Description: Clip 1 of 4 Is there a larger	Transcriber(s): Yankelewitz, Dina
model?	Verifier(s): Yedman, Madeline
Parent Tape: Building Large Models to	Date Transcribed: Spring 2009
Show Equivalence: An Exploration	Page: 1 of 6
(classroom view)	
Date: 1993-10-07	
Location: Colts Neck Elementary School	
Researcher: Professor Carolyn Maher	

9.2.169 T/R 1: Gentlemen, gentlemen.
9.2.170 Alan: Ok, that's the second one.
9.2.171 T/R 1: Oh, what do we have here? Tell me what we have here.
9.2.172
9.2.173

Both: An orange and a red
Alan: And purples for thirds
9.2.174
9.2.175
9.2 .176
9.2.177
9.2.178

Erik: And three purples
Alan: And light green for fourths.
T/R 1: Ok, right.
Alan: And, um, here how I used to figure it out.
9.2.179
9.2.180
9.2.181
9.2.182
9.2.183
9.2.184
9.2.185
9.2.186
9.2.187
9.2.188
9.2.189
9.2.190
9.2.191
9.2.192
9.2.193
9.2.194
9.2.195
9.2.196
9.2.197
9.2.198
9.2.199
9.2.200
9.2.201
9.2.202
9.2.203

Erik: Twelfths! Oh no, those are singles
T/R 1: Honestly, Erik, I could imagine if you explained to me what I'm supposed to imagine.
Alan: Ok
T/R 1: Ok? I'll try real hard, but I'll try to imagine
Alan: Suppose there are twelfths under that.
T/R 1: I can imagine that.
Alan: And you took out two of those purples and three light greens
T/R 1: I could imagine
Alan: It would take one of those twelfths to fill in the gap between the, between the um um
Erik: See?
Alan: Two thirds and three fourths
T/R 1: I see that.
Erik: And we came to up here
Alan: So Three fourths is bigger than two thirds by one twelfth
Erik: And what we came to up here, two thirds and three fourths, it would be bigger by one twelfth or-
Both: Two twenty-fourths.
Erik: Because two of 'em equal up to a red like the orange and the
T/R 1: Why is it a red here and why is it a white here?
Alan: Well
Erik: Well, because, see each model is different
T/R 1: In what way?
Erik: Because this model is bigger than this model
Alan: Erik! You could put the reds on that model and make it sixths!
Erik: But then it would be- so why would we need sixths on that model?
Alan: Oh yeah, you're right. So either it's one twelfth or one twenty-fourths
Erik: Two twenty-fourths

Description: Clip 1 of 4 Is there a larger	Transcriber(s): Yankelewitz, Dina
model?	Verifier(s): Yedman, Madeline
Parent Tape: Building Large Models to	Date Transcribed: Spring 2009
Show Equivalence: An Exploration	Page: 2 of 6
(classroom view)	
Date: 1993-10-07	
Location: Colts Neck Elementary School	
Researcher: Professor Carolyn Maher	

9.2.204
9.2.205
9.2.206
9.2.207
9.2.208
9.2 .209
9.2.210
9.2.211
9.2.212
9.2.213
9.2.214
9.2.215
9.2.216
9.2.217
9.2.218
9.2.219
9.2.220
9.2.221
9.2.222
9.2.223
9.2.224
9.2.225
9.2.226
9.2.227
9.2.228
9.2.229
9.2.230
9.2.231
9.2.232
9.2.233
9.2.234
9.2.235
9.2.236
9.2.237

Alan: Two twenty-fourths on this one. This is probably the only model that can get the twenty-fourths cuz you can't, you'd have to halve each white to get twenty-fourths there.
Erik: But what if you get three three, um uh, three oranges together
Alan: We tried that already
Erik: No we didn't we could get like fiftieths.
T/R 1: You think it would be fiftieths if there would be three oranges?
Erik: Well, I don't know exactly but it would be a lot.
T/R 1: Do you still expect that you would get the same answer?
Erik: Well, we can divide it.
Alan: Looking at this it would not be fiftieths.
T/R 1: Why not?
Alan: I'm imagining a this (takes another orange) instead of the purple there.
T/R 1: Instead of the purple?
Alan: It would take another six of those so it would only be thirtieths
T/R 1: I'd like you to try that other model.
Alan: Three oranges?
T/R 1: Well whatever you think it is, um, I'd like you find a third model and I think Dr. Martino said to think big. I'd like you to find a third model thinking big.
Alan: Ok
Erik: We could think real big.
T/R 1: And see what you come up if you work on that.
Erik: Dr. Martino said the key is think big, so
T/R 1: Well, maybe, we'll see if it works.
Erik: So now were gonna think real big!
Alan: Yeah, four of 'em
Erik: Three, give me three of these. Let me just put these back...
Alan: Four of 'em that would be right!
Erik: Fiftieths, I told ya.
Alan: Four of 'em, make four, then it would be two yellows
Erik: Friar tuck, may I have them? I think Friar Tuck's going to have to go around
Alan: Two four six eight, there would be eighths
Erik: Alan, Friar Tuck's have to go around, ok?
Alan: Uh, what do you need?
Erik: I'm probably going to need whites.
Alan: How many?
Erik: Well, it's going to be fiftieths, and we only have twenty-eight.

Description: Clip 1 of 4 Is there a larger	Transcriber(s): Yankelewitz, Dina
model?	Verifier(s): Yedman, Madeline
Parent Tape: Building Large Models to	Date Transcribed: Spring 2009
Show Equivalence: An Exploration	Page: 3 of 6
(classroom view)	
Date: 1993-10-07	
Location: Colts Neck Elementary School	
Researcher: Professor Carolyn Maher	

9.2.238
9.2.239
9.2.240
9.2.241
9.2.242
9.2.243
9.2.244
9.2.245
9.2.246
9.2.247
9.2.248
9.2.249
9.2.250
9.2.251
9.2.252
9.2.253
9.2.254
9.2.255
9.2.256
9.2.257
9.2.258
9.2.259
9.2.260
9.2.261
9.2.262
9.2.263
9.2.264
9.2.265
9.2.266
9.2.267
9.2.268
9.2.269
9.2.270

Alan: Ok.
Erik: So we're going to need about fifty thousand. We're going for three.
Alan: I think Erik you better go.
Erik: No
Voice: You don't need fifty singles. We trust you on that.
Alan: Ok.
Voice: Because otherwise no one's going to have any.
Alan: Right.
Erik: I know what the thirds are.
Alan: What?
Erik: Oranges
Alan: Oranges?
Jessica: Are you figuring out the big one again?
Erik: No
Alan: No, we're trying to...
Erik: Three oranges.
Alan Erik, use the yellows. Think big.
T/R 1: A suggestion I have, Alan and Erik, if you can find another table who's solving the same problem then maybe you can combine
Erik: Well, we need a lot more Cuisenaire Rods. Well, let's work with three and then we'll do four.
Alan: Right.
Erik: Ok, what would be the thirds. Thirds would easily be the oranges. One two three.
T/R 1: Well, just build your big model and we could use Meredith and David's smaller model. And then you could come together to put all your models together.
Alan: And then show them on the overhead?
T/R 1: Yes.
Alan: Ok.
T/R 1: \quad So work on the big model. See what you can do.
Alan: Erik,
Erik: we need oranges. [to next group] Do you have three oranges we can borrow?
T/R 1: Here
Erik: Oh, good. I'll just pour them into the little - Ah!
Alan: Ok,
Erik: Now we need,
Alan: Ok, perfect! There are thirds

Description: Clip 1 of 4 Is there a larger	Transcriber(s): Yankelewitz, Dina
model?	Verifier(s): Yedman, Madeline
Parent Tape: Building Large Models to	Date Transcribed: Spring 2009
Show Equivalence: An Exploration	Page: 4 of 6
(classroom view)	
Date: 1993-10-07	
Location: Colts Neck Elementary School	
Researcher: Professor Carolyn Maher	

9.2.271
9.2.272
9.2.273
9.2.274
9.2.275
9.2.276
9.2.277
9.2.278
9.2.279
9.2.280
9.2.281
9.2.282
9.2.283
9.2.284
9.2.285
9.2.286
9.2.287
9.2.288
9.2.289
9.2.290
9.2.291
9.2.292
9.2.293
9.2.294
9.2.295
9.2.296
9.2.297
9.2.298
9.2.299
9.2.300
9.2.301

Erik:

Alan: Yes,
Erik: No
Alan: A dark green - look it look it for your answer.
Erik: The dark green would be the fourths?
Alan: Mmm hmmm. Believe it or not, they are. They might be the fifths.
Erik: They're the fifths. Then what would be the-
Alan: Blues would be the
Erik: This would only be thirty. This would only be thirty because ten twenty thirty.
Alan: Thirty plus twelve. Forty-two
Erik: Wait a minute. Since we got these two packs, couldn't we have, Alan, couldn't we have like, um, Alan, couldn't we have, ten twenty thirty forty fifty sixty, wait, ten twenty thirty forty fifty sixty seventy if we all put them
Alan: Erik, those aren't tens, those are twelves
Erik: Yeah those are tens.
Alan: You know what tens are? The browns.
Erik: Look at this.
Alan: Prove it.
Erik: Look at this
Alan: Put ten up to that.
Erik: Ok.
Alan: Ten. Put ten. Put ten up to that. [Erik does so] Maybe it is ten. Ok, ten twenty thirty forty fifty, it would have to be ten,
Erik: Ten twenty thirty forty fifty sixty seventy
Alan: Here we go again.
Erik: Let's just start with thirty.
Alan: Yeah, let's eliminate two of the tens.
Erik: Ok, what would be the fourths?
Alan: Fourths of that
Erik: Brown could be in here somewhere
Alan: Nope, nnnnope
Erik: Blues
Alan: Nope. Too big. Eeew! Erik, wipe those rods off immediately. Erik, you're thinking. Hold it...
Erik Blacks

Description: Clip 1 of 4 Is there a larger	Transcriber(s): Yankelewitz, Dina
model?	Verifier(s): Yedman, Madeline
Parent Tape: Building Large Models to	Date Transcribed: Spring 2009
Show Equivalence: An Exploration	Page: 5 of 6
(classroom view)	
Date: 1993-10-07	
Location: Colts Neck Elementary School	
Researcher: Professor Carolyn Maher	

9.2.302 Alan Blacks blacks blacks blacks, right right right, go go go go go. Yup, told you. They're one short. Oh
9.2.303 Erik: Four long? No. Hah. Alan. Whoops, never mind, that's a five. We didn't forget how to make a big one. We're just experimenting. Perfect! Now just do that, one two three, [noise] No, one larger than this would be the [noise. Erik has built a model of three oranges and a dark green] I got the fourths.
9.2.304
9.2.305
9.2.306
9.2.307
9.2.308
9.2.309

Erik: I am trying to do something.
9.2.310 Alan: Thirds thirds thirds. Wait a second, three oranges would have to be the thirds.
9.2.311

Erik: What? What?
9.2.312
9.2.313
9.2.314
9.2.315
9.2.316

Alan: [looking at model that Jessica and Andrew built] That would be two oranges and a yellow. Two oranges and a purple
9.2.317 T/R 1: You might want to study, you might want to study Andrew's model to see what you have to do to make it bigger.
9.2.318 Erik: Well, that's the exact same thing we did. We did two oranges and a purple.
9.2.319 T/R 1: Yeah, but I want you to make one bigger than his.
9.2.320
9.2.321
9.2.322
9.2.323
9.2.324
9.2.325

Erik
We're trying, but we can only divide it into one two three four fi-
fifths. I can divide it into thirds, but I can't divide it into fourths.
T/R 1: Well, maybe you gotta make it bigger. See my problem? This is a
T/R 1: Well, maybe you gotta make it bigger. See my problem? This is a good challenge for you two. Study that, yeah.
Alan: Now make the thirds.
Erik: Ok, what if we did this? I bet I could make the thirds
Alan: I think uh, yo, Erik, I think we were just tipped. Erik, come here, go go go. Go go. Alright.
Erik: Bigger than a dark green, well, how much bigger do I need it then, how much bigger can it get?
Alan: Erik, hold it, the thirds.

Erik: We already did that.

T/R 1: How are you gentlemen doing, did you get another new model?
Alan: Yeah
Erik: Not exactly, actually. You see

Erik Those are twelfths.
Alan: Make six of those and it would be ten greens.
Erik We want thirds and fourths, not tens.
T/R 1: I wonder if Meredith and David made any progress. Meredith and David [walks away]

Description: Clip 1 of 4 Is there a larger	Transcriber(s): Yankelewitz, Dina
model?	Verifier(s): Yedman, Madeline
Parent Tape: Building Large Models to	Date Transcribed: Spring 2009
Show Equivalence: An Exploration	Page: 6 of 6
(classroom view)	
Date: 1993-10-07	
Location: Colts Neck Elementary School	
Researcher: Professor Carolyn Maher	

9.2.326
9.2.327
9.2.328
9.2.329
9.2.330
9.2.331
9.2.332
9.2.333
9.2.334
9.2.335
9.2.336
9.2.337

Alan: Thirds. Erik, there's one prob. Using oranges, you can't third. You can't third, look, even if you subtracted two you couldn't third that. Because orange is twelve, there's five.
Erik: Oranges are tens!
Alan: I know, tens, you can make it into fourths but you couldn't third it.
Erik: Wait you gave me, oh no.
Alan: You just gave up
Erik Yup.
Alan Hold on a sec, look, look, you take that off, you could use that
Erik: That's way too big, Andrew, I don't think you can divide it into anything
Andrew: Yeah, if you make two browns, two blues are thirds. If you can make a train for a whole you can make a train for a third and a fourth.
Erik: Ohhh!
[taken from other view, but can be heard partially here] That's very interesting. That's an interesting theory. Why don't you test the theory with Michael and Alan, I think they would like to hear this theory. Would you like to hear - I think David has a theory - why don't you come over here. They have an interesting -
Erik: So do they have a theory.

