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ABSTRACT OF THE DISSERTATION

Using Electrical Chemical Impedance Spectroscopy to

determine nanocapillary geometry and differential

capacitance by developing a variable topology network

circuit model

by Michael J Vitarelli Jr.

Dissertation Director: David S. Talaga

Nanocapillaries find increasing use in a variety of applications including, protein translo-

cation dynamics, protein sequencing, and other nanofluidic studies. All of these appli-

cations are affected by the geometry of the nanopore and the molecular species found

within. This dissertation develops a new equivalent circuit model to determine the

geometry of nanocapillaries. This model is derived to include the effects of a varying

nanocapillary radius, along with the capacitive double layer within the nanocpaillary.

The model is tested by using electrochemical impedance spectroscopy on a nanocapil-

lary array membrane. The resulting values extracted from the model fit are consistent

with the manufacturer’s specified geometry. The model is then further developed to

determine the impedance of proteins. This is accomplished by modeling the protein as

a cylinder and inserting this into our above mentioned model. By exploiting alternat-

ing regions of surface charge density on the protein this model will allow for the rapid

sequencing of proteins.
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1.19 S/m. A solution dielectric constant of εs = 80 used. . . . . . . . . . 68
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Chapter 1

Introduction

1.1 Overview

Nanocapillaries find increasing use in a variety of applications including, protein translo-

cation dynamics [1, 2, 3], DNA sequencing[4, 5], for ion-channel studies[6, 7, 8, 9, 10,

4, 11] and for single molecule sensing[12, 13]. In addition to this, commercially avail-

able nanocapillary array membranes[14, 15] (NCAMs) have been used for nanofabrica-

tion templates[16, 17], for fundamental studies of ionic flow at the nanoscale[18, 19],

permselectivity[20], and for studies on transport regimes as a function of radii[19]. All of

these applications are affected by the surface properties and geometry of the nanopores

or nanocapillaries. Thus, a method to determine the surface properties and geome-

try of nanopores and nanocapillaries is essential to the understanding of the above

phenomena.

One type of method to determine the geometry of these nanopores or nanocapillar-

ies is electron microscopy, which can image the geometry[21, 22, 23]. However, electron

microscopy does not reveal any information about the surface properties. In addition

to this, these methods often require a great deal of sample prep and may render the

sample unusable for future purposes. Current-voltage measurements[24, 25, 26] give in-

formation on the surface properties of the sample, possibly surface-charge rectification,

but do not give any direct information about the geometry. Although, if one has a cylin-

drical capillary and knows the length, while assuming no surface-charge rectification,

then one can obtain the radius of this capillary.

In contrast to a DC measurment, electrochemical impedance spectroscopy or EIS[27,

28, 29] measures the impedance, complex resistance, as a function of frequency of ap-

plied AC potential. Since the EIS signal is a measure of the electrokinetic transport
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of ionic solution through the nanocapillaries, it is sensitive to their geometry and sur-

face electrical properties[30, 31]. Equivalent circuit modeling is a standard approach

to fitting EIS data[32, 33]. R ‖ C equivalent circuit modeling has been applied to

NCAMs,[34, 35, 36, 37, 15] during which attempts were made to extract the double-

layer differential capacitance and geometric parameters from these R ‖ C circuits.

However, multiple R ‖ C circuits can fit the same EIS data, with varying degree of

accuracy, and thus as one would use more and more of these R ‖ C circuits to try to

reduce the error in the fit. Thus one would want to minimize the number of circuit

elements to extract the relevant properties while minimizing the reduced chi square. In

addition to this, authors have often assigned capacitance elements as parasitic or stray

capacitance, without any justification for what it may actually be. Chien et al.[38]

uses a constant phase element (CPE) to model a nanopore. The CPE is an empirical

circuit that applies a constant phase change to an R ‖ C circuit response. Chien et

al.[38] interprets the DC impedance in terms of the conical resistivity of an electrolytic

resistor. In addition to this element they have a resistor in series to account for ionic

diffusion. In effect the use of EIS in this application served only to give the DC current

at a given voltage bias.

In the following chapters an equivalent circuit element will be developed to obtain

the nanopore or nanocapillary geometry and double-layer differential capacitance. This

will be accomplished by arranging resistors and capacitors in a arrangement similar

to the transmission line model[39, 40, 41]. Then discretizing and transforming this

arrangement into a differential equation. Then solving this for the overall impedance,

with a boundary condition such that the impedance of the nanopore is zero when the

length of the nanocapillary is zero. The model is then modified to allow for protein

sequencing by essentially inserting a charged cylinder into the model and measuring the

impedance, piecewise, as a function of charged region. Lastly, a differential capacitance

model is presented that is a function of the surface charge density for cylindrical and

spherically symmetric systems. From this differential capacitance model a zeta potential

model[42, 43, 44, 45] is obtained. Coupling this with the above mentioned models allows

one to directly sequence or predict the impedance of a protein as a function of charged
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region. However, before this is accomplished an overview of circuit theory and electrical

impedance is presented.

1.2 Circuit Theory

In this section an overview of circuit theory and electrical impedance is presented. Spe-

cific examples and discussion are directed towards chemical impedance spectroscopy.

Circuit theory is first developed including Kirchhoff’s laws and definitions of conserva-

tion of energy and charge in electric circuits. From these definitions equivalent circuits

for series and parallel resistors and capacitors are developed. These are then used in

conjunction with a discussion on electrical impedance to show various types of cir-

cuits and their frequency dependent spectrums. Lastly, peak frequency formalism is

developed and representations of impedance spectra in terms of a distribution of time

constants is shown.

Kirchhoff’s voltage law (KVL), and Kirchhoff’s current law (KCL) are the basis for

circuit theory. KVL expresses conservation of energy in circuits, while KCL express

conservation of charge. From KCL one finds that the sum of the charge entering and

exiting a node, a junction of two or more circuit elements, is zero. Thus the sum of

the currents at a node is zero. That is, the current entering a node is equal to that of

current leaving the node.

I
s I

a

I
b

Figure 1.1: Here an application of KCL is shown, where the current entering the node
is equal to the current leaving the node.

From KCL and figure 1.1 one sees that:

Is = Ia + Ib (1.1)
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From KVL one finds that when a charge traverses a loop in a circuit it does not gain

or lose energy. At points in the loop it may absorb energy from one or more elements,

but then must donate that energy to other elements before completing the loop. From

+

V
s

V
b

V
a

R
b

R
a

Figure 1.2: Here an application of KVL is shown. The voltage drop across each of the
resistors is equal to that of the voltage source.

KVL and figure 1.2 one sees:

Vs = Va = Vb (1.2)

The charge absorbs energy from the potential source, and donates it to either of the

resistive elements. From ohms law, V = IR, and from equation 1.1 and equation 1.2,

one sees that for resistors parallel:

Ra ‖ Rb =
1

1/Ra + 1/Rb
(1.3)

For resistors in series the current through them is the same and the sum of the

voltage drop across them is equal to the voltage source. This leads to resistors in series

being additive.

However, capacitors obey opposite addition rules. The charge stored on a capacitor

q, is equal to the capacitance C, times the voltage across the capacitor Vc. That is

q = CVc. Since i = dq
dt , we have:

i(t) = C
dVc

dt
(1.4)

or

Vc =
1

C

∫
idt (1.5)
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For capacitors in series, the sum of the voltage drop across them is equal to that of

the voltage source, along with the current through them being the same leads to:

Vs = V1 + V2 =
1

C1

∫
idt+

1

C2

∫
idt =

1

Ceq

∫
idt (1.6)

Thus:

Ceq =
1

1/C1 + 1/C2
(series capacitors) (1.7)

For capacitors in parallel the sum of the current across them is equal to the source

current, and the voltage drop across them is equal to the source voltage:

Is = I1 + I2 = C1
dVs

dt
+ C2

dVs

dt
= Ceq

dVs

dt
(1.8)

Therefore:

Ceq = C1 + C2 (parallel capacitors) (1.9)

An interesting example of a combination of circuit elements is a ladder circuit, see

figure 1.3. The ladder circuit is composed of an infinite series of identical resistors. To

find the equivalent resistance for this collection of elements split off the first resistor

and add that in series to the second resistor in parallel to the rest of the ladder, while

setting this equal to the entire ladder:

Req = R+R ‖ Req (1.10)

Solving for Req yields:

Req =
1

2
(R+

√
5R) (ladder circuit) (1.11)

This is approximately 1.62R. In this derivation we exploited a property of infinity, in

that splitting off an element from a collection of infinitely many symmetric elements

still leaves infinity many of these elements.

Using the above material one can analyze most any electrical circuit. However, as

the number of circuits increases and the functionality of the voltage source becomes

more complicated, say from a static source to a time dependent source, the standard
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Figure 1.3: An infinite series of resistors each with resistance R is shown. By summing
the resistors an equivalent resistance of approximately 1.62R is found.

methods of setting up and solving the differential equations involved becomes increas-

ingly formidable. In addition to this, it often the case that one is not entirely interested

in the time dependent properties of the circuit, but possibly the frequency dependent

properties of the circuit.

1.3 Electrical Impedance

As mentioned above, often systems are exposed to time dependent sources. Analyzing

the response of the system due to these time dependent sources may involve solving

complicated differential equations. A simpler approach is to the transform the differ-

ential equation to the frequency domain, solve the now algebraic equation, then return

to the time domain. One may also remain in the frequency domain if time dependent

properties are not desired.

First consider a voltage source with the form:

Vs(t) = Vse
i(ωt+φ) (1.12)

It is more standard to use a voltage source of the cosine form, however this form

will illuminate the results more clearly. Consider applying this across a resistor, with

resistance R. Using Ohm’s law one finds the current though the resistor to be:

IR(t) = Vse
i(ωt+φ)/R (1.13)

Defining the impedance, complex resistance, as the ratio of the voltage over the current,

due to the frequency dependent excitation one finds:

ZR = VR(t)/IR(t) = R (1.14)
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An ideal resistor will have impedance R, and no frequency dependance. Now consider

this voltage across a capacitor. Recalling equation 1.4, one finds the current to be:

IC(t) = iωCVse
i(ωt+φ) (1.15)

Again taking the ratio of the voltage and current one find the impedance of a capacitor

to be:

ZC =
1

iωC
(1.16)

Notice in these two cases the time dependance has been eliminated. We are now in the

frequency domain.

1.3.1 R ‖ C Circuits

Next, consider a system with a resistor and capacitor in parallel. While analyzing this

system in the frequency domain one can add the impedances of these elements as if

they were resistors. By using equation 1.3, and the results obtained for the impedance

of a resistor and the impedance of a capacitor, one finds:

ZR ‖ ZC =
1

1/R+ iωC
(1.17)

Which can be decomposed into its real and imaginary components:

ZR ‖ ZC =
R

1 + ω2C2R2
− i ωCR2

1 + ω2C2R2
(1.18)

with limits

lim
ω→0

ZR ‖ ZC = R (1.19)

and

lim
ω→∞

ZR ‖ ZC = 0 (1.20)

Physically, in the low frequency limit, as the frequency approaches zero, the impedance

of the capacitor approaches infinity. As this happens the path of the current follows

the resistor thus would yield an impedance of R. In addition to this a resistor will not
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affect the phase angle of the current relative to the applied potential. Thus at the low

frequency limit the phase angle of the impedance approaches zero. However, in the high

frequency limit, as the frequency approaches infinity, the impedance of the capacitor

approaches zero, thus the current will follow the path through capacitor yielding an

overall impedance of zero. At this limit the phase angle of the impedance approaches

-π/2. Notice the phase angle of the impedance of an R ‖ C circuit is:

φR‖C = tan−1(Im[Z]/Re[Z]) = tan−1(−RCω) (1.21)

with limits

lim
ω→0

φR‖C = 0 (1.22)

and

lim
ω→∞

φR‖C = −π/2 (1.23)

The left panel of figure 1.4 show a Nyquist, or Cole-Cole, plot of equation 1.18. A

Nyquist plot plots the real portion of the impedance vs. the imaginary, often negative

imaginary, portion of the impedance. The center panel of figure 1.4 shows the phase

angle vs. frequency plot of equation 1.21, while the right panel of figure 1.4 shows the

magnitude vs. frequency plot. Bode plots would be a plot where both the phase angle

and magnitude are represented on the same plot.

1.3.2 R + R ‖ C Circuits

A simple extension to an R ‖ C is to add a resistor in series to this, possibly for the

resistance of the fluid between the electrodes:

ZRsln
+ ZR ‖ ZC = Rsln +

R

1 + ω2C2R2
− i ωCR2

1 + ω2C2R2
(1.24)

with limits

lim
ω→0

(ZRsln
+ ZR ‖ ZC) = Rsln +R (1.25)

and

lim
ω→∞

(ZRsln
+ ZR ‖ ZC) = Rsln (1.26)

figure 1.5 show a plot of equation 1.24, and discussion.
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Figure 1.4: All three figures above are representative of an R ‖ C circuit, using 50
frequency points ranging from 0.1 Hz to 1 MHz along with a 100 Ohm resistor and a
0.1 mF capacitor. Left panel equation 1.18 is plotted, while in the center panel equa-
tion 1.21 is shown. Notice the phase angle approaches zero as the frequency approaches
zero, while the phase angle approaches -90 degrees in the high frequency limit. Right
panel the magnitude of equation 1.18 is plotted. Notice in the DC limit, the zero fre-
quency limit the magnitude of the impedance is that of the resistor. This is true since
the impedance of the capacitor will approach infinity in the low frequency limit. Thus
the current will follow the path of the resistor. On the other hand, at the high frequency
limit the impedance of the capacitor will approach zero and the current path will follow
that of the capacitor, yielding a zero impedance.
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Figure 1.5: All three figures above are representative of an R + R ‖ C circuit, using
50 frequency points ranging from 0.1 Hz to 1 MHz along with a 100 Ohm resistor, a
0.1 mF capacitor, and Rsln=20 Ohms. Left panel equation 1.24 is plotted. Notice the
only difference between the Nyquist plots in figure 1.4 and figure 1.5 is that figure 1.5 is
offset by an addition 20 ohms vs that of figure 1.4. This is also true for the magnitude of
impedance figures. The phase angle is plotted with six different values for Rsln. These
being 20, 2, 0.2, 0.02, 0.002, and 0 ohms, red, blue, green, purple, cyan, and black
respectively. Notice the 0 ohm plot, the black plot, is identical to that of figure 1.4.
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1.3.3 Purely capacitive circuit elements

In this section we will consider the impedance of a purely capacitive[27, 46] element.

Physically the time dependance of a purely capacitive system is somewhat uninteresting,

since the only element being the capacitor thus the voltage across it is equal to that

of the source. The impedance of a capacitor was found earlier, see equation 1.16, and

shown in the left panel of figure 1.6.

To obtain the phase angle of the impedance of a capacitor one needs the imaginary

component of equation 1.16

Im[ZC] = Im[
1

iωC
] = Im[

−i
ωC

] =
−1

ωC
(1.27)

The sole purpose of this is to not forget the negative sign. While the real component

of the impedance of a capacitor is zero. Thus the ratio of the imaginary component

to the real component is negative infinity for all frequency points. Thus for the phase

angle of the impedance of a capacitor we have:

φC = tan−1

(
Im[Z]

Re[Z]

)
= tan−1(−∞) = −π/2 (1.28)

This is show in the center panel of figure 1.6. This was also shown in the high frequency

limit for an R ‖ C circuit. Recall in this limit the impedance of the capacitor approaches

zero, thus the current follow the path of the capacitor and yields the same phase angle

as in equation 1.28. While the magnitude of the impedance of the capacitor is

|Zc| =
1

ωC
(1.29)

Which is shown in the right panel of figure 1.6.

1.3.4 R+C Circuits

In this section, we consider the impedance of a resistor and capacitor in series along

with a time domain analysis. Starting first with the time domain analysis using a

constant voltage source Vs, with the voltage drop across the resistor being Vr, and the

voltage across the capacitor being Vc, one finds:

Vs = Vr + Vc (1.30)
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Figure 1.6: All three figures above are representative of a purely capacitive circuit
element, using 50 frequency points ranging from 0.1 Hz to 1 MHz along with a 0.1 mF
capacitor. Left panel equation 1.16 is plotted. Notice that the impedance of a capacitor
is purely imaginary. In the center panel the phase angle of the impedance of a capacitor
is shown. Notice that it is -90 degrees for all frequencies, as show in equation 1.28. In
the right panel equation 1.29 is shown. Again, in the high frequency limit the impedance
of a capacitor approaches zero, while in the low frequency limit the impedance diverges.
In the low frequency limit the capacitor acts as an open, or break in the circuit.

Taking the time derivative of equation 1.30, while using ohm’s law for the resistor and

equation 1.4 for the derivative of the voltage across the capacitor yields:

0 = R
di

dt
+

i

C
(1.31)

Integrating with respect to time yields:

i = Ae−t/RC (1.32)

where A is the constant of integration. Since these elements are in series the current

across all the elements is the same. Integrating equation 1.32 with respect to time

from zero to infinity yields the charge on the capacitor. If the capacitor is originally

uncharged then q(0) = 0 and we have∫ ∞
0

idt = ARC = q(∞)− q(0) = q(∞) (1.33)

However, the charge on the capacitor at a given time is equal to the capacitance times

the voltage across the capacitor, thus

ARC = q(∞) = CVc(∞) = C(Vs(∞)− Vr(∞)) (1.34)

The current though the circuit approaches zero as time approaches infinity, thus the

potential across the resistor approaches zero as time approaches infinity. Recalling that
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the potential Vs is constant in time, Vs(∞) = Vs, the constant of integration A becomes

Vs/R:

i =
Vs

R
e−t/RC (1.35)

Initially there is no charge on the capacitor, and thus no potential drop; the capacitor

will act as a short. As time evolves the charge increases on the capacitor until the

potential across the capacitor equals that of the applied voltage, at this time the current

flowing in the circuit is zero, the capacitor acts as an open. What is meant by charge on

the capacitor is as follows. Consider two neutral conducting parallel plates connected

to a voltage source. As time evolves the sum of the charges on the places will remain

neutral, however one plate will gain positive charge while the other gains an equal

amount of negative charge.

Unfortunately, this does not tell us about what we are interested in, the frequency

dependance of these elements. To determine this one needs to replace the constant

voltage source with a source that is both time and frequency dependent, then the

impedance can be obtained by solving the differential equation and taking the ratio

of the voltage and current. However, since we already know what the impedance of

a resistor and capacitor are we can simply add them in series to obtain the circuit

impedance:

ZR+C = R+
1

iωC
(1.36)

The impedance of a resistor and capacitor in series is shown in the left panel in figure 1.7,

while the phase angle:

φR+C = tan−1

(
Im[Z]

Re[Z]

)
= tan−1

(
−1

RCω

)
(1.37)

is shown in the center panel of figure 1.7.

As the frequency approaches zero in equation 1.36 the impedance of the capacitor

approaches infinity and acts as an open, blocking the current path. But, how does

this physically happen? There is no flow of charge though a capacitor. That is, say
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Figure 1.7: All three figures above are representative of resistor in series with a ca-
pacitor, using 50 frequency points ranging from 0.1 Hz to 1 MHz along with a 0.1 mF
capacitor and a 1000 Ohm resistor. Left panel equation 1.36 is shown. Notice this is
identical to figure 1.6 except shifted along the real axis by 1000 Ohms. The phase angle
of the impedance, equation 1.37 is shown in the center panel. Notice at high frequencies
the phase angle approaches zero degrees. This is true since at this limit the impedance
of a capacitor approaches zero and will act as a short. Thus the phase angle will only
be affected by the resistor, which will not affect the phase angle. At low frequencies the
impedance of a capacitor will approach infinity, and act as an open, not allowing for
a current path in the system. Since there is no current in the system there will be no
voltage drop across the resistor, and only the capacitor will affect the phase angle of the
impedance, thus the overall phase angle of the impedance will approach -90 degrees.

a negative charge appears on one side of the capacitor, then a negative charge will

leave the opposite side. This build up of opposite charge will create a larger and larger

electric field opposing the field applied by the voltage source until no further charge

can be stored on the capacitor.

It is useful show how to obtain equation 1.36. Consider a time and frequency

dependent voltage source:

Vs = Voe
iωt (1.38)

Using equation 1.30, ohm’s law, and the current though a capacitor equation 1.4 yields:

Vs = Vc +RC
dVc

dt
= Voe

iωt (1.39)

yields a voltage across the capacitor of

Vc =
Voe

iωt

1 + iRCω
(1.40)

It is interesting to look at various limits. First consider the limit as the resistance

R across the resistor approaches zero. In this limit the voltage across the capacitor

is equal to that of the source, for all time. Equivalently, as the capacitance of the
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capacitor approaches zero the capacitor acts as an open. Thus, no current can flow in

the circuit, thus the current through the resistor is zero, thus the potential across the

resistor is zero, thus the potential drop across the capacitor is equal to the source.

Using equation 1.4 one finds the current across the capacitor:

ic =
CiωVoe

iωt

1 + iRCω
(1.41)

Taking the ratio of equation 1.40 to equation 1.41 yields the impedance across the

capacitor:

ZC =
1

iωC
(1.42)

Which was found earlier equation 1.16. Adding 1.42 with the impedance across the

resistor being R, yields equation 1.36.

Lastly, it is important to mention that equation 1.40 is not the full solution to the

differential equation equation 1.39. It is only the in-homogenous solution, due to the

voltage source. There is also the homogenous solution, the solution when the voltage

source is zero, yielding a exponential in time, the constant of which is dependent on

whether the capacitor is charged or not. The linear combination of these is the full

solution to the differential equation. However, as mentioned earlier electrical impedance

is the ratio of the voltage across the capacitor due to the frequency dependent voltage

source to the frequency dependent current.

1.3.5 Constant Phase Element

One final circuit is a constant phase element (cpe) whoes impedance given by:

Zcpe =
A

(ωi)n
(1.43)

where n is an integer and A is a constant. Notice when n = 0 the cpe acts as an ideal

resistor, while it acts as an ideal capacitor when n = 1. Since

1

in
= e−πni/2 (1.44)

the cpe will apply a constant phase of -(90 ∗ n)◦ thus the name.



15

1 100 104 106
0

10

20

30

40

50

Ω HRad�sL

-
Im
@Z
D
HO

hm
L

Figure 1.8: The figure above is representative of a R ‖ C circuit, using 50 frequency
points ranging from 0.1 Hz to 1 MHz along with a 0.1 mF capacitor and a 100 Ohm
resistor. Here the negative of the imaginary part of the impedance of an R ‖ C circuit,
equation 1.45 is plotted vs. frequency. This shows the peak frequency of an R ‖ C
circuit is located at the inverse of the circuit’s time constant, see equation 1.46. Notice
at the location of the peak frequency the imaginary impedance is 50 Ohms, or R/2.

1.4 Peak Frequency Optimization

In the previous section Nyquist and Bode plots have been shown. However, there is

yet another way to display an impedance spectrum. By looking at the negative of the

imaginary portion of the impedance one can pick out the peak frequency[47]. Consider

the negative imaginary part of the impedance of an R ‖ C circuit:

−Im(ZR ‖ ZC) =
ωCR2

1 + ω2C2R2
(1.45)

Equation 1.45 is plotted in figure 1.8 vs. frequency. Notice there is a peak in

the spectrum. This peak can be easily found by maximizing equation 1.45. While

differentiating equation 1.45, setting this equal to zero, and solving for ω yields the

peak frequency:

ωpeak =
1

RC
=

1

τ
(1.46)

For an R ‖ C circuit the peak frequency is equal to the inverse of the time constant.

By looking at the zero frequency limit in the Nyquist plot one may obtain the resistance,

R. Then by finding the peak frequency in the −Im(ZR ‖ ZC) vs. frequency plot, one
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Figure 1.9: The above figures are representative of an Ra ‖ Ca + Rb ‖ Cb circuit, using
50 frequency points ranging from 0.1 Hz to 1 MHz with Ra = 100 Ohm, Ca = 10 µF ,
Rb = 400 Ohm, and Cb = 10 mF . In the left panel equation 1.47 is plotted. The right
panel shows the negative of the imaginary part of the impedance of an Ra ‖ Ca+Rb ‖ Cb

circuit, equation 1.48 is plotted vs. frequency. Here two peaks are visible at two different
frequencies. The inverse of these frequencies are the time constants of the R ‖ C circuits.

maybe obtain the capacitance of the system, without doing any fitting, assuming the

system may be idealized to an R ‖ C circuit. In addition to this putting the peak

frequency back into equation 1.45 yields that magnitude of the imaginary portion of

the impedance at the peak frequency; this being R/2.

For more complex systems one R ‖ C circuit will often not be sufficient. The next

obvious extension would be to go to two R ‖ C circuits in series:

ZRa ‖ ZCa + ZRb ‖ ZCb =

Ra
1 + ω2C2

aR
2
a

− i ωCaR
2
a

1 + ω2C2
aR

2
a

+
Rb

1 + ω2C2
bR

2
b

− i
ωCbR

2
b

1 + ω2C2
bR

2
b

(1.47)

Taking the negative of the imaginary impedance of this yields:

−Im(ZRa ‖ ZCa + ZRb ‖ ZCb) =
ωCaR

2
a

1 + ω2C2
aR

2
a

+
ωCbR

2
b

1 + ω2C2
bR

2
b

(1.48)

Equation 1.47 and equation 1.48 are plotted in figure 1.9. Here one sees two time

constants are needed. With two time constants the data is still fairly easily fit with

two R ‖ C circuits. However, as the complexity of the impedance spectrum increases

more and more R ‖ C circuits will be needed. In addition to this, it may become more

difficult to properly fit the data with R ‖ C circuits.
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Figure 1.10: The above figures are representative of five R ‖ C circuits in series. equa-
tion 1.49 is shown in the left figure with n=5. In the right panel equation 1.50, with
n=5, is plotted vs. frequency. Here five peaks are visible at five different frequencies.
As the above figures indicate as the impedance spectrum becomes more complex more
and more circuit elements are needed to fit the data.

One can extend equation 1.47 and equation 1.48 to n R ‖ C circuits:

n∑
i

ZRi ‖ ZCi =
n∑
i

Ri
1 + ω2C2

i R
2
i

− i ωCiR
2
i

1 + ω2C2
i R

2
i

(1.49)

−Im(
n∑
i

ZRi ‖ ZCi) =
n∑
i

ωCiR
2
i

1 + ω2C2
i R

2
i

(1.50)

With limits:

lim
ω→0

n∑
i

ZRi ‖ ZCi =

n∑
i

Ri (1.51)

lim
ω→∞

n∑
i

ZRi ‖ ZCi = 0 (1.52)

lim
ω→0
−Im(

n∑
i

ZRi ‖ ZCi) = lim
ω→∞

−Im(

n∑
i

ZRi ‖ ZCi) = 0 (1.53)

equation 1.49 and equation 1.50 are shown in figure 1.10 with n=5.

Lastly, instead of extracting resistances and capacitances from an impedance spec-

trum one can reformulate equation 1.49 and equation 1.50 to obtain a resistance and a

time constant:

n∑
i

ZRi ‖ ZCi =
n∑
i

Ri
1 + ω2τ2

i

− i Riωτi
1 + ω2τ2

i

(1.54)
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−Im(

n∑
i

ZRi ‖ ZCi) =
n∑
i

Riωτi
1 + ω2τ2

i

(1.55)

The advantage of this is that certain electrochemical processes may mimic the effect

of capacitances, but may actually be something else. This formalism allows one to fit

with R ‖ C circuits and extract time constants which can be related to diffusion rates,

for example.

1.5 System Modeling

The final component to this introduction is system modeling. Consider a cylindri-

cally symmetric capillary in a substrate of uniform dielectric immersed in a conducting

solution. The resistance of the conducting solution though the capillary is given by:

Rsln =
L

κπr2
(1.56)

where L is the length of the capillary, r is the radius of the capillary, and κ is the

conductivity of the solution. Also, consider modeling the capacitance of the substrate

using the parallel plate model:

CPplate =
ε0εrA

L
(1.57)

where ε0 is the permittivity of free space, εr is the dielectric constant of the substrate,

A is the surface area of the substrate, and L is the thickness of the substrate, here

assumed to be the same as the length of the capillary thought the substrate. The

impedance spectrum of this system can be found by modeling the system as an R ‖ C

circuit, equation 1.18 while using equation 1.57 for the capacitance in the impedance

of a capacitor equation 1.16.

In figure 1.11 the effects of the solution dielectric and of the electrical double layer

within the capillary were not included. The Gouy-Chapman model[48, 49] shows that

the capacitance of the electrical double-layer is shown to have a square root dependance

on the solution conductivity. Appendix A is dedicated to a derivation and discussion

of this model.
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Figure 1.11: The figure above is representative of an R ‖ C circuit, using 50 frequency
points ranging from 0.1 Hz to 1 MHz. equation 1.18 is plotted while using equation 1.57
for the capacitance in the impedance of a capacitor equation 1.16. The parameters used
are L=6 µm, r=25 nm, εr=3, and κ=1,2,5,10 S/m, red, green, blue, black respectively.

Now that the machinery has been put in place we are now able to use all of this

to developed our model, the Variable Topology finite Warburg Impedance Model. One

can also call this the Vitarelli Talaga finite Warburg Impedance Model or VTW.
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Chapter 2

Determining Nanocapillary Geometry From

Electrochemical Impedance Spectroscopy Using the

Variable Topology Finite Warburg Impedance Model

2.1 Introduction

In this chapter the Variable Topology finite Warburg Impedance Model (VTW), to de-

termine the geometry and electrical double layer differential capacitance of a nanocapil-

lary or nanopore is developed. The model is formulated by transforming an arraignment

of resistors and capacitors into a differential equation. This model is similar to a trans-

mission line[1, 2, 3] model but has the boundary condition such that if the nanocapillary

has zero thickness the impedance is zero. The solutions for a constant and linearly vary-

ing nano-capillary radii are presented. Using the constant radii solution, the negative

imaginary component of the impedance vs. frequency is shown. Plotting multiple sig-

nals as a function of the aspect ratio shows a shift in the peak frequency. Noting the

location of the peak frequency, gives a measure of the total surface area, and thus total

capacitance. Next, the EIS spectrum for multiple nanocapillaries is shown for linearly

varying radii. It is shown that constrictions for the center radius, while fixing the DC

limit will yield a depression in the EIS spectrum at the location of the peak frequency.

The nanocapillary is not freely floating in space, but incased in a substrate. In this

case the substrate is a polycarbonate tract-etched membrane. The impedance of which

is added in parallel to the VTW model. Lastly the impedance of the electrical double-

layer on the surface of the membrane is modeled as an R ‖ C equivalent circuit element,

and the background is also modeled as an R ‖ C equivalent circuit element, both of

which are added in series to the overall model, thus completing the model.
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2.2 Theoretical Model
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Figure 2.1: The above figure shows a schematic of the nanocapillary geometry with
length L, center radius r1 and opening radius, r0. In addition to this there is a constant
radii center section of length fL. The model is symmetrically presented, such that the
variable radius and double-layer capacitance of the nanocapillary is accounted for by a
differential equivalent circuit shown in the top panel. In the text a discussion of how
the differential equation will be developed from the above figure, including discussion
on boundary conditions and limits on the solution to the differential equation.

As illustrated in figure 2.1, a differential equivalent circuit model is developed to

account for a variable nanocapillary radius and the double layer differential capacitance

found within. The approach is similar to that used to construct mathematical models

for transmission lines[1, 2, 3]. Essentially the model will be a combination of resistors

and capacitors, which are then discretized and transformed into a differential equation

whoes boundary conditions appropriate for the nanocapillary, that is the impedance of

a nanocapillary which has zero length, has zero impedance.

The differential equation is developed by adding the total impedance Z to a in-

finitesimal amount ∆Z. This creates the left side of the equation. On the right side,

the total impedance is again added to to an infinitesimal amount, however these are

decomposed into resistive and capacitive elements. On the right side a differential el-

ement of the capillary resistance, ∆R(x), is added in series with a parallel circuit of

a differential element of the nanocapillary double-layer capacitance, ∆C(x), and the
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overall impedance of the capillary, Z(x):

Z(x)+∆Z(x) = R′(x)∆x+
1

1
Z(x) + iωC ′(x)∆x

= R′(x)∆x+
Z(x)

iωZ(x)C ′(x)∆x+ 1
(2.1)

Here i =
√
−1, ω is the angular frequency of the AC signal, and x is the coordinate

along the length of the nanocapillary. Next, expanding the right side of the differential

equation into a Taylor series in ∆x yields:

Z(x) + ∆Z(x) = R′(x)∆x+ Z(x)− iωZ2(x)C ′(x)∆x− ω2Z3(x)C ′(x)2∆x2 + ... (2.2)

Subtracting the total impedance from both sides yields:

∆Z(x) = R′(x)∆x− iωZ2(x)C ′(x)∆x− ω2Z3(x)C ′(x)2∆x2 + ... (2.3)

Finally, dividing by ∆x, and evaluating the limit ∆x→ 0 gives the differential equation,

Z ′(x) + iωC ′(x)Z2(x)−R′(x) = 0, (2.4)

where,

dR

dx
= R′(x) =

1

πr2(x)κc
, and

dC

dx
= C ′(x) = 2πr(x)C̃c, (2.5)

C̃c is the nanocapillary double-layer differential capacitance, and κc is the specific con-

ductivity of the solution within the nanocapillary. Notice here the conductivity within

the nanopore κc is mentioned here instead of simply saying solution conductivity. The

conductivity within nanopore is found to be higher then that of the bulk[4, 5, 6, 7, 8].

In this formulation, a nanocapillary of length zero should have zero impedance and pro-

vides the boundary condition, Z(0) = 0. The symmetrized circuit element is obtained

by solving the differential equation with r(x) proceeding from x = 0 to x = L/2 and

then replacing r(x) by r(L/2 − x) and proceeding again from x = 0 to x = L/2, to

obtain the impedance for the total length, L, for the nanocapillary.

2.2.1 Solution for constant radius

For a constant radius, r(x) = r1, the solution to equation 2.4 gives a solution, Z, as a

function of x. Where again, x is the coordinate along the length of the nanocapillary.

For a nanocapillary of length L, one would think to simply set x equal to L. However,
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this will produce an asymmetric solution. For the general case, to symmetrize this

function one solves equation 2.4 with r(x) from 0 to L/2. Then add to this the mirror

image of r(x), shifted back to the origin.This, however, is simple for a constant radius

function. Since, the mirror of r1 shifted back to the origin, is a again, r1. For a

constant radius function solve equation 2.4 with r(x) = r1, then let x = L/2, half of the

nanocapillary. Lastly, multiply the total impedance by 2, this is equivalent to solving

the differential equation twice, with r(x) = r1 and r(x) = r1, then adding the solutions.

The solution below is for a constant radius cylinder.

Zcyl(ω) = Rcyl
tanh

(√
iτcylω/4

)√
iτcylω/4

. (2.6)

This solution, equation 2.6 has the same functional form, but different parameter-

ization, as the finite Warburg impedance [9, 10, 11]. Equation 2.6 can be used to fit

the geometry of a cylindrical nanocapillary, and has two free parameters for fitting: the

DC resistance, Rcyl, and a time constant, τcyl given by:

Rcyl =
L

πr2
1κc

, (2.7a)

τcyl =RcylCcyl =
2L2C̃c

r1κc
. (2.7b)

Next, looking at limits of equation 2.6 one finds that in the DC limit, the limit

in which the frequency approaches zero, the equation 2.6 acts as a pure electrolytic

resistor. Furthermore, in the limit the electrical double layer differential capacitance

approaches zero it also acts as a pure electrolytic resistor:

lim
ω→0

Zcyl(ω) = lim
C̃→0

Zcyl(ω) =
L

πr2
1κc

(2.8)

While in the high frequency limit, the impedance of a capacitor approaches zero. Thus

the current path will follow the least resistive path, that of the capacitor, yielding an

overall zero impedance:

lim
ω→∞

Zcyl(ω) = 0 (2.9)

For a fixed DC limit, that is for fixed Rcyl changes in the double layer differential

capacitance C̃ only shift the spectrum along a parametric path. That is, it will only
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Figure 2.2: Above the negative imaginary component of the equation 2.6 for a fixed
Rcyl is shown. This gives different peak frequencies depending on the nanocapillary
cylindrical aspect ratio r/L. The aspect ratios labeled in the figure are relative to
the reference geometry of L =6 µm , r =5 nm with κc = 0.4 S/m, C̃c = 1.5 mF/m2.
Plotting this as a standard Nyquist plot will only show a shift in the peak frequency,
which is fairly difficult to distinguish from one plot to another.

shift the peak frequency. Similarly, changes in the aspect ratio of the nanocapillary for

a constant Rcyl change the peak frequency in the Nyquist plot, which is obtained by

maximizing −Im[Zcyl(ω)] from equation 2.6 giving:

ωpeak ≈ 10.16/τcyl. (2.10)

By altering the aspect ratio, the capillary surface area is changed. As the surface area

increases the overall capacitance of the capillary increases, which increases the time

constant and consequently decreases the peak frequency, see equation 2.10. Again, this

effect is best show by looking at the negative imaginary impedance, figure 2.2. Thus,

EIS can distinguish the capillaries aspect ratio based on the peak frequency, assuming

all the capillaries have the same differential capacitance.

2.2.2 Solution for linearly varying radius

Constriction at the center of the nanocapillary results in an hourglass shape, while

constriction at the nanocapillary opening results in a lozenge shape. Both of theses
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cases can be treated with a linearly varying capillary radius:

r(x) = r0 + 2x(r1 − r0)/L, (2.11)

where, r0 is the entrance radius, and r1 is the center radius. Recalling that the model

is symmetric both hourglass and lozenge shapes will yield identical impedance. Solving

equation 2.4 using equation 2.11 gives a variation of the Warburg impedance, which

the author named the variable topology finite Warburg impedance or ZVTW(ω). The

linear case gives a closed form for lozenge shaped nanocapillaries.

Zloz(ω) =
Rloz(I1(ξ1)K1(ξ0)− I1(ξ0)K1(ξ1))

τ1 − τ0
× (2.12)(

τ1

ξ0(I2(ξ0)K1(ξ1) + I1(ξ1)K2(ξ0))
+

τ0

ξ1(I2(ξ1)K1(ξ0) + I1(ξ0)K2(ξ1))

)
where In is the modified Bessel function of the first kind of order n. And Kn is the

modified Bessel function of the second kind of order n. Also with,

Rloz =
L

κcπr1r0
, (2.13)

and

ξ0 =
√
i4τ0ω and ξ1 =

√
i4τ1ω (2.14)

where,

τ0 =
L2C̃cr0

2κc(r1 − r0)2
and τ1 =

L2C̃cr1

2κc(r1 − r0)2
. (2.15)

The ratio of the time constants is equal to the ratio of the entrance radius and center

radius.

τ1

τ0
=
r1

r0
(2.16)

Figure 2.3 shows the predicted effect of constricting the capillary opening on the EIS

data. In each case the spectrum is normalized to fixing the DC limit. To have a fixed DC

limit, with a fixed capillary length, and capillary conductivity, one needs the product

r0 ∗ r1 to be fixed in equation 2.13. This can be accomplished by setting r0 = rα1/2

and r1 = rα−1/2. Varying α in these cases keeps the DC limit fixed while changing the

time constants. Thus, if one was performing only a DC measurement one would not
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Figure 2.3: The effect of constriction of the openings of cylindrical nanocapillaries on
the EIS spectrum is shown by plotting 2.12 for different ratios of the radii as shown
in the figure legend. Each of the four nano-capillaries has the same DC resistance and
would in principle give identical current-voltage curves in spite of having vastly different
shapes. The EIS shows a clear change with nanocapillary geometry. The parameters
used are L=6 µm, r1=5 nm, κc=0.4 S/m, C̃c=1.5 mF/m2. The inset shows renderings
of the nanocapillary shapes corresponding to the radii ratios labeled in the figure.

measure any difference between the capillaries. However, the constriction reduces the

magnitude of the imaginary component of the EIS data. This effect increases with the

degree of constriction of the openings or the center.

2.2.3 Model Geometry extension

Nanopores and nanocapillaries may have many geometries[12], including quadraticly

varying radii. In addition to this, the different ZVTW circuit elements can be combined

piecewise to account for different regions of variable nanocapillary radius. For example,

the linear circuit element, Zloz, can be combined with cylindrical circuit element, Zcyl

to model a tapered nanocapillary that has a cylindrical center of fractional length f

such as that illustrated in figure 2.1. The tapered capillary is modeled as the sum of

two circuit elements:

ZVTW = Zcyl + Zloz, (2.17)

the cylindrical center portion of length f ·L in the center, 2.12, and two tapered regions

of total length (1−f) ·L, as illustrated in figure 2.7. Thus in equation 2.6 L is replaced
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by f · L, and in 2.13 and 4.4 L is replaced by (1 − f) · L. Combining equation 2.12

and equation 2.6 requires the constraint that the cylindrical portion have the same

radius as the end of the adjoining tapered region. The time constant for the cylindrical

contribution is now determined by the other time constants:

τcyl =
4R2

cylτ1(τ0 − τ1)2

R2
lozτ

2
0

. (2.18)

This eliminates τcyl as a fit variable.

Lastly, since the model, equation 2.12 is symmetric it can be extended to a conical

model by simply doubling the length of the capillary and then dividing the overall

impedance by 2.

2.3 Methods

2.3.1 Support Chamber

Two glass chambers sandwich two cylindrical pieces of polydimethylsiloxane (PDMS),

with a NCAM (GE KN1CP02500) in between. The manufacturer specified that the

NCAM has nanocapillary density of 6× 108 capillaries/cm2 ±15%, a thickness of 6 µm

±10%, prepared by track etching for a nominal pore radius of 5 nm +0% -20%. The

glass chambers contain 5 ml of the test electrolyte solution in 18 MΩ Millipore wa-

ter with a known concentration of electrolytes as discussed below. Ag/AgCl reference

electrodes (MF-2052, Bioanalytical Systems, Inc.) and gold wire counter electrodes

were used. The PDMS cylinders have a 0.60 cm diameter hole for an exposed NCAM

surface area Amem of 0.283 cm2. The PDMS pieces are bonded following exposure to

30 W oxygen plasma[13, 14, 15]. The oxygen plasma attacks the surface of the PDMS,

CH3[Si(CH3)2O]nSi(CH3)3, forming -OnSi(OH)4−n[13]. These then form covalent silox-

ane (Si-O-Si) bonds by a dehydration reaction with opposing surfaces.

All experiments were performed in a copper mesh Faraday cage to minimize electri-

cal noise. The Au counter electrodes were RCA-1 cleaned before each experiment[16].

The RCA-1 cleaning procedure entails boiling the gold counter electrodes in a solution

of 18 MΩ Millipore water, hydrogen peroxide, and ammonium hydroxide in a 10 to 1
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to 0.1 ratio, at 100◦C for 30 minutes. See Figure 2.4 for the experimental setup and

Figure 2.5 for a picture of the device.

Gold Counter 

Electrode

Glass Chamber

Ag/AgCl Reference Electrode

Acrylonitrile Butadiene Styrene 
Support Chamber

PDMS

Polycarbonate Membrane

Figure 2.4: Here a figure of the experimental setup is presented, with gold counter elec-
trodes, Ag/AgCl reference electrodes, the polycarbonate membrane, PDMS cylinders,
and ABS support chamber clearly shown. Image created using Pro-E computer aided
design software.

2.3.2 NCAM

NCAMs require equilibration prior to use[17]. Prior to use, the membranes were soaked

in 18 MΩ Millipore water for 48 hours. Prior to each experiment, they were soaked at the

experimental solution conditions for 4 hours. This is to ensure the the nanocapillaries

within the membrane are not only hydrated, but have reached their equilibration. At

equilibration they will have a slightly higher concentration of ions within themselves as

compared to the bulk concentration. It is critical to maintain a constant pH so as to

preserve the membrane surface charge density[18], which determines the double-layer

capacitance[19]. A 10 mM sodium phosphate buffer was used to fix the pH at 7.0±0.1

at each of the five concentrations of NaCl: 100, 50, 20, 10, 0 mM. Bulk conductivities
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Figure 2.5: Here a figure of the device is presented. The gold counter electrodes and
the Ag/AgCl reference electrodes are connected to a Gamry Instruments Reference 600
potentiostat. The purpose of the gold counter electrodes is to apply the field, while the
reference electrodes measures the potential difference across the membrane.

of these solutions were interpolated from published values.[20] These values matched

well with conductivity measurements made based on determining the cell constant and

instrument without a membrane present but showed some deviations at high ionic

strengths. (See supporting information.)

2.3.3 Potentiostat

A Gamry Instruments Reference 600 potentiostat was used to apply the potentials and

measure the impedance in the system in a standard 4-electrode permeation cell mode.

In this work, the applied potentials were kept low (10 mV AC amplitude and no DC

bias) to minimize any Faradaic reactions. Furthermore, the reference electrodes are

connected to a high impedance input and draw negligible current. 67 frequencies were

measured ranging from 0.1 Hz to 1 MHz. Measurements were made for each solution

condition with and without the membrane present to determine the cell constant and

instrument response. Each experiment was repeated 4 times with a maximum variabil-

ity of 0.8%, in the magnitude of impedance, and the data reported is the average of
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these measurements.

2.3.4 Fitting and Active Set

Each EIS measurement was subjected to Kramers-Kronig validation using a grid of 300

R‖C functions with log-spaced time constants ranging from 9 ns to 400 s to fit using

the active set approach.[21] Increasing the resolution and range of the grid did not

improve the fits. The residuals were well behaved with magnitudes that matched the

empirically observed run-to-run variability in the data. The equivalent circuit models

were implemented in Mathematica 7.0.1 (Wolfram Research) and the data sets were fit

using the built in NonlinearModelFit function. The variance of the residuals from the

active set fit was used to estimate the per-point variance of the data sets and also used

to determine a reduced chi-squared statistic, χ2
red, to evaluate the quality of non-linear

fits to the different equivalent circuit models:

χ2
red =

νas

νm

χ2
m

χ2
as

(2.19)

Here, χ2
m and χ2

as are the summed squared residuals from the equivalent circuit model

fit and the active set fit respectively. The corresponding degrees of freedom are νm

and νas. Each of the 67 frequencies used produces an impedance with a real part

and an imaginary part, thus n=134 measurements are made. For the active set fits,

νas = n − p where p is the number of active elements in the active set fit. For the

nonlinear model fits, νm = n − p where p is the number of free fit parameters in the

model. Errors in nonlinear model fit parameters were taken from the estimates provided

by the NonlinearModelFit function.

2.4 System modeling

The NCAM EIS data, shown in figure 2.9, is fit to various models of increasing complex-

ity. Each model is identical except for the element representing the nanocapillary. In

addition to the nanocapillary there is the cell and instrument response, the membrane

surface effects, and the membrane itself. All of which add to the overall impedance
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of the system, and thus must be accounted for in the overall model. The cell and

instrument response, the background, is modeled as a single R ‖ C circuit:

Zbk = Rbk ‖ Cbk, (2.20)

where, Zbk, Rbk, and Cbk, are respectively the impedance, resistance, and capacitance

of the electrochemical cell and instrument. The background can be seen in Panel B of

figure 2.9. Next, a small feature accounting for less then 2% of the total impedance

appears below 200 Hz. Membrane surfaces have been observed to give low-frequency

dispersive responses in EIS[22]. This feature was not present in the background and

thus must be attributed to the membrane. It it attributed to the double layer on the

surface of the membrane and modeled as an R ‖ C circuit:

Zms = Rms ‖ Cms, (2.21)

where, Zms, Rms, and Cms, are respectively the impedance, resistance, and capacitance

of the electrical double layer on the surface of the membrane.

The NCAM is not composed on one single nanocapillary but N nanocapillaries, all

in parallel. Adding in parallel to this the impedance due to the membrane, Cmem gives:

Zsys =
ZVTW

N
‖ Cmem. (2.22)

Finally, the overall equivalent circuit model, the sum of these elements, for the experi-

ment becomes

Zexp = Zsys + Zbk + Zms (2.23)

or

Zexp =
ZVTW

N
‖ Cmem +Rbk ‖ Cbk +Rms ‖ Cms. (2.24)

Except for the element representing the nanocapillary, all elements will remain un-

changed while altering the model in attempts to improve the fit.
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Figure 2.6: Notice this most basic model, using a single resistor to fit the nanocapillary
equation 2.25 performs terribly, with a reduced chi squared of about 4500. The only
feature the model can obtain is the DC limit. With bulk specific conductivities [S/m]
of 1.093, 0.617, 0.342, 0.238, 0.136, purple, blue, green orange, red, respectively.

2.5 Nanocapillary Models

As mentioned, various models of increased complexity are fit to the EIS data where in

each model all elements except that which represents the nanocapillary are unchanged.

The first model is to use a single resistor R to fit the nanocapillary. Thus is in equa-

tion 2.24 ZVTW is replaced with an R, while the impedance of the membrane surface,

background, and membrane are fixed:

Zexp =
R

N
‖ Cmem +Rbk ‖ Cbk +Rms ‖ Cms. (2.25)

The fit to this model is shown in figure 2.6. This model performs fairly poorly with a

reduced chi squared of about 4500. The only feature this model is able to capture is

the DC limit.

The next model is to consider modeling the nanocapillary with the constant radius

model Zcyl equation 2.6, while the overall model becomes:

Zexp =
Zcyl

N
‖ Cmem +Rbk ‖ Cbk +Rms ‖ Cms (2.26)

which is fit to the NCAM EIS data and shown in figure 2.7. This model requires

and addition fit parameter, however substantially improves the fit with a reduced chi

squared of 500. Unfortunately, this model still does not capture all of the depression
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Figure 2.7: Modeling the nanocapillary with Zcyl, equation 2.26 improves the fit with a
reduced chi squared of 500 and is a 9 times improvement over equation 2.25. However,
the model still does not capture the degree of suppression at the peak of the spectrum.
With bulk specific conductivities [S/m] of 1.093, 0.617, 0.342, 0.238, 0.136, purple, blue,
green orange, red, respectively.

in the EIS spectrum, indicated that the nanocapillary is not a cylinder but has a more

lozenge type form.

Next the nanocapillary is modeled with Zloz, equation 2.12 which gives not a con-

stant radius, but a lozenge shape to the nanocapillaries. Replacing this with ZVTW as

our model for our nanocapillaries yields an overall model of

Zexp =
Zloz

N
‖ Cmem +Rbk ‖ Cbk +Rms ‖ Cms (2.27)

and is fit to the NCAM EIS data and shown in figure 2.8. This model requires and

addition fit parameter over using equation 2.26, however dramatically improves the fit,

capturing all the features of the data. Unfortunately, this model yields a reduces chi

squared of 61, indicating that there is still room for improvement.

Nanowires grown in NCAMs have shown that NCAMs may be tapered only at the

ends, but have a constant radii though out the center region of the nanocapillary.[23,

24, 25, 26, 27, 28] Using Zloz implies that the taper is across the entire capillary rather

than just at the ends. Thus, fitting with equation 2.24 implies the nanocapillary has a

central cylindrical geometry with tapered ends, similar to a cigar. Panel A of figure 2.9

shows the EIS data fit to equation 2.24, while the background is fit to equation 2.20

as shown in Panel B, and the difference between them is shown in Panel C. The model
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Figure 2.8: Modeling the nanocapillary with Zloz, equation 2.27 improves the fit with
a reduced chi squared of 61 and is a 9 times improvement over equation 2.26. The
model accurately produces all the features of the data, however the still seemingly
large reduced chi squared indicates that there is still improvements to the fit to be
made. With bulk specific conductivities [S/m] of 1.093, 0.617, 0.342, 0.238, 0.136,
purple, blue, green orange, red, respectively.

yields a reduced chi squared of 34, which is almost twice as low as the previous model,

the lozenge model. This model is fit both locally, fitting the data sets individually,

and globally, fitting all the data sets simultaneously. The advantage of fitting equation

2.24 globally is that one can directly fit to the desired parameters, while locally the

fits yield time constants and resistances which must be again fit, vs. concentration

to extract the desired properties. However, local fitting is required first to determine

how certain parameters, the nanocapillary double layer differential capacitance, and

the conductivity within the capillary depend on the bulk specific conductance.

Global fitting yields a reduces chi squared of 37, comparable to the local fitting.

Table 2.5 summaries the quality of each model and the shows the number of parameters

used in each fit. While table 2.5 shows the relevant fit parameters for equation 2.23

along with errors. The local fits reveal the time constants and resistance values for

equation 2.23. Combinations of these parameters reveals their global dependance used

in global fitting.
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Figure 2.9: Panel A shows markers for experimental EIS data on a NCAM at 5 different
concentrations of phosphate buffered NaCl that give conductivities as indicated in the
figure ledgend. Panel B shows the response of the cell and instrument for the same
solution conditions. Panel C shows the response of just the membrane obtained by the
subtraction of the instrument response from the data. Local fits using 2.24, 2.20 and
their difference are shown as solid lines in panels A, B, and C, respectively.

Table 2.1: Quality of Model Fits
Model χ2

m · 103 p ν χ2
red

R ‖ Cmem 7700 30 640 4500
Zcyl ‖ Cmem 860 35 635 500
Zloz ‖ Cmem 100 40 630 61

local (Zloz + Zcyl) ‖ Cmem 57 45 625 34
global (Zloz + Zcyl) ‖ Cmem 64 22 658 37

Active Set 1.5 100 570 1.0

2.6 Local fits reveal global NCAM EIS model

There are two types of parameters in the ZVTW impedance element. Geometric pa-

rameters such as r0, r1, N , and L which should be independent of the electrolyte

concentration. The capacitance of the double layer should depend on the electrolyte

concentration. The changes in EIS with electrolyte concentration allows separation of

these effects through a global analysis. Figure 2.6 shows plots of combinations of the

local parameters that allow extraction of the global dependence of the geometric and

capacitive properties of the nanocapillaries.

Figure 2.6A shows a plot of the combination of parameters that isolates the effective
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Figure 2.10: Fits using active set are shown above. With bulk specific conductivities
[S/m] of 1.093, 0.617, 0.342, 0.238, 0.136, purple, blue, green orange, red, respectively.

Table 2.2: Parameters for local fits to ZVTW = Zcyl + Zloz

NaCl Buffer κb τ0 τ1 Rcyl/N Rloz/N
mM mM S/m µs µs Ω Ω

100 10 1.093±0.004 1.6±0.8 4.0±1.3 226±4 644±11
50 10 0.617±0.002 3.9±1.0 8.8±1.6 360±6 1070±14
20 10 0.342±0.001 8.2±1.9 17±3 598±9 1740±20
10 10 0.238±0.001 14±3.5 27±5 788±13 2198±24
0 10 0.136±0.001 31±7.6 52±10 1180±20 3024±30

capillary conductivity,

κc =
(τ0 + τ1)2

τ1(Rlozτ0 +Rcylτ1)

L

π(r0 + r1)2N
, (2.28)

versus the bulk solution conductivity. The conductivity in the capillary is observed

to be linearly related to the bulk conductivity (κc = κb + κ0) with (κ0 =0.105±0.003

S/m). The slightly higher conductivity inside the nanocapillary is consistent with the

requirement of additional charge to neutralize capillary surface charge.[29] This effect

is most noticeable for capillaries with diameters comparable to the Debye length at a

given electrolyte concentration.[4, 5, 6, 7, 8]

Figure 2.6B shows a plot of the ratio of time constants which is related to the ratio

of the entrance and center radii through equation 2.16. The plot shows that the ratio

of radii parameter has an average value of 2.0±0.1. Figure 2.6C shows a plot of the

combination of local fit parameters that give the fraction of the nanocapillary length
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that is cylindrical:

f =
τ1Rcyl

τ1Rcyl + τ0Rloz
(2.29)

Figure 2.6C shows that the cylindrical fraction parameter has an average value of

0.416±0.009. Both of the geometric nanocapillary parameters show a modest depen-

dence of their values on the conductivity. In both cases the conductivity dependence is

smaller than the error in the parameters as propagated from the fit parameters. This

small effect is likely due to the covariance of fit parameters in the local nonlinear fitting

function.

Figure 2.6D shows a plot of the combination of parameters that isolates the differ-

ential capacitance of the nanocapillary interior:

C̃c =
2 (τ0 − τ1)2 (τ1Rcyl + τ0Rloz)

πr1τ2
0R

2
lozLN

, (2.30)

The differential capacitance showed a square root dependence on solution conductivity

(C̃c = C̃0+C̃1
√
κb) with C̃0=1.12±0.03 mF/m2 and C̃1=0.53±0.04 mF/m2

√
m/S. The

square root power law is consistent with a simple Gouy-Chapman interpretation of the

double layer capacitance.[30, 31, 32] Appendix A is dedicated to a discussion on the

Gouy-Chapman model.

2.7 EIS global fitting gives NCAM geometry

To obtain final nanocapillary geometric properties, the data was subjected to a global

fit to equation 2.17. The dependencies of the local fit parameters on the nanocapillary

properties are defined by equations 4.4, 2.12, 3.4a, and 3.4b with the total length pa-

rameter replaced by the appropriate fractional length as discussed for equation 2.17.

The global analysis directly fit the nanocapillary geometric properties r0,r1,f as in-

dependent of bulk conductivity. The parameters that control the bulk conductivity

dependence of differential capacitance and the capillary conductivity (C̃0, C̃1 and κ0)

are also re-optimized by the global fit. The background circuit element was globally

modeled as a simple electrolyte solution resistor (Rbk = Rcell/κb) with a power-law

conductivity-dependent capacitance constant (Cbk = C1bkκ
3/2
b +C0bk). The same power
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Figure 2.11: Local fit parameters were plotted in combination (points) to obtain the
global dependence (fit lines) of nanocapillary parameters as discussed in the text. Error
bars were propagated from the standard errors from the fit parameters. Panel A shows
the capillary conductivity vs. the bulk conductivity. A linear dependence is found with
a constant offset to account for surface charge counter ions in the nanocapillary. Panel
B shows the ratio of the radii, r1/r0. Panel C shows the fraction, f , of the length, L,
of the capillary that is cylindrical. Panel D shows the capillary double-layer differential
capacitance and a fit to a square root power law.

law functions were observed to fit the instrument response of both the background mea-

surement and the NCAM measurement. The cell constant, Rcell was the also the same

within experimental uncertainty. The low frequency circuit element (10 parameters)

was not re-optimized from the local values that appear in the supporting information.

The parameters L, N , and Cmem were allowed to float after initial convergence.

Table 2.7 shows the 12 global fit parameters. The uncertainties in table 2.7 were

estimated based on the diagonal elements of the covariance matrix of the χ2 surface for

the global fit. For many of the parameters these estimates appear to be unrealistically

small if interpreted as uncertainties in the determination of the parameter. Use of the

covariance matrix to determine parameter uncertainties is based on the assumption that

all variance is due to random errors. The magnitude of the active set fit residuals was

consistent with random noise in the measurement. The squared residuals for both the

local and global fits are a factor of ∼35 larger than those of the active set implying that
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Table 2.3: NCAM EIS global fit parameters

r0 2.19 ± 0.01 nm
r1 4.05 ± 0.01 nm
f 0.408 ± 0.007
κ0 0.109 ± 0.001 S/m

C̃0 1.21 ± 0.05 mF/m2

C̃1 0.36 ± 0.09 mF/m2
√

m/S
Rcell 410 ± 2 m−1

C0bk 7.8 ± 1.8 pF

C1bk 58 ± 26 pF(m/S)3/2

N 1.70 ± 0.01·108

L 6.00 ± 0.03 µm
Cmem 139 ± 17 pF

there is some aspect of the NCAM response not being accounted for in the model vida

infra. In this case the uncertainties in the parameters as determined from the diagonal

covariance matrix elements must be interpreted as measures of how well the parameter

is defined by the fitting procedure.

2.8 Possible model limitations

The equivalent circuit model fits the data well and is able to produce a quantitative

estimate of the nanocapillary geometry. However, the fit residuals result in a value of

χ2
red that suggest that the model is still incomplete. There are several aspects of the

equivalent circuit model where improvement in the physical description of the model

could lead to a better fit to the data. Since any of the improvements could be invoked,

none should be without specific evidence. In each case there is no evidence compelling

the increase in complexity. Therefore inclusion of these phenomena is beyond the scope

of the present work.

Though the ZVTW approach can accommodate a distribution of nanocapillary radii

and/or shape, the current model does not include any contribution from nanocapillary

geometric heterogeneity; it assumes all nanocapillaries have the same geometry. Adding

a distribution of geometries would increase the dispersion of the time scales in the

main EIS feature and would lead to an improvement in the fit. However, ion-track
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etched nanocapillaries are reported to be largely homogenous in geometry.[23, 25, 27].

Attributing the dispersion of the nanocapilllary contribution to the EIS signal would

imply a distribution of capillary cylindrical radii covering a range of ∼2.5 times the

average radius. This is in significant excess of the specified and observed distribution

of ion-track etched nanocapillaries.

The range of time constants present in the component attributed to the membrane

could include contributions outside of the low-frequency region that the equivalent cir-

cuit model currently treats. The phenomenological treatment of these low-frequency

contributions is descriptive and invokes serial R ‖ C circuits. To resolve any possible

overlap between these dispersive membrane contributions to the EIS and the nanocap-

illary response would require a better phenomenological description than serial R ‖ C

circuits. Until such treatments are available this sort of ambiguity is likely to persist.

The geometry used to solve ZVTW and treat the nanocapillaries may be too sim-

plistic to represent the real nanocapillaries. The present model exhibiting tapered ends

with an approximately cylindrical center is most complicated overall geometry that has

been confirmed to be present in NCAMs.[23, 24, 25, 26, 27, 28] Independent character-

ization of any variability of the nanocapillary radius is needed to provide justification

for additional geometric complexity.

The surface of the polycarbonate membrane is coated with polyvinylpyrrolidone.

This detail is not distinguished in the model. Given the thinness of the PVP passivation

layer, it is unlikely that it would contribute significantly to the impedance of the circuit.

The double-layer differential capacitance is treated as a simple differential capacitor

element.[19] The actual response of the double layer is likely more complicated. It has

been proposed to use multiple R ‖ C components in order to separate the electrical

double layer into the more diffuse Gouy-Chapman layer and inner, more compact Stern

layer.[33] Substitution of a more complicated model for the differential capacitor element

would increase the dispersion of ZVTW and possibly improve the fit. However, as with

the other examples of added model complexity, there is no independent evidence to

prefer this approach to improving the fit over the others already discussed.
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2.9 Comparison of fit parameters and manufacturer’s specifications

The fit parameters suggest that the openings to the nanocapillaries are constricted

by a factor of 1.85 from their centers. Several imaging studies have shown that the

nanocapillaries are wider the middle as compared to the entrance and exit.[23, 28, 27,

25, 26, 24] The middle region of nanocapillaries can be wider than the entrance and

exit by almost 3 times in some cases.[23].

The fit parameters indicate a nanocapillary entrance (and exit) radius of 2.19±0.01 nm

and a center radius of 4.05±0.01 nm. The manufacturer reports the nominal radius to

be 5 nm, with a tolerance between 0 and -20% (or 4.5±0.5 nm) a membrane thickness of

6 µm with a tolerance of ± 10%; and a capillary density of 6×108 capillaries/cm2 with

a tolerance of ± 15%. Therefore, the fit parameter for the center radius is at the low

end of the manufacturer’s specifications. The uncertainty in the membrane thickness

and nanocapillary number density together could change the estimated opening and

center radii to be 2.49 nm and 4.61 nm, respectively. Several additional phenomena

could account for a systematic underestimation of the nanocapillary radii.

The mobility of ions in the electrical double layer is expected to be reduced compared

to those in the bulk. Such effects of electroviscosity[34, 35] are not explicitly incorpo-

rated into the model. It is possible that such an effect would increase the impedance of

the nanocapillary. The net effect in fitting the present model would be to underestimate

the nanocapillary radii to compensate for the added impedance. An improvement to

the present model might, therefore, be to add a differential resistive element in series

with the double layer differential capacitive element. The low frequency component

that was attributed to the membrane surface was modeled as a single R ‖ C circuit.

The active set fits indicated that this component was very dispersive in nature requir-

ing 6 R ‖ C components covering at least 4 decades in decay time. It is possible that

the membrane surface response also included impedance in the same spectral region as

the nanocapillaries. In this case the additional impedance would manifest as a smaller

nanocapillary radius in the fitting.
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Both the membrane thickness and capillary number density are coupled in the fit-

ting to the capillary geometry. If the thickness of the membrane during the experiment

is larger than that specified or if the number density of the nanocapillaries is lower than

that specified, then the nanocapillaries radius will be underestimated. Changing mem-

brane thickness will also influence the membrane capacitance. However, for changes in

Cmem consistent with the variability of the membrane thickness, essentially no changes

were observed for the geometric parameters.

2.10 Conclusion

An analytical modeling approach for extracting nanocapillary geometry and double

layer differential capacitance from EIS data has been presented and validated experi-

mentally through measurement on a commercial NCAM. By exploiting the differences

between the nanoscale and the bulk response to changes in electrolyte concentration, the

model provides a quantitative estimate for the nanocapillary geometry. The method-

ology presented in this work is expected to be of interest to the larger community of

nanopore and nanocapillary investigators due to the non-invasive nature of the tech-

nique.
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Table 2.4: NCAM Nomenclature List
name definition SI unit

Z impedance [Ω]
R resistance [Ω]
R′ dR/dx [Ω/m]
C ′ dC/dx [F/m]
ω angular frequency [rad/s]
i

√
−1 []

r radius [m]

C̃c capillary double-layer differential capacitance [F/m2]
κc capillary conductivity [S/m]
κb bulk conductivity [S/m]
L capillary length [m]
Zcyl cylindrical impedance model [Ω]
Zloz lozenge impedance model [Ω]
ZVTW variable topology finite Warburg impedance [Ω]
Rcyl resistance of a cylinder [Ω]
Rloz resistance of a lozenge [Ω]
r0 entrance (and exit) radius [m]
r1 center radius [m]
f fraction cylindrical length of nanocapillary []
τcyl time constant for constant radius capillary [s]
τ0 time constant for r0 in Zloz [s]
τ1 time constant for r1 in Zloz [s]

Cmem membrane capacitance [F]
N number of capillaries []

Amem membrane area [m2]
Rms resistance of external membrane surface [Ω]
Cms capacitance of external membrane surface [F]
Rbk cell and instrument resistance [Ω]
Rcell cell constant [m−1]
Cbk cell and instrument capacitance [F]
C0bk constant coefficient in Cbk fit [F]

C1bk κ3/2 coefficient in Cbk fit [F (m/S)3/2]
Zbk cell and instrument impedance [Ω]
Zexp experiment impedance [Ω]
Zsys system impedance [Ω]
κ0 increased capillary conductivity offset [S/m]

C̃0 constant coefficient in C̃c fit [F/m2]

C̃1 square root coefficient in C̃c fit [F/m2
√

m/S]
ν degrees of freedom []
p number of fit parameters []
χ2

m chi squared model [Ω2]
χ2

as chi squared active set [Ω2]
χ2

red reduced chi squared []
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Chapter 3

Theoretical Models for Electrochemical Impedance

Spectroscopy of Unfolded Proteins Though Nanopores

and Relation to Zeta Potential

3.1 Introduction

Individual solid-state nanopores have been fabricated[1, 2] and have been used to de-

velop synthetic systems for ion-channel studies[3, 4, 5, 6, 7], single molecule sensing[8, 9,

10], DNA resistive pulse measurements[1, 10], and DNA sequencing.[11] Recently, elec-

trochemical impedance spectroscopy or EIS[12, 13, 14], which measures the impedance

as a function of frequency of applied AC potential, has been used to analyze these

nanopores[15]. Since the EIS signal is a measure of the electrokinetic transport of solu-

tions though nanopores, it is sensitive to the surface properties and geometries of these

nanopores.[16, 17, 15] Vitarelli, et.al.[15] has shown that by measuring the impedance

of nanopores in a conducting solution it is possible to obtain their geometry and the

double layer differential capacitance at the walls of the nanopores. Now that an accu-

rate model exists to predict the nanopore geometry dependance of EIS spectrum in a

conducting solution, it is possible to extend this model to include the influence of large

molecular species, such as proteins, within the nanopore.

This chapter extends the Variable Topology Finite Warburg (VTW) impedance

model[15] to include the effect of an unfolded protein within the nanopore, see 3.1.

The protein was modeled as a cylinder with a surface charge density that, when in a

conducting solution, produces an electrical double layer (EDL) differential capacitance

along its surface. Resistive pulse measurements[1, 10] use only the DC potential to

measure the current vs. time and typically bin the average current drop and event

duration via histograms. This capacitance due to the EDL allows for the measurement
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Figure 3.1: Figure above shows an unfolded and elongated protein traversing the
nanopore. Each colored sphere on the protein is an amino acid. As the protein passes
though the nanopore the groupings of amino acids will be sampled. The amount of
excluded volume and surface charge density within each grouping will effect the overall
impedance. The goal of this study is to determine the impedance of a protein within a
nanopore and propose a method to rapidly sequence a protein.

of the complex resistance under the application of an AC potential. In the natural state

a protein is globular however is shown to unfold within nanopores[10], thus a cylindrical

model is chosen.

The model should show physically correct high and low frequency limits. In the

low frequency limit the model should become purely resistive. The impedance of a

capacitor is inversely proportional to the applied frequency, thus in the high frequency

limit model’s impedance should approach zero as does an R ‖ C circuit. EIS spectra

for various protein radii should show that when the radius of the protein within the

nanopore is increased to encompass the entire nanopore the EIS spectrum approaches

that of an ideal capacitor. In addition to this, when the radius of the protein is set

to zero the model should reduce to the original VTW model. Since maximizing the

negative imaginary impedance of an R ‖ C circuit, with respect to ω yields a peak

frequency which is the inverse of the R ‖ C circuit’s time constant, then maximizing

the modified VTW model with respect to ω should also yield a peak frequency that is

inversely proportional to the time constant. Finally, the effect of different magnitudes

of differential capacitance on the imaginary component of the impedance are shown.

Noting the location of the peak frequency in the imaginary component of the EIS

spectrum should allow for the distinguishment of one protein residue from the other,



56

allowing for the rapid sequencing of proteins.

Lasty, to obtain an approximation for the protein double layer differential capaci-

tance an advancement is shown by transforming the Poisson-Boltzmann equation into

an operator equation[18, 19, 20, 21, 22] and solving for the first correction to the po-

tential. This first order correction to the potential yields a double layer differential

capacitance which is now a function of the surface potential which is then expressed as

a function of the zeta potential[23, 24, 25, 26], a regularly measurable quantity. Now

having a relationship between the double layer differential capacitance and the zeta

potential allows for single molecule or even single residue zeta potential measurements.

Since the protein will unfold in a nanopore[10], one can imagine a nano manipulation

experiment in which one end of the protein is attached to an AFM tip and it slowly

treaded though the nanopore. By measuring the peak frequency as a function of po-

sition one can now simply read off the zeta potential as a function of residue. Lastly,

if a large nanopore, with a radius greater then the globular protein radius, is used in

which the protein does not unfold then the protein will remain globular and one can

measure the overall single protein differential capacitance and thus the single protein

zeta potential.

3.2 Results and Discussion

3.2.1 Developing the modified differential equation

A differential equation whose solution is used to model the influence on EIS of the

geometry and double layer differential capacitance of nanopores has been developed:[15]

Z ′(x) + iωC ′(x)Z(x)2 −R′(x) = 0, (3.1)

where,

dR

dx
= R′(x) =

1

πr2(x)κn
, and

dC

dx
= C ′(x) = 2πr(x)C̃n, (3.2)

Here i =
√
−1, ω is the angular frequency of the AC voltage, x is the coordinate

along the length of the nanopore, C̃n is the double-layer differential capacitance of

the solution-nanopore wall interface, and κn is the specific conductivity of the solution
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within the nanopore. The conductivity within nanopore is found to be higher then that

of the bulk, κ [27, 28, 29, 30, 31]. In this formulation, a nanopore of length zero should

have zero impedance and provides the boundary condition, Z(0) = 0. The circuit

element is symmetrized by solving the differential equation with r(x) proceeding from

x = 0 to x = L/2 and then replacing r(x) by r(L/2 − x) and proceeding again from

x = 0 to x = L/2, to obtain the impedance for the total length, L, for the nanopore

[15].

For a constant radius, r(x) = rn, the solution to 3.1 is

Zcyl(ω) = Rcyl
tanh

(√
iτcylω/4

)√
iτcylω/4

. (3.3)

with

Rcyl =
L

πr2
nκn

, (3.4a)

τcyl =RcylCcyl =
2L2C̃n

rnκn
. (3.4b)

Other geometries including linearly varying geometries such as an hourglass, lozenge,

and conical, as well as quadratically varying geometries were discussed previously[15].

It is known that the strong electric fields inside nanopores can unfold and elongate

proteins[10]. Suppose now that an elongated and unfolded protein is traversing the

nanopore, while assuming the protein, with radius rp, is a cylinder with uniform surface

charge density which yields a uniform differential capacitance C̃p, and effective length

equal to the length, L of the nanopore; only the portion of the protein within the biased

region of the nanopore is influencing the nanopore response. The protein excludes some

of the volume of the nanopore, thus reducing the volume of solution in the nanopore,

thus increasing the nanopore’s impedance. In addition to this the surface charge density

on the protein adds a differential capacitance to the system. With this, equation 3.2

becomes:

dR

dx
= R′(x) =

1

π(r2
n(x)− r2

p(x))κn
, and

dC

dx
= C ′(x) = 2π(rn(x)C̃n + rp(x)C̃p(x)).

(3.5)

For constant radii, rn(x) = rn, rp(x) = rp and constant protein double layer differential

capacitance, C̃p(x) = C̃p the solution to equation 3.1 with the definitions in equation
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3.5 becomes

Zcyl+p(ω) = Rcyl+p
Tanh

(√
iτcyl+pω/4

)√
iτcyl+pω/4

(3.6)

with

Rcyl+p =
L

π(r2
n − r2

p)κn
, (3.7a)

τcyl+p =Rcyl+pCcyl+p =
2L2(C̃nrn + C̃prp)

(r2
n − r2

p)κn
. (3.7b)

Notice equations 3.7a and 3.7b reduce to equations 3.4a and 3.4b when the radius of

the protein, rp, is zero. Equivalently, when there is no protein in the nanopore. Notice

in equation 3.5 the protein double layer differential capacitance C̃p was fixed to be

independent of x. Each protein reside will, however, have a different surface charge

density and thus produce a different differential capacitance. Thus the differential

capacitance shown here is the average of all the residues. However, by allowing C̃p to

vary with x one may solve this piecewise enabling one to sequence a protein. Also, C̃n

is presented, independent of x since, in general, nano-pores will have a uniform surface

charge density.

3.2.2 Evaluating the solution

Notice in the low frequency limit equation 3.6 reduces to a purely resistive element,

that of a conducting solution though a coaxial:

lim
ω→0

Zcyl+p(ω) =
L

πκn(r2
n − r2

p)
(3.8)

which is also equal to equation 3.7a. While in the high frequency limit equation 3.6 is

zero

lim
ω→∞

Zcyl+p(ω) = 0, (3.9)

and has zero slope. Next, locating the peak frequency can be found by maximizing

−Im[Zcyl+p(ω)] from equation 3.6 giving

ωpeak ≈ 10.16/τcyl+p (3.10)

Which is reasonable since the peak frequency of an R ‖ C circuit is located at the

inverse of its time constant.
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Figure 3.2: Here the EIS spectrum of a protein, modeled as a cylinder, within a nanopore
is shown. Both figures show plots of 3.13 with L =60 nm, rn =10 nm, rs = 100 µm, κ
= 0.5 S/m, C̃n = 1 mF/m2, C̃p = 10 mF/m2, and εs = 6, with rp =0 nm, 5 nm, 9 nm,
9.5 nm, 9.9 nm, 9.99 nm, 9.999 nm, and 9.9999 nm, colored black, red, purple, green,
orange, cyan, magenta, blue respectively. In the limit the radius of the protein is equal
to that of the nanopore, the signal is that of an ideal capacitor.

3.2.3 Completing the model: Inclusion of the chip impedance

The nanopore is not alone, but contained within a substrate, often silicon nitride, who’s

capacitance is given by

Cs = εsε0As/L (3.11)

where ε0 is the permittivity of free space, εs is the dielectric constant of the substrate,

As = π(r2
s − r2

n) is the cross-sectional area of the cylindrical substrate, with rs being

the substrate’s radius, and L is the thickness of the substrate and the length of the

nanopore though the substrate. While the impedance of this substrate, assuming a

perfect capacitor, is given by:

Zs =
1

iωCs
(3.12)

Since the the substrate and nanopore are in parallel the system impedance becomes

Zsys = Zcyl+p ‖ Zs (3.13)

A final component could be added to this model, the capacitance due to the dielectric

of the protein. However, this will have negligible affect on the EIS spectrum.

Equation 3.13 is shown in figure 3.2. Multiple protein radii are shown for a fixed

nanopore radius. As the protein’s radii approaches the radius of the nanopore the



60

10 1000 105
0

10

20

30

40

Ω Hrad�sL

-
Im
@Z
HΩ
LD
HG
W
L

Relative
Protein Differential

Capacitance

10 1000 105
0

10

20

30

40

Ω Hrad�sL

-
Im
@Z
HΩ
LD
HG
W
L

Relative
Protein Differential

Capacitance

Figure 3.3: The negative imaginary component of equation 3.13 is shown with L=60 nm,
rn =4 nm, rp =1.5 nm, this is the radius of an unfold protein, rs =40 nm, κn = 0.1 S/m,

the experimentally determined[15] nanopore double layer differential capacitance C̃n =
1 mF/m2, the calculated protein double layer differential capacitance C̃p = 0.1α F/m2,
the dielectric constant of the substrate, assuming silicon nitride, εs = 6, and α =
1,2,5,10, blue, red, yellow, green, respectively. These parameters have been chosen to
accentuate the effect of the double layer differential capacitance on the surface of the
protein. However, one of the parameters the radius of the substrate, rs =50 nm is rather
small. The intension is to minimize the capacitance from the substrate so that it does
not mask the signal from the capacitance of the double layer of the protein. However,
the means that experimentally the nanopore can only be contained in a substrate with
a radius of about 50 nm, otherwise the difference in surface charge density from region
to region on the protein will not be distinguishable. If one would increase the radius
of the substrate to rs =200 nm then the capacitance of the substrate would mask the
signal from the protein as shown in the right panel. Other than changing the radius of
the substrate the left and right panels are identically calculated.

EIS spectrum shows that of an ideal capacitor, as one would expect. The system

contains a cylinder within a hole in a substrate. As the cylinder fills the hole, the

substrate becomes whole, and thus simply a flat substrate. This flat substrate would

be accurately modeled as a capacitor.

In figure 3.3 the negative of the imaginary impedance of equation 3.13 vs. fre-

quency is shown for several differential capacitance’s on the surface of the protein. As

the protein is traversing that nanopore different regions on the protein will have varying

amounts of surface charge density. This surface charge density will, when the protein

is in a conducting solution, produce a double layer differential capacitance The value of

this capacitance can be extracted by fitting to equation 3.13, from which the time con-

stant equation 3.7b is found which is a function of the protein double layer differential
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capacitance.

Notice equations 3.7a and 3.7b gives 6 physical parameters, rp, rn, C̃p, C̃n, L and

κn. However these equations only give 2 measurable parameters, τcyl+p and Rcyl+p. To

obtain all of these parameters a calibration of the nanopore must first be performed to

obtain the geometric parameters of the nanopore using equations 3.4a and 3.4b which

has been previously shown[15]. After the three geometric parameters of the nanopore

is known, along with the nanopore conductivity then the protein parameters may be

obtained.

3.2.4 Differential capacitance and zeta potential formalism

Next, an expression for the zeta potential[23, 24, 25, 26] and double layer differential

capacitance for a long cylinder is developed. As mentioned before, experimentally the

double layer differential capacitance of a protein can be determined. It is shown that

once C̃p is found then the surface charge density can be found or visa versa. It is shown

that either of these two quantities can be calculated if the zeta potential is known.

Since the zeta potential is a regularly measured quantity it would be invaluable to have

an expression to calculate the double-layer differential capacitance or surface charge

density from the zeta potential. In principle EIS is sensitive to the local differential

capacitance enabling a method to measure the local zeta potential.

Beginning with Poisson’s equation[12, 32] for a long cylinder, where the potential is

independent of the length and angular coordinate:

1

r

d

dr
r
dΦ(r)

dr
= − ρ

ε0εr
(3.14)

With the total charge per unit volume in a given lamina given by the Boltzmann

distribution[12, 32]:

ρ =
∑
i

niqzi =
∑
i

n0
i qziExp

(
−ziqΦ
kBT

)
(3.15)

where Φ is the potential, kB is Boltzmann’s constant, T is absolute temperature, q is the

elementary charge, z is the valency, ni is the species density in the lamina, and n0
i is the

bulk species density infinitely far from the potential source. Using this density equation



62

3.15 in equation 3.14 one finds the Poisson-Boltzmann equation for a cylindrical system:

1

r

d

dr
r
dΦ(r)

dr
= − q

ε0εr

∑
i

n0
i ziExp

(
−ziqΦ(r)

kBT

)
(3.16)

Consider simplifying this for a 1:1 electrolyte such as KCl where n0
1 = n0

2 = n0, z1=1

and z2 = −1:

1

r

d

dr
r
dΦ(r)

dr
=

2qn0

ε0εr
Sinh

[
qΦ(r)

kBT

]
(3.17)

For potentials such that qΦ is less then kBT , around 20 mV, one can linearize this by

keeping the first term of the series expansion of Sinh, one finds:

1

r

d

dr
r
dΦ(r)

dr
=

2q2n0

ε0εrkBT
Φ(r) = κ2

DΦ(r) (3.18)

Where κD is the Debye-Huckle parameter, the inverse of which is the Debye length.

With the standard boundary conditions:

lim
r→∞

Φ(r) = 0 (3.19)

This is, as the distance from the surface is large the potential approaches zero. Also,

σ = −εrε0
(
dΦ

dr

)
r=rp

(3.20)

where σ is the surface charge density, and rp is the radius of the cylinder, p for protein,

which yields

Φ1(r) =
σK[0, rκD]

εrε0κDK[1, rpκD]
r ≥ rp (3.21)

where K is the modified Bessel function of the second kind. The subscript ”1” in the

potential is to indicate the solution is to the linear equation where below a correction

is shown. The zeta potential can be found by evaluating this, Φ1(r) at the slip plane,

that is at r = rp + rζ :

ζ1 =
σK[0, (rp + rζ)κD]

εrε0κDK[1, rpκD]
(3.22)

where rζ is the distance from the surface of the cylinder to the slip plane. The zeta po-

tential is a regularly measured quantity, knowing this and inverting the above equation,

one can get the surface charge density on the cylinder or protein.

σ1 =
ζ1εrε0κDK[1, rpκD]

K[0, (rp + rζ)κD]
(3.23)
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This is actually the net surface charge density. Each residue will contribute a given

amount of surface charge density; the net surface charge density being the weighted

sum of the contribution from each residue, weighted by the surface area of the residue.

Next consider the differential capacitance due to the electrical double layer on the

surface of the cylinder. Recall the differential capacitance is

C̃ =
dσ

dΦ0
(3.24)

where Φ0 is the surface potential. In our case, Φ0 = Φ(rp). Solving equation 3.21 for

the surface charge density, while evaluating this at the radius of the protein

σ1 =
Φ0εrε0κDK[1, rpκD]

K[0, rpκD]
(3.25)

then differentiating with respect to the surface potential yields the electrical double-

layer differential capacitance:

C̃1 =
εrε0κDK[1, rpκD]

K[0, rpκD]
(3.26)

Notice, the linearized case is independent of the surface potential. To improve on this

we need a correction to the solution to equation 3.21. To do this consider transforming

equation 3.17 to a differential equation of the form

Φ(r) = ÂΦ(r) (3.27)

If one has a solution, Φ1(r) with ÂΦ1(r)=Φ2(r) and ÂΦn−1(r)=Φn(r), then limn→∞Φn(r)=

Φ(r) being the exact solution to the differential equation; for information and examples

on Banach space see [18, 19, 20, 21, 22] In our case our Â, is:

Âcyl =
kBT

q
Sinh−1[

εrε0
2qn0

1

r

d

dr
r
d

dr
] =

kBT

q
Sinh−1[

q

kBTκ2
D

1

r

d

dr
r
d

dr
] (3.28)

Notice that

1

κ2
D

1

r

d

dr
r
d

dr
Φ1(r) = Φ1(r) (3.29)

Thus the 2nd order approximation becomes

Φ2(r) =
kBT

q
Sinh−1

[
q

kBT
Φ1(r)

]
=
kBT

q
Sinh−1

[
q

kBT

σK[0, rκD]

εrε0κDK[1, rpκD]

]
r ≥ rp

(3.30)
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Evaluating 3.30 at r = rp, the surface of the cylinder, and solving for the surface charge

density yields

σ2 =
kBTεrε0κDK[1, rpκD]Sinh[qΦ0/(kBT )]

qK[0, rpκD]
(3.31)

And using equation 3.24 the double layer differential capacitance becomes

C̃2 =
εrε0κDK[1, rpκD]Cosh[qΦ0/(kBT )]

K[0, rpκD]
(3.32)

Notice

lim
Φ0→0

C̃2 = C̃1 (3.33)

Equation 3.32 gives the double layer differential capacitance as a function of the surface

potential, this result being the simple geometric capacitance. Solving equation 3.31 for

the surface potential an inserting into equation 3.32 gives the double layer differential

capacitance as a function of the surface charge density. Neither of which, the surface

potential or surface charge density, are easily measurable quantities, however, the zeta

potential is. Solving equation 3.30 at the slip plane[12] yields the second order zeta

potential

ζ2 =
kBT

q
Sinh−1

[
q

kBT

σK[0, (rp + rζ)κD]

εrε0κDK[1, rpκD]

]
(3.34)

which can be inverted and one can obtain the surface charge density, σ, as a function

of zeta potential:

σ2(ζ) =
kBTεrε0κDK[1, (rp + rζ)κD]Sinh[qζ/(kBT )]

qK[0, rpκD]
(3.35)

The thickness of the slip plane is approximately the diameter of one solvated ion[12].

Equating equations 3.35 and 3.31, while solving for the surface potential and using this

in equation 3.32 yields the double layer differential capacitance as a function of zeta

potential.

C̃2(ζ) =

εrε0κDK[1, rpκD]

√
1 +

K2[0,rpκD]Sinh2[qζ/kBT ]
K2[0,(rp+rζ)κD)]

K[0, rpκD]
(3.36)

Lastly, notice

lim
ζ→0

C̃2(ζ) = C̃1 (3.37)

the second order differential capacitance as a function of the zeta potential, equation

3.37 is equal to the first order differential capacitance equation 3.26 in the limit the
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surface potential approaches zero. Again, in this limit we return to the purely geometric

capacitance.

3.2.5 Transient Analysis

Lastly, transient analysis of alpha synuclein is shown. The left and center panels of figure

3.4 show the excluded volume and the absolute value of the charge in the nanopore as

a function of number of amino acids that have traversed the nanopore. Amino acid

volume data came from Perkins[33], while pKa data for the charge came from Nazoki

and Tanford[34]. The right panel of figure 3.4 shows the peak frequency as a function of

number of amino acids that have traversed the nanopore. The peak frequency equation

3.10 is function of the double layer differential capacitance, which was calculated using

equations 3.31 and 3.32, where the surface area data came from Samanta et al.[35]. It

is assumed that the differential capacitance from each amino acid is additive. This is

probably not entirely true since the solution near the boundary of each amino acid will

mix. It is also assumed that the protein is static at each instance of measurement, and

the applied field is a weak AC field, thus no ionization.

3.3 Conclusion

A model has been developed to predict the impedance of a protein traversing a nanopore,

where the protein has been idealized to a cylinder. It has been show that as the protein’s

radius equals that of the nanopore’s radius the overall impedance acts as a capacitor.

In addition to this, when the protein’s radius is zero, or there is no protein in the

nanopore, the formula reduces to the original (VTW) impedance model. The model is

able to distinguish one charged region from another on a protein or similar structure by

examining the effect on the peak frequency in the negative imaginary impedance. Next,

a relationship has been presented to related the double layer differential capacitance to

the zeta potential which may allow for single protein or event single residue protein zeta

potential measurements. Lastly, transient analysis is present where the peak frequency

of a protein traversing a nanopore is shown. It is the authors hope that this model will
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enable others to further the science of protein sequencing.
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Figure 3.4: The left panel shows the excluded volume for alpha synuclein is shown as a
function of the number of amino acids traversed. A protein is composed of numerous
amino acids, in the case of alpha synuclein, 140. The shorter the nanopore the more
the excluded volume structure is visable. Note that in both panels the zero point is
where there are 25 amino acids in the nanopore. The average value of the length of
an amino acid is about 0.38 nm. Using a nanopore with an equivalent length of 25
amino acids is about 9.5 nm long. The center panel shows the sum of the charge on
the amino acids in the nanopore. The right panel shows the peak frequency for alpha
synuclein as a function of the number of amino acids that have traversed the nanopore.
Notice at the end points the function seems to diverge. This is due to the short pore
used L =9.5 nm. With no protein in the nanopore the time constant is small yielding
a large peak frequency. As the double-layer differential capacitance in the nanopore
from the protein increases the time constant also increase, thus decreasing the peak
frquency. The peak frequency rises again near the center of the figure do to the lack
of surface charge density in the central region of alpha synuclein. The protein double
layer differential capacitance, which was calculated using equations 3.31 and 3.32. This
value was the used to calculate the time constant of the system equation 3.7b, which
was then used to calculate the peak frequency, equation 3.10. Notice the time constant
of the system with the protein in the nanopore equation 3.7b is a function of the radius
of the protein. The radii where calculated by assuming a cylindrical volume with the
average length of each amino acid. Then the average value of the radii of the amino
acids in the nanopore at a given time was used. Values used include: rn =4 nm, C̃n

= 1 mF/m2, T=297 K, with 100 mM KCl yielding a solution conductivity of κ =
1.19 S/m. A solution dielectric constant of εs = 80 used.
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Table 3.1: Nomenclature List
name definition SI unit

Z impedance [Ω]
R resistance [Ω]
C capacitance [F ]
ω angular frequency [rad/s]
i

√
−1 []

r radius [m]

C̃n nanopore double-layer differential capacitance [F/m2]

C̃p protein double-layer differential capacitance [F/m2]
κn nanopore conductivity [S/m]
L nanopore length [m]
Zcyl cylindrical impedance model [Ω]
Rcyl resistance of a cylinder [Ω]
rn nanopore radius [m]
rp protein radius [m]
rs substrate radius [m]
τcyl time constant for constant radius nanopore [s]
Zcyl+p cylindrical plus protein impedance model [Ω]
Rcyl+p resistance of a cylinder plus protein [Ω]
Ccyl+p nanopore and protein double layer capacitance [F]
τcyl+p time constant for constant radius nanopore plus protein [s]
Cs substrate capacitance [F]
As substrate area [m2]
Zs substrate impedance [Ω]
Zsys system impedance [Ω]
ε0 permittivity of free space [F/m]
εs substrate dielectric constant []
α integer []
Φ potential [J/C]
q elementary charge [q]
kB Boltzmann constant [J/K]
T temperature [K]
ni species density in lamina [1/m3]
n0
i bulk species density [1/m3]
z valency []
κD Debye-Huckle parameter [1/m]
K modified Bessel function of the second kind []
σ surface charge density [C/m2]
Φ0 surface potential [J/C]

Φ1(r) linearized cylindrical potential [J/C]
ζ1 linearized cylindrical zeta potential [J/C]
σ1 linearized cylindrical surface charge density [C/m2]

C̃1 linearized cylindrical differential capacitance [F/m2]
Φ2(r) second order cylindrical potential [J/C]
ζ2 second order cylindrical zeta potential [J/C]
σ2 second order cylindrical surface charge density [C/m2]

C̃2 second order cylindrical differential capacitance [F/m2]
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Chapter 4

Focused Ion Beam : FIB

4.1 Introduction

Single solid-state nanopores find increasing use in a variety of applications includ-

ing, protein translocation dynamics[1, 2, 3], DNA sequencing[4], and other nanofluidic

studies[5, 6, 7, 8, 9, 10, 11]. All of these applications are affected by the geometry of

the nanopore. This chapter develops the use of electrochemical impedance spectroscopy

to determine the geometry and double-layer differential capacitance of a single conical

nanopore in a silicon nitride substrate. Here the nanopore is dubbed a FIB or Focused

Ion Beam. A true nanopore has a radius around 5 nm. The FIB used in this case has

a minimum radius of about 60 nm.

4.2 Methods

The silicon nitride chip is bonded between two cylindrical pieces of polydimethylsiloxane

(PDMS) by exposing the PDMS to 50 W oxygen plasma.[12, 13, 14]. This structure is

then placed between two glass chambers which contain 5 ml of the test solution in 18

MΩ-cm Millipore water. The test solutions contain 10 mM sodium phosphate buffer

used to fix the pH at 7.0±0.1 at each of the four concentrations of KCl: 1.0, 0.5, 0.2, 0.1

M. Bulk conductivities of these solutions were interpolated from published values.[15]

A Princeton Applied Research potentiostat, Parstat 2263, was used with a standard

4-electrode permeation cell, with applied 200 mV AC amplitude and no DC bias. 50

frequencies were measured ranging from 0.1 Hz to 1 MHz. Otherwise all experimental

techniques used are identical to those discussed in chapter 2.
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4.3 Results and Discussion

4.3.1 Conical Model

In Chapter 2 and in our previous paper [14] we developed an impedance model to

determine the geometry and of a conical nanopore and electrical double layer differential

capacitance within the nanopore:

Zcone(ω) =
Rcone(I1(ξ1)K1(ξ0)− I1(ξ0)K1(ξ1))

τ1 − τ0
× (4.1)(

τ1

ξ0(I2(ξ0)K1(ξ1) + I1(ξ1)K2(ξ0))
+

τ0

ξ1(I2(ξ1)K1(ξ0) + I1(ξ0)K2(ξ1))

)
where In is the modified Bessel function of the first kind of order n. And Kn is the

modified Bessel function of the second kind of order n. Also with,

Rcone =
L

κnπr1r0
, (4.2)

and

ξ0 =
√
i4τ0ω and ξ1 =

√
i4τ1ω (4.3)

where,

τ0 =
2L2C̃nr0

κn(r1 − r0)2
and τ1 =

2L2C̃nr1

κn(r1 − r0)2
(4.4)

and,

τ1

τ0
=
r1

r0
. (4.5)

In addition to the impedance of the nanopore, there is the capacitance of the chip

which is in parallel to the nanopore:

Zsys = Zcone ‖ Cchip. (4.6)

The capacitance of the chip, Cchip can be calculated using the ideal parallel plate model:

Cchip =
ε0εrA

t
(4.7)

where ε0 is the permittivity of free space, εr is the dielectric constant of the chip, A is

the cross-sectional area of the chip in parallel to the nanopore, and t is the thickness of
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Figure 4.1: Here equation 4.6 is plotted with Ln = 200 nm, r0 = 60 nm, r1 = 150 nm,
C̃n =1 mF/m2, κ0 = 0.136 S/m, and bulk conductivities of 9.68, 5.37, 2.29, 1.19 S/m,
green, red, blue, purple, respectively. The nanopore differential capacitance C̃n was
determined previously.[14] The capacitance of the chip, Cchip=747 pF was calculated
using equation 4.7 with the dielectric constant, εr of silicon nitride being 7, the thickness
of the chip t=200 nm, and the area A of the chip being 2.25µm2. This gives a theoretical
expectation of the nanopore impedance with reasonable parameters.

Table 4.1: Parameters for local fits
KCl Buffer κb τ0 τ1 Rcone

M mM S/m ms ms MΩ

1.0 10 9.676±0.049 0.32±0.04 1.05±0.08 0.739±0.001
0.5 10 5.367±0.049 0.48±0.05 1.60±0.11 1.313±0.001
0.2 10 2.291±0.049 0.61±0.06 2.57±0.16 2.987±0.002
0.1 10 1.193±0.049 2.67±0.56 7.03±0.98 5.428±0.005

the chip, which is also equal to the length of the nanopore. This completes the model

and is used for local and global fitting though-out. Equation 4.6 is plotted in figure 4.1

in order to give an expectation of what the data should look like. See Appendix B for

a derivation and discussion of the parallel plate model.

4.3.2 Local Fitting

The EIS data is presented in Figure 4.2. The left panel shows the run to run variability,

while the right panel shows the average of the three runs, at each concentration, fit to

equation 4.6. Local fit parameters are shown in Table 4.1. In Figure 4.3 the EIS data

scaled by the pore conductivity is presented. It is of particular interest since at higher
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Figure 4.2: Above the EIS data at four different concentrations of phosphate-buffered
KCl is shown. The left panel shows the run to run variability. EIS was performed three
times at each of the four concentrations. The right panel shows the average of these
along with fits to equation 4.6 with fit parameters shown in Table 4.1.

concentrations it shows a decrease in the negative imaginary impedance at the peak

frequency. This is expected since at higher concentrations the capacitance of the EDL

is larger. Causing a greater deviation from an ideal RC circuit.

The DC limited nanopore resistivity is inversely proportional to the conductivity;

and, as mentioned earlier, it is known that the nanopore conductivity is higher then

that of the bulk conductivity[16, 17, 18, 19, 20]. This is fit to equation 4.8 as a function

of the bulk conductivity, and shown in the left panel of figure 4.4.

RDC =
Rcell

κb + κ0
=
Rcell

κn
(4.8)

The nanopore double layer differential capacitance C̃n, is partitioned into two lay-

ers in series. One, the inner more compact Stern layer C̃S, which is approximately

independent of solution conductivity, and the outer more diffuse Gouy-Chapman layer

C̃GCwhich shows a square root dependence on solution conductivity.[21, 22, 23] Recall

capacitive elements add in series add as resisters in parallel:

C̃n =

(
1

C̃S

+
1

C̃GC
√
κb

)−1

(4.9)
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Figure 4.3: Above the EIS data scaled by the pore conductivity is shown, that is
both the real and imaginary portions of the EIS spectrum are multiplied by their
respective pore conductivity. The net effect is for all the DC limits to be the same.
With this scaling one can directly see the effect of the EDL on the impedance. At higher
conductivities the capacitance of the EDL is larger thus the deviation from and ideal RC
circuit would be larger, in this case causing a decrease in the imaginary impedance at
the peak frequency. Where again the bulk conductivities are 9.68, 5.37, 2.29, 1.19 S/m,
green, red, blue, purple, respectively.

The nanopore double layer differential capacitance, C̃n may be isolated via a com-

bination of equations 4.2 and 4.3:

C̃n =
(τ0 − τ1)2√κn

2L3/2
√
πτ0τ1Rcone

, (4.10)

However, at this point the length of the nanopore is unknown. To compensate for this

one can scale the differential capacitance by L3/2, yielding:

L3/2C̃n =
(τ0 − τ1)2√κn

2
√
πτ0τ1Rcone

, (4.11)

and is plotted in figure 4.4, which is fit to 4.12:

L3/2C̃n = L3/2

(
1

C̃S

+
1

C̃GC
√
κn

)−1

=

(
1

ÃS

+
1

B̃GC
√
κn

)−1

, (4.12)

where ÃS=L3/2C̃S and B̃GC=L3/2C̃GC.



78

0 2 4 6 8 10
0

1

2

3

4

5

6

Κb HS�mL

R
D

C
L

im
it
HM
W
L

0 2 4 6 8 10
0

1

2

3

4

5

6

ΚbHS�mL

r1
�r

0

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

ΚbHS�mL

C�
p
L

3�
2
HΜ

F�
m
L

Figure 4.4: Panel A shows the DC limit plotted vs. the bulk conductivity, which is fit
to 4.8. From this the nano-pore conductivity offset is obtained that is κ0 = 0.136. The
center figure shows the ratio of the time constants equation 4.5 and fit to a constant
of 3.39. That is r1 = 3.39r0. In the right panel, the scaled double-layer differential
capacitance is shown. The combinations of fit parameters reveals a function form
consistent with that of a constant capacitive stern layer and a capacitive Gouy-Chapman
layer, depending on the square root of the solution conductivity, all in series. With
ÃS=1.4±0.18 µFm−1/2 and B̃GC=0.98±0.18 µFS−1/2. Error bars were propagated
from the standard errors in the fit parameters.

Table 4.2: Quality of Model Fits
Model χ2

m · 1010 p ν χ2
red

Rpore ‖ Cchip 39.3 8 392 17.6
Zcyl ‖ Cchip 29.1 12 388 13.1
Zcone ‖ Cchip 4.65 16 384 2.12
Global1 Zcone ‖ Cchip 20.2 4 396 8.917
Global2 Zcone ‖ Cchip 20.2 3 397 8.924
Active Set 2.05 40 360 1

4.3.3 Global fitting

There are 7 parameters of interest to this study: The length of the nanopore, Ln, the two

radii of the conical nanopore r1 and r0, the Stern layer differential capacitance C̃S, the

Gouy-Chapman layer differential capacitance, C̃G.S., the nanopore conductivity off-set

κ0, and the capacitance of the chip Cchip. Global fitting was performed two ways. The

first way was to fix C̃S, C̃G.C and Cchip. The second way was to fix C̃S, C̃G.C, Cchip, and

κ0. Global fit parameters are shown in Table 4.3. The geometry is consistent with what

was expected. TEM images show a minimum radius of 56.7 nm, while the minimum

radius predicted by EIS is 61.3 nm. The thickness of the nanopore 226 nm is consistent

with estimations from etching. However, the double-layer differential capacitance is
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Table 4.3: FIB EIS global fit parameters

r0 61.3 ± 26.8 nm
r1 162.6 ± 70.7 nm
Ln 226 ± 12.4 nm

over 10000 times to large. A possible explanation is a thin oxide layer formed. This

could account for some of the increase in the capacitance since a thin oxide layer would

have a large surface charge density creating a large differential capacitance. Another

explanation is that there is coupling between the double-layer differential capacitance,

and the chip capacitance. The chip capacitance will parametrically shift the peak

frequency. In this case the time constants from the fit parameters would be to large.

4.4 Conclusion

In conclusion, EIS has been used to determine the geometry and double-layer differential

capacitance of a single nanopore in a silicon nitride substrate. A conical nanopore

model has been presented and used to fit the EIS data at varying concentrations. The

fit parameters indicate a reasonable geometry based on TEM imagery and estimations

for etching times, however dramatically over predict the value for the double layer

differential capacitance. Possible explanations for the large double-layer differential

capacitance is that a thin oxide layer has formed, or that the chip capacitance is coupling

with the double layer differential capacitance, shifting the associated time constants to

unreasonably large values. Without performing any fits one can simply look at the EIS

data and notice the peak frequency is low. This low value also appears in every data

set taken on nanopores in these silicon nitride chips. Appendix D shows more examples

of EIS data of single nanopores in silicon nitride chips.
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Table 4.4: Nomenclature List
name definition SI unit

Z impedance [Ω]
R resistance [Ω]
ω angular frequency [rad/s]
i

√
−1 []

r radius [m]

C̃p nanopore double-layer differential capacitance [F/m2]
κb bulk conductivity [S/m]
κ0 conductivity offset [S/m]
κn nanopore conductivity [S/m]
Ln nanopore length [m]
Zcyl cylindrical impedance model [Ω]
Zcone conical impedance model [Ω]
Rcyl resistance of a cylinder [Ω]
Rcone resistance of a cone [Ω]
r0 entrance radius [m]
r1 exit radius [m]
τcyl time constant for constant radius nanopore [s]
τ0 time constant for r0 in Zcone [s]
τ1 time constant for r1 in Zcone [s]
Cchip chip capacitance [F]
Achip chip area [m2]
Zsys system impedance [Ω]
κ0 increased nanopore conductivity offset [S/m]

C̃S Stern layer differential capacitance [F/m2]

C̃G.C. Gouy-Chapman layer differential capacitance [F/m2
√

m/S]
ν degrees of freedom []
p number of fit parameters []
χ2

m chi squared model [Ω2]
χ2

as chi squared active set [Ω2]
χ2

red reduced chi squared []
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Chapter 5

The NCAM DC Bias

5.1 The DC Bias

It is desirable to have a impedance model that not only includes the effects of the AC

bias, but also that of the DC bias. Recently[1], experimental data has shown that an

increasing DC bias decreases the resistance in nanopores. The plausible explanation

is that the effect of the DC bias is to increase the conductivity within the nanopores.

In addition to this they show that at low frequency inductive hooks in the impedance

spectrum appear. These inductive hooks seem to grow as the DC bias increases. Lastly,

it is important to mention that Feng et al.[1] used a single nanopore in a glass substrate

while we an array of nanopores in a polycarbonate substrate. Thus, this low frequency

phenomenon is not a result of pore-pore coupling but a single nanopore effect. Another

possibility was the difference in the ionic mobility of sodium and chloride ions, however

Feng et al. used KCl where potassium and chloride ions have similar ionic mobilities,

thus ruling out this possibility.

These features, the decrease in nanopore resistivity and the development of low

frequency inductive hooks, have also been seen in my data, see figure 5.1 and a close up

of the low frequency in figure 5.2 with fits using equation 2.24. Fitting indicates that

the conductivity within the nanopore increases as the DC bias increases, as previously

seen[1]. However, the fits indicate the the double-layer differential capacitance actually

decreases as the DC bias increases. This seems unlikely since there seems to be more

ions in the pore as the conductivity in the pore increases so does the double-layer

differential capacitance[2, 3, 4]. This may be an artifact in the fit since there is no

contribution in the model to account for a DC bias. Lastly, upon examination of the

low frequency portion of the fits one can clearly see that the model completely fails in
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Figure 5.1: Above shows the effect of the DC bias on a NCAM, where the left panel
shows the EIS data with background, while the right panel shows the EIS data with the
background subtracted. Equation 2.24 was used to fit the EIS data. During fitting the
geometric parameters, as indicated in table 2.7 were fixed, while conductivity within
the pore and the double-layer differential capacitance were allowed to float. These fits
seem deceptively promising, however upon close investigation of the low frequency part
of the spectrum one sees that the model completely fails to capture these inductive
hooks. This close up is shown in figure 5.2. In all cases, red, orange, brown, cyan,
magenta, purple represent, 500, 400, 300, 200, 100, 0 mV DC bias.

this region.

5.1.1 Inclusion of an inductor and CPE

To account for this low frequency phenomena Feng et al.[1] used four CPE’s to fit their

data. This however, is highly unrealistic. Using four CPE’s one can fit almost any

spectrum. Preliminary fitting indicates that only one CPE is required to fit this data.

Equation 5.1 is an extension to equation 2.24 with the addition of one CPE in parallel

to the nanopore and an inductor in parallel to the membrane surface effects:

Zexp =
ZVTW

N
‖ Cmem ‖ CPE +Rms ‖ Cms ‖ Lms +Rbk ‖ Cbk (5.1)

with

ZVTW = Zcyl + Zloz. (5.2)

Fitting with equation 5.1 indicates a increase in nanopore conductivity as the DC

bias increase and shows an increase in the double-layer differential capacitance as the

DC bias increase, as opposed to fitting with equation 2.24. In addition to this fitting
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Figure 5.2: Here, a close up of the low frequency spectrum is presented, where the left
panel shows the EIS data with background, while the right panel shows the EIS data
with the background subtracted. Notice the model equation 2.24 completely fails to
capture the low frequency features in the data. There is no element in the model that
would produce positive imaginary features, thus a new model is required. Again, red,
orange, brown, cyan, magenta, purple represent, 500, 400, 300, 200, 100, 0 mV DC bias.

with equation 5.1 shows and increase in inductance as the DC bias increases. Equation

5.1 captures the low frequency phenomena as shown in figure 5.3, however struggles at

low DC bias. At low DC, 0 and 100 mV these extra elements, the inductor and CPE,

are not needed produce values for the fit parameters associated with these elements

that make their contribution negligible to the overall fit. An element that turns off as

the DC bias is lowered would be ideal.

A simple argument to account for the increase in nanopore conductivity as the DC

bias increases is as follows. With a negatively charged surface the counter-ions would

be possitive. Consider a positive ion near one end of the nanopore. The force due to

the DC bias tries to push the ion away from the pore, while the force due to the surface

charge density tries to pull it in. At the other end the forces from both DC bias and

the surface charge density try to pull the ion into the pore. This effect is opposite for

a negativity charged ion. If there are the same amount of positive and negative ions

in the pore the effects on the overall nanopore conductivity would cancel. However,

there are more positive ions in the pore then negative ions, thus, in net the DC bias,

in conjunction with the surface charge density drives more positive ions into the pore

then negative ions it excludes. Since this effect is from a simple force balance, it should
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Figure 5.3: Here, a close up of the low frequency spectrum is presented, where the
left panel shows the EIS data with background, while the right panel shows the EIS
data with the background subtracted. Notice the model equation 5.1 captures the
low frequency features in the data. Again, red, orange, brown, cyan, magenta, purple
represent, 500, 400, 300, 200, 100, 0 mV DC bias.

be linearly proportionally to the DC bias, which is observed. This higher conductivity

is most noticeable for capillaries with diameters comparable to the Debye length at a

given electrolyte concentration.[5, 6, 7, 8, 9, 10, 11]
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Appendix A

Gouy-Chapman Model

A.1 Gouy-Chapman Model

The Gouy-Chapman model[1, 2] shows a square root dependance on the solution con-

centration. Since at low to moderate concentrations the solution conductivity is pro-

portional to the concentration[3], this implies that the Gouy-Chapman model shows

also shows a square root dependance on the solution conductivity. The model is devel-

oped for an infinite plate with a surface potential submerged in a conducting solution.

Starting with the Boltzmann distribution for charged particles near a potential source:

ni = noi exp

(
−ziqΦ
kT

)
(A.1)

where Φ is the potential in the lamina, noi is the bulk concentration of species i, ni is

the concentration of species i in a given laminae under the influences of the potential, T

is temperature, k is the Boltzmann constant, q is the elementary charge, and zi is the

valency. Notice as the particles are far from the potential source this source becomes

zero and the concentration becomes that of the bulk. The total charge per unit volume

in a given lamina is:

ρ =
∑
i

niqzi =
∑
i

noi qziexp

(
−ziqΦ
kT

)
(A.2)

Next, recalling Gauss’s law:∫
~E · d ~A =

Qin
ε0

=
1

ε0

∫
ρdV (A.3)

where ε0 is the permittivity of free space. Using the divergence theorem:∫
~∇ · ~FdV =

∫
~F · d ~A (A.4)
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where ~F is an arbitrary vector function, gauss’s law can be reformulated in differential

form:

~∇ · ~E =
ρ

ε0
(A.5)

Next defining the electric field as the gradient of the electric potential:

~E = −~∇Φ (A.6)

Lastly, with equation A.6 and equation A.5, in one dimension, one find the one dimen-

sional Poisson equation:

d2Φ

dx2
= − ρ

εoεr
(A.7)

Where Φ is the potential as a function of the distance from the surface. Using equa-

tion A.2 in equation A.7, one finds the 1-Dimensional Poisson-Boltzmann equation:

d2Φ

dx2
= − q

εoεr

∑
i

noi ziexp

(
−ziqΦ
kBT

)
(A.8)

Next recall the following identity:

2
d2Φ

dx2
=

d

dΦ

(
dΦ

dx

)2

(A.9)

Since:

d

dΦ

(
dΦ

dx

)2

=
d

dx

(
dΦ

dx

)2 dx

dΦ
= 2

dΦ

dx

dΦ2

dx2

dx

dΦ
= 2

d2Φ

dx2
(A.10)

Using equation A.9, equation A.8 becomes:

d

(
dΦ

dx

)2

= − 2q

εoεr

∑
i

noi ziexp

(
−ziqΦ
kBT

)
dΦ (A.11)

Next ntegrating with respect to Φ(
dΦ

dx

)2

=
2kBT

εoεr

∑
i

noi ziexp

(
−ziqΦ
kT

)
+ Constant (A.12)

The constant can be found by noticing that at distances far from the potential source

Φ=0 and dΦ/dx=0:(
dΦ

dx

)2

=
2kT

εoεr

∑
i

noi zi

[
exp

(
−ziqΦ
kBT

)
− 1

]
(A.13)
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Next, we simplify this for a symmetrical electrolyte, a z:z electrolyte such as NaCl or

KCl, with |z| = 1:

dΦ

dx
=

(
8kTno

εoεr

)1/2

sinh

(
qΦ

2kBT

)
(A.14)

Since

σ = εrεo

(
dΦ

dx

)
x=0

(A.15)

where σ is the surface charge density, one finds:

σ = (8kTnoεoεr)
1/2 sinh

(
qΦo

2kBT

)
(A.16)

where Φo is the surface potential. Lastly recall the capacitance per unit area, or differ-

ential capacitance:

C̃ =
dσ

dΦo
(A.17)

Thus we have the Gouy-Chapman model:

C̃ =

(
2q2noεoεr
kBT

)1/2

cosh

(
qΦo

2kT

)
(A.18)

Recalling that

2q2no

εoεrkBT
= κ2 =

1

λ2
D

(A.19)

where κ is the Debye-Huckle parameter, the inverse of which is the Debye length, λD.

Notice equation A.18 becomes

C̃ =
εoεr
λD

cosh

(
qΦo

2kT

)
(A.20)

Lastly, in the limit the surface potential approaches zero this becomes:

C̃ =
εoεr
λD

(A.21)

Which is the geometric capacitance. That is the capacitance where all the counter-

ions are situated at distance equal to the Debye length away from the surface. See

appendix B for further information.
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Appendix B

Capacitance Models and the Stern Layer

The parallel plate model, equation 1.57 gives the capacitance of a planar material.

However, situations may arise where the material is not planar but possibly spherical

or cylindrical. Furthermore, in various limits distributions of charges may assume these

convenient geometries. The purpose of this appendix is to give an overview of these

models, to give an overview of the electric double layer, and using the planer model to

predict the capacitance of the Stern layer.[1]

B.1 Planar Model

The electric field from an infinite plane with surface charge density σ is given by

−→
E =

σ

2εo
x̂ (B.1)

If a second infinite plane parallel to the second is given a surface charge density -σ then

the field between them is

−→
E =

σ

εo
x̂ (B.2)

If the distance between them is H, then the potential difference between them is

V =
σH

εo
(B.3)

With the capacitance of this parallel plate model is given by

C =
εoA

H
(B.4)

or in terms of capacitance per area, or differential capacitance

C̃ =
εo
H

(B.5)
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B.2 Spherical Model

If an inner sphere with radius R and charge Q, and an outer sphere with radius b, and

charge -Q, then the electric field between them is

−→
E =

Q

4πεor2
r̂ (B.6)

recalling that by symmetry the outer sphere does not contribute to the electric field.

The difference potential between them is given by

V =
Q

4πεo

(
1

R
− 1

b

)
(B.7)

with capacitance given by

C = 4πεo

(
1

R
− 1

b

)−1

(B.8)

If now we let b=R+H, and divide by the area of the inner sphere, 4πR2 we obtain

C̃ =
εo
H

(
1 +

H

R

)
(B.9)

Notice this reduces to B.5 when the radius of the sphere, R becomes large in comparison

to H.

B.3 Cylindrical Model

If an inner cylinder with radius R and charge Q on it and an outer cylindrical shell has

a radius R+H and charge -Q on it, then the electric field between them is

−→
E =

Q

2πεoLr
r̂ (B.10)

The difference potential between them is given by

V =
Q

2πεoL
ln (1 +H/R) (B.11)

with capacitance given by

C =
2πεoL

ln (1 +H/R)
(B.12)
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Dividing by the area of the inner cylinder, with area 2πRL yields

C̃ =
εo

R ∗ ln (1 +H/R)
(B.13)

Recalling that

lim
R→∞

(1 +H/R)R = Exp[H] (B.14)

one see that equation B.13 reduces to B.5 when the radius of the cylinder becomes

large.

B.4 Relation to Stern layer capacitance

If in the above relations we allow a dielectric with dielectric constant εr to be between

the layers and if the distance between the layers, H, is the distance to the Helmholtz

plane, then we obtain models for the differential capacitance of the Stern layer. The

midpoint of the Stern layer being the Helmholtz plane. One finds

C̃H =


εoεr
H Planar

εoεr
H

(
1 + H

R

)
Spherical

εoεr
R∗ln(1+H/R) Cylindrical

(B.15)

Figure B.1 shows the Stern layer in reference to other constructs within the elec-

trical double layer. The Stern layer is the first layer of solvated counter-ions closest to

the material surface. If the surface moves though the solution, or equivalently, solu-

tion moves past the surface the Stern layer remains with the material. The boundary

between the Stern layer and the more diffused Gouy-Chapman[2, 3] layer is known

as the slip plane. Again, this is the boundary between what moves with the surface

and what does not. Incidentally, the potential at the slip plane is known as the Zeta

potential. The thickness of the Stern layer is about 0.8 nm, half of this, the distance

to the Helmholtz plane is about 0.4 nm. With the dialectric constant of water being

about 80, the differential capacitance of the Stern layer is about 1.8 F/m2. Notice in

figure B.1 that the capacitance of the Stern layer is in series with the capacitance of

the Gouy-Chapman layer, which has a smaller differential capacitance then the Stern
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layer. Thus, as equation 1.7 shows that if the capacitance of the Gouy-Chapman layer

is much smaller then the capacitance of the Stern layer, then the capacitance of the

Gouy-Chapman layer will dominate the overall result, yielding a equivalent capacitance

smaller then the two.
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Figure B.1: Here the electrical double layer is shown. It is partitioned into the in Stern
layer, the more diffuse Gouy-Chapman layer, and the bulk. The Stern layer is composed
of solvated counter-ions, while the Gouy-chapman layer is mixture of solvated counter-
ions and solvated species of the same valency a the surface. As one moves further
from the surface concentration of counter-ions in the Gouy-Chapman layer falls and
the concentration of oppositely charged species increases until one reaches the bulk
where net neutrality occurs.
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Appendix C

Warburg Impedance

C.1 Developing the Warburg Impedance Model

The model developed thoughout this dissertation is referred to as the Variable Topology

finite Warburg Impedance model [1, 2, 3]. In this appendix the finite length Warburg

impedance model is presented. The impedance of which arises from a concentration

polarization about two parallel electrodes under an AC bias.

First, consider the concentration of ions nder an AC bias:

c(x, t) = c0 + c1(x)eiωt (C.1)

where c0 is the steady state component, c1 is the sinusoidally varying component and

ω is the frequency of the excitation. On substitution of equation C.1 into Fick’s second

law:

∂c

∂t
= D

∂2c

∂x2
(C.2)

one obtains:

iωc1 = D
d2c1

dx2
(C.3)

The solution of which is:

c1(x) = g Sinh[(iω/D)0.5x] + h Cosh[(iω/D)0.5x] (C.4)

where D is the diffusion constant. To obtain g and h, first consider a symmetric system

where the distance between the electrodes is d, and the origin is at x = 0. Under these

conditions notice that when t advances to t +π/ω, the electrodes will have reversed
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polarity and requires the concentration to be, c1(−x) = −c1(x) and thus h = 0. With

the current being:

I(x, t) = zFAD
dc

dx
= zFADg(iω/D)0.5 Cosh[(iω/D)0.5x]eiωt (C.5)

where A is the electrode cross-sectional area, F is the Faraday constant, and z is the

valency. Recalling the linearized Nernst equation:

V (x, t) = − RT

zFc0
∆c(x, t) (C.6)

Since from C.1 on sees that ∆c(x, t) is:

∆c(x, t) = c0 − c(x, t) = −c1(x)eiωt (C.7)

The potential difference becomes:

V (x, t) =
gRT

zFc0
Sinh[(iω/D)0.5x]eiωt (C.8)

Thus the impedance as a function of x becomes:

Z(x, ω) =
RT

Az2F 2c0(iωD)0.5
Tanh[(iω/D)0.5x] (C.9)

Notice this is a function of x. If the distance between the electrodes is d, while recalling

the center is at x=0, the the impedance becomes:

ZWf
(ω) =

2RT

Az2F 2c0(iωD)0.5
Tanh

[
(iω/D)0.5(d/2)

]
(C.10)

The model was evaluated at x=d/2 and then multiplied by 2, since the system is sym-

metric. This model, equation C.10 is known as the finite length Warburg impedance.

C.2 Model Limits

In the limit the separation between the electrodes approaches infinity the finite length

Warburg impedance becomes the Warburg impedance model:

ZW (ω) = lim
d→∞

ZWf
(ω) =

2RT

Az2F 2c0(iωD)0.5
(C.11)

Notice only one diffusion constant, D appears in the above expressions. In this deriva-

tion we are assuming all species have the same diffusion constant and valency magni-

tude.
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The finite length Warburg impedance model, equation C.10 has the same functional

form, but different parameterization as the cylindrical VTW model, equation 2.6. All

three models, equation C.10, equation C.11 and equation 2.6 have the same high fre-

quency limit:

lim
ω→∞

ZWf
(ω) = lim

ω→∞
ZW (ω) = lim

ω→∞
Zcyl(ω) = 0. (C.12)

In the low frequency limit the both the cylindrical VTW model, equation 2.6, and the

finite length Warburg impedance model, C.10 have the same limits:

lim
ω→0

ZWf
(ω) =

dRT

Az2F 2c0D
(C.13)

again however, different parameterizations. But notice the impedance diverges in the

low frequency limit for the warburg impedance model:

lim
ω→0

ZW (ω) =∞ (C.14)

The source of this divergence being the a-physical construction of the warburg impedance

model, that being setting the distance between the electrodes d, to ∞.

Table C.1: Warburg Nomenclature List
name definition SI unit

C(x, t) concentration [mol/m3]
C0 steady state concentration [mol/m3]
C1 sinusoidally varying concentration [mol/m3]
ω frequency [rad/s]
t time [s]
x coordinate [m]
D Diffusion constant [m2/s]
I Current [C/s]
z valency []
F Faraday constant [C/mol]
A Cross sectional area [m2]
V Potential difference [V ]
R ideal gas constant [J/(molK)]
T Temperature [K]

Z(x, ω) impedance [Ω]
ZWf

(ω) Finite length Warburg Impedance [Ω]
ZW(ω) Warburg impedance [Ω]
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Appendix D

Other Nanopore EIS Data

D.1 Clogging of a Nanopore

Figure D.1 shows the EIS spectrum on a single nanopore in a silicon nitride chip.

During each run a 10 mV AC bias is applied with a 0 mV DC bias in a 10 mM

sodium phosphate buffered solution with 1.0 M KCl. The solution was made using

Millipore water, however was not post filtered. Each spectrum in figure D.1 is performed

identically. However, notice the dramatic difference between the spectra. This difference

is attributed to the clogging of the nanopore as a function of run. That is, each time

the experiment is performed the nanopore becomes further clogged. A second possible

explanation is that the nanopore is de-wetting. This would give a similar effect as

clogging. What is interesting to note is the comparison between figure D.1 and figure

3.2 as the proteins radius increases, the protein is clogging the nanopore.

D.2 Gamry Single Nanopore Data

Data presented in figure D.2 was performed on a Gamry Instruments Reference 600

potentiostat on a single nanopore in a silicon nitride chip. During each run a 200 mV

AC bias is applied with a 0 mV DC bias in a 10 mM sodium phosphate buffered,2.0,

1.5, 1.0, 0.5 M KCl solution. The solution was made using Millipore water, and was

post filtered as opposed to the solution used for the data presented in Figure D.1. It is

reasonable to believe that the buffer and KCl had dust in their containers. This bring

plausibility to the explanation that the nanopore is clogging as opposed to de-wetting,

since this clogging phenomenon was not seen in any further EIS nanopore data, all of

which had been post filtered.



104

0 50 100 150 200
0

50

100

150

Re@ZHΩLD HMWL

-
Im
@Z
HΩ
LD
HM
W
L

Figure D.1: Here EIS data is shown for what appears to be the clogging of a nanopore.
Although millipore water was used, possible dust and other particulates could have been
in the dry buffer and KCl, which would clog the nanopore. During each subsequent run
the clogging seems to increase. The nanopore is essentially acting as a filter. Each run
is performed identically, from black to orange, as explained in the text.

D.3 Parstat 2263 Potentiostat Single Nanopore and FIB

Next, I started using a Princeton Applied Research Parstat 2263 Potentiostat. Figure

D.3 shows unequilibrated single-nanopore and single FIB data. These were equilibrated

for 4 hours, however for these nanopores that does not seem to be enough time. 24

hours seems to be sufficient. The nanopore used chapter 6 was equilibrated for 24 hours

prier to performing the measurement. It’s recommended not to simply place the chip in

the test solution and wait the 24 hours, but test to make sure the nanopore is actually

open, then wait 24 hours to perform runs.

D.4 NCAM Wetting Kinetics

The NCAM takes approximately 48 hours to equilibrate. During this time the nano-

capillaries are first hydrated with the conducting solution. Then further equilibration

occurs in which additional counter-ions enter the capillaries to neutralize the surface

charge density. The EIS data in Figure D.4 was taking on a Princeton Applied Research

Parstat 2263 Potentiostat, with 50 frequency points from 1 MHz to 100 mHz and a

20 mV AC and 0 mV DC potential. Using a 1.0 M KCl, 10 mM sodium phosphate

buffered solution. The right panel is a plot of the DC limit vs. time, showing an
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Figure D.2: Left panel shows the run to run variability in the EIS spectrum, while
the right panel is the average of the three runs. Simply by inspecting the EIS data
on can see that the peak frequency is low indicating a large double-layer differential
capacitance, large chip capacitance or a combination of both. With bulk conductivities
of 9.68, 5.37, 2.29, 1.19 S/m, green, red, blue, purple, respectively.

exponential decay this limit as a function of time, which is fit to equation D.1.

1270 ∗ Exp[−0.03t] (D.1)
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Figure D.3: Left panel shows unequilibrated single nanopore EIS spectra on chip 88728-
89133. The right panel shows unequilibrated FIB EIS spectra on chip 88671. There
is also a possibility that that the fib was not completely hydrated. That EIS data
presented in chapter 6 is on the same chip as that presented in the right panel.

0 500 1000 1500
0

100

200

300

400

500

600

Re@ZHΩLD HWL

-
Im
@Z
HΩ
LD
HW
L

0 10 20 30 40 50
0

200
400
600
800

1000
1200
1400

Time HhL

D
C

L
im

it
W

Figure D.4: Left panel shows the EIS of a NCAM. The test solution, a 1.0 M KCl, 10 mM
sodium phosphate buffered solution is unchanged from run to run. However, as time
progresses the EIS spectrum tends towards lower impedance. As time progresses the
nano-capillaries are hydrated and their surface charge density is neutralized, drawing in
excess counter-ions. The right panel shows the DC limit as a function of time, which is
then fit to an exponential decay, equation D.1. This shows that 48 hours is a minimum
amount of time required to properly equilibrate the NCAMs.
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Appendix E

Spherical Case

Now, consider the Poisson-Boltzmann equation in spherical coordinates with a sym-

metric surface potential, thus independent of the θ and φ coordinates and simplified to

a 1:1 electrolyte:

1

r2

d

dr
r2dΦ(r)

dr
=

2qno

εoεr
Sinh

[
qΦ(r)

kT

]
(E.1)

Then linearized:

1

r2

d

dr
r2dΦ(r)

dr
= κ2Φ(r) (E.2)

where κ is again the Debye-Huckle parameter. Using the same boundary conditions as

used in the cylindrical case yields

Φsph,1(r) =
σr2

se
(rs−r)κ

rεrεo(1 + rsκ)
r ≥ rs (E.3)

Solving equation E.3 for σ the surface charge density at the surface of the sphere r = rs

then differentiating this with respect to the surface potential yields the differential

capacitance

C̃sph,1(r) =
εoεr
λD

(
1 +

λD
R

)
(E.4)

where λD is the Debye length, the inverse of the Debye-Huckle parameter. This is the

geometric capacitance. Physically the meaning of this is that all the counter-ions are

situated at a length equal to the Debye length, away from the surface. See Appendix

B for more information and derivations.

The Zeta potential is the potential at the slip plate, that is at r = rs + rz, where rz

is the distance from the surface of the sphere to the slip plane:

ζsph,1 =
σr2

se
rzκ

(rs + rz)εrεo(1 + rsκ)
(E.5)
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To obtain the second order correction we transform our differential equation E.1 to an

operator equation:

kT

q
ArcSinh

[
εoεr
2qno

1

r2

d

dr
r2dΦ(r)

dr

]
= Φ(r) (E.6)

and noticing that

1

κ2r2

d

dr
r2dΦ(r)

dr
= Φ(r) (E.7)

Simplifies the operator to

Ŝ =
kT

q
Sinh−1

[ q
kT

]
(E.8)

Which is the same as in the cylindrical case. Thus:

Φsph,2(r) = ŜΦsph,1(r) =
kT

q
Sinh−1

[
q

kT

σr2
se

(rs−r)κ

rεrεo(1 + rsκ)

]
(E.9)

Solving this for surface charge density at r = rs then differentiating this with respect

to the surface potential yields the differential capacitance

C̃sph,2(r) =
εoεr
λD

(
1 +

λD
R

)
Cosh

[
qΦ0

kT

]
(E.10)

Notice, now we have a differential capacitance that is a function of the surface potential,

and as expected with we let this go to zero, then we return to equation E.4
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