Description: Clip 2 of 5: David and Meredith	Transcriber(s): Yankelewitz, Dina
compare one half and two thirds	Verifier(s): Yedman, Madeline
Parent Tape: Discovering equivalent fractions	Date Transcribed: Spring 2009 and introducing fraction notation Date: 1993-10-04
Location:Colts Neck Elementary School 1 of 4	
Researcher: Professor Carolyn Maher	

7.0.117
7.0.118
7.0.119
7.0.120
7.0.121
7.0.122
7.0.123
7.0.124
7.0.125
7.0.126
7.0.127
7.0.128
7.0.129
7.0.130
7.0.131
7.0.132
7.0.133
7.0.144
7.0.145
7.0.146
7.0.147
7.0.148
7.0.149
7.0.150
7.0.115 T/R 1: I'm wondering which is bigger, one half or two thirds. [pauses] Now before you model it you might think in your head, before you begin to model it what you is bigger and if so, if one is bigger, by how to model it what you is bigger and if so, if one is bigger, by how
much. Why don't you work with your partner and see what you can do. do.
[David builds a model with one orange, two yellow, and a purple]
David: Try the purples. Get three purples. It doesn't work, try the greens
Meredith: What was it? Two thirds?
David: It would be like brown or something like that.
Meredith: Ok
David: We're not doing the one third, we're doing two thirds. That is one third
Meredith: First we've got to find out what a third of it is. What's a third of an orange?
David: One third? [He places two green rods instead of the purple rod]
Meredith: What's third of an orange? Let's start a different model. [She begins to make a different model] The green. The green, half of it is the light green [David places a third light green rod next to the original two
David: [Demolishes his original model and begins to build the same as Meredith] Alright, yeah, I was thinking of that way before
Meredith: And you can take the take the red, and the light green, and put it up to it [Meredith has a model of one dark green rod, two light green rods, and three red rods], it's, she asked, is one half bigger than, what did she ask? What did she ask?
David: She asked, which is bigger, one half or two thirds?
Meredith: One half or two thirds? Now take six of the ones [she takes six white rods]
David: Yeah, I know, and put 'em up to there, and that would be one sixth. Hey, wait a minute, hey wait, maybe that's it, yeah it's bigger by one sixth
T/R 1: [To Beth and Sarah] What do you think? Which is bigger?
Beth: One half [Beth's model is the same as Meredith's]
David: I think one half is...
T/R 1 : Yes, David and Meredith? What do you have?
Meredith and David: Well
David: we think
Meredith: two thirds
Meredith and David: is bigger than
T/R 1: You both agree?
Meredith: one half by one sixth. Cause if you put six ones up to a whole

Description: Clip 2 of 5: David and Meredith	Transcriber(s): Yankelewitz, Dina
compare one half and two thirds	
Parent Tape: Discovering equivalent fractions	Verifier(s): Yedman, Madeline Date Transcribed: Spring 2009 and introducing fraction notation
Page: 2 of 4	
Location: Colts Neck Elementary School	
Researcher: Professor Carolyn Maher	

7.0.151 David: dark green
7.0.152 Meredith: If you put it up to a whole
7.0.153 T/R 1: I'm sorry, what's the number name for dark green
7.0.154 David and Meredith: One
7.0.155 T/R 1: Ok.
7.0.156 Meredith: And you put six ones up to the dark green
7.0.157 T/R 1: Hold on, I'm a little confused. Tell me again. Six ones? You called this [dark green] one? What are you calling these [white]?
7.0.158 Meredith: One sixth
7.0.159 T/R 1: One sixth.
7.0.160
7.0.161
7.0.162
7.0.163
7.0.164
7.0.165
7.0.166
7.0.167
7.0.168
7.0.169
7.0.185
7.0.186
7.0.187
7.0.188
7.0.189
7.0.190
7.0.191
7.0.192

David: And then these, this would be
Meredith: We're calling them each sixths,
T/R 1: Ok
Meredith: So there's six sixths
David: This would be [red] one third, and this [light green] is one half of dark green, and then it would be bigger by one sixth, because
T/R 1: Do you both agree with that?
Meredith: Yeah, mm hmm.
T/R 1: Ok, could you write that up? Uh, let me get you some paper, I want you to write that up. And see if you can make me - if it works for other models because some students don't believe that it works for other models and I think you two believe that it works for other models
Meredith: Mmm hmm, yeah
T/R 1: So can you try to find some so that you can try to convince them that it should work for other models, and come up with a way of explaining it to the class, ok? That if it works, if you really believe it, that if it works for one it works for others, and then write this up, let me get you some paper.
Meredith: Seven, nine, ten, I need them. Go get another box. [Meredith finishes her second model]
T/R 2: [approaches Meredith and David] Ok I see you had your hands up over here?
Meredith: Yeah
T/R 2: Let me come around and see what you're doing.
Meredith: We found two answers
David: Well, I have three.
T/R 2: You have two solutions... three. Ok, let me hear about one of these models. Here, which one do you want to tell me about?
Meredith: That one. [Meredith refers to her model consisting of a train with one orange rod and one red rod which represents her unit. Beneath

Description: Clip 2 of 5: David and Meredith	Transcriber(s): Yankelewitz, Dina
compare one half and two thirds	
Parent Tape: Discovering equivalent fractions	Verifier(s): Yedman, Madeline
Date Transcribed: Spring 2009	
and introducing fraction notation	Page: 3 of 4
Date: 1993-10-04	
Location: Colts Neck Elementary School	
Researcher: Professor Carolyn Maher	

the train she has 2 dark green rods; below, she has 3 purple rods; and again, below, she has 12 white rods]
7.0.193
7.0.194
7.0.195
7.0.196
7.0.197
7.0.198
7.0.199
7.0.200
7.0.201
7.0.202
7.0.203
7.0.204
7.0.205
7.0.206
7.0.207
7.0.208
7.0.209
7.0.210
7.0.20

T/R 2: Yeah, that's an interesting looking one, tell me about it.
Meredith: Now if you call this rod one...
T/R 2: \quad The orange and red together?
Meredith: Yeah, and you take the two dark green rods, those are the halves... [She takes a dark green rod and a purple rod from her model and places the purple rod beneath the dark green.] And you take two thirds, and put it up to it, and you take... two sixths, it's bigger than two sixths. [She puts two white rods next to the dark green rod] And in this one, it you take this [Indicating a white rod]...
T/R 2: Can we go back to that one again?
Meredith: I mean it's bigger than one tenth, I mean twelfth, one twelfth, one twelfth. [She puts the white rods back to make a train of 12.]
T/R 2: How does that work? I'm confused about that. I'm confused about the little white rods, I am following you right up to that point.
Meredith: If you put the white rods up to here [She moves the orange and red train under the train of 12 white rods], there's twelve of them, and then you call them twelfths, because there are twelve of them.

T/R 2: All right, okay.
Meredith: And then you take the two thirds, and you take two twelfths, and then you put it up to the thirds [She moves two white rods over to her model representing two thirds and one half] and it is bigger by two tens... two twelfths.
T/R 2: By two twelfths, okay.
Meredith: If you use this model... [Meredith refers to the original model in which 1 dark green rod represent her unit. Beneath them, she placed 3 red rods, then 6 white rods, and then one dark green rod.]
T/R 2: Uh hmm.
Meredith: And if you use this model [referring to the 1 dark green rod as unit model]
T/R 2: Uh hmm.
Meredith: [Meredith then removes 1 light green rod and 2 red rods from her original model] And you call these [white rods] sixths, and you put this one [white rod] up to it [light green rod] and it is bigger than one sixth. [Meredith, with her original model, has indicated that the difference between one half -length of 1 light green rod- and two thirds -length of a train of two red rods- is one sixth -the length of a white rod]
T/R 2: Okay, so here it was bigger by two twelfths and here it was bigger by one sixth.
Meredith: Yeah.

Description: Clip 2 of 5: David and Meredith	Transcriber(s): Yankelewitz, Dina
compare one half and two thirds	Verifier(s): Yedman, Madeline
Parent Tape: Discovering equivalent fractions	Date Transcribed: Spring 2009
and introducing fraction notation	Page: 4 of 4
Date: 1993-10-04	
Location: Colts Neck Elementary School	
Researcher: Professor Carolyn Maher	

7.0.211 T/R 2: That's interesting. Could we call the difference between the two thirds and the one half in this model [a train of orange and red as the unit] another number name besides two twelfths?
7.0.212 Meredith: Um, yeah, well, maybe...
7.0.213 T/R 2: You said two of those little white ones were two twelfths, right?
7.0.214 Meredith: [Meredith places 6 red rods below her larger model as she speaks] Yeah, and maybe since two of these little white ones equals up to one of these [She puts 1 red rod on top of 2 white rods in the train, showing that a red rod is the same length as a train of 2 white rods.] or it's one fifth, [she starts lining up red rods against her original mode] oh, I mean one sixth, the reds [Figure S-35-22].
7.0.215

T/R 2: Oh, that's interesting, that's kind of interesting, then, so if you then used the reds to describe the difference, you could call this one sixth, the difference.
7.0.216 : Meredith: Uh hmm.
7.0.217 T/R 2: And over here [Meredith's second model with dark green as the unit.] one of the whites you say is one sixth?
7.0.218 Meredith: Yeah.
7.0.219 T/R 2: Oh, that's interesting, two different models. Okay.

