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ABSTRACT OF THE DISSERTATION

ESSAYS ON MODEL SPECIFICATION

TESTS AND ON BINARY RESPONSE

MODELS

by XIANGJIN SHEN

Dissertation Director: Professor Hiroki Tsurumi

This dissertation consists of three essays evaluating model selection criteria in

both sampling theory and Bayesian analysis. In chapter two, I compare the

Bayesian model selection criteria (DIC, PDIC and MSEF) and the conditional

Kolmogorov test for the spot asset pricing models (Vasicek and CIR models);

MCMC and block Bootstrap methods are applied. In chapter three, I compare

parametric and semiparametric methods for the binary response models. The

comparison is made by model specifications, ROC area, and marginal effects.

Monte Carlo simulation, quasi-maximum likelihood and kernel density methods

are applied. In chapter four, I compare two bandwidths of the kernel density:

the standard bandwidth and computationally optimized bandwidth. The compu-

tationally optimized bandwidth is obtained by using the graphic processing unit

(GPU) that shortens the computational time.
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Chapter 1

Introduction

This dissertation is focused on model selection criteria in both sample theory

and Bayesian analysis, including forecasting and predictive power evaluations for

both Parametric and Semi-parametric models. For continuous sample path or

diffusion process, which is mainly for financial modeling, I focus on the spot

rate asset pricing models; for categorical data, which is mainly for large survey

analysis, I focus on the binary response models.

In the second chapter I compare Bayesian and sample theory model speci-

fication criteria to choose an appropriate model. I focus the attention on two

popular asset pricing models: the Cox-Ingersoll-Ross model or the CIR model

(1995) and the Vasicek model (1977). For the Bayesian model selection criteria, I

use the deviance information criterion (DIC) of Spiegelhalter (2002) and the cu-

mulative density function (CDF) of the mean squared errors of forecast (MSEF),

since these model selection criteria can be obtained by using Markov chain Monte

Carlo (MCMC) algorithms. For the sample theory model specification test, I use

the conditional Kolmogorov test (CKT). The CKT is a hypothesis test whereas

the Bayesian criteria are to choose the model that explains the data best. Both

the CKT and Bayesian criteria rely on random number generation: in the case

of the CKT bootstrap methods are used, and in the case of the Bayesian criteria

Markov chain Monte Carlo algorithms are used.

Using the simulated data I present the DIC and demonstrate how to use the

cdf of the MSEF as a model selection criterion. Also, I explain the CKT that
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is obtained by the in-sample prediction and demonstrate how α% critical value

(CV) is generated by bootstrap methods. Furthermore, I conduct Monte Carlo

experiments to see the performances of the Bayesian criteria and of the CKT.

Among the DIC, the cdf of the MSEF, and the CKT the clear winner is the DIC.

Then I apply the DIC, the cdf of the MSEF, and the CKT to the daily data of

the uncollaterized Japanese call rate from January 1 1990 to April 18 1996 for

the total of 2,300 observations. The sample period begins at the inception of the

bursting of the Japanese bubble and ends at the beginning of the zero interest

rate period. I find that the CIR model explains the data better than the Vasicek

model according to the DIC and the cdf’s of the MSEF. According to the CKT

the data support neither the CIR nor Vasicek model.

In the third chapter, I estimate binary response models such as linear prob-

ability model, probit model, logistic model, and Semi-parametric models by the

Maximum likelihood estimation (MLE), Bayesian and Semi-parametric methods;

and I also create Bayes-Semiparametric method to avoid data distribution as-

sumption and inversed Hessian calculation. I compare the differences in model

estimations and marginal effects among these methods and assess the model pre-

dictive power by comparing marginal effect, mean square error (MSE), weighted

sum of squared error (SSE) and receiver operating characteristic (ROC) curve.

The model estimations are based on simulated data, which are either balanced or

unbalanced data generated by linear probability model, probit and logistic mod-

els, asymmetric exponential power distribution (AEPD) and asymmetric Laplace

distribution (ALD). Because there are small differences in model estimation for

balanced binary response data ( % of ′Y = 1′ ≥ 15%), I mainly focus on the

analysis of the unbalanced data ( % of ′Y = 1′ < 15%).

In order to get a more general result, I make the Monte Carlo (MC) experiment

to discover the properties of each model estimation method. The conclusion is

that using X instead of X̄ will give better marginal effect estimation, but marginal
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effects can not be a robust method to evaluate the predictive power of the binary

response model. MSE and ROC curve always give consistent assessment results

that Semiparametric and Bayes-Semiparametric model estimations give better

predictive power than MLE and regular Bayesian model estimations, although the

differences among each methods are small. An application of our model analysis

for the 2005 PSID data about the influence of factors on unemployment status

confirms our findings in the MC experiment that Semiparametric and Bayesian-

Semiparametric models give better explanation in real data.

In the fourth chapter, I propose the Bayesian semi-parametric binary choice

model with optimum bandwidth in kernel density estimation using the quasi-

likelihood function as the likelihood part of the posterior distribution. Most

importantly, I introduce a computationally optimum bandwidth and compare

the Bayesian estimates one using the normal bandwidth and the other using

the computationally optimum bandwidth. I use a GPU (graphics processing

unit) computing with C/C++ and Matlab for the GPU computation. I apply

both fixed bandwidth (and the standard bandwidth) and optimal bandwidth for

the kernel density estimation in the semi-parametric models for more than 16

types of distributions of the binary response model. Using simulated data and

the mean squared errors and the area of the receiver operating curve (ROC)

from the Monte Carlo experiments I find that the performances of the semi-

parametric and parametric models are indistinguishable except when the data is

extremely unbalanced. In this case the maximum likelihood estimators all fail to

converge while the MCMC algorithms do. I also compare the application of the

binary choice models in Canada labor productivity data (from CANSIM) and US

hospital quality indicator data (QI), and test the robustness of the Bayesian semi-

parametric binary choice model (with both standard and optimum bandwidth)

and other binary choice models.
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Chapter 2

Comparison of Bayesian Model Selection

Criteria and Conditional Kolmogorov Test as

Applied to Spot Asset Pricing Models

2.1 Introduction

Efforts to find an appropriate model with acceptable explanatory power have

led to many papers on model specification tests and model selection criteria. In

this paper we compare Bayesian and sample theory model specification criteria

to choose an appropriate model. Although the model specification criteria we

consider can be applied to any non-nested models, we focus our attention on two

asset pricing models: the Cox-Ingersoll-Ross model or the CIR model (1995) and

the Vasicek model (1977).

Within Bayesian model selection criteria, Bayes factors and Bayesian modifi-

cations of the Akaike information criterion (BAIC) have been frequently used. In

this paper I use the deviance information criterion (DIC) of Spiegelhalter et.al.

(2002) and the cumulative density function (cdf) of the mean squared errors of

forecast (MSEF), since these model selection criteria are easily obtained by using

Markov chain Monte Carlo (MCMC)algorithms.

As a sample theory model specification test, I use the conditional Kolmogorov

test (CKT). The CKT is a hypothesis test whereas the Bayesian criteria are to

choose the model that explains the data best. Both the CKT and Bayesian

criteria rely on random number generation: in the case of the CKT bootstrap

methods are used, and in the case of the Bayesian criteria Markov chain Monte
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Carlo algorithms are used.

The organization of the paper is as follows. In Section 2.2.1 I present the

DIC and the cumulative density (cdf) of the mean squared errors of the forecast

(MSEF). In Section 2.2.2 the CKT is discussed. In Section 2.3 using a simulated

data I present the DIC, and I explain how to use the cdf of the MSEF as a

model selection criterion. Also, I explain the CKT that is obtained by the in-

sample prediction. I demonstrate how the α% critical value (CV) is generated

by bootstrap methods. In Section 2.4, I conduct Monte Carlo experiments to see

the performances of the Bayesian criteria and of the CKT. In Section 2.5, I apply

the Bayesian criteria and CKT to the real data: the daily data on uncollaterized

Japanese call rate during the period between January 1 1990 and April 18 1996.

Concluding remarks are given in Section 2.6.

2.2 Bayesian Model Choice Criteria and Conditional Kol-

mogorov Test of Model Selection

2.2.1 Bayesian Model Choice Criteria

The spot asset price model, discretized by the Euler-Maruyama scheme, is

rt = κθ + (1− κ)rt−1 + σtut

= α + βrt−1 + σtut, ut ∼ N(0, 1), (2.1)

where rt is the spot rate; α = κ θ, and β = 1− κ. If we set σt =
√
rt−1 σ we have

the CIR model. If we set σt = σ we have the Vasicek model. In both models,

there are three unknown parameters: α, β, and σ.

Let us derive the posterior probability density function (pdf) of the parameters
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assuming that the prior pdf is given by

p(α, β, σ) ∝ σ−1. (2.2)

The posterior pdf’s of the CIR and Vasicek models are given by

p(α, β, σ|data) ∝ σ−(n+1)exp

{
− 1

2σ2

[
νs2 + (γ − γ̂)

′
X
′
D−1X(γ − γ̂)

]}
, (2.3)

where

γ = (α, β)
′
, γ̂ = (X

′
D−1X)−1X

′
D−1y, νs2 = (y −Xγ̂)

′
X
′
D−1X(y −Xγ̂)

y =


r1

...

rT

 , X =


1 r0

...
...

1 rT−1

 ,
and D is given by

D =

 IT for the Vasicek model

Diag(r0, · · · , rT−1) for the CIR model .

Let us use the deviance information criterion (DIC) (Spiegelhalter et.al. (2002))

and the distribution of the mean squared errors of forecast (MSEF) as the criteria

to choose between CIR and Vasicek Model. The DIC is given by

DIC = D̄ + pD, (2.4)

where θ = (γ
′
, σ)

′
, D(θ̄) = −2 ln L(y|θ̄), and L(y|θ̄) is the likelihood function

evaluated at the posterior mean of θ. D̄ is given by

D̄ = −2

∫
ln(L(y|θ) p(θ|data)dθ .
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The parameter pD measures the model complexity and it is given by pD =

D̄ −D(θ̄). In the MCMC algorithm D̄ is evaluated by

−2

[
1

N

N∑
i=1

ln L(y|θ(i))

]
,

where θ(i) is the i-th MCMC draw of θ, and N is the number of MCMC draws. We

choose the model with the smaller DIC. DIC is a widely used statistic for compar-

ing models, and it is a built-in procedure in software packages such as WinBUGS.

We draw θ(i) by the Gibbs sampler algorithm as well as by the Metropolis-Hastings

algorithm. These two MCMC algorithms yield quite similar draws of θ(i).

The distribution of the mean squared errors of forecast is obtained by the

MCMC algorithms as follows:

Let ỹ = (ỹT+1, ỹT+2, · · · , ỹT+m). The joint pdf of ỹ and θ is given by

h(ỹ, θ|data) = f(ỹ|θ)p(θ|data), (2.5)

where f(ỹ|θ) is the pdf of ỹ given θ and data=(y0, y1, · · · , yT ).

West (2006) discussed three ways to generate the sequences of regression esti-

mates necessary to make predictions: recursive scheme, rolling scheme, and fixed

schemes. I use the fixed scheme that is to draw ỹ(i), where ỹ(i) is the i-th draw of

ỹ given the i-th draw of θ, θ(i), using data from 1 to T .

Since the CIR and Vasicek models follow AR(1) processes, I draw ỹT+1, ỹT+2, · · · , ỹT+m

sequentially:
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h(ỹT+1|yT , θ(i))

h(ỹT+2|ỹT+1, θ
(i))

... (2.6)

h(ỹT+m|ỹT+m−1, θ
(i)) .

After drawing ỹ(i) I transform it into the mean squared errors of forecast by

MSEF (i) =
1

m

{
1

N

m∑
j=1

N∑
i=1

(
yT+j − ỹ(i)

T+j

)2
}
, (2.7)

where yT+j is the actual realized value at time T + j, and ỹ
(i)
T+j is the i-th MCMC

draw of the predicted value at time T + j. The mean squared errors of forecast,

MSEF, is a summary statistic popular both in sample theory and Bayesian in-

ference. By the MCMC algorithm we can obtain the distribution of this popular

statistic, and plot its pdf and cumulative density function (cdf). In comparing

two models, we may choose the model that has a pdf close to the origin or that

has a dominating cdf.

2.2.2 Conditional Kolmogorov Test for Model Selection

The conditional Kolmogorov-Smirnov tests (CKT) have been used by Andrew

(1997), Min and Hong (1997), Whang (2000), Horowitz (2003), Bai (2003), Scail-

let (2005), Corradi and Swanson (2005, 2006), Bhardwaj, Corradi and Swanson

(BCS) (2008), and Lee (2009), among others. BCS (2008) applied the CKT for

model selections, and among the models they tested is the CIR model. Since BCS

proposes an innovative CKT, let us follow their CKT. The hypotheses are



9

H0 : Fτ (u|rt, Θ) = Fτ (u|rt, Θ0)

H1 : Fτ (u|rt, Θ) 6= Fτ (u|rt, Θ0) , (2.8)

where Fτ (u|rt, Θ) = Pr(rΘ
t+τ ≤ u | rΘ

t = rt) is the cdf of the τ -step ahead in-

sample prediction rΘ
t+τ given rΘ

t = rt, and t = 1, 2, · · · , T−τ. The term in-sample

prediction is explained later.

Unlike the Bayesian inference that is parametric, the CKT is based on semi-

parametric inference employing large sample (asymptotic) properties. First, the

sample path, rΘ
t is obtained by the Milstein scheme (Seydel (2009)):

rΘ
t = κ θ + (1− κ)rΘ

t−1 + σ(·)εt

−1

2
σ2(·) +

1

2
σ(·)2ε2t (2.9)

Where σ(·) = σ
√
rΘ
t−1 if H0 is the CIR model and σ(·) = σ if H0 is the Vasicek

model. εt is the standardized normal: εt ∼ N(0, 1).

The test statistic VT (τ, u, u) is computed by

VT (τ, u, u) = sup
v ∈V
|VT (v|τ, u, u)| , (2.10)

where VT (v|τ, u, u) is

VT (v|τ, u, u) =

1√
T − τ

T−τ∑
t=1

(
1

S

S∑
s=1

I
{
u ≤ rΘ̂

s,t+τ ≤ ū
}
− I (u ≤ rt+τ ≤ ū)

)
I(rt ≤ v),

(2.11)
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and u, and ū are the lower and upper bounds of the prediction interval. Since u

and ū are fixed, the prediction interval is a fixed constant. The random sample

path rΘ̂
s,t+τ is obtained for given t, by equation (2.9) using a consistent estimate

of Θ, Θ̂, under the null hypothesis and replacing rΘ
t with rΘ̂

s,t for s = 1, 2, · · · , S;

where S is the number of simulated sample paths and I(·) is the indicator func-

tion. The value of S is chosen much larger than the sample size T and here set

S = 5T . The random variable rΘ̂
s,t+τ is called the in-sample prediction because Θ̂

is estimated by using all the sample observations from 1 to T : y1, · · · , yT

The critical value for the in-sample prediction interval is computed by gener-

ating

V ∗T (τ, u, u) = sup
v ∈V
|V ∗T (v|τ, u, u)| , (2.12)

where V ∗T (v|τ, u, u) is

V ∗T (v|τ, u, u) =

1√
T − τ

T−τ∑
t=1

(
1

S

S∑
s=1

I
{
u ≤ r∗ Θ̂∗

s,t+τ ≤ ū
}
− I

(
u ≤ r∗t+τ ≤ ū

))
I(r∗t ≤ v)

− VT (v|τ, u, u), (2.13)

The standard block-bootstrap method (Hall (1986), Hall and Horowitz (1996),

Horowitz (2003)) is used to draw r∗t from the data r1, r2, · · · , rT , and Θ̂∗ is esti-

mated by the generalized methods of moments (GMM) or by the simulated gen-

eralized methods of moments (SGMM) given in Duffie and Singleton (1993) using

the bootstrap sample. The sample path, r∗Θ̂
∗

s,t , is obtained using equation (2.9)

under the null hypothesis. The bootstrap test statistic V ∗T (v|τ, u, u) of equation

(2.12) is computed using the test statistic VT (v|τ, u, u) of equation (2.11) and

centering around VT (v|τ, u, u). The centering of the test bootstrap test statistic

is suggested by Hansen (2005). From the empirical distribution of V ∗T (v|τ, u, u)
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the α-% critical value is found.

There are three sets of moments to choose for the GMM: the unconditional,

conditional, and simulated moments. For the CIR model the unconditional mo-

ments are derived by Jiang and Knight (2002):

g(rt) =


E(rt) = θ

E(r2
t ) = θ2 +

σ2

2κ
θ

E(r3
t ) = θ3 +

3σ2

2κ
θ2 +

σ4

2κ2
θ .

(2.14)

The conditional moments are

g(rt) =


E(rt|r0) = r0e−κ t + θ(1− e−κ t)

E(r2
t |r0) = (E(rt|r0))2 +

θ σ2
rt(1− e−κ t)2

2κ
+
σ2
rtr0(e−κ t − e−2κ t)

κ

V(rt|r0) =
θ σ2

rt(1− e−κ t)2

2κ
+
σ2
rtr0(e−κ t − e−2κ t)

κ
.

(2.15)

The expressions for the unconditional and conditional moments for the Vasicek

model are similarly obtained. The simulated moments for SGMM are simulated

from sample path

g(r∗t ) =



Er∗t =
1

N

N∑
t=1

r∗t

E(r∗2t ) =
1

N

N∑
t=1

r∗2t

E(r∗3t ) =
1

N

N∑
t=1

r∗3t ,

(2.16)

where N is the bootstrap sample length.

There are two schemes to obtain the covariance matrix WT . The first way is

the heteroskedastic autocorrelation (HAC) covariance matrix:
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WT =
1

T

`T∑
v=−`T

wv

T=`T∑
t=v+1+`T


(
g(rt)−

1

T

T∑
t=1

g(rt)

)′ (
g(rt−v)−

1

T

T∑
t=1

g(rt)

) ,

(2.17)

and `T is the lag length often set at `T = [T
1
6 ], where [·] denotes the integer value.

The second scheme is the regular GMM covariance matrix (or the covariance

without HAC):

WT =
1

T

T∑
t=1


(
g(rt)−

1

T

T∑
t=1

g(rt)

)′ (
g(rt)−

1

T

T∑
t=1

g(rt)

) . (2.18)

In comparing the CIR and Vasicek models, the CKT is carried out as follows:

Given the data (r1, r2, · · · , rT ) first put the CIR model as the null hypothesis H0,

and compute the test statistic VT (τ, u, u). Then we compare it with the α-% crit-

ical value of the confidence interval, V ∗αT (τ, u, u). If VT (τ, u, u) < V ∗αT (τ, u, u), we

accept the null hypothesis. Otherwise, reject the null hypothesis concluding that

the data is not from the CIR model. Now put the Vasicek model in the null hy-

pothesis H0, and obtain VT (τ, u, u) and V ∗αT (τ, u, u). If VT (τ, u, u) < V ∗αT (τ, u, u),

we accept H0 that the data is from the Vasicek model. Otherwise, reject the null

hypothesis.

2.3 Example with a Simulated Data

Before we conduct Monte Carlo experiments, let us use simulated data of sample

size T : one data drawn from the Vasicek model and the other data drawn from

the CIR model . We use the following parameter values:
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κ = .3068

θ = .0558

σ = .1180

r0 = .0657

I generate 212 observations and use the first 200 observations to estimate the

parameters κ, θ, and σ. I use the additional 12 observations for the out-of-sample

forecast. As the out-of-sample forecast periods, m, we choose m = 1, 2, 4, 12. If

data is monthly, then we are examining one month, two months, 4 months and 12

months ahead predictions. If data is weekly, then we have one week, two weeks,

4 weeks (one month), and 12 weeks (one year) ahead predictions. Let us call this

the m-step ahead prediction.

Before I report the results of the model selection criteria, let us present the

point estimates of the parameters. Table 2.1 gives the posterior means, while Ta-

ble 2.2 presents the GMM estimates. As discussed in the previous section, for the

GMM estimation, there are three ways to compute the moments (unconditional

moments, conditional moments, and simulated moments), and two residuals (with

and without HAC). While both the Bayesian and GMM point estimates of the

parameters are reasonable, I notice that the GMM with unconditional moments

and without HAC yield point estimates that are closer to the true parameter

values.
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2.3.1 Bayesian model selection criteria

First let us discuss the MSEF’s. Since we have the distributions of the MSEF’s, I

examine the probability density functions (pdf) and cumulative density functions

(cdf) of the MSEF’s. Figure 1 presents the pdf’s and cdf’s of {1, 2, 4}-step ahead

predictions for the data generated by the CIR model. All the pdf’s of the MSEF’s

are skewed to the right. We see that the pdf’s of the MSEF’s of the CIR model

lie close to zero while the pdf’s of the MSEF’s of the Vasicek model spread out

to the right. The modes of the MSEF’s of the CIR model are closer to zero than

the modes of the MSEF’s of the Vasicek model. The cdf’s of the MSEF’s of the

CIR model dominate the cdf’s of the MSEF’s of the Vasicek model. Clearly we

choose the CIR model over the Vasicek model for all of the {1, 2, 4}-step ahead

prediction.

Figure 2.2 presents the pdf’s and cdf’s of the MSEF’s for the 12-step ahead

prediction. While the mode and median of the MSEF of the CIR model is closer

to zero than those of the Vasicek model, the tail of the MSEF of the CIR model

is fatter than that of the Vasicek model. Due to the fatter tail of the MSEF of

the CIR model the cdf of the MSEF of the Vasicek model overtakes that of the

CIR model when the probability is .83, indicating that there is a predominant

evidence that the CIR model is better than the Vasicek model. When the cdf’s

of the MSEF’s cross, we may choose the model with a smaller median since the

smaller median means that the 50% of the MSEF’s are smaller than those of the

model we do not choose.

Figure 2.3 presents the pdf’s and cdf’s of the MSEF when data are generated

by the Vasicek model. The modes of the MSEF of the Vasicek model are all

smaller than those of the CIR model, and the cdf’s are all dominated by the

Vasicek model. Thus in all the {1, 2, 4, 12}-step ahead prediction cases we choose

the Vasicek model.
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In Table 2.3 I present the DIC, the means, medians, and modes of the MSEF’s

for the data generated by the CIR model as well as for the data generated by the

Vasicek model. As discussed in the previous section, we choose the model with a

smaller DIC. For the data generated by the CIR model, the DIC of the CIR model

is −920.7102 that is smaller than the DIC of the Vasicek model that is −876.5910.

Hence we choose the CIR model. Similarly, when the data is generated by the

Vasicek model, the DIC of the Vasicek model is −384.6277 which is smaller than

−315.5180, the DIC of the CIR model. To save space, I only present the means,

medians, and modes of the MSEF’s.

2.3.2 Conditional Kolmogorov test

Let us turn to the CKT proposed by BCS (2008). First I choose the CIR model

as the null hypothesis H0. As the τ -step in-sample prediction, four values of τ are

chosen: τ = {1, 2, 4, 12}. For each τ , two prediction intervals, (u, u) = (r̄ ± .5σR)

and (u, u) = (r̄ ± σR), are considered where r̄ is the sample mean of rt,and σR

is the standard deviation of rt. As shown in equation (2.11) the test statistic,

VT (τ, u, u), is computed given the confidence interval. In all together there are

eight VT (τ, u, u)’s, and each VT (τ, u, u) is compared against the α% critical value

V ∗αT (τ, u, u). Four values are chosen for α%: 5%, 10%, 15% and 20%. Given H0,

32 combinations of τ , confidence intervals, VT (τ, u, u)’s and the α% critical value

V ∗αT (τ, u, u) are created as shown in Table 2.4 that gives the CKT results for data

generated by the CIR model.

The first half of Table 2.4 is for the CIR model as H0. The only cases where

the test statistic VT (τ, u, u) are less than the critical values are for the 12-step

ahead in-sample prediction (τ = 12) by the CIR model. All other cases we see

that VT ((τ, u, u)’s are greater than the critical values. Hence, eight out of thirty
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two cases we accept the null hypothesis that the CIR model is the correct model.

Now switching the H0 to the Vasicek model, we see that all the 32 cases H0 is

rejected and H1 is accepted. Since the alternative hypothesis H1 in equation (2.8)

is presented as “not H0,” the acceptance of H1 does not mean that data supports

the CIR model. It is up to us, the decision makers, to choose between these two

models. We may say, for example, that since the CIR model is chosen 8 out of

32 cases while the Vasicek model is chosen 0 out of 32 cases we choose the CIR

model over the Vasicek model.

Table 2.5 presents the results for the data generated by the Vasicek model.

When H0 is the CIR model, all 32 cases VT (τ, u, u)’s are greater than the critical

values, rejecting H0. If we switch H0 to the Vasicek model, all 32 VT (τ, u, u)’s

are greater than the critical values, rejecting that the data is generated by the

Vasicek model. Accordingly, I conclude that the CKT selects neither the CIR nor

Vasicek model.

2.4 Monte Carlo Experiments

Let us make Monte Carlo experiments. I make 500 sample replications. The para-

meters and the sample size are the same as those for the one sample replication.

First I draw the error term from the normal distribution.

The DIC is a point estimate and it is easy to obtain the DIC’s by Monte Carlo

experiments. I said earlier that we should examine the plot of the entire cdf of

the MSEF to choose a model. In Monte Carlo experiments, however, we may use

the median of the MSEF as the point model selection criterion.

Table 2.6 presents the percentage of times the CIR and Vasicek models are

chosen. The data are generated first by the CIR model and then by the Vasicek



17

model. We see that the DIC chooses the correct model 100% of times. The

medians of the {1, 2, 4, 12}-step ahead MSEF’s choose the CIR model 58.5%

to 62.5% of times when data are generated by the CIR model. When data are

generated by the Vasicek model it is chosen from 76.5% to 98.7%.

The results of Monte Carlo experiments for the CKT are given in Table 2.7.

I first put the CIR model as the null hypothesis H0 and generate data by the

CIR model. I set the predictive confidence interval as R̄± .5σR and R̄± σR, and

obtain the acceptance rates (in %) of the correct model are chosen. For each of

5%CV, 10%CV, 15%CV, and 20%CV and each of {1, 2, 4, 12} step-ahead in-

sample prediction the percentage of times the correct model is chosen is reported.

The percentage of times the CIR model is chosen varies from 0 to 12.5%, and the

percentage of times the Vasicek model is chosen varies from 4.5% to 38%.

The Monte Carlo experiments so far have been made assuming that the error

term ut in equation (2.1) of the CIR and Vasicek models are normal. The stylized

fact about financial data is that their distributions are leptokurtic and slightly

skewed. If we make Monte Carlo experiments drawing ut from a leptokurtic and

slightly skewed distribution, the CKT test may perform better than the Bayesian

criteria, since the CKT test is derived without assuming the distribution of ut.

Let us assume that ut is generated from a leptokurtic and slightly skewed

distribution:

N(0, 1) × IVG(µ, η) (2.19)

where IVG(µ, η) is the inverse Gaussian distribution with parameters µ and η.

The algorithm for generating random numbers from IVG(µ, η) is given in Michael

et.al. (1976) and Devroye (1986). I set µ = 1.8 and η = .8. The skewness is −.687

and kurtosis is 24.6. Compared to the N(0,1) density the distribution is sharply
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peaked with fat tails.

The results of the Monte Carlo experiments with the non-normal distribution

are given in Table 2.8 for the Bayesian model selection criteria and in Table 2.9

for the CKT. For the Bayesian model selection criteria the DIC criterion goes

down from 100% in Table 6 to 92% in Table 2.8 when data is generated by the

CIR model. It goes down from 100% to 98.5% when data is generated by the

CIR model. The medians of the {1, 2, 4, 12}-step ahead MSEF’s choose the

CIR model 58.0% to 64.0% of times when data are generated by the CIR model.

When data are generated by the Vasicek model it is chosen from 57.0% to 71.5%

of times. While the percentages that the CIR model is chosen are more or less

the same as those for the normal error term, the percentages that the Vasicek

model is chosen go down as compared to those for the normal error term.

The results for the CKT are given in Table 2.9. Compared to the results

given in Table 2.7 for the normal error term, the acceptance rates of both the

CIR model and the Vasicek model are very low, indicating that the CKT test

is sensitive to the non-normal error term. The reason is due to the way the

test statitic VT (v|τ, u, u) in equation (2.11) and the critical value V ∗T (τ, u, u) in

equation (2.13) are computed using sample paths simulted by the Milstein scheme

with the normal error εt.

2.5 Application to Japanese Call Rates

Let us apply the Bayesian model selection criteria and the conditional Kolmogorov

test to the daily uncollateralized call rate of Japan. The data is daily averages

from January 1 1990 to April 18 1996 for the total of 2,300 observations. This

period corresponds to the beginning of the bursting of the Japanese bubble econ-

omy to the early period of the zero interest rate. The plot of the uncollaterized



19

call rate and the kernel density of the daily change in the uncollaterized call rate

are given in Figure 2.4.

The call rate kept increasing even after the Japanese bubble bursted in early

January 1990. The call rate peaked on March 14 1991 at 8.56%, and one year

after the bubble bursted the call rate was still around 5.8%. It took four and a

half years more for the call rate to get down to .5% on September 15 1995 which

is regarded as the beginning of the zero-interest rate period. Learning from the

Japanese experience, it took only one year for the Federal Reserve Board to cut

the Federal Funds rate from 5.0% in late December 2007 to less than 1% in late

December 2009.

The kernel density of the daily change in the Japanese call rate is given Figure

2.4. The density has a sharp peak and fatter tail exhibiting the typical stylezed

fact of the return of the financial rates. The mean, median, skewness and kurtosis

of the daily change in the Japanese call rate are

mean median skewness kurtosis

−.0027 0.0 −1.064 190.61

We applied the Bayesian model selection criteria and the conditional Kol-

mogorov test to see which model, the CIR or Vasicek, explains the Japanese call

rate. Table 2.10 presents the DIC and the modes of the MSEF’s and Table 2.11

presents the CKT test.

From Table 2.10 we see that the DIC and the modes of the MSEF’s all choose

the CIR model over the Vasicek model. The cdf’s of the MSEF’s of the CIR

model uniformly dominate those of the Vasicek model as shown in Figure 2.5.

From Table 2.11 we see that the CKT’s, VT , are all greater than all the critical

values regardless of putting the CIR or Vasicek models in the null hypothesis.



20

Accordingly I conclude the Japanese call rate follows neither the CIR nor the

Vasicek model.

2.6 Concluding Remarks

Using two non-nested models of spot asset pricing models, the CIR and Vasicek

models, I compared the Bayesian model choice criteria to the conditional Kol-

mogorov test (CKT). The Bayesian criteria are designed to choose the model

that explains the data best, while the CKT is a hypothesis test to accept the null

hypothesis that one model is true at a pre-specified significance level. I used two

Bayesian criteria: the deviance information criterion (DIC) of Spiegelhalter et.al.

and the cumulative density function (cdf) of the mean squared errors of forecast

(MSEF).

Using a simulated data I demonstrated how to use the cdf of the MSEF as a

model selection criterion: by plotting the cdf’s of two MSEF’s of the non-nested

models I choose the model with the dominating cdf. If the two cdf’s cross, I may

choose the model whose median MSEF is smaller. The CKT is to obtain the

in-sample prediction and compare it with the α % critical value that is generated

by bootstrapping. I conducted Monte Carlo experiments to see how the Bayesian

model selection criteria and the CKT perform. Among the DIC, the cdf of the

MSEF, and the CKT the clear winner is the DIC.

Then I applied the DIC, the cdf of the MSEF, and the CKT to the daily data

of the uncollaterized Japanese call rate from January 1 1990 to April 18 1996 for

the total of 2,300 observations. The sample period begins at the inception of the

bursting of the Japanese bubble and ends at the beginning of the zero interest

rate period. I find that the CIR model explains the data better than the Vasicek

model according to the DIC and the cdf’s of the MSEF. According to the CKT
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the data support neither the CIR nor Vasicek model.

Both the Bayesian model selection criteria and the CKT are based on ran-

dom number generation. The random number generation for the Bayesian model

selection criteria is used to obtain the posterior distributions of the log of the

likelihood function to compute the DIC and of the mean squared errors of the

forecast. In the Bayesian inference, the parameters of the model are generated

while the data are treated as fixed. The random number generation for the CKT

is used to generate bootstrap samples from the data. Given the bootstrap samples

the distributions of the CKT are generated.
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Table 2.1: Bayesian Posterior Means of the Parameters

Data Generated by CIR Model
κ θ σ

CIR Model .2866 .0591 .1084
Vasicek Model .3755 .0586 .0268

Data Generated by Vasicek Model
κ θ σ

CIR Model .6663 .1598 .3107
Vasicek Model .7335 .1579 .0918

Notes: The true parameters are κ = .3068, θ = .0558, σ = .1180.
Sample size is 200.
Metropolis-Hastings algorithm is used.
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Table 2.3: Bayesian Model Selection Criteria: Example with Simulated Data

Data Generated by CIR Model
CIR Model Vasicek Model

DIC −920.7102 −876.5910
MSEF

1-step-ahead .00021 .00051
2-step-ahead .00030 .00061

Mean 4-step-ahead .00051 .00074
12-step-ahead .00113 .00107

1-step-ahead .000107 .00025
2-step-ahead .000200 .00039

Median 4-step-ahead .000382 .000549
12-step-ahead .00080 .00090

1-step-ahead .000036 .000105
2-step-ahead .000087 .000227

Mode 4-step-ahead .000236 .000386
12-step-ahead .00069 .00075

Data Generated by Vasicek Model
CIR Model Vasicek Model

DIC −315.5180 −384.6227
1-step-ahead .02475 .00866
2-step-ahead .02637 .016334

Mean 4-step-ahead .02965 .015343
12-step-ahead .031529 .016426

1-step-ahead .011880 .004203
2-step-ahead .020591 .012972

Median 4-step-ahead .021904 .013573
12-step-ahead .024776 .015558

1-step-ahead .005156 .001531
2-step-ahead .008453 .005131

Mode 4-step-ahead .016925 .010492
12-step-ahead .017842 .014615

Notes: Metropolis-Hastings algorithm is used.
1-step-ahead means that the MSEF of 1 period out-of-sample prediction.
2-step-ahead means that the MSEF of 2 periods out-of-sample prediction.
4-step-ahead means that the MSEF of 4 periods out-of-sample prediction.
12-step-ahead means that the MSEF of 12 periods out-of-sample prediction.
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Table 2.4: Conditional Kolmogorov Test (Data generated by the CIR model)

τ u, u VT 5%CV 10%CV 15%CV 20%CV

H0 : CIR Model
1 R̄± .5σR 2.6101 1.0163 1.0163 .8812 .8812

R̄± σR 2.8640 1.0589 1.0589 .7675 .7675
2 R̄± .5σR 2.0429 1.0571 1.0163 .9071 ..8812

R̄± σR 2.4643 1.0589 .8929 .8143 .8071
4 R̄± .5σR 1.2052 1.0571 1.0163 .8812 .8805

R̄± σR 1.2413 1.1042 1.0589 .9526 .8929
12 R̄± .5σR .3090 1.1114∗ 1.0553∗ .9724∗ .8812∗

R̄± σR .9121 1.1114∗ 1.0589∗ .9526∗ .8929∗

H0: Vasicek Model
1 R̄± .5σR 5.7209 1.0447 1.0447 .9878 .9878

R̄± σR 4.2490 1.0447 1.0447 .8670 .8670
2 R̄± .5σR 7.1857 1.2286 1.1000 1.0447 .9878

R̄± σR 4.9929 1.4498 1.4286 1.0571 1.0447
4 R̄± .5σR 7.8592 1.2918 1.1286 1.0753 1.0447

R̄± σR 5.0518 1.4286 1.0825 1.0447 1.0000
12 R̄± .5σR 8.4423 1.2918 1.1000 1.0553 1.0031

R̄± σR 2.8640 .6893 .6893 .6680 .6680

Notes: The GMM with unconditional moments is used.
Two confidence intervals (u, ū) are R̄± .5σR
and R̄± σRare created for each of τ = 1, 2, 4, 12.
VT is the test statistic. CV ’s are the critical values at 5%, 10%, 15% and 20%.
A number with ∗ indicates that the test statistics VT ’s lead to the acceptance
of the null hypothesis.
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Table 2.5: Conditional Kolmogorov Test (Data generated by the Vasicek model)

τ u, u VT 5%CV 10%CV 15%CV 20%CV

H0 : CIR Model
1 R̄± .5σR 2.0467 .8559 .8559 .6183 .6183

R̄± σR 2.0325 .6965 .6965 .6325 .6325
2 R̄± .5σR 1.6714 .8599 .8599 .8000 ..7857

R̄± σR 1.1786 .7888 .7500 .7143 .6965
4 R̄± .5σR 1.3279 .8599 .8599 .7857 .6357

R̄± σR 1.4795 .8588 .7888 .7361 .7143
12 R̄± .5σR .9799 .8732 .8599 .7857 .6784

R̄± σR 1.6583 1.0553 .8857 .8216 .7500

H0 : Vasicek Model
1 R̄± .5σR 2.4447 .7817 .7817 .6680 .6680

R̄± σR 2.8640 .6893 .6893 .6680 .6680
2 R̄± .5σR 2.9786 .7817 .6714 .6680 .6538

R̄± σR 4.0429 .6893 .6680 .5970 .5143
4 R̄± .5σR 4.9003 .9598 .8083 .7145 .6714

R̄± σR 4.7054 .7178 .7073 .6680 .5970
12 R̄± .5σR 4.2965 1.0376 .9598 .7817 .6714

R̄± σR 4.2212 .7538 .7538 .7178 .6893

Notes: The GMM with unconditional moments is used.
Two confidence intervals (u, ū) are R̄± .5σR
and R̄± σRare created for each of τ = 1, 2, 4, 12.
VT is the test statistic. CV ’s are the critical values at 5%, 10%, 15% and 20%.
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Table 2.6: Results of Monte Carlo Experiments, Bayesian Model Selection Normal
Error Term

% of Choosing CIR Model % of Choosing Vasicek Model

Data generated by the CIR Model
DIC 100% 0%
Median of MSEF
1-step-ahead 62.0% 38.0%
2-step-ahead 62.5% 37.5%
4-step-ahead 58.5% 41.5%
12-step-ahead 59.0% 41.0%

Data generated by the Vasicek Model
DIC 0% 100%
Median of MSEF
1-step-ahead 23.5% 76.5%
2-step-ahead 16.5% 83.5%
4-step-ahead 12.5% 87.5%
12-step-ahead 1.5% 98.5%

Notes: The median of the MSEF is used for the model selection
“#-step-ahead“ denotes the # periods out-of-sample prediction.
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Table 2.7: Results of Monte Carlo Experiments, CKT, Normal Error Term: Ac-
ceptance rates (%) of H0

τ u, u 5%CV 10%CV 15%CV 20%CV

Data Generated by the CIR Model
H0 : CIR Model

1 R̄± .5σR .5% .5% 0.0% 0.0%
R̄± σR 0.0% 0.0% 0.0% 0.0%

2 R̄± .5σR 4.5% 2.0% 3.0% 3.5%
R̄± σR 1.5% .5% .5% .5%

4 R̄± .5σR 8.0% 8.5% 7.0% 7.5%
R̄± σR 3.5% 2.0% 2.0% 1.5%

12 R̄± .5σR 11.0% 12.5% 11.5% 10.5%
R̄± σR 5.5% 5.5% 4.0% 5.0%

Data Generated by the Vasicek Model
H0 : Vasicek Model

1 R̄± .5σR 14.0% 14.0% 9.0% 9.0%
R̄± σR 5.5% 5.5% 4.5% 4.5%

2 R̄± .5σR 36.5% 38.0% 38.0% 37.0%
R̄± σR 34.0% 35.0% 34.5% 36.0%

4 R̄± .5σR 22.5% 23.0% 24.0% 24.5%
R̄± σR 18.0% 22.0% 22.0% 23.0%

12 R̄± .5σR 11.0% 12.5% 11.5% 10.5%
R̄± σR 11.5% 15.5% 18.0% 18.5%

Notes: The GMM with unconditional moments is used.
Two confidence intervals (u, ū) are R̄± .5σR
and R̄± σRare created for each of τ = 1, 2, 4, 12.
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Table 2.8: Results of Monte Carlo Experiments, Bayesian Model Selection Non-
normal Error Term

% of Choosing CIR Model % of Choosing Vasicek Model

Data generated by the CIR Model
DIC 92% 8%
Median of MSEF
1-step-ahead 64% 36%
2-step-ahead 62% 38%
4-step-ahead 59.5% 40.5%
12-step-ahead 58% 42%

Data generated by the Vasicek Model
DIC 1.5% 98.5%
Median of MSEF
1-step-ahead 40% 60%
2-step-ahead 43% 57%
4-step-ahead 40.5% 59.5%
12-step-ahead 28.5% 71.5%

Notes: Non-normal error term is the Normal × Inverse Gaussian error term.
The median of the MSEF is used for the model selection
“#-step-ahead“ denotes the # periods out-of-sample prediction.
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Table 2.9: Results of Monte Carlo Experiments, CKT, Non-normal Error Term:
Acceptance rates (%) of H0

τ u, u 5%CV 10%CV 15%CV 20%CV

Data Generated by the CIR Model
H0 : CIR Model

1 R̄± .5σR 0.0% 0.0% 0.0% 0.0%
R̄± σR 0.0% 0.0% 0.0% 0.0%

2 R̄± .5σR 0.0% 0.0% 0.0% 0.0%
R̄± σR 0.0% 0.0% 0.0% 0.0%

4 R̄± .5σR 0.5% 0.5% 1.0% 1.0%
R̄± σR 0.0% 0.0% 0.0% 0.0%

12 R̄± .5σR 5.0% 5.0% 5.0% 4.5%
R̄± σR 1.0% 0.5% 1.0% 0.0%

Data Generated by the Vasicek Model
H0 : Vasicek Model

1 R̄± .5σR 0.0% 0.0% 0.0% 0.0%
R̄± σR 0.0% 0.0% 0.0% 0.0%

2 R̄± .5σR 0.0% 0.0% 0.0% 0.0%
R̄± σR 0.0% 0.0% 0.0% 0.0%

4 R̄± .5σR 0.0% 0.0% 0.0% 0.0%
R̄± σR 0.0% 0.0% 0.0% 0.0%

12 R̄± .5σR 0.0% 0.0% 0.0% 0.0%
R̄± σR 0.0% 0.0% 0.0% 0.0%

Notes: The GMM with unconditional moments is used.
Two confidence intervals (u, ū) are R̄± .5σR
and R̄± σRare created for each of τ = 1, 2, 4, 12.
Non-normal error term is the Normal× Inverse Gaussian error term.
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Table 2.10: Bayesian Model Selection Criteria: Japanese Call Rates

Bayesian model selection
CIR Model Vasicek Model

DIC −6, 031.0344 −3, 168.2471
Mode of MSEF

1-step ahead .000307 .00250
2-step ahead .000721 .00562
4-step ahead .00141 .01062

12-step ahead .00378 .02790

Notes: The Metropolis-Hastings algorithms are used.
#-step ahead denotes the # periods out-of-sample prediction.
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Table 2.11: Conditional Kolmogorov Test of Model Specification: Japanese Call
Rates

τ u, u VT 5%CV 10%CV 15%CV 20%CV

CIR Model
1 R̄± .5σR 2.8069 2.1137 2.1137 1.7575 1.7575

R̄± σR 7.2926 1.9943 1.9943 1.6807 1.6807
2 R̄± .5σR 4.0545 2.6022 2.3580 2.1552 2.1137

R̄± σR 9.9847 2.9896 2.4134 2.0464 1.9943
4 R̄± .5σR 4.7523 2.3986 2.3580 2.2811 2.2405

R̄± σR 12.7235 3.1717 2.9896 2.8257 2.8151
12 R̄± .5σR 5.8824 4.2445 3.2970 3.0719 2.6732

R̄± σR 16.2259 5.9308 3.5907 3.2306 3.1534

Vasicek Model
1 R̄± .5σR 2.8923 1.9687 1.9687 1.8108 1.8108

R̄± σR 7.4782 2.0412 2.0412 1.7106 1.7106
2 R̄± .5σR 4.1057 2.5958 2.3750 2.1894 1.9687

R̄± σR 10.1575 2.9512 2.4775 2.1963 2.0412
4 R̄± .5σR 4.7459 2.3750 2.3729 2.3409 2.1894

R̄± σR 12.8879 3.1632 3.0564 2.8001 2.6378
12 R̄± .5σR 5.9209 4.2896 3.3313 3.1641 2.6282

R̄± σR 16.4702 5.7194 3.5521 3.2091 3.1534

Notes: The simulated GMM (SGMM) is used.
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Figure 2.1: 1-,2-,and 4-period ahead MSEF’s: Data generated by the CIR model
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Figure 2.2: 12-period ahead MSEF’s: Data generated by the CIR model
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Figure 2.3: 1-,2-, 4-, and 12-period ahead MSEF’s: Data generated by the Vasicek
model
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Figure 2.4: The Japanese Call Rate
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Figure 2.5: 1-, 2-, 4-, 12-period ahead MSEF’s for the Japanese Call Rate
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Chapter 3

Binary response model analysis by the

Parametric and Semiparametric Estimations

3.1 Introduction

The use of generalized linear models (GLMs) (Nelder and Wedderburn(1972))

for the quantitative analysis of social science data has increased appreciably in

the past four decades. The GLM binary response models, in particular, are very

popular in economics and other social science, especially after linear probability,

logistic and probit models for dichotomous dependent variables ((Amemiya(1981),

Aldrich and Nelson (1984)) are systematically introduced to researchers because

the nature of survey data and evolution of more flexible estimation methods in

binary response models . In this paper I will analyze both regular binary response

models and models with popular asymmetric distributions by both parametric and

semiparametric methods.

In this paper I estimate binary response models such as linear probability

model, probit model, logistic model, and Semi-parametric models by the Max-

imum likelihood estimation (MLE), Bayesian and Semi-parametric methods. I

will compare the differences in model estimations and marginal effects among

these methods and assess the model predictive power by comparing marginal ef-

fect, mean square error (MSE), weighted sum of squared error (SSE) and receiver

operating characteristic (ROC) curve. I first use simulated data and then con-

duct Monte Carlo (MC) experiments. The simulated data are either balanced or
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unbalanced data generated by linear probability model, probit and logistic mod-

els, asymmetric exponential power distribution (AEPD) and asymmetric Laplace

distribution (ALD).

I also apply these methods to analyze the employment status of the US in year

2005 to research my findings in the MC experiment. The data I use is the Panel

Study of Income Dynamics (PSID) data, I extract the individual data only for

the family head for year 2005. The response here is the employment status (either

employed or unemployed), the independent variables are sex (male or female) ,

age, years of education, race (white or non-white), marital status (married or

not), city size (6 levels), and years of the working experience.

The organization of this paper is as follows. In Section 3.2, I introduce the

major types of the binary response models and present the procedures to estimate

binary response models in both parametric and semi-parametric theory. Section

3.3 shows how to evaluate the predictive power of the binary response model by

marginal effects and model evaluation method such as unweighted MSE, weighted

SSE and ROC curve. Section 3.4 using the simulated data I present the model

estimation results with marginal effects and the predictive powers. In Section

3.5 , I conduct Monte Carlo experiments to see the performances of paramet-

ric and semi-parametric methods. In Section 3.6, I apply both parametric and

semi-parametric methods to PSID data for the employment status in year 2005.

Concluding remarks are given in Section 3.7.

3.2 The Binary Response Model and Estimation proce-

dure

3.2.1 Binary Response Model

Suppose the response variable Y has binary values (0, 1), where
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yi =

 1 if ′Y es′

0 if ′No′

and here ’Yes’ means Y is under some specific condition A, ’No’ means Y is not

under some specific condition A.

The most popular, and thus conventional, way to deal with the binary choice

model is to use the following latent variable regression:

yi =


1 ifM(yi) > εi

0 ifM(yi) ≤ εi

. (3.1)

Then we will have a general GLM form of the binary response model:

M(yi) = H(xi, β) = H(C + β1x1i + β2x2i),

where H is a function of X, β =
{
C β1 β2

}
is the parameter of the model. In

this paper, I only list two independent variables for simplicity, model with more

than two independent variables have the same explanations and procedures.

Most Popular Binary Response Models

If we know the cumulative density F (·) for εi in latent variable regression (3.1),

then we may choose a parametric estimation procedure. The most frequently

used distributions are

Cumulative Density Probability Density

Logistic F (zi) =
1

1 + e−zi
f(zi) =

e−zi

(1 + e−zi)2

Probit Φ(zi) =
1√
2π

∫ zi

−∞
e−

t
2 dt f(zi) =

1√
2π

e−
zi
2

linear Probability F (zi) =

∫ zi

0

dt = zi = xiβ U(0, 1)
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Binary Response Model with Asymmetric Error

Because many economic data series have motivated exploration of classes of dis-

tributions that can accommodate properties such as fat-tailedness and skewness

with closed-form expressions for the moments of interest. Asymmetric Exponen-

tial power distribution (AEPD)1 and asymmetric Laplace distribution (ALD2 are

two popular asymmetric distributions in literature .

If we want to generate yi by the AEPD, let εi in latent variable regression

(3.1) be εi ∼ AEPD(α, p1, p2, µ, σ), z = xiβ. The AEPD pdf is:

fAEPD(z|α, p1, p2, µ, σ)

=

 ( α
α∗)

1
σ
KEP (p1) exp

(
− 1
p1

∣∣ z−µ
2α∗σ

∣∣p1
)

ifz ≤ µ

( 1−α
1−α∗)

1
σ
KEP (p2) exp

(
− 1
p2

∣∣∣ z−µ
2(1−)α∗σ

∣∣∣p2
)

ifz > µ
,

whereKEp(p) ≡ 1/
[
2p1/pΓ(1 + 1/p)

]
and α∗ = αKEP (p1)/ [αKEP (p1) + (1− α)KEP (p2)].

Here σ is just scale parameter, small p1(p2) is for heavier left(right) tail and small

α is for fatter tail, µ is location parameter. For simplicity, we set µ = 0 in our

analysis.

If we want to generate yi by the ALD, let εi in latent variable regression (3.1)

be εi ∼ ALD(µ, σ, p). The ALD pdf is:

fALD(z|µ, σ, p) =


p(1−p)
σ

exp
(
− (x−µ)

σ
[p− 1]

)
ifx ≤ µ

p(1−p)
σ

exp
(
− (x−µ)

σ
p
)

fx > µ
.

The CDF of AEPD and ALD are:

FAEPD(z|α, p1, p2, µ, σ)

=

 α
[
1−G

(
1
p1

(
− z

2α∗σ

)p1 ; 1
p1

)]
ifz ≤ µ

α + (1− α)
[
G
(

1
p2

(
z

2(1−α∗)σ

)p2

; 1
p2

)]
ifz > µ

1Zhu(2009) demonstrated the AEPD based on the Skewed Exponential Power Distribution
(SEPD) classes (Fernandez et al. (1995), Theodossiou (2000) and Komunjer (2007)).

2Koenker and Machado(1999), Yu and Moyeed(2001), and Yu and Zhang(2005).
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and

FALD(z|µ, σ, p)

=

 p× exp
(

1−p
σ

(z − µ)
)

ifz ≤ µ

1− (1− p)× exp
(
− p
σ

(z − µ)
)

ifz > µ
.

Here if p1 = p2 and α = α∗ in AEPD, the AEPD will be ALD; if P = 2 and

α = 0.5 in ALD, ALD will be a symmetric normal distribution; if p = 2, ALD

will be an asymmetric normal distribution.

Semiparametric model

If we do not know F (·) then we may choose a semi-parametric model. The most

popular one is the single index Semiparametric model:

Pi(β0) = Pr(Yi = 1|Xiβ0) = G[Vi(β0)] ,

where Xiβ0 = Vi(β0) is the index and this index can be written as: Xiβ0 =

β10(X1i + θ0X2i) + C0 = Vi(θ0); and here suppose β10 6= 0 is just a nonzero

constant term. So the estimated probability for Pi(β0) is

Pr(Yi = 1|Xiβ0) = Pr[Yi = 1|Vi(β0)] = Pr[Yi = 1|Vi(θ0)] = Pi(θ0) .

Therefore, it is clear that the semi-parametric probability does not depend on

the constant term and only depend on the ratios of the parameter values, i.e.

θ0 = β20

β10
.

3.2.2 Estimation Procedures

There are a lot of model estimation methods for the binary response model. The

simplest method is the ordinary least square (OLS). We can estimate linear prob-

ability model parameter β by β̂ = (X ′X)−1X ′Y , but normally OLS estimators

are inefficient. We can also use the MLE method as below.
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Let the pi = P (yi = 1) =pi = 1
1+exp(−xiβ)

for logistic model and pi = Φ(−xiβ)

for probit model). Then we can form binomial probability functions for the ob-

servations i = 1, · · · , n and the likelihood function becomes

`(β|yi, xi, i = 1, · · · , n) =
n∏
i=1

pyii

n∏
i=1

(1− pi)1−yi (3.2)

and the logarithm of the likelihood function is

log `(β|data) =
n∑
i=1

yi log pi +
n∑
i=1

(1− yi) log(1− pi). (3.3)

We need to maximize the function (2.2) by setting the first order condition to β

as zero: ∂Ln(L)
∂β

= 0 and solve β̂MLE . I will use Maxlik package in GAUSS to

apply the MLE.

MLE also have restrictions in application, first MLE estimation must depend

on the exact joint or conditional distribution of the data and second the regular

MLE method usually confronts convergence problem because of the failure in the

calculation of inversed Hessian matrix (Jeff and Gary(2004)).

Here I will introduce Parametric Monte Carlo (MCMC) Bayesian estimation,

which doesn’t require zero serial correlation assumption and Hessian calcula-

tions; and Semiparametric estimation, which doesn’t require the exact distri-

bution of the data. Based on these two methods, I create the MCMC Bayesian-

Semiparametric Estimation method, which avoid both data distribution require-

ment and inversed Hessian calculation.

Parametric Bayesian Estimation Procedure

Let me explain the Bayesian inference using the probit model. First we need to

specify the prior probability density function (pdf) for β = (β1, · · · , βk)
′
:

p(β) = p(β1, · · · , βk),
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then using Bayes’ theorem we have the posterior pdf for β:

p(β1, · · · , βk|data) ∝ p(β) `(β|data). (3.4)

A popular Bayesian procedure is to obtain the marginal posterior pdf of βi:

p(βi|data) =
∫
p(β1, · · · , βi−1, βi, βi+1, · · · , βk|data)

∏
j 6=i dβj.

There are two ways to carry out MCMC algorithms: Gibbs sampler with data

augmentation and MCMC with the Metropolis Hastings criterion. In this paper

we use MCMC with Metropolis-Hastings criterion. The MCMC algorithms are

carried out in the following steps:

Step 1: Choose an initial value of ∆0 = (β0, σ0), we can just use the OLS

estimates;

Step 2: Given ∆i−1, generate a random draw(sayθ′) from q(.|∆i−1) and a

uniform random draw (say u) from the interval between zero and one. The random

walk draw is:

∆′ = ∆(i−1) + εi, where εi ∼ N(0, σ2) and σ is fixed number.

Here, the proposal density for β is normal distribution:

p(βi|X, σ(i−1)) ∼ N(β(i−1), (σi−1)2(X ′X)−1),

where X is the n× k matrix, n is the number of observations, and k is the degree

of freedom in the regression model. The proposal density for σ2 is the inverted

Gamma distribution3:

p((σi)2|β, y) ∼ IG( νs2

2(σ(i−1))2 ,
n−k

2
).

Step 3: Set ∆i = θ′ if u ≤ α(∆(i−1),∆′) and set ∆i = ∆i−1 otherwise;

Step 4: Repeat (2) and (3) for i = 1, 2, 3, ..., N .

3The draws of σ will converge to 1, so σ here will not influence our MCMC draws for β,
although σ is unidentified from the beginning.
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Within each iteration in the above MCMC steps , I set N = 12000 and burned

the first 2000 draws. The Bayesian estimator β̂Bayes is calculated by the mean

posterior of the β draws.

Semiparametric Estimation procedure

If we don’t know the functional form for Pi, we can use Semiparametric method

(Klein and Spady(1993), Klein and Vella(2009)). Here Pi(θ0) = Pi(β0) is the

counterpart of the Pi in the probit or logistic models and can be estimated by

P̂i(θ) = P̂ r[Yi = 1|Vi(θ)] =
P̂ (Y = 1)ĝ(V |Y = 1)

ĝ(V )
=

N1

N

N∑
i=1

1
hN
ϕ( t−vi

hN
)( Yi
N1

)

N∑
i=1

1
hN

ϕ(
t−vi
hN

)

N

, (3.5)

where the target function t = v(θ). And function g(.) is estimated by the non-

parametric kernel density function ĝ(t) =
N∑
i=1

1
hN
ϕ( t−vi

hN
)( 1
N

), where ϕ is the pdf

of the standardized normal distribution, which means we apply normal kernel

density estimation; and hN is the kernel density window size.

Similar as the likelihood function for the probit or logistic model in equation

(2), We can then maximize the following ’Quasi-likelihood’ function to get θ̂SEMI :

L(θ) =
n∏
i=1

Pi(θ)
yi [Pi(θ)]

1−yi . (3.6)

A simple explanation of the semi-parametric method in detail is:

i. Standardize X matrix by X ′ = X
std(X)

.

ii. Estimate parameters in model x′1 +δx′2 by maximizing the quasi-likelihood

function (6). The estimated index is x′1+δx′2 = (X1/S1)+[X2/S2]δ, so θ̂semi = S1

S2
δ̂.

This is because (X1/S1) + [X2/S2]δ = 1/S1(X1 + S1

S2
δX2), and if we factor the

coefficient of one variable out from the original model, y = c0 + β1(X1 + β2

β1
X2),
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we can see S1

S2
δ = θ = the parameter ratio β2

β1
.

Because of the maximization of the likelihood function, here we still need to

calculate the inverse Hessian matrix, which often easily fails when data size is

small or data are generated by flat tailed and skewed distribution.

Bayesian-Semiparametric Estimation Procedure

One way to solve the inversed Hessian Matrix problem is to apply the Semi-

parametric method in the Bayesian MCMC estimation framework. We can use

the same posterior function as in equation (4), but we change the simple pro-

bit/logistic Pi (the CDF function)to the Semiparametric formula for Pi(θ) as in

equation (5). Therefore, in each Bayesian MCMC iteration, we estimate θ in the

Semiparametric model by MCMC algorithm.

We can apply the same MH algorithm as in section 3.2.2 The major MCMC

steps are the same from step 1 to 4 as in section 3.2.2, except that we apply a

slightly different proposal density function for θ by

p(θ̂(i)|X) ∼ N(θ̂, c),

where θ̂ is calculated from the OLS estimates or the starting value of the Semi-

parametric method, c can be empirical standard error of the binary response

model.

The final Bayesian-Semiparametric estimator θ̂Bayes−Semi is calculated by the

mean posterior of the θ draws. It is clear that here we are not using maximization

of the likelihood function and we use the convergent property of the Bayesian

MCMC draws.
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3.3 Binary Response Model Evaluation Criteria

3.3.1 Marginal Effects

Marginal effect is very useful in the application of binary response model. One

way to evaluate the estimated binary response model is also to compare the

difference between true and estimated marginal effects; if the difference is small,

the estimated model is better. There are two way to calculate the marginal

effects, one is to use the derivative of the density function; the other is to use the

predicted probability.

Use the derivative of the density function to calculate marginal effects

The true marginal effect for Xk of the linear probability model is just ∂P (y=1)
∂Xk

= βk,

which means that an independent variable Xk increases the probability P (Y = 1)

by βK when Xk increased by 1 unit.

The generalized form of the true marginal effect of Xk for models with density

distribution is:

∂F (xiβ)
∂xk

= ∂F (xiβ)
∂xiβ

∂xiβ
∂xk

= F ′(xiβ)βk = f(xiβ)βk.

Specifically, the true marginal effect for the probit model is ∂Φ(xiβ)
∂xk

= ϕ(xiβ)βk

and the marginal effect for the logistic model is
∂

(
1

1+e−xiβ

)
∂xk

= 1
1+e−xiβ

× 1
1+exiβ

×βk =

1
1+e−xiβ

×(1− 1
1+e−xiβ

)×βk = P (Y = 1)×(1− P (Y = 1))×βk. The true marginal

effects for the APED and ALD error model are fAEPD(xiβ|α, p1, p2, µ, σ)×βk and

fALD(xiβ|µ, σ, p)× βk.

For the MLE estimation, the marginal effect is calculated by the mean of the

f(xiβ̂)β̂k. For the Bayesian and Bayesian-Semiparametric estimates, in the i-th

MCMC iteration, I calculate mean of the f(xβ(i))β
(i)

k as the marginal effect for

each β draw and finally the marginal effect is the mean of the N draws of the

marginal effects.
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Use the predicted probability to calculate marginal effects

The calculation of the marginal effect by Semiparametric is different because we

only identify the ratio parameter θ̂SEMI . Suppose we want to calculate the

probability change from observation X2 to X2 + 1. Let v1 = x1 + θ̂semix2 and let

v2 = x1 + θ̂semi(x2 + 1); then use the Semiparametric estimation in equation (5)

to calculate the two probability vectors P1(θ̂SEMI) = Pr[Yi = 1|V1(θ̂SEMI)] and

P2(θ̂SEMI) = Pr[Yi = 1|V2(θ̂SEMI)]; finally the marginal effect is just mean of the

difference between these two vectors: P2(θ̂SEMI)−P1(θ̂SEMI). In practice, because

the value of X can be extreme large or small, it is better to compare the predicted

probability difference between x and x+ ∆(x); and in order to capture the entire

distribution of the X, we will consider4 ∆(x) = {std(x), 2× std(x), 3× std(x)}.

Therefore, the generalized form of the true marginal effects by the predicted

probability is P (x+∆(x))−P (x). Specifically, the true marginal effect for probit

model is Φ((x+ ∆(X))β)−Φ(xβ) and the true marginal effect for logistic model

is 1
1+e(x+∆x)β − 1

1+exβ
. The true marginal effects of the AEPD and ALD erro model

are FAEPD((x+ ∆(x))β)− FAEPD(xβ) and FALD((x+ ∆(x))β)− FALD(xβ).

Sometimes people use x̄ instead of x calculate the marginal effects, I will

compare the marginal effects calculated by both x and x̄ in this paper.

3.3.2 Unweighted Mean Squared Error(MSE) and weighted

Sum Squared Error(SSE)

In regressions, one way to select model is to choose the model with the smallest

unweighted MSE or the normal MSE, which is calculated by

n∑
i=1

[yi−F̂ (xiβ̂)]
2

n−k+1
,

4We can also use the quintile of X.
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where F (xiβ̂) = Pi in the binary response model. Amemiya (1981) points out this

unweighted MSE does not have the same strong performance as it is in standard

regression model because the binary response model is heteroscedastic regression

model. So the weighted SSE is recommended as a more reasonable criterion and

is given by

n∑
i=1

[yi−F̂ (xiβ̂)]
2

F̂ (xiβ̂)[1−F̂ (xiβ̂) .]

Amemiya (1981) argued that this weighted SSE attaches higher weight to the

squared error with larger variance; and if use the true probability instead of the

estimated probability in the denominator, we can obtain a more efficient estimator

of β by minimizing the above weighted SSE than minimizing the unweighted SSE

with respect to β. The performance of the unweighted MSE and weighted SSE

are different in many cases and I will show them in section 3.4 and 3.5.

3.3.3 Receiver Operating Characteristic (ROC) Curve

Both marginal effect and MSE/SSE can not capture the ’real’ predictive power of

the binary response model because marginal effect can not give any information

about the prediction of ’1’ or ’0’ for the real predictive response ŷ; and MSE/SSE

just use the difference between the real response y (’0’ or ’1’) and the predicted

probability of ′y = 1′, which is away from the meaning of the MSE/SSE in the

regular regression models.

A more sensible method is to get the real predictive response ŷ (’0’ or ’1’) and

compare this ŷ with real y. It is clear for the model fitting, we expect high ’True’

positive rate (P (ŷ = 1|y = 1)) as well as low ’False’ positive rate (P (ŷ = 1|y = 0)).

Because we can only obtain the predictive probability P (Y = 1) from the binary

response model, a popular way is to set a cutoff value π0 and the predicted ŷ has

ŷ =

 1 P̂ > π0

0 P̂ ≤ π0

.



50

For easy application, many people set π0 = 0.5. However, if a low(high) propor-

tion of observations have y = 1, the model fit may never(always) have P̂ > 0.5 ,

in which case never(always) predicts ŷ = 1 . Other popular way is to set π0 as

the sample proportion of ’1’ outcomes, but it is only for a one sample result.

The best way is to consider all possible π0 and a receiver operating charac-

teristic (ROC) curve is one of the best choices (McNeil and Hanley(1982, 1984),

Swets et al. (2000), Fawcett(2006), etc.).

ROC curve is a plot of true positive rate as a function of false positive rate

for all the possible cutoffs π0. Some characteristics of the ROC curve are:

i), when π0 gets near 0, almost all predications are ŷ = 1 ; then true positive

rate is near 1, false positive rate is near 1, and the point for (false positive rate,

true positive rate) or (fp, tp) has coordinates near (1,1).

ii), when π0 gets near 1, almost all predications are ŷ = 0 ; then tp is near 0,

fp is near 0, and the point for (fp, tp) has coordinates near (0,0).

iii), the ROC cover usually has a concave shape connecting the points (0,0)

and (1,1).

v), for a given fp, better predictive power correspond to higher tp. The better

the predictive power, the higher the ROC curve.

Therefore, in order to compare two pair of predicted probability, our expec-

tation is that we need high true positive rate when the false positive rate is the

same. An ROC curve gives all true positive rates with all possible false positive

rates under all possible π0, and the easiest application is to compare the area un-

der the ROC curve (Alonzo(2002), Agresti(2007)), the bigger the area the better

the predictive power of the binary response model. In this paper, I will use the

algorithm from Fawcett(2006) to plot ROC curve and calculate the area under

the ROC curve. An explanation of ROC curve in detail is in Graph 3.4 for section

3.6.
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3.4 Model Estimation, Marginal Effects, Model Assess-

ment of the Simulated Data

In order to investigate properties of different estimation methods and their pre-

dictive power for the binary response model, I use data sets simulated by different

binary response models. For simplicity, we only consider two X variables, X1 is

a continuous variable (normal or uniform) and X2 is a discrete dummy variable

(with value as ’0’ or ’1’) and the binary response model is the same as in section

3.2: M(yi) = H(xi, β) = H(C + β1x1i + β2x2i).

According to the data generating procedure (DGP) in section 3.2, I simulated

binary response ’y’ with sample size N=1200 by the linear probability model,

probit model, logistic model, AEPD model and ALD model. For each set of sim-

ulated data, I estimate parameters by the OLS, MLE (Probit & Logit), Semipara-

metric method, Bayesian method (Probit & logit) and Bayesian-Semiparametric

method. The parameter estimation results, marginal effects, MSE/SSE and ROC

curve areas for each model are listed from Table 3.1 to Table 3.6.

Table 3.1 to Table 3.6 have the same format: the first part is model parameter

estimations, the second part is the estimated marginal effects calculated from X

by derivative of densities and increments of ∆x, the third part is the corresponding

marginal effects calculated from X̄, the fourth part are the true marginal effects,

the fifth part is for unweighted MSE, weighted SSE and ROC area. Generally, we

can identify that marginal effects by using X are better than using X̄, especially

for Semiparametric and Bayes-Semiparametric methods; the estimated marginal

effects, MSE, SSE5, ROC area are fairly close across the different models and

5Except that weighted SSE values explode (very big around 7 to 30 for the simple linear
model estimates) because a lot of predicted values are greater than (0,1) range. This is also a
disadvantage of the linear probability model because the predicted value is easily falling outside
of a probability range. Therefore, weighted SSE values for almost all unbalanced data are very
large, which also means that simple linear probability model is not good for the unbalanced
data.
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different estimation procedures; and the ’winner’ of the best model as shaded in

each table is different according to different criteria. Therefore, we need to do

Monte Carlo experiment in section 5 to assess the estimations of binary response

models because different methods may choose different estimated model for the

same data set.

Table 3.1 is for balanced data (% of ’y=1’ ≥ 15%) simulated by the linear

probability model. The first part shows: the OLS estimates are very close to the

true parameters; MLE and Bayesian (for Probit & Logistic Model) estimates are

very close to each other; Semiparametric and Bayesian-Semiparametric estimates

θ are also very close. The second part shows the marginal effects by derivative

of density for each model are very close ( around -0.044); the marginal effects by

increments of ∆X are also very close for each model and estimation methods.

The third part shows that except Semiparametric and Bayesian-Semiparametric

methods, other marginal effects are very close to the marginal effects by using

X. The fourth part gives the true marginal effects for the linear probability

model: they have small differences with the estimated marginal effects except

the marginal effects of Semiparametric estimated by x̄. The fifth part of the

table shows that Semiparametric estimation gives the best(minimum) unweighted

MSE value (0.18875); Bayes-Semiparametric estimation gives the best (minimum)

weighted SSE6 value (0.99821); and Semiparametric estimation gives the best

(maximum) ROC curve area (0.61781).

Table 3.2 is for unbalanced data (% of ’y=1’ < 15%)simulated by the linear

probability model. It also shows similar trend in Table 3.1 except: in part one, we

can see that OLS estimates are away from the true parameters for the unbalanced

data; in part two and three, it is clear that all estimated marginal effects have

some differences with the true marginal effect in part four; in part five, probit

6Almost all weighted SSE for OLS linear model blow out for the unbalanced data, I just list
the result but did not consider it in the analysis.
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model (by MLE) gives the best weighted SSE (0.99477).

Table 3.3 is for unbalanced data simulated by the probit model. It is clear

the probit model (by MLE or Bayes) estimates are very close to the true para-

meters. The marginal effects by using X and X̄ for MLE and Bayesian method

have small differences and are much more closer to the true marginal effects than

results from Semiparametric and Bayesian-Semiparametric methods. It is obvi-

ous that Semiparametric marginal effect has the wrong sign (-0.0001) when using

X̄. In model assessment part, Semiparametric model gives the best unweighted

MSE (0.064956) and the best ROC curve area (0.675504); and the probit model

(by MLE) gives the best weighted SSE (0.995935). Although the data is simu-

lated directly by the probit model, our model evaluation criteria can not show a

consistent conclusion because in theory, we should choose probit model.

Table 3.4 is for unbalanced data simulated by the logistic model. This time the

logistic model estimates have large differences with the true parameters, which is

away from our expectation. Also, the marginal effects ( around 0.068) by density

method are almost twice of the true density marginal effect (0.03568) by density.

Bayes-Semiparametric and Semiparametric marginal effects by using X stand out

and are very close to the true marginal effects. As to the model assessment part,

Semiparametric model gives the best unweighted MSE; probit (by MLE) model

gives the best weighted SSE; and logistic (by MLE) model gives the best ROC

curve area. So these three model specification methods choose three different

models for the same data.

Table 3.5 is for unbalanced data simulated by the AEPD error model. Again,

the estimated marginal effects by density method have some differences with the

true marginal effect by density. It is interested to see that OLS marginal effects

by increments of ∆X are much closer to the true marginal effects than other

models. Generally, MLE, Bayes, and Semi&Bayes-Semi methods show similar

marginal effects by using X; and marginal effects by X̄ still shows big differences
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with the true marginal effect. Semiparametric method gives the best unweighted

MSE and ROC curve area; and logistic (by MLE) model gives the best weighted

SSE.

Table 3.6 is for unbalanced simulated by the ALD error model. It shows almost

the same property as in Table 3.5, except that all marginal effects by increment

of ∆X are far away from the true marginal effect7.

3.5 Monte Carlo Experiment

For each set of data in section 3.4, I use the same X and β in the corresponding

models above but with different error term ( with same distribution), and record

the information such as marginal effects, weighted MSE, SSE, and ROC curve

area in each Monte Carlo iteration. After I collect N8 sets of information, we can

use them to evaluate our model estimations as below.

Table 3.7 gives the Monte Carlo (MC) results for the balanced data simu-

lated by the linear probability model in section 3.4. The first table in Table 3.7

shows the percent of the minimum MSE/SSE and maximum ROC area for each

estimation method, here we can see that Semiparametric methods give the best

estimation results for both unweighted MSE (94%)and ROC areas (80%). For the

weighted SSE, logistic model estimated by Bayesian method is the best (100%).

The first part of the second table gives a summary of the M=100 estimated

marginal effects; Bayes-Semi method gives the smallest standard deviations for

the marginal effect. The second part of the second table gives the differences

between the estimated and the true marginal effects and the best model should

be the one with the minimum difference. Here logistic model estimated by the

Bayesian method shows the smallest differences. We can get more information

7This may be due to the reason that I have to calculate the true marginal effect by X̄ because
ALD density/CDF has two parts; but I have to get one marginal effect.

8For time reason, right now I just set N=100
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from the first graph in Graph 3.1. Graph 3.1 is the distribution of the differences

between the estimated and the true marginal effects, we can see that Bayes-Semi

method gives the smallest range but a little away from zero, and the Bayesian

logistic model shows a very symmetric curve, MLE models and Bayesian probit

model are almost overlapped, and the Semiparametric model is a little skewed.

Therefore, Bayesian logistic model gives better marginal effect estimations for

this data.

Table 3.8 has the same format with Table 3.7 and gives the MC results for the

unbalanced data simulated by the linear probability in section 3.4. Unweighted

MSE (97%) and Roc area (87%) still choose the Semiparametric methods as the

best one and weighted SSE still chooses logistic model estimated by Bayesian

method (57%). And Bayesian logistic models still shows the smallest standard

deviation in the marginal effect estimations. For the marginal effect differences

between the estimated and the true, MLE probit model shows the smallest value.

From the second graph in 3.1, we can get the same information.

Table 3.9 gives the MC results for unbalanced data simulated by the probit

model in section 3.4. The unweighted MSE, weighted SSE and ROC area have

the same performance as in Table 3.7 and 3.8 . As to the marginal effects, Bayes-

Semi model gives the best result with the smallest standard deviation and the

smallest difference from the true marginal effect. The first graph in Graph 3.2

also give us the same information, but it is clear this time different models gives

very different curves than in Figure 3.1.

Table 3.10 gives the MC results for unbalanced data simulated by the logistic

model in section 3.4. Still, unweighted MSE and ROC area will choose Semipara-

metric model; but weighted SSE shows the same chance to choose Bayesian probit

or logistic model (37%). The marginal effects for each model show very smaller

difference in numerical values and Semiparametric model shows slightly better

performance than others with small standard deviation and difference from the
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true marginal effects. The second graph in Figure 3.2 confirm this result because

six curves are almost overlapped with each other.

As to the MC experiment for the unbalanced AEPD and ALD data, I can

only obtain Bayesian and Bayes-Semi results because the MLE& Semiparametric

estimations by Maxlik are easily failed and I can not obtain enough iterations.

So I just report Bayes results in Figure 3.3, it is clear that Bayes-Semi method

always win if I use ROC area as the model selection method and MSE/SSE still

can not show consistent result.

From the MC experiment in Table 3.7 to 3.9 , we can see that the differences

among different methods/models are small, but Semiparametric models give the

best predictive power under the evaluation of unweighted MSE and ROC area

no matter the model is simulated by the balanced/unbalanced data or different

models ( linear probability, probit, or logistic model). As to the best performance

in the marginal effect, the result is not consistent for data simulated by different

models, although Bayes-Semi models show the smallest standard deviation in

marginal effect for data simulated by the linear probability and probit model;

but the result is complicated when data is simulated by the logistic model as

in Table 3.10. In addition, if we do not know the true marginal effects (i.e., or

the data distribution density), it is impossible for us to compare the estimated

and true marginal effects and comparison among different model estimations will

be lack of measuring standard. Therefore, if we believe ROC curve area as the

most effective way to evaluate predictive power for the binary response model,

Semiparametric model and Bayes-Semi model estimation are better than other

model estimations mentioned in this paper. But estimating marginal effects can

be very sensitive under different conditions and it is not a robust method to assess

models’ predictive power.
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3.6 Employment Status analysis by using the PSID data

Let me present an application to the employment status using the PSID data.

The Panel Study of Income Dynamics (PSID) is a longitudinal survey that collects

economic and demographic information of U.S. families Since 1968. PSID data

has been frequently used to investigate the employment status of the U.S. in

the literature (James and Audrey (1992), David and Ann (1999), Lawrence et.al.

(2006)).

Our data is extracted from family data for those individuals who are the

family head in the ’labor force’ market without missing values. There are totally

8002 family recorded in year 2005, and the data lefts 4034 observations after

we dropped missing values and those who are not in the ’labor force’ market.

According to the labor economics, there are two parts in the ’labor force’ market:

employed labor and unemployed labor, so our data includes these two groups. A

lot of factors influenced the unemployment rate, such as people’s education, sex,

age, race, marital status, working experience and locations. In order to investigate

the influence of these factors to the unemployment rate, I set employment status

as the response (employed = 0 and unemployed = 1) and all the factors as the

explanatory variables, then apply the binary models in section 3.2 to investigate

the influences of each factor on the unemployment rate.

From the Bureau of Labor Statistics , the annual unemployment rate in year

2005 is 6.1%. In our sampled data, the empirical unemployment rate (P(Y=1)) is

6.17%, which is consistent with the official data. So our data is unbalanced data.

In our model, three variables can be treated as continuous variable: age, years

of education and years of the working experience; and other four variables are

categorical variables: sex (male or female, ’1’ or ’0’) , race (white or non-white,

’1’ or ’0’) , marital status (married or not, ’1’ or ’0’) , and city size (6 levels, ’1’ to

’6’, bigger number means smaller city). A summary statistics table of all variables
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is in the second part of the Table 3.11 . Some variables have characteristics for

the family head: mean&median age is around 41 with big standard deviation 12,

and correspondingly, mean&median years of working is around 10 years with big

standard deviation 10; but all variables distributed symmetric from the quintile

values, so generally all the variables are balanced without special distribution.

Binary model estimations are in the first table of Table 3.12. Again we can

see that MLE&Bayesian model estimations for logistic&probit are similar. But

parameter estimations for Semiparametric and Bayes-Semi have some differences,

especially for citysize and YRWORK because they have opposite sign. Here

Bayes-Semi has the same sign with MLE&Bayes models because θi = βi−1

β1
, so we

may expect opposite marginal effects among Semiparametric model and others

for these two variables. The unweighted MSE and ROC area still show Semipara-

metric model has the best predictive power, although the differences among them

are still small; the second best choice here is Bayes-Semi model. To show the

differences of ROC curves among different models, I explain and plot the ROC

curves as in Graph 3.4, it is clear that ROC curve of Semiparametric model is

higher than other models with bigger ROC area even the value differences are

small.

The marginal effects analysis is in Table 3.13 . The values of the marginal

effects are small but they are informative in application for large survey data. It is

clear marginal effects among each model are close, except citysize and YRWORK

for Semiparametric model. For age and YRWORK variable, I use the increment

2×∆(x) and 3×∆(x) because they have big ranges (18 to 83 and 0 to 51). The

negative sign indicates that older people will get less chance in unemployment

than younger people. And this is consistent with the truth that older people have

more working experience and are easy to find a job. Similarly, all models show

that white, high-educated, married people have less probability of losing jobs.

All models give information that people living in big city have lower chance of
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unemployed, except Semiparametric model, which gives an opposite result that

people living in big city have higher chance of unemployed- this may be away from

truth but need to be investigate. As to the years of working experience, all models

show that longer working experience will increase the probability of unemployed

except the Semiparametric model, which shows that longer working experience

decreases the probability of unemployed - this is a more conscious result.

Although the differences among each model are small, generally Semipara-

metric model gives a better result in both marginal effects and the MSE&ROC

curve evaluation. Therefore, Semiparametric models/method gives better expla-

nation for the influence of each factor on the employment status in year 2005.

Bayes-Semiparametric estimation can be an alternative choice if there is inversed

Hessian matrix problem because our Bayes-Semiparametric method also gives

reasonable result for the real data.

3.7 Conclusion and Remarks

In this paper, I compared different Parametric and Semi-parametric binary re-

sponse models by using OLS, MLE, Semiparametric and Bayesian methods; and I

also created Bayes-Semiparametric method to avoid data distribution assumption

and inversed Hessian calculation. In order to assess the predictive power of binary

response models, I compared different types of marginal effects (by derivative of

density and by increment of ∆(X)), unweighted MSE and weighted SSE; I also

introduced a popular binary response predictive power evaluation method called

ROC curve. Because there are small differences in model estimation for balanced

binary response data ( % of ′Y = 1′ ≥ 15), I focused on the analysis of the un-

balanced data ( % of ′Y = 1′ < 15) simulated by linear probability model, probit

and logistic model, AEPD and ALD error model and compared the parameter

estimations, marginal effects and model assessments.
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In order to get a more general result, I did the Monte Carlo (MC) experiment

to discover the properties of each model estimation method. The conclusion is

that that using X instead of X̄ will give a better marginal effect estimation, but

marginal effects can not be a robust method to evaluate the predictive power of

the binary response model. MSE and ROC curve always give consistent assess-

ment results that Semiparametric and Bayes-Semiparametric model estimations

give better predictive power than MLE and regular Bayesian model estimations,

although the differences among each methods are small.

An application of our model analysis for the 2005 PSID data about the in-

fluence of factors on unemployment status confirms our findings in the MC ex-

periment that Semiparametric and Bayesian-Semiparametric models give better

explanation in real data.

Several further researches related to this paper can be proceeded. In theory,

if we use the correct prior, Bayesian estimator will be the most powerful estima-

tor (Lehmann and Casella (1998)), but I only use flat prior and this is why my

Bayesian estimates are similar with the MLE estimates. Different types of prior

can be investigated to improve both the Bayesian and Bayesian-Semiparametric

model estimations. Also, I only use normal Kernel density in the Semiparametric

estimation with fixed window size, different types of Kernel densities and win-

dow sizes can be applied to improve the analysis of unbalanced binary data. In

addition, I only consider ’single’ index in the Semiparametric estimation, more

indexes can be applied to enlarge the application scope for complex situations.

Furthermore, I only use one discrete and one continuous variable in my Monte

Carlo experiment, more combinations of different types/numbers of variables can

be tested in the Monte Carlo experiment to generalize the result of our binary

response model analysis.
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Ĉ
-2

0.
03

39
2

-3
.0

61
6

-1
.7

19
8

-3
.0

48
1

-1
.7

23
/

/

β̂
1

0.
5

0.
06

74
8

0.
82

04
5

0.
42

38
9

0.
81

76
1

0.
42

25
/

/

β̂
2

0.
5

0.
05

13
7

0.
62

78
5

0.
32

00
3

0.
60

78
2

0.
32

24
5

/
/

θ̂
=
β̂

2
/β̂

1
/

/
/

/
/

/
0.

67
98

7
0.

76
23

6
M

a
rg

in
a
l

B
y

d
en

si
ty

0.
06

74
8

0.
06

79
7

0.
06

88
3

0.
06

77
5

0.
06

83
7

/
/

e
ff

e
ct

∆
x

=
st
d
(x

1
)

0.
01

94
9

0.
02

15
6

0.
02

14
9

0.
02

14
9

0.
02

13
5

0.
01

56
9

0.
01

48
5

b
y

∆
x

=
2s
td

(x
1
)

0.
03

89
8

0.
04

73
0.

04
63

3
0.

04
71

3
0.

04
60

1
0.

02
73

5
0.

02
65

8
X

3
∆
x

=
3s
td

(x
1
)

0.
05

84
7

0.
07

76
2

0.
07

46
1

0.
07

73
3

0.
07

41
0.

03
02

3
0.

03
07

2
M

a
rg

in
a
l

B
y

d
en

si
ty

0.
06

74
8

0.
06

53
3

0.
06

77
0.

06
52

3
0.

06
72

3
/

/
E

ff
e
ct

∆
x

=
st
d
(x

1
)

0.
01

94
9

0.
02

08
1

0.
02

12
1

0.
02

07
7

0.
02

10
6

0.
02

42
5

0.
02

57
7

b
y

∆
x

=
2s
td

(x
1
)

0.
04

17
89

0.
05

12
66

0.
05

25
73

0.
05

15
9

0.
06

12
76

0.
03

42
5

0.
06

48
X̄

4
∆
x

=
3s
td

(x
1
)

0.
05

84
7

0.
07

56
6

0.
07

41
1

0.
07

54
6

0.
07

35
8

0.
03

72
0.

03
72

5

T
ru

e
m

a
rg

in
a
l

e
ff

e
ct

o
f
x

1

T
ru

e
M

et
h
o
d
1:

0.
03

56
84

∆
x

=
0.

01
09

4
∆
x

=
0.

02
32

5
∆
x

=
0.

03
70

4
M

a
rg

in
a
l

e
ff

e
ct

D
en

si
ty

st
d
(x

1
)

2s
td

(x
1
)

3s
td

(x
1
)

U
n
w

e
ig

h
te

d
M

S
E

0.
08

28
7

0.
08

29
3

0.
08

29
2

0.
08

30
6

0.
08

30
5

0.
08

27
1

0.
08

28
7

W
e
ig

h
te

d
S
S
E

6.
91

56
3

1.
00

05
8

1.
00

02
2

1.
00

21
1.

00
36

7
1.

00
47

4
1.

00
53

R
O

C
A

re
a

0.
61

52
4

0.
61

52
2

0.
61

51
1

0.
61

51
9

0.
61

48
9

0.
61

51
5

N
ot

es
:

1.
B

y
d
en

si
ty

m
ea

n
s

th
e

m
ar

gi
n
al

eff
ec

t
is

ca
lc

u
al

te
d

b
y

∂
F
∂
β

=
f

(x
β

)β
i.

2.
M

ar
gi

n
al

eff
ec

t
b
y

∆
x

=
st
d
(x

)
is

ca
lc

u
la

te
d

b
y
P

(x
+

∆
x

)
−
P

(x
).

3.
U

si
n
g
X

m
ea

n
s

th
e

m
ar

gi
n
al

eff
ec

t
is

co
m

p
u
te

d
b
y

th
e

av
er

ag
e

of
th

e
m

ar
gi

n
al

eff
ec

ts
of
X
′ is

.
4.

U
si

n
g
X̄

m
ea

n
s

th
e

m
ar

gi
n
al

eff
ec

t
is

ca
lc

u
at

ed
at
X̄

.
5.

D
at

a
h
er

e
is

u
n
b
al

an
ce

d
d
at

a:
β

=
{C
,β

1
,β

2}
=
{−

2,
0.

5,
0.

5}
;h

er
e
X

1
∼
U
n
if
or
m

(0
,1

).



65

T
ab

le
3.

5:
U

n
b
al

an
ce

d
d
at

a
is

si
m

u
la

te
d

b
y

th
e

A
E

P
D

er
ro

r
m

o
d
el

(%
of
′ Y

=
1′
<

15
%

)

N
=

1
2
0
0

T
R

U
E

O
L

S
M

L
E

B
a
y
e
s

S
e
m

i
B

a
y
e
s-

S
e
m

i

Y
=

1
.0

is
7
3
.4

%
L

o
g
is

ti
c

P
ro

b
it

L
o
g
is

ti
c

P
ro

b
it

Ĉ
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Table 3.11: Summary Statistics of the 2005 PSID data

Variable N Mean StDev Min Q1 Median Q3 Max

unemployment 4034 0.06173 0.24069 0 0 0 0 1
racial05 4034 0.42712 0.49472 0 0 0 1 1

sex 4034 0.76301 0.42529 0 1 1 1 2
age05 4034 41.556 12.332 18 31 42 51 83
educ05 4034 13.272 2.469 0 12 13 16 17

marital05 4034 0.66262 0.47288 0 0 1 1 1
citysize05 4034 3.3508 1.7707 1 2 3 5 6

YRWORK05 4034 10.944 9.12 0 4 9 16 51

Notes: Q1 and Q3 are 25 and 75 percentiles, respectively.
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Table 3.12: Estimations for the 2005 PSID data (Y=1.0 is 6.17%)

variable MLE Bayes1 Semi (θ)2

Logistic Probit Logistic Probit MLE Bayes

c Constant
0.4148 -0.0183 0.3866 -0.0303

/ /
0.4150 0.2097 0.4254 0.2094

β1 Age
-0.0118 -0.0054 -0.01211 -0.0050

/ /
0.0075 0.0036 0.0074 0.00368

β2 Racial05
-0.1464 -0.0657 -0.1369 -0.0633 7.4515 5.3118
0.1363 0.0652 0.1343 0.0661 5.6099 8.9994

β3 Sex
-0.4312 -0.2121 -0.4379 -0.2012 40.3179 44.8558
0.1802 0.08715 0.1908 0.0897 13.762 10.468

β4 Educ05
-0.1487 -0.0723 -0.1471 -0.0722 22.6273 14.8074
0.0250 0.0127 0.0245 0.0131 6.7067 1.8031

β5 Marital05
-0.4441 -0.2098 -0.4282 -0.2219 42.6703 34.9547
0.1759 0.0829 0.1878 0.0835 14.3294 9.4151

β6 Citysize05
-0.0457 -0.0261 -0.0488 -0.0276 -2.478 3.18461
0.0376 0.0180 0.0380 0.0179 1.5281 2.5144

β7 YRWORK05
0.0023 0.0018 0.0028 0.0020 1.6060 -0.6088
0.0102 0.0048 0.0099 0.0049 0.7997 0.4881

MSE 0.0566 0.0566 0.0567 0.0567 0.0557 0.0565
ROC area 0.6641 0.6646 0.6643 0.6645 0.6875 0.6711

Notes: 1. First row is MLE. second row is standard error.

2. First row and second row are posterior mean and standard error, respectively.
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Table 3.13: Marginal Effects of the 2005 PSID data

Explanatory Marginal MLE Bayes
MLE- Bayes-

Variables Effects Logistic Probit Logistic Probit Semi Semi

Age

∆x = 1std -0.0077 -0.0074 -0.0080 -0.0067 -0.0041 -0.0075
∆x = 2std -0.0146 -0.0141 -0.0151 -0.0129 -0.0077 -0.0142
∆x = 3std -0.0207 -0.0201 -0.0212 -0.0185 -0.0111 -0.0200

Racial05 dummy -0.0034 -0.0032 -0.0034 -0.0031 -0.00128 -0.00099

Sex dummy -0.0185 -0.0191 -0.0256 -0.0186 -0.01502 -0.0227

Educ05 ∆x = 1std -0.0178 -0.0182 -0.0176 -0.0174 -0.0157 -0.0171

Marital05 dummy -0.0156 -0.0155 -0.0156 -0.0148 -0.0135 -0.0138

Citysize05 ∆x = 1std -0.0044 -0.0052 -0.0044 -0.0046 0.001755 -0.00264

YRWORK05

∆x = 1std 0.0012 0.0020 0.001468 0.0017 -0.0048 0.0031
∆x = 2std 0.0025 0.0041 0.0029 0.0035 -0.0091 0.0066
∆x = 3std 0.0038 0.0062 0.0045 0.0054 -0.0129 0.0105

Notes: std=standard deviation.
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Figure 3.1: Monte Carlo Experiments: Marginal Effects (1)

  

                Data is simulated by the linear probability model (balanced) 

 
     Data is simulated by the linear probability model (unbalanced) 
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Figure 3.2: Monte Carlo Experiments: Marginal Effects (2)

 

       Data is simulated by the probit model (unbalanced) 

 
         Data is simulated by the logistic model (unbalanced) 
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Figure 3.3: Monte Carlo Experiments: Marginal Effects (3)

  

 Data is simulated by the AEPD error model (unbalanced).  

 
Data is simulated by the ALD model (unbalanced).  

 

% of choice 
Bayes 

Bayes-Semi 
Logistic Probit 

percent  of  the minimum 
unweighted MSE 81% 19% 30% 
percent of the minimum weighted 
SSE 25% 64% 11% 
Percent of the maximum ROC 
area 1% 0 99% 

% of choice 
Bayes 

Bayes-Semi 
Logistic Probit 

percent  of  the minimum 
unweighted MSE 34% 66% 0% 
percent of the minimum weighted 
SSE 9% 88% 3% 
Percent of the maximum ROC 
area 4% 2% 94% 
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Figure 3.4: ROC curve analysis for the PSID data (4034 observations)

 

 
The ROC curves above show that at the same level of the 'False Positive Rate' ( ˆ( 1 | 0)P y y= = ), Semiparametric 
model gives a greater value of the 'True positive rate'( ˆ( 1 | 1)P y y= = ).  
 
For example:when  ''False Positive Rate(FP) =0.5',  'True positive  rate  (TP) of Semi=0.71' >  'True positive  rate of 
Probit&Logit=0.65'.  The Fp&Tp rates of the Semiparametric model are calculated by a specific cut‐off  0π  from the 

following classification table: 
 Prediction, set 0π =0.64 
Actual ˆ 1y =  ˆ 0y =  
y= 1 a b 
y = 0 c d 

 
           The predicted  ŷ 's in this table get from setting 0π =0.64 in the example. 
       So the TP rate = ˆ( 1 | 1)P y y= =  = a/(a+b)=0.71; and FP rate = ˆ( 1 | 0)P y y= =  =  c/(c+d)=0.5. 

This is only for one point on the ROC curve according to one cut-off 0π  .  For each model, we can calculate N 
points according to N values of 0π   , linking these N points will be our ROC curve for the Semiparametric model.  
The ROC curve for logit&probit model are plotted by the same way.  
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Chapter 4

Bayesian Semi-Parametric Binary Response

Model: Standard vs. Optimal bandwidth

4.1 Introduction

In Section 3.2 I briefly discussed the Bayesian semiparametric estimation proce-

dure. The kernel density I used there is the standard kernel density. The primary

focus of this chapter is that I introduce a computationally optimum bandwidth

and compare the Bayesian estimates one using the normal bandwidth and the

other using the computationally optimum bandwidth. I use a GPU (graphics

processing unit) computing with C/C+ I use Matlab for the GPU computation.

First let us discuss Bayesian semiparametric models that are available in the

literature. One popular Bayes method is to use B-splines to approximate the link

function using Laplace transform of the normal distribution (Fahrmeir and Lang

(2001), Antoniadis and Ian (2004), Fahrmeir and Raach (2007)). The other pop-

ular Bayes method is to use the binary response version of the median regression

model (Newton and Chappell (1996), Kottas, and Gelfand (1996)). Both of these

methods need arbitrary link functions subject to identifiability.

In this chapter, I propose a Bayesian semi-parametric binary choice model

using the quasi-likelihood function as the likelihood part of the posterior distri-

bution. I compare the performances of the Bayesian semi-parametric model with

the sample theory semi-parametric model as well as logit and probit models. I

apply both fixed bandwidth (or the standard bandwidth) and optimal bandwidth
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for the kernel density estimation in the semi-parametric models for various types

of distributions of the binary response model. Using simulated data and the mean

squared errors and the area of the receiver operating curve (ROC) I find that the

performances of the semi-parametric and parametric models are indistinguish-

able except when the data is extremely unbalanced. In this case the maximum

likelihood estimators all fail to converge while the MCMC algorithms do.

I also compare the application of the binary choice models in Canada labor

productivity data (CANSIM) and US hospital quality indicator data (QI), and

test the robustness of the Bayesian semi-parametric binary choice model and other

binary choice models.

The organization of this chapter is as follows. In Section 4.2, the binary choice

model is presented. In Section 4.3 we compare different estimators using simulated

data. In Section 4.4 Monte Carlo experiments are presented. Section 4.5 show the

applications in Canada labor data and US hospital data. In Section 4.6 concluding

remarks are given.

4.2 The Binary Response Model

The binary choice model is for the case where we have two choices: “yes” or “no”.

We have a sample or realized data y1, . . . , yn where

yi =


1 if yes

0 otherwise
.

Let us assume that {yi}ni=1 are generated from

Pr(Yi = yi) =


pi if yi = 1

1− pi if yi = 0
,

where pi, the probability of being “yes”, is given by
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pi = F (xiβ) = F (zi) =

∫ zi

−∞
dF (x) =

∫ zi

−∞
f(x)dx (4.1)

where xi = (xi1, . . . , xik) and β = (β1, . . . , βk)
′, and zi = xiβ. F (·) is the distri-

bution function.

Let us introduce an indicator

fi =


1 if yi = 1

0 otherwise
.

The probability of “yes” is pi. Then we can form binomial probability function

for the observation i = 1, . . . , n and the likelihood function becomes

`(β | fi, xi = 1, . . . , n) =
n∏
i=1

pfii ×
n∏
i=1

(1− pi)1−fi (4.2)

If F (·) in equation (4.1) is known then we have a parametric estimation.

The most frequently used parametric estimation methods are the logit and probit

models. If F (·) is not known, we may use a semi-parametric estimation method

and replacing pi by an estimation p̂i. Equation (4.2) becomes

`(β | fi, xi = 1, . . . , n) =
n∏
i=1

p̂fii ×
n∏
i=1

(1− pi)1−fi (4.3)

Equation (4.3) is called the quasi-likelihood function. One method of obtain-

ing p̄i is the single index semi-parametric model of Klein and Spady (1993) and

Klein and Vella (2009) among others. The estimate of pi, p̂i, is obtained by
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p̂i = Pr[Yi = 1 | Vi(θ)]

=
p(Y = 1)ĝ(V | Y = 1)

ĝ(V )
=

n1

n

n∑
i=1

1
hn
K( t−vi

hn
)( yi
n1

)

n∑
i=1

1
hn

K(
t−vi
hn

)

n

. (4.4)

Here pi(θ0) = Pr[Yi = 1 | Vi(θ0)] = Pr(Yi = 1 | Xiβ0) = Pr[Yi = 1 | Vi(β0)], and

Vi(β0) = Xiβ0 is a single index and this index can be written as:

Vi(β0) = β10xi1 + β20xi2 + · · ·+ βk0xik.

ĝ(t) =
n∑
i=1

1

hn

K( t−vi
hn

)

n
(4.5)

is a non-parametric kernel density estimation function, where

K(
t− vi
hn

)

is the kernel function satisfying
∫
K(x)dx = 1 and K(x) ≥ 0, and hn is the kernel

density window size or bandwidth.

Vi(β0) in equation (4.5) is transformed to Vi(β0) because the probability re-

mains unchanged if we multiply by the conditioned variable by a nonzero constant:

Pr(Y = 1 | V = v) = Pr(Y = 1 | bV = bv).

Hence given the linearity of Vi in equation (4.5) we may write:

Xiβ0 = β10(Xi1 + θ20Xi2 + · · ·+ θk0Xik), (4.6)

where θi0 = βi0/β10, β10 6= 0. This makes it difficult to compare the regression
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coefficient estimates from a parametric model such as the logit model to those

from the semi-parametric model.

While in sample theory inference the quasi-likelihood function (4.3) is max-

imized, we use it as the likelihood and obtain the posterior distribution of θ =

(θ2, . . . , θk):

p(θ) ∝ π(θ)`(θ | data), (4.7)

where π(θ) is the prior and `(·) is the quasi-likelihood.1 We use MCMC algorithms

with the Metropolis-Hastings criterion.

The MCMC algorithms are carried out as follows: let θ(i) be the i -th draw of

θ.

Step 1 Choose an initial value θ(0). We use the OLS estimates of the standard-

ized transformed model of equation (4.6). 2

yi = xi1 + θ2xi2 + · · ·+ θkxik.

Step 2 We use a random walk draw:

θ(i) = θ(i−1) + εi

where εi is normal with mean 0 and variance c(X ′X)−1. We set c = 1.

Step 3 Set θ(i) = θ(i) if u < α. Otherwise set θ(i) = θ(i−1), where u is drawn from

1Zhang, Silvapulley and Papaspirouz (2009) also use the quasi-likelihood in Bayesian infer-
ence, but they set priors for both θ and the bandwidth and get the posterior with both θ and
bandwidth.

2In the maximum likelihood estimation of the semi-parametric model, the covariates, xij is
standardized as xij/sj were sj is the standard deviation of xij ’s. This standardization of the
covariates is done to make the convergence of the MLE procedure easier.
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Uniform(0, 1) and α is given by

α = min

{
1,

p(θ(i) | data)

p(θ(i−1) | data)

}
.

p(· | data) is the posterior pdf of θ.

Step 4 Repeat Step 2 and Step 3 for i = 1, 2, . . . ,M .

With each draw of θ(i) we need to obtain the kernel density estimate (4.5). The

kernel density is dependent on the choice of the kernel, K(·) and the bandwidth,

h. Li (2001) shows that the choice of the bandwidth is more important than the

choice of the kernel. We use two bandwidths:

h =

(
4

3n

.2

σ

)
(4.8)

and the optimal bandwidth given by

h∗optimal =

(
R(K)(∫

x2K(x)dx
)2
R(ĝ′′(x; p(h)))

).2

. (4.9)

The optimal bandwidth h∗optimal is explained in the appendix.

4.3 Comparison of Different Estimators using Simulated

Data

We generate simulated data from various distributions and compare the perfor-

mance of different estimation methods. We use the ROC area and the mean

squared errors (MSE) as the model selection criteria. The binary choice model is

specified by

Y ∗i = β0 + β1Xi2 + β3Xi3 + εi,
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where Xi2 is a zero-one dummy variable to represent a discrete covariate and Xi3

is drawn from a uniform distribution, U(0, a). A continuous regressor is included

since the large sample properties of the semi-parametric estimator requires that

at least one regressor is a continuous variable. The values of the parameters

(C, β1, β2, β3, a) are chosen to control the percentage of Yi = 1 to represent a

balanced or unbalanced data. The observed binary values, Yi, are set at

Yi =


1 if Y ∗i > 0

0 otherwise

The sample size n is set at 1,000 (n = 1, 000).

The error term εi is drawn from various distributions that are given in Table

4.1.

Table 4.1: Distributions of Binary Response Models

Distribution Distribution

1 Gaussian 9 Trimodal
2 Skewed unimodal 10 Claw
3 Strongly skewed 11 Double Claw
4 Kurtotic unimodal 12 Aymmetric Claw
5 Outlier 13 Asymmetric Double Claw
6 Bimodal 14 Smooth Comb
7 Separated bimodal 15 Discrete Comb
8 Skewed bimodal 16 Skewed logistic

These distributions are presented in Figure 4.1.

The estimation methods we compare are

Bayesian



Probit

Logit

Semi-parametric with the usual bandwidth

Semi-parametric with the optimizing bandwidth
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MLE



Probit

Logit

Semi-parametric with the usual bandwidth

Semi-parametric with the optimizing bandwidth

We use two model selection criteria: receiver operating characteristic curve

(ROC) and the unweighted mean square errors (MSE). The MSE is given by

n∑
i=1

yi − P̂i
n− k

where yi = 1 or 0; P̂i is the computed probability F (xiβ̂) for the case of a

parametric model and P̂i for the case of the semi-parametric model 3.

The receiver operating characteristic curve (ROC) plots in a square the prob-

ability of correctly predicting a “yes” (or 1)(i.e. true positive) against one minus

the probability of correctly predicting a no (or 0)(i.e. false positive). We choose

the model that dominates the ROC curve or the model which has a larger area

under the curve.

Table 4.2 to 4.4 below present the ROC areas and MSE’s of different estimators

based on simulated data. Although we have obtained results for all of the 16

distributions the results are quite similar to those given in Table 4.2 to 4.4.

From Table 4.2 to 4.4 we conclude that judged by the ROC area and MSE, we

cannot discriminate among the different models and estimation procedures except

in the cases of extremely unbalanced data: All the MLE estimation procedures

failed to converge.

3There is the weighted mean squared errors. Amemiya (1981) argues for the use of the
weighted mean squared errors, but as shown in Chen and Tsurumi (2010) the unweighted MSE
is a better model selection criterion than the weighted MSE.
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4.4 Monte Carlo Experiments

Correspondingly, I conduct Monte Carlo (MC) experiment to compare the Marginal

effect, MSE, ROC curve, and optimal bandwidth by different methods for all dis-

tributions in chapter 3.3. Fewer literature present results for the MC results for

optimal bandwidth because of the computing difficulties in searching the optimal

bandwidth. Therefore, the most difficult part of MC simulation is to estimate

optimal bandwidth efficiently without smoothing techniques and specific bounds,

and to realize Bayesian MCMC simulations quickly. By using GPU (graphics

processing unit) computing with C/C++ in Matlab (Li(2011)), which is more

than 400 times faster than the regular computing method, I am able to realize

the MC simulations effectively.

The number of Monte Carlo iteration is 500 and the general conclusion is

consistent with section 4.2 that the differences among different estimations and

models are trivial. Therefore, I only present two examples for balanced cases and

unbalances cases.

In Table 4.5, the first part is for balanced case of the model with claw distri-

bution and the second part is for unbalanced case of the model with skewed log

distribution; only Bayesian MC results can be presented for the unbalanced case

because some iterations can not converge in the MLE estimation. Clearly results

from ROC and MSE are very similar among different models: either parametric or

Semiparametric models by either MLE or Bayesian methods. However, marginal

effects from both MLE and Bayesian Semiparametric methods are smaller than

parametric methods, and distribution of optimal bandwidth from Bayes Semi-

parametric method are always narrower than from MLE Semiparametric method.

All these results can be identified from Figure 4.3 and Figure 4.4, which are MC

simulation results for binary response model with claw distribution.
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4.5 Applications

4.5.1 Application to Canada Labor productivity data

Wages and labor productivity are two main factors in economic growth and

many literature discussed their relationship (Hutchens (1989), Bester and Pe-

trakis (2003), Harrison(2009),Feldstein(2008)). As an economic planner, govern-

ment has strong interest in the compensation of Administrative industry (Admin-

istrative and Support, Waste Management and Remediation Services, by North

American Industry Classification System (NAICS, 2007)) because it has direct

impact on the government budget plan and service efficiency. I will investigate

the hourly average compensation and labor productivity of the Administrative

industry in Canada and our data is from Canadian Socio-economic Information

Management System (CANSIM)Table 383-0026 (released on Mar. 9, 2012). The

response is created by the following rule: Y=1 if the labor productivity > average

productivity (all industries) and Y=0 otherwise. This will make the adminis-

trative industry comparable to other industries. The independent variables are

average hourly compensations (or average wage); regions(1 is for west region, AT,

SK, MB; 2 is for central region, ON and QC; 3 is for Atlantic region, PEI, NS,

NL; and 4 is for the Cordillera region, BC); labor input4; capital input5; combined

labor and capital6; and labor compensation7. Our assumption is that the higher

4Labour input is obtained by chained-Fisher aggregation of hours worked of all workers,
classified by education, work experience, and class of workers (paid workers versus self-employed
and unpaid family workers) using hourly compensation as weights.

5Capital input measures the services derived from the stock of fixed reproducible business
assets (equipment and structures). It is obtained by chained-Fisher aggregation of capital stocks
using the cost of capital to determine weights.

6Combined labour and capital inputs are obtained by chained-Tornqivst aggregation of
labour and capital input using cost shares of labour and capital as weights.

7Labour compensation consists of all payments in cash or in kind made by domestic producers
to workers for services rendered - in other words, total payroll. It includes the salaries and
supplementary labour income of paid workers, plus an imputed labour income of self-employed
workers.
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the compensation, the higher the labor productivity; and we also want to know

the change of probability of being in high labor productivity with the change of

average compensation. I put regions in the analysis because region in Canada

has strong relationships to the Economy; all other covariates are also significant

in from our statistical analysis.

From the summary statistics in Table 4.6, we can see that the average hourly

compensation is higher when the labor productivity is greater. Another finding is

that the median value is similar to the mean value, which is different from the US.

A typical Canada income distribution has similar mean and median value, but the

mean income is greater than the median income in most US statistics. Atlantic

region has the least average hourly compensation ($13.97) than other regions even

it has a high ratio of high labor productivities (22/56 = 39.3%), comparing to only

7.1% in Central region with the highest average hourly compensation($17.53).

Generally the data distribution is right skewed in most subgroups with lower

kurtosis.

The binary response model analysis result is in Table 4.7. This data is a

balanced data with 30.7% of ′Y = 1′ and sample size N = 140, so it is a small

data sample. MLE Semiparametric model result is very different from other

three Semiparametric models (Bayes Semiparametric models with fixed or opti-

mal bandwidth and MLE Semiparametric model with optimal bandwidth) with

the smallest +3std marginal effect (0.4871) and the lowest +1std marginal ef-

fect (0.1416). Clearly parametric logit and probit models give similar results

for ROC, MSE and marginal effect. ROC area (0.7920) of Bayes logit model is

slightly better than others and MSE (0.1482) of Bayes semiparametric model is

better than others. The probability of increasing labor productivity by increasing

hourly wage at 1std level is slightly higher for the parametric models than for

the Semiparametric models (19% level VS 14-17% level), but the marginal effect

of increasing wage by 3 std level of Bayes semiparametric model is much higher
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than from the parametric model (0.60 level VS 0.52 level).

For this small sample data, GPU computing with optimal bandwidth by Bayes

MCMC can realize the Semiparametric model analysis efficiently and robustly.

4.5.2 Application to hospital Quality Indicator (QI) data

In the US, about 36% health care expenditures8 go to hospital care. The Agency

for Healthcare Research and Quality (AHRQ) Quality Indicators (QIs) data be-

came a tool that helps to construct quality control of the medical care because

policymakers and consumers have made the quality of care in U.S. hospitals a

top priority and have voiced the need to monitor and improve the quality of in-

patient care. In the QI data, one of the most popular data is the death data by

specific disease. This type of data normally has big sample size with very low

death number, which is belonging to extremely unbalanced case.

Our data is extracted from QIs for the Coronary Artery Bypass Graft (CABG)

Mortality Rate (IQI 12, 2004), which includes 21264 in-hospital patients, the re-

sponse is mortality indicator (’Y=1’ dead, only 3.84%; or ’Y=0’ ). For simplicity,

the covariates I choose are age and payment method (1=Medicare, 2=Medicaid,

3=private, 4=self-pay(uninsured), 5=no charge, 6=other) . Other popular fac-

tors such as ER (Emergency) indictor, in-patient occupancy rate, residents doctor

rate and length of stay can also be included in this type of analysis to develop the

quality of hospital care. A simple but crucial research question here is what is the

probability of death from CABG by aging? Because of the extremely unbalanced

response (3.84%), a simple cross tabulation or regression can hardly answer this

question. A binary response model is an optimal choice.

Table 4.8 gives the binary response analysis of the IQI 12 (2004) data. We

8http://www.cms.hhs.gov/statistics/nhe/projections-2002/t2.asp: Table 2: National Health
Expenditure Amounts, and Average Annual Percent Change by Type of Expenditure: Selected
Calendar Years 1980-2012.



90

can see that results of MLE Semiparametric model with optimal bandwidth show

difference in the converged θ value (-7.3072), and different marginal effects; this

may be due to the big optimal bandwidth (3.4875), which gives big disturbance

in estimating kernel densities. Generally ROC areas and MSE are similar across

different models, either parametric or Semiparametric. But the marginal effects

of logit models are very different from other models. From the coefficient we can

identify that payment method has less effect than age changes, with which there

is around 3% probability increase in death numbers if age increases by 1 std. This

is a big number of change because the average death rate is only 3.84%. This

evidence will give cautions for the hospital care about the elders in the CABG.

4.6 Concluding Remarks

In this paper using simulated data I compared the performances of the paramet-

ric and semi-parametric models of the binary response model. I employed the

Bayesian and sample theory estimation methods. For the Bayesian parametric

and semi-parametric models I used Markov Chain Monte Carlo (MCMC) algo-

rithms, and for the sample theory parametric and semi-parametric models I used

the maximum likelihood estimation procedures. The semi-parametric likelihood

function is estimated by the kernel density estimators using the normal kernel. I

employed two bandwidths: h = (4/3n).2 given in equation (4.8) and the optimal

bandwidth h∗optimal given in equation (4.9). I used the MSE and ROC area as the

model selection criteria.

Using simulated data I compared the performances of the semi-parametric

models to those of the logit and probit models. We used the MLE and MCMC

algorithms. The error term of the regression model is generated from 16 different

distributions. The comparison of performances is based on the mean squared

errors (MSE), the receiver operating characteristc curve (ROC) and the marginal
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effect. I find that the performances of the parametric and semi-parametric models

are virtually indistinguishable if they estimated by the MLE or MCMC procedures

except when the data is extremely unbalanced ( % of ′Y = 1′ < 3%). In the

extremely unbalanced cases the MCMC procedure work but the MLE does not

converge.

Although the optimal bandwidth traces sharp modes better than the usual

bandwidth as shown in Figures 4.1 and Figure 4.2, the quasi-likelihood func-

tion produced by the kernel density with the optimal bandwidth is not much

different than the one produced by the usual bandwidth. Consequently, the semi-

parametric models based on the optimal bandwidth are virtually the same the

semi-parametric models based on the usual bandwidth.
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Appendix: Optimal bandwidth

Wand and Jones (1995) and Silverman (1986) show that we can get optimal

bandwidth h by minimizing the Mean Integrated Squared Error (MISE):

MISE {ĝ(xlh), g(x)} = E

[∫
(ĝ(x;h)− g(x))2dx

]
,

where g(·) is the non-parametric kernel density estimation function. It is clear

that integration needs to be made on the whole real line, x ∈ (−∞,∞) instead of

a finite discrete set. From Li (2011) shows that the choice of the kernel function

K(x) not as important as the choice of the bandwidth. Hence, we will use the

standard normal distribution for K(·) = Φ(·) and will find the optimal bandwidth.

By applying the Central Limit Theorem (CLT), we get an approximation of

MISE called Asymptotic Mean Integrated Squared Error (AMISE):

AMISE {ĝ(x;h), g(x)} = (Nh)−1R(K) +
1

4
h4µ2(K)2R(g),

where R(K) =
∫
K(x)2dx and µ2(K) =

∫
x2K(x)dx. The AMISE is a monotonic

function of the optimal bandwidth h and the optimal h is generally defined as:

hoptimal =

[
R(K)(∫

x2K
)2
R(g′′)N

] 1
5

This optimal bandwidth cannot be calculated directly because R(g′′) is a function

of the second order derivative of the true density function g which is unknown.

When the data set is Gaussian or asymptotically Gaussian with standard

deviation, we will get the regular optimal bandwidth in the literature:

hoptimal =

[
4

3N

] 1
5

σ (4.10)

When data is not normal, this optimal bandwidth may not fit into the real
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data, and we may use the most popular solve-the-equation plug-in approach and

get the optimal bandwidth as

h∗optimal =

[
R(K)(∫

x2K(x)dx
)2
R(ĝ′′(x; p(h)))

] 1
5

(4.11)

Here p(h) =
[
−2K(4)(0)µ2(K)ψ̂4

R(K)ψ̂6

] 1
7
h

5
7 is the optimal pilot bandwidth and ψ̂r =

1
N

N∑
i=1

ĝ(r)(xi; p
(r)), where p(r) is the pilot bandwidth to estimate the rth derivative

of the density g(r).

Equation (4.4) is the most popular simple optimal bandwidth and it is only

optimal for Gaussian data. If data is not Gaussian, we should use equation (4.5),

which must need multiple complex computations and it is very time consuming.

This is one of the reason that many people use different estimation methods

to estimate bandwidth such as Zhang, Silvapulley and Papaspirouz (2009), or

build different smooth factors (Chan Shen, Klein (2010)) with specific bound

to minimize the bias in estimating bandwidth. The computation in equation

(4.5) can be realized efficiently by using GPU computing with C/C++ in Matlab

(Li (2011)), and its speed is about 400 time faster than the regular computing

method such as in Gauss or Matlab itself. Therefore, we can estimate much more

accurate optimal bandwidth because we will consider all real numbers without

any arbitrary lower or upper bound. In addition, we can realize Monte Carlo

simulations effectively.
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Table 4.2: ROC areas and MSE’s: Balanced Cases

Strongly skewed Sparated bimodal Claw
Y=1 is 66.7% Y=1 is 21.4% Y=1 is 21.4%

ROC area MSE ROC area MSE ROC area MSE
Bayes Bayes Bayes

probit 0.67 0.2 0.76 0.15 0.88 0.04
logit 0.67 0.2 0.76 0.15 0.88 0.04
semi 0.67 0.19 0.75 0.14 0.88 0.03

semi-opt 0.67 0.19 0.76 0.14 0.88 0.03

MLE MLE MLE
probit 0.67 0.2 0.76 0.14 0.88 0.04

logit 0.27 0.2 0.76 0.15 0.88 0.04
semi 0.67 0.19 0.76 0.14 0.88 0.04

semi-opt 0.67 0.19 0.76 0.14 0.88 0.03

Notes: semi = semi parametric with the bandwidth h in equation (4.8)

semi-opt = semi prametric with he optimal bandwidth, h∗optimal in equation (4.9)
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Table 4.3: ROC areas and MSE’s: Unbalanced Cases

Gaussian Skewed bimodal Kurtotic unimodal
Y=1 is 5.9% Y=1 is 4.8% Y=1 is 4.1%

ROC area MSE ROC area MSE ROC area MSE
Bayes Bayes Bayes

probit .80 .05 .81 .04 .84 .04
logit .80 .05 .81 .04 .84 .04
semi .81 .05 .82 .04 .86 .03

semi-opt .81 .05 .82 .04 .86 .03

MLE MLE MLE
probit .80 .05 .85 .01 .86 .03

logit .80 .05 .85 .01 .84 .04
semi .81 .05 .85 .01 .84 .04

semi-opt .81 .05 .85 .01 .84 .03

Notes: semi = semi parametric with the bandwidth h in equation (4.8)

semi-opt = semi prametric with he optimal bandwidth, h∗optimal in equation (4.9)

Table 4.4: ROC areas and MSE’s: Extremely unbalanced Cases

Skewed logitic (θ = .1) Outlier Kurtotic unimodal
Y=1 is 2.5% Y=1 is .6% Y=1 is 1.5%

ROC area MSE ROC area MSE ROC area MSE
Bayes Bayes Bayes

probit .96 .02 .85 .01 .96 .04
logit .96 .02 .85 .01 .95 .04
semi .96 .02 .87 .01 .98 .01

semi-opt .96 .02 .87 .01 .98 .01

MLE MLE MLE
probit NC NC NC

logit NC NC NC
semi NC NC NC

semi-opt NC NC NC

Notes: semi = semi parametric with the bandwidth h in equation (4.8)

semi-opt = semi prametric with he optimal bandwidth, h∗optimal in equation (4.9)

NC = not converged
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Table 4.5: Monte Carlo Experiment Result

Claw distribution, around 20% of ’Y=1’ MC iterations = 100

Binary Model Evaluation Criteria Marginal Effect

ROC area MEAN STD. MSE MEAN STD. MEAN STD.

Bayes Probit 0.8357 0.0283 Bayes Probit 0.0370 0.0042 0.0702 0.0121
Bayes Logit 0.8356 0.0284 Bayes Logit 0.0370 0.0042 0.0739 0.0122
Bayes Semi 0.8387 0.0270 Bayes Semi 0.0365 0.0042 0.0519 0.0084
Bayes Semiopt 0.8384 0.0273 Bayes Semiopt 0.0365 0.0042 0.0516 0.0086
MLE Probit 0.8357 0.0283 MLE Probit 0.0370 0.0042 0.0704 0.0121
MLE Logit 0.8355 0.0283 MLE Logit 0.0370 0.0042 0.0739 0.0122
MLE Semi 0.8428 0.0261 MLE Semi 0.0363 0.0042 0.0576 0.0103
MLE Semiopt 0.8427 0.0258 MLE Semiopt 0.0364 0.0042 0.0552 0.0113
BayesSemi opti-
mal bandwidth

0.3579 0.0198
MLE Semi opti-
mal bandwidth

0.3323 0.0480

Skewed log alpha=0.25, around 2.5% of ’Y=1’ MC iterations = 500

Binary Model Evaluation Criteria Marginal Effect

ROC area MEAN STD. MSE MEAN STD. MEAN STD.

Bayes Probit 0.9790 0.0075 Bayes Probit 0.0108 0.0019 0.0890 0.0154
Bayes Logit 0.9788 0.0076 Bayes Logit 0.0108 0.0020 0.0907 0.0151
Bayes Semi 0.9788 0.0071 Bayes Semi 0.0109 0.0019 0.0752 0.0153
Bayes Semiopt 0.9789 0.0071 Bayes Semiopt 0.0109 0.0019 0.0712 0.0144
BayesSemi opti-
mal bandwidth

0.3225 0.0019
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Table 4.6: Summary Statistics of the Hourly compensation in Administrative
Industry (Data source : CANSIM, 2012)

Region Productivity N Mean
Std. Error
of Mean

Median Minimum Maximum Skewness Kurtosis

West

0 29 $15.30 $0.51 $15.04 $11.74 $19.94 .217 -1.442
1 13 $21.37 $1.48 $21.02 $12.79 $28.89 -.111 -1.137

Total 42 $17.18 $0.72 $16.28 $11.74 $28.89 .982 .423

Central

0 26 $17.48 $0.46 $17.22 $13.53 $21.47 .086 -.936
1 2 $18.11 $0.50 $18.11 $17.61 $18.61

Total 28 $17.53 $0.43 $17.42 $13.53 $21.47 .028 -.803

Atlantic

0 34 $12.98 $0.28 $12.67 $8.43 $16.47 -.005 .864
1 22 $15.50 $0.79 $14.87 $10.29 $24.66 1.098 .810

Total 56 $13.97 $0.39 $13.14 $8.43 $24.66 1.674 3.946

Cordillera

0 8 $16.63 $0.73 $15.99 $14.46 $19.91 .531 -1.490
1 6 $16.80 $1.38 $15.19 $14.09 $21.77 .945 -1.474

Total 14 $16.70 $0.69 $15.40 $14.09 $21.77 .808 -.801

Total

0 97 $15.18 $0.29 $14.96 $8.43 $21.47 .321 -.733
1 43 $17.58 $0.73 $15.90 $10.29 $28.89 .777 -.243

Total 140 $15.92 $0.32 $15.13 $8.43 $28.89 1.050 1.318
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Table 4.7: Binary Model analysis for Canada Labor Productivity in Administra-
tive Industry

Model Comparison ROC MSE
Marginal Effects

+ 1 std wage + 2 std wage +3 std wage

Bayes semi 0.7305 0.1482 0.1780 0.3921 0.6048
Bayes semi1 0.7286 0.1837 0.1763 0.3881 0.6001
MLE Semi 0.7118 0.1905 0.1427 0.2932 0.4871
MLE Semi2 0.7084 0.1911 0.1416 0.3320 0.5639
Bayes Probit 0.7899 0.1664 0.1936 0.3801 0.5230
Bayes Logit 0.7920 0.1660 0.2079 0.4058 0.5466
MLE Probit 0.7909 0.1668 0.1845 0.3672 0.5117
MLE logit 0.7905 0.1662 0.1969 0.3870 0.5275

1. w/ optimal bandwidth h = 1.4248

2. w/ optimal bandwidth h = 1.4771

Coefficients Estimation

Model Constant Average wage Region Labor Capital Combined Labor

Input Input (Labor & Capital) Composition

θ̂

Bayes semi / / 1.7928 0.0662 0.0282 0.0643 0.5785
Bayes semi1 / / 1.7831 0.0658 0.0281 0.0640 0.5754
MLE Semi / / 2.2937 -0.0186 -0.0031 0.01786 0.3037
MLE Semi2 / / 1.8056 0.0656 0.0286 0.0676 0.5520

β̂

Bayes Probit -14.5120 0.1762 0.5208 -0.1065 -0.0104 0.0974 0.1178
Bayes Logit -25.5929 0.3278 0.9593 -0.1858 -0.0184 0.1685 0.2050
MLE Probit -13.4949 0.1645 0.4944 -0.0970 -0.0096 0.0897 0.1074
MLE logit -24.0739 0.3009 0.8907 -0.1714 -0.0167 0.1557 0.1931

1. w/ optimal bandwidth h = 1.4248

2. w/ optimal bandwidth h = 1.4771
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Table 4.8: Binary Model analysis for (AHRQ) Quality Indicators (QIs), IQI 12
(2004)

Model Comparison ROC MSE
Marginal Effects

+ 1 std age + 2 std age

Bayes Semi 0.6447 0.0361 0.0284 0.0585
Bayes semi1 0.6423 0.0360 0.0330 0.0573
MLE Semi 0.6367 0.0360 0.0240 0.0591
MLE Semi2 0.6340 0.0363 0.0169 0.0118

1. w/ optimal bandwidth h = 1.8367

2. w/ optimal bandwidth h = 3.4875

Coefficients Estimation

θ̂

Bayes Semi Bayes semi1 MLE Semi MLE Semi2

2.307 2.919 6.885 -7.3072

β̂

Bayes Probit Bayes Logit MLE Probit MLE Logit

-3.4276 -7.170 -3.4345 -7.1865
0.0228 0.0537 0.0229 0.0539
0.0396 0.1036 0.0400 0.0108

1. w/ optimal bandwidth h = 1.8367

2. w/ optimal bandwidth h = 3.4875
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Figure 4.1: Various distributions and kernel densities using the usual bandwidth
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Figure 4.2: Various distributions and kernel densities using the optimal bandwidth
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Figure 4.3: Monte Carlo Simulation result for ROC Area and MSE
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Figure 4.4: Monte Carlo Simulation result for Marginal Effects and Optimal
Bandwidth
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