9.1.122 T/R 1: Can you tell me, I want you to think real hard about it, if you look at the models, do you see any relationships among them, or between them? If you look at one model and you look at another and you look at another, do you see any connections?

9.1.123 David: Well...

9.1.124 T/R 1: Do you understand my question?

9.1.125 David: Yeah, I think so, on the second question, well, um, both my models were, um, like in this shape, like that.

9.1.126 T/R 1: Ok, that's neat. I haven't seen that model. Maybe you can build that one on the overhead when we're finished.

9.1.127 David: Cuz I think this was...

9.1.128 T/R 1: Ok, that's interesting. Ok, so if you were comparing three quarters and two thirds, how would you do it with that model?

9.1.129 David: Um, wait, this would be one whole, this is one half, and one of these would be one fourth.

9.1.130 T/R 1: Ok, that's one half and one fourth. But we're doing three quarters and two thirds.

9.1.131 David: Well, cuz this was I think was on the second question.

9.1.132 T/R 1: Right, but now we're doing three quarters and two thirds.

9.1.133 David: Let's see, um [starts playing with rods as he thinks]

9.1.134 T/R 1: You know Meredith, that's very interesting what you're telling Mrs. Phillips. I couldn't help but overhearing that, and I'm also talking to David here, but I have a question for you and David to think about, Ok?

9.1.135 Meredith: [interjecting] Mmm hmmm

9.1.136 T/R 1: Uh, I probably want you to tell David what you just told Mrs. Phillips. I sort of was listening on the side. Because then I have another question, a challenge for both of you. Why don't you tell David what you just did so David catches up? He was doing a different problem, right, David?

9.1.137 Meredith: [Meredith has built a model of a blue, brown, and black train, four dark green rods, and three brown rods, and has also included four red rods. As she speaks, she adds two white rods to the model] If you call all these, this one, and these fourths and these thirds, and you take twelve reds, you can call them twelfths, it would be bigger, if you take three thirds, three fourths would be bigger by one twelfth. Or it would be bigger by-

9.1.138 T/R 1: Just listen to the rest of what she's says, David, for a minute.

9.1.139 Meredith: Or it could be bigger by two twenty-fourths.
9.1.140 T/R 1: By two twenty-fourths or by one twelfth. Well, David may need to think about that a little bit, but I noticed that you have a different model here, and I'm going to let you explain that to David, also, but before you do, you can share that with David. I want you to tell me, this is my question to David also, Meredith, do you see any connections between these two models, ok? And now first of all explain it to David and tell him if you see any connections, and then see if you can even imagine a third model and how that would be connected, but it's important that David understands both of these first. Ok? So I'll leave

9.1.141 David: I think I have some, um, models,
9.1.142 T/R 1: I think so too.
9.1.143 David: But I just can't remember them.
9.1.144 T/R 1: But why don't you work with these? You don't have to build new ones. You should get a little closer to Meredith here and work with these because she has them built and use these two and see if you can imagine a third one even if you can't build it. But, Meredith, can you share this with David and then I'll be back because then I'll want to hear from it in a little bit.

9.1.145 Meredith: [Meredith has built a second model of an orange and red train, four light green rods, three purple rods, and twelve white rods] This [orange and red train] is called the one, these [light green rods] are the fourths, and these [purple rods] are the thirds, and these [white rods] are twelfths. It's, if you take, two thirds, three fourths,

9.1.146 David: Yeah, I know, I made the same model
9.1.147 Meredith: It's bigger by one twelfth. Easy.
9.1.148 David: That's what I kept on doing but what I'm saying is this. I kept on making the same shape when I did my models, like that. [David has the model of a purple rod, a red rod, and three white rods on his desk]

9.1.149 Meredith: Why don't you just work with me because we don't have really a lot of cubes?
9.1.150 David: I had a lot of models I just can't really remember any of them. I was working on the second question.
9.1.151 Meredith: I need ones. [laughs]. Can I use these ones? I really need ones. I need twenty-four ones.
9.1.152 David: [points to the white rods that are on Meredith's desk. inaudible. Meredith completes her first model by placing eight more red rods and twenty-two white rods in her model.]
9.1.153 Meredith: Do you have any more reds over there?
9.1.154 David: Yeah.
9.1.155 Brian: Three, those are the four, fourths
9.1.156 CT: A'right.
9.1.157 Brian: And these are the three thirds.
9.1.158 CT: Right, ok. I understand that so far.
9.1.159 Brian: And so, so, they only asked for two thirds, so I took out one third
9.1.160 CT: Right
9.1.161 Brian: And they only asked for three fourths, so I took out one right there.
 And then they said, how, how much bigger is it, and I said by one twelfth, and I put it right there, and that's how I got it.
9.1.162 CT: You're calling this one twelfth.
9.1.163 Brian: Well, well, it, it.takes it takes twelve of these to equal up to one, to equal up to all that. So it's one twelfth.
9.1.164 CT: How did you know this? Did you guess it or did you,
9.1.165 Micheal We experimented.
9.1.166 CT: You experimented with that?
9.1.167 Brian: Yeah, yeah.
9.1.168 CT: And it came out to twelfths?
9.1.169 Brian: I was just going to say that.
9.1.170 CT: Oh, wow, you people have three models, do you not?
9.1.171 Brian: Yeah.
9.1.172 CT: Oh, wait a minute. Or do you? You have one, two, and this is the same one.
9.1.173 Michael: This is the same one. Yeah.
9.1.174 CT: So you have two models, and they're asking you for one more.
9.1.175 Michael: We want each to have two different models.
9.1.176 CT: Excuse me?
9.1.177 Michael: Brian wants to have two models of his own, and I want to have two models of my own.
9.1.178 T/R 1: Kimberly, do you have some extras...
9.1.179 David: You don't have to fill it up, all you have to do is put it in there.
9.1.180 T/R 1: What do you need? Ones have become precious I don't see any ones in here. Some. Alright, we'll make a mess. One, two, three, four, five, you have a friend who also... here's some more, ok? You know, a suggestion I have, Alan and Erik, if you can find another table who's solving the same problem, maybe you can combine
9.1.181 Erik: Well, we need a lot more pieces. Well,
9.1.182 T/R 1: [speaking to other students]... smaller model. Maybe you can all come together. Maybe, uh, Meredith and David can help you. Ok,
what do you have here, David? [to Erik] Here! [Erik says oh good]. Ok, where are we?

9.1.183 Meredith: If you call this a one, these fourths, these thirds, and these twelfths, and these twenty-fourths. And you take three thirds, two thirds- three fourths and two thirds, it's bigger by one twelfth or two twenty-fourths.

9.1.184 T/R 1: Mmmm hmmm. Ok, I see that, you see that, too, David, and you showed us this one too, but now that's not my question, ok? I'm, I'm asking you a different question. You found in this model that three quarters was bigger than two thirds by

9.1.185 Meredith: One twelfth.

9.1.186 T/R 1: One twelfth, right? You found in this model that three quarters was bigger than two thirds by

9.1.187 Meredith: Two twelfths, two

9.1.188 T/R 1: Two twelfths - by one twelfth?

9.1.189 Meredith: Yeah, one twelfth

9.1.190 T/R 1: Or two twenty-fourths, right? Is that right? One twelfth or two twenty-fourths. So here, this was the difference, in your little model, and here this was the difference in the bigger model, correct? I'm asking you to imagine, ok, so, this is, I'm going to pull this out for a minute, this was your one twelfth, right? And this was your one twelfth or, two twenty-fourths, right? If you were to build a bigger model, can you predict, can you predict without building it, what your comparisons might look like? Can you predict it in your minds and maybe sketch it or...

9.1.191 David: It would probably be a much, much bigger, because if the model is, say, this big, it would need more reds and more whites than these, 'cause these are small.

9.1.192 T/R 1: Can you predict how many more reds and how many more whites? I need you to think about that.

9.1.193 Meredith: It depends how big the, uh, model is

9.1.194 T/R 1: Ok, that's, that's fair enough. So can you imagine one a certain size and able to predict how many reds and whites. You understand my question? That's a real good question for both of you to think about.

9.1.195 Meredith: [inaudible, laughs]

9.1.196 T/R 1: But, to be able to justify your answer, why don't you talk to each other about it, and see what you each think, and try to uh, convince each other first, and then you can try to convince me. Ok?

9.1.197 David: I think that this one [holding a red rod] might be one twenty-fourth, because
9.1.198 Meredith: No, because these are twenty fourths. These are twelfths. Well, if it was double the size of this
9.1.199 David: Yeah, I know, then this would be one twenty-fourth, and then this would be one, one forty-eighth, or something, yeah one forty-eighth. Question, then we might be using something like this, and this would be something like one twelfth or something.
9.1.200 Kimberly: ... three quarters, and if you take one of the twelfths and you put it down here, it fits.
9.1.201 T/R 1: Hmmm, that's really interesting.
9.1.202 Audra: And this is the same here.
9.1.203 T/R 1: Is that another model there, Audra?
9.1.204 Audra: Yeah, yeah, cuz this is the same here cuz this is the same size, because there's the same purples and it will fit twelve.
9.1.205 T/R 1: Ok, now, those models look to me the same. You have four greens and you have three purples, it's just that here you have, is it really different, though?
9.1.206 Kimberly: Not really
9.1.207 T/R 1: What number name is this?
9.1.208 Kimberly: That's a whole and that's a whole.
9.1.209 T/R 1: What number name did you give it?
9.1.210 Kimberly: A whole, one
9.1.211 T/R 1: What number name?
9.1.212 Kimberly: One
9.1.213 T/R 1: If this has the number name one and this has the number name one, uh, are they different or the same? Are the lengths the same or different?
9.1.214 Kimberly: They're the same.
9.1.215 T/R 1: Can you make one where the lengths, for what you pick one is going to be different? Are these models, I guess, this is my question to you, are they really different?
9.1.216 Kimberly: No
9.1.217 T/R 1: You see what I'm saying? Can you think of another?
9.1.218 Kimberly: Audra, can you help me, That one?
9.1.219 Audra: You don't need halves
9.1.220 Kimberly: I know but it's easier for me to find it
9.1.221 T/R 1: And, what rod would you use to represent one twelfth in that model?
9.1.222 Michael: In this one?
9.1.223 T/R 1: Yeah.
9.1.224 Michael: Hmmm, probably, this one, let's see, just a second.
9.1.225 T/R 1: Just think backward.
9.1.226 Michael: Just a second, I'll try and measure.
9.1.227 T/R 1: That's very interesting, Brian and Michael. That's very very interesting. It's the red.
9.1.228 Brian: I know, I know [Michael shows that a red rod represents the difference between two thirds and three fourths.]
9.1.229 T/R 1: So you think you're going to use red to represent one twelfth
9.1.230 Michael: I think. I also came up, I just came up with the-oh, here it is. [Michael has a second model of an orange and yellow train, three yellow rods, and is trying to place purple rods next to this model]. No, I didn't get up to another model.
9.1.231 Brian: Yes, I think I have fourths, Mike, Mike, wait, Mike, wait, I have one - I think I have one.
9.1.232 Michael: We already tried that one [Brian groans]
9.1.233 Brian: I'm frustrated
9.1.234 Michael: [laughs] I never thought this problem would be this hard.
9.1.235 [conversation between T/R 1 and Erik - view not on camera]
9.1.236 T/R 1: You might want to study Andrew's model to see what you have to do to make it bigger.
9.1.237 Erik: We did - we did two oranges and-
9.1.238 T/R 1: Right, but I want you to make one bigger than that.
9.1.239 Erik: I can divide it into thirds, but I can't divide it into fourths.
9.1.240 T/R 1: Maybe you gotta make it bigger.
9.1.241 Meredith: Ok, let's try to go to thirty. Let's maybe try to go to thirty. This is twenty-four, we need to make it six more. What is six?
9.1.242 David: [counting out white rods from Meredith's small model] One, two, you don't really need this anymore.
9.1.243 Meredith: [stopping David] I do
9.1.244 David: You don't really need that one.
9.1.245 Meredith: Well, I have an idea.
9.1.246 T/R 1: Yeah.
9.1.247 Meredith: Well, say we called it thirty.
9.1.248 T/R 1: Thirty.
9.1.249 Meredith: Yeah, um model. Thirty of the ... thirty ones, and
9.1.250 T/R 1: You're using thirty white ones to make your train, is that what you're telling me?
9.1.251 Meredith: Yeah
9.1.252 T/R 1: Using thirty white rods to call one? Will it work?
9.1.253 Meredith: No not thirty white ones, you would add a six block, which would be, I think would be this six [a yellow rod], yeah so this is six. That would make thirty and you would call the oranges thirds
9.1.254 T/R 1: Would that work?
9.1.255 Meredith: And some of
9.1.256 T/R 1: Well, try building that and tell me if that works.
9.1.257 Meredith: Ok.
9.1.258 T/R 1: That's, that's something to try. Why don't you try?
9.1.259 David: I also thought of, um,
9.1.260 T/R 1: Can you get over there to help Meredith? Are you in an awkward
situation where the blocks are down there? Would it be easier for
you to put your chair here, do you think?
9.1.261 David: Well, I was also thinking about the other one. It was, um, it was, um,
twice the size of that [pointing to Meredith's larger model] Then,
9.1.262 T/R 1: Hold on, let's hear what David says.
9.1.263 David: Then this, then the red would be, um, one twenty-fourth, the whites
would be, I think that would be one forty-eighth.
9.1.264 T/R 1: Oh, so you're saying that if it would be twice the size.
9.1.265 David: And then this [light green] would be one twelfth.
9.1.266 T/R 1: That's very interesting. That's an interesting theory. Why don't you
test the theory with Michael and Alan, I think they would like to hear
this theory. Would you like to hear - I think David has a theory -
why don't you come over here. They have an interesting - David has
an interesting theory, I don't know if Meredith heard it, tell them his
theory, now listen carefully, Jackie, you want to hear this theory?
9.1.267 Erik: They [pointing to Andrew's table] already had a theory, I heard it.
9.1.268 T/R 1: Ok, let's hear David's theory.
9.1.269 David: Well, before
9.1.270 T/R 1: You know this model, gentlemen, don't you?
9.1.271 Alan: Yeah.
9.1.272 T/R 1: Ok, listen to what he's saying with this model. Meredith? Ok, I'm
ready to listen.
9.1.273 David: Well, before, we had this other one, um, where the whites were one
twenty-fourth and the reds were one twelfth. But then if we double
that, then the reds would be one twenty-fourth, the whites would be
one forty-eighth, and then the light green would be one twelfth.
9.1.274 T/R 1: You may have to say that again. Alan is making a face.
9.1.275 Erik: I just I
9.1.276 Alan: No, meaning
9.1.277 T/R 1: You're thinking that's possible?
9.1.278 Erik: I heard what Andrew said was
9.1.279 T/R 1: I would suggest that all of you get your blocks together and pick a
spot on the floor over there
9.1.280 Erik: But I heard-
9.1.281 T/R 1: And take some mats
9.1.282 Erik: But I overheard Andrew's - Andrew's doing, what he's doin' is he's makin' a train for the wholes and he said if you could make a train for one whole, why can't you make a train for the thirds and the fourths?
9.1.283 T/R 1: Interesting question. Let me make a suggestion. If you put floormats on the floor, over there by Chris, who's running the camera-
9.1.284 Erik: He'll have to look straight down.
9.1.285 T/R 1: And took all your - he'll manage - and take all your rods, all your boxes, why don't you try building David's model and see if it works.
9.1.286 David: Um, but
9.1.287 T/R 1: You can destroy this, because someone else has it. You will use someone else's and you help them, ok Meredith? Because you'll need the blocks.
9.1.288 David: What was yours before? Was it like two blues... no
9.1.289 T/R 1: Remember what this is, though.
9.1.290 David: No, one blue, one black, and um, one
9.1.291 Meredith: No, one blue, one brown and one black.