
COMPUTATIONAL METHODS IN PERMUTATION
PATTERNS

BY BRIAN KOICHI NAKAMURA

A dissertation submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Mathematics

Written under the direction of

Doron Zeilberger

and approved by

New Brunswick, New Jersey

May, 2013

ABSTRACT OF THE DISSERTATION

Computational Methods in Permutation Patterns

by Brian Koichi Nakamura

Dissertation Director: Doron Zeilberger

Given two permutations σ ∈ Sk and π = π1 . . . πn ∈ Sn, the permutation π is said

to contain the pattern σ if there exists 1 ≤ i1 < . . . < ik ≤ n such that πi1 . . . πik is

order-isomorphic to σ. Each such subsequence is called an occurrence of σ in π. Over

the past few decades, the study of pattern-avoiding permutations has been a very active

area of research.

This thesis will consider two types of problems in this area. The first is a variation

known as consecutive patterns, where the pattern σ must occur in consecutive terms

of the permutation π to count as an occurrence. The second is a generalization of the

classical pattern avoiding problem, where we wish to study permutations with exactly

r occurrences of a pattern (for some fixed r ≥ 0).

ii

Acknowledgements

First and foremost, I need to thank my advisor Doron Zeilberger for his guidance and

support. He has been crucial to my success as a graduate student, and I am thankful

to have had such a great academic mentor.

I also need to thank my dissertation committee members Vladimir Retakh, Michael

Saks, and Neil Sloane for their patience and guidance as well as their suggestions to

improve the thesis. I have also learned a lot from them throughout my time as a

graduate student (sometimes as a student in their class and in other cases, through

general mathematical discussions).

I also want to offer my appreciation to Gene Fiorini at DIMACS for giving me a

chance to work with the DIMACS REU program and for his continued support (even

after he stopped being my “boss”).

Chapter 2 and some of Chapter 3 have been through the peer-review process, and

I thank the anonymous referees for their suggestions to improve the readability of the

material.

I also owe thanks to many fellow (and former) graduate students for numerous

helpful mathematical discussions. In particular, I would like to thank Andrew Baxter,

Lara Pudwell, and Vince Vatter for the many insightful discussions regarding the field

of permutation patterns.

Finally, I am deeply grateful to my family and many friends for their encouragement

and support throughout my time in graduate school.

iii

Dedication

In memory of my grandmother Sumie Negishi, who will always serve as an inspiration

throughout my life.

iv

Table of Contents

Abstract . ii

Acknowledgements . iii

Dedication . iv

1. Introduction and Background . 1

1.1. Classical pattern avoidance in permutations 1

1.1.1. Background . 1

1.1.2. Wilf-equivalence . 3

1.1.3. Enumerative results . 4

1.1.4. Asymptotic results . 6

1.2. Classical pattern occurrences in permutations 7

1.2.1. Single pattern occurrences . 8

1.2.2. Multiple patterns . 9

1.3. Consecutive patterns in permutations 11

2. Automated Approaches for Consecutive Patterns 14

2.1. Overview . 14

2.2. The cluster method . 16

2.3. Automated derivation of recurrences . 17

2.3.1. General algorithm . 18

2.3.2. Example . 19

2.3.3. Results for c-Wilf-equivalence . 20

2.3.4. Maple implementation . 22

2.4. Automated derivation of functional equations 24

2.4.1. Example . 25

v

2.4.2. General algorithm . 26

2.4.3. Additional results . 28

2.4.4. Maple implementation . 29

2.5. Asymptotic approximations . 30

2.6. Concluding remarks . 31

3. Functional Equations and Algorithms for r Occurrences of a Pattern 33

3.1. Overview . 33

3.2. Patterns of the form 12 . . . k . 35

3.2.1. Permutations containing 123 . 35

3.2.2. Permutations containing 1234 . 41

3.2.3. Extending to longer patterns . 44

3.3. Patterns of the form 12 . . . (k − 2)(k)(k − 1) 45

3.3.1. Permutations containing 132 . 45

3.3.2. Permutations containing 1243 . 48

3.3.3. Extending to longer patterns . 50

3.4. Patterns of the form 23 . . . k1 . 50

3.4.1. Permutations containing 231 . 51

3.4.2. Extending to 2341 and beyond 54

3.5. The pattern 1324 . 57

3.5.1. A functional equations approach to 1324 58

3.5.2. Specializing the approach to r = 0 61

4. Extensions for the Functional Equation Methodology 65

4.1. Overview . 65

4.2. Refining by inversions . 66

4.3. Extending to multiple patterns . 70

4.3.1. Permutations containing 123 and 132 70

4.3.2. Permutations containing 1234 and 1243 72

4.3.3. Other extensions for multiple patterns 73

vi

5. Automating Existing Techniques . 75

5.1. Introduction . 75

5.2. Preliminary definitions . 76

5.3. Extending the approach for 312 . 79

5.3.1. Review of r = 1 case . 80

5.3.2. Review of r = 2 case . 82

5.3.3. Automating the approach . 87

Finding the base subpaths . 87

Piecing everything together . 89

References . 91

vii

1

Chapter 1

Introduction and Background

1.1 Classical pattern avoidance in permutations

The focus of this thesis is on studying permutations that satisfy certain properties

(namely, the avoidance or containment of certain patterns). This is an active field of

research with hundreds of papers published in the past few decades. Given the enormous

volume of work in this area, we will restrict this introduction chapter primarily to

background that is most relevant to this thesis. There are several sources for a more

broad overview of the field including recent survey articles by Kitaev and Mansour [30]

and Steingŕımsson [56] as well as books by Bóna [12] and Kitaev [29].

Let Sn be the symmetric group of permutations of {1, 2, . . . , n}. Throughout the

rest of this work, the permutations will be written in one-line notation. Given two

finite sequences of distinct numbers σ = σ1, σ2, . . . , σk and τ = τ1, τ2, . . . , τk, we say

that σ and τ are order-isomorphic if for every i and j (i 6= j), σi < σj if and only

if τi < τj . The sequence σ = σ1, σ2, . . . , σk will usually be written more compactly

as σ = σ1σ2 . . . σk. Also, given a finite sequence of distinct numbers σ = σ1σ2 . . . σk,

we define the reduction of this sequence, denoted by red(σ), to be the unique length k

permutation that is order-isomorphic to σ. For example, red(63915) = 42513.

1.1.1 Background

Given a (permutation) pattern σ = σ1 . . . σk ∈ Sk and permutation π = π1 . . . πn ∈ Sn,

we say that π contains the pattern σ if there exists 1 ≤ i1 < . . . < ik ≤ n such that

red(πi1 . . . πik) = σ. Each such subsequence in π will be referred to as an occurrence

of the pattern σ. If there are no occurrences of σ in π, then we will say that π avoids

2

the pattern σ. For example, if pattern σ = 123, then the permutation 635412 avoids

the pattern σ while the permutation 354621 contains two occurrences of the pattern

σ (namely, the subsequences 356 and 346). In our work, the patterns discussed will

always be permutations as well.

Given a pattern σ, we define the following set:

Sn(σ) := {π ∈ Sn : π avoids σ} . (1.1)

The number of length n permutations avoiding σ will be denoted by sn(σ) := |Sn(σ)|.

We also consider a natural generalization. Let B be a set of patterns. We say that the

permutation π avoids B if for every σ ∈ B, π avoids the pattern σ. The analogous set

is defined as:

Sn(B) :=
⋂
σ∈B
Sn(σ). (1.2)

Similarly, the number of length n permutations avoiding B will be denoted by sn(B) :=

|Sn(B)|.

The study of patterns in permutations has origins in the study of sorting permu-

tations. In computer science, a stack is a first-in, last-out data structure that permits

two operations: push and pop. The push operation places the next unread entry of the

input onto the stack, while the pop operation takes the top-most entry off the stack

(whatever was last pushed onto stack) and makes it the next term of the final output. A

permutation π ∈ Sn is defined to be stack-sortable if it can be “sorted” to produce the

identity permutation 12 . . . n with only one pass through a single stack. The study of

permutation patterns began in earnest after Knuth’s characterization of stack-sortable

permutations [31]:

Theorem 1. A permutation is stack-sortable if and only if it avoids the pattern 231.

Much work has been done since then on studying permutations that are sortable with

multiple stacks and other data structures. Another major area of study has been in

enumerating permutations that avoid a pattern (or set of patterns). We proceed by

reviewing some known results.

3

1.1.2 Wilf-equivalence

Two patterns σ and τ are said to be Wilf-equivalent if sn(σ) = sn(τ) for all n ≥

0. Patterns that are Wilf-equivalent are said to belong in the same Wilf-equivalence

class. While there is no result providing necessary and sufficient conditions for Wilf-

equivalence, there are several trivial Wilf-equivalences.

First, we define a few operations on permutations. Given a permutation π =

π1 . . . πn, we define the reversal of the permutation, denoted by πr, to be the permu-

tation πnπn−1 . . . π1. Similarly, we define the complement of the permutation, denoted

by πc, to be πc = π′1 . . . π
′
n, where π′i = n − πi + 1. For example, if π = 21435, then

πr = 53412 and πc = 45231. Finally, we define the inverse of the permutation, denoted

by π−1, to be π−1 = π′1 . . . π
′
n, where π′i = j if and only if πj = i. In essence, π is

viewed as a bijection from {1, . . . , n} to {1, . . . , n}, and π−1 is the functional inverse.

For example, if π = 42351, then π−1 = 52314.

This leads to the following lemma:

Lemma 1. Given a pattern σ ∈ Sk and a permutation π ∈ Sn, the following are

equivalent:

• π avoids σ

• πr avoids σr

• πc avoids σc

• π−1 avoids σ−1

Given any pattern σ, the lemma implies that σ, σr, σc, and σ−1 all belong to the

same Wilf-equivalence class. It should be noted, however, that these four patterns

are not necessarily distinct. For example, if σ = 1234, then σ = σ−1 = 1234 while

σr = σc = 4321.

We also note one non-trivial Wilf-equivalence result. This requires one additional

operation on permutations. Given two permutations τ = τ1 . . . τm ∈ Sm and π =

π1 . . . πn ∈ Sn, we define their direct sum, denoted by τ ⊕ π, to be the length m + n

4

permutation given by

τ ⊕ π := τ1τ2 . . . τm(π1 +m)(π2 +m) . . . (πn +m).

The direct sum can be considered a natural way of concatenating two permutations to

form a larger permutation.

Using this notion, Backelin, West, and Xin proved the following result [4]:

Theorem 2. Let τ = 12 . . .m and let π be any permutation. Then the permutation

τ ⊕ π is Wilf-equivalent to τ r ⊕ π.

For example, this theorem implies that 12 ⊕ 1 = 123 and 21 ⊕ 1 = 213 are Wilf-

equivalent. Using this fact and the trivial Wilf-equivalences, we have that all length 3

patterns belong to the same equivalence class. An earlier result by Stankova also shows

that the patterns 1342 and 2413 are Wilf-equivalent [55]. These results, combined with

the trivial Wilf-equivalences, show that there are exactly three Wilf-equivalence classes

for length 4 patterns. The classes are represented by the patterns 1234, 1324, and 1342.

Some known enumerative results will be discussed in the next subsection.

1.1.3 Enumerative results

A classical question in permutation patterns is to enumerate permutations that avoid a

given pattern or set of patterns. In particular, given a fixed pattern σ, one would want

to either find a closed-form formula (in n) for sn(σ) or at the least, find some efficient

way to generate the sequence. It appears that finding a closed-form for sn(σ) is generally

either very difficult or impossible. A related question is to find asymptotics for how the

sequence grows, but this is also generally difficult. Many unresolved questions remain,

even for certain length 4 patterns.

We will also consider the generating function for the enumerating sequence sn(σ).

Given a pattern σ, we define the corresponding generating function as:

Fσ(x) :=

∞∑
n=0

sn(σ)xn.

5

If the pattern is clear from context, we will often write F (x). Another question of

interest is whether, for a given pattern, its generating function is of a certain type (for

example, is it rational, algebraic, or holonomic?).

We begin by reviewing some of the known results for avoiding a single pattern.

There is only one pattern of length one, namely 1 ∈ S1, and we trivially have:

sn(1) =


1 n = 0

0 n ≥ 1 .

For length two patterns, 12 is Wilf-equivalent to 21, so there is only one equivalence

class. For all n, we trivially have:

sn(12) = 1.

For length three patterns, the trivial Wilf-equivalences show that there are at most two

Wilf-equivalence classes: {123, 321} and {132, 213, 231, 312}. It turns out, however, that

all length three patterns belong to the same equivalence class. More specifically, the

exact enumeration of these permutations is known [31, 53], and we have the following:

sn(123) = sn(132) = Cn,

where Cn = 1
n+1

(
2n
n

)
, the n-th Catalan number. Many proofs exist for this result

including a number of bijective proofs [16].

The situation becomes much more complicated from length four patterns. There

are three Wilf-equivalence classes, and the representative patterns are 1234, 1342, and

1324. The enumeration of the first two are known, but the pattern 1324 has been

notoriously difficult to enumerate thus far.

For the pattern 1234, Gessel showed in [26]:

Theorem 3 (Gessel, 1990).

sn(1234) =
1

(n+ 1)2(n+ 2)

n∑
k=0

(
2k

k

)(
n+ 1

k + 1

)(
n+ 2

k + 1

)

For the pattern 1342, Bóna showed in [8]:

6

Theorem 4 (Bóna, 1996).

sn(1342) = (−1)n−1 · 7n2 − 3n− 2

2
+ 3

n∑
i=2

(−1)n−i2i+1 (2i− 4)!

i!(i− 2)!

(
n− i+ 2

2

)
Unfortunately, no exact enumeration or generating function is known for 1324. It is

not known if the sequence sn(1324) is even polynomially recursive (or more concisely,

P-recursive).1 No non-recursive formula is known for computing this sequence. Mari-

nov and Radoičić found a recurrence for the sequence and used it to compute the first

20 terms of the sequence [39]. Albert et al. developed another approach [1] to compute

sn(1324) up to n = 25 and establish an asymptotic lower bound, which will be men-

tioned in greater detail in the next subsection. All known terms are currently listed in

the On-Line Encyclopedia of Integer Sequences [54] (sequence A061552).

Finally, it should be noted that there are four general enumeration methods that

tend to be applied frequently in enumerating pattern-avoiding permutations: generating

trees, substitution decomposition, insertion encoding, and enumeration schemes. Vat-

ter provides a detailed comparison of these techniques in [57]. None of these methods

are guaranteed to work for every pattern. While the first three methods can some-

times produce generating functions, the fourth method (enumeration schemes) yields

complicated recurrences that generally does not motivate generating functions. On the

other hand, enumeration schemes is an automated approach that has been extendable

to other variations of permutation pattern problems.

1.1.4 Asymptotic results

Given the difficulty of enumerating pattern-avoiding permutations exactly, a related

problem is to study the asymptotic growth of the sequence. The most famous conjecture

of this type in permutation patterns was the Stanley-Wilf conjecture:

Conjecture 1 (Stanley, Wilf). Given any pattern σ, there exists a constant C (de-

pending only on σ) such that sn(σ) < Cn for every n.

1Recall that a sequence is P-recursive if it satisfies a homogeneous linear recurrence with polynomial
coefficients.

7

Given a pattern σ, we also define the Stanley-Wilf limit of σ as

L(σ) := lim
n→∞

n
√
sn(σ).

Arratia showed in [3] that the Stanley-Wilf conjecture was equivalent to the following:

Conjecture 2. Given any pattern σ, L(σ) exists.

The conjecture was finally proved by Marcus and Tardos [38], who provided a surpris-

ingly short and elementary proof. In actuality, they proved a different conjecture, known

as the Füredi-Hajnal Conjecture, which was previously shown to imply the Stanley-Wilf

Conjecture.

Recall that there is only one Wilf-equivalence class of length 2 patterns. We trivially

have that L(σ) = 1 for any σ ∈ S2. Also recall that all length 3 patterns are counted

by the Catalan numbers. This gives us that L(σ) = 4 for any σ ∈ S3. For length 4

patterns, there are three equivalence classes that are represented by 1234, 1342, and

1324. Since we have the exact enumeration for the first two patterns, we can find that

L(1234) = 9 and L(1342) = 8. However, the exact Stanley-Wilf limit for 1324 remains

unknown.

A lower bound of 9.47 for L(1324) was found by Albert et al. in [1]. There have also

been improvements for the upper bound recently. In [15], Claesson, Jeĺınek, and Ste-

ingŕımsson produced an upper bound of 16 for the Stanley-Wilf limit. Their approach

was modified by Bóna in [7] to improve the bound to 7 + 4
√

3 ≈ 13.93. Based off of

computational simulations, it is believed that the actual limit is very close to 11 [56].

1.2 Classical pattern occurrences in permutations

We now consider a generalization of the pattern avoidance problem. For a pattern τ

and non-negative integer r ≥ 0, we define the set

Sn(τ, r) := {π ∈ Sn : π has exactly r occurrences of the pattern τ} .

8

We define the cardinality of the set sn(τ, r) := |Sn(τ, r)|. The corresponding generating

function is defined as

F rτ (x) :=
∞∑
n=0

sn(τ, r)xn.

Observe that the r = 0 case corresponds to the classical pattern avoidance problem,

which was just discussed and has been well studied.

1.2.1 Single pattern occurrences

This more general problem has also been studied, but the work has usually been

restricted to small patterns (usually length 3) and small r. While the trivial Wilf-

equivalences still hold for r ≥ 0, Theorem 2 no longer applies for r > 0. Recall that

the trivial Wilf-equvalences would show that at most two patterns need to be consid-

ered: 123 and 132. While these were Wilf-equivalent in the r = 0 case, they are not

analogously equivalent for r > 0.

In [44], Noonan studied permutations containing exactly one occurrence of 123 and

proved that sn(123, 1) = 3
n

(
2n
n−3

)
. Burstein recently provided a short combinatorial

proof of the result [13]. In [45], Noonan and Zeilberger developed an enumeration

approach using functional equations and reproved Noonan’s result for sn(123, 1). In

addition, they could quickly compute terms of the sequence sn(123, 2) and conjecture

that it was equal to 59n2+117n+100
2n(2n−1)(n+5)

(
2n
n−4

)
. This conjecture was proved by Fulmek in [25]

using “generalized” Dyck paths.2 In addition, Callan gave a new approach [14] for

enumerating permutations with exactly 3 occurrences and exactly 4 occurrences of 123.

More is known for the pattern 132 than for 123. In [45], Noonan and Zeilberger

conjectured that sn(132, 1) =
(

2n−3
n−3

)
. This was proved by Bóna in [10]. The r = 2 case

was done by Fulmek [25] by again considering Dyck paths. Mansour and Vainshtein

[37] presented a different method to find the corresponding generating functions F r132(x)

for any r and used it to explicitly find sn(132, r) for r ≤ 6.

In [9], Bóna also shows that for any r, the sequence given by sn(132, r) is P-recursive.

He actually proved a stronger statement:

2The paths may have “down-jumps” in addition to the traditional “up-steps” and “down-steps”.

9

Theorem 5. For any fixed r ≥ 0, the generating function F r132(x) is algebraic, and

more specifically, is rational in the variables x and
√

1− 4x.

The analogous statement is believed to be true for the pattern 123 but still remains

open:

Conjecture 3. For any fixed r ≥ 0, the generating function F r123(x) is rational in the

variables x and
√

1− 4x.

This conjecture holds for the cases r ≤ 2, for which there are explicit generating func-

tions.

1.2.2 Multiple patterns

This generalized problem can be further extended to consider multiple patterns simul-

taneously. More precisely, let r = [r1, . . . , rk] be a list of non-negative integers, and let

L =
[
τ1, . . . , τk

]
be a list of patterns. For each n, we define the set of permutations

Sn(L, r) :=
k⋂
i=1

Sn(τ i, ri).

The cardinality of the set is denoted by sn(L, r) := |Sn(L, r)|. Stated more simply,

Sn(L, r) is the set of permutations that have ri occurrences of τ i for every i. Note that

the single pattern case corresponds to k = 1. While some work has been done for the

k > 1 case, the work is often restricted to length 3 patterns (and usually k = 2).

In [53], Simion and Schmidt enumerated sn([σ, τ] , [0, 0]) for all σ, τ ∈ S3. Robertson

[50] found closed-form expressions for sn([123, 132] , [r1, r2]) for every combination of

r1, r2 = 0, 1. Quite a bit of related work has been done since then (for example, in [22,

35, 36, 34, 51, 52]). However, there is still no exact enumeration of sn([123, 132] , [r1, r2])

for general r1 and r2.

In [45], Noonan and Zeilberger also made the general conjecture:

Conjecture 4. For any list of occurrences r = [r1, . . . , rk] and list of patterns L =[
τ1, . . . , τk

]
, the sequence sn(L, r) is P-recursive in n.

10

Although the Noonan-Zeilberger Conjecture has been shown to hold for specific pat-

terns, it remains open even for the special case of single pattern avoidance (i.e., k = 1

and r1 = 0).

Another extension in permutation patterns is to consider refining some set of per-

mutations over some “permutation statistic”. More precisely, a permutation statistic is

a function h :
⋃
n≥0 Sn → C, although for most permutation statistics, the range is the

non-negative integers. Given a set of permutations S and a variable q, we will often

consider the quantity

∑
π∈S

qh(π).

This is often referred to as the refinement of S over the permutation statistic h.

One of the most commonly studied permutation statistic is the number of inversions

in a permutation. The inversion number of a permutation π = π1 . . . πn, denoted by

inv(π), is the number of pairs (i, j) such that 1 ≤ i < j ≤ n and πi > πj . In the

language of classical patterns, the inversion number is the number of occurrences of

the pattern 21. For example, inv(31425) = 3. The inversion number is the minimum

number of adjacent transpositions needed to “sort” a permutation into the identity

permutation 12 . . . n, and in a sense, represents how “unsorted” the permutation is.

A classical result by Netto [43] shows that for each n,

∑
π∈Sn

qinv(π) = (1)(1 + q)(1 + q + q2) . . . (1 + q + . . .+ qn−1),

which is the well-known q-analog of n!. A more commonly studied question is to con-

sider refining pattern-avoiding permutations (for some fixed pattern) over the inversion

number. More precisely, given a fixed pattern σ, we define the polynomial

Aσ(q, n) :=
∑

π∈Sn(σ)

qinv(π).

One would like to know more about either this polynomial or the more general bivariate

generating function (in variables q and t):

∞∑
n=0

Aσ(q, n)tn.

11

Some work has been done in this area, for example in [11].

There is also an interesting conjecture by Claesson, Jeĺınek, and Steingŕımsson [15]:

Conjecture 5. The number of permutations in Sn(1324) with a fixed number k of

inversions is increasing as a function of n.

Restated using this section’s notation, the conjecture is that for each fixed k,

sn([21, 1324] , [k, 0]) is an increasing sequence (in n). It is shown in [15] that this con-

jecture (if true) would immediately improve the upper-bound of the Stanley-Wilf limit

for 1324 to be L(1324) < eπ
√

2/3 ≈ 13.001954. The authors further believe that this

conjecture holds for any non-increasing pattern:

Conjecture 6. For each fixed k and pattern τ ∈ Sm \ {12 . . .m}, sn([21, τ] , [k, 0]) is

an increasing sequence (in n).

Observe that the conjecture fails when τ is an increasing pattern due to the Erdős-

Szekeres Theorem, which we restate using our notation:

Theorem 6. For any fixed j and k, sn([12 . . . j, k . . . 21] , [0, 0]) = 0 for all n ≥ (j −

1)(k − 1) + 1.

1.3 Consecutive patterns in permutations

In addition to the classical notion of pattern containment, many generalizations and

variations have gained attention in recent years. One such variation is the study of

consecutive patterns in permutations, where the pattern is required to occur in con-

secutive entries. Recall that given a sequence of distinct numbers σ = σ1 · · ·σk, the

reduction of the sequence, denoted by red(σ) is the unique length k permutation that

is order-isomorphic to σ.

Let m and n be positive integers with m ≤ n, and let σ ∈ Sm and π = π1 · · ·πn ∈ Sn.

We say that π contains σ consecutively if red(πi · · ·πi+m−1) = σ for some i where

1 ≤ i ≤ n − m + 1. Otherwise, we say that π avoids σ consecutively. For example,

the permutation 123654 ∈ S6 contains the permutation pattern 1243 (given by the

12

subsequence 2365). However, the permutation 12453 ∈ S5 avoids the pattern 1243

consecutively (even though 1243 is contained as a classical pattern).

The first extensive study in this area was done by Elizalde and Noy [23], where they

considered length 3 and 4 patterns. There has been quite a bit of work in this area since

then, for example in [2, 18, 33, 40, 17, 19, 28, 41, 49, 24]. We will utilize this section

to highlight some interesting differences between the consecutive pattern problem and

the classical pattern problem.

Given a fixed pattern σ, let αn(σ) be the number of length n permutations avoiding

the consecutive pattern σ. We will say that the two patterns σ and τ are consecutively

Wilf-equivalent (or more concisely c-Wilf-equivalent) if αn(σ) = αn(τ) for all n ≥ 0.

We will also say that patterns that are c-Wilf-equivalent belong to the same c-Wilf-

equivalence class. In this setting, a pattern is still c-Wilf-equivalent to its reversal and

complement, but it is not necessarily equivalent to its inverse. For example, the inverse

of the permutation 1342 is the permutation 1423, but it has been shown that these are

not c-Wilf-equivalent. Additionally, the other Wilf-equivalence result, Theorem 2, no

longer holds in the consecutive setting.

For length 3 patterns, the consecutive patterns 123 and 132 are not c-Wilf-equivalent.

Elizalde and Noy derive exponential generating functions for these patterns in [23]. For

length 4 patterns, there are 7 c-Wilf-equivalence classes (as opposed to just 3 in the

classical pattern case). The classes are represented by the patterns: 1234, 2413, 2143,

1324, 1423, 1342, and 1243. The patterns 1234, 1243, and 1342 were solved in [23] while

the pattern 1324 was solved in [24]. However, there are currently no closed solutions

known for 1423, 2143, and 2413.

Similar to the Stanley-Wilf Conjecture for classical patterns, Warlimont made the

following conjecture regarding the asymptotics [58]:

Conjecture 7. Given any consecutive pattern σ, there exists constants γ > 0 and

w < 1 such that αn(σ)/n! ∼ γwn.

This conjecture was proved by Ehrenborg, Kitaev, and Perry in [19] using spectral

theory. In recent work [20], Elizalde showed that for τ ∈ Sk, αn(τ) is asymptotically

13

maximal for the pattern 12 . . . k and asymptotically minimal for the pattern 12 . . . (k−

2)(k)(k − 1). This answered conjectures in [23] and [41]. Shortly after, Perarnau

provided a probabilistic proof for the maximal pattern case [47]. It remains open

whether these conjectures hold for all n (and not just asymptotically).

14

Chapter 2

Automated Approaches for Consecutive Patterns

Notice: The content of this chapter is adapted from Nakamura [41].

2.1 Overview

Let σ = σ1 · · ·σk be a sequence of k distinct real numbers. Recall that the reduc-

tion red(σ) is the length k permutation obtained by relabeling the elements of σ with

{1, . . . , k} so that σ and red(σ) are order-isomorphic. For example, red(5386) = 2143.

For a permutation π, we will also write |π| for the number of elements in the permuta-

tion.

Consider a fixed pattern σ ∈ Sm and permutation π = π1 · · ·πn ∈ Sn. Recall that π

contains σ consecutively if red(πi · · ·πi+m−1) = σ for some i where 1 ≤ i ≤ n−m+ 1.

Otherwise, we say that π avoids σ consecutively. Similarly, if B is a set of permutations,

then we say that π avoids B consecutively if for every τ ∈ B, π avoids the pattern τ

consecutively. For example, the permutation 123654 ∈ S6 contains the permutation

pattern 1243, since red(2365) = 1243. However, the permutation 12453 ∈ S5 avoids the

pattern 1243 consecutively (even though 1243 is contained as a classical pattern).

In general, we are interested in counting permutations that avoid a pattern (or a

set of patterns). Given a set of patterns B, let αn(B) be the number of length n

permutations that avoid B consecutively. If B consists of only a single pattern π, we

may write αn(π) instead, and if no ambiguity would arise, we may just write αn. For

a given set of patterns B, we would like to find the exponential generating function

GB(z) :=

∞∑
n=0

αn
zn

n!
.

If no ambiguity would arise, this may also be denoted by G(z). In addition, we define

15

a more general exponential generating function

PB(z, t) :=
∑
k,n≥0

bk,n
zntk

n!

where bk,n is the number of length n permutations that contain exactly k occurrences

of the patterns in B. Again, we may write P (z, t) if the set B is clear. We will also

define cn(t) =
∑

k≥0 bk,nt
k. Note that P (z, 0) = G(z) and cn(0) = αn.

In addition, we will say that two sets of patterns B and B′ are consecutively Wilf-

equivalent (or more concisely c-Wilf-equivalent) if GB(z) = GB′(z). We will also say

that B and B′ are strongly c-Wilf-equivalent if PB(z, t) = PB′(z, t). Since this chapter

deals solely with consecutive patterns, the word “consecutive” will be omitted in most

instances. For the rest of this chapter, the reader should assume that all mentions of

containment, avoidance, and Wilf-equivalence are consecutive.

In recent years, there has been an increasing amount of research done on consecutive

pattern avoidance in permutations. An early paper of Elizalde and Noy [23] finds

generating functions G(z) and P (z, t) for certain cases of single pattern avoidance.

Using various techniques, additional generating functions for specific single patterns

and multi-pattern sets have been found in [2, 33, 40, 17]. There is also recent work in

vincular patterns (a generalization of consecutive patterns) using enumeration schemes

by Baxter and Pudwell in [6]. In particular, our approach will resemble the cluster

method approach in [17].

So far, generating functions have been found for specific single patterns and multi-

pattern sets and for certain single pattern families where some specific structure can

be exploited. In this paper, we will outline two algorithms to calculate αn and cn(t)

more efficiently, and both algorithms have been implemented in the accompanying

Maple package CAV. The Maple package can be downloaded from the author’s website.

As a result of the first algorithm in Section 2.3, we get a theorem for proving when

two sets of patterns are strongly c-Wilf-equivalent. During preparation of the paper

containing this work [41], the author learned that this result was also independently

proven by Khoroshkin and Shapiro in [28] by slightly different means. To establish

the much faster second algorithm in Section 2.4, we define a new generating function

16

which we refer to as the cluster tail generating function. We show that this generating

function always satisfies a certain functional equation and give a constructive approach

to finding it. This functional equation is then used to compute values for αn much more

quickly. We use our algorithm to give some asymptotic approximations in Section 2.5.

We conclude with Section 2.6 by sharing some new conjectures we have based off of

experimentation with our CAV package.

2.2 The cluster method

The results in this work utilize an extension of the cluster method of Goulden and Jack-

son [27, 46]. The cluster method itself is based off of the inclusion-exclusion principle.

We restate some of the terminology and notation here.

Let B be a set of patterns. Without loss of generality, assume that B contains no

trivial redundancies (i.e., there are no π1, π2 ∈ B with π1 6= π2 such that π1 contains

π2). We say that an ordered pair (π; [[i1, j1], . . . , [im, jm]]) is a length k cluster (or more

concisely, a k-cluster) if it satisfies the following:

(a) π ∈ Sk

(b) i1 = 1, jm = k, and in < in+1 < jn for 1 ≤ n ≤ m− 1 (i.e., each interval overlaps

with the neighboring interval, and the intervals cover π)

(c) red(πin · · ·πjn) ∈ B for all 1 ≤ n ≤ m.

Given a cluster (π; [[i1, j1], . . . , [im, jm]]), we will refer to red(πin · · ·πjn) as the n-th

marked pattern in the cluster. Note that the same underlying permutation π may

appear in different k-clusters. For example, suppose that B = {123}. Then, the

cluster (12345; [[1, 3], [3, 5]]), which has two marked patterns, is different from the cluster

(12345; [[1, 3], [2, 4], [3, 5]]), which has three marked patterns.

Let Ck be the set of clusters of length k, and for a cluster w = (π; [[i1, j1], . . . , [im, jm]]),

define weight(w) = (t − 1)m, where t will be the variable used to track occurrences.

Let C(k) =
∑
w∈Ck

weight(w). From an adaptation of [27] to the present context of an

“infinite” alphabet and exponential generating functions, we have:

17

Theorem 7.

P (z, t) =
1

1− z −
∑
k≥1

C(k) z
k

k!

(2.1)

In the remainder of this chapter, we will derive a recurrence from this theorem and use

this recurrence as the basis for our subsequent algorithms and results.

2.3 Automated derivation of recurrences

Let B be a set of patterns that we would like to avoid (consecutively). For the rest

of this chapter, we assume that B contains no redundancies (i.e., there does not exist

p1, p2 ∈ B with p1 6= p2 such that p1 contains p2). Again, αn will be the number of

length n permutations avoiding B, and cn(t) will be the polynomial in t where the

coefficient of tk is the number of length n permutations with exactly k occurrences of

patterns in B.

From the cluster method of Goulden and Jackson (Theorem 7), we can get the

equation

P (z, t) = 1 + zP (z, t) + P (z, t)
∑
k≥1

C(k)
zk

k!

and by extracting the coefficients of zn, we get the following recurrence:

cn(t) = ncn−1(t) +
n∑
k=1

(
n

k

)
C(k)cn−k(t). (2.2)

Additionally, consider a fixed p ∈ B and letm = |p|. Let Ck[p] = {(π; [[i1, j1], . . . , [ir, jr]]) ∈

Ck : red(πir · · ·πjr) = p}, the set of length k clusters ending in the pattern p. Let

Ck[p; [x1, . . . , xm]] be the clusters in Ck[p] with the last m terms {x1, . . . , xm}, where

x1 < x2 < . . . < xm. Similarly, define

C(k, p) :=
∑

w∈Ck[p]

weight(w) (2.3)

C(k, p; [x1, . . . , xm]) :=
∑

w∈Ck[p;[x1,...,xm]]

weight(w). (2.4)

If B contains only one pattern, these may be denoted by C(k) and C(k; [x1, . . . , xm]),

respectively. We will use Equation (2.2) to compute αn and, more generally, cn(t).

18

2.3.1 General algorithm

Computationally, the difficulty in using Equation (2.2) lies in calculating C(k) quickly.

One way to do this is to create a recurrence for C(k, p; [x1, . . . , x|p|]) for each p ∈ B.

We can do this as follows: for a given cluster w, let p1 and p2 be the last marked

pattern and the second to last marked pattern in w, respectively. Let j be the length

of the overlap of p1 and p2 in w, i.e., the tail of length j of p2 coincides with the head

of length j of p1. We want to “chop off” the last |p1| − j terms of w and apply the

reduction to get a shorter cluster, say w′ ∈ Ck′ [p2; [x1, . . . , x|p2|]], which ends in the

pattern p2. Then, weight(w) = weight(p1) · weight(w′).

Additionally, once we “chop off” the tail of p1 and apply the reduction to get a

shorter cluster w′, we actually know what the last j terms of w′ = w′1 · · ·w′k′ will

be. For each term w′i with |w′| − j + 1 ≤ i ≤ |w′|, the reduction forces w′i to

be wi − (# of terms in w “chopped off” that were less than wi). Thus, to compute

C(k, p1; [x1, . . . , x|p1|]), we need to sum over all possible ways to “fill out” the rest

of the terms in the final p2 pattern of w′. We also need to sum over all possible choices

of p2 ∈ B and all possible ways that the tails of this p2 overlap with the heads of the

final p1 pattern.

In summary, the number of length n permutations avoiding set B can be found by,

first, generating a cluster recurrence for C(k, p; [x1, . . . , x|p|]) for each p ∈ B. Next, use

the recurrence αn = nαn−1 +
n∑
k=1

(
n
k

)
C(k)αn−k using the base cases α0 = α1 = 1 and

αn = 0 if n < 0. Use the cluster recurrences to compute C(k) as needed:

C(k) =
∑
p∈B

C(k, p)

C(k, p) =
∑

1≤x1<x2<...<xm≤k
C(k, p; [x1, . . . , xm]).

Also recall that if w = (π; [i1, j1], . . . , [im, jm]), then weight(w) = (t − 1)m will

keep track of occurrences of patterns with variable t, while setting t = 0 and using

weight(w) = (−1)m would count only the permutations that avoid the designated

pattern set B.

19

2.3.2 Example

LetB = {2143}. Let w = (π; [[i1, j1], . . . , [im, jm]]) be a length k cluster and {x1, . . . , x4}

be the last 4 terms of w with x1 < . . . < x4 (i.e., πk−3 = x2, πk−2 = x1, πk−1 = x4, and

πk = x3). Then, the second to last pattern must also be a 2143 pattern and can have

an overlap of length 1 or 2 with the last pattern.

If the overlap is of length 2, let π′ = red(π1 · · ·πk−2) and w′ = (π′; [[i1, j1], . . . , [im−1, jm−1]]),

the cluster found by “chopping off” the tail of the final marked pattern in w and then

canonically reducing. Now let {y1, . . . , y4} be the last 4 terms of w′ with y1 < . . . < y4

(i.e., π′k−3 = y2, π′k−2 = y1, π′k−1 = y4, and π′k = y3). Notice that the terms “chopped

off” from w were x4 and x3. Since both of these are larger than both x2 and x1, apply-

ing the reduction does not change their values. Thus, y4 = x2 and y3 = x1. Summing

over all possible tails for w′ and accounting for the last pattern that was removed from

w, we get

∑
1≤y1<...<y4≤k−2

y3=x1
y4=x2

weight(2143) · C(k − 2; [y1, y2, y3, y4]).

If the overlap is of length 1, let π′ = red(π1 · · ·πk−3) and w′ = (π′; [[i1, j1], . . . , [im−1, jm−1]]),

since the tail that gets “chopped off” has 3 terms. Again, let {y1, . . . , y4} be the last

4 terms of w′ with y1 < . . . < y4 (i.e., π′k−3 = y2, π′k−2 = y1, π′k−1 = y4, and π′k = y3).

The terms “chopped off” from w are x1, x4, and x3. Since exactly one term less

than x2 (only x1) was removed, applying the reduction would reduce x2 by 1. Thus,

y3 = x2 − 1. Summing over all possible tails for w′ and accounting for the last pattern

that was removed from w, we get

∑
1≤y1<...<y4≤k−3

y3=x2−1

weight(2143) · C(k − 3; [y1, y2, y3, y4]).

We combine the two possibilities along with the base cases to get the recurrence.

For k < 4:

C(k; [x1, x2, x3, x4]) = 0

20

For k = 4:

C(k; [x1, x2, x3, x4]) = weight(2143)

For k > 4:

C(k; [x1, x2, x3, x4]) =
∑

1≤y1<...<y4≤k−3
y3=x2−1

weight(2143) · C(k − 3; [y1, y2, y3, y4]) (2.5)

+
∑

1≤y1<...<y4≤k−2
y3=x1
y4=x2

weight(2143) · C(k − 2; [y1, y2, y3, y4])

Using this recurrence, we can compute C(k) for any value of k and compute αn us-

ing Equation (2.2). To keep track of all occurrences of 2143 with the variable t, let

weight(2143) = t − 1. To only count permutations that avoid 2143, set t = 0 so that

weight(2143) = −1 for the above recurrence.

2.3.3 Results for c-Wilf-equivalence

Even though Section 2.3.1 is algorithmic in nature, it yields a strong theoretical byprod-

uct. The cluster recurrence generated by the pattern set B totally determines αn. In

fact, it also totally determines P (z, t). However, the “overlapping” relations between

the patterns in B totally determine the cluster recurrence.

More specifically, let B be the set of patterns we want to avoid, and let τ, σ ∈ B

where m = |τ | and n = |σ|. Note that τ and σ are not necessarily distinct. Suppose

that red(σn−j+1 · · ·σn) = red(τ1 · · · τj) (the tail of σ and the head of τ has an overlap

of length j). Then, define the following sets:

OverlapMap(σ, τ, j) := {(τ1, σn−j+1), (τ2, σn−j+2), . . . , (τj , σn)}

OverlapMaps(σ, τ) := {OverlapMap(σ, τ, j) : red(σn−j+1 · · ·σn) = red(τ1 · · · τj)}

For example, in Section 2.3.2, the pattern 2143 has self-overlaps of length 1 and 2.

For a length 1 overlap, we have OverlapMap(2143, 2143, 1) = {(2, 3)}. This combined

with the length of the pattern, which is 4, and the length of the original cluster, de-

noted by k, completely determines the first summation in Equation (2.5). Similarly,

21

for a length 2 overlap, we have OverlapMap(2143, 2143, 2) = {(2, 4), (1, 3)}. Com-

bining this with the length of the pattern, again 4, and the length of the original

cluster, again k, completely determines the second summation in Equation (2.5). Thus,

OverlapMaps(2143, 2143) = {{(2, 3)}, {(2, 4), (1, 3)}} and |2143| = 4 completely deter-

mines the cluster recurrence. Therefore we have the following result based off of our

algorithm:

Theorem 8. Let B and B′ be two sets of patterns with |B| = |B′|. Suppose there is

some labeling of the elements (patterns) in sets B and B′, say B = {p1, . . . , pk} and

B′ = {p′1, . . . , p′k}, such that |pi| = |p′i| for 1 ≤ i ≤ k, and OverlapMaps(pi, pj) =

OverlapMaps(p′i, p
′
j) for all 1 ≤ i, j ≤ k. Then, B and B′ are strongly c-Wilf-

equivalent.

Proof. The cluster recurrence was uniquely determined by how the patterns overlapped

(which terms from one pattern overlapped with which terms of another pattern) and

by how they reduced after “chopping” the last pattern from the current cluster. The

possible ways that two patterns can overlap are encoded by OverlapMaps and the effect

of the reduction is determined by how the patterns overlapped and the length of those

patterns.

This result was also independently discovered by Khoroshkin and Shapiro [28].

Using this result, it is possible to classify c-Wilf-equivalences in some cases. For

example, it is possible to classify single pattern avoidance for single patterns of length

3, 4, and 5 since all the potential equivalences that occur can be demonstrated using

Theorem 8. Using the same approach, we can classify almost all single patterns of

length 6. All that remains are four possible strong c-Wilf-equivalences that appear true

but cannot be rigorously proven through our means. They are the following:

(1) The pattern 123546 appears to belong to the strong c-Wilf-equivalence class

{124536, 125436}.

(2) The pattern 123645 appears to belong to the strong c-Wilf-equivalence class

{124635, 126435}.

22

(3) The patterns 132465 and 142365 appear to be strongly c-Wilf-equivalent.

(4) The patterns 154263 and 165243 appear to be strongly c-Wilf-equivalent.

The above four conjectures were recently proven by Elizalde and Noy [24], which com-

pletes the classification of length 6 patterns. In total, there are 92 c-Wilf-equivalence

classes for single patterns of length 6. Additionally, every pair of c-Wilf-equivalent pat-

terns (up to length 6) is in fact strongly c-Wilf-equivalent. More detailed information

(including all the equivalences mentioned above) can be found on the author’s website.

2.3.4 Maple implementation

The algorithm from Section 2.3.1 has been implemented in the Maple package CAV.

Using that algorithm and given a set of patterns B to avoid, you can find the sequence

α1, . . . , αn by calling the procedure CAV(B,n), where the patterns in B are represented

as lists. For example, for n = 10 andB = {123, 321}, trying CAV({[1,2,3],[3,2,1]},10);

returns the output:

[1, 2, 4, 10, 32, 122, 544, 2770, 15872, 101042]

To keep track of the occurrences of patterns from B, use the procedure CAVt(B,n,t).

For example, trying CAVt({[1,2,3],[3,2,1]},6,t); returns the output:

[1, 2, 4 + 2t, 10 + 12t+ 2t2, 58t+ 28t2 + 32 + 2t3, 300t+ 236t2 + 122 + 60t3 + 2t4]

Also, most of the main procedures in the Maple CAV package have an optional verbose

setting. For example, for the verbose outputs, try CAV({[1,2,3],[3,2,1]},10,true);.

To generate the cluster recurrence only (encoded in a data structure that we call a

cluster scheme), use the procedure SCHEME(k,B,x,y,t). For example, try SCHEME(k,

{[1,2,3], [3,2,1]},x,y,t);. Note that our cluster schemes are different from enu-

meration schemes that currently appear in permutation patterns literature. The overlap

maps between two patterns can also be found using OverlapMaps(p1,p2), which checks

for overlaps between tails of p1 with heads of p2. For example, try OverlapMaps([2,1,4,3],

[2,1,4,3]).

23

To (attempt to) classify pattern sets of m patterns with each pattern length n,

we can compute αN (for some fixed value N) for each of these pattern sets, and if

the αN values coincide, try to apply Theorem 8. This has been implemented in the

procedure WilfEqm(n,N,m). For example, try WilfEqm(5,12,1) (or for the verbose

output, WilfEqm(5,12,1,true)) to (rigorously) classify c-Wilf-equivalence for all single

patterns of length 5. An additional byproduct of Theorem 8 is that all instances of c-

Wilf-equivalence in single length 5 patterns are actually strong c-Wilf-equivalence. The

25 c-Wilf-equivalence classes can be found on the paper’s website.

Similarly, we can use the WilfEqm procedure to discover the following:

Corollary 1. Let B1 and B2 both be sets containing two patterns of length 3. Then B1

is c-Wilf-equivalent to B2 if and only if they are trivially equivalent by reversal and/or

complementation.

Proof. Run “WilfEqm(3,10,2,true);” using the CAV Maple package.

Corollary 2. Let B1 and B2 both be sets containing two patterns of length 4. Then B1

is c-Wilf-equivalent to B2 if and only if they are trivially equivalent by reversal and/or

complementation.

Proof. Run “WilfEqm(4,10,2,true);” using the CAV Maple package.

Corollary 3. Let B1 and B2 both be sets containing three patterns of length 3. Then B1

is c-Wilf-equivalent to B2 if and only if they are trivially equivalent by reversal and/or

complementation.

Proof. Run “WilfEqm(3,10,3,true);” using the CAV Maple package.

Similarly, nearly all c-Wilf-equivalences could be classified for sets containing three

patterns of length 4. Four pairs of sets appear c-Wilf-equivalent but cannot be proven

through our means. They are the following:

(1) The pattern sets {1234, 1243, 1342} and {1234, 1243, 1432} appear to be strongly

c-Wilf-equivalent.

24

(2) The pattern sets {1234, 1243, 2341} and {1234, 1243, 2431} appear to be strongly

c-Wilf-equivalent.

(3) The pattern sets {1324, 1342, 1423} and {1324, 1423, 1432} appear to be strongly

c-Wilf-equivalent.

(4) The pattern sets {1324, 1423, 2341} and {1324, 1423, 2431} appear to be strongly

c-Wilf-equivalent.

The four cases have been experimentally verified for up to length 14 permutations, and

the rest of the classification can be found on the paper’s website.

2.4 Automated derivation of functional equations

Computationally, the cluster recurrence is faster than the naive approach of checking

every single permutation, but the approach is still very inefficient. For a fixed length k,

not every combination of tails gives rise to a possible cluster. For example, if B = {123},

the only possible underlying permutation in a length 9 cluster is 123456789. The only

possible tail is 789, but using the recurrence, we essentially try all
(

9
3

)
possible tails.

Each such possible tail gives its contribution of 0 only after it has recursed down to the

base cases of k ≤ 3.

We can, however, gain a substantial speed-up by considering a more complicated

generating function. For a fixed pattern p ∈ B of length m, the cluster tail generating

function will be defined as:

F (k, p; [z1, . . . , zm]) :=
∑

1≤x1<...<xm≤k
C(k, p; [x1, . . . , xm])zx11 · · · z

xm
m (2.6)

If B is a single pattern set, this may also be denoted as F (k; [z1, . . . , zm]). Otherwise,

we also define:

F (k; [z1, . . . , zm]) :=
∑
p∈B

F (k, p; [z1, . . . , zm]) (2.7)

Note that F (k, p; [1, . . . , 1]) = C(k, p) and F (k; [1, . . . , 1]) = C(k). In fact, we can

always find a functional equation for F (k, p; [z1, . . . , zm]) of a certain form. We can

25

then combine this with Equation (2.2) to more quickly compute αn. We begin with an

illustrative example and then present the general algorithm.

2.4.1 Example

Let B = {132} and suppose we want to only count permutations that completely avoid

132. We will set t = 0 which gives us weight(132) = −1. We then can find a functional

equation for F (k; [z1, z2, z3]) as follows. Using the procedure SCHEME in the Maple

package CAV, we can get the following cluster recurrence:

C(k; [x1, x2, x3]) = −
∑

1≤y1<y2<y3≤k−2
y2=x1

C(k − 2; [y1, y2, y3])

= −
∑

1≤y1<x1
x1<y3≤k−2

C(k − 2; [y1, x1, y3])

with the base cases C(k; [x1, x2, x3]) = 0 if k < 3 and C(k; [x1, x2, x3]) = −1 if k = 3.

Substituting into Equation (2.6) and applying the finite geometric series formula as

needed, we get:

F (k; [z1, z2, z3]) =
∑

1≤x1<x2<x3≤k
C(k; [x1, x2, x3])zx11 zx22 zx33

= −
k−2∑
x1=1

k−1∑
x2=x1+1

k∑
x3=x2+1

∑
1≤y1<x1

x1<y3≤k−2

C(k − 2; [y1, x1, y3])zx11 zx22 zx33

= −
k−2∑
x1=1

k−1∑
x2=x1+1

∑
1≤y1<x1

x1<y3≤k−2

C(k − 2; [y1, x1, y3])zx11 zx22

k∑
x3=x2+1

zx33

= − z3

1− z3

k−2∑
x1=1

k−1∑
x2=x1+1

∑
1≤y1<x1

x1<y3≤k−2

C(k − 2; [y1, x1, y3])zx11 zx22 (zx23 − z
k
3)

= − z3

1− z3

k−2∑
x1=1

∑
1≤y1<x1

x1<y3≤k−2

C(k − 2; [y1, x1, y3])zx11

k−1∑
x2=x1+1

zx22 (zx23 − z
k
3)

and since

k−1∑
x2=x1+1

zx22 (zx23 − z
k
3) =

(
(z2z3)x1+1 − (z2z3)k

1− z2z3
− zk3

zx1+1
2 − zk2
1− z2

)

26

we get

F (k; [z1, z2, z3]) =− z2z
2
3

(1− z3)(1− z2z3)

k−2∑
x1=1

∑
1≤y1<x1

x1<y3≤k−2

C(k − 2; [y1, x1, y3])(z1z2z3)x1

+
zk2z

k+1
3

(1− z3)(1− z2z3)

k−2∑
x1=1

∑
1≤y1<x1

x1<y3≤k−2

C(k − 2; [y1, x1, y3])zx11

+
z2z

k+1
3

(1− z3)(1− z2)

k−2∑
x1=1

∑
1≤y1<x1

x1<y3≤k−2

C(k − 2; [y1, x1, y3])(z1z2)x1

− zk2z
k+1
3

(1− z3)(1− z2)

k−2∑
x1=1

∑
1≤y1<x1

x1<y3≤k−2

C(k − 2; [y1, x1, y3])zx11

=− z2z
2
3

(1− z3)(1− z2z3)
F (k − 2; [1, z1z2z3, 1])

+
zk2z

k+1
3

(1− z3)(1− z2z3)
F (k − 2; [1, z1, 1])

+
z2z

k+1
3

(1− z3)(1− z2)
F (k − 2; [1, z1z2, 1])

− zk2z
k+1
3

(1− z3)(1− z2)
F (k − 2; [1, z1, 1]).

We can then use the functional equation to compute C(k) = F (k; [1, 1, 1]) for what-

ever k we need and then find αn for the desired n by Equation (2.2).

2.4.2 General algorithm

In general, if we can find a functional equation for F (k, p; [z1, . . . , zm]) that relates it to

cluster generating functions with lower order k′, we can use it to compute cn(t) using

Equation (2.2). One can see that most of what was done in the above example can

be extended to any pattern (or pattern set by finding a functional equation for each

pattern individually). The outline of the general procedure is as follows:

First, find the cluster recurrence for the initial summand C(k, p; [x1, . . . , xm]) (as

in Section 2.3.1) and substitute this into the summation in Equation (2.6). Split the

summation over each summand C(k′, p′; [y1, . . . , ym′]), and handle each one separately.

Rewrite the summations over x1, . . . , xm and apply the finite geometric series formula as

needed. Finally, express the remaining summations as cluster tail generating functions

27

of lower order k′.

The only part that is not immediate is whether the summations for x1, . . . , xm

can be ordered properly and whether the lower and upper bounds for each summation

index can be chosen properly so that we can adequately apply the finite geometric series

formula. This can in fact always be done, and the ordering and choice of bounds can

be done as follows:

Let xi1 , . . . , xij be the entries from the original last pattern p in the length k cluster

that coincide with entries from the new last pattern p′ in the length k′ cluster. In other

words, xi1 , . . . , xij are the terms that occur in the yi’s of C(k′, p′; [y1, . . . , ym′]). Let

xij+1 , . . . , xim be the terms that were “chopped off” from the length k cluster. Also,

assume that xi1 < . . . < xij and xij+1 < . . . < xim . Note that in the example in

Section 2.4.1, xi1 = x1 (not “chopped”) while xi2 = x2 (“chopped”) and xi3 = x3

(“chopped”).

Order of summations:

The summations will be ordered (from outermost to innermost) as xi1 to xij followed

by xij+1 to xim . Thus, the outermost summation is indexed by xi1 , the next summation

inward is indexed by xi2 , and so on. This places the summations over xij+1 , . . . , xim

to be on the “inside” so that they can be moved inward to apply the finite geometric

series formula.

Lower/Upper bounds for xi1 , . . . , xim:

For each l with j + 1 ≤ l ≤ m, let bl = k if il > ij ;

otherwise, let bl = min({i1, . . . , ij}\{1, . . . , il}), and let cl be the index of i (so icl = bl).

28

For xi1 , . . . , xij :

xi1 = i1 to k −m+ i1

xi2 = xi1 + i2 − i1 to k −m+ i2

· · ·

xij = xij−1 + ij − ij−1 to k −m+ ij

For xij+1 :

Lower bound is 1 if ij+1 = 1, and xij+1−1 + 1 otherwise. Upper bound is k −m+ ij+1

if bj+1 = k, and bj+1 − cj+1 + ij+1 otherwise.

For xil with l > j + 1:

Lower bound is xil−1 + 1. Upper bound is k−m+ il if bl = k, and bl− cl + il otherwise.

One can see that the indices xi1 , . . . , xij range over all necessary values and can also

verify that xij+1 , . . . , xim will cover all necessary values as well. Additionally, for each

r, the lower and upper bounds for xir never depends on any xis where s > r. If we

applied the above approach to the example in Section 2.4.1, we would get xi1 = x1

going from 1 to k − 2, xi2 = x2 going from x1 + 1 to k − 1, and xi3 = x3 going from

x2 + 1 to k.

2.4.3 Additional results

We get a couple more immediate byproducts from the algorithm in Section 2.4.2. First,

the method provided for finding a functional equation always works, so we get the

following:

Theorem 9. Let B be a pattern set and p ∈ B. Then, there always exists a functional

equation for F (k, p; [z1, . . . , z|p|]) of the form:

F (k, p; [z1, . . . , z|p|]) = (t− 1)
∑
p′∈B

∑
i∈I(p′)

Ri · F (ki, p
′; [M i

1, . . . ,M
i
|p′|])

29

where I(p′) is a finite index set for each p′ ∈ B, I(p′) and I(p′′) are disjoint if p′ 6= p′′,

each M i
j is a specific monomial in z1, . . . , z|p|, each Ri is a specific rational expression

in z1, . . . , z|p|, and ki < k for each i.

Additionally, we get an immediate corollary of Theorem 7.

Corollary 4. Let B be a set of patterns we would like to avoid. Without loss of

generality, assume that B contains no redundancies. Then by setting weight(p) = t− 1

for each p ∈ B, we get:

P (z, t) =
1

1− z −
∑
k≥1

∑
p∈B

F (k, p; [1, . . . , 1]) z
k

k!

.

Since we can find a functional equation given any pattern set B, in a sense, we have an

expression for the exponential generating function P (z, t) for any pattern set.

2.4.4 Maple implementation

The algorithm from Section 2.4.2 has also been implemented in the Maple package CAV.

Using that algorithm, we can find the sequence α1, . . . , αn avoiding a set of patterns B

by calling the procedure CAVT(B,n), where the patterns in B are represented as lists.

For example, for n = 10 and B = {123, 321}, try CAVT({[1,2,3],[3,2,1]},10);.

To keep track of the occurrences of patterns from B, use the procedure CAVTt(B,n,t).

For example, try CAVTt({[1,2,3],[3,2,1]},10,t);. To generate the cluster tail func-

tional equation only (encoded again in a data structure that we call a cluster scheme),

use the procedure MakeTailFE(B,k,z,t). For example, try MakeTailFE({[1,3,2]},k,z,t);.

Computationally, the algorithm in Section 2.4.2 is much more efficient than the one

in Section 2.3.1, so the CAVT procedure is much faster than the CAV procedure. In

general, CAVT should be used instead of CAV for computing αn values and, similarly,

CAVTt should be used instead of CAVt for cn(t).

30

2.5 Asymptotic approximations

Let B = {p} be a set containing a single pattern. In [58], Warlimont gave a conjecture

on the asymptotics of αn:

αn ∼ γ · ρn · n!

where γ and ρ are constants depending only on the single pattern p. Some initial

asymptotic results for αn were proven by Elizalde in [21]. Recently, Ehrenborg, Kitaev,

and Perry prove this conjecture in [19]. With this result established, we can compute

approximate values of γ and ρ for various single patterns.

Elizalde and Noy gave some approximations of γ and ρ for length 3 and a few length

4 patterns in [23]. Aldred, Atkinson, and McCaughan also gave approximations for the ρ

values of the single length 4 patterns. Using the Maple package CAV, we can empirically

verify these approximations and also quickly produce many new approximations. For

example, the procedure AsymApprox(p,N,d) will give approximate values (up to d

decimal digits) for γ and ρ for the pattern p by computing αN−2, αN−1, and αN and

computing their ratios. For example, try AsymApprox([1,2,4,3],50,20).

To approximate γ and ρ values (up to d decimal digits) for all length n patterns

and then rank them by the size of ρ, use AsymApproxRank(n,N,d). For example,

AsymApproxRank(4,30,10) gives us the approximations for the γ and ρ values for

length 4 patterns, and the results are given in Table 2.1.

Pattern γ ρ

1 2 3 4 1.1176930011 0.9630055289

2 4 1 3 1.1375931232 0.9577180134

2 1 4 3 1.1465405299 0.9561742431

1 3 2 4 1.1510444988 0.9558503134

1 4 2 3 1.1567436851 0.9548260509

1 3 4 2 ∼ 1 4 3 2 1.1561985648 0.9546118344

1 2 4 3 1.1696577874 0.9528914233

Table 2.1: Approximate asymptotics for length 4 patterns

Similarly, AsymApproxRank(5,25,20) would give us the approximations for the γ and

ρ values for length 5 patterns. The output can be found on the paper’s website.

31

2.6 Concluding remarks

In this chapter, we outlined the key procedures in the CAV Maple package. The cluster

tail generating function was defined, and a constructive approach was demonstrated

in finding a functional equation for it. Using this functional equation, we were able to

more quickly enumerate permutations avoiding a prescribed set of patterns. In addition,

by applying Theorem 8, we were able to totally classify c-Wilf-equivalences in single

patterns of length 3, 4, and 5 rigorously, while nearly classifying single patterns of

length 6. We were also able to classify c-Wilf-equivalences in a few cases of multiple

pattern sets. Finally, we were able to use the faster algorithm to compute approximate

values for asymptotic constants.

Despite this, there is a lot of room for improvement algorithmically and quite a few

new open problems/conjectures arise. Some of the conjectures are listed below.

Elizalde and Noy provided the following conjecture in [23]:

Conjecture 8. For a fixed pattern length k, the increasing pattern σ = 12 . . . k is the

“maximal” pattern, in the sense that αn(σ) ≥ αn(π) for all π ∈ Sk and all n.

Based off of experimentation, we also have the following analogous conjecture:

Conjecture 9. For a fixed pattern length k, the pattern σ = 12 . . . (k − 2)(k)(k − 1) is

the “minimal” pattern, in the sense that αn(π) ≥ αn(σ) for all π ∈ Sk and all n.

These two conjectures were shown to be asymptotically true by Elizalde in [20]. An

additional proof was provided by Perarnau in [47]. It is believed that these conjectures

hold not just asymptotically but for all n, and this more specific problem remains open.

We also have analogous conjectures for the case of multiple patterns:

Conjecture 10. For a fixed pattern length k, the pattern set B = {12 . . . k, 23 . . . k1} is

the “maximal” pattern set among sets of 2 patterns, in the sense that αn(B) ≥ αn(B′)

for all B′ ∈
(
Sk
2

)
and all n.

32

Conjecture 11. For a fixed pattern length k, the pattern set B = {12 . . . (k−2)(k)(k−

1), 12 . . . (k−3)(k−1)(k)(k−2)} is the “minimal” pattern set among sets of 2 patterns,

in the sense that αn(B′) ≥ αn(B) for all B′ ∈
(
Sk
2

)
and all n.

Conjecture 12. For a fixed pattern length k, the pattern set B = {12 . . . k, 23 . . . k1, k12 . . . (k−

1)} is the “maximal” pattern set among sets of 3 patterns, in the sense that αn(B) ≥

αn(B′) for all B′ ∈
(
Sk
3

)
and all n.

In addition, based off of empirical evidence for single pattern avoidance up to length 6

patterns, we believe the following:

Conjecture 13. For any two patterns π1 and π2 of the same length, either π1 and π2

are strongly c-Wilf-equivalent or they are not c-Wilf-equivalent at all.

In other words, two patterns are c-Wilf-equivalent if and only if they are also strongly

c-Wilf-equivalent in the consecutive setting. This certainly holds for single patterns of

length 3, 4, 5, and 6. It is interesting to note that this conjecture fails when considering

classical pattern avoidance (e.g., the patterns 123 and 132 would provide a counter-

example).

33

Chapter 3

Functional Equations and Algorithms for r Occurrences of

a Pattern

Notice: The section on patterns 12 . . . k represents joint work with Doron Zeilberger.

3.1 Overview

In this chapter, we consider the classical notion of pattern containment. Given a se-

quence of k distinct positive integers σ = σ1 . . . σk, recall that the reduction red(σ) is

the length k permutation τ = τ1 . . . τk that is order-isomorphic to σ. Given a (permu-

tation) pattern τ ∈ Sk, we say that a permutation π = π1 . . . πn contains the pattern

τ if there exists 1 ≤ ii < i2 < . . . < ik ≤ n such that red(πi1πi2 . . . πik) = τ , in which

case we call πi1πi2 . . . πik an occurrence of τ .1 We will define Nτ (π) to be the number

of occurrences of τ in π. For example, if the pattern τ = 123, the permutation 53412

avoids the pattern τ (so N123(53412) = 0), whereas the permutation 52134 contains

two occurrences of τ (so N123(52134) = 2).

Recall that for a pattern τ and non-negative integer r ≥ 0, we have the set

Sn(τ, r) := {π ∈ Sn : π has exactly r occurrences of the pattern τ}

as well as the quantity sn(τ, r) := |Sn(τ, r)|. The corresponding generating function is

defined as

F rτ (x) :=

∞∑
n=0

sn(τ, r)xn.

Recall that the classical pattern avoidance problem corresponds to the r = 0 case and

has been well studied. In this setting, the exact enumeration is known for all patterns

1This definition differs from the last chapter, where the pattern must occur as consecutive terms.

34

of length at most 4 with the exception of the pattern 1324. Precise asymptotics are

not even known for this pattern, although there has been some recent improvements in

the upper bound for the growth rate. While the more general problem (where r ≥ 0)

has also been studied, the work has usually been restricted to small patterns (usually

length three) and small r.

In this chapter, we consider how to modify and extend the initial functional equa-

tions by Noonan and Zeilberger in [45]. One difficulty arising from their original ap-

proach was that it became very complicated for even the r = 2 case. In addition, there

are many patterns that this approach does not readily extend to. One such pattern

(explicitly mentioned in [45]) is 1432.

In the following sections, we first present a modified approach for handling increas-

ing patterns (i.e., patterns of the form 12 . . . k). Given a fixed r ≥ 0, the resulting

enumeration algorithm for computing sn(12 . . . k, r) is polynomial-time (in n).2 This,

in a sense, tackles the first difficulty from [45] and allows us to enumerate the sequence

sn(12 . . . k, r) for even larger fixed r. It is important to note that, in general, the cardi-

nality of the sets Sn(τ, r) grow (roughly) exponentially in size as n increases. A direct

constructive approach would therefore take at least exponential-time. This specific case

is joint with Zeilberger and has already appeared in publication [42].

In the sections after, we first extend the approach to the family of patterns of the

form 12 . . . (k − 2)(k)(k − 1). This extension will also yield functional equations and

polynomial-time algorithms (in n) for computing the sequence sn(12 . . . (k − 2)(k)(k −

1), r). We then generalize the techniques to produce similar results for the family of

patterns of the form 23 . . . k1. Unfortunately in this case, the current implementation

of the enumeration algorithm does not appear to be polynomial-time, although it is

still faster than a direct/constructive approach of producing the sets Sn(τ, r).

We conclude the chapter by extending the generalized approach to the notorious

length 4 pattern of 1324. Unfortunately, this approach does not yield a polynomial-

time enumeration algorithm either. However, we can compute terms of sn(1324, r) for

2According to Wilf [59], this constitutes an answer to an enumerative question.

35

small r and reasonably small n. In the case of r = 0, it is possible to extract a new

recurrence (on 0–1 matrices) and compute sn(1324, 0) for n ≤ 23.3

We conclude this section with one final remark. It should be noted that this general

enumeration approach is different from the enumeration schemes approach pioneered

by Zeilberger [60] and extended by Vatter [57], Pudwell [48], and Baxter [5, 6]. The enu-

meration schemes approach seeks to derive recurrences for sn(τ, 0) (generally with more

complicated functions that keep track of additional parameters), while the approach in

this chapter is based off of deriving functional equations. Also, the enumeration schemes

approach is useful for enumerating pattern-avoiding permutations (the r = 0 case) but

does not seem readily adaptable to the generalized setting for permutations with r > 0

occurrences of a pattern. On the other hand, the approach in this chapter is unfortu-

nately not yet automated to discover new functional equations for different patterns.

All the functional equations, while they are rigorously derived, are done through human

means for each type of pattern. However, we hope that the techniques developed in this

chapter may yield insight on how a computer can be trained to discover such functional

equations on its own.

3.2 Patterns of the form 12 . . . k

In this section, we modify the approach developed by Noonan and Zeilberger in [45].

We first handle the case of 123 in full detail and then outline how to generalize this

approach to the patterns 1234, 12345, and so on. The results of this section is joint

work with Zeilberger.

3.2.1 Permutations containing 123

For the sake of completeness, we reconstruct the functional equation derivation from

[45]. Given a (fixed) pattern τ and non-negative integer n, we define the polynomial

fn(t) :=
∑
π∈Sn

tNτ (π). (3.1)

3The method in [1] can compute the first 25 terms. Given that our implementation was in Maple,
a lower level programming language (such as C) should be able to produce some more terms.

36

Observe that the coefficient of tr in fn(t) is exactly equal to sn(τ, r). For a fixed pattern

τ and fixed r ≥ 0, our goal is to quickly compute sn(τ, r). In the remainder of this

subsection, we will assume that τ = 123.

In addition to the variable t, we introduce the catalytic variables x1, . . . , xn and

define the weight of a length n permutation π = π1 . . . πn to be

weight123(π) := tN123(π)
n∏
i=1

x
#{(a,b) : πa=i<πb, 1≤a<b≤n}
i .

In general, this will be written more simply as weight(π) when the fixed pattern is clear

from context (in this case 123). For example,

weight(12345) = t10x4
1x

3
2x

2
3x

1
4x

0
5,

weight(54321) = 1,

weight(21354) = t4x3
1x

3
2x

2
3.

For each n, we define the polynomial

Pn(t;x1, . . . , xn) :=
∑
π∈Sn

weight(π).

Observe that Pn is essentially a generalized multi-variate polynomial for fn and in

particular, Pn(t; 1, . . . , 1) = fn(t). We now have the following:

Lemma 2. Let π = π1 . . . πn and suppose that π1 = i. If π′ := red(π2 . . . πn), then

weight(π) = xn−ii weight(π′)|xi→txi+1 , xi+1→txi+2 , ... , xn−1→txn .

Proof. We re-insert i at the beginning of π′ by shifting all the terms i, i+1, . . . , n−1 up

by 1 (i.e., xj → xj+1 for i ≤ j). The weight of this permutation (the original π) would

gain an xn−ii term while the exponents of the other shifted catalytic variables remain

the same. Also, observe that N123(π) is equal to the number of occurrences of 123 in

π′ plus the number of occurrences of 12 in π2 . . . πn, where the term corresponding to

the “1” is larger than i.

This directly leads to the Noonan-Zeilberger Function Equation from [45]:

37

Theorem 10. For the pattern τ = 123,

Pn(t;x1, . . . xn) =
n∑
i=1

xn−ii Pn−1(t;x1, . . . , xi−1, txi+1, . . . , txn). (NZFE1)

Once Pn(t;x1, . . . , xn) is computed, the catalytic variables x1, . . . , xn can all be

set to 1 to get fn(t) = Pn(t; 1, . . . , 1). In the original approach in [45], Noonan and

Zeilberger simply plugged in t = 0 and x1 = . . . xn = 1 to get recurrences which can

be used to show that sn(123, 0) = 1
n+1

(
2n
n

)
, the Catalan numbers. For r = 1, they

differentiated Eq. (NZFE1) with respect to t using the multi-variable calculus chain

rule and then plugged in t = 0 and x1 = . . . = xn = 1. However, for r = 2, this became

a computational mess, even for a computer.

For computational purposes though, it is not necessary to compute Pn(t;x1, . . . , xn)

in its entirety prior to setting the catalytic variables to 1. Observe that by Eq. (NZFE1),

we have:

Pn(t; 1, . . . , 1) =
n∑
i=1

Pn−1(t; 1 [i− 1 times], t [n− i times]).

We get terms of the form Pa0+a1(t; 1 [a0 times], t [a1 times]) in the summation, which

can again be plugged into Eq. (NZFE1) to get:

Pa0+a1(t; 1 [a0 times], t [a1 times]) =

a0∑
i=1

Pa0+a1−1(t; 1 [i− 1 times] , t [a0 − i times] , t2 [a1 times])

+

a1∑
i=1

ta1−iPa0+a1−1(t; 1 [a0 times] , t [i− 1 times] , t2 [a1 − i times])

We must now deal with terms of the form Pa0+a1+a2(t; 1 [a0 times], t [a1 times], t
2 [a2 times]).

We can continue this recursive process of plugging new terms into Eq. (NZFE1) to even-

tually compute fn(t) = Pn(t; 1 [n times]).

This is much faster than the direct weighted counting of all n! permutations, al-

though it is still unfortunately an exponential-time (and memory) algorithm. Even

then, we were still able to explicitly compute fn(t) up to n = 20. This is implemented

in the Maple procedure fn(n,t) in the accompanying Maple package P123. The pro-

cedure L20(t); gives the pre-computed sequence of fn(n,t) for 1 ≤ n ≤ 20. Here are

the first few terms:

38

f1(t) = 1 , f2(t) = 2 , f3(t) = t+ 5 , f4(t) = t4 + 3 t2 + 6 t+ 14 ,

f5(t) = t10 + 4 t7 + 6 t5 + 9 t4 + 7 t3 + 24 t2 + 27 t+ 42 ,

f6(t) = t20 + 5 t16 + 8 t13 + 6 t12 + 6 t11 + 16 t10 + 12 t9 + 24 t8

+32 t7 + 37 t6 + 54 t5 + 74 t4 + 70 t3 + 133 t2 + 110 t+ 132 ,

f7(t) = t35 + 6 t30 + 10 t26 + 10 t25 + 8 t23 + 13 t22 + 30 t21 + 10 t20 + 32 t19 + 18 t18

+62 t17 + 74 t16 + 24 t15 + 100 t14 + 130 t13 + 104 t12 + 162 t11 + 191 t10 + 232 t9

+260 t8 + 320 t7 + 387 t6 + 395 t5 + 507 t4 + 461 t3 + 635 t2 + 429 t+ 429 ,

f8(t) = t56 + 7 t50 + 12 t45 + 15 t44 + 10 t41 + 16 t40 + 40 t39 + 18 t38 + 47 t36 + 38 t35 + 68 t34

+60 t33 + 58 t32 + 66 t31 + 154 t30 + 138 t29 + 115 t28 + 156 t27 + 252 t26 + 324 t25 + 228 t24

+288 t23 + 537 t22 + 466 t21 + 546 t20 + 656 t19 + 682 t18 + 1004 t17 + 1047 t16 + 886 t15

+1494 t14 + 1456 t13 + 1580 t12 + 1818 t11 + 2077 t10 + 2182 t9 + 2389 t8 + 2544 t7 + 2864 t6

+2570 t5 + 3008 t4 + 2528 t3 + 2807 t2 + 1638 t+ 1430 .

Suppose that for a small fixed r ≥ 0, we wanted the first 20 terms of the sequence

sn(123, r). By this functional equation approach, one would compute fn(t) and extract

the coefficient of tr for each n up to 20. This approach would expend quite a bit of com-

putational effort in generating unnecessary information (namely, all the tk terms where

k > r). This issue can mostly be circumvented, however, by a couple of observations.

First, we have the following observation:

Lemma 3. Let n = a0 + a1 + . . .+ as (where ai ≥ 0 for each i) and suppose s > r+ 1.

Then, the coefficients of t0, t1, . . . , tr in

Pn(t; 1 [a0 times] , . . . , ts−1 [as−1 times] , ts [as times])

−Pn(t; 1 [a0 times] , . . . , tr [ar times] , tr+1 [ar+1 + ar+2 + . . .+ as times])

all vanish.

39

Proof. The more general function Pn(t;x1, . . . , xn) is a multi-variate polynomial.

This lemma allows us to collapse all the higher powers of t into the tr+1 coefficient and al-

lows us to consider objects of the form Pn(t; 1 [a0 times] , . . . , tr [ar times] , tr+1 [ar+1 times])

regardless of how large n is.

Let n := a0 + a1 + . . .+ ar+1. Also, for any expression R and positive integer k, let

R$k denote R [k times]. For example, t3$4 is shorthand for t3, t3, t3, t3. Now for any

polynomial p(t) in the variable t, let p(r)(t) denote the polynomial of degree (at most) r

obtained by discarding all powers of t larger than r. Also, define the operator CHOPr

by CHOPr[p(t)] := p(r)(t).

An application of (NZFE1) and CHOPr to P
(r)
n (t; 1$a0, . . . , t

r$ar, t
r+1$ar+1) be-

comes:

P (r)
n (t; 1$a0 , t$a1 , . . . , t

r$ar , t
r+1$ar+1)

= CHOPr

[
a0∑
i=1

P
(r)
n−1(t; 1$(i− 1), t$(a0 − i), t2$a1, . . . , t

r$ar−1, t
r+1$(ar + ar+1))

+

a1∑
i=1

t(a1−i)+a2+...+ar+1P
(r)
n−1(t; 1$a0, t$(i− 1), t2$(a1 − i), . . . , tr+1$(ar + ar+1))

+

a2∑
i=1

t2((a2−i)+a3+...+ar+1)P
(r)
n−1(t; 1$a0, . . . t

3$(a2 − i), . . . , tr$ar−1, t
r+1$(ar + ar+1))

+

+

ar+1∑
i=1

t(r+1)(ar+1−i)P
(r)
n−1(t; 1$a0, t$a1, . . . , t

r$ar, t
r+1$(ar+1 − 1))

]
.

Due to the CHOPr operator, many terms automatically disappear because of the

power of t in front. From a computational perspective, this observation eliminates many

unnecessary terms and hence circumvents a lot of unnecessary computation. The im-

portant point is that a computer can automatically generate a “scheme” for computing

the degree-r polynomials in t of the form:

P
(r)
a0+...+ar+1

(t; 1 [a0 times] , t [a1 times] , . . . , tr [ar times] , tr+1 [ar+1 times]),

with a0 + . . .+ar+1 = n and a0, . . . , ar+1 ≥ 0. The number of such objects to consider is(
r+n+1
r+1

)
. So each iteration involves O(nr+1) evaluations and hence O(nr+2) additions.

40

Doing this n times yields an O(nr+3) algorithm for finding our desired polynomial:

f (r)
n (t) = P (r)

n (t; 1 [n times] , t [0 times] , . . . , tr+1 [0 times]).

Having found the “scheme”, a computer can use it to generate as many terms as de-

sired.4

The accompanying Maple package P123 implements the functional equation NZFE1

and easily generates the first 25 terms of the enumerating sequences for 0 ≤ r ≤ 7.

From this data, we can empirically verify the already-known results for sn(123, r) for

0 ≤ r ≤ 4 [44, 25, 14] and make conjectures for 5 ≤ r ≤ 7 as follows:

a0(n) = 2
(2n− 1)!

(n− 1)! (n+ 1)!
.

a1(n) = 6
(2n− 1)!

(n− 3)! (n+ 3)!
.

a2(n) =
(2n− 2)!

(n− 4)! (n+ 5)!
· (59n2 + 117n+ 100) .

a3(n) =
(2n− 3)!

(n− 5)! (n+ 7)!
· 4n

(
113n3 + 506n2 + 937n+ 1804

)
.

a4(n) =
(2n− 4)!

(n− 4)!(n+ 9)!
·

(3561n8 + 3126n7 − 46806n6 + 12384n5 − 659091n4

+2630634n3 + 5520576n2 + 26283456n− 39191040) .

4As a reminder, the “scheme” mentioned here is a liberal use of the word and differs from enumeration
schemes.

41

a5(n) =
(2n− 5)!

(n− 5)!(n+ 11)!
·

(26246n10 + 136646n9 − 115872n8 + 22524n7 − 9648450n6 + 71304534n5

+381205612n4 + 1607633896n3 + 2800103664n2 + 3611692800n− 32891443200) .

a6(n) =
(2n− 6)!

(n− 6)!(n+ 13)!
·

(193311n12 + 2349954n11 + 13035003n10 + 95151030n9 + 406430793n8 + 2889552582n7

+14335663329n6 + 60005854890n5 + 313010684796n4 + 1025692693464n3

+1283595375168n2 − 6909513045120n− 28177269120000) .

a7(n) =
(2n− 7)!

(n− 5)!(n+ 15)!
·

(1386032n16 + 13111080n15 + 22526480n14 + 355187760n13 − 1654450096n12

+10534951680n11 + 15797223760n10 − 305671694640n9

+3750695521216n8 − 26631101348520n7 − 86395090065440n6

−636425872408320n5 + 3647384624274048n4 + 11386434230674560n3

+103032675524966400n2 − 157858417817856000n− 763734137886720000) .

3.2.2 Permutations containing 1234

We now show how to extend the previous approach to the pattern 1234. In addition to

the variable t, we now introduce 2n catalytic variables x1, . . . , xn and y1, . . . , yn. The

weight of a length n permutation π = π1 . . . πn will now be

weight(π) := tN1234(π)
n∏
i=1

x
#{(a,b) : πa=i<πb, 1≤a<b≤n}
i · y#{(a,b,c) : πa=i<πb<πc, 1≤a<b<c≤n}

i .

42

For example,

weight(123456) = t15x5
1x

4
2x

3
3x

2
4x5y

10
1 y

6
2y

3
3y4,

weight(654321) = 1,

weight(345612) = tx1x
3
3x

2
4x5y

3
3y4.

For each n, we define the polynomial

Pn(t;x1, . . . , xn; y1, . . . , yn) :=
∑
π∈Sn

weight(π).

We now observe the following:

Lemma 4. Let π = π1 . . . πn and suppose that π1 = i. If π′ := red(π2 . . . πn), then

weight(π) = xn−ii weight(π′)|xi→yixi+1 , ... , xn−1→yixn , yi→tyi+1 , ... , yn−1→tyn .

Proof. We consider i to be a fixed value and re-insert i at the beginning of π′ by shifting

all the terms i, i+ 1, . . . , n− 1 up by 1 (i.e., xj → xj+1 and yj → yj+1 for i ≤ j). The

new i would create n − i new 12 patterns and would require an extra xn−ii factor for

the weight. Also, the re-insertion of i would recreate new 123 patterns. The number

of such new patterns is exactly the number of 12 patterns in the shifted π′, where the

“1” is greater than i. Therefore, our xj shift now becomes xj → yixj+1 for i ≤ j. Also,

observe that N1234(π) is equal to the number of occurrences of 1234 in π′ plus the

number of occurrences of 123 in π2 . . . πn, where the term corresponding to the “1” is

larger than i. Therefore, our yj shift now becomes yj → tyj+1 for i ≤ j.

This directly leads to the Noonan-Zeilberger Function Equation for pattern 1234

from [45]:

Theorem 11. For the pattern τ = 1234,

Pn(t;x1, . . . xn) =
n∑
i=1

xn−ii Pn−1(t; x1, . . . , xi−1, yixi+1, . . . , yixn; y1, . . . , yi−1, tyi+1, . . . , tyn).

(NZFE2)

43

Again, our goal is to compute fn(t) = Pn(t; 1 [2n times]). We can apply the same

computational methods as before. For example, we can apply (NZFE2) directly to

Pn(t; 1 [2n times]), and more generally, to objects of the form

Pn(t; 1 [a0 times] , . . . , ts1 [as1 times] ; 1 [b0 times] , . . . , ts2 [bs2 times])

to compute fn(t). This again gives us an algorithm that is faster than the direct

weighted counting of n! permutations but is still exponential-time (and memory). This

has been implemented in the accompanying Maple package P1234, and the first few

polynomials are:

f1(q) = 1 , f2(q) = 2 , f3(q) = 6 , f4(q) = q + 23 , f5(q) = q5 + 4 q2 + 12 q + 103 ,

f6(q) = q15 + 5 q9 + 8 q6 + 12 q5 + 6 q4 + 10 q3 + 63 q2 + 102 q + 513 ,

f7(q) = q35 + 6 q25 + 10 q19 + 18 q16 + 12 q15 + 13 q13 + 24 q11 + 32 q10 + 72 q9 + 10 q8

+46 q7 + 142 q6 + 116 q5 + 146 q4 + 196 q3 + 665 q2 + 770 q + 2761 ,

f8(q) = q70 + 7 q55 + 12 q45 + 15 q41 + 10 q39 + 8 q36 + 28 q35 + 40 q32 + 41 q29 + 10 q28

+24 q27 + 44 q26 + 84 q25 + 24 q24 + 89 q23 + 12 q21 + 142 q20 + 136 q19 + 96 q18 + 115 q17

+333 q16 + 156 q15 + 112 q14 + 312 q13 + 199 q12 + 600 q11 + 573 q10 + 804 q9 + 503 q8

+885 q7 + 1782 q6 + 1204 q5 + 2148 q4 + 2477 q3 + 5982 q2 + 5545 q + 15767 .

Additionally, both the obvious analog of Lemma 3 as well as the computational

reduction using the CHOPr operator still apply in this setting. This has been imple-

mented in the accompanying Maple package F1234. As in the previous subsection, one

can get polynomial-time (in n) algorithms to compute sn(1234, r), however the O(nr+3)

becomes O(n2r+5) since we have twice as many catalytic variables. Nevertheless, we

were still able to compute the first 70 terms for the case r = 1. Here are the first 23

44

terms:

0, 0, 0, 1, 12, 102, 770, 5545, 39220, 276144, 1948212, 13817680, 98679990,

710108396, 5150076076, 37641647410, 277202062666, 2056218941678, 15358296210724,

115469557503753, 873561194459596, 6647760790457218, 50871527629923754 .

Additionally, Manuel Kauers programmed our algorithm in C and used clever pro-

gramming techniques to compute the first 200 terms. The output is available at:

http://www.math.rutgers.edu/~zeilberg/tokhniot/oF1234bManuelKauers.

3.2.3 Extending to longer patterns

The approach for the patterns 123 and 1234 can be extended analogously to longer

patterns of the form 12 . . . k. For example, if the pattern τ = 12345, we consider the

variable t and 3n catalytic variables: x1, . . . , xn and y1, . . . , yn and z1, . . . , zn. The

weight of a length n permutation π = π1 . . . πn will now be

weight(π) := tN12345(π)
n∏
i=1

x
#{(a,b) : πa=i<πb}
i · y#{(a,b,c) : πa=i<πb<πc}

i · z#{(a,b,c,d) : πa=i<πb<πc<πd}
i

where it is always assumed that a < b < c < d.

An analogous functional equation is derived for the corresponding polynomial

Pn(t;x1, . . . , xn; y1, . . . , yn; z1, . . . , zn) :=
∑
π∈Sn

weight(π)

and all the analogous computational methods work in this setting as well. This has

been implemented in the Maple packages P12345 and F12345. For example, the first

20 terms for r = 0 are:

1, 2, 6, 24, 119, 694, 4582, 33324, 261808, 2190688, 19318688, 178108704,

1705985883, 16891621166, 172188608886, 1801013405436, 19274897768196,

210573149141896, 2343553478425816, 26525044132374656 .

http://www.math.rutgers.edu/~zeilberg/tokhniot/oF1234bManuelKauers

45

The first 20 terms for r = 1 are:

0, 0, 0, 0, 1, 20, 270, 3142, 34291, 364462, 3844051, 40632886, 432715409,

4655417038, 50667480496, 558143676522, 6223527776874, 70228214538096,

801705888742781, 9254554670121572 .

3.3 Patterns of the form 12 . . . (k − 2)(k)(k − 1)

In this section, we adapt the approach from the previous section (for increasing patterns)

to the patterns 12 . . . (k−2)(k)(k−1). We first handle the case of 132 and then outline

how to generalize this approach to patterns 1243, 12354, and so on.

3.3.1 Permutations containing 132

Given a (fixed) pattern τ and non-negative integer n, we again consider the polynomial

fn(t) :=
∑
π∈Sn

tNτ (π). (3.2)

Recall that the coefficient of tr in fn(t) is exactly equal to sn(τ, r). For a fixed pattern

τ and fixed r ≥ 0, our goal is to quickly compute sn(τ, r). In the remainder of this

subsection, we will assume that τ = 132.

In addition to the variable t, we introduce the catalytic variables x1, . . . , xn and

define the weight of a length n permutation π = π1 . . . πn to be

weight(π) := tN132(π)
n∏
i=1

x
#{(a,b) : πa>πb=i, 1≤a<b≤n}
i .

For example, weight(12345) = 1, weight(13245) = tx2, and weight(25143) = t4x2
1x

2
3x4.

For each n, we again define the polynomial

Pn(t;x1, . . . , xn) :=
∑
π∈Sn

weight(π).

Recall that Pn(t; 1, . . . , 1) = fn(t). We can now observe the following:

Lemma 5. Let π = π1 . . . πn and suppose that π1 = i. If π′ := red(π2 . . . πn), then

weight(π) = x1x2 . . . xi−1 · weight(π′)|xi→txi+1 , xi+1→txi+2 , ... , xn−1→txn .

46

Proof. We re-insert i at the beginning of π′ by shifting all the terms i, i+ 1, . . . , n− 1

up by 1 (i.e., xj → xj+1 for i ≤ j). The new “i” would create new 21 patterns and

would require an extra factor of x1x2 . . . xi−1 for the weight. Also, observe that N132(π)

is equal to the number of occurrences of 132 in π′ plus the number of occurrences of 21

in π2 . . . πn, where the term corresponding to the “1” is larger than i. Therefore, our

xj shift now becomes xj → txj+1 for i ≤ j.

This directly leads to the new functional equation:

Theorem 12. For the pattern τ = 132,

Pn(t;x1, . . . , xn) =

n∑
i=1

x1x2 . . . xi−1 · Pn−1(t;x1, . . . , xi−1, txi+1, . . . , txn). (FE132)

As before, once Pn(t;x1, . . . , xn) is computed, the catalytic variables x1, . . . , xn can all

be set to 1 to get fn(t) = Pn(t; 1, . . . , 1).

We can again apply the same computational techniques as before. First, we can

apply the functional equation (FE132) directly to Pn(t; 1, . . . , 1) to get:

Pn(t; 1, . . . , 1) =
n∑
i=1

Pn−1(t; 1 [i− 1 times], t [n− i times]).

We get terms of the form Pa0+a1(t; 1 [a0 times], t [a1 times]) in the summation, which

can again be plugged into (FE132) to get:

Pa0+a1(t; 1 [a0 times], t [a1 times]) =

a0∑
i=1

Pa0+a1−1(1 [i− 1 times] , t [a0 − i times] , t2 [a1 times])

+

a1∑
i=1

ti−1Pa0+a1−1(1 [a0 times] , t [i− 1 times] , t2 [a1 − i times])

Now, we must deal with terms of the form Pa0+a1+a2(t; 1 [a0 times], t [a1 times], t
2 [a2 times]).

We can continue this recursive process of plugging new terms into (FE132) to eventu-

ally compute fn(t) = Pn(t; 1 [n times]). This is much faster than the direct weighted

counting of all n! permutations, although it is still unfortunately an exponential-time

(and memory) algorithm.

47

This algorithm has been implemented in the accompanying Maple package FINCRT.

For example, here are the first few terms:

f1(t) = 1 , f2(t) = 2 , f3(t) = t+ 5 , f4(t) = t3 + 4 t2 + 5 t+ 14 ,

f5(t) = 3 t6 + 5 t5 + 12 t4 + 14 t3 + 23 t2 + 21 t+ 42 ,

f6(t) = 2 t12 + 10 t10 + 22 t9 + 29 t8 + 37 t7 + 64 t6

+55 t5 + 96 t4 + 82 t3 + 107 t2 + 84 t+ 132

f7(t) = 2 t20 + t19 + 13 t18 + 14 t17 + 23 t16 + 55 t15 + 93 t14

+126 t13 + 206 t12 + 175 t11 + 281 t10 + 298 t9 + 360 t8 + 365 t7

+475 t6 + 394 t5 + 526 t4 + 410 t3 + 464 t2 + 330 t+ 429

Suppose that for a small fixed r ≥ 0, we want to compute the sequence (in n)

given by sn(132, r). As in the previous sections, this current approach computes many

unnecessary terms of fn(t) (namely, all the tk terms where k > r). Fortunately, the

same computational methods from the 123 pattern case apply in the present setting as

well. In particular, the obvious analog of Lemma 3 as well as the reduction using the

CHOPr operator can be applied here. Recall that given a polynomial p(t), CHOPr[p(t)]

discards all the powers of t larger than r.

From a computational perspective, these techniques again eliminate many unnec-

essary terms and hence circumvent a lot of unnecessary computation. This has been

automated in the Maple package FINCRT so that a computer can derive a “scheme”

for any fixed r (completely on its own) and use it to enumerate sn(132, r) for as many

terms as the user wants.

For example, the Maple call F132rN(5,15); for the first 15 terms of sn(132, 5)

produces the sequence:

0, 0, 0, 0, 5, 55, 394, 2225, 11539, 57064, 273612, 1283621, 5924924, 27005978, 121861262

which is the sequence A138163 in the On-Line Encyclopedia of Integer Sequences [54].

48

Finally, the same run-time analysis carries over from the 123 case to verify that

this algorithm is polynomial-time. In particular, this approach (combined with the

mentioned computational techniques) would produce an O(nr+3) algorithm for our

desired computations.

3.3.2 Permutations containing 1243

We now outline how to extend the previous approach to the pattern 1243. In addition

to the variable t, we now introduce 2n catalytic variables x1, . . . , xn and y1, . . . , yn. The

weight of a length n permutation π = π1 . . . πn will now be

weight(π) := tN1243(π)
n∏
i=1

x
#{(a,b) : πa>πb=i, 1≤a<b≤n}
i · y#{(a,b,c) : πa=i<πc<πb, 1≤a<b<c≤n}

i .

For example, weight(123456) = 1 and weight(135624) = t2x3
2x

2
4y

5
1y

2
3.

For each n, we define the polynomial

Pn(t;x1, . . . , xn; y1, . . . , yn) :=
∑
π∈Sn

weight(π).

We now observe the following:

Lemma 6.

weight(π) = x1x2 . . . xi−1 · weight(π′)|xi→yixi+1 , ... , xn−1→yixn , yi→tyi+1 , ... , yn−1→tyn .

Proof. We consider i to be a fixed value and re-insert i at the beginning of π′ by shifting

all the terms i, i+ 1, . . . , n− 1 up by 1 (i.e., xj → xj+1 and yj → yj+1 for i ≤ j). The

new “i” would create new 21 patterns and would require an extra factor of x1x2 . . . xi−1

for the weight. Also, the re-insertion of i would recreate new 132 patterns. The number

of such new patterns is exactly the number of 21 patterns in the shifted π′, where the

“1” is greater than i. Therefore, our xj shift now becomes xj → yixj+1 for i ≤ j. Also,

observe that N1243(π) is equal to the number of occurrences of 1243 in π′ plus the

number of occurrences of 132 in π2 . . . πn, where the term corresponding to the “1” is

larger than i. Therefore, our yj shift now becomes yj → tyj+1 for i ≤ j.

This directly leads to the new functional equation:

49

Theorem 13. For the pattern τ = 1243,

Pn(t;x1, . . . , xn, y1, . . . , yn) =

n∑
i=1

x1x2 . . . xi−1 · Pn−1(t; x1, . . . , xi−1, yixi+1, . . . , yixn; y1, . . . , yi−1, tyi+1, . . . , tyn).

(FE1243)

Again, our goal is to compute fn(t) = Pn(t; 1 [2n times]). We can apply the same

computational methods as before. For example, we can apply (FE1243) directly to

Pn(t; 1 [2n times]), and more generally, to objects of the form

Pn(t; 1 [a0 times] , . . . , ts1 [as1 times] ; 1 [b0 times] , . . . , ts2 [bs2 times])

to compute fn(t). This again gives us an algorithm that is faster than the direct

weighted counting of n! permutations but is still exponential-time (and memory).

This algorithm has been implemented in the procedure F1243full(n,t) (in Maple

package FINCRT). For example, the Maple call F1243full(8,t); computes f8(t) and

outputs:

t36 + t31 + 10 t30 + 3 t28 + 13 t27 + 9 t26 + 8 t25 + 37 t24 + 16 t23 + 16 t22 + 49 t21 + 60 t20

+41 t19 + 130 t18 + 81 t17 + 157 t16 + 266 t15 + 184 t14 + 233 t13 + 542 t12 + 356 t11 + 771 t10

+877 t9 + 975 t8 + 972 t7 + 2180 t6 + 1710 t5 + 2658 t4 + 3119 t3 + 4600 t2 + 4478 t+ 15767

Additionally, both the obvious analog of Lemma 3 as well as the computational

reduction using the CHOPr operator still apply in this setting. This has also been

automated in the Maple package FINCRT.

For example, the Maple call F1243rN(1,15); for the first 15 terms of sn(1243, 1)

produces the sequence:

0, 0, 0, 1, 11, 88, 638, 4478, 31199, 218033, 1535207, 10910759, 78310579, 567588264, 4152765025

and the Maple call F1243rN(2,15); for the first 15 terms of sn(1243, 2) produces the

sequence:

0, 0, 0, 0, 4, 56, 543, 4600, 36691, 284370, 2174352, 16533360, 125572259, 955035260, 7283925999

50

Finally, the same run-time analysis carries over from the 1234 case to verify that

this algorithm is polynomial-time. In particular, this approach (combined with the

mentioned computational techniques) would produce an O(n2r+5) algorithm for our

desired computations.

3.3.3 Extending to longer patterns

The approach for the patterns 132 and 1243 can be extended analogously to longer

patterns of the form 12 . . . (k − 2)(k)(k − 1). For example, if the pattern τ = 12354,

we consider the variable t and 3n catalytic variables: x1, . . . , xn and y1, . . . , yn and

z1, . . . , zn. The weight of a length n permutation π = π1 . . . πn will now be

weight(π) :=

tN12354(π)
n∏
i=1

x
#{(a,b) : πa>πb=i}
i · y#{(a,b,c) : πa=i<πc<πb}

i · z#{(a,b,c,d) : πa=i<πb<πd<πc}
i

where it is always assumed that a < b < c < d.

An analogous functional equation is derived for the corresponding polynomial

Pn(t;x1, . . . , xn; y1, . . . , yn; z1, . . . , zn) :=
∑
π∈Sn

weight(π)

and all the analogous computational methods work in this setting as well. The 12354

case has also been automated in the Maple package FINCRT.

For example, the Maple call F12354rN(0,14); for the first 14 terms of sn(12354, 0)

produces the sequence:

1, 2, 6, 24, 119, 694, 4582, 33324, 261808, 2190688,

19318688, 178108704, 1705985883, 16891621166

and the Maple call F12354rN(1,15); for the first 15 terms of sn(12354, 1) produces the

sequence:

0, 0, 0, 0, 1, 19, 246, 2767, 29384, 305646, 3170684,

33104118, 349462727, 3738073247, 40549242195

51

3.4 Patterns of the form 23 . . . k1

In this section, we generalize the previous techniques to handle patterns of the form

23 . . . k1. Although sn(231, r) = sn(132, r) for every r and n (by reversal), we will

develop an approach for handling 231 directly5 and then show how this can be extended

to longer patterns of the form 23 . . . k1. The techniques developed in this section will be

necessary for extending this general methodology to handle the pattern 1324 in the next

section. This alternate approach for 231 will also be used when considering multiple

patterns simultaneously in the next chapter.

3.4.1 Permutations containing 231

In this subsection, we will assume that our (fixed) pattern τ = 231. We define the

analogous polynomial

fn(t) :=
∑
π∈Sn

tN231(π).

Recall that the coefficient of tr in fn(t) will be exactly sn(231, r).

In addition to the variable t, we introduce n(n + 1)/2 catalytic variables xi,j with

1 ≤ j ≤ i ≤ n and define the weight of a permutation π = π1 . . . πn to be

weight(π) := tN231(π)
∏

1≤j≤i≤n
x

#{(a,b) : πa>πb, πa=i, πb<j, 1≤a<b≤n}
i,j

For example, weight(12345) = 1 and weight(24153) = t2x2,2x4,2x4,3x
2
4,4x5,4x5,5. In

essence, these catalytic variables keep track of occurrences of the pattern 21 that begin

with i and have a “gap” of at least i− j.

We will again define an analogous multi-variate polynomial Pn on all the previously

defined variables. However, for notational convenience, the xi,j variables will be written

5As opposed to computing the equivalent pattern 132.

52

as a matrix of variables:

Xn :=



x1,1 · · · x1,n

. . .

... xi,i
...

. . .

xn,1 · · · xn,n


(3.3)

where we will disregard the entries above the diagonal (i.e., the xi,j entries where j > i).

For each n, we now define the polynomial

Pn(t;Xn) :=
∑
π∈Sn

weight(π).

Recall that Pn(t; 1) = fn(t), where 1 is the matrix of all 1’s.

We will derive a functional equation for this Pn function, but first, we derive the

following lemma:

Lemma 7. Let π = π1 . . . πn and suppose that π1 = i. If π′ := red(π2 . . . πn), then

weight(π) = x0
i,1x

1
i,2 . . . x

i−1
i,i · weight(π′)|A ,

where A is the set of substitutions given by

A :=


xb,c → xb+1,c b ≥ i, c < i

xb,c → xb+1,c+1 b ≥ i, c > i

xb,c → txb+1,c · xb+1,c+1 b ≥ i, c = i .

Proof. Observe that N231(π) is equal to the number of occurrences of 231 in π2 . . . πn

plus the number of occurrences of 21 in π2 . . . πn, where the term corresponding to the

“2” is greater than i and the term corresponding to the “1” is less than i. We make

the following two observations. First, in weight(π), the exponents of xk,i and xk,i+1 are

equal for each k (since π1 = i). Second, the number of 231 patterns that include the

first term π1 = i is the exponent of xi+1,i plus the exponent of xi+2,i plus . . . plus the

exponent xn,i.

If we re-insert i at the beginning of π′, we would shift all the terms i, i+1, . . . , n−1 up

by 1. This (combined with the prior observations) would lead to the set of substitutions

53

given by A. Note that there is no case for b < i, c ≥ i since the xb,c variables are only

defined for b ≥ c. Finally, the new “i” would create new 21 patterns and would require

an extra factor of x0
i,1x

1
i,2 . . . x

i−1
i,i for the weight.

Now, define the operator R1 on a square matrix Xn and i < n to be:

R1(Xn, i) :=



x1,1 · · · x1,i−1 tx1,ix1,i+1 x1,i+2 · · · x1,n

...
. . .

...
...

xi−1,1 xi−1,i−1 · · · xi−1,n

xi+1,1 · · · xi+1,i−1 txi+1,ixi+1,i+1 xi+1,i+2 · · · xi+1,n

...
...

...
. . .

...

...
...

...
. . .

...

xn,1 · · · xn,i−1 txn,ixn,i+1 xn,i+2 · · · xn,n



. (3.4)

In essence, the R1 operator deletes the i-th row, merges the i-th and (i+ 1)-th columns

via term-by-term multiplication, and multiplies this new column by a factor of t. If

i = n, then R1(Xn, i) is defined to be the (n− 1)× (n− 1) matrix obtained by deleting

the n-th row and n-th column from Xn.

The previous lemma now leads directly to the following:

Theorem 14. For the pattern τ = 231,

Pn(t;Xn) =
n∑
i=1

x0
i,1x

1
i,2 . . . x

i−1
i,i · Pn−1(t;R1(Xn, i)). (FE231)

Note that while all entries in the matrix are changed for consistency, we will continue

to disregard the entries above the diagonal.

Again, our goal is to compute Pn(t; 1), and the analogous computational techniques

from previous sections will also apply in this setting. For example, we can apply (FE231)

directly to Pn(t; 1) as opposed to computing Pn(t;Xn) symbolically and substituting

xi,j = 1 at the end. The following result, which is obvious from the definition of the

operator R1, provides a substantial simplification:

Lemma 8. Let A be a square matrix where every row is identical (i.e., the i-th row

and the j-th row are equal for every i, j). Then, R1(A, i) will also be a square matrix

with identical rows.

54

By Lemma 8, repeated applications of R1 to the all ones matrix 1 will still result

in a matrix with identical rows. Therefore, it is sufficient to keep track of only one row

instead of the entire matrix. Also observe that repeated applications of R1 to the matrix

1 will always result in a matrix whose entries are powers of t. LetQn(t; c1, . . . , cn) denote

the polynomial Pn(t;C), where C is the n × n matrix where every row is [c1, . . . , cn]

and every ci is a power of t. This leads to a functional equation analogous to (FE231):

Qn(t; c1, . . . , cn) =
n∑
i=1

c0
1c

1
2 . . . c

i−1
i ·Qn−1(t; c1, . . . , ci−1, tcici+1, ci+2, . . . , cn).

(FE231c)

Note that Qn(t; 1 [n times]) is exactly our desired polynomial Pn(t; 1) = fn(t). However,

this interpretation only forces us to deal with n catalytic variables (the ci’s) as opposed

to n(n+1)/2 catalytic variables (the xi,j ’s). Just as in prior sections, we can repeatedly

apply our functional equation (FE231c) to compute Qn(t; 1 [n times]).

When the sequence sn(231, r) is desired for a fixed r, the obvious analog of Lemma 3

and the computational reduction using the CHOPr operator can again be used. This

has been implemented in the accompanying Maple package F231.6

3.4.2 Extending to 2341 and beyond

In this subsection, we outline how to extend the approach for 231 to an analogous (but

more complicated) approach for 2341. In addition to the variable t, we now introduce

n(n + 1)/2 catalytic variables xi,j with 1 ≤ j ≤ i ≤ n and n(n + 1)/2 more catalytic

variables yi,j with 1 ≤ j ≤ i ≤ n (a total of n(n + 1) catalytic variables). Define the

weight of a permutation π = π1 . . . πn to be

weight(π) :=

tN2341(π)
∏

1≤j≤i≤n
x

#{(a,b) : πa>πb, πa=i, πb<j, 1≤a<b≤n}
i,j · y#{(a,b,c) : πc<πa<πb, πa=i, πc<j, 1≤a<b<c≤n}

i,j

For example,

weight(24351) = t2 · x2,2x3,2x3,3x4,2x4,3x
2
4,4x5,2x5,3x5,4x5,5 · y3

2,2y3,2y3,3y4,2y4,3y4,4.

6Although all output would be equivalent to the 132 case, the approach here will be necessary when
considering multiple patterns.

55

The xi,j variables and the yi,j variables will be written as matrices of variables:

Xn :=



x1,1 · · · x1,n

. . .

... xi,i
...

. . .

xn,1 · · · xn,n


, Yn :=



y1,1 · · · y1,n

. . .

... yi,i
...

. . .

yn,1 · · · yn,n


(3.5)

where we will disregard the entries above the diagonal.

For each n, we define the polynomial

Pn(t;Xn, Yn) :=
∑
π∈Sn

weight(π)

and again Pn(t; 1,1) = fn(t) is our desired polynomial. We now have the following

result:

Lemma 9. Let π = π1 . . . πn and suppose that π1 = i. If π′ := red(π2 . . . πn), then

weight(π) = x0
i,1x

1
i,2 . . . x

i−1
i,i · weight(π′)|A′ ,

where A′ is the set of substitutions given by

A′ :=



xb,c → yi,c · xb+1,c b ≥ i, c < i

xb,c → xb+1,c+1 b ≥ i, c > i

xb,c → yi,i · xb+1,c · xb+1,c+1 b ≥ i, c = i

yb,c → yb+1,c b ≥ i, c < i

yb,c → yb+1,c+1 b ≥ i, c > i

yb,c → tyb+1,c · yb+1,c+1 b ≥ i, c = i .

Proof. Observe that N2341(π) is equal to the number of occurrences of 2341 in π2 . . . πn

plus the number of occurrences of 231 in π2 . . . πn, where the term corresponding to

the “2” is greater than i and the term corresponding to the “1” is less than i. We make

the following few observations. First, in weight(π), the exponents of xk,i and xk,i+1 are

equal and the exponents of yk,i and yk,i+1 are equal for each k (since π1 = i). Second,

the number of 2341 patterns that include the first term π1 = i is the exponent of yi+1,i

56

plus the exponent of yi+2,i plus . . . plus the exponent yn,i. Third, the number of 231

patterns that include the first term π1 = i (i.e., the “2” is equal to i) and whose “1”

term is less than k is equal to the exponent of xi+1,k plus the exponent of xi+2,k plus

. . . plus the exponent of xn,k.

If we re-insert i at the beginning of π′, we would shift all the terms i, i+1, . . . , n−1 up

by 1. This (combined with the prior observations) would lead to the set of substitutions

given by A′. Note that there is no case for b < i, c ≥ i since the xb,c variables are only

defined for b ≥ c. Finally, the new “i” would create new 21 patterns and would require

an extra factor of x0
i,1x

1
i,2 . . . x

i−1
i,i for the weight.

In addition to the previousR1 operator defined in Eq. 3.4, we define another operator

R2 on two square matrices Xn and Yn (of equal dimension) and i < n to be:

R2(Xn, Yn, i) :=



x1,1 · · · x1,i−1 yi,ix1,ix1,i+1 x1,i+2 · · · x1,n

...
. . .

...
...

xi−1,1 xi−1,i−1 · · · xi−1,n

yi,1xi+1,1 · · · yi,i−1xi+1,i−1 yi,ixi+1,ixi+1,i+1 xi+1,i+2 · · · xi+1,n

...
...

...
. . .

...

...
...

...
. . .

...

yi,1xn,1 · · · yi,i−1xn,i−1 yi,ixn,ixn,i+1 xn,i+2 · · · xn,n



.

(3.6)

If i = n, then R2(Xn, Yn, i) is defined to be the (n − 1) × (n − 1) matrix obtained by

deleting the n-th row and n-th column from Xn.

The previous lemma now leads to the following:

Theorem 15. For the pattern τ = 2341,

Pn(t;Xn, Yn) =
n∑
i=1

x0
i,1x

1
i,2 . . . x

i−1
i,i · Pn−1(t;R2(Xn, Yn, i), R1(Yn, i)). (FE2341)

As in prior sections, we recursively apply the functional equation directly to Pn(t; 1,1)

(and subsequent instances of Pk). Observe that in this scenario, Lemma 8 still applies

for the R1 operator and more specifically the “Yn” matrix in Pn. While the lemma

does not apply to the R2 operator, this still allows us to reduce the number of catalytic

57

variables. Let Qn(t;C; d1, . . . , dn) denote the polynomial Pn(t;C,D) where every entry

of the n× n matrices C and D are powers of t and every row in D is [d1, . . . , dn]. We

derive an analogous functional equation:

Qn(t;C; d1, . . . , dn) =

n∑
i=1

c0
i,1c

1
i,2 . . . c

i−1
i,i ·Qn−1(t;R2(C,D, i); d1, . . . , di−1, tdidi+1, di+2, . . . , dn). (FE2341c)

Using this recurrence to compute Qn(t; 1; 1 [n times]) will yield the desired polynomial

fn(t). This approach allows us to deal with n(n + 1)/2 + n catalytic variables (as

opposed to n(n+ 1) such variables).

Additionally, for a fixed r, the sequence sn(2341, r) can be computed by applying

Lemma 3 and the CHOPr operator as necessary. This has been implemented in the

procedure F2341rN(r,N) (in the Maple package F2341).

For example, the Maple call F2341rN(1,15); for the first 15 terms of sn(2341, 1)

produces the sequence:

0, 0, 0, 1, 11, 87, 625, 4378, 30671, 216883, 1552588,

11257405, 82635707, 613600423, 4604595573

and the Maple call F2341rN(2,15); for the first 15 terms of sn(2341, 2) produces the

sequence:

0, 0, 0, 0, 5, 68, 626, 5038, 38541, 289785, 2172387,

16339840, 123650958, 942437531, 7236542705

While we do not present the details here, the same methodology can be applied to

longer patterns of the form 23 . . . k1. Analogous functional equations can be derived

and used for enumeration.

3.5 The pattern 1324

In this section, we extend the techniques developed for the pattern 2341 to the pattern

1324. The pattern 1324 has been notoriously difficult to study, even for the pattern

58

avoidance case. The approach will resemble that of the previous section (for the pattern

2341). In addition, we will show how to extract a more efficient enumeration algorithm

specifically for the r = 0 case.

3.5.1 A functional equations approach to 1324

We again consider the variable t as well as n(n + 1)/2 catalytic variables xi,j with

1 ≤ i ≤ j ≤ n and n(n + 1)/2 catalytic variables yi,j with 1 ≤ j ≤ i ≤ n. Observe

that the subscripts of the two sets of catalytic variables range over different quantities.

Define the weight of a permutation π = π1 . . . πn to be

weight(π) :=

tN1324(π)
∏

1≤i≤j≤n
x

#{(a,b) : πa<πb, πa=i, πb>j}
i,j ·

∏
1≤j≤i≤n

y
#{(a,b,c) : πb<πa<πc, πa=i, πb≥j}
i,j

where it is always assumed that 1 ≤ a < b < c ≤ n. For example,

weight(41325) = t · x3
1,1x

2
1,2x1,3x1,4x2,2x2,3x2,4x3,3x3,4x4,4 · y3,1y3,2y

3
4,1y

2
4,2y4,3.

The xi,j variables and the yi,j variables will be written as matrices of variables:

Xn :=



x1,1 · · · x1,n

. . .

... xi,i
...

. . .

xn,1 · · · xn,n


, Yn :=



y1,1 · · · y1,n

. . .

... yi,i
...

. . .

yn,1 · · · yn,n


(3.7)

where we will disregard the entries below the diagonal in Xn and the entries above the

diagonal in Yn.

For each n, we define the polynomial

Pn(t;Xn, Yn) :=
∑
π∈Sn

weight(π)

and again Pn(t; 1,1) = fn(t) is our desired polynomial. We now have the following

result:

59

Lemma 10. Let π = π1 . . . πn and suppose that π1 = i. If π′ := red(π2 . . . πn), then

weight(π) = xn−ii,i x
n−i−1
i,i+1 . . . x1

i,n−1 · weight(π′)|A′′ ,

where A′′ is the set of substitutions given by

A′′ :=



xb,c → xb,c+1 b < i, c ≥ i

xb,c → xb+1,c+1 b ≥ i, c ≥ i

xb,c → yi,1yi,2 . . . yi,b · xb+1,c · xb+1,c+1 b < i, c = i− 1

yb,c → yb+1,c b ≥ i, c < i

yb,c → yb+1,c+1 b ≥ i, c > i

yb,c → tyb+1,c · yb+1,c+1 b ≥ i, c = i .

Proof. Observe that N1324(π) is equal to the number of occurrences of 1324 in π2 . . . πn

plus the number of occurrences of 213 in π2 . . . πn, where the term corresponding to

the “1” is greater than i. We make the following observations.

First, in weight(π), the exponents of xk,i−1 and xk,i are equal and the exponents of

yk,i and yk,i+1 are equal for each k (since π1 = i). Second, the number of 2341 patterns

that include the first term π1 = i is the exponent of yi+1,i+1 plus the exponent of

yi+2,i+1 plus . . . plus the exponent yn,i+1. Third, the number of 213 patterns that

include the first term π1 = i (i.e., the “2” is equal to i) and whose “1” term is at least k

is equal to the exponent of xk,i plus the exponent of xk+1,i plus . . . plus the exponent

of xi−1,i.

If we re-insert i at the beginning of π′, we would shift all the terms i, i+1, . . . , n−1 up

by 1. This (combined with the prior observations) would lead to the set of substitutions

given by A′′. Finally, the new “i” would create new 12 patterns and would require an

extra factor of xn−ii,i x
n−i−1
i,i+1 . . . x1

i,n−1 for the weight.

We will again use the R1 operator defined in Eq. 3.4. In addition, we define another

60

operator R3 on two n× n square matrices Xn and Yn and 1 < i ≤ n to be:

R3(Xn, Yn, i) :=



x1,1 · · · x1,i−2 w1 x1,i+1 · · · x1,n

...
. . .

...
...

xi−2,1 · · · xi−2,i−2 wi−2 xi−2,i+1 · · · xi−2,n

xi−1,1 · · · xi−1,i−2 wi−1 xi−1,i+1 · · · xi−1,n

xi+1,1 · · · xi+1,i−2 wi+1 xi+1,i+1 · · · xi+1,n

...
...

...
. . .

...

xn,1 · · · xn,i−2 wn xn,i+1 · · · xn,n



(3.8)

where

wk :=


yi,1yi,2 . . . yi,k · xk,i−1 · xk,i k ≤ i− 1

0 k > i− 1 .

If i = 1, then R3(Xn, Yn, i) is defined to be the (n − 1) × (n − 1) matrix obtained by

deleting the 1-st row and 1-st column from Xn. In essence, the R3 operator deletes

the i-th row, merges the (i − 1)-th column with the i-th column (via term-by-term

multiplication), and scales that new column by products of terms from Yn.

The previous lemma now leads to the following:

Theorem 16. For the pattern τ = 1324,

Pn(t;Xn, Yn) =

n∑
i=1

xn−ii,i x
n−i−1
i,i+1 . . . x1

i,n−1 · Pn−1(t; R3(Xn, Yn, i), R1(Yn, i)).

(FE1324)

As in prior sections, we recursively apply the functional equation directly to Pn(t; 1,1)

(and subsequent instances of Pk). Again, Lemma 8 still applies for the R1 opera-

tor and more specifically the Yn matrix in Pn. While the lemma does not apply to

the R3 operator, this still allows us to reduce the number of catalytic variables. Let

Qn(t; C; d1, . . . , dn) denote the polynomial Pn(t;C,D) where every entry of the n× n

matrices C and D are powers of t and every row in D is [d1, . . . , dn]. We derive an

61

analogous functional equation:

Qn(t; C; d1, . . . , dn) =

n∑
i=1

cn−ii,i c
n−i−1
i,i+1 . . . c1

i,n−1 ·Qn−1(t; R3(C,D, i); d1, . . . , di−1, tdidi+1, di+2, . . . , dn).

(FE1324c)

Using this recurrence to compute Qn(t; 1; 1 [n times]) will yield the desired polynomial

fn(t). This approach allows us to deal with n(n + 1)/2 + n catalytic variables (as

opposed to n(n+ 1) such variables).

Additionally, for a fixed r, the sequence sn(1324, r) can be computed by applying

Lemma 3 and the CHOPr operator as necessary. This has been implemented in the

procedure F1324rN(r,N) (in the Maple package F1324).

For example, the Maple call F1324rN(0,17); for the first 17 terms of sn(1324, 0)

produces the sequence:

1, 2, 6, 23, 103, 513, 2762, 15793, 94776, 591950, 3824112, 25431452,

173453058, 1209639642, 8604450011, 62300851632, 458374397312

and the Maple call F1324rN(1,15); for the first 15 terms of sn(1324, 1) produces the

sequence:

0, 0, 0, 1, 10, 75, 522, 3579, 24670, 172198, 1219974, 8776255, 64082132, 474605417, 3562460562.

3.5.2 Specializing the approach to r = 0

Unfortunately, the previous algorithm developed for the pattern 1324 is very memory

intensive. In this subsection, we outline how to extract a simpler recurrence specifically

for the r = 0 case from the previous functional equations method. The resulting

algorithm is still quite memory intensive but allows us to compute the first 23 terms of

the sequence (before memory runs out).

We will specialize for the r = 0 case beginning at functional equation (FE1324c).

Recall that Qn(t;C; d1, . . . , dn) is the polynomial Pn(t;C,D) where every entry of the

n×n matrices C and D are powers of t and every row in D is [d1, . . . , dn]. We had the

62

functional equation

Qn(t; C; d1, . . . , dn) =

n∑
i=1

cn−ii,i c
n−i−1
i,i+1 . . . c1

i,n−1 ·Qn−1(t; R3(C,D, i); d1, . . . , di−1, tdidi+1, di+2, . . . , dn)

and wanted to compute Qn(t; 1; 1 [n times]), which is exactly the desired polynomial

fn(t).7

Observe that all the variables ck,l and dk represent powers of t. Then, it is actually

sufficient to keep track of powers of t through most of the algorithm. In particular,

we may consider the analogous function Hn(t; U ; v1, . . . , vn), where U is an n × n

matrix of non-negative integers and each vi is a non-negative integer. More precisely,

Hn(t;U ; v1, . . . , vn) is the polynomial Pn(t;C,D), where C and D are n × n matrices,

ci,j = tui,j for every 1 ≤ i, j ≤ n, and every row of D is [tv1 , . . . , tvn].

In addition, we define the analogous operator R′3 on an n × n square matrix Un

(of non-negative integers), a length n vector of non-negative integers [v1, . . . , vn], and

1 < i ≤ n:

R′3(Un, [v1, . . . , vn] , i) :=



u1,1 · · · u1,i−2 w′1 u1,i+1 · · · u1,n

...
. . .

...
...

ui−2,1 · · · ui−2,i−2 w′i−2 ui−2,i+1 · · · ui−2,n

ui−1,1 · · · ui−1,i−2 w′i−1 ui−1,i+1 · · · ui−1,n

ui+1,1 · · · ui+1,i−2 w′i+1 ui+1,i+1 · · · ui+1,n

...
...

...
. . .

...

un,1 · · · un,i−2 w′n un,i+1 · · · un,n


(3.9)

where

w′k :=


(v1 + v2 + . . .+ vk) + uk,i−1 + uk,i k ≤ i− 1

0 k > i− 1 .

(3.10)

If i = 1, then R′3(Un, [v1, . . . , vn] , i) is defined to be the (n−1)×(n−1) matrix obtained

by deleting the 1-st row and 1-st column from Un. In essence, the R′3 operator deletes

7Recall that 1 is the n× n matrix where every entry is 1.

63

the i-th row, merges the (i − 1)-th column with the i-th column (via term-by-term

addition), and adds partial sums of [v1, . . . , vn] into the new column.

We now have the functional equation (analogous to Eq. (FE1324c)):

Hn(t; U ; v1, . . . , vn) =

n∑
i=1

tei ·Hn−1(t; R′3(U, [v1, . . . , vn] , i); v1, . . . , vi−1, vi + vi+1 + 1, vi+2, . . . , vn)

(FE1324e)

where ei = (n−i)ui,i+(n−i−1)ui,i+1+. . .+(1)ui,n−1. Observe thatHn(t; 0; 0 [n times])

is now our desired polynomial fn(t).8

Since we are specifically considering the r = 0 case, we can make additional ob-

servations and simplifications. First, we are only interested in the constant term of

fn(t). By Lemma 3, we only need to keep track of polynomials of the form a0 + a1t in

intermediate computations. Because of this, we may consider all matrices and vectors

used in Hn to be 0-1 matrices. After every addition (for example, in the w′k term in

R′3), we can take the minimum of the resulting sum and 1.

From this, we can make additional observations on v1, . . . , vn. These quantities are

only utilized directly in the R′3 operator, and in particular, they only appear in the

partial sums for w′k in Eq. 3.10. Suppose that some of the v1, . . . , vn are equal to 1, and

let j be the smallest number such that vj = 1. Then,

Hn(t; U ; v1, . . . , vn) = Hn(t; U ; 0 [j − 1 times] , 1 [n− j + 1 times]) .

In particular, the variables v1, . . . , vn are unnecessary, and it is sufficient to keep track

of how many 0’s there are. We can then consider this slightly simpler function

H̃n(t; U ; k) := Hn(t; U ; 0 [k times] , 1 [n− k times])

where 0 ≤ k ≤ n.

Finally, if we apply the CHOPr operator to functional equation FE1324e, it would

eliminate every term where the exponent ei > 0. This would happen if ui,i > 0 or

8We denote the n× n matrix consisting of all zeros by 0.

64

ui,i+1 > 0 or . . . or ui,n−1 > 0. This observation (combined with how the R′3 operator

“modifies” the matrix Un) implies that we only need to keep track of the left-most 1

within each row of Un. If there are multiple 1’s on a row, the left-most 1 is sufficient

to force ei > 0 as long as it is not in the n-th column. Therefore, we can consider a

function of the form

H0
n(t; b1, . . . , bn; k) := H̃n(t; Bn; k) = Hn(t; Bn; 0 [k times] , 1 [n− k times])

where 0 ≤ k ≤ n and 1 ≤ bj ≤ n+1 for each j and Bn is the n×n matrix where the j-th

row is [0 [n times]] if bj = n+1 and otherwise is [0 [bj − 1 times] , 1 [n− bj + 1 times]].

This simplified approach has been implemented in the procedure Av1324F(n) in the

accompanying Maple package F1324. This approach is still quite memory intensive,

but even then, we were able to compute the first 23 terms of the enumerating sequence

sn(1324, 0).9 The Maple call Av1324N(23) gives us the sequence:

1, 2, 6, 23, 103, 513, 2762, 15793, 94776, 591950, 3824112, 25431452, 173453058,

1209639642, 8604450011, 62300851632, 458374397312, 3421888118907, 25887131596018,

198244731603623, 1535346218316422, 12015325816028313, 94944352095728825

which is the sequence A061552 in the On-Line Encyclopedia of Integer Sequences [54].

This approach seems to differ from the existing enumeration methods for 1324-

avoiding permutations. The approach by Albert et al. [1] can generate the first 25

terms of the sequence and was also used to find the best lower bound on the Stanley-

Wilf limit. Recall that the Stanley-Wilf limit is

L(1324) := lim
n→∞

n
√
sn(1324, 0).

The best lower bound [1] and upper bound [7] for the limit are currently

9.47 < L(1324) < 13.93.

Our hope is that this new enumeration algorithm may be analyzed to produce an

improved bound for L(1324).

9The limitation came from running out of memory and not from a lengthy computational time. The
first 23 terms took under 1 hour with the computing resources available to the author.

65

Chapter 4

Extensions for the Functional Equation Methodology

4.1 Overview

The study of permutations with r occurrences of a given pattern can be extended to

consider multiple patterns simultaneously. Let p1, . . . , pk be k distinct (permutation)

patterns, and let r1, . . . , rk be k non-negative integers. We define the set of length n

permutations with exactly ri occurrences of pattern pi for every i:

Sn([p1, . . . , pk] , [r1, . . . , rk]) :=

k⋂
i=1

Sn(pi, ri).

We also denote the cardinality of this set by

sn([p1, . . . , pk] , [r1, . . . , rk]) := |Sn([p1, . . . , pk] , [r1, . . . , rk])| .

Some work has already been done in the avoidance case for this problem (ri = 0 for

each i). In this case, most work has been restricted to studying pairs of patterns

(k = 2) where the patterns are either of length 3 or 4. The sequences enumerating

permutations avoiding pairs of patterns (of length 3 or 4) can also be found on the

On-Line Encyclopedia of Integer Sequences [54] with many helpful references.

For cases where one (or more) of the ri are greater than 0, much less is known.

Most of the work has been restricted specifically to length 3 patterns. For example,

the pattern class Sn([123, 132] , [r1, r2]) has received some attention, and there are ex-

plicit formulas for sn([123, 132] , [r1, r2]) and small ri. It is not difficult to show that

sn([123, 132] , [0, 0]) = 2n−1. Robertson also shows in [50]:

Theorem 17.

sn([123, 132] , [0, 1]) = sn([123, 132] , [1, 0]) = (n− 2)2n−3

66

and

sn([123, 132] , [1, 1]) = (n− 3)(n− 4)2n−5.

However, there is no concrete result for enumerating this sequence for general r1 and

r2.

Another extension of the classical avoidance problem is to refine a permutation class

over some permutation statistic. One of the most commonly studied statistic is the

number of inversions in a permutation, which is one way to quantify how “unsorted”

a permutation is. Recall that the inversion number of a permutation π = π1 . . . πn,

denoted by inv(π), is the number of pairs (i, j) such that 1 ≤ i < j ≤ n and πi > πj .

In this chapter, we show two extensions of the functional equations approach devel-

oped in the last chapter. First, we show how to extend any of the previous functional

equations to also keep track of inversions. These new algorithms have been implemented

in accompanying Maple packages qINCR, qINCRT, qF231, qF2341, qF1324, and qAv1324.

We then show how to extend the functional equations approach to consider multiple

patterns simultaneously. Any collection of the patterns in the previous chapter can be

combined, however, we will only present a few constructive examples. In particular,

we will show how to compute sn([12 . . . k, 12 . . . (k − 2)(k)(k − 1)] , [r1, r2]) as well as

sn(L3, [r1, . . . , r6]), where L3 is the list of all length 3 permutations in lexicographical

order.

4.2 Refining by inversions

In this section, we show how to modify the functional equations approach to account for

the inversion number and present some examples of its implementation. First, we define

some additional notation. Given a pattern τ and for each n, we define the bivariate

polynomial

gn(t, q) :=
∑
π∈Sn

qinv(π)tNτ (π).

Observe that gn(t, 1) is exactly fn(t) from the previous chapter.

67

Given a permutation π = π1 . . . πn, suppose that π1 = i. Then, inv(π) is equal to

the number of inversions in π2 . . . πn plus the number of elements in π2, . . . , πn that

are less than i. For any previously defined functional equation, it is enough to insert a

factor of qi−1 in the summation.

Given a fixed pattern τ , the polynomial Pn can now be “generalized” as

Pn(t, q;x1, . . . , xn) :=
∑
π∈Sn

qinv(π) · weight(π). (4.1)

Observe that Pn(t, 1;x1, . . . , xn) is exactly the polynomial Pn(t;x1, . . . , xn) from the

previous chapter.

We can now quickly derive the modified functional equations for each pattern. The

functional equation (NZFE1) now extends to:

Corollary 5. For the pattern τ = 123,

Pn(t, q;x1, . . . xn) =

n∑
i=1

qi−1xn−ii Pn−1(t, q;x1, . . . , xi−1, txi+1, . . . , txn). (qNZFE1)

Similarly, the functional equation (NZFE2) now extends to:

Corollary 6. For the pattern τ = 1234,

Pn(t, q;x1, . . . xn) =

n∑
i=1

qi−1xn−ii Pn−1(t, q; x1, . . . , xi−1, yixi+1, . . . , yixn; y1, . . . , yi−1, tyi+1, . . . , tyn).

(qNZFE2)

This has been implemented in the accompanying Maple package qFINCR. For exam-

ple, the Maple call qF123r(8,0,t,q); would refine the quantity s8(123, 0) by inversions

and produce the output:

q28 + 7 q27 + 27 q26 + 70 q25 + 134 q24 + 196 q23 + 227 q22 + 215 q21 + 179 q20

+139 q19 + 99 q18 + 64 q17 + 38 q16 + 20 q15 + 9 q14 + 4 q13 + q12

and the Maple call coeff(qF1234r(9,2,t,q),t,2); would refine the quantity s9(1234, 2)

by inversions and produce the output:

20 q27 + 112 q26 + 408 q25 + 1087 q24 + 2351 q23 + 4176 q22 + 6258 q21 + 7750 q20 + 8060 q19

+7003 q18 + 5444 q17 + 3608 q16 + 2092 q15 + 915 q14 + 384 q13 + 68 q12 + 12 q11.

68

The functional equation (FE132) extends to:

Corollary 7. For the pattern τ = 132,

Pn(t, q;x1, . . . , xn) =
n∑
i=1

qi−1x1x2 . . . xi−1 · Pn−1(t, q;x1, . . . , xi−1, txi+1, . . . , txn).

(qFE132)

Also, functional equation (FE1243) extends to:

Corollary 8. For the pattern τ = 1243,

Pn(t, q;x1, . . . , xn, y1, . . . , yn) =

n∑
i=1

qi−1x1x2 . . . xi−1 · Pn−1(t, q; x1, . . . , xi−1, yixi+1, . . . , yixn; y1, . . . , yi−1, tyi+1, . . . , tyn).

(qFE1243)

This has also been implemented in the accompanying Maple package qFINCRT. For

example, the Maple call qF132r(7,0,t,q); would refine the quantity s7(132, 0) by

inversions and produce the output:

q21 + 6 q20 + 15 q19 + 25 q18 + 35 q17 + 40 q16 + 43 q15 + 44 q14 + 40 q13 + 37 q12

+32 q11 + 28 q10 + 22 q9 + 18 q8 + 13 q7 + 11 q6 + 7 q5 + 5 q4 + 3 q3 + 2 q2 + q + 1

and the Maple call coeff(qF1243r(8,2,t,q),t,2); would refine the quantity s8(1243, 2)

by inversions and produce the output:

16 q20 + 75 q19 + 216 q18 + 436 q17 + 649 q16 + 733 q15 + 683 q14 + 546 q13 + 412 q12

+301 q11 + 209 q10 + 139 q9 + 86 q8 + 43 q7 + 25 q6 + 19 q5 + 8 q4 + 4 q2.

Let Xn and Yn be the matrices of catalytic variables and R1, R2, and R3 be the

matrix operators defined in the previous chapter. We can then similarly extend the

functional equations for 231, 2341, and 1324. The functional equations (FE231) and

(FE231c) become:

Corollary 9. For the pattern τ = 231,

Pn(t, q;Xn) =
n∑
i=1

qi−1x0
i,1x

1
i,2 . . . x

i−1
i,i · Pn−1(t, q;R1(Xn, i)) (qFE231)

69

and

Qn(t, q; c1, . . . , cn) =

n∑
i=1

qi−1c0
1c

1
2 . . . c

i−1
i ·Qn−1(t, q; c1, . . . , ci−1, tcici+1, ci+2, . . . , cn).

(qFE231c)

Similarly, the functional equations (FE2341) and (FE2341c) become:

Corollary 10. For the pattern τ = 2341,

Pn(t, q;Xn, Yn) =
n∑
i=1

qi−1x0
i,1x

1
i,2 . . . x

i−1
i,i · Pn−1(t, q;R2(Xn, Yn, i), R1(Yn, i))

(qFE2341)

and

Qn(t, q;C, d1, . . . , dn) =

n∑
i=1

qi−1c0
i,1c

1
i,2 . . . c

i−1
i,i ·Qn−1(t, q;R2(C,D, i), d1, . . . , di−1, tdidi+1, di+2, . . . , dn).

(qFE2341c)

And finally, the functional equations (FE1324) and (FE1324c) become:

Corollary 11. For the pattern τ = 1324,

Pn(t, q;Xn, Yn) =

n∑
i=1

qi−1xn−ii,i x
n−i−1
i,i+1 . . . x1

i,n−1 · Pn−1(t, q; R3(Xn, Yn, i), R1(Yn, i))

(qFE1324)

and

Qn(t, q;C; d1, . . . , dn) =

n∑
i=1

qi−1cn−ii,i c
n−i−1
i,i+1 . . . c1

i,n−1 ·Qn−1(t, q; R3(C,D, i); d1, . . . , di−1, tdidi+1, di+2, . . . , dn).

(qFE1324c)

These extensions have been implemented in the accompanying Maple packages

qF231, qF2341, qF1324 and qAv1324.

Finally, we observe that we can also apply the same extension to patterns that are

reversals of the ones we have considered so far (e.g., k(k−1) . . . 21, (k−1)(k)(k−2) . . . 21,

etc.). Given a pattern σ = σ1 . . . σk, we make the simple observation that for all n,

sn([21, σ1 . . . σk] , [r1, r2]) = sn([12, σk . . . σ1] , [r1, r2]) .

70

Therefore, instead of considering inversions in our desired pattern, we may simply keep

track of the number of non-inversions (occurrences of the pattern 12) in the reversal

of the pattern. This merely corresponds to adding a qn−i factor into the functional

equation summation (as opposed to qi−1 as before). For example, we have the following

for deceasing patterns:

Corollary 12. For the pattern τ = 321,

Pn(t, q;x1, . . . xn) =
n∑
i=1

qn−ixn−ii Pn−1(t, q;x1, . . . , xi−1, txi+1, . . . , txn). (qFE321)

Corollary 13. For the pattern τ = 4321,

Pn(t, q;x1, . . . xn) =

n∑
i=1

qn−ixn−ii Pn−1(t, q; x1, . . . , xi−1, yixi+1, . . . , yixn; y1, . . . , yi−1, tyi+1, . . . , tyn).

(qFE4321)

The reversals of the other patterns can be handled similarly.

4.3 Extending to multiple patterns

In the previous section, we considered how to extend the functional equations to account

for the inversion number. That was a very special case of the more general extension of

tracking multiple patterns simultaneously. It is actually possible to keep track of any

subset of the patterns we have considered before. However in this section, we will only

present two specific examples (other combinations of patterns can be handled similarly).

4.3.1 Permutations containing 123 and 132

We first outline how to consider the patterns σ = 123 and τ = 132 simultaneously. Let

s and t be the variables corresponding to 123 and 132, respectively. Our ultimate goal

will be to quickly compute coefficients of the bivariate polynomial

fn(s, t) :=
∑
π∈Sn

sN123(π)tN132(π). (4.2)

71

Let x1, . . . , xn and u1, . . . , un be two sets of catalytic variables. We recall the two

weight functions for the patterns 123 and 132 (using our new variables) to be:

weight123(π) := sN123(π)
n∏
i=1

x
#{(a,b) : πa=i<πb, 1≤a<b≤n}
i

and

weight132(π) := tN132(π)
n∏
i=1

u
#{(a,b) : πa>πb=i, 1≤a<b≤n}
i .

We now define the weight function for considering both patterns to be:

weight(π) := weight123(π) · weight132(π).

For each n, we define the analogous multivariate polynomial

Pn(s, t; x1, . . . , xn; u1, . . . , un) :=
∑
π∈Sn

weight(π).

Observe that Pn(s, t; 1 [n times] ; 1 [n times]) is exactly our desired polynomial fn(s, t).

The proofs for Lemma 2 and Lemma 5 still hold, and the variables for 123 never depend

on the variables for 132 (and vice versa). We immediately have the functional equation

Pn(s, t; x1, . . . , xn; u1, . . . , un) =

n∑
i=1

xn−ii u1u2 . . . ui−1Pn−1(s, t; x1, . . . , xi−1, sxi+1, . . . , sxn; u1, . . . , ui−1, tui+1, . . . , tun).

The analogous computational techniques from the previous chapter also apply here.

This has been implemented in the Maple package F123n132. For example, the

Maple call F123r132sN(2,2,15); gives the first 15 terms of the sequence enumerating

permutations with 2 occurrences of 123 and 2 occurrences of 132:

0, 0, 0, 1, 6, 26, 94, 306, 934, 2732, 7752, 21488, 58432, 156288, 411904

and the Maple call F123r132sN(4,2,15); gives the first 15 terms of the sequence

enumerating permutations with 4 occurrences of 123 and 2 occurrences of 132:

0, 0, 0, 0, 1, 5, 23, 106, 450, 1740, 6214, 20831, 66427, 203550, 603920

Based off of empirical evidence, we also believe the following to be true:

72

Conjecture 14. For each fixed r ≥ 0 and s ≥ 0, the sequence enumerating length n

permutations with exactly r occurrences of 123 and s occurrences of 132 is given by

p(n)2n, where p(n) is some polynomial of degree r + s.

As mentioned before, there are a number of results considering this type of problem,

but most such results limit themselves to s = 0, 1.1 If this general form were shown to

hold for arbitrary r and s, the F123n132 package could quickly compute enough terms

to find explicit formulas and generating functions.

4.3.2 Permutations containing 1234 and 1243

We now outline the case of considering the patterns 1234 and 1243 simultaneously. Let

s and t be the variables corresponding to 1234 and 1243, respectively. Let x1, . . . , xn

and y1, . . . , yn be catalytic variables corresponding to 1234. Similarly, let u1, . . . , un and

v1, . . . , vn be catalytic variables corresponding to 1243. Recall that the weight functions

for these patterns (using these variables) are

weight1234(π) := sN1234(π)
n∏
i=1

x
#{(a,b) : πa=i<πb, 1≤a<b≤n}
i · y#{(a,b,c) : πa=i<πb<πc, 1≤a<b<c≤n}

i

and

weight1243(π) := tN1243(π)
n∏
i=1

u
#{(a,b) : πa>πb=i, 1≤a<b≤n}
i · v#{(a,b,c) : πa=i<πc<πb, 1≤a<b<c≤n}

i .

The weight function for considering both patterns will be:

weight(π) := weight1234(π) · weight1243(π).

For each n, the polynomial Pn is now defined to be:

Pn(s, t; x1, . . . , xn; y1, . . . , yn; u1, . . . , un; v1, . . . , vn) :=
∑
π∈Sn

weight(π).

Again, our goal is to compute Pn(s, t; 1 [n times] ; 1 [n times] ; 1 [n times] ; 1 [n times]) =

fn(s, t). In this case as well, the proofs from the corresponding lemmas (Lemma 4 and

1Permutations that are 132-avoiding have nice structural properties that make them easier to study.

73

Lemma 6) still hold, and we immediately have the functional equation

Pn(s, t; x1, . . . , xn; y1, . . . , yn; u1, . . . , un; v1, . . . , vn) =

n∑
i=1

xn−ii u1u2 . . . ui−1 · Pn−1(s, t; Lxi ; Lyi ; L
u
i ; Lvi)

where the sequences of variables Lxi , Lyi , L
u
i , and Lvi are defined to be:

Lxi := x1 , . . . , xi−1 , yixi+1 , . . . , yixn

Lyi := y1 , . . . , yi−1 , syi+1 , . . . , syn

Lui := u1 , . . . , ui−1 , viui+1 , . . . , viun

Lvi := v1 , . . . , vi−1 , tvi+1 , . . . , tvn .

The analogous computational techniques from the previous chapter also apply here.

This has been implemented in the accompanying Maple package F1234n1243. For

example, the Maple call F1234r1243sN(15,0,0); for the first 15 terms of

sn([1234, 1243] , [0, 0]) produces the sequence:

1, 2, 6, 22, 90, 394, 1806, 8558, 41586, 206098, 1037718,

5293446, 27297738, 142078746, 745387038

which is the sequence A006318, the large Schröeder numbers, in the On-Line Encyclo-

pedia of Integer Sequences [54].

Similarly, the Maple call F1234r1243sN(15,1,0); for the first 15 terms of

sn([1234, 1243] , [1, 0]) produces the sequence:

0, 0, 0, 1, 10, 71, 444, 2617, 14958, 84063, 467960, 2591265, 14308722, 78911943, 435066228

Also, the Maple call F1234r1243sN(15,1,1); for the first 15 terms of

sn([1234, 1243] , [1, 1]) produces the sequence:

0, 0, 0, 0, 0, 2, 32, 322, 2634, 19216, 130662, 848284, 5334332, 32788726, 198201268

4.3.3 Other extensions for multiple patterns

In the previous subsections, we outlined how to extend the functional equations method-

ology to consider the pair of patterns 123 and 132 simultaneously as well as the pair

74

of patterns 1234 and 1243 simultaneously. Similar extensions can be done for any

collection of patterns that were handled in the previous chapter.

It is also possible to consider more than two patterns simultaneously by extending

the previous approaches in the obvious ways. We consider one final extension as an

example. Let p1, . . . , p6 be the length three permutations in lexicographical order (that

is, p1 = 123, p2 = 132, and so on). Let t1, . . . , t6 be variables where ti is associated

with the pattern pi. Now, we are interested in the multivariate polynomial

fn(t1, t2, t3, t4, t5, t6) :=
∑
π∈Sn

t
N123(π)
1 t

N132(π)
2 t

N213(π)
3 t

N231(π)
4 t

N312(π)
5 t

N321(π)
6 .

In the previous chapter, we defined weight functions and derived functional equa-

tions for the patterns 123, 132, and 231 directly, but analogous functional equations can

also be derived for 321, 312, and 213.2 These six functional equations can be combined

to count occurrences of all the length three patterns. This has been implemented in

the accompanying Maple package FS3. For example, the procedure FS3full(n,Lt) will

compute the full fn polynomial. Using this, we are able to compute the full multivariate

polynomial fn(t1, t2, t3, t4, t5, t6) for n ≤ 11.3

As an example, the Maple call FS3full(4,[t[1],t[2],t[3],t[4],t[5],t[6]]);

would produce the output:

t1
4 + t1

2t2
2 + t1

2t2t3 + t1t2
2t4 + t2

2t1t5 + t2
3t6 + t3

2t1
2 + t3

2t2
2 + t1t4t3

2

+t1t4
3 + 2 t2t4t3t5 + t2t4

2t6 + t3
2t5t1 + t3

3t6 + t3t6t4
2 + t4

2t5
2 + t4

2t6
2

+t5
3t1 + t5

2t2t6 + t5
2t6t3 + t5t6

2t4 + t6
2t5

2 + t6
4

2As opposed to computing these by merely considering the complement of the pattern.

3The main issue is not the speed of the algorithm but the size of the output. The output for the
n = 11 case is a multivariate polynomial that requires 450 megabytes of space as a text file.

75

Chapter 5

Automating Existing Techniques

5.1 Introduction

Given a pattern τ and a permutation π, recall that Nτ (π) will denote the number of

occurrences of τ in π. For example, if the pattern τ = 123, the permutation 53412

avoids the pattern τ (so N123(53412) = 0), whereas the permutation 52134 contains

two occurrences of τ (so N123(52134) = 2).

For a pattern τ and non-negative integer r ≥ 0, we will again consider the set

Sn(τ, r) := {π ∈ Sn : π has exactly r occurrences of the pattern τ}

and the quantity sn(τ, r) := |Sn(τ, r)|. When r = 0, we will more simply write Sn(τ)

and sn(τ) instead of Sn(τ, 0) and sn(τ, 0), respectively. Recall that the corresponding

generating function is defined as

F rτ (x) :=
∞∑
n=0

sn(τ, r)xn.

Now recall that Dyck paths are paths with endpoints on the integer lattice consisting

of up-steps (positional changes of (1, 1)) and down-steps (positional changes of (1,−1))

which start at the position (0, 0), end at the position (2n, 0), and never go below the

x-axis. For each n, the set of Dyck paths from (0, 0) to (2n, 0) will be denoted by Dn.

Recall that the set Dn is enumerated by the Catalan numbers Cn:

|Dn| = Cn =
1

n+ 1

(
2n

n

)
For length 3 patterns in the general r ≥ 0 setting, there are only two Wilf-equivalence

classes due to the trivial Wilf-equivalences of reversal and complementation: {123, 321}

and {132, 213, 231, 312}. Recall that in the avoidance case (where r = 0), the patterns

76

123 and 132 are Wilf-equivalent. This however does not hold for r > 0. Therefore for

general r, there are two cases to consider for length 3 patterns. For this chapter, it

will be convenient to consider the patterns 312 and 321 as representatives of these two

equivalence classes.

In [32], Krattenthaler gave a new combinatorial proof for sn(312) = Cn and sn(321) =

Cn by providing bijections from Sn(312) to the set of Dyck paths Dn and from Sn(321)

to Dn. Fulmek [25] later extended the bijection to “generalized Dyck paths”, which

will be defined later, to compute F r312(x) and F r321(x) for r = 1, 2.

In this chapter, we review and reformulate Fulmek’s approach for the pattern 312

so that it is more conducive to being computationally automated. In particular, this

more automated approach allows us to re-derive Fulmek’s original results and also

to (rigorously) compute F r312(x) for r = 3, 4. This approach has been implemented

in the Maple package FULMEK. The end result is technically not new, since Mansour

and Vainshtein found these generating functions through a different approach [37], but

this work provides new alternate proofs that verify Mansour and Vainshtein’s results.

More importantly, this chapter serves as a case study on how certain results could be

computationally automated and then pushed further to derive new, yet rigorous, results

using computers. As a final comment, much of the work outlined here will be presented

without formal proof since doing so would merely reproduce Fulmek’s work. Those

interested in the formal justifications and details should see his original article [25].

5.2 Preliminary definitions

We will start off by reviewing some definitions from Fulmek’s original work [25]. First,

consider a generalized lattice path that satisfies the following properties:

• Consists of up-steps (positional change of (1, 1)), down-steps (positional change

of (1,−1)), and down-jumps (positional change of (0,−1)).

• Every up-step must be immediately followed by a down-step or another up-step.

• Every down-jump must be immediately followed by a down-step or another down-

jump.

77

• Starts at position (0, 0) and ends at position (m, 0), where m will be the total

number of up-steps and down-steps.

• Never goes below the x-axis.

We will refer to such a path as a generalized Dyck path. For notational convenience,

we will often encode a path by a sequence of U ’s (up-steps), D’s (down-steps), and

J ’s (down-jumps). The notation Uk will denote a sequence of k consecutive U ’s

(and similarly for Dk and Jk). For example, the graphical representation of the path

UUUDJDUD (equivalently, U3DJDUD) is shown in Figure 5.1.

Figure 5.1: Graphical representation of UUUDJDUD

We will write GDn to denote the set of generalized Dyck paths with exactly n down-

steps. Note that a generalized Dyck path with no down-jumps is also a regular Dyck

path. Also observe that for each n > 1, the set GDn contains infinitely many paths

(even though Dn is a finite set) since for each k ≥ 0, the path Un−1Uk+1DJkDn−1 is

in GDn.

Consider an n-tuple of non-negative integers (h1, h2, . . . , hn). If hn = 0, we will

refer to (h1, . . . , hn) as a height-vector of length n. We will define an injective function

that maps each length n height-vector into a path in GDn. The rough idea is that

hi represents the i-th down-step and is the height (or y-coordinate) of the path at

the end of that down-step. Once the heights of the down-steps are established, the

remaining up-steps and down-jumps are uniquely determined because of the conditions

on a generalized Dyck path.

78

More precisely, define µ to be the function that maps the height-vector (h1, . . . , hn)

to the path in GDn determined by the following steps:

• Begin path at position (0, 0).

• Draw h1 + 1 up-steps followed by a down-step. (Note: the path is currently at

height h1).

• For each subsequent hi, do the following:

– If hi = hi−1 − 1, then draw a down-step.

– If hi ≥ hi−1, then draw hi − hi−1 + 1 up-steps followed by a down-step.

– Otherwise (if hi ≤ hi−1 − 2), draw hi−1 − hi − 1 down-jumps followed by a

down-step.

Observe that this path will have exactly n down-steps, and for each i, the i-th down-step

will end at height hi. Also, since hn = 0, the path must end at (m, 0) for some positive

integer m. It is clear (by its constructive definition) that µ is injective. For example,

if h = (0, 3, 1, 1, 0), then µ(h) = UDU4DJDUDD. This is graphically represented in

Figure 5.2.

Figure 5.2: Graphical representation of µ(h) = UDU4DJDUDD

In the next section, we will define an injective mapping from permutations to height

vectors and use that to create an injective function from permutations to generalized

Dyck paths. We will then show what paths correspond to permutations in Sn(312, r)

and show how to compute the generating function enumerating those paths.

79

5.3 Extending the approach for 312

We will start off by giving a brief overview of Fulmek’s approach and then show how

certain parts can be systematized and computationally automated. Given a permu-

tation π = π1 . . . πn, we define the height-vector function (for the pattern 312) as

hv(π) := (h1, . . . , hn) where hi := #{πk : πi > πk, i < k}. We will refer to the quantity

(h1, . . . , hn) as the height-vector for π. For example, hv(32514) = (2, 1, 2, 0, 0). Observe

that by construction, we always have hn = 0, which matches our previous definition for

a height-vector. Also note that this function is injective, since the permutation can be

reconstructed by reading the entries of the height-vector in reverse.

Now, we define the function ψ := µ ◦ hv, which maps a length n permutation into

a path in GDn. Since both hv and µ are injective, the function ψ is also injective. We

also define the set

GDr
n := {ψ(π) : π ∈ Sn(312, r)} .

Observe that GDr
n ⊆ GDn since hv maps π ∈ Sn into a length n height-vector, and µ

maps that vector to a generalized Dyck path with n down-steps. We will also consider

the larger set

GDr :=
⋃
n≥0

GDr
n.

In [25], it is shown that down-jumps in a generalized Dyck path will correspond to

one or more occurrences of a 312 pattern. More specifically, for each r, a generalized

Dyck path is in GDr if and only if it contains some collection of subpaths that corre-

spond to ways that 312 patterns can occur within a permutation. A key point in [25]

is that we can find all the ways that 312 patterns can occur in a permutation, trans-

late those into possible subpaths, and enumerate the generalized Dyck paths containing

those desired subpaths.

Given a variable x, we define a weight function w, where w(U) = w(D) = x1/2 and

w(J) = 1. If p = p1p2 . . . pm is a path with m steps (each pi ∈ {U,D, J}), we naturally

extend the definition of the weight function to be w(p) :=
∏
w(pi). Given a path p,

80

we also define the function NJ(p) to be the number of down-jumps in the path p. As

discussed in [25], our desired generating function can then be computed as

F rτ (x) =
∑

p∈GDr
x−NJ (p)/2w(p).

For notational convenience, we also define

c :=
1

2x

(
1−
√

1− 4x
)

which is the generating function for the Catalan numbers (and in particular for ordinary

Dyck-paths with no down-jumps). We begin by reviewing Fulmek’s approach for r = 1

and r = 2.

5.3.1 Review of r = 1 case

We first begin by outlining the r = 1 case. Everything in this section should be

assumed to be a review of Fulmek’s work [25] unless otherwise indicated. Suppose that

π ∈ Sn(312, 1). Since there is only one copy of the pattern, the terms in π that form

an occurrence will be order-isomorphic to 312. We will refer to this 312 copy as the

312-base permutation (for r = 1). Observe that the ψ map sends 312 to the generalized

Dyck path shown in Figure 5.3.

Figure 5.3: Generalized Dyck path for the permutation 312

Out of the corresponding path, the subpath that matters is UUDJDU , shown in

Figure 5.4.

81

Figure 5.4: Base subpath of the permutation 312

We will refer to this as a base subpath.

Fulmek shows that a generalized Dyck path is in GD1 if and only if the path contains

the subpath UUDJDU and contains no other down-jumps. To find the generating

function F 1
312(x), it is enough to find the generating function for paths containing

UUDJDU (and no other down-jumps).

Suppose that the subpath UUDJDU starts at height l. First observe that l ≥ 1,

otherwise the subpath would go below the x-axis. As shown in [25], the generating

function for “partial” Dyck paths that start at height 0 and end at height l is

cl+1(w(U))l = cl+1xl/2.

Also, there is no net change in height from the start of the subpath UUDJDU to the

end of the subpath. In other words, if the subpath begins at height l, the subpath will

end at height l as well. Then, the generating function for the partial Dyck paths that

start at height l and end at height 0 is also cl+1xl/2.

Piecing together the generating functions, we get that

F 1
312 =

∞∑
l=1

x−1/2(cl+1xl/2)w(UUDJDU)(cl+1xl/2)

=
∞∑
l=1

x−1/2(cl+1xl/2)2x5/2 =
c4x3

1− c2x
.

82

5.3.2 Review of r = 2 case

We now review Fulmek’s approach for r = 2. Again, everything in this section should

be assumed to be a review of Fulmek’s work [25] unless otherwise indicated. Suppose

that π ∈ Sn(312, 2). Let π′ := πi1πi2 . . . πim be the subsequence of terms in π such that

N312(π′) = 2 and every term in π′ is part of a 312 occurrence. We will refer to the

permutation π′′ := red(π′) as a 312-base permutation (for r = 2). Fulmek shows that

there are 8 possible base permutations for this case: 312645, 31524, 316452, 3412, 4132,

4213, 423615, and 4312. The map ψ sends each base permutation to a generalized Dyck

path as shown in Table 5.1.

Now observe that if a generalized Dyck path contained two non-overlapping copies

of the subpath UUDJDU (from Figure 5.4), it would contain 2 copies of 312. Paths of

this type have the form:

P ′ = P1 B P2 B P3 (5.1)

where P ′ is a generalized Dyck path, B = UUDJDU (the base subpath for 312), and

the subpaths P1, P2, and P3 contain no down-jumps.

Observe that the base permutations 312645, 31524, 316452, and 423615 produce

paths that are specific instances of this more general form. It is therefore sufficient to

only consider paths containing the base subpaths derived from 3412, 4132, 4213, and

4312 in addition to paths with the general form of Eq. 5.1. The base subpaths for the

necessary base permutations are shown in Table 5.2.

The generating function for each case will be computed by piecing together the

generating function (as in the r = 1 case).

For the pattern 3412, the base subpath is UUDUDJDU . If this subpath begins at

height l, then the subpath will also end at height l. Also observe that l ≥ 1 (otherwise

the path goes below the x-axis). Then, the generating function enumerating paths in

GD2 containing this base subpath is

∞∑
l=1

x−1/2(cl+1xl/2)w(UUDUDJDU)(cl+1xl/2) =

∞∑
l=1

x−1/2(cl+1xl/2)2x7/2

=
c4x4

1− c2x
. (5.2)

83

Base permutation Generalized Dyck path

312645

31524

316452

3412

4132

4213

423615

4312

Table 5.1: Generalized Dyck paths of base permutations for r = 2 case

84

Base permutation Generalized Dyck path

3412

4132

4213

4312

Table 5.2: Necessary base subpaths for r = 2 case

85

For the pattern 4132, the base subpath is UUUDJJDUU . If this subpath begins at

height l, then the subpath will end at height l + 1. Also observe that l ≥ 1 (otherwise

the path goes below the x-axis). Then, the generating function enumerating paths in

GD2 containing this base subpath is

∞∑
l=1

x−2/2(cl+1xl/2)w(UUUDJJDUU)(cl+2x(l+1)/2) =
∞∑
l=1

x−1(c2l+3x(2l+1)/2)x7/2

=
c5x4

1− c2x
. (5.3)

For the pattern 4213, the base subpath is UUDJDDU . If this subpath begins at

height l, then the subpath will end at height l − 1. Also observe that l ≥ 2 (otherwise

the path goes below the x-axis). Then, the generating function enumerating paths in

GD2 containing this base subpath is

∞∑
l=2

x−1/2(cl+1xl/2)w(UUDJDDU)(clx(l−1)/2) =
∞∑
l=2

x−1/2(c2l+1x(2l−1)/2)x6/2

=
c5x4

1− c2x
. (5.4)

For the pattern 4312, the base subpath is UUUDDJDU . If this subpath begins at

height l, then the subpath will also end at height l. Also observe that l ≥ 1 (otherwise

the path goes below the x-axis). Then, the generating function enumerating paths in

GD2 containing this base subpath is

∞∑
l=1

x−1/2(cl+1xl/2)w(UUUDDJDU)(cl+1xl/2) =

∞∑
l=1

x−1/2(cl+1xl/2)2x7/2

=
c4x4

1− c2x
. (5.5)

Finally, we consider the case of two disjoint UUDJDU base subpaths occurring to

form the two 312 patterns in a permutation.1 It is important to note that while the

two subpaths may be disjoint in a path from GD2, the two occurrences of 312 in the

corresponding permutation may not be disjoint. For example, the permutation 316452

has one 312 occurrence (formed by the terms 645) within another 312 occurrence, but

the corresponding generalized Dyck path has two non-overlapping copies of the subpath

1By disjoint, we mean that the two subpaths do not share a “step” together. One copy is allowed
to start immediately at the conclusion of another copy.

86

UUDJDU . Another example is the permutation 31524, which has two 312 copies that

actually have a term in common (namely the “2” in 31524), yet when converted to a

generalized Dyck path, has two disjoint copies of the base subpath UUDJDU .

We now consider how to find the generating function enumerating paths in GD2

with two copies of UUDJDU . Recall that the generating function enumerating paths

(with no jumps) that climb from height 0 to height l is

cl+1xl/2.

We also now want to compute a more general quantity. Suppose we want the generating

function for all paths that start at height k and end at height l (with k ≤ l) and do not

go below the x-axis. As shown in [25], our desired generating function is

Ck,l :=
k∑
d=0

(√
x
)l−k+2d

cl−k+2d+1 =

((
c2x
)k+1 − 1

)
cl−k+1x(l−k)/2

c2x− 1
.

(Note: the indexing variable d may be viewed as the maximum decrease in height that

the path achieves relative to the starting height k. In other words, k−d is the minimum

height that the path achieves.)

At this point, we diverge from Fulmek’s approach for computing the generating

function. While the computation is essentially the same, we reformulate the set-up

so that it is more conducive to generalization. We will denote the first and second

occurrences of UUDJDU by P1 and P2, respectively. Suppose that hi denotes the

starting height of subpath Pi. Also, let ∆hi denote the net change in height from the

start of subpath Pi to the end of that subpath. Then, the ending height for subpath

P1 is h1 + ∆h1 (and similarly, h2 + ∆h2 for P2).

From the r = 1 case, we know that h1, h2 ≥ 1 and ∆h1 = ∆h2 = 0. There are two

cases to consider: h1 + ∆h1 ≤ h2 (P2 starts at the same or a greater height than the

end height of P1) or h1 + ∆h1 > h2 (P2 starts at a lower height than the end height of

P1). The corresponding generating function for the first case is:

∞∑
h1=1

∞∑
h2=h1

x−2/2
(
ch1+1xh1/2

)
w(P1) (Ch1+∆h1,h2)w(P2)

(
ch2+∆h2+1x(h2+∆h2)/2

)
.

(5.6)

87

Similarly, the corresponding generating function for the second case is:

∞∑
h1=2

h1+∆h1−1∑
h2=1

x−2/2
(
ch1+1xh1/2

)
w(P1) (Ch1+∆h1,h2)w(P2)

(
ch2+∆h2+1x(h2+∆h2)/2

)
.

(5.7)

Also, recall that w(Pi) = x5/2. Simplifying these two expressions and adding them

together, we get the generating function:

c5x5
(
1 + c2x− c4x2

)
(1− c2x)3 . (5.8)

Finally, we combine all the generating functions (Eq. 5.2, 5.3, 5.4, 5.5, 5.8) to get

F 2
312(x) =

c4x4

1− c2x
+

c5x4

1− c2x
+

c5x4

1− c2x
+

c4x4

1− c2x
+
c5x5

(
1 + c2x− c4x2

)
(1− c2x)3 (5.9)

which matches Fulmek’s result in [25].

5.3.3 Automating the approach

The approach for r = 2 can be systematized and computationally implemented to

compute F r312(x) for larger r. Consider a fixed r > 0. The generating function can be

computed as follows.

Finding the base subpaths

The first step would be to find all the necessary base subpaths to piece together. For

each 1 ≤ i ≤ r, let Bi be the set of base permutations for exactly i occurrences of 312.

After computing the sets B1, . . . , Br, we will compute the sets of desired base subpaths

P1,P2, . . . ,Pr iteratively.

We begin by defining a few operations on paths. Given a path P = p1p2 . . . pm,

let TRIMTAIL(P) := p1 . . . pm′ , where m′ is the smallest number such that pm′+1 =

pm′+2 = . . . = pm = D. In essence, TRIMTAIL(P) removes the final string of consecu-

tive down-steps from the path, if it exists. For example,

TRIMTAIL(UUUDJDUD) = UUUDJDU

TRIMTAIL(U4DJ2DU2D2) = U4DJ2DU2

TRIMTAIL(U4DJ2DU2) = U4DJ2DU2

88

Next, we define the MINFILL function. Suppose we have a subpath P = p1p2 . . . pm.

Let ∆h be the net change in height from the start to the end of P . Also, let b be the max-

imum height decrease achieved in P relative to the starting height. Then for this path,

MINFILL(P) = U bPDb+∆h. In other words, MINFILL(P) is the minimal path satisfy-

ing the conditions for a generalized Dyck path that contains P as a subpath. For exam-

ple, if P = UUDJDUU , then ∆h = 1, b = 1, and MINFILL(P) = UUUDJDUUDD.

Finally, we define the TRIMHEAD function. Again, suppose we have a subpath P =

p1p2 . . . pm. If p1 6= U , then TRIMHEAD(P) = P . Otherwise, let r′ be the integer such

that MINFILL(P) ∈ GDr′ , and let k be the number of consecutive U ’s at the beginning

of P . Let j be the largest number (0 ≤ j ≤ k) such that MINFILL(Dpj+1pj+2 . . . pm) ∈

GDr′ . Then, TRIMHEAD(p1p2 . . . pm) = pj+1pj+2 . . . pm. In other words, TRIMHEAD

removes the maximum number of initial up-steps while ensuring that adding steps be-

fore and after the subpath will not create new 312 occurrences.

For example, TRIMHEAD(U3DJDU) = U2DJDU since MINFILL(DU2DJDU)

and MINFILL(U3DJDU) are paths with the same number of occurrences of 312, while

MINFILL(DUDJDU) would have more occurrences of 312 than MINFILL(U3DJDU).

We can now find the base subpaths needed to compute F r312(x). First, set P1 :=

{UUDJDU}, which is the base subpath from the r = 1 case. Each subsequent Pi will

be computed as follows. First, begin with Pi := {}.

For each base permutation π ∈ Bi, do:

• Compute P := ψ(π).

• IF P can be formed by piecing together base subpaths out of P1
⋃
. . .
⋃
Pi−1

(along with up-steps and down-steps), discard it.

ELSE, add the new base subpath TRIMHEAD(TRIMTAIL(P)) into the set Pi.

In essence, Pi is being constructed to prevent redundancies (the subpaths can’t be

created by other base subpaths) and so that it is a minimal subpath (no additional

312 patterns will be formed when piecing together subpaths). Each subpath in Pi

corresponds to a way that i occurrences of the 312 pattern can be formed in a generalized

89

Dyck path.

Piecing everything together

We can now piece together the generating functions in a manner that is analogous to the

r = 2 case. Let Ir denote the set of integer compositions of r, where the compositions

will be written as a list [d1, d2, . . . , ds]. For example, I3 = {[3] , [1, 2] , [2, 1] , [1, 1, 1]}.

Each integer composition will represent a way to piece together subpaths to form r

occurrences of 312.

For each composition [d1, d2, . . . , ds] ∈ Ir and every combination of subpaths B1 ∈

Pd1 , B2 ∈ Pd2 , . . . , Bs ∈ Pds , we will compute the generating function enumerating

paths of the form:

P ′ = P1 B1 P2 B2 . . . Bs Ps+1

where P ′ is a generalized Dyck path and the subpaths P1, P2, . . . , Ps+1 contain no down-

jumps. As in the r = 2 case, this will require considering different cases for the starting

heights for each subpath Bi.

The desired generating function F r312(x) will be the sum of all these generating

functions (ranging over all ordered combinations of subpaths over all compositions in

Ir). All of these previous steps (from deriving the base subpaths to determining the

proper boundaries for all the summations and computing the generating function) can

be automated and has been implemented in the Maple package FULMEK. Using this

Maple package, we are able to extend Fulmek’s approach to the cases of r = 3 and

r = 4.

For example, the Maple call GF312x3(x); will output the generating function

F 3
312(x) =

2x3 − 5x2 + 7x− 2

2

+
−106x5 − 22x6 + 292x4 − 302x3 + 135x2 − 27x+ 2

2
(1− 4x)−5/2

and the Maple call GF312x4(x); will output the generating function

F 4
312(x) =

5x4 − 7x3 + 2x2 + 8x− 3

2

+
2x9 + 218x8 + 1074x7 − 1754x6 + 388x5 + 1087x4 − 945x3 + 320x2 − 50x+ 3

2
(1− 4x)−7/2 .

90

Unfortunately, the computations became too complicated for r > 4. These results

verify (and provide alternate proofs) to the results of Mansour and Vainshtein [37].

Most importantly, this chapter provides an example on how certain techniques can be

systematized and automated to derive results beyond what can be achieved by merely

human means.

91

References

[1] M. H. Albert, M. Elder, A. Rechnitzer, P. Westcott, and M. Zabrocki. On the
Stanley-Wilf limit of 4231-avoiding permutations and a conjecture of Arratia. Adv.
in Appl. Math., 36(2):96–105, 2006.

[2] R. E. L. Aldred, M. D. Atkinson, and D. J. McCaughan. Avoiding consecutive
patterns in permutations. Adv. in Appl. Math., 45(3):449–461, 2010.

[3] Richard Arratia. On the Stanley-Wilf conjecture for the number of permutations
avoiding a given pattern. Electron. J. Combin., 6:Note, N1, 4 pp. (electronic),
1999.

[4] Jörgen Backelin, Julian West, and Guoce Xin. Wilf-equivalence for singleton
classes. Adv. in Appl. Math., 38(2):133–148, 2007.

[5] Andrew Baxter. Refining enumeration schemes to count according to the inversion
number. Pure Math. Appl. (PU.M.A.), 21(2):137–160, 2010.

[6] Andrew Baxter and Lara Pudwell. Enumeration schemes for vincular patterns.
Discrete Math., 312(10):1699–1712, 2012.

[7] Miklós Bóna. A new upper bound for 1324-avoiding permutations. arxiv:1207.2379
[math.co], 2012.

[8] Miklós Bóna. Exact enumeration of 1342-avoiding permutations: a close link with
labeled trees and planar maps. J. Combin. Theory Ser. A, 80(2):257–272, 1997.

[9] Miklós Bóna. The number of permutations with exactly r 132-subsequences is
P -recursive in the size! Adv. in Appl. Math., 18(4):510–522, 1997.

[10] Miklós Bóna. Permutations with one or two 132-subsequences. Discrete Math.,
181(1-3):267–274, 1998.

[11] Miklós Bóna. The absence of a pattern and the occurrences of another. Discrete
Math. Theor. Comput. Sci., 12(2):89–102, 2010.

[12] Miklós Bóna. Combinatorics of permutations. Discrete Mathematics and its Ap-
plications (Boca Raton). CRC Press, Boca Raton, FL, second edition, 2012. With
a foreword by Richard Stanley.

[13] Alexander Burstein. A short proof for the number of permutations containing
pattern 321 exactly once. Electron. J. Combin., 18(2):Paper 21, 3, 2011.

[14] David Callan. A recursive bijective approach to counting permutations containing
3-letter patterns. arxiv:math/0211380 [math.co], 2002.

92

[15] Anders Claesson, Vı́t Jeĺınek, and Einar Steingŕımsson. Upper bounds for the
Stanley-Wilf limit of 1324 and other layered patterns. J. Combin. Theory Ser. A,
119(8):1680–1691, 2012.

[16] Anders Claesson and Sergey Kitaev. Classification of bijections between 321- and
132-avoiding permutations. Sém. Lothar. Combin., 60:Art. B60d, 30, 2008/09.

[17] Vladimir Dotsenko and Anton Khoroshkin. Anick-type resolutions and consecutive
pattern avoidance. arxiv:1002.2761 [math.co], 2010.

[18] Adrian Duane and Jeffrey Remmel. Minimal overlapping patterns in colored per-
mutations. Electron. J. Combin., 18(2):Paper 25, 38, 2011.

[19] Richard Ehrenborg, Sergey Kitaev, and Peter Perry. A spectral approach to con-
secutive pattern-avoiding permutations. J. Comb., 2(3):305–353, 2011.

[20] Sergi Elizalde. The most and the least avoided consecutive patterns. Proc. Lond.
Math. Soc.,to appear.

[21] Sergi Elizalde. Asymptotic enumeration of permutations avoiding generalized pat-
terns. Adv. in Appl. Math., 36(2):138–155, 2006.

[22] Sergi Elizalde and Toufik Mansour. Restricted Motzkin permutations, Motzkin
paths, continued fractions and Chebyshev polynomials. Discrete Math., 305(1-
3):170–189, 2005.

[23] Sergi Elizalde and Marc Noy. Consecutive patterns in permutations. Adv. in Appl.
Math., 30(1-2):110–125, 2003. Formal power series and algebraic combinatorics
(Scottsdale, AZ, 2001).

[24] Sergi Elizalde and Marc Noy. Clusters, generating functions and asymptotics for
consecutive patterns in permutations. Adv. in Appl. Math., 49:351–374, 2012.

[25] Markus Fulmek. Enumeration of permutations containing a prescribed number of
occurrences of a pattern of length three. Adv. in Appl. Math., 30(4):607–632, 2003.

[26] Ira Gessel. Symmetric functions and P-recursiveness. J. Combin. Theory Ser. A,
53(2):257–285, 1990.

[27] I. P. Goulden and D. M. Jackson. An inversion theorem for cluster decomposi-
tions of sequences with distinguished subsequences. J. London Math. Soc. (2),
20(3):567–576, 1979.

[28] Anton Khoroshkin and Boris Shapiro. Using homological duality in consecutive
pattern avoidance. Electron. J. Combin., 18(2):Paper 9, 17, 2011.

[29] Sergey Kitaev. Patterns in Permutations and Words. EATCS monographs in
Theoretical Computer Science. Springer Verlag, 2011.

[30] Sergey Kitaev and Toufik Mansour. A survey on certain pattern problems. Uni-
versity of Kentucky research report 2003-09, 2003.

[31] Donald E. Knuth. The art of computer programming. Vol. 1: Fundamental algo-
rithms. Addison Wesley, Reading, Massachusetts, 1973.

93

[32] C. Krattenthaler. Permutations with restricted patterns and Dyck paths. Adv. in
Appl. Math., 27(2-3):510–530, 2001. Special issue in honor of Dominique Foata’s
65th birthday (Philadelphia, PA, 2000).

[33] Jeffrey Liese and Jeffrey Remmel. Generating functions for permutations avoiding
a consecutive pattern. Ann. Comb., 14(1):123–141, 2010.

[34] T. Mansour and A. Vainshtein. Restricted permutations and Chebyshev polyno-
mials. Sém. Lothar. Combin., 47:Article B47c, 17, 2001/02.

[35] Toufik Mansour. Permutations containing and avoiding certain patterns. In For-
mal power series and algebraic combinatorics (Moscow, 2000), pages 704–708.
Springer, Berlin, 2000.

[36] Toufik Mansour and Alek Vainshtein. Restricted permutations, continued frac-
tions, and Chebyshev polynomials. Electron. J. Combin., 7:Research Paper 17, 9
pp. (electronic), 2000.

[37] Toufik Mansour and Alek Vainshtein. Counting occurrences of 132 in a permuta-
tion. Adv. in Appl. Math., 28(2):185–195, 2002.

[38] Adam Marcus and Gábor Tardos. Excluded permutation matrices and the Stanley-
Wilf conjecture. J. Combin. Theory Ser. A, 107(1):153–160, 2004.

[39] Darko Marinov and Radoš Radoičić. Counting 1324-avoiding permutations. Elec-
tron. J. Combin., 9(2):Research paper 13, 9 pp. (electronic), 2002/03. Permutation
patterns (Otago, 2003).

[40] Anthony Mendes and Jeffrey Remmel. Permutations and words counted by con-
secutive patterns. Adv. in Appl. Math., 37(4):443–480, 2006.

[41] Brian Nakamura. Computational approaches to consecutive pattern avoidance in
permutations. Pure Math. Appl. (PU.M.A.), 22(2):253–268, 2011.

[42] Brian Nakamura and Doron Zeilberger. Using Noonan–Zeilberger Functional
Equations to enumerate (in polynomial time!) generalized Wilf classes. Adv. in
Appl. Math., 50(3):356–366, 2013.

[43] Eugen Netto. Lehrbuch der Combinatorik. Chelsea Publishing Company, New
York, 1958.

[44] John Noonan. The number of permutations containing exactly one increasing
subsequence of length three. Discrete Math., 152(1-3):307–313, 1996.

[45] John Noonan and Doron Zeilberger. The enumeration of permutations with a
prescribed number of “forbidden” patterns. Adv. in Appl. Math., 17(4):381–407,
1996.

[46] John Noonan and Doron Zeilberger. The Goulden-Jackson cluster method: exten-
sions, applications and implementations. J. Differ. Equations Appl., 5(4-5):355–
377, 1999.

[47] Guillem Perarnau. A probabilistic approach to consecutive pattern avoiding in
permutations. J. Combin. Theory Ser. A, 120(5):998–1011, 2013.

94

[48] Lara Pudwell. Enumeration schemes for permutations avoiding barred patterns.
Electron. J. Combin., 17(1):Research Paper 29, 27, 2010.

[49] Don Rawlings. The q-exponential generating function for permutations by consec-
utive patterns and inversions. J. Combin. Theory Ser. A, 114(1):184–193, 2007.

[50] Aaron Robertson. Permutations containing and avoiding 123 and 132 patterns.
Discrete Math. Theor. Comput. Sci., 3(4):151–154 (electronic), 1999.

[51] Aaron Robertson. Permutations restricted by two distinct patterns of length three.
Adv. in Appl. Math., 27(2-3):548–561, 2001. Special issue in honor of Dominique
Foata’s 65th birthday (Philadelphia, PA, 2000).

[52] Aaron Robertson, Herbert S. Wilf, and Doron Zeilberger. Permutation patterns
and continued fractions. Electron. J. Combin., 6:Research Paper 38, 6 pp. (elec-
tronic), 1999.

[53] Rodica Simion and Frank W. Schmidt. Restricted permutations. European J.
Combin., 6(4):383–406, 1985.

[54] Neil Sloane. The On-Line Encyclopedia of Integer Sequences,http://oeis.org/,
2013.

[55] Zvezdelina E. Stankova. Forbidden subsequences. Discrete Math., 132(1-3):291–
316, 1994.

[56] Einar Steingŕımsson. Some open problems on permutation patterns. London Math-
ematical Society Lecture Note Series,to appear.

[57] Vince Vatter. Enumeration schemes for restricted permutations. Combin. Probab.
Comput., 17(1):137–159, 2008.

[58] R. Warlimont. Permutations avoiding consecutive patterns. Ann. Univ. Sci. Bu-
dapest. Sect. Comput., 22:373–393, 2003.

[59] Herbert S. Wilf. What is an answer? Amer. Math. Monthly, 89(5):289–292, 1982.

[60] Doron Zeilberger. Enumeration schemes and, more importantly, their automatic
generation. Ann. Comb., 2(2):185–195, 1998.

http://oeis.org/

	Abstract
	Acknowledgements
	Dedication
	Introduction and Background
	Classical pattern avoidance in permutations
	Background
	Wilf-equivalence
	Enumerative results
	Asymptotic results

	Classical pattern occurrences in permutations
	Single pattern occurrences
	Multiple patterns

	Consecutive patterns in permutations

	Automated Approaches for Consecutive Patterns
	Overview
	The cluster method
	Automated derivation of recurrences
	General algorithm
	Example
	Results for c-Wilf-equivalence
	Maple implementation

	Automated derivation of functional equations
	Example
	General algorithm
	Additional results
	Maple implementation

	Asymptotic approximations
	Concluding remarks

	Functional Equations and Algorithms for r Occurrences of a Pattern
	Overview
	Patterns of the form 1 2 …k
	Permutations containing 1 2 3
	Permutations containing 1 2 3 4
	Extending to longer patterns

	Patterns of the form 1 2 …(k-2) (k) (k-1)
	Permutations containing 1 3 2
	Permutations containing 1 2 4 3
	Extending to longer patterns

	Patterns of the form 2 3 …k 1
	Permutations containing 2 3 1
	Extending to 2 3 4 1 and beyond

	The pattern 1 3 2 4
	A functional equations approach to 1 3 2 4
	Specializing the approach to r = 0

	Extensions for the Functional Equation Methodology
	Overview
	Refining by inversions
	Extending to multiple patterns
	Permutations containing 1 2 3 and 1 3 2
	Permutations containing 1 2 3 4 and 1 2 4 3
	Other extensions for multiple patterns

	Automating Existing Techniques
	Introduction
	Preliminary definitions
	Extending the approach for 312
	Review of r=1 case
	Review of r=2 case
	Automating the approach
	Finding the base subpaths
	Piecing everything together

	References

