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ABSTRACT OF THE DISSERTATION

Hypothesis Testing of Bio-equivalence

by MIN MA

Dissertation Director: Arthur Cohen and Harold B. Sackrowitz

This thesis considers two statistics problems in bio-equivalence. The first problem

concerns 2-stage testing for bio-equivalence of parameters emanating from two popula-

tions. The first stage of the procedure can be thought of as a pilot sample which is used

to determine the feasibility of taking an additional sample that would lead to inferring

bio-equivalence. If a second sample is taken, the combined sample can then be used

for inference purposes regarding bio-equivalence. Many models, including normal,

Poisson, binomial, matched pairs, testing means and variances or both simultaneously

are considered.

The second part of the thesis is concerned with multiple testing of bio-equivalence.

Here an actual data set concerned with analyzing different types of iron content with

different instruments is studied for various bio-equivalent outcomes among pairs. To

perform the statistical analysis, two standard statistical methods are used along with a

new method. Both equivalence testing and simultaneous interval estimates are offered.

ii



Acknowledgements

Through my doctorial pursuit, I have been so blessed to have the support from my

advisor, Professor Arthur Cohen, who gave me the great opportunity to discover the

joys and frustrations behind learning and research. He has always been the nicest and

most patient guide to lead me through difficulties. This thesis would not have been

possible without his illuminating instruction and enthusiastic encouragement.

My sincerest gratitude also goes to my co-advisor, Professor Harold B. Sackrowitz,

who has always there to listen and inspired me many times throughout my dissertation

research with his broad knowledge and wonderful intuitions. It is impossible to over

express how thankful I am to have them as my advisers.

I am deeply grateful to Professor Kesar Singh for his encouragement and practical

advice. He spent hours with me exploring my options to realize massive computations

and simulations in the most efficient manner. I am indebted to him for his expertise

and inspiring discussions. May he rest in peace.

I would like to thank my thesis committee, Professor Douglas Jones and Professor

Cuihui Zhang for their direction, dedication, and invaluable advice. I would also like

to express my deep appreciation to our Graduate Director, Professor John Kolassa for

sharing his knowledge, support and help with me.

Finally, and most importantly, I would like to thank my husband Mingyuan for his

persistent support, encouragement, patience and unwavering love. I thank my parents,

Suyin and Shulan, for raising me, loving me, teaching me, and always believing me.

To them I dedicate this thesis.

iii



Dedication

To my family.

iv



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

1. Two-Stage Bio-equivalence Test . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Bio-equivalence test under Normal distribution . . . . . . . . . . . . 2

1.2.1. Normal distribution with known variance . . . . . . . . . . . 2

1.2.2. Matched pairs of normal distributions with unknown variances 4

1.2.3. Two independent normal distributions with common unknown

variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.4. Sample size decision . . . . . . . . . . . . . . . . . . . . . . 10

1.3. Generalization to one-parameter exponential family . . . . . . . . . . 14

1.3.1. Binomial distribution . . . . . . . . . . . . . . . . . . . . . . 14

1.3.2. Two independent binomial distributions . . . . . . . . . . . . 16

1.3.3. Poisson distribution . . . . . . . . . . . . . . . . . . . . . . . 20

1.4. Two independent normal distributions with unknown means and vari-

ances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4.1. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4.2. Two-step testing on bio-equivalence . . . . . . . . . . . . . . 24

v



1.4.3. Two-step testing under two-stage setting: First Stage . . . . . 27

1.4.4. Two-step testing under two-stage setting: Second Stage . . . . 31

2. Multiple Testing of Bio-equivalence . . . . . . . . . . . . . . . . . . . . 43

2.1. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.2. Statistical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.3. Step-wise Multiple testing procedure . . . . . . . . . . . . . . . . . . 46

2.3.1. Bio-equivalence test on single hypothesis . . . . . . . . . . . 46

2.3.2. Step-down testing procedure . . . . . . . . . . . . . . . . . . 47

2.3.3. Application . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.4. Two stage multiple testing procedure . . . . . . . . . . . . . . . . . . 50

2.4.1. Individualized 2-stage testing procedure . . . . . . . . . . . . 50

2.4.2. Application . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3. Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.1. Derivation of (1.2.4) and (1.2.5) . . . . . . . . . . . . . . . . . . . . 60

3.1.1. Proof of (1.2.4) . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.1.2. Proof of (1.2.5) . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2. Two versions of hypotheses when comparing two binomial distributions 62

3.3. Data for Multiple Testing on Bio-equivalence . . . . . . . . . . . . . 64

3.3.1. Iron Evaluation for Blood Serum . . . . . . . . . . . . . . . . 64

3.3.2. Normality test . . . . . . . . . . . . . . . . . . . . . . . . . 65

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

vi



List of Tables

1.1. Pilot and additional sample size when ε = log(10/8) and θ = 0 . . . . 12

1.2. Sample size decision table when σ2
y = 0.2 . . . . . . . . . . . . . . . 28

1.3. Sample size decision table when σ2
y = 0.5 . . . . . . . . . . . . . . . 29

1.4. Sample size decision table when σ2
y = 1 . . . . . . . . . . . . . . . . 30

1.5. Rejection region decision with difference value of µy . . . . . . . . . 39

1.6. Rejection region when σ2
y = 0.2, ρ0 = 2 and α = 0.1 . . . . . . . . . 40

1.7. Rejection region when σ2
y = 0.2, ρ0 = 3 and α = 0.1 . . . . . . . . . 40

1.8. Rejection region when σ2
y = 0.5, ρ0 = 2 and α = 0.1 . . . . . . . . . 41

1.9. Rejection region when σ2
y = 0.5, ρ0 = 3 and α = 0.1 . . . . . . . . . 41

1.10. Rejection region when σ2
y = 1, ρ0 = 2 and α = 0.1 . . . . . . . . . . 42

1.11. Rejection region when σ2
y = 1, ρ0 = 3 and α = 0.1 . . . . . . . . . . 42

2.1. Holm’s Proposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.2. Benjamini’s Proposal . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.3. Preliminary study when α2 = 0.1 . . . . . . . . . . . . . . . . . . . 52

2.4. Preliminary study when α2 = 0.2 . . . . . . . . . . . . . . . . . . . 53

2.5. Preliminary study when α2 = 0.3 . . . . . . . . . . . . . . . . . . . 54

2.6. Control FDR/FWER when fix α1 = 0.2 . . . . . . . . . . . . . . . . 55

3.1. Iron level after log-transformation . . . . . . . . . . . . . . . . . . . 64

3.2. Marginal Normality Test for Iron measurements . . . . . . . . . . . . 65

3.3. Multivariate Normality Test for Iron measurements . . . . . . . . . . 66

vii



List of Figures

2.1. Step-down Multiple Testing.(α= 0.1) . . . . . . . . . . . . . . . . . . 49

2.2. Step-down Multiple Testing.(α= 0.05) . . . . . . . . . . . . . . . . . 49

2.3. 2-stage multiple testing confidence interval estimate . . . . . . . . . . 58

3.1. Q-Q plot: RXL1 vs RXL2 . . . . . . . . . . . . . . . . . . . . . . . 66

viii



1

Chapter 1

Two-Stage Bio-equivalence Test

1.1 Introduction

A typical two population problem in bio-equivalence considers a hypothesis testing

problem about a parameter θ, where θ represents a difference or ratio of parameters, one

from each population. The hypothesis testing problem considered has a null hypothesis

H : θ ≤ ε1 or θ ≥ ε2 vs an alternative hypothesis K : ε1 < θ < ε2. A typical

interpretation is that a new treatment yields outcomes that are close to the outcomes of

a standard treatment and this closeness is reflected in the alternative hypothesis.

Experimental, economical and ethical constraints often are such that it makes sense

to take pilot samples from each population before embarking on a full scale sample

from each population. If the pilot sample looks promising in favor of bio-equivalence,

then a second sample from each population can be taken to confirm bio-equivalence or

to decide against it. Data from the pilot sample and the second sample would be used

to carry out the inference procedure, i.e. the hypothesis test.

We will consider a variety of two population models where the distributions for

each population are a one or two parameter exponential family. Samples of size n1 will

be taken from each population. Based on this pilot sample, a two sample test statistic

will be used to decide whether to continue the study or stop. If the study continues,

samples of size n2 will be taken from each population and the bio-equivalence hypothe-

sis will be tested. The test at the end of stage 2 will be uniformly most powerful (UMP)

or uniformly most powerful unbiased (UMPU) conditioned on the set determined at the

end of stage 1, which indicated that a stage 2 sample should be taken.
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In addition to deriving the procedure for various two population models, we indi-

cate procedures for single population models where the bio-equivalence hypothesis is

still expressed in terms of a parameter θ as before. In addition guidelines for sample

sizes at each stage will be offered.

The following models will be studied in subsequent sections: Section 1.2.1: Nor-

mal distribution with known variance; Section 1.2.2: Matched pairs of normal distri-

butions with unknown variances; Section 1.2.3: Two independent normal distributions

with common unknown variance; Section 1.3.1: Binomial distribution; Section 1.3.2:

Two independent binomial distributions; Section 1.3.3: Poisson distribution; Section

1.4: Two independent normal distributions with unknown means and variances. Bio-

equivalence is defined in terms of both differences in means and ratios of variances.

Two key references for this work are as follows: (1) Wellek (2002). Most distribu-

tional models are studied although some formulations of bio-equivalence are different

and the sample designs are different. (2) Cohen and Sackrowitz (1996) studied two-

stage inference procedures where the first stage yields a pilot sample.

1.2 Bio-equivalence test under Normal distribution

1.2.1 Normal distribution with known variance

Consider the following statistical model: Let Xi, i = 1, · · · , n1 be a random sam-

ple from N (θ, σ2), with σ2 known and without loss of generality, σ2 = 1. The bio-

equivalence problem is to test

H : |θ| ≥ ε vs K : |θ| < ε

Let X̄1 =
n1∑
i=1

Xi/n1. Consider the event

R = {(x1, · · · , xn1) :
√
n1|X̄1| < Cα1;

√
n1ε} (1.2.1)

where Cα1;
√
n1ε =

√
χ2

1,α1
(n1ε2) and χ2

1,α1
(n1ε

2) denotes the α1th quantile of a χ2-

distribution with df = 1 and non-centrality parameter n1ε
2.
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When R occurs, take a second sample of size n2 = n− n1. Let

X = (X1, . . . , Xn1 , Xn1+1, . . . , Xn)

then the joint conditional density of X given R is

fX(x|R; θ) =
n∏
i=1

fXi(xi; θ)/Pθ(R) x ∈ R

=

(1/2π)n/2 exp(−1
2

n∑
i=1

(xi − x̄)2) exp(−n
2
(x̄− θ)2)

Pθ(R)
(1.2.2)

where X̄ =
n∑
i=1

Xi/n. From (1.2.2), we see that given a second sample is taken, X̄ is a

sufficient statistic for θ. And the conditional density of X̄ can be written as

fX̄(x̄|R; θ) = f(x̄; θ)P (R|x̄)/Pθ(R) x̄ ∈ R

= K(θ)h(x̄) exp(nx̄θ) (1.2.3)

where

K(θ) =

√
n

2π
exp(−n

2
θ2)/Pθ(R)

h(x̄) = exp(−n
2
x̄2)P (R|x̄)

Pθ(R) = Φ(Cα1;
√
n1ε −

√
n1θ) + Φ(Cα1;

√
n1ε +

√
n1θ)− 1 (1.2.4)

P (R|x̄) = Φ

(
Cα1;

√
n1ε −

√
n1x̄√

n2/n

)
+ Φ

(
Cα1;

√
n1ε +

√
n1x̄√

n2/n

)
− 1 (1.2.5)

See Appendix 3.1 for detailed derivation of (1.2.4) and (1.2.5). Notice that

fX̄(x̄|R; ε) = fX̄(−x̄|R;−ε) x̄ ∈ R

which implies that the rejection region for the second stage test will be a symmetric

interval with respect to 0. Furthermore, from (1.2.3), the conditional distribution of X̄

belongs to a single parameter exponential family. By virtue of A1.5 Theorem and A1.7

Corollary of Wellek (2002), a UMP test is given as

φX̄(x̄) =

 1 |nx̄| < C

0 otherwise
(1.2.6)
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where C is determined by the following equation∫
|nx̄|<C

fX̄(x̄|R; ε)dx̄ = α2 (1.2.7)

And the conditional power of this test at θ = θ0, |θ0| < ε is

β(θ0) =

∫
|nx̄|<C

fX̄(x̄|R; θ0)dx̄ (1.2.8)

1.2.2 Matched pairs of normal distributions with unknown vari-

ances

Given n1 mutually independent pairs (X1, Y1), . . . , (Xn1 , Yn1) of random variables,

consider the case that the distribution of the individual differences

Di = Xi − Yi

are i.i.d. normal distribution with parameter µ = E(Di) and σ2
D = V ar(Di). Then the

equivalence problem referring to these differences reads

H : |µ| ≥ ε vs K : |µ| < ε

Let

D̄1 =

n1∑
i=1

Di/n1 S2
1 =

n1∑
i=1

(Di − D̄1)2/n1

Then a classic α1−level two one-sided tests (TOST) procedure proposed in Schuirmann

(1987), can be performed, which has a rejection region as follows

R = {(d1, · · · , dn1) : |D̄1| < ε− tα1,n1−1
S1√
n1 − 1

} (1.2.9)

where tα1,n1−1 is the upper α1th quantile of a t distribution with n1 − 1 degrees of

freedom.
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Or alternatively let T1 =
n1∑
i=1

D2
i , then S2

1 = T1
n1
− D̄2

1, then the above rejection

region (1.2.9) can be rewritten as a function of (D̄1, T1) for later convenience.

R =

(d1, · · · , dn1) : |D̄1| < ε− tα1,n1−1

√
T1/n1 − D̄2

1

n1 − 1

 (1.2.10)

If the observed values of D̄1 and T1 fall out of this rejection region, we stop and

declare non-equivalence. Otherwise we proceed to take a second sample of size n2 =

n− n1 consisting of pairs (Xi, Yi), i = n1 + 1, · · · , n. Let

D̄2 =
n∑

i=n1+1

Di/n2, T2 =
n∑

i=n1+1

D2
i

D̄ =
n∑
i=1

Di/n, T =
n∑
i=1

D2
i

Then (D̄1, T1) and (D̄2, T2) are mutually independent. Also

D̄2 =
nD̄ − n1D̄1

n2

and

T2 = T − T1

It is easy to see that the joint density of (D̄1, T1, D̄, T ) is

f(D̄1, T1, D̄, T ) = K(µ, σ2
D)h(D̄1, T1, D̄, T ) exp

(
nµD̄

σ2
D

− T

2σ2
D

)
(D̄1, T1) ∈ R

where

h(D̄1, T1, D̄, T ) = (T1 − n1D̄
2
1)

n1−3
2 ×

(
T − T1 −

(nD̄ − n1D̄1)2

n2

)n2−3
2

×

I(0,T1)(n1D̄
2
1)× I(0,T−T1)

(
(nD̄ − n1D̄1)2

n2

)
.

Thus the conditional density of (D̄, T ) given rejection occurs is

f(D̄, T |R) =
f(D̄, T, R)

Pr(R)

=

∫
R
f(D̄1, T1, D̄, T )dD̄1dT1

Pr(R)

= K
′
(µ, σ2

D)h
′
(D̄, T ) exp

(
nµD̄

σ2
D

− T

2σ2
D

)
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where h′(D̄, T ) =
∫
R
h(D̄1, T1, D̄, T )dD̄1dT1.

From the above joint density, it is easy to tell that D̄ and T are sufficient statistics

for µ and σ2
D. Therefore here adopting the same idea of the classic two one-sided t

tests, we propose to perform two one-sided tests analogously to decide the rejection

region based on all n observations given rejection based on the first stage sample. The

two one-sided hypotheses are as follows,

H1 : µ ≥ ε vs K1 : µ < ε (1.2.11)

H2 : µ ≤ −ε vs K2 : µ > −ε (1.2.12)

For (1.2.11), let

Z1 = D̄ Z2 = T − 2nεD̄ ν1 =
n1(µ− ε)

σ2
D

ν2 = − 1

2σ2
D

Then the conditional density of (Z1, Z2) given rejection occurs is

K
′′
(ν1, ν2)h

′
(z1, z2 + 2nεz1) exp(ν1z1 + ν2z2)

From Lehmann (1986), a UMPU test of size α2 is obtained by conditioning on Z2 = z2

and rejecting when Z1 < U(z2) where U(z2) is determined from∫ U(z2)

−∞ h
′
(u, z2 + 2nεu)du∫∞

−∞ h
′(u, z2 + 2nεu)du

= α2 (1.2.13)

Similarly, for hypothesis (1.2.12), let

Z1 = D̄ Z2 = T + 2nεD̄ ν1 =
n1(µ+ ε)

σ2
D

ν2 = − 1

2σ2
D

Then the conditional density of (Z1, Z2) given rejection occurs is

K
′′
(ν1, ν2)h

′
(z1, z2 − 2nεz1) exp(ν1z1 + ν2z2)

and a UMPU test of size α2 is obtained by conditioning on Z2 = z2 and rejecting when

Z1 > L(z2) where L(z2) is determined from∫∞
L(z2)

h
′
(u, z2 − 2nεu)du∫∞

−∞ h
′(u, z2 − 2nεu)du

= α2 (1.2.14)
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Therefore, after rejecting non-equivalence on the first stage based on n1 observa-

tions of differences between (Xi, Yi), additional n2 differences are observed. Then the

value of z2 = t − 2nεd̄ and z2 = t + 2nεd̄ are calculated respectively. From (1.2.13)

and (1.2.14) a rejection interval (L(t + 2nεd̄), U(t − 2nεd̄)) is obtained. If the ob-

served value of Z1 or D̄ falls into this interval, bio-equivalence between X and Y is

established.

1.2.3 Two independent normal distributions with common unknown

variance

Now consider the following parallel design model

Xi ∼ N (µ1, σ
2) i = 1, · · · , n11

Yj ∼ N (µ2, σ
2) j = 1, · · · , n12

where Xi are Yj are independent. A bio-equivalence hypothesis is formulated as

H : |µ1 − µ2| ≥ ε vs K : |µ1 − µ2| < ε

Let

X̄1 =

n11∑
i=1

Xi/n11, Ȳ1 =

n12∑
j=1

Yj/n12

S2
1 =

n11∑
i=1

(Xi − X̄1)2 +
n12∑
j=1

(Yj − Ȳ1)2

n11 + n12 − 2

.

Similar to Section 1.2.2, the classic two one-sided tests (TOST) is performed with

rejection region

R =

{
(xi, yj) : |X̄1 − Ȳ1| < ε− tα1,n11+n12−2S1

√
1

n11

+
1

n12

}
(1.2.15)
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Again let

T1 =

n11∑
i=1

X2
i +

n12∑
j=1

Y 2
j

then S2
1 =

T1−n11X̄2
1−n12Ȳ 2

1

n11+n12−2
. Rewrite the rejection region (1.2.15) as a function of

(X̄1, Ȳ1, T1) for later convenience. That is (1.2.15) gives rise to

R =

|X̄1 − Ȳ1| < ε− tα1,n11+n12−2

√
T1 − n11X̄2

1 − n12Ȳ 2
1

n11 + n12 − 2

(
1

n11

+
1

n12

)
(1.2.16)

Based on n11 + n12 observations, if the test result is not significant, we stop and

declare non-equivalence. When rejection occurs, we proceed to take an additional

sample which consists of Xi of size n21 = n1− n11 and Yj of size n22 = n2− n12. Let

X̄2 =

n1∑
i=n11+1

Xi/n21, Ȳ2 =

n2∑
j=n12+1

Yj/n22, T2 =

n1∑
i=n11+1

X2
i +

n2∑
j=n12+1

Y 2
j ,

X̄ =

n1∑
i=1

Xi/n1, Ȳ =

n2∑
j=1

Yj/n2, T =

n1∑
i=1

X2
i +

n2∑
j=1

Y 2
j .

Then (X̄1, Ȳ1, T1) and (X̄2, Ȳ2, T2) are mutually independent. Also

X̄2 =
n1X̄ − n11X̄1

n21

, Ȳ2 =
n2Ȳ − n12Ȳ1

n22

, T2 = T − T1.

It is easy to see that the joint density of (X̄1, Ȳ1, T1, X̄, Ȳ , T ) is

f(X̄1, Ȳ1, T1, X̄, Ȳ , T ) = K(µ1, µ2, σ
2)× h(X̄1, Ȳ1, T1, X̄, Ȳ , T )

× exp

(
n1µ1X̄ + n2µ2Ȳ

σ2
− T

2σ2

)
where

h(X̄1, Ȳ1, T1, X̄, Ȳ , T ) = (T1 − n11X̄
2
1 − n12Ȳ

2
1 )

n11+n12−4
2 × I(0,T1)(n11X̄

2
1 + n12Ȳ

2
1 )×(

T − T1 −
(n1X̄ − n11X̄1)2

n21

− (n2Ȳ − n12Ȳ1)2

n22

)n21+n22−4
2

×

I(0,T−T1)

(
(n1X̄ − n11X̄1)2

n21

+
(n2Ȳ − n12Ȳ1)2

n22

)
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Thus the conditional joint density of (X̄, Ȳ , T ) given that the rejection occurs in the

first stage is

f(X̄, Ȳ , T |R) =
f(X̄, Ȳ , T, R)

Pr(R)

=

∫
R
f(X̄1, Ȳ1, T1, X̄, Ȳ , T )dX̄1dȲ1dT1

Pr(R)

= K
′
(µ1, µ2, σ

2)h
′
(X̄, Ȳ , T ) exp

(
n1µ1X̄ + n2µ2Ȳ

σ2
− T

2σ2

)
where h′(X̄, Ȳ , T ) =

∫
R
h(X̄1, Ȳ1, T1, X̄, Ȳ , T )dX̄1dȲ1dT1.

Here we adopt the same technique used in the last section. Two one-sided tests for

the following hypotheses are conducted to find the lower and upper bound which form

a rejection interval.

H1 : µ1 − µ2 ≥ ε vs K1 : µ1 − µ2 < ε (1.2.17)

H2 : µ1 − µ2 ≤ −ε vs K2 : µ1 − µ2 > −ε (1.2.18)

First consider hypothesis (1.2.17). Let

Z1 = n1X̄, Z2 = n1X̄ + n2Ȳ , Z3 = T − 2n1εX̄.

ν1 =
µ1 − µ2 − ε

σ2
, ν2 =

µ2

σ2
, ν3 = − 1

2σ2
.

Then the conditional joint density of (Z1, Z2, Z3) given the rejection occurs in the first

stage is

K
′′
(ν1, ν2, ν3)h

′
(
z1

n1

,
z2 − z1

n2

, z3 + 2εz1

)
exp(ν1z1 + ν2z2 + ν3z3)

A UMPU test of size α2 is obtained by conditioning on Z2 = z2, Z3 = z3 and rejecting

when Z1 < U(z2, z3), where U(z2, z3) is determined from∫ U(z2,z3)

−∞ h
′
(
u
n1
, z2−u

n2
, z3 + 2εu

)
du∫∞

−∞ h
′
(
u
n1
, z2−u

n2
, z3 + 2εu

)
du

= α2 (1.2.19)
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Similarly, for hypothesis (1.2.18), let

Z1 = n1X̄, Z2 = n1X̄ + n2Ȳ , Z3 = T + 2n1εX̄.

ν1 =
µ1 − µ2 + ε

σ2
, ν2 =

µ2

σ2
, ν3 = − 1

2σ2
.

Then the conditional joint density of (Z1, Z2, Z3) given rejection occurs is

K
′′
(ν1, ν2, ν3)h

′
(
z1

n1

,
z2 − z1

n2

, z3 − 2εz1

)
exp(ν1z1 + ν2z2 + ν3z3)

and a UMPU test of size α2 is obtained by conditioning on Z2 = z2, Z3 = z3 and

rejecting when Z1 > L(z2, z3), where L(z2, z3) is determined from∫∞
L(z2,z3)

h
′
(
u
n1
, z2−u

n2
, z3 − 2εu

)
du∫∞

−∞ h
′
(
u
n1
, z2−u

n2
, z3 − 2εu

)
du

= α2 (1.2.20)

Therefore, after rejecting non-equivalence in the first stage based on n11 + n12

observations of (Xi, Yj, i = 1, . . . , n11, j = 1, . . . , n12), an additional n21 +n22 sample

is collected. Then the values are z2 = n1x̄+n2ȳ and z3 = t−2n1εx̄ or z2 = n1x̄+n2ȳ

and z3 = t+ 2n1εx̄. From (1.2.19) and (1.2.20), a rejection interval (L(n1x̄+ n2ȳ, t+

2n1εx̄), U(n1x̄+n2ȳ, t− 2n1εx̄)) is obtained. If the observed value of Z1 or n1X̄ falls

into this interval, bio-equivalence between X and Y is concluded.

1.2.4 Sample size decision

A. Normal distribution with known variance

To decide the pilot sample size given certain significance level α1 and power β1 at a

certain alternative θ = θ0, |θ0| < ε, consider the rejection region expressed as (1.2.1).

The required pilot sample size n1 can be solved from the following equation

β1 = Φ(Cα1;
√
n1ε −

√
n1θ0) + Φ(Cα1;

√
n1ε +

√
n1θ0)− 1 (1.2.21)

where Cα1;
√
n1ε =

√
χ2

1,α1
(n1ε2).
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To decide the additional sample size n2 once R occurs, given certain significance

level α2 and power β2 at certain alternative θ = θ0, we need to find a pair of (C, n) that

satisfies the following equations,∫
|nx̄|<C

fX̄(x̄|R; ε)dx̄ = α2 (1.2.22)

∫
|nx̄|<C

fX̄(x̄|R; θ0)dx̄ = β2 (1.2.23)

To solve these two equations computationally, we can use iteration entailing the fol-

lowing steps:

• Step 1. Choose some initial estimate of n. A good starting point could be the

value solved from (1.2.21) when using (α2, β2) instead of (α1, β1).

• Step 2. Solve C from (1.2.23)

• Step 3. Update n by solving (1.2.22)

• Step 4. Repeat Step 2 and Step 3 until the change of n’s value is small enough.

(we set as no larger than 10−4.)

Then n2 = n− n1 is the required additional sample size.

In Table 1.1, we provide some computational results using the iteration procedure

provided above. Notice that in Table 1.1 the last two columns, where total expected

size is defined as

n1 + Pr(rejection in stage one)× n2

and the last column lists the sample size required if using a single stage test to achieve

the same power as a two-stage test while controlling the Type I error. To compare

these two sample sizes, we can tell that as long as the stage one test serves as a quick

preliminary test to decide if it is worthy of further validation and does not require a high
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Table 1.1: Pilot and additional sample size when ε = log(10/8) and θ = 0

α1 β1 α2 β2 pilot size additional size total expected size one stage test sample size
0.2 0.5 0.05 0.7 43 139 113 145

0.8 43 167 127 172
0.9 43 212 149 218

0.6 0.7 56 133 136 145
0.8 56 161 153 172
0.9 56 207 181 218

0.5 0.1 0.7 43 102 94 108
0.8 43 126 106 132
0.9 43 167 127 172

0.6 0.7 56 97 115 108
0.8 56 121 129 132
0.9 56 161 153 172

0.5 0.15 0.7 43 81 84 86
0.8 43 102 94 108
0.9 43 139 113 145

0.6 0.7 56 75 101 86
0.8 56 97 115 108
0.9 56 134 137 145

0.5 0.2 0.7 43 65 76 71
0.8 43 85 86 91
0.9 43 119 103 125

0.6 0.7 56 60 92 71
0.8 56 80 104 91
0.9 56 114 125 125

0.3 0.5 0.05 0.7 24 141 95 145
0.8 24 169 109 172
0.9 24 214 131 218

0.6 0.7 36 137 119 145
0.8 36 165 135 172
0.9 36 210 162 218

0.5 0.1 0.7 24 105 77 108
0.8 24 129 89 132
0.9 24 169 109 172

0.6 0.7 36 101 97 108
0.8 36 125 111 132
0.9 36 165 135 172

0.5 0.15 0.7 24 83 66 86
0.8 24 105 77 108
0.9 24 142 95 145

0.6 0.7 36 79 84 86
0.8 36 101 97 108
0.9 36 137 119 145

0.5 0.2 0.7 24 67 58 71
0.8 24 88 68 91
0.9 24 121 85 125

0.6 0.7 36 63 74 71
0.8 36 83 86 91
0.9 36 117 107 125
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power or low error, the two-stage test is more efficient in a way that it is as powerful as

the one-stage test while using a smaller sample to establish the bio-equivalence.

B. Paired observations with unknown variance

In the first stage, since D̄1 ∼ N (µ,
σ2
D

n1
), based on rejection region (1.2.9), the power

function can be expressed as

β(µ, σ2
D, α1) =

∫ ∞
0

Φ

ε+ µ− tα1,n1−1

√
S2
1

n1−1√
σ2
D/n1


+Φ

ε− µ− tα1,n1−1

√
S2
1

n1−1√
σ2
D/n1

− 1

 fS2
1
(s2

1)ds2
1

For any given value of the nuisance parameter σ2
D, the above power function is strictly

decreasing in |µ|. Therefore, the maximum of the power function occurs at µ = 0.

Also the power function is increasing in n1, so for any given (α1, β1), a minimal n1

can be found such that at µ = 0 the power function above is no less than β1.

In the second stage, since we proposed to perform two one-sided tests, to achieve

certain power β2 given level α2 at alternative parameter, say µ = 0, we could find a

minimal sample size for each test separately. This can be realized because each test has

a monotone power function. Then adopt the maximum of these two sample sizes and

use it as the desired sample size of the second stage. When looking for each sample

size computationally, use the same iteration by starting with an initial estimate of n,

which can be acquired by using the formula in the first stage. Then repeatedly find the

rejection interval expression and find a sample size under that interval until the value

of n is stable.
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1.3 Generalization to one-parameter exponential family

1.3.1 Binomial distribution

Now consider the model where Xi, i = 1, · · · , n1 are Bernoulli variables with param-

eter p. The equivalence problem referring to these observations reads

H : 0 < p ≤ p1 or p2 ≤ p < 1 vs K : p1 < p < p2

Let Y =
n1∑
i=1

Xi, and R be the event of rejection based on n1 observations. From

Wellek (2002), R is determined by the following rule:

φY1(y1) =



1 C1
α1

(n1; p1, p2) < y1 < C2
α1

(n1; p1, p2)

γ1
α1

(n1; p1, p2) y1 = C1
α1

(n1; p1, p2)

γ2
α1

(n1; p1, p2) y1 = C2
α1

(n1; p1, p2)

0 y1 < C1
α1

(n1; p1, p2) or y1 > C2
α1

(n1; p1, p2)

(1.3.1)

where constants Cν
α1

(n1; p1, p2), γνα1
(n1; p1, p2), ν = 1, 2, are determined by solving

C−1∑
t=C+1

B(t;n1, p1) +
2∑

ν=1

γνB(Cν ;n1, p1) = α1

C−1∑
t=C+1

B(t;n1, p2) +
2∑

ν=1

γνB(Cν ;n1, p2) = α1

(1.3.2)

where B(x;n, p) is the binomial density function, 0 ≤ C < C ≤ n1, and 0 ≤

γ1, γ2 < 1.

And the power of this test at p = p0, p1 < p0 < p2 is

β1(p0) =
C−1∑
t=C+1

B(t;n1, p0) +
2∑

ν=1

γνB(Cν ;n1, p0) (1.3.3)

When R occurs, take a second sample of size n2 = n − n1. Let Y =
n∑
i=1

Xi then

given R, the conditional density of Y can be written as follows,

when C = C

fY (y|R; p) =

 0 y < C or y > C + n2

B(y − C;n2, p) otherwise
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when C ≤ C + n2

fY (y|R; p) =



0 y < C or y > C + n2

γ1B(C;n1,p)B(y−C;n2,p)+
y∑

t=C+1
B(t;n1,p)B(y−t;n2,p)

P (R;p)
C ≤ y < C

2∑
i=1

γiB(Ci;n1,p)B(y−Ci;n2,p)+
C−1∑
t=C+1

B(t;n1,p)B(y−t;n2,p)

P (R;p)
C ≤ y ≤ C + n2

γ2B(C;n1,p)B(y−C;n2,p)+
C−1∑
t=y−n2

B(t;n1,p)B(y−t;n2,p)

P (R;p)
C + n2 < y ≤ C + n2

when C = C + n2 + 1

fY (y|R; p) =



0 y < C or y > C + n2

γ1B(C;n1,p)B(y−C;n2,p)+
y∑

t=C+1
B(t;n1,p)B(y−t;n2,p)

P (R;p)
C ≤ y ≤ C + n2

γ2B(C;n1,p)B(y−C;n2,p)+
C−1∑
t=y−n2

B(t;n1,p)B(y−t;n2,p)

P (R;p)
C ≤ y ≤ C + n2

when C ≥ C + n2 + 2

fY (y|R; p) =



0 y < C or y > C + n2

γ1B(C;n1,p)B(y−C;n2,p)+
y∑

t=C+1
B(t;n1,p)B(y−t;n2,p)

P (R;p)
C ≤ y ≤ C + n2

y∑
t=y−n2

B(t;n1,p)B(y−t;n2,p)

P (R;p)
C + n2 < y < C

γ2B(C;n1,p)B(y−C;n2,p)+
C−1∑
t=y−n2

B(t;n1,p)B(y−t;n2,p)

P (R;p)
C ≤ y ≤ C + n2

From the above formulas, we can see that

fY (y|R; p) = K(p)h(y) exp(y log(
p

1− p
)) (1.3.4)

still belongs to the single parameter exponential family, thus a UMP test exists and can

be given as

φY (y) =



1 C̃1 < y < C̃2

γ̃1 y = C̃1

γ̃2 y = C̃2

0 y < C̃1 or y > C̃2

(1.3.5)
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where the constants C̃ν , γ̃ν , ν = 1, 2, are determined by solving

γ̃1f(C̃1|R; p1) +
C̃2−1∑
y=C̃1+1

f(y|R; p1) + γ̃2f(C̃2|R; p1) = α2

γ̃1f(C̃1|R; p2) +
C̃2−1∑
y=C̃1+1

f(y|R; p2) + γ̃2f(C̃2|R; p2) = α2

And the power of this test at p = p0, p1 < p0 < p2 is

β(p0) = γ̃1f(C̃1|R; p0) +

C̃2−1∑
y=C̃1+1

f(y|R; p0) + γ̃2f(C̃2|R; p0) (1.3.6)

When it comes to sample size decisions, we notice that unlike the normal distribu-

tion scenario, the power function (1.3.3) is not continuous with respect to the sample

size n1. In other words, given a certain significance level α1 and power β1 at alternative

parameter p = p0, we may not achieve β1 exactly by adjusting the sample size. Instead,

we seek the smallest n1 such that at level α1 the power at p = p0 is no less than β1.

In the second stage when deciding the additional sample size, from (1.3.6), the

power function is also discrete with respect to n, which implies we need to adopt the

idea used earlier to look for the minimal n that yields a certain power. Notice that

both power function (1.3.3) and (1.3.6) are strictly increasing in n1 and n respectively,

which guarantees that a unique solutions exist.

1.3.2 Two independent binomial distributions

To compare two independent binomial distributions, consider the setting where Xi,

i = 1, . . . , n11, are Bernoulli variables with parameter p1 and Yj , j = 1, . . . , n12,

are Bernoulli variables with parameter p2. The equivalence problem referring to these

observations can be expressed as follows

H : |p1 − p2| ≥ ε vs K : |p1 − p2| < ε

However, instead of testing the above hypothesis directly, consider another mea-

surement: the odds ratio. Let

γ1 = log(odds ratio) = log
p1(1− p2)

p2(1− p1)
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then test the following hypothesis

H
′
: |γ1| ≥ γ0 vs K

′
: |γ1| < γ0

Intuitively speaking, when p1 and p2 are close to each other, the odds ratio would be

close to 1 and |γ1| would be within a small value, say γ0. See Appendix 3.2 for detailed

derivation of the relationship between ε and γ0 Now let

Z11 =

n11∑
i=1

Xi, Z12 =

n12∑
j=1

Yj, T1 = Z11 + Z12 (1.3.7)

and R be the rejection region based on the pilot sample. From Lehmann (1986), R can

be determined by the following rule:

φT1(z11) =



1 C1(t1) < z11 < C2(t1)

ν1(t1) z11 = C1(t1)

ν2(t1) z11 = C2(t1)

0 otherwise

(1.3.8)

Since the conditional density of Z11 given T1 is

Pr(Z11 = z11|T1 = t1) = Ct1(γ1)

(
n11

z11

)(
n12

t1 − z11

)
exp(z11γ1)

where

Ct1(γ1) =

max(t1,n11)∑
x
′
=0

(
n11

x′

)(
n12

t1 − x′
)

exp(x
′
γ1)

−1

the constants Ci(t1), νi(t1), i = 1, 2, are determined by solving

Eγ1=−γ0{φT1(Z11)|T1 = t1} = α1 = Eγ1=γ0{φT1(Z11)|T1 = t1} (1.3.9)

Based on n11 + n12 observations, we first calculate the value of T1 defined by (1.3.7).

Then a rejection decision rule is obtained. If the observed value of Z11 indicates the

significance of the alternative hypothesis, we proceed to collect an additional sample.

Otherwise we stop and declare non-equivalence.
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When rejection occurs, take a second sample which consists of Xi’s of size n21 =

n1 − n11 and Yj’s of size n22 = n2 − n12. Let

Z21 =

n1∑
i=n11+1

Xi, Z22 =

n2∑
j=n12+1

Yj, T2 = Z21 + Z22,

Z1 =

n1∑
i=1

Xi, Z2 =

n2∑
j=1

Yj, T = Z1 + Z2. (1.3.10)

Then

Z1 = Z11 + Z21, Z2 = Z12 + Z22, T = T1 + T2

Since (Z11, Z12) and (Z21, Z22) are mutually independent, it is easy to see the joint

density of (Z11, Z12, Z1, Z2) is

Pr(Z11 = z11, Z12 = z12, Z1 = z1, Z2 = z2) (Z11, Z12) ∈ R

= Pr(Z11 = z11, Z12 = z12, Z21 = z1 − z11, Z22 = z2 − z12)

=

(
n11

z11

)(
n12

z12

)(
n1 − n11

z1 − z11

)(
n2 − n12

z2 − z12

)
pz11 (1− p1)n1−z1pz22 (1− p2)n2−z2

Thus the joint density of (Z11, T1, Z1, T ) is

Pr(Z11 = z11, T1 = t1, Z1 = z1, T = t)

=

(
n11

z11

)(
n12

t1 − z11

)(
n1 − n11

z1 − z11

)(
n2 − n12

(t− z1)− (t1 − z11)

)
(1.3.11)

(1− p1)n1(1− p2)n2 exp(z1γ1 + tγ2)

where

γ1 = log

(
p1/(1− p1)

p2/(1− p2)

)
γ2 = log

(
p2

1− p2

)
Then the conditional density of (Z1, T ) given rejection occurs is

Pr(Z1 = z1, T = t|R) =
(1− p1)n1(1− p2)n2h(z1, t) exp(z1γ1 + tγ2)

Pr(R)

= K(γ1, γ2)h(z1, t) exp(z1γ1 + tγ2) (Z1, T ) ∈ R
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where

h(z1, t) =
max(t,n11+n12)∑

t1=0

 C2(t1)−1∑
z11=C1(t1)+1

(
n11

z11

)(
n12

t1 − z11

)(
n1 − n11

z1 − z11

)
(

n2 − n12

(t− z1)− (t1 − z11)

)
+

2∑
i=1

νi(t1)

(
n11

Ci(t1)

)(
n12

t1 − Ci(t1)

)
(
n1 − n11

z1 − Ci(t1)

)(
n2 − n12

(t− z1)− (t1 − Ci(t1))

))
Then the conditional density of Z1 given T and given rejection occurs is

Pr(Z1 = z1|T = t) = Ct(γ1)h(z1, t) exp(z1γ1) (Z1, T ) ∈ R

where

Ct(γ1) =

max(t,n1)∑
z
′
1=0

h(z
′

1, t) exp(z
′

1γ1)

−1

Again from Lehmann (1986), a UMPU test is determined by the following rule:

φT (z1) =



1 C̃1(t) < z1 < C̃2(t)

ν̃1(t) z1 = C̃1(t)

ν̃2(t) z1 = C̃2(t)

0 otherwise

(1.3.12)

And the constants C̃i(t), ν̃i(t), i = 1, 2, are determined by solving

Eγ1=−γ0{φT (Z1)|T = t} = α2 = Eγ1=γ0{φT (Z1)|T = t} (Z1, T ) ∈ R

After we reject non-equivalence in the first step based on n11 + n12 observations

of (Xi, Yj; i = 1, · · · , n11, j = 1, · · · , n12), we observe additional n21 + n22 data

points (Xi, Yj; i = 1, · · · , n21, j = 1, · · · , n22). The value of T defined by (1.3.10) is

calculated, and then a rejection rule is obtained. If the observed value of Z1 indicates

that the null hypothesis is rejected, we declare an equivalence between X and Y .
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1.3.3 Poisson distribution

When it comes to the bio-equivalence test under a Poisson distribution setting, first

let Xi, i = 1, · · · , n11 follow a Poisson distribution with parameter µ, and Yj , j =

1, · · · , n12 follow another Poisson distribution with parameter ν. Here Xi and Yj are

independent. Then let ρ = µ
ν

and formulate the equivalence problem based on above

observations as follows

H : ρ ≥ ρ2 or ρ ≤ ρ1 vs K : ρ1 < ρ < ρ2

As Lehmann (1986) argues, the ratio ρ = µ/ν is a reasonable measurement of the

difference between two Poisson populations. Analogous to the Binomial setting, let

Z11 =

n11∑
i=1

Xi, Z12 =

n12∑
j=1

Yj, T1 = Z11 + Z12.

Then Z11 ∼ P (n11µ) and Z12 ∼ P (n12ν). Their joint density is

Pr(Z11 = z11, Z12 = z12)

= K(µ, ν)h(z11, z12) exp(z11 log ρ+ (z11 + z12) log ν)

where

K(µ, ν) = exp(−n11µ− n12ν)

h(z11, z12) =
nz1111 n

z12
12

z11!z12!

Let λ = log ρ, η = log ν, λi = log ρi, i = 1, 2, equivalently we will test

H
′
: λ ≥ λ2 or λ ≤ λ1 vs K

′
: λ1 < λ < λ2

Notice that the conditional density of Z11 given T1 is

Pr(Z11 = z11|T1 = t1) = Ct1(λ)h(z11, t1 − z11) exp(z11λ) z11 ≤ t1

where

Ct1(λ) =

max(t1,n11)∑
x′=0

h(x
′
, t1 − x

′
) exp(x

′
λ)

−1
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Again a UMPU test is decided by the following rule:

φT1(z11) =



1 C1(t1) < z11 < C2(t1)

ω1(t1) z11 = C1(t1)

ω2(t1) z11 = C2(t1)

0 otherwise

(1.3.13)

and the constants Ci(t1), ωi(t1), i = 1, 2, are determined by solving

Eλ=λ1{φT1(Z11)|T1 = t1} = α1 = Eλ=λ2{φT1(Z11)|T1 = t1}

After rejection occurs in the first stage, an additional sample is taken consisting

of Xi’s of size n21 = n1 − n11 and Yj’s of size n22 = n2 − n12. Adopting the same

notation from the binomial setting, the joint density of (Z11, Z12, Z21, Z22) is

Pr(Z11 = z11, Z12 = z12, Z21 = z21, Z22 = z22) (Z11, Z12) ∈ R

=K2(µ, ν)h2(z11, z12, z21, z22) exp((z11 + z21)λ+ (z11 + z12 + z21 + z22)η)

where

K2(µ, ν) = exp(−n1µ− n2ν)

h2(z11, z12, z21, z22) =
nz1111 n

z12
12 n

z21
21 n

z22
22

z11!z12!z21!z22!

Therefore the joint density of (Z11, T1, Z1, T ) is

Pr(Z11 = z11, T1 = t1, Z1 = z1, T = t)

= K2(µ, ν)h
′
2(z11, t1, z1, t) exp(z1λ+ tη)

where

h
′

2(z11, t1, z1, t) = h2(z11, t1 − z11, z1 − z11, (t− z1)− (t1 − z11))

Now the conditional joint density of (Z1, T ) given rejection, which can be written

as follows

Pr(Z1 = z1, T = t|R) =

∑
R

Pr(Z11 = z11, T1 = t1, Z1 = z1, T = t)

Pr(R)

= K
′

2(λ, η)h
′′

2(z1, t) exp(z1λ+ tη)
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where

h
′′

2(z1, t) =
max(t,n11+n12)∑

t1=0

 C2(t1)−1∑
z11=C1(t1)+1

h
′

2(z11, t1, z1, t)

+
2∑
i=1

ωi(t1)h
′

2(Ci(t1), t1, z1, t)

)

And

Pr((Z1 = z1|T = t)|R) = Ct(λ)h
′′

2(z1, t) exp(z1λ)

where

Ct(λ) =

max(t,n1)∑
z
′
1=0

h
′′

2(z
′

1, t) exp(z
′

1λ)

−1

A UMPU test is as follows,

φT (z1) =



1 C̃1(t) < z1 < C̃2(t)

ω̃1(t) z1 = C̃1(t)

ω̃2(t) z1 = C̃2(t)

0 otherwise

(1.3.14)

and the constants C̃i(t), ω̃i(t), i = 1, 2, are determined by solving

Eλ=λ1{(φT (Z1)|T = t)|R} = α2 = Eλ=λ2{(φT (Z1)|T = t)|R}

Therefore, if we could reject the null hypothesis in both stages based on the pilot

sample and the additional sample, an equivalence between X and Y is established.
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1.4 Two independent normal distributions with unknown means

and variances

Now we move on to a more complicated yet important scenario: bio-equivalence of

two normal distributions when both mean and variance are unknown. Consider the

following model

Xi ∼ N (µx, σ
2
x) i = 1, . . . ,m1

Yj ∼ N (µy, σ
2
y) j = 1, . . . , n1 (1.4.1)

where X’s and Y ’s are independent.

1.4.1 Background

Both Anderson and Hauck (1990) and Liu and Chow (1992) have pointed out that, un-

der the above distributional assumption, bio-equivalence should not be defined only in

terms of the means of two distributions. Rather, the variances should also be compared.

Two normal distributions with similar or even identical means, can not be claimed as

equivalent if there is quite a difference between their variances. As a matter of fact,

the concept of population bio-equivalence introduced by Anderson and Hauck (1990),

has gained significant consideration and popularity in pertinent literature. However, in

most of the current literature, including Sheiner (1992), Schall and Luus (1993), Schall

(1995), Chow, et al. (2003), as well as in the guidance for industry (FDA/CDER, 2001),

discussions and related testing methods are focused on a so-called aggregated criteria

of population bio-equivalence. Instead of performing tests on separate hypotheses re-

garding means and variances, the test hypothesis is set up as one single real-valued

function of all four parameters(two means and two variances) and compared to a given

upper bound. Wellek (2000) lists several unappealing drawbacks of this prevalent ag-

gregated criteria for the assessment of bio-equivalence. Therefore, in this paper, we
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adopt the disaggregated hypotheses proposed by Berger and Hsu (1996). To demon-

strate bio-equivalence between X and Y , we need to test

H :

µx − µy ≤ ε1 or µx − µy ≥ ε2

or

σ2
x/σ

2
y ≤ ρ1 or σ2

x/σ
2
y ≥ ρ2

vs (1.4.2)

K : ε1 < µx − µy < ε2 and ρ1 < σ2
x/σ

2
y < ρ2

Notice that in Berger and Hsu (1996), some procedures testing both means and

variances are discussed, and mistakes regarding type I error control are also mentioned.

However, no further discussion or improvement are made. Wellek (2000) also proposes

a testing procedure based on disaggregated hypotheses. Our proposal differs in two

aspects. On one hand, compared to Wellek (2000), we use an unscaled hypothesis for

means instead of a scaled one. On the other hand, our test applies to two independent

populations rather than the cross-over design in Wellek (2000).

1.4.2 Two-step testing on bio-equivalence

Once a pilot sample Xi of size m1 and Yj of size n1 is collected from (1.4.1), in order

to test hypothesis (1.4.2), first consider the following hypotheses:

Hρ : σ2
x/σ

2
y ≤ ρ1 or σ2

x/σ
2
y ≥ ρ2 vs Kρ : ρ1 < σ2

x/σ
2
y < ρ2 (1.4.3)

Wellek (2002) introduced a UMPI level-α1ρ test with respect to the above hypothe-

ses (1.4.3), which has the rejection region as follows{
C

(1)
α1ρ;df1,df2

(ρ1, ρ2) < Q1 < C
(2)
α1ρ;df1,df2

(ρ1, ρ2)
}

where Q1 = S2
1x/S

2
1y, df1 = m1 − 1 and df2 = n1 − 1. The critical constants

C
(k)
α1ρ;df1,df2

(ρ1, ρ2), k = 1, 2, are determined by the following equations

Fdf1,df2(C
(2)/ρ1)− Fdf1,df2(C(1)/ρ1) = α1ρ = Fdf1,df2(C

(2)/ρ2)− Fdf1,df2(C(1)/ρ2)
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where Fdf1,df2(·) denotes the cumulative density function of the standard central F-

distribution with (df1, df2) degrees of freedom.

If the homogeneity test turns out insignificantly, we stop and declare non-equivalence

of the two distributions. Otherwise we proceed to a classic two one-sided tests (TOST)

to verify the equivalence of two means, i.e.

Hδ : µx − µy ≤ ε1 or µx − µy ≥ ε2 vs Kδ : ε1 < µx − µy < ε2 (1.4.4)

TOST is based on the following rejection rule:

{|D1| < ε− tα1δ,m1+n1−2Sd1}

where D1 = X̄1 − Ȳ1, S2
d1

= ( 1
m1

+ 1
n1

)
(m1−1)S2

1x+(n1−1)S2
1y

m1+n1−2
, and −ε1 = ε2 = ε.

If the test result is not significant, then we stop and declare non-equivalence of the

two underlying distributions.

In order to decide the value of α1ρ and α1δ, we first evaluate the overall rejection

probability of the proposed testing procedure at the first step. Denote

ρ = σ2
x/σ

2
y, δ = µx − µy

then

D1 ∼ N
(
δ,

(
ρ

m1

+
1

n1

)
σ2
y

)
, S2

1x = Q1 × S2
1y

and the power function is expressed as follows,

β
(
δ, ρ, σ2

y;α1ρ, α1δ

)
=Pr

({
C

(1)
α1ρ;df1,df2

(ρ1, ρ2) < Q1 < C
(2)
α1ρ;df1,df2

(ρ1, ρ2)
}

∩{|D1| < ε− tα1δ,m1+n1−2Sd1})

=

∫ ∞
0

∫ C
(2)
α1ρ

C
(1)
α1ρ

Pr
(
|D1| < ε− tα1δ,m1+n1−2Sd1|Q1, S

2
1y

)
fρ,σ2

y

(
q1, S

2
1y

)
dq1dS

2
1y

=

∫ ∞
0

∫ C
(2)
α1ρ

C
(1)
α1ρ

Φ

ε+ δ − tα1δ
Sd1√

( ρ
m1

+ 1
n1

)σ2
y

+ Φ

ε− δ − tα1δ
Sd1√

( ρ
m1

+ 1
n1

)σ2
y

− 1

×
I (ε > tα1δ

Sd1) fρ,σ2
y

(
q1, S

2
1y

)
dq1dS

2
1y
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where

α1ρ ∼nominal level of test for variances.

α1δ ∼nominal level of test for means.

S2
d1

=

(
1

m1

+
1

n1

)
((m1 − 1)Q1 + (n1 − 1))S2

1y

m1 + n1 − 2

fρ,σ2
y
(q, S2

1y) =
(m1−1

2
)
m1−1

2 (n1−1
2

)
n1−1

2 ρ−
m1−1

2 (σ2
y)
−m1+n1−2

2

Γ(m1−1
2

)Γ(n1−1
2

)
q
m1−3

2 (S2
1y)

m1+n1−4
2

× exp

{
−
[

(m1 − 1)q

ρ
+ (n1 − 1)

]
S2

1y

2σ2
y

}
First notice that the power function β(δ, ρ, σ2

y;α1ρ, α1δ) is strictly decreasing in |δ|,

because fρ,σ2
y
(q, S2

1y) is independent of δ and the first multiplier of the integrand in the

power function is strictly decreasing in |δ|. Then we performed intensive simulations

to study the monotonicity of the power function w.r.t. ρ. The results indicated that

β(δ, ρ, σ2
y;α1ρ, α1δ) increases then decreases as ρ increases.

To control type I error of the proposed two-step test, consider the null parameter

space, which consists of three subsets, including Hδ ∩Hρ, Hδ ∩Kρ and Kδ ∩Hρ. Or

rewrite them as two subsets:

HI = {(δ, ρ) : ρ ≥ ρ2 or ρ ≤ ρ1} and HII = {(δ, ρ) : |δ| ≥ ε, ρ1 < ρ < ρ2}

Based on the monotonicity property of δ, and simulation results for ρ, for any given σ2
y

(which is a nuisance parameter here) and a significance level α1, we suggest looking

for a pair of α1ρ and α1δ which maximizes the power function

β(0, ρ, σ2
y;α1ρ, α1δ) ρ1 < ρ < ρ2

such that

max
HI

β(δ, ρ, σ2
y;α1ρ, α1δ) = max

ρ≥ρ2 or ρ≤ρ1
β(0, ρ, σ2

y ;α1ρ, α1δ) ≤ α1

max
HII

β(δ, ρ, σ2
y;α1ρ, α1δ) = max

ρ1<ρ<ρ2
β(ε, ρ, σ2

y;α1ρ, α1δ) ≤ α1
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Once α1ρ and α1δ are chosen, rejection region can be constructed and decision can be

made based upon observed statistics.

1.4.3 Two-step testing under two-stage setting: First Stage

From the discussion above, we notice that the value of α1ρ and α1δ vary with respect to

different values of σ2
y , which is usually an unknown parameter and makes application

difficult. However, the good news is, in practice, very often one of the two scenarios

occurs in the first stage of bio-equivalence testing with two-stage setting.

1. A pilot sample is already collected and required further analyses, i.e.

– What’s the power given a certain level in the first stage;

– Whether an additional sample is needed based on the test result in the first

stage;

– What are the overall Type I error and power.

2. No sample has been collected at all. Instead, a desirable Type I error and power

for pilot study are specified, and the pilot sample size is asked as very first in-

struction of the whole test.

As a matter of fact, our proposed two-step test is feasible in both cases, though a

little different when performing it. The first case is easier, in which either of the two

samples can be treated as from population "Y " and its sample variance s2
y is calculated

and can be used as an estimator of σ2
y . The second case is harder but still achievable,

considering that in a lot of scenarios, bio-equivalence test is called upon to compare

a new formulation with a "well-known" or "widely-used" formulation, which can be

treated as population "Y " in our test. In other words, either "Y " is studied enough to

assume that its variance is known or at least we already have ample observations from

"Y " in hand to calculate its sample variance s2
y as a reliable estimator of σ2

y . Simulation
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Table 1.2: Sample size decision table when σ2
y = 0.2

α1 ρ0 sample size power α1ρ α1δ α1 ρ0 sample size power α1ρ α1δ

0.2 2 10 0.29 0.24 0.52 0.3 2 10 0.43 0.35 0.56

13 0.33 0.23 0.46 13 0.48 0.34 0.51

16 0.37 0.23 0.41 16 0.52 0.34 0.44

19 0.43 0.24 0.35 19 0.57 0.33 0.43

22 0.47 0.23 0.32 22 0.62 0.32 0.41

25 0.51 0.21 0.32 25 0.66 0.32 0.37

28 0.56 0.22 0.29 28 0.7 0.31 0.37

31 0.6 0.22 0.27 31 0.74 0.31 0.36

34 0.64 0.21 0.26 34 0.78 0.3 0.35

37 0.68 0.21 0.25 37 0.8 0.31 0.33

40 0.72 0.21 0.24 40 0.83 0.3 0.33

3 10 0.34 0.29 0.32 3 10 0.49 0.37 0.4

13 0.4 0.27 0.28 13 0.55 0.37 0.36

16 0.45 0.26 0.25 16 0.61 0.33 0.34

19 0.51 0.26 0.23 19 0.67 0.3 0.33

22 0.57 0.24 0.22 22 0.72 0.33 0.31

25 0.62 0.23 0.21 25 0.77 0.32 0.31

28 0.68 0.22 0.21 28 0.8 0.26 0.31

31 0.71 0.17 0.21 31 0.84 0.31 0.3

34 0.76 0.2 0.2 34 0.87 0.28 0.3

37 0.79 0.21 0.2 37 0.89 0.29 0.3

40 0.82 0.18 0.2 40 0.91 0.28 0.3

4 10 0.35 0.26 0.29 4 10 0.5 0.39 0.36

13 0.41 0.28 0.25 13 0.56 0.37 0.33

16 0.47 0.25 0.23 16 0.63 0.32 0.32

19 0.52 0.18 0.22 19 0.69 0.34 0.31

22 0.59 0.23 0.21 22 0.74 0.32 0.3

25 0.64 0.12 0.21 25 0.78 0.32 0.3

28 0.69 0.21 0.2 28 0.82 0.31 0.3

31 0.73 0.21 0.2 31 0.85 0.31 0.3

34 0.77 0.2 0.2 34 0.87 0.25 0.3

37 0.81 0.2 0.2 37 0.89 0.3 0.3

40 0.83 0.2 0.2 40 0.91 0.25 0.3
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Table 1.3: Sample size decision table when σ2
y = 0.5

α1 ρ0 sample size power α1ρ α1δ α1 ρ0 sample size power α1ρ α1δ

0.2 2 10 0.25 0.34 0.47 0.3 2 10 0.37 0.48 0.51

13 0.27 0.31 0.44 13 0.39 0.5 0.46

16 0.29 0.36 0.37 16 0.42 0.45 0.44

19 0.3 0.38 0.33 19 0.44 0.42 0.42

22 0.33 0.37 0.31 22 0.47 0.44 0.39

25 0.35 0.36 0.29 25 0.49 0.4 0.38

28 0.37 0.34 0.28 28 0.52 0.42 0.36

31 0.39 0.31 0.27 31 0.55 0.41 0.35

34 0.41 0.3 0.26 34 0.57 0.41 0.34

37 0.44 0.3 0.25 37 0.6 0.36 0.34

40 0.46 0.29 0.24 40 0.63 0.38 0.33

3 10 0.25 0.47 0.37 3 10 0.38 0.46 0.45

13 0.27 0.41 0.34 13 0.4 0.46 0.41

16 0.29 0.24 0.33 16 0.43 0.4 0.39

19 0.31 0.27 0.3 19 0.45 0.38 0.37

22 0.33 0.18 0.29 22 0.48 0.45 0.35

25 0.35 0.36 0.26 25 0.51 0.43 0.34

28 0.38 0.33 0.25 28 0.54 0.43 0.33

31 0.4 0.33 0.24 31 0.56 0.41 0.32

34 0.42 0.12 0.24 34 0.59 0.29 0.32

37 0.45 0.14 0.23 37 0.61 0.15 0.32

40 0.47 0.29 0.22 40 0.64 0.36 0.31

4 10 0.25 0.21 0.39 4 10 0.38 0.46 0.43

13 0.27 0.14 0.36 13 0.4 0.28 0.41

16 0.29 0.26 0.31 16 0.43 0.31 0.38

19 0.31 0.23 0.29 19 0.45 0.33 0.36

22 0.33 0.1 0.28 22 0.48 0.21 0.35

25 0.35 0.16 0.26 25 0.51 0.16 0.34

28 0.38 0.13 0.25 28 0.54 0.19 0.33

31 0.4 0.15 0.24 31 0.56 0.38 0.32

34 0.42 0.29 0.23 34 0.58 0.37 0.31

37 0.44 0.29 0.22 37 0.61 0.3 0.31

40 0.48 0.23 0.22 40 0.64 0.36 0.31
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Table 1.4: Sample size decision table when σ2
y = 1

α1 ρ0 sample size power α1ρ α1δ α1 ρ0 sample size power α1ρ α1δ

0.2 2 10 0.22 0.41 0.49 0.3 2 10 0.34 0.65 0.51

13 0.24 0.45 0.44 13 0.35 0.59 0.49

16 0.24 0.51 0.4 16 0.36 0.61 0.46

19 0.25 0.25 0.45 19 0.38 0.54 0.45

22 0.26 0.49 0.36 22 0.38 0.43 0.45

25 0.27 0.27 0.38 25 0.4 0.42 0.43

28 0.28 0.37 0.34 28 0.41 0.52 0.4

31 0.29 0.21 0.36 31 0.42 0.35 0.41

34 0.3 0.39 0.31 34 0.44 0.49 0.38

37 0.31 0.23 0.32 37 0.45 0.47 0.37

40 0.32 0.38 0.29 40 0.46 0.51 0.36

3 10 0.23 0.52 0.43 3 10 0.34 0.43 0.51

13 0.23 0.54 0.4 13 0.35 0.47 0.47

16 0.24 0.23 0.4 16 0.36 0.41 0.45

19 0.25 0.15 0.39 19 0.37 0.28 0.44

22 0.26 0.27 0.35 22 0.39 0.51 0.41

25 0.27 0.46 0.33 25 0.4 0.35 0.4

28 0.28 0.3 0.32 28 0.41 0.3 0.39

31 0.29 0.2 0.31 31 0.42 0.25 0.38

34 0.3 0.19 0.3 34 0.44 0.27 0.37

37 0.31 0.18 0.29 37 0.45 0.41 0.36

40 0.32 0.3 0.28 40 0.46 0.1 0.36

4 10 0.23 0.56 0.42 4 10 0.34 0.61 0.48

13 0.23 0.35 0.4 13 0.35 0.22 0.48

16 0.24 0.1 0.4 16 0.36 0.1 0.48

19 0.25 0.11 0.37 19 0.37 0.12 0.44

22 0.26 0.1 0.35 22 0.39 0.11 0.42

25 0.27 0.22 0.33 25 0.4 0.15 0.4

28 0.26 0.41 0.31 28 0.4 0.47 0.38

31 0.28 0.37 0.3 31 0.42 0.53 0.37

34 0.29 0.28 0.29 34 0.43 0.48 0.36

37 0.29 0.39 0.28 37 0.45 0.17 0.36

40 0.3 0.33 0.27 40 0.46 0.26 0.35
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shows that even with small sample size (around 10 for each population), the rejection

region derived from given σ2
y and from calculated s2

y are almost overlapping.

In Table 1.2 - Table 1.4, we provide numerical study results as a reference for a

sample size decision. For computational simplicity, we take an equal size of sample

from both populations, i.e. m1 = n1. Also we assume that ε = log(10/8), 1/ρ1 =

ρ2 = ρ0, and σ2
y is known.

In practice, once σ2
y is acquired or estimated, our computational technique can be

adopted to produce similar tables as provided in order to calculate the optimal values

of α1ρ and α1δ corresponding to different sample size and power. On the other hand,

if a speedy preliminary test in the first stage is preferred and the control of Type I

error is not that crucial, our computation results can serve as benchmarks for sample

size decisions, considering the strictly decreasing property of the power function with

respect to σ2
y .

1.4.4 Two-step testing under two-stage setting: Second Stage

Once rejection occurs in the first stage, a larger sample is called upon for further con-

firmation, which consists of Xi’s of size m2 = m−m1 and Yj’s of size n2 = n− n1.

Consider the conditional joint distribution given rejection occurs in the first stage,

f(X̄, Ȳ , S2
x, S

2
y |R) =

f(X̄, Ȳ , S2
x, S

2
y , R)

Pr(R)
=
f(X̄, Ȳ , S2

x, S
2
y , R)

β(δ, ρ, σ2
y ;α1ρ, α1δ)

(X̄, Ȳ , S2
x, S

2
y) ∈ R

(1.4.5)

where

R =
{
C

(1)
α1ρ;df1,df2

(ρ1, ρ2) < Q1 < C
(2)
α1ρ;df1,df2

(ρ1, ρ2)
}
∩ {|D1| < ε− tα1δ,m1+n1−2Sd1}

(1.4.6)

and

f(X̄, Ȳ , S2
x, S

2
y , R) =

∫
R

f
(
X̄, Ȳ , S2

x, S
2
y , X̄1, Ȳ1, S

2
1x, S

2
1y

)
dx̄1dȳ1dS

2
1xdS

2
1y
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Since Xi’s and Yj’s are independent, we only need to derive the joint distribution

of
(
X̄, S2

x, X̄1, S
2
1x

)
from the joint distribution of

(
X̄1, S

2
1x, X̄2, S

2
2x

)
and the analogous

result for the Y part would follow. Also it is easy to derive the following relationships:

m1X̄1 +m2X̄2 = mX̄

n1Ȳ1 + n2Ȳ2 = nȲ

(m1 − 1)S2
1x + (m2 − 1)S2

2x = (m− 1)S2
x −m1(X̄ − X̄1)2 −m2(X̄ − X̄2)2

(n1 − 1)S2
1y + (n2 − 1)S2

2y = (n− 1)S2
y − n1(Ȳ − Ȳ1)2 − n2(Ȳ − Ȳ2)2

From the following distributions and linear transformations

X̄1 ∼ N
(
µx,

σ2
x

m1

)
X̄2 ∼ N

(
µx,

σ2
x

m2

)
S2

1x ∼
σ2
x

(m1 − 1)
χ2
m1−1 S2

2x ∼
σ2
x

(m2 − 1)
χ2
m2−1

X̄1 = X̄1

X̄2 =
m

m2

X̄ − m1

m2

X̄1

S2
1x = S2

1x

S2
2x =

m− 1

m2 − 1
S2
x −

m1 − 1

m2 − 1
S2

1x −
m1m

m2(m2 − 1)
(X̄ − X̄1)2

The joint distribution of
(
X̄, S2

x, X̄1, S
2
1x

)
can be written as follows,

f(X̄, S2
x, X̄1, S

2
1x) =C(m1,m2,m)K(σ2

x;m)H(X̄, S2
x, X̄1, S

2
1x;m1,m2,m)

× exp

{
− m

2σ2
x

(X̄ − µx)2 − m− 1

2σ2
x

S2
x

}
(1.4.7)

where

K(σ2
x;m) =

(
1

2σ2
x

)m/2
C(m1,m2,m) =

m(m− 1)
√
m1m2

πΓ(m1−1
2

)Γ(m2−1
2

)m2(m2 − 1)
(m1 − 1)

m1−1
2 (m2 − 1)

m2−1
2

H(X̄, S2
x, X̄1, S

2
1x;m1,m2,m)

=(S2
1x)

m1−3
2

(
m− 1

m2 − 1
S2
x −

m1 − 1

m2 − 1
S2

1x −
m1m

m2(m2 − 1)
(X̄ − X̄1)2

)m2−3
2
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Therefore, the joint density of
(
X̄, Ȳ , S2

x, S
2
y , X̄1, Ȳ1, S

2
1x, S

2
1y

)
is

f(X̄, Ȳ , S2
x, S

2
y , X̄1, Ȳ1, S

2
1x, S

2
1y)

= C(m1,m2,m)C(n1, n2, n)K(σ2
x;m)K(σ2

y ;n)

×H(X̄, S2
x, X̄1, S

2
1x;m1,m2,m)H(Ȳ , S2

y , Ȳ1, S
2
1y;n1, n2, n)

× exp

{
− m

2σ2
x

(X̄ − µx)2 − n

2σ2
y

(Ȳ − µy)2

}
exp

{
−m− 1

2σ2
x

S2
x −

n− 1

2σ2
y

S2
y

}
Notice that the rejection region R (1.4.6), from the first stage, is expressed in terms

of (D1, Q1, S
2
d1

). Using the following transformations,

S2
1x = Q1S

2
1y X̄1 = D1 + Ȳ1

now get

f(X̄, Ȳ , S2
x, S

2
y , D1, Ȳ1, Q1, S

2
1y)

= C(m1,m2,m)C(n1, n2, n)K(σ2
x;m)K(σ2

y;n)

×H
(
X̄, S2

x, (D1 + Ȳ1), Q1S
2
1y;m1,m2,m

)
H
(
Ȳ , S2

y , Ȳ1, S
2
1y;n1, n2, n

)
S2

1y

× exp

{
− m

2σ2
x

(X̄ − µx)2 − n

2σ2
y

(Ȳ − µy)2

}
exp

{
−m− 1

2σ2
x

S2
x −

n− 1

2σ2
y

S2
y

}
Therefore

f(X̄, Ȳ , S2
x, S

2
y |R)

=

∫
R

f(X̄, Ȳ , S2
x, S

2
y , D1, Ȳ1, Q1, S

2
1y)dd̄1dȳ1dq1dS

2
1y

=

∫ ∞
−∞

∫ ∞
0

∫ C
(2)
α1ρ

C
(1)
α1ρ

∫ dmax
1

dmin
1

f(X̄, Ȳ , S2
x, S

2
y , D1, Ȳ1, Q1, S

2
1y)dd̄1dq1dS

2
1ydȳ1

=C(m1,m2,m)C(n1, n2, n)K(σ2
x;m)K(σ2

y ;n)H̃(X̄, Ȳ , S2
x, S

2
y)

× exp

{
− m

2σ2
x

(X̄ − µx)2 − n

2σ2
y

(Ȳ − µy)2

}
exp

{
−m− 1

2σ2
x

S2
x −

n− 1

2σ2
y

S2
y

}
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where

dmin
1 =tα1δ,m1+n1−2Sd1 − ε

dmax
1 =ε− tα1δ,m1+n1−2Sd1

S2
d1

=

(
1

m1

+
1

n1

)
(m1 − 1)Q1S

2
1y + (n1 − 1)S2

1y

m1 + n1 − 2

H̃(X̄, Ȳ , S2
x, S

2
y) =

∫ ∞
−∞

∫ ∞
0

∫ C
(2)
α1ρ

C
(1)
α1ρ

∫ dmax
1

dmin
1

S2
1yH(X̄, S2

x, (D1 + Ȳ1), Q1S
2
1y;m1,m2,m)

×H(Ȳ , S2
y , Ȳ1, S

2
1y;n1, n2, n)dd̄1dq1dS

2
1ydȳ1

As we did in the first stage, now let

D = X̄ − Ȳ , Q = S2
x/S

2
y

Then

f(D,Q, Ȳ , S2
y |R) =

f(D,Q, Ȳ , S2
y , R)

β(δ, ρ, σ2
y ;α1ρ, α1δ)

=
C(m1,m2,m)C(n1, n2, n)K(ρσ2

y;m)K(σ2
y;n)

β(δ, ρ, σ2
y;α1ρ, α1δ)

H̃
(
(D + Ȳ ), Ȳ , QS2

y , S
2
y

)
S2
y

× exp

{
− m

2ρσ2
y

((D + Ȳ )− (µy + δ))2 − n

2σ2
y

(Ȳ − µy)2

}
× exp

{
−
S2
y

2σ2
y

(
(m− 1)

Q

ρ
+ (n− 1)

)}
(1.4.8)

Unfortunately, from the above joint density (1.4.8), it is difficult to derive an ana-

lytical expression for a marginal density of either D or Q or their joint density given

rejection in the first stage. Alternatively, we are able to examine their density curves

based on intensive simulation. Numerical results indicates that analogous to the un-

conditional density of D1 in the first stage, which follows a normal distribution,

f(D; δ|R) = f(−D;−δ|R)

Also when m = n, similar to Q1,

f(Q; ρ|R) = f(
1

Q
;

1

ρ
|R)
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Inspired by the similar distribution shapes, we propose a test procedure in the sec-

ond stage. After an additional sample is collected, a test based on observed Q to check

homogeneity of variances again is carried out and the rejection region is of the form{
C

(1)
2ρ < Q < C

(2)
2ρ

}
, where constants C(1)

2ρ and C(2)
2ρ depend on a given level of α2ρ. If

the test result is not significant, we stop and declare non-equivalence. Otherwise, a test

of equal means based on observed D is performed with a rejection region {|D| < Cd},

where the constant Cd depends on a given level of α2δ. And a final declaration of

bio-equivalence is made if the test is significant.

Next, in order to control the overall Type I error α, we use the same logic when

controlling α1 in the first stage. Two subsets need to be considered:

HI = {(δ, ρ) : ρ ≥ ρ2 or ρ ≤ ρ1}

and

HII = {(δ, ρ) : |δ| ≥ ε, ρ1 < ρ < ρ2}

Particularly, three parameter sets of the boundary of the null parameter space:

{δ = ε, ρ = 1}, {δ = 0, ρ = ρ1}, {δ = 0, ρ = ρ2} (1.4.9)

are relevant.

To control the overall Type I error at level α, we need to find a pair of (α2ρ, α2δ)

such that under each of these three-parameter spaces above, the rejection probability

does not exceed α2. Further notice that a final rejection occurs when we reject the null

hypothesis in both stages, and the rejection probability in the first stage was already

controlled at level α1. Since

α = PrH0{rejection in both stages}

= PrH0{rejection in the first stage}×

PrH0{rejection in the second stage given rejection in the first stage}

= α1 × α2
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for given α and α1, α2 should be set as no more than α/α1.

The acceptable pair of (α2ρ, α2δ) must exist because of the continuity of each dis-

tribution as well as the rejection region, which results in a continuous power function.

However, this pair may not be unique. Analogous to how we calculate in the first stage,

we seek a pair that maximizes the power of the test while controlling the Type I error.

In mathematical terms, given α1 and α, we look for α2ρ and α2δ to maximize the power

of the test given by

Pr{δ=0,ρ=1}{C(1)
2ρ < Q < C

(2)
2ρ and |D| < Cd|R}

such that

max
{δ=ε,ρ=1}

{δ=0,ρ=ρi;i=1,2}

Pr{C(1)
2ρ < Q < C

(2)
2ρ and |D| < Cd|R} ≤ α/α1

To realize the proposed procedure above, we perform the following steps to find

the desired α2ρ and α2δ along with the corresponding C(1)
2ρ , C(2)

2ρ , and Cd. Again for

simplicity, we assume equal sample sizes in both stages and 1/ρ1 = ρ2 = ρ0. As a

result, the rejection region for testing variances is simplified to {1/Cq < Q < Cq}.

Also here we assume that σ2
y is known. Notice that this assumption is reasonable since

in the second stage we already have observed data from the first stage. Using either

the sample variance as an estimator or a pre-knowledge value of σ2
y works fine in our

procedure. To be consistent, we suggest using the same value of σ2
y for both stages. In

addition, we need one more parameter µy to simulate the joint conditional density ofD

and Q given rejection. Based on our numerical studies, the sample mean of population

Y from the first stage can be used as a good estimator. As a matter of fact, the value

of Cq and Cd stay stable while the value of µy varies, which is consistent with the fact

that the test of the difference between two means would not depend on either of these

two means themselves. We next describe the steps of the procedure:

• Step 1. For any given α2ρ, simulate data from the conditional distribution of

Q; ρ0|R and Q; 1/ρ0|R
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and find a constant based on empirical density curves such that

FQ
emp(Cq; ρ0)− FQ

emp(1/Cq; ρ0) = α2ρ = FQ
emp(Cq; 1/ρ0)− FQ

emp(1/Cq; 1/ρ0)

(1.4.10)

Then the corresponding rejection region for Q at level α2ρ is

{1/Cq < Q < Cq}

Note: There are two equations in (1.4.10), which yield two values of Cq. These

two values in theory should be identical. Observing the different values due to

numerical error, we use the average of them as the final constant.

• Step 2. Analogously, for any given α2δ, simulate data from the conditional dis-

tribution of

D; ε|R and D;−ε|R

and find a constant based on empirical density curves such that

FD
emp(Cd; ε)− FD

emp(−Cd; ε) = α2δ = FD
emp(Cd;−ε)− FD

emp(−Cd;−ε)

(1.4.11)

Then the corresponding rejection region for D at level α2δ is

{|D| < Cd}

Note: For a similar reason as Step 1, we adopt the average of two Cd’s as desired

constant.

• Step 3. Under the three parameter settings of the null hypothesis boundary

(1.4.9), apply the rejection rule decided from the previous two steps to the em-

pirical conditional joint density of D and Q given rejection in the first stage . If

any of three yields a rejection probability exceeding α/α1, this pair of (α2ρ, α2δ)

should be discarded. Since the rejection probability is increasing with respect to
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either of these two nominal errors, we can repeat either Step 1 or 2 or both by

decreasing their values gradually. Once under all of three settings, the specified

type I error is controlled, the power of this test is calculated analogously from

the simulated conditional joint density of D and Q under {δ = 0, ρ = 1}.

• Step 4. Repeat Step 1 through Step 3 on the 2×2 grid consisting of two perpendic-

ular intervals (0.01, 0.99) by step = 0.01 to get all candidate pairs of (α2ρ, α2δ).

Then the best choice would be the one with the largest power.

Next we provide some numerical study results to demonstrate our test procedure in

the second stage. First, Table 1.5 shows that the value ofCq andCd are not affected a lot

by the change of the value of µy. There are some variations of the rejection region with

respect different values of µy. It is likely caused by the numerical error considering all

our results are based on simulations and empirical densities. For preciseness, if some

prior knowledge of µy is available or Ȳ can be calculated as an estimator, we suggest

using that value as a starting point of the simulation study for the second stage.

Table 1.6 - Table 1.11 provide different rejection values under certain parameter

settings. Notice that even with identical total sample size n, the power of entire test

is increasing with respect to the sample size of first stage n1. This result is reasonable

since the final rejection is the result that the alternative hypothesis is significant in both

stages. If significance is supported in the first stage by a larger sample, it is more likely

that it will occur again in the second stage, which reflects a larger rejection probability,

a.k.a. power of the test.
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Table 1.5: Rejection region decision with difference value of µy

σ2
y α α1 ρ0 µy power α2ρ α2δ Cq 1/Cq Cd

0.5 0.1 0.2 2 -2.7 0.24 0.52 0.51 1.796 0.557 0.175
10 0.243 0.55 0.51 1.822 0.549 0.176
3.5 0.242 0.53 0.51 1.812 0.552 0.176

-13.2 0.241 0.51 0.51 1.796 0.557 0.175
3 -2.7 0.251 0.82 0.5 3.179 0.315 0.173

10 0.246 0.83 0.5 3.21 0.311 0.168
3.5 0.249 0.82 0.5 3.168 0.316 0.171

-13.2 0.249 0.82 0.5 3.176 0.315 0.173
4 -2.7 0.245 0.91 0.5 4.691 0.213 0.167

10 0.249 0.9 0.5 4.642 0.215 0.172
3.5 0.249 0.9 0.5 4.675 0.214 0.171

-13.2 0.25 0.9 0.5 4.63 0.216 0.172

0.3 2 -2.7 0.299 0.45 0.34 1.742 0.574 0.132
10 0.299 0.45 0.34 1.745 0.573 0.131
3.5 0.295 0.45 0.34 1.743 0.574 0.128

-13.2 0.298 0.38 0.35 1.67 0.599 0.133
3 -2.7 0.3 0.07 0.34 1.865 0.536 0.126

10 0.308 0.07 0.34 1.875 0.533 0.13
3.5 0.301 0.07 0.34 1.876 0.533 0.127

-13.2 0.296 0.45 0.33 2.603 0.384 0.121
4 -2.7 0.306 0.68 0.33 3.858 0.259 0.125

10 0.297 0.69 0.33 3.865 0.259 0.12
3.5 0.303 0.68 0.33 3.837 0.261 0.125

-13.2 0.303 0.68 0.33 3.84 0.26 0.125
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Table 1.6: Rejection region when σ2
y = 0.2, ρ0 = 2 and α = 0.1

α1 n1 n power Cq 1/Cq Cd α1 n1 n power Cq 1/Cq Cd

0.2 10 30 0.245 1.658 0.603 0.193 0.3 10 30 0.294 1.484 0.674 0.16
60 0.287 1.823 0.549 0.201 60 0.399 1.643 0.609 0.173
90 0.293 1.875 0.533 0.206 90 0.424 1.73 0.578 0.18
120 0.294 1.907 0.524 0.212 120 0.428 1.772 0.564 0.187

15 30 0.291 1.533 0.652 0.169 15 30 0.326 1.403 0.713 0.146
60 0.353 1.733 0.577 0.19 60 0.471 1.606 0.623 0.161
90 0.362 1.824 0.548 0.198 90 0.503 1.678 0.596 0.175
120 0.363 1.86 0.538 0.206 120 0.508 1.737 0.576 0.182

20 60 0.42 1.687 0.593 0.176 20 60 0.536 1.551 0.645 0.155
80 0.43 1.757 0.569 0.187 80 0.573 1.629 0.614 0.166
100 0.433 1.811 0.552 0.194 100 0.584 1.667 0.6 0.174
120 0.434 1.84 0.543 0.198 120 0.59 1.717 0.582 0.178

25 60 0.489 1.635 0.612 0.167 25 60 0.597 1.532 0.653 0.151
80 0.504 1.71 0.585 0.181 80 0.641 1.623 0.616 0.158
100 0.509 1.776 0.563 0.189 100 0.655 1.672 0.598 0.168
120 0.511 1.811 0.552 0.195 120 0.66 1.7 0.588 0.177

30 60 0.554 1.571 0.637 0.156 30 60 0.643 1.506 0.664 0.143
90 0.584 1.699 0.589 0.178 90 0.709 1.612 0.62 0.161
120 0.589 1.776 0.563 0.19 120 0.721 1.68 0.595 0.172
150 0.589 1.819 0.55 0.195 150 0.723 1.734 0.577 0.179

Table 1.7: Rejection region when σ2
y = 0.2, ρ0 = 3 and α = 0.1

α1 n1 n power Cq 1/Cq Cd α1 n1 n power Cq 1/Cq Cd

0.2 10 30 0.302 2.459 0.407 0.159 0.3 10 30 0.373 2.212 0.452 0.123
60 0.334 2.695 0.371 0.19 60 0.47 2.464 0.406 0.162
90 0.338 2.813 0.355 0.201 90 0.483 2.581 0.387 0.175
120 0.338 2.869 0.349 0.208 120 0.486 2.65 0.377 0.183

15 30 0.369 2.303 0.434 0.132 15 30 0.425 2.146 0.466 0.102
60 0.429 2.643 0.378 0.177 60 0.571 2.375 0.421 0.147
90 0.434 2.783 0.359 0.192 90 0.593 2.524 0.396 0.169
120 0.435 2.852 0.351 0.201 120 0.596 2.591 0.386 0.178

20 60 0.526 2.519 0.397 0.163 20 60 0.655 2.316 0.432 0.142
80 0.535 2.638 0.379 0.178 80 0.681 2.414 0.414 0.155
100 0.537 2.712 0.369 0.187 100 0.69 2.503 0.4 0.167
120 0.537 2.757 0.363 0.193 120 0.692 2.562 0.39 0.174

25 60 0.612 2.426 0.412 0.157 25 60 0.725 2.265 0.442 0.135
80 0.622 2.549 0.392 0.173 80 0.757 2.402 0.416 0.152
100 0.624 2.636 0.379 0.181 100 0.767 2.466 0.405 0.163
120 0.625 2.696 0.371 0.189 120 0.77 2.528 0.396 0.172

30 60 0.683 2.419 0.413 0.146 30 60 0.769 2.245 0.445 0.13
90 0.702 2.621 0.382 0.171 90 0.816 2.421 0.413 0.155
120 0.704 2.738 0.365 0.184 120 0.823 2.526 0.396 0.169
150 0.704 2.796 0.358 0.193 150 0.824 2.596 0.385 0.177
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Table 1.8: Rejection region when σ2
y = 0.5, ρ0 = 2 and α = 0.1

α1 n1 n power Cq 1/Cq Cd α1 n1 n power Cq 1/Cq Cd

0.2 10 30 0.179 1.95 0.513 0.17 0.3 10 30 0.186 1.792 0.558 0.119
60 0.224 1.936 0.516 0.189 60 0.278 1.746 0.573 0.144
90 0.242 1.943 0.515 0.2 90 0.324 1.765 0.567 0.157
120 0.249 1.949 0.513 0.206 120 0.348 1.798 0.556 0.169

15 30 0.185 1.798 0.556 0.139 15 30 0.195 1.787 0.559 0.098
60 0.243 1.799 0.556 0.175 60 0.298 1.739 0.575 0.13
90 0.264 1.872 0.534 0.187 90 0.36 1.741 0.574 0.151
120 0.275 1.886 0.53 0.199 120 0.385 1.784 0.561 0.162

20 60 0.263 1.773 0.564 0.161 20 60 0.316 1.71 0.585 0.118
80 0.286 1.827 0.547 0.177 80 0.369 1.719 0.582 0.135
100 0.297 1.848 0.541 0.184 100 0.403 1.756 0.57 0.146
120 0.302 1.88 0.532 0.194 120 0.422 1.754 0.57 0.154

25 60 0.289 1.741 0.575 0.146 25 60 0.34 1.643 0.609 0.111
80 0.315 1.791 0.558 0.163 80 0.406 1.704 0.587 0.131
100 0.329 1.817 0.55 0.175 100 0.437 1.685 0.594 0.143
120 0.339 1.841 0.543 0.185 120 0.459 1.744 0.573 0.15

30 60 0.305 1.734 0.577 0.128 30 60 0.343 1.658 0.603 0.097
90 0.352 1.786 0.56 0.159 90 0.446 1.68 0.595 0.125
120 0.37 1.827 0.547 0.175 120 0.497 1.724 0.58 0.143
150 0.376 1.861 0.537 0.185 150 0.518 1.756 0.569 0.155

Table 1.9: Rejection region when σ2
y = 0.5, ρ0 = 3 and α = 0.1

α1 n1 n power Cq 1/Cq Cd α1 n1 n power Cq 1/Cq Cd

0.2 10 30 0.181 2.357 0.424 0.164 0.3 10 30 0.196 2.313 0.432 0.109
60 0.226 2.795 0.358 0.191 60 0.281 2.683 0.373 0.137
90 0.241 2.83 0.353 0.198 90 0.335 2.698 0.371 0.158
120 0.248 2.88 0.347 0.205 120 0.356 2.73 0.366 0.166

15 30 0.192 4.529 0.221 0.131 15 30 0.203 2.412 0.415 0.089
60 0.25 3.171 0.315 0.172 60 0.306 1.876 0.533 0.129
90 0.271 3.137 0.319 0.189 90 0.363 2.638 0.379 0.147
120 0.28 3.173 0.315 0.196 120 0.39 2.686 0.372 0.161

20 60 0.271 4.079 0.245 0.155 20 60 0.323 2.559 0.391 0.111
80 0.293 4.13 0.242 0.172 80 0.378 2.562 0.39 0.13
100 0.305 4.106 0.244 0.182 100 0.409 2.594 0.386 0.142
120 0.312 4.062 0.246 0.189 120 0.43 2.647 0.378 0.153

25 60 0.294 2.615 0.382 0.139 25 60 0.339 2.493 0.401 0.101
80 0.32 2.647 0.378 0.159 80 0.404 2.53 0.395 0.121
100 0.333 2.711 0.369 0.17 100 0.446 2.554 0.392 0.136
120 0.342 2.748 0.364 0.179 120 0.474 2.598 0.385 0.149

30 60 0.317 3.696 0.271 0.124 30 60 0.351 1.79 0.559 0.094
90 0.364 3.898 0.257 0.156 90 0.455 2.715 0.368 0.123
120 0.381 3.59 0.279 0.171 120 0.507 2.751 0.364 0.142
150 0.389 3.543 0.282 0.182 150 0.529 2.788 0.359 0.153
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Table 1.10: Rejection region when σ2
y = 1, ρ0 = 2 and α = 0.1

α1 n1 n power Cq 1/Cq Cd α1 n1 n power Cq 1/Cq Cd

0.2 10 30 0.136 2.216 0.451 0.189 0.3 10 30 0.14 1.997 0.501 0.125
60 0.167 1.833 0.546 0.197 60 0.189 1.838 0.544 0.134
90 0.186 2.032 0.492 0.198 90 0.229 1.877 0.533 0.142
120 0.203 2.018 0.496 0.207 120 0.26 1.862 0.537 0.151

15 30 0.142 2.124 0.471 0.157 15 30 0.149 1.889 0.529 0.112
60 0.177 1.798 0.556 0.181 60 0.19 1.786 0.56 0.121
90 0.202 1.989 0.503 0.192 90 0.239 1.622 0.617 0.138
120 0.217 1.978 0.506 0.198 120 0.271 1.881 0.532 0.144

20 60 0.186 1.805 0.554 0.167 20 60 0.194 1.79 0.559 0.109
80 0.203 1.985 0.504 0.175 80 0.227 1.671 0.598 0.122
100 0.216 1.981 0.505 0.182 100 0.26 1.587 0.63 0.132
120 0.228 1.97 0.507 0.191 120 0.286 1.847 0.541 0.138

25 60 0.184 2.68 0.373 0.147 25 60 0.196 1.728 0.579 0.1
80 0.207 2.452 0.408 0.161 80 0.239 1.618 0.618 0.116
100 0.222 2.247 0.445 0.171 100 0.264 1.55 0.645 0.124
120 0.234 2.185 0.458 0.18 120 0.29 1.887 0.53 0.129

30 60 0.186 1.747 0.572 0.13 30 60 0.2 1.783 0.561 0.089
90 0.222 1.894 0.528 0.154 90 0.26 1.633 0.613 0.111
120 0.247 1.904 0.525 0.168 120 0.302 1.824 0.548 0.124
150 0.26 1.906 0.525 0.181 150 0.34 1.817 0.55 0.137

Table 1.11: Rejection region when σ2
y = 1, ρ0 = 3 and α = 0.1

α1 n1 n power Cq 1/Cq Cd α1 n1 n power Cq 1/Cq Cd

0.2 10 30 0.138 3.465 0.289 0.178 0.3 10 30 0.142 1.766 0.566 0.135
60 0.168 3.069 0.326 0.191 60 0.186 3.237 0.309 0.128
90 0.192 3.007 0.333 0.2 90 0.227 3.009 0.332 0.14
120 0.204 3.002 0.333 0.202 120 0.26 2.945 0.34 0.152

15 30 0.14 4.177 0.239 0.154 15 30 0.141 1.946 0.514 0.106
60 0.177 4.334 0.231 0.178 60 0.193 1.791 0.558 0.122
90 0.199 4.235 0.236 0.189 90 0.242 3.222 0.31 0.136
120 0.214 4.14 0.242 0.197 120 0.273 3.106 0.322 0.144

20 60 0.18 1.865 0.536 0.162 20 60 0.193 4.109 0.243 0.106
80 0.198 3.705 0.27 0.17 80 0.227 4.131 0.242 0.118
100 0.211 3.489 0.287 0.178 100 0.255 4.11 0.243 0.128
120 0.225 3.388 0.295 0.186 120 0.281 4.019 0.249 0.137

25 60 0.185 2.858 0.35 0.14 25 60 0.197 1.833 0.546 0.097
80 0.206 2.851 0.351 0.157 80 0.233 3.066 0.326 0.11
100 0.227 2.852 0.351 0.172 100 0.261 2.975 0.336 0.119
120 0.237 2.872 0.348 0.178 120 0.29 2.901 0.345 0.129

30 60 0.193 2.94 0.34 0.129 30 60 0.197 1.788 0.559 0.087
90 0.226 2.923 0.342 0.153 90 0.255 2.858 0.35 0.105
120 0.249 2.907 0.344 0.172 120 0.309 2.791 0.358 0.127
150 0.261 2.934 0.341 0.18 150 0.343 2.785 0.359 0.139
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Chapter 2

Multiple Testing of Bio-equivalence

2.1 Background

In biochemical analysis, consistent reporting of test results is important to patient care.

As clinical laboratories periodically change instruments, reagents or methods, deter-

mining whether patient results have shifted or remained the same because of these

changes is part of the validation process. If significant changes have occurred, then the

normal reference ranges may require adjustments. Several statistical tools exist for de-

termining significant differences, but relatively few determine equivalence. Frequently,

statistical differences exist without clinical significance (makes no difference in patient

care). Determining equivalence may provide an easier tool for validations in a clinical

laboratory.

In Appendix 3.1, data of two types of Iron evaluation: Serum Iron and Heparin

Iron, are collected from two instruments: RXL1 and RXL2. In addition, two types of

reagent: current and new reagent are adopted in this test. The following 8 questions

were raised:

1. For instrument RXL1, are Serum Iron level by current reagent and Serum Iron

level by new reagent equivalent?

2. For instrument RXL1, are Serum Iron level by current reagent and Heparin Iron

level by new reagent equivalent?

3. For instrument RXL1, are Serum Iron level by new reagent and Heparin Iron

level by new reagent equivalent?



44

4. For instrument RXL2, are Serum Iron level by current reagent and Serum Iron

level by new reagent equivalent?

5. For instrument RXL2, are Serum Iron level by current reagent and Heparin Iron

level by new reagent equivalent?

6. For instrument RXL2, are Serum Iron level by new reagent and Heparin Iron

level by new reagent equivalent?

7. For Serum Iron level by new reagent, are instrument RXL1 and RXL2 equiva-

lent?

8. For Heparin Iron level by new reagent, are instrument RXL1 and RXL2 equiva-

lent?

Our plan is to test these 8 pairwise differences for bio-equivalence. Before doing so

however we note that each of the 6 variables measuring iron levels listed in Appendix

3.1 were tested for log-normality. Table 3.2 lists test results of marginal normality

for each variable. Both test results and QQ plots in Figure 3.1 indicate marginal nor-

mality holds for all 6 variables after log-transformation. In addition, we performed

multivariate normality test and the results are listed in Table 3.3. P-values indicate that

multivariate normality assumption does not hold at level 5%. However, We want to

remark at this time that all statistics in our next discussion will be based on sample

means of 38 observations which under the multivariate central limit theorem should be

approximately multivariate normal.

Based on results from Table 3.2, we first studied the bio-equivalence questions

considering 2 different step-down multiple testing procedures, namely one based on the

TOST method of Schuirmann (1987) and the other based on the unbiased test method

of Brown, Hwang and Munk (1997). For each of these methods the basic assumption

is that differences in the logs of the variables of interest are normally distributed. The

test methods involve only the marginal distribution of each sample mean difference. In
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addition we use a third method which requires a stronger assumption of multivariate

normality of the logs of the 6 variables measured. Since marginal normality is a special

case of multivariate normality we develop all 3 methods with the basic assumption of

multivariate normality realizing that such an assumption is not necessary for the first 2

methods. This leads us into Section 2.2.

2.2 Statistical Model

Suppose

X1 = log(Serum Iron level by current reagent for instrument RXL1)

X2 = log(Serum Iron level by new reagent for instrument RXL1)

X3 = log(Heparin Iron level by new reagent for instrument RXL1)

X4 = log(Serum Iron level by current reagent for instrument RXL2)

X5 = log(Serum Iron level by new reagent for instrument RXL2)

X6 = log(Heparin Iron level by new reagent for instrument RXL2)

Now consider the following statistical scenario:

Let Xjk, j = 1, · · · , 6, k = 1, · · · , 38, be a random sample from N (θ,Σ), where

Σ is unknown. Then let µi = E(Yi), i = 1, · · · , 8, where

1. Y1k = X1k −X2k

2. Y2k = X1k −X3k

3. Y3k = X2k −X3k

4. Y4k = X4k −X5k

5. Y5k = X4k −X6k

6. Y6k = X5k −X6k
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7. Y7k = X2k −X5k

8. Y8k = X3k −X6k

It is clear that the 8 questions in Section 2.1 can be converted as a series of bio-

equivalence testing hypotheses

Hi : |µi| ≥ ∆ vs Ki : |µi| < ∆

where ∆ > 0 is the tolerance limit usually preset by regulatory agencies.

2.3 Step-wise Multiple testing procedure

2.3.1 Bio-equivalence test on single hypothesis

In Schuirmann (1987), an α-level two one-sided tests(TOST) procedure was proposed

and then widely adopted in practice. The rejection region of this procedure is as follows

¯|Y | < ∆− tn−1;1−αS√
n

(2.3.1)

where Ȳ is the sample mean, S is the sample standard deviation, and tn−1;1−α is the

lower (1− α)th quantile of a t-distribution with degree of freedom n− 1.

Despite the simplicity of the TOST procedure, it is a biased test. As a matter of fact,

when µ = 0, the power of this test → 0 as S → ∞. To overcome this flaw, Brown,

Hwang and Munk (1997) constructed an unbiased, level α test, which is uniformly

more powerful than TOST. The construction of their rejection region is recursive with

a general form as follows

¯|Y | < B(∆;α;n)S (2.3.2)

where B is some positive function which is never smaller than the right-hand side of

(2.3.1). And B increases as α increases as well as ∆ increases.

Notice, when deviance is small, the unbiased rejection region and TOST’s rejection

region are pretty close. The unbiased test is an improvement to TOST when deviance

is large.
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2.3.2 Step-down testing procedure

A. TOST based step-down procedure

For pre-selected constants 0 < C1 < · · · < C8,

• Step 0. Calculate Ti = ∆− ¯|Yi|
Sii

, i = 1, · · · , 8. Here Sii is a sample standard

deviation. Order Ti’s and denote as T[1] ≤ T[2] ≤ · · · ≤ T[8]. Also denote H[i] as

the hypothesis with respect to statistics T[i].

• Step 1. If T[8] > C8 then reject H[8] and go to Step 2; Otherwise stop and accept

all Hi’s.

· · ·

• Step q. If T[8−q+1] > C8−q+1 then reject H[8−q+1] and go to Step q+1; Otherwise

stop and accept all rest Hq’s.

B. Unbiased test based step-down procedure

For pre-selected constants 0 < C1 < · · · < C8,

• Step 0. Calculate Ti =
¯|Yi|
Sii
, i = 1, · · · , 8. Order Ti’s and denote as T[1] ≤ T[2] ≤

· · · ≤ T[8]. Also denote H[i] as the hypothesis with respect to statistics T[i].

• Step 1. If T[1] < C1 then reject H[1] and go to Step 2; Otherwise stop and accept

all Hi’s.

· · ·

• Step q. If T[q] < Cq then reject H[q] and go to Step q+1; Otherwise stop and

accept all rest Hq’s.
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Table 2.1: Holm’s Proposal

Nominal α FWER FDR
0.01 0.011 0.004
0.02 0.018 0.007
0.03 0.028 0.011
0.04 0.035 0.013
0.05 0.043 0.017
0.06 0.047 0.019
0.07 0.055 0.023
0.08 0.062 0.025
0.09 0.069 0.028
0.10 0.073 0.031
0.11 0.082 0.034
0.12 0.086 0.035
0.13 0.093 0.037
0.14 0.102 0.041
0.15 0.105 0.043
0.16 0.109 0.045
0.17 0.116 0.049
0.18 0.122 0.053
0.19 0.128 0.053
0.20 0.137 0.058

Table 2.2: Benjamini’s Proposal

Nominal α FDR FWER
0.01 0.01 0.032
0.02 0.021 0.06
0.03 0.029 0.088
0.04 0.039 0.104
0.05 0.05 0.127
0.06 0.057 0.148
0.07 0.067 0.169
0.08 0.074 0.188
0.09 0.083 0.204
0.10 0.091 0.217
0.11 0.097 0.231
0.12 0.105 0.244
0.13 0.111 0.26
0.14 0.119 0.276
0.15 0.124 0.288
0.16 0.134 0.294
0.17 0.135 0.309
0.18 0.141 0.324
0.19 0.148 0.33
0.20 0.152 0.34

2.3.3 Application

The testing procedures in Section 2.3.2 were applied to actual data collected in lab to

answer questions listed in Section 2.1. ∆ was preset at ln1.25 as recommended by

regulatory agencies.

To control Type I error at a nominal level of α, we studied the critical values

proposed by Holm (1979), which sets αi = α/(m + 1 − i) at step i = 1, · · · ,m,

as well as the critical values proposed by Benjamini and Gavrilov (2009) which sets

αi = iα/(m + 1 − i(1 − α)) at step i. Table 2.1 and Table 2.2 list the actual FWER

and FDR given nominal α level from 0.01 to 0.2. Table 2.1 shows that if the test-

ing procedures want to control the family-wise error rate (FWER), Holm’s proposal

should work well. On the other hand, if FWER appears to be too conservative and the

false discovery rate (FDR) as a measurement is preferred, then the results in Table 2.2
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justified Benjamini and Gavrilov’s proposal.

Figure 2.1: Step-down Multiple Testing.(α= 0.1)

Figure 2.2: Step-down Multiple Testing.(α= 0.05)

Next, we demonstrate the testing procedure by controlling FWER, i.e. we use

Holm’s critical values. The left side of Figure 2.1 and Figure 2.2 are step-wise proce-

dure based on Brown’s unbiased test when α is set at 0.1 and 0.05. And the right side

of Figure 2.1 and Figure 2.2 are step-wise procedure based on TOST when nominal

α is set at 0.1 and 0.05 respectively. The rejection region in each figure is the area
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between two curves/lines that are symmetric w.r.t Ȳ = 0. Since the step down proce-

dure makes it easier to reject in later steps when fewer hypotheses are left, 8 pairs of

curves/lines are plotted in each figure to show a series of enlarging rejection regions.

In other words, at step i, from Ȳ = 0, the ith curve/line from inside to outside on the

left and right side represent the rejection region for that step.

Also the observed statistics for each hypothesis are marked in the plots. If the

observed statistics fall into the rejection region, then the corresponding hypothesis is

rejected.

At level 0.1 and 0.05, all hypotheses were rejected, in an order of 7, 8, 4, 3, 6, 5, 1,

2.

2.4 Two stage multiple testing procedure

2.4.1 Individualized 2-stage testing procedure

In Cohen, Ma and Sackrowitz(2012), a new individualized 2-stage multiple testing pro-

cedure was introduced. This procedure treats all hypotheses equally, and tests each in a

two-stage fashion. Under the statistical model of section 2, the procedure is as follows:

For each i, i = 1, · · · , 8, a 2-stage testing procedure is conducted w.r.t. hypothesis

Hi : |µi| ≥ ∆ vs Ki : |µi| < ∆

• Stage 1.

– Step 0. Define

Uq =

√
n|Ȳq − Siq

Sii
Ȳi|

(Sqq −
S2
iq

Sii
)
1
2

, q = 1, · · · , 8, q 6= i

where Siq is the sample covariance and Sii is the sample variance.

Let 0 < C1 < · · · < C7 be pre-selected constants.

Order Uq’s and denote as Uq[1] ≤ Uq[2] ≤ · · · ≤ Uq[7]
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– Step 1. If Uq[1] < C1 then reject Hq[1] and go to Step 2; Otherwise stop and

accept all Hq’s and set Ri = 0.

– · · ·

– Step k. If Uq[k] < Ck then reject Hq[k] and go to Step k+1; Otherwise stop

and accept all other Hq’s and set Ri = k − 1.

• Stage 2. Based onRi, which represents the number of rejections in Stage 1, form

a confidence interval estimate for µi as

Ȳi ±B(Ri)

√
Sii
n

(2.4.1)

where B(Ri) is decreasing as Ri increases.

Hi is rejected if the confidence interval estimate above lies entirely in the preset

tolerance interval (−∆,∆).

2.4.2 Application

To apply the two-stage multiple testing procedure on the bio-equivalence problem, a

series of simulations were studied to control FDR based on actual data in hand. In

stage 1, inspired by Wellek (2002) and Benjamini and Gavrilov (2009), the following

critical values perform well

Ck =
√
χ2

1;α1k
(((2∆)2), k = 1, · · · , 7

where χ2
1;α1k

(((2∆)2) denotes the α1kth quantile of a χ2-distribution with df = 1 and

noncentrality parameter (2∆)2. And α1k = kα1

8−k(1−α1)
.

In stage 2, a modified version of Holm’s critical values works well as follows

B(ri) = t
n−1;1−α2/2

8−ri

where tm;α denotes the αth quantile of a t-distribution with df = m.
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Table 2.3: Preliminary study when α2 = 0.1

α1 α2 µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8 FDR FWER

0.2 0.1 −∆ −2∆ −∆ −2∆ −∆ ∆ −∆ ∆ 0.043 0.043

−∆ 0 ∆ 2∆ ∆ −∆ ∆ −∆ 0.025 0.042

2∆ ∆ −∆ −∆ 0 ∆ −∆ ∆ 0.024 0.045

∆ 0 −∆ 0 ∆ ∆ −∆ ∆ 0.016 0.042

−∆ −∆ 0 ∆ ∆ 0 −∆ −∆ 0.015 0.044

−2∆ −∆ ∆ −∆ ∆ 2∆ ∆ 2∆ 0.015 0.015

−∆ 0 ∆ −∆ −∆ 0 ∆ 0 0.011 0.038

−∆ −∆ 0 ∆ 0 −∆ ∆ 0 0.011 0.039

0 −∆ −∆ ∆ −∆ −2∆ 2∆ ∆ 0.006 0.011

0 ∆ ∆ 0 −∆ −∆ −∆ −3∆ 0.005 0.014

max 0.043 0.045

0.3 0.1 ∆ 3∆ 2∆ −∆ ∆ 2∆ ∆ ∆ 0.042 0.042

∆ 0 −∆ −∆ ∆ 2∆ −4∆ −∆ 0.025 0.040

∆ ∆ 0 −∆ −3∆ −2∆ ∆ −∆ 0.022 0.044

−∆ −∆ 0 ∆ ∆ 0 −∆ −∆ 0.017 0.048

∆ 2∆ ∆ ∆ −∆ −2∆ −∆ −4∆ 0.014 0.014

∆ 0 −∆ ∆ ∆ 0 0 ∆ 0.011 0.035

∆ ∆ 0 ∆ 0 −∆ 0 −∆ 0.011 0.039

∆ 2∆ ∆ ∆ ∆ 0 −∆ −2∆ 0.008 0.014

0 ∆ ∆ ∆ ∆ 0 ∆ 0 0.005 0.017

max 0.042 0.048

0.4 0.1 ∆ 2∆ ∆ 2∆ ∆ −∆ ∆ −∆ 0.043 0.043

∆ 0 −∆ −∆ ∆ 2∆ −2∆ ∆ 0.029 0.040

−∆ 0 ∆ −∆ −2∆ −∆ ∆ −∆ 0.028 0.044

0 −∆ −∆ ∆ 0 −∆ −∆ −∆ 0.018 0.044

−∆ ∆ 2∆ −∆ ∆ 2∆ −∆ −∆ 0.014 0.014

−∆ 0 ∆ ∆ ∆ 0 0 −∆ 0.011 0.039

∆ 0 −∆ ∆ −∆ −2∆ 2∆ ∆ 0.007 0.011

0 ∆ ∆ 0 ∆ ∆ −∆ −∆ 0.005 0.013

−∆ −∆ 0 0 −∆ −∆ 0 −∆ 0.004 0.010

−∆ −∆ 0 −∆ 0 ∆ 0 ∆ 0.004 0.013

max 0.043 0.044
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Table 2.4: Preliminary study when α2 = 0.2

α1 α2 µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8 FDR FWER

0.2 0.2 −∆ −2∆ −∆ −2∆ −∆ ∆ −∆ ∆ 0.080 0.080

−∆ 0 ∆ −2∆ −∆ ∆ ∆ ∆ 0.048 0.084

2∆ ∆ −∆ −∆ 0 ∆ −∆ ∆ 0.045 0.087

−∆ −2∆ −∆ −2∆ −∆ ∆ −3∆ −∆ 0.038 0.038

∆ 0 −∆ −∆ 0 ∆ −∆ ∆ 0.030 0.084

∆ ∆ 0 0 −∆ −∆ 0 −∆ 0.018 0.059

0 −∆ −∆ ∆ −∆ −2∆ 2∆ ∆ 0.018 0.033

−∆ −∆ 0 ∆ 0 −∆ ∆ 0 0.017 0.061

∆ ∆ 0 0 ∆ ∆ 0 ∆ 0.013 0.039

0 ∆ ∆ 0 ∆ ∆ −∆ −∆ 0.012 0.029

max 0.080 0.087

0.3 0.2 ∆ 2∆ ∆ 2∆ ∆ −∆ ∆ −∆ 0.077 0.077

∆ 0 −∆ −∆ ∆ 2∆ −4∆ −∆ 0.045 0.076

∆ −∆ −2∆ ∆ ∆ 0 −∆ ∆ 0.043 0.080

−2∆ −∆ ∆ ∆ −∆ −2∆ 2∆ −∆ 0.037 0.037

−∆ 0 ∆ ∆ 0 −∆ ∆ −∆ 0.032 0.086

−∆ 0 ∆ ∆ ∆ 0 ∆ 0 0.018 0.061

0 −∆ −∆ ∆ ∆ 0 0 ∆ 0.017 0.062

−∆ ∆ 2∆ 0 ∆ ∆ −∆ −2∆ 0.015 0.027

0 −∆ −∆ −∆ −∆ 0 ∆ 2∆ 0.013 0.032

−∆ ∆ 2∆ 0 ∆ ∆ ∆ 0 0.012 0.032

max 0.077 0.086

0.4 0.2 −∆ −2∆ −∆ 2∆ ∆ −∆ −∆ −∆ 0.087 0.087

−∆ 0 ∆ 2∆ ∆ −∆ ∆ −∆ 0.044 0.077

−2∆ −∆ ∆ ∆ 0 −∆ ∆ −∆ 0.041 0.079

−∆ −2∆ −∆ −2∆ −∆ ∆ ∆ 3∆ 0.036 0.036

−∆ 0 ∆ ∆ 0 −∆ ∆ −∆ 0.029 0.082

2∆ ∆ −∆ 0 ∆ ∆ −3∆ −∆ 0.020 0.036

∆ ∆ 0 0 −∆ −∆ 0 −∆ 0.018 0.060

0 −∆ −∆ ∆ ∆ 0 −∆ 0 0.017 0.061

∆ 2∆ ∆ ∆ ∆ 0 0 −∆ 0.013 0.032

−∆ −∆ 0 0 −∆ −∆ ∆ 0 0.010 0.030

max 0.087 0.087
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Table 2.5: Preliminary study when α2 = 0.3

α1 α2 µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8 FDR FWER

0.2 0.3 ∆ 2∆ ∆ −∆ −2∆ −∆ ∆ −∆ 0.120 0.120

2∆ ∆ −∆ −∆ 0 ∆ −∆ ∆ 0.063 0.120

∆ −∆ −2∆ −∆ −2∆ −∆ −2∆ −∆ 0.058 0.058

∆ 0 −∆ −∆ 0 ∆ −∆ ∆ 0.043 0.120

0 −∆ −∆ ∆ −∆ −2∆ 2∆ ∆ 0.030 0.055

∆ −2∆ −3∆ ∆ 0 −∆ −∆ ∆ 0.029 0.056

∆ ∆ 0 0 −∆ −∆ 0 −∆ 0.026 0.086

∆ ∆ 0 −∆ 0 ∆ 0 ∆ 0.025 0.093

−∆ −2∆ −∆ −∆ −∆ 0 0 ∆ 0.019 0.047

∆ ∆ 0 ∆ 0 −∆ 0 −∆ 0.015 0.055

max 0.120 0.120

0.3 0.3 ∆ 2∆ ∆ −∆ −2∆ −∆ ∆ −∆ 0.130 0.130

−∆ 0 ∆ −∆ −2∆ −∆ ∆ −∆ 0.062 0.111

−∆ ∆ 2∆ 2∆ ∆ −∆ ∆ −2∆ 0.050 0.050

0 ∆ ∆ ∆ 0 −∆ ∆ −∆ 0.040 0.108

0 ∆ ∆ ∆ −∆ −2∆ 4∆ ∆ 0.039 0.075

−∆ −∆ 0 0 −∆ −∆ 0 −∆ 0.028 0.088

−∆ −∆ 0 −∆ −2∆ −∆ 2∆ ∆ 0.026 0.047

∆ ∆ 0 0 ∆ ∆ −2∆ −∆ 0.023 0.051

0 ∆ ∆ ∆ ∆ 0 −∆ −2∆ 0.021 0.051

∆ ∆ 0 0 ∆ ∆ −∆ 0 0.017 0.053

max 0.130 0.130

0.4 0.3 −2∆ −∆ ∆ −∆ −2∆ −∆ ∆ −∆ 0.119 0.119

∆ 0 −∆ −∆ −2∆ −∆ −∆ −∆ 0.060 0.106

−∆ ∆ 2∆ −∆ 3∆ 4∆ −∆ ∆ 0.053 0.053

−∆ 0 ∆ 0 −∆ −∆ ∆ −∆ 0.043 0.109

−∆ 0 ∆ ∆ 0 −∆ ∆ −∆ 0.039 0.110

0 −∆ −∆ 2∆ −∆ −3∆ ∆ −∆ 0.028 0.051

0 −∆ −∆ ∆ ∆ 0 −∆ 0 0.027 0.097

−∆ −∆ 0 0 −∆ −∆ −∆ −2∆ 0.023 0.052

∆ ∆ 0 2∆ ∆ −∆ ∆ 0 0.019 0.055

0 ∆ ∆ ∆ ∆ 0 0 −∆ 0.017 0.052

max 0.119 0.119
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Table 2.6: Control FDR/FWER when fix α1 = 0.2

α1 α2 µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8 FDR FWER
0.20 0.11 −2∆ −∆ ∆ −∆ −2∆ −∆ ∆ −∆ 0.044 0.044

−∆ 0 ∆ −∆ −2∆ −∆ ∆ −∆ 0.025 0.040
−∆ −2∆ −∆ −∆ 0 ∆ −∆ ∆ 0.022 0.041

∆ 2∆ ∆ 2∆ ∆ −∆ −∆ −3∆ 0.021 0.021
−∆ 0 ∆ ∆ 0 −∆ ∆ −∆ 0.016 0.043

0 ∆ ∆ ∆ −∆ −2∆ 4∆ ∆ 0.013 0.026
−∆ ∆ 2∆ 0 ∆ ∆ 2∆ ∆ 0.013 0.022

0 −∆ −∆ ∆ ∆ 0 0 ∆ 0.010 0.036
−∆ −∆ 0 0 −∆ −∆ 2∆ ∆ 0.008 0.020

∆ ∆ 0 0 ∆ ∆ −∆ 0 0.007 0.022
max 0.044 0.044

0.20 0.13 ∆ 2∆ ∆ −∆ −2∆ −∆ ∆ −∆ 0.052 0.052
−2∆ −∆ ∆ 2∆ ∆ −∆ −∆ −3∆ 0.027 0.027

∆ 0 −∆ 2∆ ∆ −∆ ∆ ∆ 0.027 0.043
0 ∆ ∆ −∆ −2∆ −∆ ∆ −∆ 0.024 0.046

−∆ 0 ∆ 0 −∆ −∆ ∆ −∆ 0.019 0.049
0 ∆ ∆ ∆ −∆ −2∆ 4∆ ∆ 0.019 0.036

−∆ 0 ∆ −∆ ∆ 2∆ ∆ 2∆ 0.018 0.027
2∆ ∆ −∆ 0 ∆ ∆ −3∆ −∆ 0.015 0.027
∆ 0 −∆ ∆ ∆ 0 0 ∆ 0.012 0.041
0 ∆ ∆ −∆ −∆ 0 0 −∆ 0.011 0.041

∆ ∆ 0 0 ∆ ∆ ∆ 2∆ 0.010 0.025
0 −∆ −∆ ∆ −∆ −2∆ 0 −∆ 0.010 0.027

∆ ∆ 0 0 ∆ ∆ −∆ 0 0.008 0.024
max 0.052 0.052

0.20 0.15 −∆ −2∆ −∆ ∆ 2∆ ∆ −∆ ∆ 0.053 0.053
−2∆ −∆ ∆ 2∆ ∆ −∆ 3∆ ∆ 0.031 0.031

∆ 0 −∆ ∆ 2∆ ∆ −∆ ∆ 0.031 0.052
2∆ ∆ −∆ −∆ 0 ∆ −∆ ∆ 0.028 0.055

0 ∆ ∆ ∆ −∆ −2∆ 4∆ ∆ 0.023 0.044
∆ 0 −∆ −∆ 0 ∆ −∆ ∆ 0.022 0.060
0 −∆ −∆ ∆ −∆ −2∆ 2∆ ∆ 0.016 0.029

∆ 0 −∆ ∆ ∆ 0 0 ∆ 0.013 0.045
0 −∆ −∆ ∆ ∆ 0 −∆ 0 0.013 0.046

∆ ∆ 0 0 ∆ ∆ −2∆ −∆ 0.011 0.028
−∆ −∆ 0 0 −∆ −∆ ∆ 0 0.009 0.028

max 0.053 0.060
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To control FDR and FWER by adjusting α1 in stage 1 and α2 in stage 2, a se-

ries of preliminary simulations with 1000 sample observations were generated from a

multivariate normal distribution. Here the sample covariance from actual data is used

as covariance matrix. Different combinations of means from null and alternative are

selected to observe the effects of changing α1 and α2.

From Table 2.3 - Table 2.5, it indicates that for fixed α2, even as α1 increased dra-

matically, the change of FDR or FWER was quite insignificant. Therefore, to control

FDR at a level of 5%, with fixed α1 = 0.2, further simulations were conducted while

α2 varied.

Table 2.6 shows simulated FDR and FWER under different combinations of null

and alternative hypotheses. To increase accuracy, 5000 observations were generated

under each combination.

Table 2.6 indicates that when α1 = 0.2 and α2 = 0.13, using

Ck =
√
χ2

1;α1k
(((2∆)2), α1k =

kα1

8− k(1− α1)
(2.4.2)

And

B(ri) = t
n−1;1−α2/2

8−ri
(2.4.3)

FDR can be controlled at 5% level.

Apply the above results to actual data to answer questions in section 1. In stage 1,

the observed U = (U1, U2, · · · , U8)
′ is
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U =



∗ 2.153 2.153 4.158 1.708 2.408 2.322 2.481

6.387 ∗ 6.387 7.520 3.467 6.459 4.683 4.477

6.962 6.962 ∗ 7.984 6.465 1.976 5.327 5.683

1.009 2.030 1.907 ∗ 2.078 2.078 2.439 2.263

6.699 4.221 6.318 7.909 ∗ 7.909 5.082 5.053

6.981 6.964 1.733 7.970 7.970 ∗ 5.412 5.440

4.678 1.502 1.013 6.221 0.589 1.683 ∗ 2.930

4.773 0.715 2.254 6.166 0.437 1.810 2.953 ∗


Then order Ui’s from smallest to largest and denote as

V =



1.708 2.153 2.153 2.322 2.408 2.481 4.158

3.467 4.477 4.683 6.387 6.387 6.459 7.520

1.976 5.327 5.683 6.465 6.962 6.962 7.984

1.009 1.907 2.030 2.078 2.078 2.263 2.439

4.221 5.053 5.082 6.318 6.699 7.909 7.909

1.733 5.412 5.440 6.964 6.981 7.970 7.970

0.589 1.013 1.502 1.683 2.930 4.678 6.221

0.437 0.715 1.810 2.254 2.953 4.773 6.166


When α1 = 0.2, using formula of (2.4.2) where k = 7, the vector of constants is

calculated as C = (0.038, 0.087, 0.149, 0.232, 0.352, 0.539, 0.895)
′ . Since Vi1 > C1

for all i = 1, 2, · · · , 8, there is no rejection for any Hi, therefore, Ri = 0 for all i’s.

In stage 2, When α2 = 0.13, using formula of (2.4.3), B(ri) = B(0) = 2.518 for

all i’s. The confidence interval estimates for µi’s is calculated using (2.4.1) as follows:
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(1) ( -0.2239, -0.1014 )

(2) ( -0.2446, -0.0181 )

(3) ( -0.0537, 0.1162 )

(4) ( -0.1367, -0.0700 )

(5) ( -0.1516, 0.0314 )

(6) ( -0.0389, 0.1254 )

(7) ( 0.0168, 0.0470 )

(8) ( 0.0230, 0.0648 )

Figure 2.3: 2-stage multiple testing confidence interval estimate
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From Figure 2.3, it is clear that confidence interval estimates for µi, i = 3, 4, · · · , 8,

falls into (−∆,∆) where ∆ = ln1.25 ' 0.223. Therefore null hypothesis Hi, i =

3, 4, · · · , 8, was rejected. However, since the confidence interval estimates for µi, i =

1, 2, was not completely included in (−∆,∆), null hypothesis Hi, i = 1, 2, was ac-

cepted.
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Chapter 3

Appendix

3.1 Derivation of (1.2.4) and (1.2.5)

3.1.1 Proof of (1.2.4)

Since
√
n1X̄1 ∼ N (

√
n1θ, 1),

Pθ(R) = Pθ(
√
n1|X̄1| < Cα1;

√
n1ε)

= Φ(Cα1;
√
n1ε −

√
n1θ)− Φ(−Cα1;

√
n1ε −

√
n1θ)

= Φ(Cα1;
√
n1ε −

√
n1θ) + Φ(Cα1;

√
n1ε +

√
n1θ)− 1

3.1.2 Proof of (1.2.5)

Notice that

P (R|x̄) =

∫
R
f(x̄1, x̄)dx̄1∫
f(x̄1, x̄)dx̄1

Since

X̄1 ∼ N
(
θ,

1

n1

)
and X̄2 ∼ N

(
θ,

1

n2

)
,

also X̄1 and X̄2 are independent,

f(x̄1, x̄2) =
n1n2

2π
exp(−n1

2
(x̄1 − θ)2 − n2

2
(x̄2 − θ)2).

Let

x̄2 =
nx̄− n1x̄1

n2

, |J | = n

n2

,
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then

=⇒ f(x̄1, x̄) =
n1n

2π
exp(−n1

2
(x̄1 − θ)2 − n2

2
(
nx̄− n1x̄1

n2

− θ)2)

=
n1n

2π
exp(−n1 + n2

2
θ2) exp(nx̄θ) exp(−n

2
x̄2) exp(−nn1

2n2

(x̄1 − x̄)2)

=⇒ P (R|x̄) =

∫
R

exp(−nn1

2n2
(x̄1 − x̄)2)dx̄1∫

exp(−nn1

2n2
(x̄1 − x̄)2)dx̄1

(3.1.1)

From (3.1.1), for each fixed X̄ = x̄, X̄1 ∼ N (x̄, n2

nn1
), thus

P (R|x̄) = Φ

(
Cα1;

√
n1ε −

√
n1x̄√

n2/n

)
+ Φ

(
Cα1;

√
n1ε +

√
n1x̄√

n2/n

)
− 1
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3.2 Two versions of hypotheses when comparing two binomial dis-

tributions

Let

γ1 = log(odds ratio) = log
p1(1− p2)

p2(1− p1)

Consider the following hypothesis

H
′
: |γ1| ≥ γ0 vs K

′
: |γ1| < γ0

Let β1 = e−γ0 , β2 = eγ0 (γ0 > 0), then 0 < β1 < 1, β2 > 1. And

K
′
: β1 <

p1(1−p2)
p2(1−p1)

< β2

=⇒ β1(
p2

1− p2

) < p1
1−p1 < β2(

p2

1− p2

)

=⇒ β1p2

1− p2 + β1p2

< p1 <
β2p2

1− p2 + β2p2

=⇒ g(β1, p2) < p1 − p2 < g(β2, p2)

where

g(β, p2) =
p2(β − 1)(1− p2)

β + (1− β)(1− p2)

Notice that the first derivative of g(β, p2) when 0 < p2 < 1

g(β, p2)′ = dg(β, p2)

dp2

= −1 +
β

[1 + (β − 1)p2]2

is a strictly increasing function when 0 < β1 < 1 and is a strictly decreasing function

when β2 > 1. In addition, since g(β1, 0)′ = β1 − 1 < 0, g(β2, 0)′ = β2 − 1 > 0

and g(β1,
1√
β1+1

)′ = g(β2,
1√
β2+1

)′ = 0, it is clear that g(β1, p2) is a decreasing then

increasing function with a minimum at p2 = 1√
β1+1

and g(β2, p2) is an increasing then

decreasing function with a maximum p2 = 1√
β2+1

. And

min
p2

g(β1, p2) =

√
β1 − 1√
β1 + 1

max
p2

g(β2, p2) =

√
β2 − 1√
β2 + 1
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Since

−
√
β1 − 1√
β1 + 1

= −e
−γ0/2 − 1

e−γ0/2 + 1
=
eγ0/2 − 1

eγ0/2 + 1
=

√
β2 − 1√
β2 + 1

> 0

let

ε =

√
β2 − 1√
β2 + 1

=
eγ0/2 − 1

eγ0/2 + 1

then

H : |p1 − p2| ≥ ε vs K : |p1 − p2| < ε (3.2.1)

is equivalent to

H
′
: |γ1| ≥ γ0 vs K

′
: |γ1| < γ0 (3.2.2)

From the above derivation, we can see that for every given ε, if let γ0 = 2 log(1+ε
1−ε),

then the alternative space of the hypothesis (3.2.2) would be contained in the alternative

space of the hypothesis (3.2.1). Therefore when we formulate a size α test based on

the hypothesis (3.2.2) with γ0 = 2 log(1+ε
1−ε), it is also a level α test for the hypothesis

(3.2.1).
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3.3 Data for Multiple Testing on Bio-equivalence

3.3.1 Iron Evaluation for Blood Serum

Table 3.1: Iron level after log-transformation

RXL1 RXL2
Current reagent New reagent New reagent Current reagent New reagent New reagent

Serum Iron Serum Iron Heparin Iron Serum Iron Serum Iron Heparin Iron
3.807 3.912 3.850 3.850 3.912 3.784
4.419 4.477 4.454 4.443 4.489 4.454
3.761 3.871 3.892 3.807 3.871 3.850
5.226 5.247 5.182 5.236 5.257 5.182
4.700 4.727 4.754 4.710 4.736 4.762
3.807 3.932 3.714 3.850 3.912 3.714
1.792 2.398 2.485 2.079 2.398 2.398
2.639 2.890 2.944 2.708 2.773 2.833
3.555 3.664 3.714 3.611 3.664 3.738
3.638 3.761 3.784 3.664 3.738 3.761
3.951 4.043 4.025 3.970 4.025 3.989
2.833 3.045 3.091 2.944 3.045 2.996
4.489 4.533 4.663 4.500 4.533 4.663
2.197 2.639 2.639 2.398 2.565 2.565
2.890 3.178 3.258 2.944 3.091 3.178
3.784 3.850 3.850 3.807 3.850 3.829
3.401 3.526 3.555 3.466 3.526 3.526
3.555 3.738 3.584 3.555 3.664 3.555
1.946 2.485 2.485 2.079 2.398 2.485
5.652 5.576 5.313 5.624 5.631 5.313
3.401 3.555 3.045 3.367 3.466 2.890
3.714 3.807 3.807 3.689 3.761 3.784
4.190 4.248 4.605 4.159 4.205 4.595
4.905 4.934 4.564 4.852 4.913 4.564
3.784 3.871 3.892 3.738 3.850 3.871
4.466 4.489 4.369 4.407 4.443 4.344
2.079 2.565 2.398 2.197 2.485 2.303
3.434 3.584 3.555 3.434 3.555 3.526
3.664 3.761 3.761 3.611 3.738 3.738
4.205 4.248 3.689 4.159 4.220 3.664
3.091 3.258 3.434 3.045 3.219 3.367
3.951 3.989 3.555 3.912 3.951 3.611
2.485 2.833 2.708 2.485 2.773 2.565
3.401 3.555 3.611 3.434 3.497 3.526
2.996 3.178 3.714 2.996 3.135 3.555
3.434 3.611 3.807 3.434 3.526 3.689
2.639 2.890 2.890 2.708 2.890 2.890
2.944 3.135 3.178 2.996 3.091 3.091
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3.3.2 Normality test

Table 3.2: Marginal Normality Test for Iron measurements

Old Serum Iron: RXL1
Test Statistic p Value
Shapiro-Wilk W 0.984205 Pr < W 0.8579
Kolmogorov-Smirnov D 0.118033 Pr > D >0.1500
Cramer-von Mises W-Sq 0.050172 Pr > W-Sq >0.2500
Anderson-Darling A-Sq 0.264051 Pr > A-Sq >0.2500

New Serum Iron: RXL1
Test Statistic p Value
Shapiro-Wilk W 0.97583 Pr < W 0.5708
Kolmogorov-Smirnov D 0.094108 Pr > D >0.1500
Cramer-von Mises W-Sq 0.05113 Pr > W-Sq >0.2500
Anderson-Darling A-Sq 0.300418 Pr > A-Sq >0.2500

New Serum Heparin Iron: RXL1
Test Statistic p Value
Shapiro-Wilk W 0.965021 Pr < W 0.2752
Kolmogorov-Smirnov D 0.14684 Pr > D 0.0379
Cramer-von Mises W-Sq 0.10164 Pr > W-Sq 0.1039
Anderson-Darling A-Sq 0.527639 Pr > A-Sq 0.1743

Old Serum Iron: RXL2
Test Statistic p Value
Shapiro-Wilk W 0.979571 Pr < W 0.7023
Kolmogorov-Smirnov D 0.090567 Pr > D >0.1500
Cramer-von Mises W-Sq 0.044517 Pr > W-Sq >0.2500
Anderson-Darling A-Sq 0.260062 Pr > A-Sq >0.2500

New Serum Iron: RXL2
Test Statistic p Value
Shapiro-Wilk W 0.97355 Pr < W 0.4957
Kolmogorov-Smirnov D 0.098297 Pr > D >0.1500
Cramer-von Mises W-Sq 0.046148 Pr > W-Sq >0.2500
Anderson-Darling A-Sq 0.289917 Pr > A-Sq >0.2500

New Serum Heparin Iron: RXL2
Test Statistic p Value
Shapiro-Wilk W 0.963794 Pr < W 0.2516
Kolmogorov-Smirnov D 0.139093 Pr > D 0.0630
Cramer-von Mises W-Sq 0.10671 Pr > W-Sq 0.0906
Anderson-Darling A-Sq 0.556123 Pr > A-Sq 0.1450
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Table 3.3: Multivariate Normality Test for Iron measurements

Test Statistic Value Prob
Mardia Skewness 114.1 <.0001
Mardia Kurtosis 2.67 0.0076
Henze-Zirkler T 7.05 <.0001

Figure 3.1: Q-Q plot: RXL1 vs RXL2
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