Staff View
The interaction of electric fields with vesicles and cells

Descriptive

TitleInfo
Title
The interaction of electric fields with vesicles and cells
SubTitle
a study on electrodeformation and electroporation
Name (type = personal)
NamePart (type = family)
Sadik
NamePart (type = given)
Mohamed M.
NamePart (type = date)
1984-
DisplayForm
Mohamed Sadik
Role
RoleTerm (authority = RULIB)
author
Name (type = personal)
NamePart (type = family)
Lin
NamePart (type = given)
Hao
DisplayForm
Hao Lin
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
chair
Name (type = personal)
NamePart (type = family)
Langrana
NamePart (type = given)
Noshir
DisplayForm
Noshir Langrana
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Shan
NamePart (type = given)
Jerry
DisplayForm
Jerry Shan
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Shreiber
NamePart (type = given)
David
DisplayForm
David Shreiber
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
outside member
Name (type = corporate)
NamePart
Rutgers University
Role
RoleTerm (authority = RULIB)
degree grantor
Name (type = corporate)
NamePart
Graduate School - New Brunswick
Role
RoleTerm (authority = RULIB)
school
TypeOfResource
Text
Genre (authority = marcgt)
theses
OriginInfo
DateCreated (qualifier = exact)
2013
DateOther (qualifier = exact); (type = degree)
2013-05
Place
PlaceTerm (type = code)
xx
Language
LanguageTerm (authority = ISO639-2b); (type = code)
eng
Abstract (type = abstract)
The application of electric pulses to cells or vesicles induces complex responses. When electric field shocks are applied, a lipid membrane may become porated, which is a phenomenon known as electroporation. The lipid membrane may also deform under electromechanical and electrohydrodynamic forces, applied via electric fields,which is a phenomenon known as electrodeformation. Electroporation is widely employed in both biological research and clinical applications including areas such as drug and gene delivery, protein insertion, cancer therapy, and other processes where access to the cytoplasm is desired. Electrodeformation, on the other hand, can be harnessed as a means to probe the membrane's properties, and to detect pathological changes in cells. Despite its broad applicability, electroporation still suffers from low delivery efficiency and cell viability, in part due to a lack of a fundamental understanding of the mechanisms involved in this technique. Meanwhile, the electrodeformation phenomenon only received attention in the past decade, and therefore, a significant body of data only became available in the recent years. This is mainly due to the development of high-performance optical imaging systems which gave the opportunity to capture the dynamics associated with electrodeformation. In this work, we have designed and implemented experiments to study the electrodeformation of giant unilamellar vesicles, and to investigate the complex transport mechanisms involved in electroporation-mediated molecular delivery. In addition, we quantified the molecular uptake and cellular viability in electroporation experiments. First, we characterized the prolate deformations of giant unilamellar vesicles under strong DC electric fields. The vesicles exhibited prolate elongations along the direction of the electric field. In some cases, the aspect ratio of a deformed vesicle exceeded 10, representing a novel strong-deformation regime never before explored. Second, we studied the spatial and temporal transport of molecules via fluorescence microscopy, at the single cell level. The experimental results demonstrated that electrophoresis, not diffusion, is the dominant mode of of delivery during the pulse. Furthermore, we found that an electrokinetic mechanism known as field-amplified sample stacking (FASS) mediated an inverse correlation between delivery and the extracellular electrical conductivity. Following our accomplishment in the second task, we investigated a two-stage pulsing electroporation protocol that delivers separate pulses to porate the membrane and to electrokinetically-mediate species transport across the cell membrane. We found that while both delivery and viability are linearly dependent with respect to the duration of the second pulses, they both show a strong dependence on field strength. Moreover, a critical regime for maximized delivery and viability is achieved. This dissertation contributes to the electroporation and electrodeformation fields by generating explanations to several experimental observations based on physical mechanisms which were not previously available. In addition, the experimental tools for quantifying delivery and viability may help develop and improve the efficacy of electroporation protocols.
Subject (authority = RUETD)
Topic
Mechanical and Aerospace Engineering
RelatedItem (type = host)
TitleInfo
Title
Rutgers University Electronic Theses and Dissertations
Identifier (type = RULIB)
ETD
Identifier
ETD_4554
PhysicalDescription
Form (authority = gmd)
electronic resource
InternetMediaType
application/pdf
InternetMediaType
text/xml
Extent
xiv, 83 p. : ill.
Note (type = degree)
Ph.D.
Note (type = bibliography)
Includes bibliographical references
Note (type = vita)
Includes vita
Note (type = statement of responsibility)
by Mohamed M. Sadik
Subject (authority = ETD-LCSH)
Topic
Electroporation
Subject (authority = ETD-LCSH)
Topic
Bioelectrochemistry
Subject (authority = ETD-LCSH)
Topic
Cytology--Research
Identifier (type = hdl)
http://hdl.rutgers.edu/1782.1/rucore10001600001.ETD.000068954
RelatedItem (type = host)
TitleInfo
Title
Graduate School - New Brunswick Electronic Theses and Dissertations
Identifier (type = local)
rucore19991600001
Location
PhysicalLocation (authority = marcorg); (displayLabel = Rutgers, The State University of New Jersey)
NjNbRU
Identifier (type = doi)
doi:10.7282/T36H4G0F
Genre (authority = ExL-Esploro)
ETD doctoral
Back to the top

Rights

RightsDeclaration (ID = rulibRdec0006)
The author owns the copyright to this work.
RightsHolder (type = personal)
Name
FamilyName
Sadik
GivenName
Mohamed
Role
Copyright Holder
RightsEvent
Type
Permission or license
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2013-03-28 23:54:20
AssociatedEntity
Name
Mohamed Sadik
Role
Copyright holder
Affiliation
Rutgers University. Graduate School - New Brunswick
AssociatedObject
Type
License
Name
Author Agreement License
Detail
I hereby grant to the Rutgers University Libraries and to my school the non-exclusive right to archive, reproduce and distribute my thesis or dissertation, in whole or in part, and/or my abstract, in whole or in part, in and from an electronic format, subject to the release date subsequently stipulated in this submittal form and approved by my school. I represent and stipulate that the thesis or dissertation and its abstract are my original work, that they do not infringe or violate any rights of others, and that I make these grants as the sole owner of the rights to my thesis or dissertation and its abstract. I represent that I have obtained written permissions, when necessary, from the owner(s) of each third party copyrighted matter to be included in my thesis or dissertation and will supply copies of such upon request by my school. I acknowledge that RU ETD and my school will not distribute my thesis or dissertation or its abstract if, in their reasonable judgment, they believe all such rights have not been secured. I acknowledge that I retain ownership rights to the copyright of my work. I also retain the right to use all or part of this thesis or dissertation in future works, such as articles or books.
RightsEvent
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2013-05-31
DateTime (encoding = w3cdtf); (qualifier = exact); (point = end)
2013-11-30
Type
Embargo
Detail
Access to this PDF has been restricted at the author's request. It will be publicly available after November 30th, 2013.
Copyright
Status
Copyright protected
Availability
Status
Open
Reason
Permission or license
Back to the top

Technical

RULTechMD (ID = TECHNICAL1)
ContentModel
ETD
OperatingSystem (VERSION = 5.1)
windows xp
Back to the top
Version 8.4.8
Rutgers University Libraries - Copyright ©2022