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ABSTRACT OF THE THESIS

Design and Implementation of MobilityFirst Router on

the NetFPGA Platform

by Niswarth Mudaliar

Thesis Director: Yanyong Zhang

We present the hardware prototype design and evaluation of routers in MobilityFirst,

a Future Internet Architecture. We chose NetFPGA 1G platform to implement the

router. The main task of the router is to perform lookup on MobilityFirst packets which

has a two-level addressing scheme (GUID and NA), each level with flat address space.

We have designed the MF router to get maximum performance for flow based routing.

The forwarding information base of the router has been spread out in Binary CAMs,

Block RAMs and external SRAMs which can be updated online. We have achieved a

throughput as high as 982Mbps per port (in Gigabit Ethernet). We have provided a way

for the router to send updates for missed addresses which allows the host controller to

keep a close watch on the network traffic and update the forwarding information base,

online. We allow host controller to cache GNRS lookups in the MF router to allow

automatic flow based NA binding to be done at line-speeds. Our router buffers the

packets if they fail lookups until the forwarding information base is updated and the

lookup succeeds. This prototype enables us to analyze the performance bottleneck of

MobilityFirst Architecture so that we could continue to improve the architecture and

evaluate the performance simultaneously.
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Chapter 1

Introduction

The explosive growth in the mobile and handheld devices and ever increasing need

for higher data rates puts tremendous burden on network designers to meet the ends.

A lot of research has been done globally to improve upon the existing infrastructure.

One of the directions of research is to improve the existing internet architecture, which

originally had been built to support and connect immobile computers, and make it

better suited to mobiles devices. Mobility on IPv4 and IPv6 had been proposed more

than a decade ago using Mobile IP to support mobile devices through tunneling and/or

translation [1] but the issues with tunneling overhead and security exist due to the

underlying fact that IP was designed for immobile end devices.

MobilityFirst has been proposed by WinLab Rutgers as a Future Internet Archi-

tecture and the research activity is supported by the National Science Foundation [2].

As stated by Dipankar Raychaudhuri et al. [3], the requirements for a robust Future

Internet Architecture ranges from support for seamless user and device mobility with

tolerance to bandwidth variation and disconnection, to supporting high throughput and

having spectral efficiency (in wireless edge networks) while providing strong security.

MobilityFirst addresses the above requirements by having clean separation between

device/user ID and network location, unlike the current internet architecture which

works on IP addresses which is used to resolve both. Moreover, MobilityFirst uses a

flat address space for both addresses as explained in section 2.1 , which poses a challenge

on designing a fast-lookup hardware router which can work at line speeds while routing

MobilityFirst packets. Fortunately, VLSI technologies have advanced so far that we
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can have complex lookup mechanisms which can work at reasonably high speeds at low

cost and power. This thesis presents a prototype design for the MobilityFirst Router

on the NetFPGA platform.

1.1 Original Contribution

Our original contribution is the design of MobilityFirst Harware Router on NetFPGA

platform. We have developed some basic lookup schemes and the RTL for the router.

Our base design works on two Identifiers symultaneously to resolve the output port for

a MobilityFirst Packet. It is capable of auto-binding of NA to a GUID from within

the router which increases the speeds of initial or late binding. We evaluated the

performance of exact-match lookup and predictive lookup(bloom filters) schemes. Our

design has pipelined lookups which help us reach near line-speed performance. Our

desing exploits the different on-board memories such as SRAM and DDR2 DRAM, and

different on-chip memory such as CAMs, BlockRAMs and registers to hold routing table

information and buffer packets. Our design allows software interaction through IOCTL

calls from host controller over PCI bus to read and write into status and command

registers implemented on FPGA. Our design also opens up a new direction for research

for MobilityFirst Flow based custom harware router designing.

1.2 Results

We were able to achieve near line-speed throughput of 982Mbps per port giving us a

total througput of 3.927Gbps on 4 ports in single direction (and 3.927 ∗ 2 = 7.854Gbps

bidirectionally), for a packet length of 1500Bytes when the packets do not belong to

the same flow. We are able to achieve 982Mbps per port for any packet length when

the packets belong to the same flow.

We were able to achieve near line-speed throught of 974Mbps for bloom filter implemen-

tation for packet lengths as small as 174Bytes, and may or may not belong to the flow.

Our Bloom Filter Implementation generates false positive ratios close to theoretically

estimated values.
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1.3 Outline of the Thesis

Chapter 2 describes the privious work done in this field. Chapter 3 discusses the design

of the MobilityFirst Router and the different ideas being put to test. Chapter 4 does

deeper into the design details and explains implementation of the Router on NetFPGA

1G platform. Chapter 5 shows the output of various experiments done to validate the

hypothesis. Chapter 6 concludes this thesis and presents scope for future work in this

direction.
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Chapter 2

Prior Work

2.1 MobilityFirst Architecture

MobilityFirst Architecture [4], is design to support secured Mobility of devices while

maintaining reasonably high through-puts. The design is centered around the concept

of decoupling Device Identifiers (GUID) with Network Address (NA). It presents ideas

for a central Global Name Resolution Service (GNRS) to combine the two level address

by a process of Binding which can happen once at the source and on-the-fly while the

data packets are being routed. In addition, it proposes to use strong Public Keys to

generate GUID and NA to maximize the security.

2.2 Content Addressable Memories (CAM)

Content Addressable Memory (CAM) [5] is a type of Static Random Access Memory

which can search for content in the memory parallely in all locations and return the

address (or addresses) of the content. Ternary CAMs or TCAMs [6] are extension to

CAMs where Ternary mode allows to mask certain bits (don’t care bits) of the data while

comparison. This Ternary mode has been heavily exploited for Longest Prefix Matching

in IP prefix lookups [7]. Research in designing highly specialized CAM structures for

IP [8] shows that it might be beneficial to do custom memory design to increase

the lookup speeds. However to prototype a router for a new Internet Architecture,

designing custom memory may not be an economical and necessary option. Therefore,

research [9] is being done to use off-the-self CAMs in conjunction with TCAMs to allow

fast lookups of flat lables(IDs). In addition to this, the router architecture for modern

Internet Architecture, is evolving, and some older ideas are being rehashed. Route
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Caching [10] which was considered to be not very effective, is now being revisited for

its potential to support flow based routing in a very large address space.

2.3 Bloom Filters

Bloom filters have been used in many networking and database applications. It is used

for set association. Michael Mitzenmacher et al. [11] have derived the optimal value

of hash functions to get a reasonable low false positive ratio, assuming that the hash

functions are well crafted for the data-set being used to build the Bloom Filter. The

bloom filter data structures can be easily stored in memory in a way which allows very

fast query resolution [12]. Although the drawback of false positives is an issue, the

advantages of bloom filters certainly place them amongst the best predictive lookup

schemes.

2.4 NetFPGA 1G Platform

NetFPGA 1G [13] is an open platform designed by Stanford University for educational

research in networking and router design. The 1G stands for Gigabit Ethernet. It gives

us the freedom to design custom hardware for dedicated routers such as MobilityFirst

router. NetFPGA Group also provides reference designs for both RTL and Host appli-

cation for a router. NetFPGA 1G platform uses Virtex2Pro XC2VP50 [14] FPGA from

Xilinx, which has a good amount of logic cells and Block RAMs, and is fast enough to

prototype a Gigabit Ethernet router.
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Chapter 3

Design of MobilityFirst Router

The design phase started off on a top down approach, where the requirements are

gathered first and then design of lower layers is successively done. However, as the

time progressed and as the practical limitations and constraints manifested themselves,

the design was modified to accomplish the task of building the MobilityFirst router

prototype.

Some assumptions were made to simplify the requirements. They were:

1. The MobilityFirst packets would have a GUID and a NA which together would

let the packet reach the destination.

2. The hardware limitations and timing budget allowed us to use a 32 bit GUID and

a 32 bit NA. Although, with a more advanced platform, the design could support

160 bit GUIDs as well.

3. The NA is a globally unique network address whereas the GUID is a globally

unique destination identifier.

4. Both NA and GUID will be generated using cryptographic techniques and will be

spread out in a uniformly random order within the space they may span.

5. The NA field should be present and can have any non-zero arbitary value for a

valid NA. A value ’0’ is considered as NULL address and would indicate absence

of a valid NA.

6. The MobilityFirst router would handle packets for both inter-domain and intra-

domain routing, where NA will be used to distinguish between the two.
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The basic components of a router are the input ports, output ports, a switching

fabric and a routing processor [4], and the performance bottleneck of a router lies in

the forwarding table lookup. Traditional IP based routers use longest prefix match-

ing (LPM) for which TCAM (Ternary Content Addressable Memory) is best utilized.

Longest prefix matching works best of hierarchical network address. With the large

number of networks, a router may have to accommodate a large set IP prefixes. CAMs

can allow for storing 100,000 entries but are expensive and have high power consump-

tion.

The design of MobilityFirst Architecture assumes a flat, non-hierarchical NA and

GUID which makes longest prefix matching method useless for our router design. If

we propose to use a CAM to hold all the possible NAs and GUIDs, we would require

a very large CAM which could hold millions of entries. Such a router would be very

expensive and would consume huge amounts of power. Therefore we propose a way of

using other memory resources to do the job.

A packet header structure of MobilityFirst packet is as shown in figure 3.1. It

can be seen that the packet has 160 bit Desination and Source GUID fields and 160

bit Destination and Source NA fields. For the router prototype, we have reduced the

GUID and NA to 32 bit (MSB of 160 bit fields, big endian) to have enough hardware

on the NetFPGA 1G available to explore fast lookup approaches. It should be noted

that the existing design can be scaled to support 160 bit NAs and GUIDs as well if we

go for a more advanced FPGA platforms.

Figure 3.1: MobilityFirst Packet Header Structure
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The MobilityFirst Architecture places an emphasis on the transferring data PDU in

chunks or blocks which can be as large as a few hundred megabytes. Since it will be us-

ing the underlying Layer-2 (IEEE 802.3 MAC layer) protocol [15] to send packets on the

network, using a jumbo frame (9000 bytes) format is more advantages over the standard

1500 Byte Ethernet frame. However for this prototype, we have restricted ourselves to

the standard Ethernet frames. Large chunks would generate flows of streaming data

packets. Hence we designed the MobilityFirst router to be a flow-based router.

When a router receives a packet, it performs lookups for the GUID and NA simul-

taneously. If the NA matches router’s NA (local NA), it is assumed that the packet

belongs to a local network of the router. In the case of local NA, GUID looked up yields

a destination MAC address and output port and the packet is forwarded to the local

end point. This is intra-domain routing. For NA other than local NA, NA look-up

searches for the output port of the router (the next hop towards the destination) and

the packet is forwarded respectively. MAC addresses for next hop are programed into

the router during initialization. This type of packet forwarding is inter-domain routing.

From the above, firstly it can be seen that a router should be able to resolve the

output port from a large set of NAs within a short time to handle the traffic going

across the networks. It needs a large table of NA entries (possibly all the NAs globally

deployed) and a fast lookup approach. Secondly, a router may have a smaller GUID

lookup table for a local working-set of GUIDs.

The third scenario is when an incoming packet needs a GNRS lookup which happens

on the host controller and might take several milliseconds to get resolved. This packet

is identified when it does not have a NA (NULL NA value), or an NA which has expired

when the packet hop count reduces to zero. GNRS lookup implementation would be

done on the host controller since it requires more complex algorithms. However, once

the GNRS lookup is complete, GUID-NA pair can be cached in the router and the

successive packets can have NA binding done from within the router.
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3.1 High-level Design of Router

The MF router has four Gigabit Ethernet ports, the forwarding plane and Forwarding

Information Base on NetFPGA 1G card which is connected to the Host controller over

PCI bus. The incoming packets are queued to be processed by an output port lookup

block, and then released to their respective output ports, where they are queued again

to be transmitted over the physical link. Figure 3.2 depicts the high level router design.

Figure 3.2: High-level Router Design

This design is based on the Stanford Universities NetFPGA 1G DRAM Reference

Router Project. The Packet Circulator was added to allow buffering of packets which

require slower host controller lookup operations. One set of DMA channel was included

to forward and receive control packets to and from Host controller, but the host-side

DMA support for MobilityFirst router is not implemented and hence it is left for future

work. Packets come in through the GMII (Gigabit MII Double Date rate) interface at

1 Byte per 8 nsec (125 MHz). The packet is first checked for its integrity and then

packed into 64bit words and moved at 64 bit per 16 nsec (62.5 MHz) inside the router.

Number of incoming flows , N = 4

Packet data rate per flow Rin = 8bits / 8nsec = 125 MB/sec

Total incoming data rate = N * Rin = 500 MB/sec
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Packet flow with in the router = Rrt = 64bits/16nsec = 500MB/sec

Hence if the Output Port Lookup latencies are ignored and it is assumed that there

are no packets which were previously buffered in Packet Circulator, the throughput of

the router matches exactly that of the incoming flows. If there are packets in the packet

circulator, or the DMA channel, our bandwidth would be shared amongst 6 flows reduc-

ing the throughput below 100%. However, allowing the lookups to take place in parallel

to transferring the packet from input queues to output queues (pipelining) eliminates

stall cycles for packets which are long enough to absorb their lookup times. As for the

Packet Circulator, we propose to allow circulation only when Host Controller performs

an update in Forwarding Information Base, to reduce bandwidth sharing during circu-

lation. We are using NetFPGA core clock at 62.5MHz instead of 125MHz which is the

default in NetFPGA, due to hardware timing closure issues which will be discussed in

the Chapter 4.

Therefore, the bottleneck of the router is the Output Lookup Block and the focus

of this research is to have a lookup strategy which will allow us to forward a packet

based on both GUID and NA identifiers at the highest speed possible with the existing

infrastructure.

3.2 GUID and NA Identifiers

By definition, GUID and NA will be unique and flat identifiers. GUID can be the

address of a device or a content and will remain associated to the device or content

unless it is reassigned (which is expected to happen rarely, since we would have a very

large GUID space to accommodate everything). NA is the address of the Network in

which the device or the content belongs. The space of NA is also sufficient to encompass

all possible networks around the world. Both GUID and NA (NA is derived from the

router’s GUID) are expected to be cryptographically generated. To design ahead, they

are assumed to be spread-out in the space they span, in a uniformly random order as
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shown in figure 3.3.

Figure 3.3: GUID and NA Spatial Distribution

If n is the number of bits in the identifier, then 2n is the space of the identifiers.

Having uniform distribution gives us a probability distribution function:

Let Random variable x, have values Rx = [0 to 2n]

fx(x) = 1/(2n) if x belongs to Rx

else fx(x) = 0

The number of NAs would be large (in the order of millions) and the number of

GUIDs will be substantially larger. It would not be possible for a router to have all the

possible GUID and NA entries in its FIB in a cost effective way. However, it was can

be noted that a router would need to service only a small set of GUIDs, the ones which

are bound within its local network. Therefore, we proposed to use a small table for the

GUID FIB table in the forwarding plane. The NA lookup still requires a large table and

hence more resources have been dedicated towards NA FIB. The packets containing a

GUID which is yet to be bound to a NA needs a GNRS lookup and a query is sent to

the host controller to perform a GNRS lookup which might take a longer time (in the

order of a few milliseconds). Hence, results of GNRS lookups is allowed to be cached

in MobilityFirst Router to allow flow based direct binding.
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3.2.1 Inter-Domain Routing

If the NA of the packet doesn’t match the NA of the router, it should forward the

packet to another network through point to point links to other backbone routers. This

is known as Inter-Domain routing as shown in figure 3.4.

Figure 3.4: Inter-Domain Routing

The Output lookup block looks-up for the NA in the NA FIB and resolves the output

port. Due to not being able to take the advantage of LPM, we had to find another

solution to high speed lookups. We got inspired from general processor architecture and

designed a 2-level cache to store the lookup data. The level-1 (L1) cache is very fast and

support line rates on all the ports but is smaller in size and hence can accommodate

only a few entries. The level-2 (L2) cache is slower but much larger than the L1 cache.

Caching helps us when there is temporal locality and for MobilityFirst packets, the

chuck based packet flows could take the advantage of such architecture. We chose

to use a Binary Content Addressable Memory (BCAM) to act as the L1 cache. We

planned to use external high speed SRAM to be used as L2 cache. The implementation

details will be discussed in the Chapter 4. While the space issue is resolved, there was

another issue of looking up the entries. BCAM is faster in access time and also lookup

since a CAM does a parallel search in all locations and responds in one clock cycle.

SRAM, on the other hand, has a higher latency to access data and cannot lookup

the data in parallel. Therefore, we deployed some basic hardware solutions such as

hashed seperate chaining (with linear and binary search) and bloom filters to address

this problem. Details of these will be discussed in section 3.3.
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Figure 3.5: Intra-Domain Routing

3.2.2 Intra-Domain Routing

If the NA of the packet matches that of the router itself, it should be forwarded to

a specific node within the same network. This is Intra-Domain routing (figure 3.5).

In this case the GUID FIB is looked up and destination MAC address is updated in

the packet before forwarding it to the respective port. As discussed in the previous

section, the number of GUID entries which could be present in the router’s GUID

FIB does not need to be very large, because the working set of GUIDs present in the

router’s network will should be small (as compared to total number of GUIDs). Hence,

a straight forward approach of using a Binary CAM (BCAM) was chosen. The GUID

FIB BCAM stores GUIDs, and indexes to memory (FPGA Block RAM) to get the

MAC address and output port. The standard IP based router would have an ARP

table for this, but since the ARP hasn’t been designed so far for MobilityFirst, we have

taken an assumption that host controller would have the knowledge of MAC addresses

and would write them directly into the GUID FIB.

3.2.3 GNRS lookup support

When a packet arrives with an expired NA or NULL NA, it needs a process of GNRS

lookup to obtain NA and binding to attach the NA to the packet. GNRS lookups require

long processing time (in the order of a few milliseconds) and takes place at the control

plane of MobilityFirst. Hence such lookups are cached in the GUID FIB (BCAM +

FPGA Block RAM) to allow rest of the packets of the flow to be bounded and routed

directly from the forwarding plane. The host controller is expected to remove the entry
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from GUID BCAM, once the GUID-NA pair is expected to have expired.

3.3 Output Port Lookup Block Design

The Output Port Lookup is the bottleneck of MobilityFirst Router. It has to support

all valid lookup permutations at high-speeds. Figure 3.6 shows the design of this block.

It has four components, Packet Parser, NA Lookup, GUID Lookup and the Packet

Header Update.

Figure 3.6: Output Port Lookup (Pipelined) Block

We started off with a non-pipelined design which would stall the input queues for

lookups. Hence the packet would have to wait in the input queue untill the result of

the output port lookup is resolved. Obviously, these stall cycles directly impacted the

throughput of the packets. We did a comparison of the throughputs for Linear and

Binary search speeds for different hash chain lenghts using the non-pipelined design.

Later we improved the design by pipelining the lookups. In this version, we allow the

packet to be transfered into a Output Port Lookup (OPL) FIFO while simultaneously
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Figure 3.7: Non-Pipelined Lookups

performing lookups. If the packet is long enough for lookup to complete, the Header

Update block starts reading from the OPL-FIFO, updates header and forwards packet

to Output Queue arbiter.

Figure 3.8: Pipelined Lookups

Both NA and GUID lookups work in parallel to resolve the fate of the packet. Since

the GUID field precedes NA field in MobilityFirst Packets, GUID lookup starts ahead

of NA. If the packet type is of intra-domain routing, NA stops lookup as soon as it

realizes that NA is the local NA. NA lookup Block then waits for the GUID lookup

to complete and obtain the destination MAC address from GUID FIB. If the packet

type is of inter-domain routing, NA continues to lookup and obtains the output port

information from NA FIB. If the packet type is of GNRS GUID-NA binding, the NA

waits for GUID lookup to complete and get the cached NA. Thereafter, NA lookup

follows the regular NA search method to obtain the output port from NA FIB. Once

the lookup is complete, NA lookup block inserts the lookup information: 12bit output
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port, 32bit NA or 48 bit MAC address, 1bit Bind NA flag and 1bit update MAC, into

a small Info FIFO. Header Update Block reads from Info FIFO is read and reads the

packet Packet FIFO, updates packet and transfers it to Output Queue Arbiter which

sends it out through the respective output port.

3.3.1 GUID FIB Lookup Design

Figure 3.9 shows the GUID FIB lookup Block. It uses a set of Binary Content Address-

able Memory with FPGA Block RAM to hold the GUID lookup table. The current

design uses the same table for GUID ARP (Intra-domain) cache and GUID NA (GNRS

lookup cache) and one bit flag in the table distinguishes between the two entries. GUID

lookup also gets information from NA lookup block about the NA received in the packet.

If NA was a local NA or invalid NA, a GUID lookup miss is important to host controller

and is inserted in GUID miss queue.

Figure 3.9: GUID FIB Lookup

3.3.2 2-Level NA Lookup Design

Figure 3.10 shows the 2-Level NA lookup Block.

When NA is parsed from an incoming packet or obtained from GNRS GUID-NA

cache, a search request is sent to L1 BCAM and the L2 SRAM cache simultaneously.
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Figure 3.10: NA FIB Lookup

The BCAM responds in 64ns (which takes 4 clock cycles of 16 ns). If there is a hit

at L1, output port is obtained L2 cache lookup is aborted. If there is a miss at L1,

the state machine waits for L2 to respond (which might take several clock cycles), the

lookup time for L2 depends on the search scheme. If there is a hit in L2 then output

port is obtained. If there is a miss at L2, then a L2 miss indication is inserted into the

L2 miss indication queue and the packet is directed towards the Packet Circulator. The

L2 miss indication is not fully reliable in Bloom Filter scheme due to the false positives,

but that is the inherent drawback of Bloom Filters.

L2 lookup, being done on SRAM takes multiple cycles and hence 3 approaches were

chosen to perform quick hardware search:

1. Seperate Chaining Hash Table with Linear Search

2. Seperate Chaining Hash Table with Binary Search

3. Counting Bloom Filters

3.3.3 Seperate Chaining Hash Table with Linear Search

As mentioned previously, the probability density function of random variable represent-

ing NA, has a uniformly random distribution over the space of NA and hence direct

bit-extraction was chosen as the hashing function (this has some space saving advantage
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as will be discussed later). Hence the 12-bit MSB of NA (32 bit) is used as the hash

to index the table. However, due to the limitation of memory (4 MB SRAM), not all

NAs can be inserted into hash table. The SRAM used has 32-bit wide address bus and

hence fits nicely for storing NAs (or GUIDs) which we have taken to be 32-bit for this

prototype. It can be seen that even 160 bits can fit in since it is 5 32-bit words without

any internal fragmentation.

If only 1 ∗ 1024 ∗ 1024 NA can be entered and are chosen based on the frequency

of being used by the host controller, there may be variations in the distribution of the

final set that is entered in hash table. For this reason, the 12-bit Hash generated does

not index SRAM directly but instead indexes a Translation Look-aside Buffer (TLB)

which is implpememted in SRAM and has the physical address of the hash chain in

SRAM. This TLB is stored in first 212 i.e. 4 K Word locations. This implies that rest

of the 1020 K Word locations can be used for storing NAs in 212 i.e. 4K sections (hash

chain).

Each section is nothing but a chain in the Hash table and can store up to 1020K/4K,

255 NA entries. Now, with the help of TLB, we could have some variations in the size of

individual sections. Since the top 12-bits were already matched while hashing, we need

only LSB 20 bits to be stored at a SRAM 32-bit word location which gives us 12-bits

free for use. We are using 4 MS Bits to store the output port information (currently

un-encoded 4 bits for 4 output ports).

Figure 3.11 shows the SRAM Memory Map and the L2 Lookup Block.

Figure 3.11: SRAM Memory Map and Lookup
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In linear search, we start from the lowest address of the chain and progress until a

match is found or the section ends.

3.3.4 Seperate Chaining Hash Table with Binary Search

The section (chain) address translation is the same as in linear search seperate chaining

Hash table. In binary search, the NAs are expected to be ascending order and a binary

search is performed within the section. It might sound at first that binary search is

always better than linear search since it has a time complexity of log2N while linear

search has complexity of N in the worst case (here N is the size of the section). However,

the SRAM access latency presents advantage to the linear search. SRAM is access fully

pipelined but the pipeline length is 8 (including Arbiter). Hence it takes 8 clock cycles

to get data after the address has already been sent. This causes a lot of wastage of

bandwidth for binary search which has to wait for the data before sending the next

address. On the other hand, linear search has to wait the first 8 cycles to start but

later can compare data on every clock due to the burst mode of SRAM. This makes

linear search (8+ 1) times faster than binary search (Binary search needs 1 extra clock

cycle to compare). There is a certain threshold of section size where binary search

starts to outperform linear search and this can be calculated.

We have the condition 8 + (9 ∗ Log2N) = (N + 8) for the threshold which gives us

N = 51 as the theoretical limit. Above this limit Binary search is better than Linear

and below this limit, Linear search outperforms binary.

Comparison of Linear search vs Binary search times on Pipelined SRAM

Hence if linear search should be used, size of the section should be ∼= 64 which means,

the number of sections can be increased to 16 ∗ 214 and the hash bits can be increased

to 14bits. Above the threshold size, binary search is better option, and if size of section

and the number of sections and hence the hash bits can be adjusted accordingly. Binary

search also imposes a constraint on the order of data, i.e. they should be in ascending

order. This makes the host controller L2 cache update longer as it now has an average

update time complexity of N/2 as opposed to 1 in case of linear search.
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3.3.5 Counting Bloom Filters

Bloom filters can be effectively used for set association and have been used in networking

for high speed predictive lookups. Bloom Filters tell wether an element belongs to a set.

The concept for Bloom Filter is simple, generate K different Hash Keys of an element

using K Hash functions, and set the bits in a hash table of M bits, corresponding to

the Hash keys, to 1 . After all N elements have been inserted into the Hash table,

the initialization of Bloom Filter is complete. Such a Hash table which has only bits

to represent presence or absence of elements is called a Bloom Filter. To check if an

element is present in the Bloom Filter, we need to hash it using K hash functions and

check wether all bits corresponding to the hash keys are 1. If any of the K bits is 0, then

element is not present in the set. Hash tables inherently have collisions and this leds to

presence of false positives. This is the main drawback of Bloom filters. However, with

well designed hash functions and resonable N/M ratio (load factor), we can reduce the

false positives to a minimum. Mitzenmacheret. al [11] have derived the expression for

optimal value of K and minimum false positives that present the theoretical bounds.

The Counting bloom filter is an extension to standard bloom filters, where we keep

a count instead of a bit for every hash key. This allows us to delete an entry from

bloom filter which can be done by decrementing the corresponding counts. This does

not affect the false positive rate in any way.

K = ln(2 ∗ (M/N)). For our implementation we have chosen K = 3, and to get low

false positives, we need a (N/M) ratio to be less than 0.099574.

We are using one bloom filter per output port (hence four bloom filters), and perform

search in all 4 bloom filters simultaneously. We used the 32 bit word access of SRAM

to our benefit. We have SRAM which is 32-bit word aligned, and we propose to use 4

bits for a count. Therefore in one 32bit word we can accomodate 8 counts i.e. twice

the number of output ports. There for we can have M = (220) ∗ 2 for each bloom filter.

If M = 221 then N = 0.099574 ∗ M = 208822 NA entries per port which would give

us a low false positive ratio. Figure 3.12 shows the SRAM map for our Bloom Filter
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implementation.

Figure 3.12: SRAM Memory Utilization for Bloom Filter Implementation

Mitzenmacheret. al, have shown that for above optimal value of K, we can calculate

the false positive rate f = (0.6185)m/n which for our case (for K = 3) would result in

f = 0.00802. In practice, we are able to achive false positive close to f = 0.017.

As mentioned by Qiao et. al [12], we can use K = 3 i.e. 3 hash functions for a

reasonable evaluation of Bloom filter implementation. We chose the following 3 Hash

Functions for out implementation:

• LSB 21 Bits of IEEE 32-bit CRC with generator polynomial G(x) = x32+ x26+

x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x+ 1

• Bit Xor plus bit extraction

h20(x) = x31⊕x30; h19(x) = x29⊕x28; h18(x) = x27⊕x26; h17(x) = x25⊕x24;

h16(x) = x23⊕x22; h15(x) = x21⊕x20; h14(x) = x19⊕x18; h13(x) = x17⊕x16;

h12(x) = x15⊕ x14; h11(x) = x13⊕ x12; h10(x) = x11⊕ x10; h9(x) = x9⊕ x8;

h8(x) = x7⊕ x6; h7(x) = x5⊕ x4; h6(x) = x3⊕ x2; h5(x) = x1⊕ x0;

h4(x) = x31;

h3(x) = x24;

h2(x) = x16;
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h1(x) = x8;

h0(x) = x0;

• H3 class Hash function [16] [17]

Since one 32bit Word of SRAM, stores two entries of all four bloom filters, we

just need 3 read cycles from SRAM to get the output of all 4 bloom filters. When

the router is initialized, host controller downloads all 4 bloom filters into SRAM. L2

cache controller state machine calculates 3 addresses by 3 hash functions and perform

3 pipelined reads from SRAM. If the count at all three hashed addresses is non-zero,

the particular output port is valid for the packet. Due to the false positive nature of

bloom filters, the packet may be sent out from a wrong port. But since there are no

false negatives, the packet definitely is sent out from the intended port. The network

has to bare the extra overhead due to extra packets generated form false positives.

Hence, we would recommend to use such routers adjacent to exact matching scheme

routers which would drop these packets. Alex Fabrikant et. al [18] have mentioned

some methods to mitigate the false positves. Sarang Dharmapurikar et. al [19] have

come up with a design which combines the Bloom Filter to improve exact-match scheme

average performance, where a false positive cannot occur.

3.4 Comparison of Exact Match and Bloom Filter Lookup schemes

3.4.1 Speed of Lookup

Exact match scheme of seperate chaining hash table with binary search for 4096 bins

gives us an average length of 255 elements per chain. The worst case lookup times is

8 + (9 ∗ log2N) clock cycles of 16nsec which is equals to 1279.18ns or 1.28us. Exact

match scheme of seperate chaining hash table with linear search can be done best for

51 elements or less in a chain. Assuming the chain length is 51 and in worst case

scenario, lookup time should be 8+N clock cycles of 16nsec which equals to 944ns. For

comparison with binary search, if chain length is 255, time required for linear search

in worst case would be 4208ns. The Bloom filter has fixed lookup times and is always
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thash + 8 + 3 clock cycles of 16nsec. Our implementation of hash function takes only

3 extra clock cycles, therefore thash = 3, giving us a fixed lookup time of 224ns. We

have tested for minimum packet lengths of 174Bytes which requires 174 ∗ 8 = 1390ns

and since we have to service four ports (assuming no time shared for packet circulator)

Bloom Filter lookup would need 224∗4 = 896ns. If we add 5 clock cycles for the lookup

state machine latencies, we would get a total of 896 + 320 = 1216ns which is still less

than 1390ns. Hence we can support line-speed lookups for Bloom Filter lookup scheme

even for the smallest packet size we have considered for our implementation.

3.4.2 Memory requirement

Exact Match lookup scheme requires us to store the NA entries in SRAM. For our

implementation, we need 32 bit to store one NA entry. However since our hashing

involves direct bit extraction, we get some free bits in the 32bit word of SRAM to store

output port information. We have used 4096 bins which required 12 bit MSB to be used

as Hash key, leaving 12 bits to store output port information. As discussed in section

3.3.3, we can store 1020∗1024 = 1044480 entries in SRAM. Bloom filter implementation

allows us to use 208822 entries per port giving us a total capacity of 208822∗4 = 835288

which is less than match capacity. However for the low false positve ratio and constant

high search speed we could allow for some extra memory usage. However it should be

noted that the total capacity only holds good if NAs are equally distributed amongst

all four ports which may not happen in practice. For a load factor of 0.1 we should be

have a false positve ratio of 0.0082. In practice we are able to achieve a false positive

rate of 0.0174.

3.4.3 Energy Efficiency

Accessing 32-bit data with 20 bit Address on external SRAM at 16nsec per clock will

cause good amount of dynamic power dissipation. The average number of memory

access for exact match is always higher than the bloom filter because bloom filter

requires only 3 read cycles to do find the output port.
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3.4.4 Router NA FIB Update time from the Host Controller

The Binary search exact match is clearly the worst of all three since it requires a binary

search to find the place to replace an entry. If the entry needs to be inserted then

the performance is even worse due to movement of all entries below the insert address

within the chain. We would therefore prefer to replace the entry rather than inserting

it. The Bloom Filter perform the second best with calculation of 3 Hash key addresses

and 3 Memory Writes for inserting each entry in the bloom filter. Linear search exact

match is the best scheme for updates since host controller can simply append the NA

entry at the end or replace any entry as per the update policy.
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Chapter 4

Implementation of MobilityFirst Router

4.1 NetFPGA Card Specifications

NetFPGA 1G platform [13] was selected to prototype the MobilityFirst router. It

has been designed by Stanford University for academic research in router design and

networking. The following are the specifications of 1G platform:

• Field Programmable Gate Array (FPGA) Logic

Xilinx Virtex-II Pro 50

53,136 logic cells

4,176 Kbit block RAM

up to 738 Kbit distributed RAM

2 x PowerPC cores

Fully programmable by the user

• Gigabit Ethernet networking ports

Connector block on left of PCB interfaces to 4 external RJ45 plugs

Interfaces with standard Cat5E or Cat6 copper network cables using Broadcom

PHY BCM5464SR

Wire-speed processing on all ports at all time using FPGA logic,

1 Gbits * 2 (bi-directional) * 4 (ports) = 8 Gbps throughput

• Static Random Access Memory (SRAM)

Suitable for storing forwarding table data

Zero-bus turnaround (ZBT), synchronous with the logic

Two parallel banks of 18 MBit (2.25 MByte) ZBT memories
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Total capacity: 4.5 MBytes

Cypress: CY7C1370D-167AXC

• Double-Date Rate Random Access Memory (DDR2 DRAM)

400 MHz Asynchronous clock

Suitable for packet buffering

25.6 Gbps peak memory throughput

Total capacity: 64 MBytes

Micron: MT47H16M16BG-5E

• Multi-gigabit I/O

Two SATA-style connectors to Multi-Gigabit I/O (MGIO) on right-side of PCB

Allows multiple NetFPGAs within a PC to be chained together

• Standard PCI Form Factor

Standard PCI card

Can be used in a PCI-X slot

Enables fast reconfiguration of the FPGA over PCI bus without using JTAG cable

Provides CPU access to memory-mapped registers and memory on the NetFPGA

hardware

• Hardware Debugging ports

JTAG cable connector can be used to run Xilinx ChipScope Pro

• Flexibile, Open-source code

BSD-style open-source reference router available from the NetFPGA.org website.

4.2 NetFPGA System Architecture

NetFPGA consists of two FPGAs, the Xilinx Spartan II (CPCI) FPGA which acts as

a PCI bridge and FPGA programmer for the main VirtexII-Pro 50 (CNET) FPGA.

Both FPGAs are RAM based volatile FPGAs and need to be reprogrammed after

every power on. There is an on-board PROM from which bit file is loaded into CPCI
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Figure 4.1: NetFPGA PCI Card

FPGA automatically on power on. When the host controller has booted, it programs

the CNET FPGA over PCI bus through CPCI FPGA. Figure 4.2 shows the System

Architecture.

Figure 4.2: NetFPGA System Architecture

The system constists of a host computer (Host) which supports the NetFPGA PCI

card over a 32 bit/66MHz PCIx slot. The CPCI FPGA works as a PCI bridge and

a VertexII-Pro CNET FPGA is used to implement MobilityFirst Router. Each of

the SRAMs have 19bit Address and 36bit Data bus and are clock synchronous to the

CNET FPGA working at 62.5MHz for our design. The DDR2 memories are 32 MBytes

each and have 24 bit Address and 16bit Data bus and work at 200MHz. The Gigabit
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Ethernet PHY has four gigabit Ethernet ports and is connected using RGMII interface

which has 4bit data bus and data is transferred at both edges of the clock (DDR). The

clock frequency is 125 MHz for gigabit Ethernet.

4.3 MobilityFirst Router RTL Design

4.3.1 Top level Module

This design is based on the Stanford University’s NetFPGA Reference Router De-

sign [20]. We have modified the design to suit out requirements. The RTL top level

module connects the internal blocks to the external world outside the VertexII-Pro. We

are mainly interested in using the SRAM and DRAM DDR2 memories on NetFPGA

board, the CPCI interface, which is a simplified PCI interface to the host controller

and the RGMII interface to the gigabit Ethernet PHY. Hence we preserved these ports

in top level. Figure 4.3 depicts the top level module of MobilityFirst Router.

Figure 4.3: Top level Module

Clocking Network

The current design requires 8 Clock domains:
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• 62.5 MHz Core Clock: This clock is fed through a DCM into the global clock

buffer to clock the entire RTL of router core.

• 200 MHz DDR2 Clock: This clock is fed to a DDR2 controller which internally

uses two DCMs for its operation. The DDR2 controller generates two clocks which

are 90 degree out of phase (to maintain setup and hold requirements) and enable

double data rate data transfers to DDR2 chip.

• 125 MHz RGMII Tx Clock: This is stabilized through a DCM and used to transfer

TX data over RGMII interface for all 4 ports.

• Independent 125MHz RGMII Rx Clocks: These are 4 individual clocks soming

from the PHY and are stabilized using 4 DCMs. They are used to read data over

RGMII interface into respective RGMII blocks.

Hence, it can be seen that the net utilization of DCMs is 100% i.e. 8 DCMs in

Virtex II pro XC2VP50.

The NetFPGA has a default core and SRAM clock of 125MHz but does provide a

method to reduce it to 62.5 MHz [21], page 12. We chose the reduced clock to comply

with the setup times. To reduce the core and SRAM clock, following functions were

calls are required:

NF2_WR32(CPCI_CNET_CLK_SEL_REG, (unsigned int)0x0000);

ResetDevice();

The NF2 WR32() function is an IOCTL call to write in NetFPGA device. The

CPCI CNET CLK SEL REG is the address of clock select register in CPCI FPGA.

Calling ResetDevice() resets the CNET FPGA.

RGMII IO Module

The Reduced Gigabit Medium Independent Interface (RGMII) is used transfer data

between the PHY and CNET FPGA. RGMII IO Module converts the RGMII signals to
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8bit GMII interface which is transferred to the MAC module for reception and converts

8bit GMII from MAC back to RGMII signals for transmission. This translation is

required because the MAC module understands GMII interface only. We have made

no modifications to this module.

Figure 4.4: RGMII Rx to 8-bit GMII Data

Figure 4.5: 8-bit GMII data to RGMII Tx

DDR2 Controller

Since Virtex II Pro does not have a hard IP for DRAM controller, this soft IP had

been generated by Xilinx MIG tool. The tool also generates the constraints file for

the controller. These constraints help in proper place and route of the controller. The

original constraint file (.ucf) was modified by NetFPGA group at Stanford to match

their board schematics. We have made no major modifications to this module.
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Figure 4.6: DDR2 Write Cycle

Figure 4.7: DDR2 Read Cycle
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4.3.2 The Router Core

This module encapsulates the majority of the router components. Figure 4.8 shows the

compenents of the Router Core Module.

Figure 4.8: Router Core Module

As shown in the figure, the core level instantiates the SRAM arbiter (and Controller),

DDR2 Block Read write module, CPCI controller, the core register group, the MAC

modules, MDIO, Device ID registers and the User Data Path. We would discuss about

each of these block in the coming sections. The DMA controller and one pair of DMA

queues (Tx and Rx) have been added but the host controller support for DMA has not

been implemented for MobilityFirst Router. Hence DMA block will be excluded from

the scope of the Thesis.

The Medium Access Control (MAC) Group Module

Core instantiates four of these modules for the 4 Ethernet ports.

The major components of this module are the GMAC layer module which instanti-

ates the transmitter and the receiver modules. The GMAC Receiver checks for packet

integrity through CRC. The original Stanford University design had used a Xilinx IP

core for this block, TEMAC. It needed its own license and was a heavy duty GMAC
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Figure 4.9: MAC Group Module

layer IP which had all features of IEEE 802.3 specifications. We did not require such

a comprehensive GMAC to prototype hence we went ahead by using a code base con-

tributed to the NetFPGA community by Erik Rubow from University of California San

Diego. The modification done to this module was to add a MAC address filter. For the

prototype, the following MAC addresses have been used for MobilityFirst Router:

• 48’h04_DEAD_BEEF_04: Port 0

• 48’h08_DEAD_BEEF_08: Port 1

• 48’h0C_DEAD_BEEF_0C: Port 2

• 48’h10_DEAD_BEEF_10: Port 3

The MAC address filter would not allow any incoming packet with other MAC

addresses, not even Broadcast Address.

The Transmitter Module of GMAC was modified so that it could update the source

MAC address on a packet before transmitting it. GMAC receiver is synchronous to

GMII Rx clk (125MHz) and transmitter is synchronous to GMII Tx clk (125 MHz).
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The Rx Queue Module is the original design from NetFPGA DRAM Router Project.

No modifications have been done to this module. It packs 8bit data from GMAC to 64

bit Data and adds a 64-bit header to the packet. Along with the 8 bits, a ninth bit is

added to indicate End Of Packet (EOP).

The assembling of 9bit to 72bit is done using an Asynchronous FIFO (size 8KB)

which has a 9bit Din and 72bit Dout. Data is written synchronous to GMAC Rx clock

and read synchronous to Router Core clock (62.5 MHz).

Figure 4.10: Assembly of Data Bytes at MAC Rx Queue

The 8-bit control value is set to 0xFF for the header word and zero of the Packet

Data words except for the last word of the packet where one of the bits should be set

indicating that it is the last word of the packet [20]. Bytes are padded at the end of a

packet to make packet 64bit word aligned, but the control bits still hold the information

about the last byte of the packet in the last word of the packet.

Format of the 64 Bit header is shown in figure 4.11.

Figure 4.11: Router Internal packet header

We decided to use the existing header format from NetFPGA Reference Router De-

sign and add some information in the unused section. Tx queue does the opposite of Rx

Queue, i.e. converts the 72 bits of Data and Control information into 8bit data which
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can be fed to GMAC Transmitter module. No change has been made to Rx Queue and

Tx Queue modules and they have been taken from NetFPGA Reference Router Design.

MAC group Registers module originally had a control register and a set of event

counter registers for MAC group module. To have enough slack in timing during place

and route, the counter registers of this module were removed, however their address

space hasn’t been reused and they can be added back if required. The Register ad-

dressing is mentioned in the last section of this chapter.

CPCI Interface Controller Module

This original module has been used from the NetFPGA Reference Router Design. Its

main function is to collect write and read requests from the Host Controller over the

PCI bus (through CPCI Bridge) and respond. PCI bus would have wait states to

allow a Read or Write Requests to complete which is infact variable because certain

registers of CNET Router take more clock cycles to finish Read or Write operation.

This is primarily because many resources such as BCAM, Block RAM and SRAM are

Memory mapped and need more clock cycles for their read/write cycles. This module

works on PCI clock domain at 66MHz and on Core clock domain of 62.5 MHz and

therefore requires Asynchronous FIFOs to cross the clock domains. Both FIFOs have

been generated by Xilinx Coregen.

Register Group Access Module

This module de-multiplexes PCI address into the Core Register Address, User Data

Path register Address and SRAM Address and forwards Read/Write requests to the

respective modules. The interface to each of the above modules is as follows:

1. Module specific width wide Address Bus (Output Port)

2. 32-bit Write Data bus, (Output Port)

3. 32-bit Read Data bus, (Input Port)
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Figure 4.12: CPCI Asynchronous FIFO

4. 1-bit Host Request (Output Port)

5. 1-bit Read/Write (1/0) Signal (Output Port)

6. 1-bit Ack from module (Input Port)

Figure 4.13: Router Register Group

The Core Register Group acts as a central arbiter to the MDIO, MAC group, DMA

controller, DMA Queues and Device ID Module registers in a star structure. This

module has been used from the original NetFPGA Reference Router Design.

MDIO Module

This original module has been used from NetFPGA Reference Router Design. This

modules converts PCI register reads and writes to MDIO reads and writes to read and
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write into the Gigabit Ethernet PHY registers.

Device ID register Group Module

This original module has been used from NetFPGA Reference Router Design. This

modules contains the information on Device ID and version number through which

host controller can identify MobilityFirst Router.

SRAM Arbiter

The base for this module has been taken from NetFPGA Reference Router Design and

has been modified for MobilitFirst Router Design. This Module has two ports. Port0

is being used by NA L2 Cache Lookup Module. Port1 is used by Host Controller to

directly Read or Write from or into SRAM through CPCI interface. SRAM Arbiter

grants 20 access cycles to Port0 before allowing Port1 to pre-empt and get the access

for 15 cycles. However our design doesn’t allow preemption to occur since we ensure

that when Host Controller is updating the NA FIB lookup tables, NA L2 cache lookups

is temporarily disabled. Hence both Ports get dedicated access to SRAM by system

level design. SRAM Arbiter Port1 register access converts CPCI read/ write requests

to SRAM read/write requests. Ack’ signal is asserted only after the read or write cycle

is complete. There are 2 SRAMs on board, 2MB each, and are 32-bit word aligned.

Therefore the address bus for each is 19 bits wide. However the Host controller and NA

L2 Cache lookup modules see the SRAM as one 4MB address space with 32-bit Data

bus. Hence, they have 20-bit addressing. SRAM arbiter uses the MSB (20th bit) to

select between the 2 SRAM Blocks, by asserting write enable on the respective SRAM

and selecting between Data buses while reading data. Figure 4.14 shows the data paths

of SRAM arbiter.

DDR2 Block Read/Write Module

The base design of this module was taken from NetFPGA Reference DRAM Router

Design. There were many changes made to this block to meet place and route timing

and functionality. This module performs read and write in blocks into the DDR2 DRAM
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Figure 4.14: SRAM Arbiter

through the MIG tool generated DDR2 controller. DDR2 works efficiently when used

for block data transfers because of the huge overhead of starting a read or a write

cycle in DDR2 memory. In addition it has refresh cycles which preempt any read or

write cycles to maintain integrity of data in DRAM. This module works on two clock

domains, the 62.5MHz core clk domain and 200MHz DDR2 clock. The design uses

two Asynchronous FIFOs to transfer data across the two clock domains.

There are two DDR2 chips of 32MB on NetFPGA board. Each has 16 bit wide data

bus and since data is transferred at both edges of 200MHz, we transfer (16+16)∗2 = 64

bits every 5ns. While writing data in DDR2, there should not be a case of unavailability

of data in the FIFO (FIFO empty) to have a continuous flow of data. Similarly, while

reading data out of DDR2, FIFO full should never occur, because the read cycle cannot

be stalled.

Hence the design assumption for DRAM Write is:

FIFO Data in rate should always be more the FIFO data out.

To meet this requirement, original design used

For core clk = 125MHz

(72*2) = 144 bits wide Data in and 64bits wide Data out

The FIFO writing rate = 125M * 144 = 18000Mbits per second
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and FIFO reading rate = 200M * 64 = 12800Mbits per second

For core clk = 62.5MHz

(72*4) = 288 bits wide Data in and 64bits wide Data out

The FIFO writing rate = 62.5M * 288 = 18000Mbits per second

and FIFO reading rate = 200M * 64 = 12800Mbits per second

Hence if the above width combination of FIFO is chosen then design assumption is

met for both core clocks. We had to reduce the clk to 62.5 MHz to have a clean timing

closure and therefore we would need 288Bit Din FIFO. Widening data path to 288bit

would increase hardware and place more burden on Place and Route. In order proceed

with the router design for the moment, we did not double the data path, instead we

decided to lose on availability of DDR2 and went ahead with 144bit data bus. Since

this would fail the design assumption, the size of the asynchronous FIFO was increased

to 2KB (largest block size), which would first buffer the complete packet and then start

the DDR2 write cycle, hence no pipelining in DDR2 Write.

This implies that, if block (packet) size is 1500 bytes, there would be stall cycles of

(1500 ∗ 8/64) ∗ 5nsec = 938ns for a packet of 1500 bytes. This drawback will limit the

throughput of packet buffering, we decided to leave this to be optimized and pipelined

in future.

A similar approach is used on the read side where a 2KB 144-bit Dout Asynchronous

FIFO is used to buffer a packet. Althought reading is still pipelined and we can allow

User Data Path to start reading from FIFO symultaneously to DDR2 read, since 2KB

is larger than the longest packet length.

NetFPGA reference router design transfers fixed size (2034 bytes) blocks into 2048Byte

Memory Segments. The Write pointer and Read pointer point to such 2048Byte seg-

ments. The trouble with this design is since the transfer is block-wise, we always require

a continuous flow of packets to push the older packets through DRAM queues. In the

even of bursty traffic, packets may have arbitarily large Inter-frame gaps, leading to

incomplete packets sent out on the MAC ports. While prototyping, we wanted to test

many different scenarios which will not always a continuous flow of packets, therefore we
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modified the design to handle variable Block length read or writes so that the DRAM

queue could be used in a packet-wise manner. With variable block size, maximum size

of a block can be 2KB which is sufficient for the largest packet we can handle i.e. of

1500 + 18 bytes. Figure 4.15 depicts the internals of this module.

Figure 4.15: DDR2 Block Read Write Module

There are two disadvantages of using a scheme, first is the internal fragmentation

which would happen because the DDR2 queue pointers are fixed at chunk size of 2KB.

Infact, the 2KB chunk would be under-utilized even if a packet length is 1518 bytes.

This problem can be solved reducing the chunk size which would reduce the wastage

of memory, but would require writing into multiple consecutive chunks, increasing the

complexity of DDR2 Block Write and Read Module. The second issue is with reading

a block. Since the size of packet length is not know prior to reading the header of the

packet, we had to start a read cycle with unknown length. Moreover the length in the

NetFPGA header has number of data bytes in the packet, but since we are transferring

even the control bytes in DDR2, we need to recalculate the total byte count that has

to written into DDR2. Another subtlety lies in the padding, as we are converting 72bit

words to 144bit words, we may have to pad to make the packet multiple 144bit words.
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Beyond this, 64bit data to be written in DDR2 needs padding to keep it 64bit word

alligned. All these calculations are difficult to prcocess in 5ns DDR2 Clock domain.

Hence, we pre-calculate these values at 16ns Core Clock domain, attach Length Info

Header to the packet, and write the packet in DDR2 Memory.

While DDR2 Read operation, we start off with a fixed read size (32 Bytes) from the

starting address as per the read pointer. The Data valid has a latency of more than 16

Address reads, but then with the first data valid, DDR2 read module reads the length

from the packet and modifies the read length while continuing to read the rest of the

packet. This Length Info header is passed along to DRAM Queue Read Block in User

Data Path so that similar scheme can be used to read the packets. Figure 4.16.

Figure 4.16: DDR2 Length Information Header
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Closing Timing on Place and Route (PAR)

We have referred to the timing constraint problem many times and it would be discussed

in this section. Timing constrains in digital VLSI design important factors which allow

the PAR tool to place and route a synthesized net-list on the silicon(ASIC) or an FPGA.

The goal is to place and route the logic circuit while not violating setup or hold times.

The design did not face any hold time violations but was failing on setup time require-

ments. The setup time is the time before which an input logic level should be stabilized

so that it can be registered by a flip-flop. The timing constraints tell place and route

tool about a clock period. While the design itself should not have logic which would

result in an impossible to meet timing netlist, a lot also depends on how the PAR works.

Tclk − Tsetup >= Tpd where Tpd is the propogation delay.

Tpd = Tlogic + Tpath

As it can be seen above that even if Tlogic is small, if Tpath i.e. delay caused due to

path between two flip-flops is too high, it could result in a setup time violation. We

attempted to reduce the Tlogic as much as possible from the Verilog description and

optimized RTL. We were still getting a large Tpd due to a large Tpath. To understand

why this has happened, we would discuss briefly about the floor-plan of router design

on Virtex II pro. The figure 4.17 shows the placement of the MobilityFirst Router

RTL. The IO pin assignment for DDR2 controller forces DRAM Block read/wrt to

be placed close to left corner. This modules has data paths to router core which in

turn has data paths with PCI Bus, SRAM and RGMII interfaces. Hence, due to this

large distance and large number of Data lines, place and route tool is not able to close

timing at 125MHz. We increased the slack to compensate for this stringent placement

and long Tpath delays, by reducing the clock to 62.5MHz. In addition we also had to

add shift registers (3 stages) on the data paths to DRAM Block Read/write module

to increase the slack. We then had to use programmed empty and programmed full

signals of FIFOs to transfer the data correctly.
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Figure 4.17: MF Router Virtex2Pro50 FloorPlan

4.3.3 The User Data Path Module

This design is based on the original NetFPGA DRAM Reference Router design [Ref-

erence Pipeline]. User Data Path (UDP) module is functional core of the router. Our

design has five Rx FIFOs coming from the MAC Rx queues of 4 ports and 1 from DMA

Rx. The first block they encounter is the Input Arbiter. As the name suggests, this

modules selects from of the 4 Rx Queues and a DRAM Queue and connects the path to

Output Port Lookup block. The DRAM queue is the Packet Circulator which we had

discussed earlier in Chaper 3. Input Arbiter has a round-robin method for selecting

from one of the inputs. Output Port Lookup module performs GUID and NA lookups

and decide on the final fate of the packet. After looking up the output port, it amends
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the Packet Header shown in figure 4.11, and sends packet to Output Queue Arbiter.

Output Queue Arbiter is a module which sends simultaneously to all the output ports

which have been selected for that packet. It’s capability of sending into more that

one output ports (duplicating packets) can be used for multicasting. For our bloom

filter implementation, it causes the packet to go through correct output port as well as

may cause it to be forwarded to an incorrect one due to false positives. Output Queue

Arbiter gets the write data count from the Output queues and send/drops a packet on

a particular queue based on its capacity to accept the packet. It does this by compar-

ing write data count of the queue with the incoming packet length. Hence, either the

packets are dropped or sent out, but output queue is never stalled. The DMA interface

might be used to send control packets to host controller. Use of DMA channel is out

of scope of Thesis.

Figure 4.18: User Data Path Module

User Data Path Register Pipeline

This is NetFPGA Reference Router Register Pipeline. This has big advantage over the

start topology of register connected to a single arbiter as in the Core Module Register

Group. Register Pipeline allows easy insertion or deletion of modules into the pipeline.
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The modules connected on the pipeline for Mobility First is as shown in figure 4.19.

Figure 4.19: UDP Register Pipeline

4.3.4 Output Port Lookup Module

This module was re-designed specifically for MobilityFirst Router Implementation. Fig-

ure 4.20 shows the internal blocks of this module. It instantiates the NA and GUID

lookup blocks. When a packet comes in from Input Arbiter, it first passes through

a Packet FIFO. As the packet is being written in FIFO, Packet Pre-processor parses

MobilityFirst packet header and indicates GUID and NA blocks about the 64-bit word

they are supposed to extract their respective fields from. Both lookup blocks work in

synchronism to decide final fate of packet. Once the output ports, MAC addresses or

binding NA have been found, the information is released to Header Update block. This

block updates output ports, MAC address and or NA, online while the packet is being

sent out of the module. If the lookup activity does not complete untill the end of packet

(EOP), input queue is stalled untill the output is resolved. This is done to keep NA and

GUID lookup state-machines synchronized to the Start of Packet and End of Packet.
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Figure 4.20: Output Port Lookup Module



47

Figure 4.21: Output Port Lookup RTL Schematic
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4.3.5 NA 2-Level Cache Output Port Lookup Module

Figure 4.22: NA Lookup Module

NA lookup module starts a lookup cycle simultaneously on the Binary Content Ad-

dressable Memory(BCAM) (depth 32) and SRAM L2 Cache lookup. BCAM responds

in 4 clock cycles (64ns) and is always faster than the L2 cache lookup. BCAM has

un-encoded output which is encoded to address a register bank which holds output

port information. We had proposed the 3 searching schemes for L2 Cache lookup:

Binary Search in Seperate Chaining Hash Table

In this scheme, 32-bit NA is hashed using straightforward 12-bit MSB extraction. This

12 bit address is looked-up in TLB section of SRAM. TLB contains physical address

of the section of Hash table. The immediate next entry in TLB indicates start of Next

section of Hash Table. The second address is read, and lowered by one value to get the

High Address of the section (chain). Then a binary search is done within the section

until either the NA is found or the section search is complete. Ack is returned when

search is complete. Hit and Output Port are returned if NA is found. As it has been

said earlier, SRAM data width is 32-bit and we need to store NA as well as output

port in each location. Since the hashing method was direct bit extraction, we need only

lower 20-bits of NA leaving 12 spare bits which is used for storing output port.
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Linear Search Seperate Chaining Hash Table

This scheme is similar to the previous scheme with the only difference that instead of

Binary search, a linear search is done to find NA within a section. Linear search in a

small section proves to be much faster than Binary search because it can exploit the

burst read mode of SRAM.

Counting Bloom Filters

In this scheme, 32-bit NA is hashed using 3 hash functions 3.3.5:

1. 21bit LSB of CCITT 32 bit hash

2. Combination of XOR and Bit extraction for 21bit Key

3. 21bit H3 Class hash function

The three hash addresses are read for their counts for the respective ports. A 4bit

count is used to indicate presence of absence of NA in the bloom filter. All 4 Ports

together require 16 bits which means we could use the 32 bit SRAM data to store two

sets of 4 Bloom filters. This makes the capacity of SRAM to have a hash table of 221.

Coming back to NA lookup state-machine, if BCAM fails to find NA but the L2 cache

finds it in SRAM, NA-Output Port combination is written in BCAM. The replacement

policy for BCAM is First In First Out (FIFO). If NA is not found in L2 also, then the

NA is inserted in NA Miss indication queue, and packet is sent to Packet Circulator.

If the packet had its NA inserted in the Miss Indication queue previously, it is not

inserted again to avoid duplicate requests to the host controller. This is checked by

a bit in the 4-bit reserved for MobilityFirst Router information in NetFPGA Packet

header as shown in figure 4.11.

Exclusive permission to Host Controller to Access SRAM

The Host controller wants to update SRAM lookup table, it has to first request to NA

lookup block to do so. NA lookup block grants permission to host controller when it is

not using L2 cache SRAM. NA lookup does not use L2 cache as long as Host does not
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de-assert the request. During this time it only uses L1 cache to search NA and packets

out of the 32 flows, will be sent to packet circulator. When Host de-asserts request,

BCAM is flushed and for the time it is being flushed, only L2 cache is used to lookup

NA. Once BCAM flush is complete, normal 2-level lookups are resumed.

Incase of local NA, NA lookup stops the lookup process as the output port is ex-

pected to be found by GUID lookup block. Incase of invalid NA (NULL value is 32bit

0), this module waits for GUID lookup to complete and get GNRS cached NA. After

receiving NA from GUID GNRS cache, it starts a regular NA Lookup. If GUID lookup

cannot find an entry, lookup is halted and packet is dropped.
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Figure 4.23: NA Lookup RTL Schematic
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4.3.6 GUID Lookup Module

4.3.7 GUID Lookup

Figure 4.24: GUID Lookup Module

GUID Lookup starts two clock cycles ahead of NA lookup due to its place in Mo-

bilityFirst Packet packed in 64 Bit Data. It sends a search request to BCAM and gets

a response in 5 clks, the extra last clock is to access FPGA block RAMs. There are

two 32bit (depth 32) FPGA block RAMs which together hold either 1 + 48 bits Flag

and MAC address or 1+ 32 bits Flag and GNRS cached NA. The flag bit distinguishes

between the two types of entries. If there is a miss in the BCAM, GUID lookup waits

for NA lookup to indicate whether the packet had a local NA or an Invalid NA, so

that it can insert the missed GUID in missed Queue. Other GUIDs misses do not need

to be added to the missed queues since they will not be serviced by this router. The

Host controller has the CAM and BRAMs memory mapped into Output Port Lookup

Register Space and can update the entries any time. To invalidate an entry, Host can

write 32’h0 in GUID BCAM or replace it with other GUID.
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Figure 4.25: GUID Lookup RTL Schematic
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4.3.8 Output Queues

This module instantiates the Header parser, Output Queue arbiter, Direct Port Queues

(FPGA Block RAM) and DRAM queue (Packet Circulator implemented on DDR2

DRAM). As the name suggests, Header parser parses the header and sends length

and output information to the Output Queue Arbiter. A small fifo is used to transfer

header information to allow pipelining. Output Queue Arbiter, directs packets to all

the output queues to which the packet should be send (this is possible since the output

port information in packet header is one-hot encoded). Before transferring the data

to respective output queues, OQ Arbiter checks for the free write space available in

the Queue FIFOs. If the length of the packet is less than or equal to free space of

the intended Output Queue FIFO, then write enable for that queue is enabled. If no

Output Queue FIFOs have enough space, packet is dropped and the flow is never stalled.

Direct Queues have FIFO of 8KB implemented in the FPGA Block RAMs. They

also have the MAC address of destination next hops. For inter-domain packets, the des-

tination MAC address is updated into the packets at their respective Direct Queues. If

however, the packets are intra-domain, there is a flag bit in the MobilityFirst Informa-

tion bits of NetFPGA packet header, which indicates that the packet is intra-domain.

When this intra-domain flag bit is set, destination MAC address is not updated by Di-

rect Queues. Intra-domain flag bit is set by the Header Update Block in Output Port

Lookup module, which updates the destination MAC address found in GUID-MAC

lookup, for intra-domain packets.

DRAM Queues have a Write Block which has a 4KB FIFO (DRAM Write FIFO).

This FIFO converts 72bit words to 144bit words before transferring the data to Block

DRAM Read/Write Module. It also calculates and appends the length info header to

the packets. The sencond Module is the DRAM Queues is a Read Block which has a

4KB FIFO which converts 144bit words to 72bit words before passing the packets to

MAC Group Module. It removes the length info header from the packet while doing

so.
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Chapter 5

Results

5.1 Emulation Results

The figure 5.1 shows Emulation setup for MobilityFirst Prototypoe router. Using this

setup we were able to perform various micro-benchmarking tests. The setup consists of

two NetFPGA connected back to back. One acts as packet generator and checker, the

other acts as the MobilityFirst Router. Packet generator is able to generate packets

simultaneously on all 4 ports and perform the check on the received packets. There

is an internal timer which starts on start of test and stops when no packet has been

received for 3000000us. Hence the final time is calculated by subtracting 3000000 from

the timer value. All configuration and status registers are accessible through PCI bus.

Additonally, the packet generator has an option to read test scenarios from SRAM. For

using SRAM, Test host controller should download the test in SRAM before starting

the test. To test Bloom Filters, we need a random data set to evaluate false positives.

For this reason, we generated random data sets using Matlab and transffered the data

in SRAM. Most of the test aim at testing the NA lookup, which requires longer lookup

times. Therefore, tester sends packets with 4 different GUIDs for 4 ports of the tester,

and different NAs which are sent in a pattern to generate different scenarios.

Table 5.1 compares the linear and binary search schemes. The cross-over point is a

little higher than the theoritical value of N = 51. This is because of the queuing delays

we did not consider during the calculations. More over, since the NetFPGA does not

have a large input queue, for testing purposes, we needed to send packets at a rate

slightly lower than the average lookup rate to avoid packet dropping at input queues.

We chose non-pipelined version of design get actual thoughput with respect to lookup

delays.
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Figure 5.1: Emulation Setup

Packets
Sent,Received

Packet
Length

Size of
Hash
Chain

Binary
Search
Time(usec)

Linear
Search
Time(usec)

Binary Search
Throughput(Mbps)

Linear Search
Throughput(Mbps)

1000000 174 31 5008010 4144016 277.9547165 335.906039
1000000 174 63 5560010 5168030 250.3592619 269.3482816
1000000 174 127 6120011 7216067 227.4505716 192.9028652
1000000 174 255 6688011 11312187 208.133629 123.0531285

Table 5.1: Non-pipelined NA Lookup Performance Comparison of Linear and Binary
Search for different Chain Lengths

Table 5.2 shows performace when we forced all packets to be looked up from L1

cache i.e. BCAM, only. We can observe that, due to pipelining, the throughput remains

high irrespective of the packet length. The curve which we can see is due to the fixed

delays which seperate the packets, and become insignificant as the packet length is

increased.

Figure 5.2: Non-Pipelined NA L2 cache Linear and Binary Search Scheme comparison
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Packets Sent,Received Packet Length Test Time(usec) Throughput(Mbps) Net Throughput(Mbps)
1000000 174 1600019 869.9896689 3479.958675
1000000 500 4224044 946.9598328 3787.839331
1000000 1000 8208044 974.6536446 3898.614579
1000000 1500 12232064 981.0282222 3924.112889

Table 5.2: Pipelined NA L1 cache Lookup Performance

Figure 5.3: Pipelined NA L1 cache lookup Performance

Packets Sent,Received Packet Length Test Time(usec) Throughput(Mbps) Net Throughput(Mbps)
1000000 174 6064011 229.5510348 918.2041391
1000000 500 6088024 657.0276333 2628.110533
1000000 1000 8200085 975.5996432 3902.398573
1000000 1500 12232064 981.0282222 3924.112889

Table 5.3: Pipelined NA L2 Cache Binary Search Performance in Hash Chain length
of 255

Table 5.3 shows performace when we forced all packets to be looked up from L2

cache only by generating packet stream which has zero locality. We sent address which

spanned over the entire address space inserted in SRAM. Due to pipelining, longer

packets do not get delayed even for the worst case in binary search in hash chain of

255.
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Figure 5.4: Pipelined NA L2 cache Binary Search in Hash Chain length of 255

Packets Sent,Received Packet Length Test Time(usec) Throughput(Mbps) Net Throughput(Mbps)
1000000 174 167781 869.9408872 3479.763549
1000000 500 444610 943.3526012 3773.410405
1000000 1000 866602 967.9737642 3871.895057
1000000 1500 1291041 974.618157 3898.472628

Table 5.4: Pipelined NA L2 Cache Bloom Filter Search Performance

Table 5.4 shows performace Bloom Filter L2 cache lookup scheme. Our bloom filter

implementation requires fixed amount of delay which is smaller than the length (time)

of the smallest packet. For the test, we generated multiple sets of random numbers

using Matlab which were then written in tester and router’s SRAMs respectively.

Figure 5.5: Pipelined NA L2 cache Bloom Filter Search Performance
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Figure 5.6: Performance Comparison between NA lookup schemes

Port 0 Test, Number of packets sent 262143

Port Number Num packets expected Num of packets received Num False Positive packets False Positive Ratio
0 262143 262143 0 0
1 0 32637 32637 0.12450075
2 0 32793 32793 0.125095845
3 0 32714 32714 0.124794482

Port 1 Test, Number of packets sent 262143

Port Number Num packets expected Num of packets received Num False Positive packets False Positive Ratio
0 0 32770 32770 0.125008106
1 262143 262143 0 0
2 0 32905 32905 0.125523092
3 0 32861 32861 0.125355245

Port 2 Test, Number of packets sent 262143

Port Number Num packets expected Num of packets received Num False Positive packets False Positive Ratio
0 0 32735 32735 0.124874591
1 0 32661 32661 0.124592303
2 262143 262143 0 0
3 0 32794 32794 0.125099659

Port 3 Test, Number of packets sent 262143

Port Number Num packets expected Num of packets received Num False Positive packets False Positive Ratio
0 0 32700 32700 0.124741076
1 0 32791 32791 0.125088215
2 0 32764 32764 0.124985218
3 262143 262143 0 0

Table 5.5: Bloom Filter False Positives for Load Factor (n/m) = 0.231

Figure 5.7: Bloom Filter False Postive Ratios
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Port 0 Test, Number of packets sent 209714

Port Number Num packets expected Num of packets received Num False Positive packets False Positive Ratio
0 209714 209714 0 0
1 0 3660 3660 0.01745234
2 0 3667 3667 0.017485719
3 0 3664 3664 0.017471413

Port 1 Test, Number of packets sent 209714

Port Number Num packets expected Num of packets received Num False Positive packets False Positive Ratio
0 0 3688 3688 0.017585855
1 209714 209714 0 0
2 0 3650 3650 0.017404656
3 0 3653 3653 0.017418961

Port 2 Test, Number of packets sent 209714

Port Number Num packets expected Num of packets received Num False Positive packets False Positive Ratio
0 0 3644 3644 0.017376045
1 0 3660 3660 0.01745234
2 209714 209714 0 0
3 0 3680 3680 0.017547708

Port 3 Test, Number of packets sent 209714

Port Number Num packets expected Num of packets received Num False Positive packets False Positive Ratio
0 0 3614 3614 0.017232994
1 0 3658 3658 0.017442803
2 0 3661 3661 0.017457108
3 209714 209714 0 0

Table 5.6: Bloom Filter False Positives for Load Factor (n/m) = 0.1

Port 0 Test, Number of packets sent 104856

Port Number Num packets expected Num of packets received Num False Positive packets False Positive Ratio
0 104856 104856 0 0
1 0 293 293 0.002794308
2 0 292 292 0.002784771
3 0 290 290 0.002765698

Port 1 Test, Number of packets sent 104856

Port Number Num packets expected Num of packets received Num False Positive packets False Positive Ratio
0 0 286 286 0.00272755
1 104856 104856 0 0
2 0 303 303 0.002889677
3 0 278 278 0.002651255

Port 2 Test, Number of packets sent 104856

Port Number Num packets expected Num of packets received Num False Positive packets False Positive Ratio
0 0 288 288 0.002746624
1 0 305 305 0.002908751
2 104856 104856 0 0
3 0 291 291 0.002775235

Port 3 Test, Number of packets sent 104856

Port Number Num packets expected Num of packets received Num False Positive packets False Positive Ratio
0 0 288 288 0.002746624
1 0 270 270 0.00257496
2 0 286 286 0.00272755
3 104856 104856 0 0

Table 5.7: Bloom Filter False Positives for Load Factor (n/m) = 0.05

Port 0 Test, Number of packets sent 41942

Port Number Num packets expected Num of packets received Num False Positive packets False Positive Ratio
0 41942 41942 0 0
1 0 8 8 0.00019074
2 0 8 8 0.00019074
3 0 9 9 0.000214582

Port 1 Test, Number of packets sent 41942

Port Number Num packets expected Num of packets received Num False Positive packets False Positive Ratio
0 0 8 8 0.00019074
1 41942 41942 0 0
2 0 10 10 0.000238424
3 0 7 7 0.000166897

Port 2 Test, Number of packets sent 41942

Port Number Num packets expected Num of packets received Num False Positive packets False Positive Ratio
0 0 10 10 0.000238424
1 0 10 10 0.000238424
2 41942 41942 0 0
3 0 9 9 0.000214582

Port 3 Test, Number of packets sent 41942

Port Number Num packets expected Num of packets received Num False Positive packets False Positive Ratio
0 0 10 10 0.000238424
1 0 9 9 0.000214582
2 0 8 8 0.00019074
3 41942 41942 0 0

Table 5.8: Bloom Filter False Positives for Load Factor (n/m) = 0.02
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Load factor (n/m) Port 0 Port 1 Port 2 Port 3
0.231 0.124874591 0.124727089 0.125201385 0.125083129
0.1 0.017398298 0.017449161 0.017449161 0.017479361
0.05 0.002740266 0.00275934 0.002800666 0.002730729
0.02 0.00022253 0.000214582 0.000206635 0.000198687

Table 5.9: Avergae False positive ratio per port for different Load Factors

Packets Sent,Received Packet Length Test Time(usec) Throughput(Mbps) Net Throughput(Mbps)
1000000 174 1632018 852.9317691 3411.727077
1000000 500 4224043 946.960057 3787.840228
1000000 1000 8200083 975.5998811 3902.399524
1000000 1500 12232064 981.0282222 3924.112889

Table 5.10: GUID-NA binding and Forwarding

Figure 5.8: GUID-NA binding and Forwarding

Packets Sent,Received Packet Length Test Time(usec) Throughput(Mbps) Net Throughput(Mbps)
1000000 174 1600018 869.9902126 3479.96085
1000000 500 4224044 946.9598328 3787.839331
1000000 1000 8208044 974.6536446 3898.614579
1000000 1500 12232063 981.0283024 3924.11321

Table 5.11: GUID-MAC Lookup, intra-domain forwarding

Figure 5.9: GUID-MAC Lookup, intra-domain forwarding
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5.2 Scalibility and Hit ratios

The Host controller memory which has the L3 cache, does not have any limit and hence

is considered to be infinite. We have made the provision for the host controller to re-

ceive L2 miss indications from router. In addition, the packets which need L3 lookups

are queued in the packet circulator DDR2 buffer. We have 64MB of DRAM, and the

block size is of 2K, enabling us to buffer upto 32K packets. We conducted a small

experiment where 4 packets containing NA which are not present in L2 cache are sent.

For the purposes of evaluating router’s performance alone, host controller has a set of

these 4 NAs readily available for L2 update. In the experiment, host waits for 4 L2

miss indications and then updates the SRAM with 4 NAs, and packets are then sent

out back to the tester. The time required to do so was 96us for 4 packets of length

500Bytes. Then we generated the same scenario with NA already present in L2 cache

giving us a round-trip time of 32us. Hence, we could roughly estimate that L3 cache

access delay is 64us i.e. 16us per NA. We could expect a similar result for a GUID miss

updation as well.

Hence, the L1 cache lookup time is 64ns, L2 cache(depending on the scheme) lookup

time ranges from 304nsec to 1350ns and L3 cache lookup time is more than or equal to

16000ns.

Depending upon the scale and hit ratio we would have to increase the size of L1

and L2 caches to maintain the performance. The pipelined design allows us to have

100 percent L2 hit ratio and still achive line rate above a certain threshold.

Let us assume that a certain traffic generates a L1HitRatio, L2HitRatio and L3Hitratio,

then total time required to forward these packets (in ns) would be

Maximum of

TAvgRoute = ((L1HitRatio ∗ 64) + (L2HitRatio ∗ 1350) + (L3HitRatio ∗ 16000)) and
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TAvgRoute = AvgPacketLength ∗ 8/4 for 4 ports simultaneous.

We have seen that L2 Cache based lookup schemes can perform line-speed forward-

ing, for simplicity let’s assume, packet length’s are always 1500Bytes. The TAvgRoute =

1500 ∗ 2 = 3000ns. In addition, L1HitRatio = 0. Then to maintain line speed lookups

L3HitRatio = (3000− (L2HitRatio ∗ 1350))/16000. For Binary (exact match) search,

max number of NA in L2 cache = 1020 ∗ 1024 = 1044480, and let total number of

NA in MF be NumNA, then L2HitRatio = 1044480/NumNA and L3HitRatio =

1− L2HitRatio.

Therefore, (1− L2HitRatio) = (3000− (L2HitRatio ∗ 1350))/16000
L2HitRatio = 0.8873

NumNA = 1177049 values.

Hence to support an address space of NumNA = 100000000, and maintain same

L2HitRatio = 0.8873, L2cache should contain 88737201 NA entries which would re-

quire SRAM size of (1024/1020) ∗ 88737201 = 89.085MWords (32-bit word). This is

how the memory would scale.

Similarly, for Bloom filters,

(1− L2HitRatio) = (3000− (L2HitRatio ∗ 304))/16000
L2HitRatio = 0.8282

NumNA = (208822 ∗ 4)/L2HitRatio = 1008514 values.

Hence to support an address space of NumNA = 100000000, number of NAs in Bloom

Filters should be 82823649 and size of SRAM required would be ((82823649/4) ∗
10.0427)/2 = 103971633MWords for 4 port router.
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5.3 Simulation Results

Figure shows the simulation environment for MobilityFirst Router. We used the ISIM

which is built-in simulator in Xilinx ISE, to simulate the design. We could easily use

ModelSim to test the design as well, we just need to generate libraries for different

Xilinx IP cores which have been used in the design.

Figure 5.10: Simulation Environment

The number of tests performed to get the RTL design to do the right thing are very

large. Hence, we have included only a few important and relevent block level simulation

results here.
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Figure 5.11: Packet 1 on Port0 and Port1 dropped and Packet 2 sent out on all ports

Figure 5.12: First 2 Packects dropped after lookup miss, followed by GUID MAC
translation of 2 Packets

Figure 5.13: NA L2 Cache lookup followed by L1 Cache hit
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Figure 5.14: L2 Cache SRAM lookup

Figure 5.15: L1 Cache BCAM lookup

Figure 5.16: GUID MAC translation

Figure 5.17: GUID GNRS NA cache lookup
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Figure 5.18: Linespeed NA Binding
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Chapter 6

Conclusion and Future Work

Based on the experimental results, the MobilityFirst Router performs best for the

longest packets lengths for all scenarios. Our Bloom Filter based design has highest

lookup speed and for a resonable tradeoff for memory, it can yield a very low false

positive ratio (0.0002 for load factor of 0.02). MobilityFirst Router would work best

for large data Flows between the routers which matches with the design of chunk based

data transfers at higher layers of MobilityFirst Protocol Stack. Our router can work as

both an edge-router and a back-bone router, however it is better suited for backbone

applications due to the large NA FIB it can hold.

6.1 Future Work

The MobilityFirst Router Prototype brings many opportunities to expand the design

and explore new possibilities. We want to evaluate the MF router performance on a

real-world traces. One of the features we are interested in adding is the Multi-cast

packet forwarding which would save the network from huge amounts of duplicate data

packets. The Bloomfilters with more data specific hash functions may be evaluated.

Both NA and GUID lookups can be fully pipelined with careful designing which would

increase the throughputs even for the smaller packets. Support for jumbo frames is also

in the list since the overhead of MobilityFirst packet processing would then be smaller

due to less frequent lookup operations. We have included a single DMA channel and

would like to evaluate its performance to handle Control Packets. NetFPGA 10G is

the next generation platform from Stanford University, which has an advanced FPGA

Virtex5, larger on-board memory, advanced peripherals and better tool chain support

from Xilinx.
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