Description: Multiple representations for	Transcriber(s): Schmeelk, Suzanna
equivalent fractions, Clip 1 of 1	Verifier(s): Cann, Matthew
Parent Tape: The number line and equivalent	Date Transcribed: Spring 2009
fractions	Page: 1 of 5
Date: 1993-11-12	
Location: Colts Neck Elementary School	
Researcher: Carolyn Maher	

Line	Time	Speaker	Transcript
1		RT1	Ok. Graham and Kelly had something very interesting to say about why um...one half should go in the same, is another name for two fourths and should go in the same place. Graham do you want uh to tell us? Graham told me.
2		Kelly	Well, one half plus one half equals a whole, and two fourths plus two fourths equals a whole.
3		RT1	Well that's an interesting argument one half plus one half equals a whole, and two fourths plus two fourths equals a whole. Does that make sense?
4		Erik	Uh I think they're kind of off. It's true, but they're kind of off. It's true that one half plus one half equals one whole, but two fourths plus two fourths equals four fourths which is one whole.
5		RT1	[Writing on the chalk board] OK, so we have one half plus one half equals one whole, two fourths plus two fourths equals one whole, or two fourths plus two fourths equals four fourths equals one whole.
6		RT1	How many of you agree with that? Does that make sense?
7		RT1	That's very neat. I hope you notice, Mrs. Phillips, that they're adding fractions.
8		RT3	Yes, I noticed.
9		RT1	That's very neat. That's very neat. Ok. That's very neat. David? Hold on let's hear what David has to say for a moment?
10		David	Well I was thinking. That uh that like four fourths equals one half which equals two halves.
11		RT1	Say that one more time David
12		David	Uh, four fourths should be equals one half [$R T 1$ writes on the board]
13		Erik	four fourths equals one half ? four fourths? Two fourths.
14		David	two fourths....oh wait one whole

Description: Multiple representations for	Transcriber(s): Schmeelk, Suzanna
equivalent fractions, Clip 1 of 1	Verifier(s): Cann, Matthew
\quad Parent Tape: The number line and equivalent	Date Transcribed: Spring 2009
fractions	Page: 2 of 5
\quadDate: 1993-11-12 Location: Colts Neck Elementary School Researcher: Carolyn Maher	

$\mathbf{1 5}$		Erik	four fourths is equal to one whole
$\mathbf{1 6}$		David	Yeah that's what I mean.
$\mathbf{1 7}$		RT1	[Continues to write on board.] You want me to change this? four fourths equals one whole
$\mathbf{1 8}$		David	Yeah um and two fourths is equal to one half
$\mathbf{1 9}$		RT1	Why?
$\mathbf{2 0}$		David	Because um...two fourths uh would be equal to right up right next to is like in the middle of like one whole and um
$\mathbf{2 1}$		RT1	In the middle between numbers?

Description: Multiple representations for	Transcriber(s): Schmeelk, Suzanna
equivalent fractions, Clip 1 of 1	Verifier(s): Cann, Matthew
Parent Tape: The number line and equivalent	Date Transcribed: Spring 2009
fractions	Page: 3 of 5
Date: 1993-11-12	
Location: Colts Neck Elementary School	
Researcher: Carolyn Maher	

34	David	that's the one whole, um these are the one fourth, and that's the one half, and this would be zero and that would be one.
35	RT1	Let me ask you to do something here that might help me. I want these to be here. Can you place your numbers here now. [RT1 draws in lines to turn the rods into a number line.]
36	David	You mean like one half .
37	RT1	Where zero go underneath, no underneath like the number line. [David draws in zero,1/4,two fourths, three fourths, one, one half on the number line.]
38	RT1	Ok so what I'm imagining when you do that David, I'm imagining the rods and I'm also imagining the number line. That's very helpful to me. Is that helpful to you what he's done? [Class murmurs 'yes'] How many of you understand what David has done? Raise you hand if you understand it. If not, if you have a question David. I'm sure will be happy to answer it. Does anyone have a question for David? [No student on camera raises their hand.] Now what David is suggesting which um I think helps me a lot, I don't know if it helps you, that if you went to place numbers between zero and one imagining the rods, right? It helps you to place those numbers.
39	Class	Yes
40	RT1	Now once you place the numbers and then once you imagine the rods it seems to be when the rods would end. Right, where the one half rod ends, is where you would place one half where it ended here he placed a one. Right? That's a very very nice notation. I like that a lot. What do the rest of you think of that?
41	Student	I like it.
42	RT1	[To Alan] What do you think? Thank you very much David
43	Alan	I agree with him.
44	RT1	Isn't that nice. That's very nice. How many of you like that? Yeah, I like that a lot. Maybe we can adapt that as an

Description: Multiple representations for	Transcriber(s): Schmeelk, Suzanna
equivalent fractions, Clip 1 of 1	Verifier(s): Cann, Matthew
\quad Parent Tape: The number line and equivalent	Date Transcribed: Spring 2009
fractions	Page: 4 of 5
\quad Date: 1993-11-12	
\quad Location: Colts Neck Elementary School	
Researcher: Carolyn Maher	

$\mathbf{4 5}$		interesting notation. If we were inventing our own notation that would be a very useful one. Jakki?			
$\mathbf{4 6}$		RT1			
It's sort of like the Cuisenaire Rods.					
Y7		Brian			
$\mathbf{4 8}$		It's supposed that helps me a lot doesn't it? white and the half is like the red, or the purple I think.			
$\mathbf{4 9}$		Jessica?	$	$	Well, I think it is sort of a new way to make a number line.
:---					
$\mathbf{5 0}$					

Description: Multiple representations for equivalent fractions, Clip 1 of 1	Transcriber(s): Schmeelk, Suzanna
Parent Tape: The number line and equivalent	Verifier(s): Cann, Matthew
fractions	Date Transcribed: Spring 2009
Date: 1993-11-12	
Location: Colts Neck Elementary School	
Researcher: Carolyn Maher	

$\mathbf{6 1}$		RT1	this both are one half.
$\mathbf{6 2}$		Students	I agree.
$\mathbf{6 3}$		RT1	What do you think of that? How many of you understand what James did here? We had another way of trying to justify that one half was the same as two fourths. And that would therefore enable you to put them in the same place on the number line?
$\mathbf{6 4}$		James	Yes
$\mathbf{6 5}$		RT1	Thank you very much James. Uh hah! Interesting. Jakki.

