Description: Clip 2 Brian's conjecture	Transcriber(s): Yankelewitz, Dina
Parent Tape: Building large models to show	Verifier(s): Yedman, Madeline
equivalence: A generalization	Date Transcribed: Spring 2009
Date: 1993-10-11	Page: 1 of 4
Location: Colts Neck Elementary School	
Researcher: Professor Carolyn Maher	

11.0.67	T/R 1:	Ok, my next question is, can you make one that shows the comparison of three quarters and two thirds, that's bigger than this? Are there others?
11.0.68	Students:	Yeah.
11.0.69	Michael:	I know, I just did one.
11.0 .70	T/R 1:	Ok, um, you think there are others, ok. You have another one?
11.0.71	Michael:	Yeah.
11.0.72	T/R 1:	I would like one, that uh, is the next smallest.
11.0.73	Michael:	Next sma-
11.0.74	T/R 1:	Can you predict something about the one that would be next smallest? I mean next largest, I'm sorry. The one that's the next largest. Brian, what's your prediction?
11.0.75	Brian:	I think it would be twenty-four.
11.0.76	T/R 1:	You think what would be twenty-fourths? What rods?
11.0.77	Brian:	Well, the next, the next, the next larger one will be, I think the whole will be twenty-four.
11.0.78	T/R 1:	But we, we call the whole one.
11.0.79	Brian:	Yeah, I know, but what I mean
11.0.80	Michael:	No, no, it would take twenty four ones to equal a whole.
11.0.81	T/R 1:	What would be, what would be twenty-fourths?
11.0.82	Brian:	Like the, there would be, there would take twenty-four white cubes to equal up to a whole
11.0.83	Student:	I, I also have a strategy
11.0.84	T/R 1:	Wait, wait a second, you're saying twenty-four white ones would equal your train.
11.0.85	Brian:	Yeah, yeah.
11.0.86	T/R 1:	That you're going to call one. So then what would one white one be called in that next model do you think?
11.0.87	Michael:	One twelfth
11.0.88	Brian:	I think, um
11.0.89	T/R 1:	What would that white one be called?
11.0.90	Michael:	Well it's not gonna, we're not gonna. Let me see this [Michael begins to build the model]
11.0.91	Brian:	Um, one twenty-fourth I think.
11.0.92	T/R 1:	Brian thinks then white ones in the next train would be one twenty-fourth. You think that too?
11.0.93	Erik:	Yeah, Alan and I made that same model. We made the same model that was, I think it was two oranges and like one purple, yeah it was two oranges and one purple and then it had the thirds
11.0.94	T/R 1:	Ok, why don't the rest of you sit down and let's have Erik and Alan make that model. Did you make it too, Michael? Is that what you had?

Description: Clip 2 Brian's conjecture	Transcriber(s): Yankelewitz, Dina
Parent Tape: Building large models to show	Verifier(s): Yedman, Madeline
equivalence: A generalization	Date Transcribed: Spring 2009
Date: 1993-10-11	Page: 2 of 4
Location: Colts Neck Elementary School	
Researcher: Professor Carolyn Maher	

11.0.95	David:	I made that also
11.0.96	T/R 1:	Ok, you watch what they're doing, and seeing if -leave that other one up there ohhh! Ok, can you leave the other one up there maybe while you're making that?
11.0.97	Erik:	Sure we can.
11.0.98	T/R 1:	Keep the other one up there. Erik: Just move this over.
11.0.99	T/R 1:	James, why don't you make the other one too, so it doesn't go away on the bottom.
11.0.100	Brian:	Kaitlin, can I borrow some oranges. [whispering, inaudible] 2 more, no [starts to count something in his model] 6 more
11.0.101	T/R 1:	The rest of you could be making these if you haven't already, in your seats just so you have them in front of you. I would suggest you to make both models in your seats and keep them in front of you.
11.0.149	Amy:	Wait, no, twelve plus two, wait twelve plus twelve, twenty-four, twenty-four here. You've got twenty-four plus twenty-four is fortyeight.
11.0.150	James:	I need those. I need another red. I need thirty-six whites.
11.0.151	Amy:	Thirty-six? Why?
11.0.152	Jacquely	Why? Why are you saying thirty-six?
11.0.153	Amy:	I need the reds, I'm trying to prove a point here.
11.0.154	Jacquely	You can have all the reds you want. I'm going to sit here and watch you guys.
11.0.155	James:	We're in battle
11.0.157	T/R 1:	Ok. Now I know, I know you're building these models and I know you don't have enough rods so I know that you have to uh, share some of your uh rods and sometimes you can only build one model on a desk, and I know some of you are able to imagine the models now too. How many of you could imagine what it looks like, even though you haven't quite built it? Raise your hand if you could imagine what it looks like. [A few children raise their hands] I'm kind of curious, what do you imagine that you don't have there, Jessica? I see that you built a model that has two oranges and a purple that you're calling one.
11.0.158	Jessica:	Well, I imagine the white ones.
11.0.159	T/R 1:	And you're imagining the whites, and how many do you imagine are there?
11.0.160	Jessica:	Twenty-four.
11.0.161	T/R 1:	You're imagining twenty-four. And Andrew, I see, built it. And how many do you have there, Andrew?
11.0.162	Andrew	Um, twenty-four whites.

Description: Clip 2 Brian's conjecture	Transcriber(s): Yankelewitz, Dina
Parent Tape: Building large models to show	Verifier(s): Yedman, Madeline
equivalence: A generalization	Date Transcribed: Spring 2009
Date: 1993-10-11	Page: 3 of 4
Location: Colts Neck Elementary School	
Researcher: Professor Carolyn Maher	

11.0.163 T/R 1: Andrew has twenty-four. And can you see on the overhead how many whites, those of you who don't have enough? Can you see? I know it's hard, I have trouble counting when it's not nearby when there's so many little pieces. But you built it too, Amy, how many do you have, Amy?
11.0.164
11.0.165
11.0.166
11.0.167
11.0.168
11.0.169
11.0 .170
11.0.171
11.0.172
11.0.173
11.0.174
11.0.175 T/R 1: One twenty-fourth. So you agree with Brian's conjecture. Right?

Students: One twenty-fourth. Brian says one twenty-fourth. How many of you agree with Brian's conjecture? [All students visible raise hands] The white one in that model has the number name one twenty-fourth. Now how does that

Description: Clip 2 Brian's conjecture	Transcriber(s): Yankelewitz, Dina
Parent Tape: Building large models to show	Verifier(s): Yedman, Madeline
equivalence: A generalization	Date Transcribed: Spring 2009
Date: 1993-10-11	Page: 4 of 4
Location: Colts Neck Elementary School	
Researcher: Professor Carolyn Maher	

11.0.176
11.0.177
11.0 .178
11.0 .179
11.0.180
11.0.181
11.0.182
11.0.183
11.0.184
11.0.185
11.0.186
11.0 .187
11.0 .188
help you solve the problem what is the difference between two thirds and three quarters, gentlemen who are up there? We know the white one has number name one twenty-fourth in that model.
Erik: Uh, see what we did here was we have the fourths and the thirds.
Alan: Yes, mmm hmmm.
Erik: And then the twelfths and they, they said that the twelfths would do it.
Alan: mmm hmmm
Erik: So the twelfths would be the reds which is one, which is two whites, and then people think the twelfths would be the answer, but if you take two of the twenty-fourths
Alan: It would equal up to a red rod.
Erik: It would equal up to a red rod.
Alan: Which would be equal to twelfths.
Erik: Which would be one twelfth. So, see, we think, I think that the answer is either two twenty-fourths or one twelfth.
Alan: Mmm hmmm.
T/R 1: How many of you agree with what they said?
Alan: \quad So there are two answers. Both the same
T/R 1: You agree the answer is either two twenty-fourths or one twelfth. Does anyone think the answer is one twenty fourth? Ok, that's very interesting, that's very nice, gentlemen, thank you that's lovely.

