that will be effective for the possible future states.  

Blocksim Model 

 The model for the Blocksim simulation can be expressed as a four component 

series system. This model can be seen in Figure 20. Each of the blocks in the figure 

represents a component in the system. Within each block resides the respective 

information of the component. Reliability models were directly imported from ALTA for 

each component. Corrective maintenance polices were also inputted for each component.  

 

Figure 20: Blocksim Model 

 The reliability models for each component can be seen in Equations 43 through 

46. These represent the optimal models found using the constrained approach and 

verified using the Excel approach. It can be seen in Equation 43 that the model for the 

IPA does not contain any covariates. This is because the IPA failed to produce a model 

using both the constrained and Excel methods. A simple two-parameter Weibull model 

was created as an input into the model.  
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5.3 Future States 

 The stresses seen by the catapult system are directly related to the air wing 

composition and mission profiles of the aircraft carrier. It is known by NAVAIR that 

both of these are variable in nature and will change with time. Future air wing 

composition is known to with a certain degree of certainty and is predicted to have an 

upward shift in heavy aircraft. Mission profiles on the other hand are not known with 

exact certainty. Based on known information, four possible future states have been 

created. These future states are shown in Table 13.  

Table 14: Future Stress States 

 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 Bin 7 Pi 

State 1 .05 0.15 0.1 0.25 0.10 0.2 0.2 .15 

State 2 0.05 0.1 0.1 0.15 0.10 0.3 0.2 .35 

State 3 0.1 0 0.05 0.1 0.15 0.30 0.25 .20 

State 4 0.05 0 0.05 0.1 0.15 0.35 0.30 .30 
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State 1 

 State 1 represents the current system usage. This distribution of stresses has been 

calculated from the current air wing composition as well as the current system usage. 

Results from this state are used as a baseline of comparison to the other system states. It 

can be seen that the distribution of bin usage is relatively uniform. This stems from the 

mission profile of a non-combat usage profile. When compared to states 3 and 4, the 

usages of bins 6 and 7 is much lower. This stems from the fact that there is not a need to 

fly combat equipped aircraft in excess when not in a combat operation.    

State 2 

 This state represents the addition of multiple squadrons of heavy aircraft. Such a 

shift is already in progress, which is why this state has such a high probability. The shift 

in this state comes from the greater usage of F-18E/F aircraft, as well as the potential 

usage of F-35. However, due to complications carrier in development of the F-35, carriers 

have and will see a greater shift in F-18E/F usage.  

State 3 

 State 3 represents combat operations with the current air wing composition. The 

lack of a bin 2 usage stems from the lack of flying trainer aircraft. During combat 

operations there is a need to fly mission capable aircraft, thus the trainers are not flown. 

The shift of usage in the higher bins comes from the usage of combat specific aircraft. 

These combat aircraft are both larger, as well as carry heavier payloads. Both of these 

factors produce a higher usage of bin 6 and 7.  
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State 4 

 State 4 is a combination of combat operations and a strong increase in heavy 

aircraft usage. It can be seen in this state that there is a much greater usage of the more 

stressful bin when compared to states 1 through 3. This state is based upon the mission 

profiles of combat operations currently in practice. This known usage pattern was then 

amplified with the known shifts in air wing compositions. This is possible as changes in 

the types of combat aircraft, and their respective squadrons, are known. Based on current 

mission profiles, as well and anticipated shifts in air wing composition, a high possibility 

for this state has been obtained.  

5.4 Simulation Results 

 The simulation was run for each of the previously mentioned system states and 

results were collected. The results collected include number of system failures, 

availability, and mean time to failure. The two primary aspects of the analysis are the 

number of downing events and the mean time to failure. Table 14 contains a summary of 

results for the analysis. A quick analysis of this table indicates that stressful states have a 

negative impact on the performance of the system.  

Table 15: Simulation State Results 

 

System Failures Availability Mean time to Failure 

State 1 41 93.7 160 

State 2 44 93.3 156 

State 3 48 92.9 147 

State 4 50 92.5 133 
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 System availability was considered to be an invalid form of caparison. This is due 

to the manner in which it was applied to the study. At the present time there is little 

information as to the time it takes to repair each component. Because of this a 

placeholder value was used to allow for the simulation to run. This placeholder value, due 

to its small time, leads to a higher than actual system availability. Therefore the primary 

areas of comparison are the number of system failure and the mean time to failure.  

System Failures 

 The impact of system stresses was evident from the results of the simulation. 

Table 15 shows the percent increase when compared to the current stress profile of the 

system. It can be seen from these results that an increase in the usage of heavy aircraft 

has a positive correlation with the number of system failures. These increases are also not 

of a small magnitude, specifically in state 4. The most extreme case, state 4, shows a very 

large increase in the number of failures; 21.95%. When taken into consideration, it is 

evident that the stress profile has a large impact on the reliability of the system. 

Table 16: Simulation System Failures 

 Number of Failures Percent increase 

State 1 41 NA 

State 2 44 7.31% 

State 3 48 17.07% 

State 4 50 21.95% 
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An analysis of component failures in each state was done to determine what 

components played critical roles in system reliability. Figures 21 and 22 are plots of 

component failures for each state.  For each state a plot of failures was created that 

illustrated the number of failures for the given interval. From the plots of failures, it can 

be seen that that the NGL, or nose gear launcher, has the most failures. When compared 

to the improved piston assembly, the difference in number of failures is significant. The 

bridle tensioner also had a high number of failures across all system states. It can also be 

seen that the improved piston assembly remains constant in terms of its number of 

failures. This is because the reliability model for this component is not a stress based 

reliability model.  

 

Figure 21: State 1 and 2 Component Failures 
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Figure 22: State 3 and 4 Component Failures 

 The component based analysis of failures shows that the nose gear launcher is the 

primary cause of system failures. This can be determined because the system is a series 

system, thus the component with the highest failure rate causes the most system failures. 

These results indicate that maintenance of the nose gear launcher is critical to the overall 

operation of the system. It is also apparent that the improved piston assembly is the least 

critical to quality, as it has the lowest number of failures.  

Mean Time to Failure 

 The second area of interest for the simulation analysis is the mean time to failure 

of the system. Table 16 shows the decrease in mean time to failure when compared to the 

baseline state. From the table it can be seen that as the states become more stressful, the 

mean time to failure decreases. While the magnitude of these values is not as great as that 

of the system failures, it still shows a negative impact on the system.  
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Table 17: Simulation State MTTFs 

  MTTF Percent Decrease 

State 1 160 NA 

State 2 156 2.5% 

State 3 147 8.12% 

State 4 133 16.87% 

  

 From Table 16 it can be seen that State 4 causes a 16.87% decrease in the mean 

time to failure. This translates to a loss of 33 cycles for the system, or 33 aircraft 

launches. The combat operations, when combined with the increase in heavy aircraft 

usage, cause a significant decrease in system reliability. This presents a problem as the 

possibility for this scenario is extremely likely to occur. It can also be seen that the 

combat operation state, without the addition of heavy aircraft, has a significant impact on 

the mean time to failure. This state produces a 8.12% decrease in the mean time to 

failure.  

Weighted Results 

 The results of the system failures and mean time to failure were weighted 

according to the probability of the state occurring. This is expressed in Equations 47 and 

48. It can be seen that the results for each state are weighted by the probability of the 

state occurring. The sum is then computed to determine the overall expected number of 

failures of mean time to failure. This sum gives an estimate of the future state with all 

possible states taken into consideration. 
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 The results from this weighting process can be seen in Table 17. These 

predictions represent the weighted predictions in Tables 15 and 16. It can be seen that the 

value for number of failures shows a 12.2% increase when compared to the baseline. This 

is not as extreme as the results found for state 4, but is still significant. The weighted 

value for MTTF shows a slightly lower shift at a difference of 7.5% from the baseline. 

These results show that when all future states are taken into account there exists a less 

reliable trend. This finding is important as it indicates that all possible states have a 

noticeable weighted impact in system reliability.  

Table 18: Weighted Results 

 Weighted Value 

Number of Failures 46 

MTTF 148 

 

5.3 Analysis of Results 

 Results from these simulations provide insight as to how changes in air wing 

compositions and usage impact the performance of the catapult system. It can be seen 

that increases in composition alone have only a slight effect on system mean time to 
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failure and the number of system failures. Combat operations, without a change in air 

wing, produce a larger impact on reliability than changes in air wing composition alone. 

This result indicates that the usage pattern is critical to system reliability. The simulation 

in which there were changes in air wing composition and combat operations produced a 

significant impact on the system reliability. This scenario yielded a 21.95% increase in 

system failures and a 16.87% decrease in mean time to failure. Such changes are not 

negligible and preparation for such a scenario is extremely important. The component 

specific analysis of failures indicated that the nose gear launcher was the critical 

component to system operation. This component had a much larger number of failures 

when compared to the other catapult components.    

6.0 Analyses of Maintenance Polices 

 While the analysis of corrective maintenance polices is not valid, it is still 

possible to assess the current preventative maintenance policies. Currently, there exist 

maintenance practices that take place at set intervals. These practices are intended to 

detect unacceptable component conditions and prevent unexpected component failures. 

The goal of this analysis is to determine if the current maintenance intervals are 

acceptable when the future stress states are applied. The states used are the states 

mentioned in Section 5. Key results in this analysis are the number of system failures and 

component failures. These metrics are used because it is important to determine it the 

preventive maintenance can be applied before a component, or system, failure. NAVAIR 

is concerned that the decrease in MTTF, with the more stressful future states, will lead to 

an increase in failures before they can be detected. 
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 Results are generated using a simulation in Blocksim. The approach to this 

simulation is similar to that of Section 5. The key difference is the addition of preventive 

maintenance actions. These actions, in theory, should affect the number of failures that 

occur. Results and finding are compiled in a similar manner. A total of 500 simulations 

were run, each at an interval of 10,000 cycles. The system states applied to the 

components can be seen in Table 18. 

Table 19: System State Values 

 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 Bin 7 

State 1 .05 0.15 0.1 0.25 0.10 0.2 0.2 

State 2 0.05 0.1 0.1 0.15 0.10 0.3 0.2 

State 3 0.1 0 0.05 0.1 0.15 0.30 0.25 

State 4 0.05 0 0.05 0.1 0.15 0.35 0.30 

 

 The current maintenance polices can be seen in Table 19. The time the 

maintenance is preformed is in cycles, or aircraft launches. These polices are based on the 

current mission profiles and air wing compositions. The actions listed take into 

considerations the wear rates based on these current stress profiles. The maintenance 

actions for each component are used as inputs into the simulation model. Each 

component in the model will have its respective preventive maintenance action within its 

block. The maintenance policies remain the same through all the system states.  
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Table 20: Maintenance Policies 

Component  Maintenance Interval (cyc) 

NGL 450 

Bridle Tensioner 750 

IPA 1000 

Water Brake 1000 

  

Results from the simulation can be seen in Table 20. This table contains the total 

number of failures for the system, as well as the number of times each component failed. 

System failures in the simulation are caused by insufficient preventative maintenance. By 

this it is meant that if a preventive maintenance interval is greater than the time to failure, 

a component or system failure is recorded.  

Table 21: Maintenance Simulation Failures 

 

Total Failures NGL BT IPA WB 

State 1 51 23 14 7 7 

State 2 53 24 15 7 7 

State 3 56 25 15 7 9 

State 4 59 26 16 7 10 

  

 From the results it can be seen that at the states become more stressful, the 

relative number of failures increases. In the most stressful case, state 4, there is an 

increase of 15.6% in the total number of failures. The IPA appears to be unaffected by 
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changes in stress state. This is potentially due to the maintenance interval being short 

with respect to the changing MTTF. The bridle tensioner also only has a slight increase in 

the number of component failures. Figure 23 shows a comparison of all the components 

for each state. This graph shows a side-by-side comparison of each component with 

respect to the number of failures.  

 

Figure 23: Component Failures by State 

Maintenance results 

 Results from this analysis indicate what components require improved 

maintenance policies. Because the improved piston assembly shows no increase in the 

number of failures, it can be determined that there is no need to improve the maintenance 

policy for this component. The nose gear launcher was found to have a significant 

increase in the number of failures. This implies that the current preventative maintenance 
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policies are not capable of handling the increase in failures. In a similar manner, the 

water brake showed a significant increase in the number of component failures. This 

component had a 42.7% increase in the number of failures. The bridle tensioner only had 

a modest increase in the number of failures that occurred, and the impact is questionable. 

 From these results it is apparent that the water brake and nose gear launcher 

require an improvement to their maintenance polices. These revised policies require the 

knowledge and expertise of NAVAIR, and cannot be arbitrary. This study showed the 

critical components in terms of failures, but with the current information it is difficult to 

create revised maintenance policies. Such action requires information about maintenance 

crew availability and the acceptable number of failures for the system or component. 

Once the required information is obtained, it becomes possible to simulate multiple 

possible maintenance policies to determine the optimal policy.  
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