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ABSTRACT OF THE DISSERTATION
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By PIN-WEN WANG

Dissertation Directors:

Shou-En Lu, Ph.D. and Yong Lin, Ph.D.

In drug development, two-stage winner design can be cost-effective when the best treat-

ment is to be determined from multiple experimental treatments. In this design, an interim

analysis is devised to select the best treatment to avoid high cost, long-term trial conduction,

and exposure to ineffective treatments. When an existing effective treatment is available,

but new experimental treatments have advantages such as less cost, easier delivery, less

invasive and fewer side effects, etc., including placebo in the trial may be considered uneth-

ical. It is desirable to conduct a non-inferiority trial that directly compares new treatments

with the existing treatment (active control), and show that the new treatments are not less

effective than the active control by a certain amount (so called non-inferiority margin).

In this dissertation, we extended the framework of the two-stage winner design of Shun

et al. (2008) to conduct non-inferiority tests. Specifically, we considered designs of trials

with two or three experimental treatments and an active control. Our methods include

superiority hypotheses as a special case, but the hypothesis setting is more general than that

studied by Shun et al.. We studied the distribution of test statistics, cut-off values, sample

size and power calculations using exact distribution of the test statistics as well as using

ii



normal approximations. Theoretical justifications and extensive numerical assessments were

conducted to calculate the design parameters and evaluate the performance of our methods.

iii



Acknowledgements

I would like to express my deepest gratitude and appreciation to my dissertation advisors,

Dr. Shou-En Lu and Dr. Yong Lin. This work would not exist without their supreme

patience and intellectual generosity. During my years at school, I have known them as

great statisticians and excellent educators. They have provided numerous valuable ideas,

constant encouragement, and difficult long-distance consultation during my dissertation

years. I am privileged to learn from their research experiences.

Dr. Lu has advised me since the day I entered UMDNJ’s graduate program. During

these years, she has always been a pillar that I can rely on throughout the ups and downs

of my doctoral journey. Her insights were indispensable that eventually brought me to

this exciting research topic. I appreciate her for the contribution of time, energy as well

as numerous statistical ideas that were proven to be the key points of the dissertation.

Furthermore, she taught me scientific writing and has edited a myriad of drafts that help

set this dissertation in the right direction. She is a role model as a biostatistician, mentor

and teacher. I still think fondly of my time as a research assistant for her.

Dr. Lin’s superb advice and insights on mathematical subtlety and statistical computa-

tion were critical for tackling several theoretical hurdles and computational challenges for

the research of this dissertation. Without Dr. Lin’s many ideas, this dissertation would

not be complete, not to mention that he had overcome the challenges and difficulties in

reviewing and editing my countless drafts from a distance. Dr. Lin has set an example that

I can follow as a fellow biostatistician.

I am grateful to Dr. Weichung Joe Shih on having assembled the talented and inspiring

faculty, staff and students in the department. Dr. Shih has guided and inspired me for

my entire Ph.D. study. He gave me several opportunities to work on a variety of research

projects. His insights, perspectives and comments broadened my views and knowledge in

iv



biostatistics research as well as helped developing my critical thinking capacity.

I am indebted to Dr. Gordon K.K. Lan for being on my committee, giving inspirations

on my dissertation research, reviewing my dissertation, and providing great comments.

I would also like to thank the department’s faculty members as they have helped me

building a strong foundation in statistics. I am thankful and honored to be funded by Dr.

Lu’s research funding, which allowed me focusing on the research. I am also honored for

receiving the SPH General Scholarship and I would like to offer my gracious thanks to the

donors, the UMDNJ foundation, and the School of Public Health faculty.

I would like to offer heartfelt thanks to all my friends who have given me a hand during

my PhD study. In particular, they include Yingshan You, Jin Hung, Po-Ting Lin, Ariel

Chen, Ching-Jui Chang, Elisa Yang, Carol Chung, Xin Li and Linda Yau.

Lastly, I would like to thank my family for all their love and encouragement. My parents

raised me to develop the love of mathematics and supported me in all my pursuits. For the

company of my brother here in the US for five years and my husband who took care of my

kids while I was traveling to take courses. My lovely daughters who took care of themselves,

sacrificed their family time to be with me so I could focus on my study and work in these

many years. I love them.

v



Dedication

To my parents, my brother, Joyce, Jessica, Jacqueline and Hung-chih.

vi



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Motivating Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3. Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4. Overview of the Remaining Chapters . . . . . . . . . . . . . . . . . . . . . . 5

2. Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1. Non-inferiority Hypotheses and Tests . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1. Rationale of Non-inferiority Trials . . . . . . . . . . . . . . . . . . . 11

2.1.2. Fixed Margin Approach . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.3. Synthesis Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.4. Unified Approach: . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2. Existing Two-Stage Designs for Comparative Clinical Trials . . . . . . . . . 21

2.2.1. Review of Shun, Lan and Soo’s Procedure . . . . . . . . . . . . . . . 21

3. Non-Inferiority Trial under the Two-Stage Winner Design with Pre-specified

Non-Inferiority Margin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1. Test Statistic and Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

vii



3.2. Distribution of the Test Statistic . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1. Different Endpoints at Interim and Final Analyses . . . . . . . . . . 30

3.2.2. Same Endpoints at Interim and Final Analyses . . . . . . . . . . . . 31

3.3. Type I Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.1. Different Endpoints at Interim and Final Analyses . . . . . . . . . . 32

3.3.2. Same Endpoints at Interim and Final Analyses . . . . . . . . . . . . 36

3.4. Power and Sample Size Calculation . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.1. Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.1.1. Different Endpoints at Interim and Final Analyses . . . . . 40

3.4.1.2. Same Endpoints at Interim and Final Analyses . . . . . . . 48

3.4.2. Sample Size Calculation . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4.2.1. Different Endpoints at Interim and Final Analyses . . . . . 51

3.4.2.2. Same Endpoints at Interim and Final Analyses . . . . . . . 54

3.5. Normal Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5.1. Density Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5.2. Type I Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5.3. Power and Sample Size Estimation using Normal Approximation . . 58

3.5.3.1. Different Endpoints at Interim and Final Analyses . . . . . 58

3.5.3.2. Same Endpoints at Interim and Final Analyses . . . . . . . 64

4. Two-Stage Winner Design-Extension to the Trial with Three Experimen-

tal Arms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.1. Settings and Test Statistic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.1.1. Test Statistic for Superiority Hypothesis . . . . . . . . . . . . . . . . 73

4.1.2. Test Statistic for Non-inferiority Hypothesis . . . . . . . . . . . . . . 74

4.2. Distribution of the Test Statistic . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2.1. Different Endpoints at Interim and Final Analyses . . . . . . . . . . 75

4.2.2. Same Endpoints at Interim and Final Analyses . . . . . . . . . . . . 77

4.3. Type I Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

viii



4.3.1. Different Endpoints at Interim and Final Analyses . . . . . . . . . . 78

4.3.1.1. Non-inferiority Hypothesis . . . . . . . . . . . . . . . . . . 78

4.3.1.2. Superiority Hypothesis . . . . . . . . . . . . . . . . . . . . 80

4.3.2. Same Endpoints at Interim and Final Analyses . . . . . . . . . . . . 82

4.3.2.1. Non-inferiority Hypothesis . . . . . . . . . . . . . . . . . . 82

4.3.2.2. Superiority Hypothesis . . . . . . . . . . . . . . . . . . . . 84

4.4. Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4.1. Different Endpoints at Interim and Final Analyses . . . . . . . . . . 87

4.4.2. Same Endpoints at Interim and Final Analyses . . . . . . . . . . . . 98

4.5. Sample Size Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.5.1. Different Endpoints at Interim and Final Analyses . . . . . . . . . . 108

4.5.2. Same Endpoints at Interim and Final Analyses . . . . . . . . . . . . 114

4.6. Normal Approximation and Estimation . . . . . . . . . . . . . . . . . . . . 117

4.6.1. Normal Approximation . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.6.2. Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5. Summary, Discussion and Future work . . . . . . . . . . . . . . . . . . . . . 121

5.1. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.2. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.3. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Appendix A. Useful formulas and properties for the density function of the

standard normal distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Appendix B. Proofs in Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 132

B.1. Proof of Lemma 3.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

B.2. Proof of Lemma 3.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

B.3. Proof of Lemma 3.3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Appendix C. Proofs in Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . 136

C.1. Proof of Lemma 4.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

ix



C.2. Proof of Lemma 4.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

C.3. Proof of Lemma 4.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

C.4. Numeric Justification for Property 4.3.3 . . . . . . . . . . . . . . . . . . . . 146

Appendix D. Mathematica Program for Solving the Non-linear Equations

for Normal Approximation of the Sample Size . . . . . . . . . . . . . . . . . . 151

D.1. Pre-determine the Information Time τ when Different Endpoints at Interim

and Final Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

D.2. Pre-determine the Winning Probability p when Different Endpoints at In-

terim and Final Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

D.3. Pre-determine the Information Time τ when Same Endpoints at Interim and

Final Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

D.4. Pre-determine the Winning Probability p when Same Endpoints at Interim

and Final Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Appendix E. R Program for determine the critical value, sample size and

power for the test statistic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

x



List of Tables

2.1. Comparison between the conventional and non-inferiority hypotheses for nor-

mally distributed data, formulasa adopted from Blackwelder(1982) . . . . . 10

2.2. Excerpted from Snapinn(2004) [21] . . . . . . . . . . . . . . . . . . . . . . . 20

3.1. Critical value of c∗ for two-stage winner designs with two experimental and

an active control arms by η at α = 0.025 when different endpoints at interim

and final analyses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2. Critical value of c∗ for the 2-stage winner designs with two experimental and

an active control arms by τ at α = 0.025 when same endpoints at interim

and final analyses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3. Probability of selecting treatment 1, by τ and νX1 − νX2 when different end-

points at interim and final analyses. . . . . . . . . . . . . . . . . . . . . . . 41

3.4. Estimated sample size for δ1 = δ2 = δ when νX1 − νX2 = 0.1, ρ = 0.8, σX =

σY = 1, α = 0.025 with 80% or 90% power by τ, δ and ε when different

endpoints at interim and final analyses. . . . . . . . . . . . . . . . . . . . . 54

3.5. Estimated sample size for δ1 6= δ2 when νX1 − νX2 = 0.1, ρ = 0.8, σX =

σY = 1, α = 0.025 with 80% or 90% power by τ, δ1, δ2 and ε when different

endpoints at interim and final analyses. . . . . . . . . . . . . . . . . . . . . 55

3.6. Estimated sample size for δ1 = δ2 = δ when σY = 1 and α = 0.025 with

80% or 90% power by τ, δ, δ and ε when same endpoints at interim and final

analyses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.7. Estimated sample size for δ1 6= δ2 when σY = 1 and α = 0.025 with 80% or

90% power by τ, δ1, δ2 and ε when same endpoints at interim and final analyses. 56

xi



3.8. Comparison of sample size estimates using the exact distribution (upper row)

and normal approximation (lower row in parenthesis) when τ = 0.5, α =

0.025, ρ = 0.8, νX1 − νX2 = 0.1 and σY = σX = 1, for different endpoints at

interim and final analyses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.9. Comparison of sample size estimates using the exact distribution (upper row)

and normal approximation (lower row in parenthesis) when p = 0.65, α =

0.025, ρ = 0.8, νX1 − νX2 = 0.1 and σY = σX = 1, for different endpoints at

interim and final analyses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.10. Comparison of sample size estimates using the exact distribution (upper row)

and normal approximation (lower row in parenthesis) when τ = 0.25, α =

0.025, νX1 − νX2 = 0.1, ρ = 0.8, and σY = σX = 1, for different endpoints at

interim and final analyses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.11. Comparison of sample size estimates using the exact distribution (upper row)

and normal approximation (lower row in parenthesis) when p = 0.65, α =

0.025, ρ = 0.8, νX1 − νX2 = 0.1 and σY = σX = 1, for different endpoints at

interim and final analyses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.12. Comparison of sample size estimates using the exact distribution (upper row)

and normal approximation (lower row in parenthesis) when τ = 0.5, α =

0.025, ρ = 1 and σY = 1, for same endpoints at interim and final analyses. . 66

3.13. Comparison of sample size estimates using the exact distribution (upper row)

and normal approximation (lower row in parenthesis) when p = 0.65, α =

0.025, ρ = 1 and σY = 1, for same endpoints at interim and final analyses. . 67

3.14. Comparison of sample size estimates using the exact distribution (upper row)

and normal approximation (lower row in parenthesis) when τ = 0.5, α =

0.025, ρ = 1 and σY = 1, for same endpoints at interim and final analyses. . 69

3.15. Summary of sample size estimation formula using normal approximation with

pre-determined τ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.16. Summary of sample size estimation formula using normal approximation with

pre-determined p. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

xii



4.1. Critical value c∗ of two-stage winner designs with superiority or non-inferiority

hypothesis with three experimental treatment and one active control arms

when α = 0.025, and when different endpoints at the interim and the final

analyses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2. Critical value c∗ of the two-stage winner design for superiority or non-inferiority

hypothesis with three experimental treatment and one active control arms

when α = 0.025 and when same endpoints at the interim and the final analyses. 85

4.3. Probability of selecting each experimental treatment, by information time τ ,

νX1 − νX2 and νX1 − νX3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.4. Estimated sample size for δ1 = δ2 = δ3 = δ, when νX1 −νX2 = 0.1, νX1 −νX3 =

0.3, σY = σX = 1, α = 0.025 and ε = 0 with targeted power of 80% or 90% by

τ, ρ and δ when different endpoints used at the interim and the final analysis. 112

4.5. Estimated sample size for δ1 = δ2 = δ3 = δ, when νX1 −νX2 = 0.1, νX1 −νX3 =

0.3, σY = σX = 1, τ = 0.5 and α = 0.025 with targeted power of 80% or

90% by ρ, ε and δ when different endpoints used at the interim and the final

analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.6. Estimated sample size for δ1 = δ2 = δ 6= δ3 when νX1 − νX2 = 0.1, νX1 − νX3 =

0.3, σY = σX = 1, ρ = 0.8 and α = 0.025 with targeted power of 80% or 90%

by τ, ε, δ and δ3 when different endpoints used at the interim and the final

analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.7. Estimated sample size for δ1 6= δ2 6= δ3 when νX1 − νX2 = 0.1, νX1 − νX3 =

0.3, σY = σX = 1, ρ = 0.8 and α = 0.025 with targeted power of 80% or

90% by τ, ε, δ1, δ2 and δ3 when different endpoints used at the interim and

the final analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.8. Estimated sample size for δ1 = δ2 = δ3 = δ when σY = 1 and α = 0.025 with

targeted power of 80% or 90% by τ, ε and δ when same endpoints used at the

interim and the final analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.9. Estimated sample size for δ1 = δ2 = δ 6= δ3 when σY = 1 and α = 0.025 with

targeted power of 80% or 90% by τ, ε, δ and δ3 when same endpoints used at

the interim and the final analysis. . . . . . . . . . . . . . . . . . . . . . . . . 117

xiii



4.10. Estimated sample size for δ1 6= δ2 6= δ3 when σY = 1 and α = 0.025 with

targeted power of 80% or 90% by τ, ε, δ1, δ2 and δ3 when same endpoints used

at the interim and the final analysis. . . . . . . . . . . . . . . . . . . . . . . 118

xiv



List of Figures

1.1. Example of study design- Ranibizumab for macular edema following branch

retinal vein occlusion: six-month primary end point results of a phase 3 study,

excerpted from Campochiaro et al. (2010) . . . . . . . . . . . . . . . . . . . 6

2.1. Results of the estimated treatment effect of β̂EC and 95% confidence inter-

val(CI) from non-inferiority trials in relation with ε, excerpted from [17] . . 13

2.2. Results of the estimated treatment effect of β̂EC and 95% confidence inter-

val(CI) from non-inferiority trials in relation with ε and ε′, excerpted from

[17] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1. The association between η and c∗ at α = 0.025 . . . . . . . . . . . . . . . . 35

3.2. Information time τ against c∗ when α = 0.025. . . . . . . . . . . . . . . . . 39

3.3. power curves for δ1 = δ2 = δ when α = 0.025, τ = 0.25, ρ = 0.8 and σX =

σY = 1 by n, ε and ν12 = νX1 − νX2 when different endpoints at interim and

final analyses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4. Power curves for δ1 = δ2 = δ when α = 0.025, νX1 − νX2 = 0.1, σX = σY =

1, ε = 0.1 by n, τ and ρ when different endpoints at interim and final analyses. 43

3.5. Contour of power surface for δ1 6= δ2 when τ = 0.25, ρ = 0.8, ε = 0.1, σX =

σY = 1 and α = 0.025 by n, and ν12 = νX1 − νX2 when different endpoints at

interim and final analyses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.6. Contour of power surface for δ1 6= δ2 when νX1 − νX2 = 0.1, n = 250, ε =

0.1, σX = σY = 1 and α = 0.025 by τ and ρ when different endpoints at

interim and final analyses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.7. Contour of power surface for δ1 6= δ2 when νX1 − νX2 = 0.3, n = 250, ε =

0.1, σX = σY = 1 and α = 0.025 by τ and ρ when different endpoints at

interim and final analyses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

xv



3.8. Contour of power surface δ1 6= δ2 when νX1 −νX2 = 0.1, n = 250, σX = σY = 1

and α = 0.025 by ε and η when different endpoints at interim and final analyses. 49

3.9. Power curve for δ1 = δ2 = δ when α = 0.025 and σY = 1 by τ, n and ε when

same endpoints at interim and final analyses. . . . . . . . . . . . . . . . . . 50

3.10. Contour of power surface for δ1 6= δ2 when n = 250, σY = 1 and α = 0.025

by τ and ε when same endpoints at interim and final analyses. . . . . . . . 52

3.11. Contour of power surface for δ1 6= δ2 when τ = 0.5, σY = 1 and α = 0.025 by

n and ε when same endpoints at interim and final analyses. . . . . . . . . . 53

4.1. Critical value c∗ versus η at α = 0.025 when the interim and the final end-

points are different. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2. Critical value c∗ versus τ when α = 0.025 and when same endpoints at the

interim and the final analyses. . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3. Power curves for δ1 = δ2 = δ3 = δ when νX1 − νX2 = 0, νX1 − νX3 = 0, α =

0.025, σX = σY = 1 and ρ = 0.5 by τ, n and ε when different endpoints at

interim and final analyses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.4. Power curves for δ1 = δ2 = δ3 = δ when νX1 − νX2 = 0, νX1 − νX3 = 0, α =

0.025, σX = σY = 1 and τ = 0.5 by ρ, n and ε when different endpoints at

interim and final analyses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.5. Power curve for δ1 = δ2 = δ3 = δ when νX1 − νX2 = 0.1, νX1 − νX3 = 0.3, α =

0.025, σX = σY = 1 and τ = 0.5 by ρ, n and ε when different endpoints at

interim and final analyses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.6. Contour of power surface for δ1 = δ2 = δ 6= δ3, when α = 0.025, τ = 1, ρ =

0.5, σX = σY = 1, ε = 0 and n = 250 by ν12 = νX1 − νX2 and ν13 = νX1 − νX3

when different endpoints at interim and final analyses. . . . . . . . . . . . . 94

4.7. Contour of power surface for δ1 = δ2 = δ 6= δ3 when n = 250, α = 0.025, ε =

0, νX1 − νX2 = 0, σX = σY = 1 and νX1 − νX3 = 0.3 by τ and ρ when different

endpoints at interim and final analyses. . . . . . . . . . . . . . . . . . . . . 95

xvi



4.8. Contour of power surface for δ1 = δ2 6= δ3 when νX1 − νX2 = 0, νX1 − νX3 =

0.3, α = 0.025, ρ = 0.8, σX = σY = 1 and n = 250 by τ and ε when different

endpoints at interim and final analyses. . . . . . . . . . . . . . . . . . . . . 97

4.9. Contour of power surface for δ1 6= δ2 6= δ3 when νX1 − νX2 = 0.1, α =

0.025, νX1 − νX3 = 0.3, τ = 1, σX = σY = 1, ε = 0 and ρ = 0.5 by δ3 and

n when different endpoints at interim and final analyses. . . . . . . . . . . . 99

4.10. Contour of power surface for δ1 6= δ2 6= δ3 when νX1 − νX2 = 0.1, α =

0.025, νX1 − νX3 = 0.3, n = 250, σX = σY = 1, ε = 0 and δ3 = 0.1 by τ

and ρ when different endpoints at interim and final analyses. . . . . . . . . 100

4.11. Contour of power surface for δ1 6= δ2 6= δ3 when νX1 − νX2 = 0.1, νX1 − νX3 =

0.3, α = 0.025, τ = 1, ρ = 0.5(i.e.η = 0.25), σX = σY = 1 and δ3 = 0.1 by ρ

and ε when different endpoints at interim and final analyses. . . . . . . . . 101

4.12. Contour of power surface for δ1 6= δ2 6= δ3 when νX1 − νX2 = 0.1, νX1 − νX3 =

0.3, α = 0.025, δ3 = 0.1, ρ = 0.8, σX = σY = 1 and n = 250 by τ and ε when

different endpoints at interim and final analyses. . . . . . . . . . . . . . . . 102

4.13. Power curve for δ1 = δ2 = δ3 = δ when α = 0.025, σY = 1 by information

time τ and ε when same endpoints at interim and final analyses. . . . . . . 104

4.14. Contour of power surface for δ1 = δ2 = δ 6= δ3 when n = 250, σY = 1 and

α = 0.025 by τ and ε when same endpoints at interim and final analyses. . . 106

4.15. Contour of power surface for δ1 = δ2 = δ 6= δ3 when τ = 0.5, σY = 1 and

α = 0.025 by n and ε when same endpoints at interim and final analyses. . 107

4.16. Contour of power surface for δ1 6= δ2 6= δ3 when τ = 0.5, n = 250, σY = 1

and α = 0.025 by δ3 and ε when same endpoints at interim and final analyses.109

4.17. Contour of power surface when δ1 6= δ2 6= δ3 with vary information time τ

and ε when δ3 = 0.1, n = 250, σY = 1 and α = 0.025 when same endpoints

at interim and final analyses. . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.18. Contour of power surface when δ1 6= δ2 6= δ3 by n and ε when τ = 0.5, δ3 =

0.1, σY = 1 and α = 0.025 when same endpoints at interim and final analyses. 111

xvii



4.19. Comparison of f1(z) and the normal pdf with mean µ1 = 0.42 and σ1 = 0.94

when νX1 − νX2 = 0, νX1 − νX3 = 0, δ1 = 0.1, δ2 = 0.2, δ3 = 0.3, τ = 0.5, n =

50, σY = 1, σX = 1, ρ = 1, ε = 0. . . . . . . . . . . . . . . . . . . . . . . . . . 120

C.1. Pr(W > b) = 0.025 versus λ(12) and λ(13) when w1 = w2 = w3 = 0 by τ and

η when different endpoints at interim and final analyses. . . . . . . . . . . . 147

C.2. Pr(W > b) = 0.05 versus λ(12) and λ(13) when w1 = w2 = w3 = 0 by τ and

η when different endpoints at interim and final analyses. . . . . . . . . . . . 148

C.3. Pr(W > b) = 0.025 versus w2, and w3 by w1 and τ when same endpoints at

interim and final analyses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

C.4. Pr(W > b) = 0.05 versus w2, and w3 by w1 and τ when same endpoints at

interim and final analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

xviii



1

Chapter 1

Introduction

1.1 Background

With a large number of proven efficacious treatments, it is often unethical to use a placebo,

a non-effective treatment control, or a very low dose of an active drug for patients with

life-threatening or irreversible, life-altering conditions. The World Medical Association de-

veloped the Declaration of Helsinki [1] to provide the ethical principles for medical research

involving human subjects. The Declaration states:

”The benefits, risks, burdens and effectiveness of a new intervention must be tested

against those of the best current proven intervention, except in the following circumstances:

the use of placebo, or no treatment, is acceptable in studies where no current proven inter-

vention exists; or where for compelling and scientifically sound methodological reasons the

use of placebo is necessary to determine the efficacy or safety of an intervention and the

patients who receive placebo or no treatment will not be subject to any risk of serious or

irreversible harm. Extreme care must be taken to avoid abuse of this option.”

The International Conference on Harmonization Guidance on Choice of Control Group

and Related Issues in Clinical Trials (ICHE10) [2] also states:

”In cases where an available treatment is known to prevent serious harm, such as death

or irreversible morbidity in the study population, it is generally inappropriate to use a

placebo control.”

”In other situations, when there is no serious harm, it is generally considered ethical

to ask patients to participate in a placebo-controlled trial, even if they may experience

discomfort as result, provided the setting is noncoercive and patients are fully informed

about available therapies and the consequences of delaying treatment.”



2

If a placebo-controlled trial is considered to be unethical due to the availability of a

treatment that is known to prevent serious harm, such as death or irreversible morbidity,

it is desirable to conduct an active-controlled trial in which the experimental treatment is

compared directly to a proven effective active control. Recently, the term ”non-inferiority”

has been increasingly used in clinical trials for this purpose. A therapeutic threshold known

as the ”non-inferiority margin”, denoted by ε, is needed to quantitatively define the clin-

ical indifference. The non-inferiority margin is also closely related to the selection of the

scale of the treatment effect. The pros and cons for a difference scale versus a ratio scale

were extensively discussed in the literature, such as Brown and Day (2006), Hauschke and

Hothorn (2007), and the references cited therein.

The use of adaptive designs based upon accrued data has become popular in clinical

research and development because of its flexibility and efficiency in modifying the study

design aspects of ongoing clinical trials. The adaptive designs allow to increase the sample

size using the interim outcome to ensure study power or to stop the trial early without the

burden of amending the protocol [3]. Even though the objectives for most of the adaptive

design trials are testing superiority, it is possible to use an adaptive design for non-inferiority

hypotheses. A seamless trial is a clinical trial design that combines multiple objectives that

are traditionally addressed in separate trials into a single trial. An adaptive seamless de-

sign is a multi-stage design that provides several adaptive advantages such as stopping the

trial early for efficacy/futility, sample size re-estimation or ”drop the losers,” etc. [4]. The

primary objective of an adaptive seamless design is often to combine the phases of ”dose

selection” and ”dose confirmation” into one trial. Such a design not only reduces the time

between the learning and confirmatory phase by selecting and confirming the optimal dose

in one study, but also combines the data from the learning phase and the confirmatory phase

in the final analysis. Two-stage seamless adaptive designs are probably the most frequently

used design because of their simplicity and because they combine two separate studies into

one single study [5]. The two-stage winner trial is a special case of the two-stage seamless

adaptive design, because it choose the ”winner” treatment at the interim look. Lan et

al. (2005) [6] proposed a simple way to use normal approximation on the test statistics to
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evaluate the critical values of the two-stage winner deign. Shun et al. (2008) [7] extended

the methodology to estimate the sample size using normal approximation. Practical strate-

gies that consider both the multiplicity and adaptability related to the interim treatment

selection are recommended.

This dissertation is motivated by the examples of LUCENTIS R© studies (detailed below)

that described the need of determining a more practical dosing regimen group using a two-

stage seamless design. Since LUCENTIS R© has been approved as an effective treatment

for improving visual acuity for patients with age-related macular degeneration (AMD) and

it has been on the market for other indications, it is more appropriate to compare the

new dosing regimens to the approved dosing regimen (active control) than to the placebo

directly. Because one needs only to demonstrate that the new dosing regimen is no less

effective than the approved regimen, it is preferable to employ the non-inferiority test for

this purpose. So far, to the best of our knowledge, there has been no discussion in the

literature for a non-inferiority hypothesis using a two-stage winner design. In this thesis,

we aimed to propose a statistical methodology for designing a two-stage winner design for

testing non-inferiority hypotheses.

1.2 Motivating Examples

In the pivotal clinical studies of LUCENTIS R© for patients with age-related macular de-

generation (AMD) [8, 9, 10], it has been demonstrated that ongoing monthly dosing for a

duration of 2 years is an effective therapy for improving visual acuity (VA). This monthly

regimen required patients to go to a clinic to receive an injection of LUCENTIS R© into the

affected eyes. Serious eye infection, detached retina and other side effects have occurred

with LUCENTIS R© treatment. Additionally, such repetitive and invasive treatment can be

impractical for elderly patients.

Therefore, a Phase 3b study [11] was conducted to explore an alternative regimen with

less frequent dosing. From the results in all related studies, monthly dosing for the first

4 months, followed by an ”as needed” dosing regimen was recommended. However, the
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as needed plan did not provide a cogent guidance to physicians whether to adopt a less

frequent regimen after the first 4 months, nor did it adequately address whether a physician

could increase the recommended dose in less frequent injections and still achieve the same

effect observed in the pivotal clinical studies.

Similar challenges were faced in the design of pivotal trials of LUCENTIS R© for macular

edema following retinal vein occlusion (RVO) [12]. The study design of one of the pivotal

trials is shown in Figure 1.1. As shown in Figure 1.1, this study also included the ”as

needed” dosing plan after the recommended, mandatory injections for the first 6 months.

Because LUCENTIS R© had been approved as an effective treatment for both AMD and

RVO, it was unethical to design a study to compare the high-dose less-frequent regimen of

LUCENTIS R© to a placebo control. The two-stage design winner design for non-inferiority

hypotheses seem to be the most appropriate and practical design to test the high-dose less-

frequent hypotheses. In this design, we could choose a ”winner” dose regimen at interim

look and perform a non-inferiority test in the final analysis to compare the treatment effect

of the ”winner” versus the original approved dose/regimen plan of LUCENTIS R©. This

example demonstrates the need for designing a two-stage winner trial for non-inferiority

(NI) hypotheses that can adequately answer the following interested questions: 1) What

should be an appropriate dose/regimen group after the mandatory dosing period? and 2)

Whether the treatment effect of the ”winner” dose/regimen is no worse than the treatment

effect being seen in the pivotal trials within an acceptable range?

1.3 Research Objectives

The following are the objectives of this thesis:

1. Propose a methodology to design a non-inferiority trial with a pre-specified non-

inferiority margin under a two-stage winner design with two experimental treatment

and one active control arms.

2. Propose a methodology to design a non-inferiority trial or a superiority trial under a

two-stage winner design with three experimental treatments and one control arms.
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1.4 Overview of the Remaining Chapters

This thesis is organized as follows. In Chapter 2, we reviewed the statistical methodologies

of non-inferiority trials followed by the review of the two-stage winner design using normal

approximation. In Chapter 3, we proposed a methodology to conduct non-inferiority trials

with a pre-specified non-inferiority margin under the two-stage winner design frame work.

In Chapter 4, we extend the work in Chapter 3 to conduct a two-stage winner design with

three experimental treatment and one control arms. Both superiority and non-inferiority

hypotheses are considered. In Chapter 5, we conclude the methodologies and discuss some

possible future work.
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Figure 1.1: Example of study design- Ranibizumab for macular edema following branch
retinal vein occlusion: six-month primary end point results of a phase 3 study, excerpted
from Campochiaro et al. (2010)
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Chapter 2

Literature Review

The main reasons for using a non-inferiority trial are usually ethical. Specifically, we would

want to avoid exposing patients to an unsafe or ineffective treatment if a proven effective

treatment is already available [2]. Therefore, it may be more appealing to evaluate whether

a new experimental treatment is equal or not inferior to an existing efficacious therapy,

thus testing the usual hypothesis of equality in a conventional superiority trial can be inap-

propriate. Blackwelder (1982) [13] proposed a new idea of ”Proving the Null Hypothesis”

that it focuses on testing whether a new or experimental treatment is as effective as con-

trol/standard therapy (equivalence). This idea differs from the conventional thinking of

proving the superiority of a new or experimental treatment over the control/standard ther-

apy. The concept of proving ”non-inferiority” was further officially defined in the document

”Points to consider on switching between superiority and non-inferiority” [14] by the Com-

mittee for Proprietary Medicinal Products (CPMP), an European Union regulatory agency,

as well as in the discussion within the Food and Drug Administration (FDA).

Table 2.1 summarizes the differences between a non-inferiority test (with a fixed margin)

versus the conventional superiority test for normally distributed data. In this table, ε is

a sufficiently small number to specify the equivalency of therapies for a non-inferiority

hypothesis. It is called the non-inferiority margin, that makes the denominator of the

sample size formula larger for a non-inferiority test. Thus, the required sample size for a

non-inferiority trial is in general smaller than that for a conventional superiority trial. In

late 1990s, the distinction between equivalence and non-inferiority was made officially in the

document ”Points to consider on switching between superiority and non-inferiority” by the

Committee for Proprietary Medicinal Products (CPMP) [14], an European Union regulatory

agency, as well as in discussions within the Food and Drug Administration (FDA).
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In this thesis, we proposed the methodology using the two-stage winner designs for non-

inferiority hypotheses. Therefore, we will review the literatures related to the non-inferiority

hypotheses/tests and related to the two-stage design in the following sections.

2.1 Non-inferiority Hypotheses and Tests

Conceptually, non-inferiority trial provides two comparisons:

1. A direct comparison between the experimental treatment with the active control.

2. An indirect comparison between the experimental treatment and the placebo, with

an estimated treatment effect of active control from historical trials.

Both comparisons involved an active control arm, and the validity of a non-inferiority

trial strongly relies on the accuracy of its estimated treatment effect. Two major objectives

are often proposed in non-inferiority trials [15]:

• To test whether an experimental treatment is efficacious in the sense that it would

have been more effective than a placebo had a placebo been in the trial.

• To infer that an experimental treatment retains a proportion of an active control’s

effect (as relative to the placebo).

Before elaborating these objectives, we first introduce some notations. Assume that

the efficacy of the treatment is measured on some scale such that a larger value represents

better efficacy. Denote the true effect of the experimental treatment (E) relative to active

control (C) by βEC , and denote the true effect of the active control (C) relative to placebo

(P) by βCP . Thus, the true effect of the experimental treatment relative to placebo can

be represented by: βEC + βCP . In order to test the efficacy of an experimental treatment

relative to a placebo that not present in current trial (related to the first objective), we can

formulate the statistical hypotheses as:

H0 : βEC + βCP ≤ 0 versus H1 : βEC + βCP > 0.
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Equivalently,

H0 : βEC ≤ −βCP versus H1 : βEC > −βCP .

In this context, the non-inferiority margin ε = βCP is the effect of the active control

over the placebo. In order to infer the proportion of retention of an active control effect for

an experimental treatment (related to the second objective), we can formulate the relevant

statistical hypotheses as:

K0 : βEC + βCP ≤ uβCP versus K1 : βEC + βCP > uβCP ,

where u is the proportion of the control effect to be retained (0 ≤ u ≤ 1). Equivalently,

K0 : βEC ≤ −(1− u)βCP versus K1 : βEC > −(1− u)βCP .

Thus, the non-inferiority margin with the effect retention can be presented as ε =

(1 − u)βCP . Because (1 − u)βCP < βCP , the margin needs to demonstrate the effect re-

tention is narrower than the margin to demonstrate efficacy of the experimental treatment.

Therefore, the conclusion of effect retention can infer the efficacy of the experimental treat-

ment. For some clinical endpoints, such as mortality, the prior objective of simply showing

the experimental treatment being superior to a placebo is deemed not enough. As a result,

the second objective is often required in a regulatory application, especially for the active

control treatments that have already demonstrated large effect. However, determining the

percent retention can be as difficult as the determination of a fixed margin. The logical

inconsistencies associated with the use of hypotheses K0 had brought some attentions and

discussed elsewhere [16]. In this dissertation, we will assume the non-inferiority margin is

known and is pre-determined.
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There are several challenges in designing a non-inferiority trial and forming hypotheses.

One of the major challenges is on the determination of a non-inferiority margin, which

will be discussed in details in the next section. The other challenges are mostly related to

the following two important assumptions: assay sensitivity and constancy assumption [17].

The former refers to the ability of a clinical trial that can demonstrate a difference between

treatments if there is truly a difference. The latter refers to the similarity between a

non-inferiority trial and historical studies with respect to all important design and conduct

features that might influence the effect size of the active control. Simply put, it requires that

the effect size of the active control in the non-inferiority trial under study is similar to that in

the historical trials. There are a number of factors that can undermine the assay sensitivities,

such as poor compliance with treatment, poor selection of study population, and biased

endpoint assessment, etc. [2]. The constancy assumption can be undermined by factors

such as different patient enrollment criteria, dose regiment of the control, concomitant

medication, and inconsistent results in the historical placebo-controlled trials, etc. In order

to have a successful and credible non-inferiority trial, we must attempt to avoid these factors

to every possible extent. The focus of this thesis is not on validating these assumptions.

Therefore, we will assume the assumptions are met in our discussions.

2.1.1 Rationale of Non-inferiority Trials

Consider a non-inferiority trial with two experimental treatment arms: one experimental

treatment and one active control. One of the goals for a non-inferiority trial is to show

that an experimental treatment is no worse than a control within an acceptable range. We

consider the following hypotheses:

H0 : βEC ≤ −ε ( E is inferior to the control by ε or more),

H1 : βEC > −ε ( E is not inferior to the control by more than ε).

where ε represents the entire effect of the active control assumed to be present in the non-

inferiority study (relative to the placebo).
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The outcome of a non-inferiority trial is usually assessed by a two-sided 95% confidence

interval (or one-sided 97.5% interval), for evaluating the true differences between an exper-

imental treatment and an active control [18]. The outcome usually are summarized in the

following two quantities:

• The point estimate of the estimated effect (i.e. the observed difference between E and

C).

• The lower limit of the confidence interval of the estimated effect.

The former represents the best estimate of the true difference between the two treat-

ments, and the later represents a lower bound that is usually interpreted as the degree of

inferiority to the reference that can be excluded based on the data observed (the chance

that the true difference is worse than this bound is acceptably small). If the E and C

are equally efficacious, there is an equal chance that the point estimate will be positive

or negative regardless of the sample size. For this reason, the point estimate alone is not

sufficient as an estimate of the relative efficacy. However, in the situation of true equal-

ity, the lower bound of confidence interval would expect to move closer to 0 as the sample

size increased [17]. Figure 2.1 shows various scenarios of the estimated treatment effects

β̂EC and the corresponding two-sided 95% confidence intervals (CI) on a difference scale

E − C)in non-inferiority trials. The non-inferiority can be established if the lower bound

of the two-sided confidence interval for β̂EC is greater than −ε. The interpretation of the

results for the scenarios are:

1. Point estimate of β̂EC is 0, suggesting equal effect; lower bound of the 95% CI for

β̂EC > −ε; non-inferiority is demonstrated.

2. Point estimate of β̂EC favors C; lower bound of the 95% CI for β̂EC < −ε; non-

inferiority is not demonstrated.

3. Point estimate of β̂EC is 0, suggesting equal effect; but the lower bound of the 95%

CI of β̂EC < −ε, so that non-inferiority is not demonstrated.

4. Point estimate favors E; non-inferiority is demonstrated, but superiority is not demon-

strated.
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5. Point estimate favors E; superiority and non-inferiority are demonstrated.

6. Point estimate of β̂EC favors C and C is statistically significantly superiority than

E. However, the lower bound of the 95% for β̂EC > −ε, so that non-inferiority is

demonstrated with the given non-inferiority margin ε (This outcome would be unusual

and could present interpretive problems).

Figure 2.1: Results of the estimated treatment effect of β̂EC and 95% confidence interval(CI)
from non-inferiority trials in relation with ε, excerpted from [17]

As mentioned above, the major challenge in designing, conducting and interpreting

the result of a non-inferiority trials is the determination of a non-inferiority margin ε,

which is not measured in the non-inferiority study due to the lack of concurrent placebo

arm [19]. There are abundant discussions in the literature regarding how to determine

this quantity (e.g., Wiens (2002), Hung et al. (2003), Chow and Shao (2006), Hung et

al. (2003,2005,2007,2009), D’Agostino Sr. et al. (2003), Ng (2008) and the references cited

therein). The determination of a non-inferiority margin ε depends on several important

factors [17]:
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• The treatment effect estimated from the historical trials with the active control.

• The assessment of the likelihood that the effect of the active control is similar to the

its effect in the historical trials (constancy assumption).

• The assessment of the quality of the non-inferiority trial (therefore, the size of the ε

cannot be entirely specified until the non-inferiority study is complete).

The validity of any conclusion from a non-inferiority trial relies on the choice of ε. In

practice, we usually choose a smaller margin ε′ that reflects the largest clinically accept-

able difference (degrees of inferiority) of the experimental treatment compare to the active

control. To illustrate this margin in relation to the ε, Figure 2.2 shows various scenarios

on the estimated treatment effect of β̂EC and the corresponding two-sided 95% CI with

the assumed non-inferiority margins ε and ε′(< ε). The interpretation of the results are as

follows:

1. Point estimate of β̂EC is 0; lower bound of the 95% for β̂EC > −ε′ , indicating

experimental treatment is effective (non-inferiority is demonstrated).

2. Point estimate of β̂EC favors C; lower bound of the 95% for β̂EC is between the −ε

and −ε′, indicating there is a positive but unacceptable loss of the control effect.

3. Point estimate of β̂EC is 0; lower bound of the 95% for β̂EC is between the −ε and

−ε′. This could lead to the effectiveness conclusion.

4. Point estimate of β̂EC favors C and lower bound of the 95% CI < −ε, suggesting there

is no evidence of effectiveness for the experimental treatment.

The ε′ can never be greater than ε and is determined from the clinical judgement. Due

to this reason, there may be a greater flexibility in interpreting the 95% lower bound for

the effect of β̂EC that is slightly smaller than −ε′, but the lower bound is still larger than

−ε, as shown in Figure 2.2 scenario 3.

To test non-inferiority hypotheses under the frequentist framework, there are usually

two classes of statistical methods. These methods are often referred as the fixed margin
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Figure 2.2: Results of the estimated treatment effect of β̂EC and 95% confidence interval(CI)
from non-inferiority trials in relation with ε and ε′, excerpted from [17]

approach [17, 15, 20] and the synthesis approach [21, 17, 15, 20, 22, 23]. The goal of the

fixed margin approach is to demonstrate that the effect of an experimental treatment is

no worse than the effect of an active control by more than a pre-specified non-inferiority

margin. The determination of a non-inferiority margin depends not only from the statistical

evidence, but also depends on the clinical judgement. In contrast, the synthesis method

does not require to pre-specified a non-inferiority margin but it combines the point effect

estimate and variance from the non-inferiority trial with those estimates obtained from the

historical trials. Such a combination bridges the data from historical trials with the data

from non-inferiority trial into one test statistic. Therefore, we could make inferences on the

experimental treatment effect relative to the placebo that is not present in the current trial.

In summary, the fixed margin approach highlights the multi-dimensional statistical and

clinical considerations that are essential in determining the non-inferiority margin [20]. The

process of the non-inferiority margin determination captures the statistical uncertainty by

using the standard error of the estimated relative effect of the active control from historical

data. On the contrary, the synthesis approach does not generate a fixed margin nor utilizing
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any clinical margins on making statistical inferences. It incorporates the standard errors

(from both the historical and non-inferiority trial) directly into the construction of a test

statistic for statistical inferences. In the next section, we provide detailed review for each

of these methods. First, we will formulate the hypotheses of interest in this thesis:

H0 : βEC + βCP ≤ 0,

H1 : βEC + βCP > 0.

2.1.2 Fixed Margin Approach

To use the fixed margin approach, we first need to determine a non-inferiority margin based

on clinical and statistical evidence. The determination of a non-inferiority margin usually

involves two steps: Step 1: To obtain an effect estimate of the selected active control from

the data in the historical placebo-controlled trials. Fixed-effect or random-effect meta-

analytic approaches are the most commonly used [24, 25]. Step 2: To explore the extent

of discounting, i.e., assess whether the effect of the active control can be presumed to be

present in the new study (constancy assumption) or need to be adjusted based on the

difference between the current non-inferiority trial and historical trials.

Various approaches have been used to determine the non-inferiority margin and to an-

alyze an non-inferiority study. Let,

β̂CP and V̂CP

denote the estimates of the treatment effect and variance for the active control relative to

the placebo, respectively, while

β̂EC and V̂EC

denote the estimates of the treatment effect and variance for the experimental treatment

relative to the active control, respectively. Note that β̂CP and V̂CP are obtained from the

historical trials, and β̂EC and V̂EC are obtained from the non-inferiority trial.
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95%− 95% method

The two 95% confidence interval method is one of the most readily understood approach

related to the fixed margin approach. This method was discussed in the FDA memorandum

regarding the evaluation of thrombolytic therapies [26]. Assume that there is a set of histor-

ical trials comparing the control treatment with the placebo that have been pooled in some

type of meta-analysis, and there is a new non-inferiority trial comparing the experimental

treatment with the active control treatment. In most practice, a non-inferiority margin is

usually determined based on historical placebo-controlled trials. According to the ICH E-10

guideline [2], a non-inferiority ”margin cannot be greater than the smallest effect size that

the active drug would be reliably expected to have compared with placebo in the setting of

the planned trial.” As a result, the first 95% refers to the confidence interval used to choose

the effect size of the active control from the historical data, and the second 95% refers to

the confidence interval used to reject the null hypothesis in the non-inferiority study. In

order to ensure this, ε is often chosen based on the lower limit of the 95% confidence in-

terval for the active control relative to placebo, specifically, ε = β̂CP − 1.96
√
V̂CP . If the

confidence interval for the effect of the experimental treatment relative to the active control

is entirely above this margin, the experimental treatment can be declared to be non-inferior

to the active control. In this context, the non-inferiority of an experimental treatment can

be concluded if the lower bound of the two-sided confidence interval for the β̂EC is greater

than −ε, i.e.,

β̂EC − 1.96

√
V̂EC > −ε

(
where ε = β̂CP − 1.96

√
V̂CP

)
.

Equivalently,

β̂EC − 1.96

√
V̂EC > −

(
β̂CP − 1.96

√
V̂CP

)
.

or

β̂EC + β̂CP√
V̂EC +

√
V̂CP

> 1.96. (2.1)

95%− 95% method with discounting effect

Another variation of the traditional 95% − 95% method is to employ a discounting factor
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to the lower limit of the 95% CI for the relative effect of the active control. When there

are factors that undermine the constancy assumption or when the truth of the assumption

cannot be verified, it is necessary to employ a discounting factor, denoted by u, to the

estimate of lower limit of the 95% CI for the effect of active control relative to placebo.

Specifically, ε = (1 − u)(β̂CP − 1.96
√
V̂CP ), where 0 ≤ u ≤ 1. This is similar to applying

the preservation of a fraction of the active control’s effect to the non-inferiority margin.

Once the margin is set prior to the conduct the non-inferiority trial, the margin can not

be changed and will be viewed as a fixed constant that defines the statistical hypothesis.

According to this approach, the non-inferiority can be established if β̂EC−1.96
√
V̂EC > −ε,

where ε = (1− u)(β̂CP − 1.96
√
V̂CP ). Equivalently,

β̂EC + (1− u)β̂CP√
V̂EC +

√
(1− u)2V̂CP

> 1.96. (2.2)

Once the statistical margin is being determined, we need to use other factors such

as clinical significance, easiness of treatment administration, or cost, and other external

information to determine a non-inferiority margin for the trial. This clinical margin can

not be larger than the statistical margin. In Chapter 3 and Chapter 4, we will use the fixed

margin approach assuming a pre-determined non-inferiority margin being determined from

all available aspects.

2.1.3 Synthesis Approach

In contrast to the fixed margin approach, a non-inferiority margin is not required in the

synthesis approach. The synthesis approach combines the statistical evidence from the his-

torical trials with the one from the non-inferiority trial. One basic assumption supporting

this method is that the control effect estimated from the historical trials can be carried over

to the new non-inferiority trial. Once this assumption can be verified, we can then combine

the effect estimate of the experimental treatment relative to the active control from the

non-inferiority trial with the effect estimate of the active control to placebo from historical

trials. Similar to the fixed-margin approach, there are different versions of the synthesis

approach.
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Standard test without discounting

Assume the assay sensitivity and constancy assumption hold. We also assume the estimated

relative effect of the experimental treatment (from the current non-inferiority trial) and the

estimated relative effect of the active control (from the historical trials) are independently

and normally distributed. Thus, we could simply take the sum of the estimated effect

of experimental treatment relative to active control, with the estimated effect of active

control relative to placebo, to obtain a test statistic. The test statistic is approximately

normally distributed with variance equal to the sum of the two variances of the relative

effect estimates. The efficacy of the experimental treatment can be concluded if:

β̂EC + β̂CP√
V̂EC + V̂CP

> 1.96. (2.3)

Preserve a fraction of the active control’s effect(discounting effect)

In the situation when the constancy assumption is questionable, we can apply a discounting

factor to the estimated relative effect of the active control. Therefore, we reject the null

hypothesis of βEC + (1 − u)βCP ≤ 0 in favor of βEC + (1 − u)βCP > 0 to conclude the

non-inferiority, where 0 ≤ u ≤ 1. This can also be viewed as preserving a fraction of the

active control’s effect. Since these effect estimates are independent, the non-inferiority can

be concluded if:

β̂EC + (1− u)β̂CP√
V̂EC + (1− u)2V̂CP

> 1.96. (2.4)

Summary of the Approaches

The four test statistics described earlier are summarized in Table 2.2. We can see that the

only differences between Fixed-margin and Synthesis approaches are on the denominator.

Since √
V̂EC + V̂CP ≤

√
V̂EC +

√
V̂CP ,
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Without discounting factor With discounting factor

Fixed-margin approach β̂EC+β̂CP√
V̂EC+

√
V̂CP

(2.1) β̂EC+(1−u)β̂CP√
V̂EC+

√
(1−u)2V̂CP

(2.2)

Synthesis approach β̂EC+β̂CP√
V̂EC+V̂CP

(2.3) β̂EC+(1−u)β̂CP√
V̂EC+(1−u)2V̂CP

(2.4)

Table 2.2: Excerpted from Snapinn(2004) [21]

and √
V̂EC + (1− u)2V̂CP ≤

√
V̂EC +

√
(1− u)2V̂CP ,

the fixed-margin approach is relatively more conservative. It is important to recognize that

the synthesis approach makes use of the variabilities from both the non-inferiority trial and

historical trials and yields one confidence interval in the statistical inference. Thus, the

validity of this method strongly relies on the constancy assumption.

2.1.4 Unified Approach:

While various challenges associated with the design and analysis of the non-inferiority trials

are known, many methodologies have been proposed, and it remains unclear what the

most appropriate approach is. As the validity of a non-inferiority trial depends on two key

assumptions: assay sensitivity and constancy, which sometimes can not be verified, Snapinn

and Jiang (2008) [27] proposed an unified approach as a tool to control the type I error rate

when there is a departure from the assumptions. This method can also explore the impact

of variance inflation on the power. Using the unified approach U(u, v), non-inferiority can

be established if

U(u, v) > 1.96, where U(u, v) =
β̂EC + (1− u)β̂CP√

V̂EC + (1− u)2V̂CP + 2v(1− u)
√
V̂EC V̂CP

. (2.5)

In Equation 2.5, v is a variance inflation factor. And u is a discounting factor that have been

discussed in the previous section. Note that U(u, 0) corresponds to the synthesis approach;

U(u, 1) corresponds to the fixed-margin approach; and U(1, v) corresponds to a test for the
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superiority of the experimental treatment to the active control. In Chapter 4, we will use

the test statistic of the unified approach in a two-stage winner design for non-inferiority

hypotheses.

2.2 Existing Two-Stage Designs for Comparative Clinical Trials

The concept of treatment selection in two-stage design was proposed by Whitehead [28],

Thall et al. [29, 30] and Schaid et al. [31] for binary and survival endpoints. Recently, the

unconditional and conditional procedure were considered by Stallard et al. and Sampson

et al. [32, 33, 34] to select one-winner for normally distributed endpoints. Friede et al. [35]

gave a comparison for adaptive treatment selection. Liu et al. [36], Koenig et al. [37], and

Li et al. [38, 39] also considered the procedure to select more than one winners. Shun et

al.(2008) proposed to use a normal approximation method to design a two-stage winner

trial. At interim look, we select one of the two treatment arms with better treatment effect

to continue with the control arm to the final analysis. In this thesis, we will extend the

work from Shun et al. (2008) and will have detail review of their paper in the following

section.

2.2.1 Review of Shun, Lan and Soo’s Procedure

Design, Test Statistic and Distribution:

Suppose there is a study consists of 3 arms, one control and two treatment arms. Each

arm consists of a sample size of n. One interim analysis at the information time τ (=

n1/n, where n1 ≤ n is the interim sample size per group) is planned. Let {X(j)
i |i = 1, ..., n1}

and {Y (j)
i |i = 1, ..., n}, j = 0, 1, 2, represent the continuous measurement at interim and final

analysis, respectively. We use j = 0 to represent the control group, and j = 1, 2 to represent

the two treatment groups. Moreover, we assume that X
(j)
i are identically independently dis-

tributed withN(νXj , σ
2
X) and Y

(j)
i are identically independently distributed withN(µYj , σ

2
Y ).

We also assume that corr(X
(j)
i , Y

(j)
i ) = ρ for all i = 1, ..., n1 and j = 0, 1, 2. In the case

where the same endpoints are used at the interim and final analysis, ρ will be 1. Let the in-

terim sample means for each arm be X̄
(0)
n1 , X̄

(1)
n1 , X̄

(2)
n1 , where X̄

(j)
n1 = (1/n1)

∑n1
i=1X

(j)
i , and
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let the final sample means for each arm be Ȳ
(0)
n , Ȳ

(1)
n , Ȳ

(2)
n , where, Ȳ

(j)
n = (1/n)

∑n
i=1 Y

(j)
i .

At the interim analysis, we keep only the treatment with greater sample mean and the

control arm to the end of the study, assuming greater value is better.

Let ∆j = µYj −µY0 be the unknown treatment effect of the j’s treatment group compared

to the control, j = 1 or 2. We consider the hypotheses:

H0 : ∆1 = ∆2 = 0 versus H1 : ∆1 > 0 or ∆2 > 0.

Assume the target treatment effect of the trial is ∆j = δj , and let the test statistic be

Z(j)
n =

√
n

2σ2
Y

(Ȳ (j)
n − Ȳ (0)

n ), j = 1 or 2.

Under H0, Z
(j)
n ∼ N(0, 1). Let

Vn1 =

√
n1

2σ2
X

(X̄(1)
n1
− X̄(2)

n1
),

then the covariances between the Z
(j)
n (j = 1, 2) and Vn1 are

η = cov(Z(1)
n , Vn1) =

√
τ

2
ρ = −cov(Z(2)

n , Vn1).

Under H0, Vn1 ∼ N(0, 1), and under H1, Vn1 ∼ N(λ, 1), where λ =
√

n1

2σ2
X

(νX1 − νX2 ) 6= 0.

For convenience, authors assumed that λ > 0.

The final test statistic of the study with an interim treatment selection is then

W =


Z

(1)
n , if Vn1 > 0,

Z
(2)
n , if Vn1 < 0.

We start with a general case under H1 where δ1 6= δ2 and λ 6= 0. Let p = Pr(Vn1 > 0) be

the probability of selecting treatment 1 and q = Pr(Vn1 < 0) = 1− p. The distribution of
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W is

FW (w) = Pr(W < w)

= p

[
1

p

∫ w−w1

−∞
Φ(k0 + kz)φ(z)dz

]
+ q

[
1

q

∫ w−w2

−∞
Φ(−k0 + kz)φ(z)dz

]
= pF1(w − w1) + qF2(w − w2),

where

w1 =

√
n

2σ2
Y

δ1, w2 =

√
n

2σ2
Y

δ2,

k0 =
λ√

1− η2
, k =

η√
1− η2

,

and

Fj(w) =

∫ w

−∞
fj(t)dt, for j = 1, 2,

with density functions

f1(w) =
1

p
Φ(k0 + kw)φ(w) and f2(w) =

1

q
Φ(−k0 + kw)φ(w),

where Φ(.) and φ(.) is the cumulative distribution function (CDF ) and probability density

function (PDF ) of the standard normal distribution. Under H1, the density function of W

can be expressed as mixture combination of two density functions

fW (w) = pf1(w − w1) + qf2(w − w2).

Under H1, Vn1 ∼ N(λ, 1), therefore, we can calculate p as

p = Pr(Vn1 > 0) = Pr(Vn1 − λ > −λ) = 1− Φ(−λ) = Φ(λ).

Let W1 ∼ f1 and W2 ∼ f2 be two random variables with PDFs f1 and f2, respectively. The

means and variances of W1 and W2 under H1 were shown to be:

µ1 =
Λ

p
, σ1

2 = 1− ληµ1 − µ1
2,
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µ2 =
Λ

q
, σ2

2 = 1 + ληµ2 − µ1
2,

respectively, where

Λ =
η√
2π
e(−1

2
λ2).

Therefore, the mean and variance of W can be derived as

µW = 2Λ + [pw1 + qw2],

σ2
W = (1− 4Λ2) + 2Λ[w1(1− 2p) + w2(1− 2q)] + pq(w1 − w2)2,

respectively.

At λ = 0, and under the H0 that δ1 = δ2 = 0 (then w1 = w2 = 0), the authors showed

that FW = F0, where F0 has density of f0(w) = 2Φ(kw)φ(w) with mean µ0 =
√

2
πη and

variance σ2
0 = 1− ( 2

π )η2.

Type-I error Rate of the Two-Stage Winner Design

Let wα be the upper 100α percent quantile of F0,

wα = F−1
W (1− α|H0) = F−1

0 (1− α),

then the one-sided rejection region is

Ω = {W : W > wα},

and the Type-I error probability is

Pr(W > wα|H0) = α.

Normal Approximation

Even the exact tail probability can be obtained by numerical integration, the authors still

proposed a normal approximation approach in the two-stage winner design for the following
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reasons: 1) to simplify the calculation of type I error and power using normal approxima-

tion rather than using the complex numerical integration; 2) to simplify the calculation on

the sample size and to simplify statistical inferences by means of normal approximation; 3)

to easily implement the winner design with the normal approximation through their well-

understood properties.

Assume W1 and W2 can be approximated by the following normal random variables:

Z1 ∼ N(µ1, σ1) and Z2 ∼ N(µ2, σ2). The density of W can be approximated by

fW (w) ' p

σ1
φ(
w − w1 − µ1

σ1
) +

q

σ2
φ(
w − w2 − µ2

σ2
).

Type I Error rate Using the Normal Approximation

Under H0, W
′

(= W−µ0

σ0
). can be approximated by the standard normal distribution.

Therefore, the rejection region Ω̃ can be approximated by a region defined by σ0zα + µ0.

Ω̃ = {W : W > wα} = {W ′
: W

′
> w

′
α =

wα − µ0

σ0
}

' {W : W > σ0zα + µ0}.

The approximated type I error rate can be calculated by

1− Φ(
wα − µ0

σ0
)

Power and Sample Size using Normal Approximation

• Assume δ1 = δ2 = δ
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The targeted overall power can be calculated by

1− β = Pr(W > wα|H1) = 1− FW (wα|δ1 = δ2 = δ) = 1− F0(wα − w0),

where w0 =
√

n
2σ2
Y
δ. Let wβ = −(wα−w0), using the normal approximation, we have

β = Φ(−zβ) = F0(−wβ) ' Φ(
−wβ − µ0

σ0
),

where zβ = Φ−1(1− β).

1− α = Φ(zα) = F0(wα) ' Φ(
wα − µ0

σ0
).

Therefore,

wβ ' σ0zβ − µ0 and wα ' σ0zα + µ0.

Since w0 =
√

n
2σ2
Y
δ = wα +wβ, for the test to have a power of 1− β with significance

level of α, the sample size can be estimated by

n ' 2σ2
0(zα + zβ)2(

σy
δ

)2.

• Assume δ1 6= δ2 and δ1 < δ2

The overall power can be calculated by

1− β = Pr(W > wα|H1) = 1− [pF1(wα − w1) + qF2(wα − w2)] = 1− [pβ1 + qβ2]

where βj = Fj(wα − wj) for j = 1, 2.

Let −wβj = wα − wj , for j = 1, 2. From the normal approximation, Fj can be

approximated by N(µj , σj), for j = 1, 2, and F0 can be approximated by N(µ0, σ0),

we have

wβj ' σjzβj − µj and wα ' σ0zα + µ0.
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Hence

wj =

√
n

2σ2
Y

δj = wα + wβj ' µ0 + σ0zα + σjzβj − µj ,

for j = 1, 2. Therefore for the test with a power of 1 − β and significance level of α,

the sample size can be estimated by

n ' 2(µ0 + σ0zα + σjzβj − µj)
2(
σY
δj

)2, j = 1 or 2,

with constraints

δ1

δ2
=
µ0 + σ0zα + σ1zβ1 − µ1

µ0 + σ0zα + σ2zβ2 − µ2
,

and

1− β = 1− (pβ1 + qβ2).
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Chapter 3

Non-Inferiority Trial under the Two-Stage Winner Design

with Pre-specified Non-Inferiority Margin

At the end of last chapter, we briefly reviewed the methodology of the two-stage winner

design of Shun et al. (2008). In this chapter, we propose a methodology to conduct a

two-stage winner design for non-inferiority trials with a pre-specified non-inferiority margin

when there are two experimental treatments and one active control.

3.1 Test Statistic and Settings

Consider a two-stage winner design (Shun et al. 2008) with two experimental treatments

and one active control of equal sample size. One interim selection is planned to select a more

effective (”winner”) treatment at information time τ = n1
n , where n1 (≤ n) is the interim

sample size. The ”winner” treatment is then continued with the active control for testing

the non-inferiority hypothesis in the final analysis. Let {X(j)
i |i = 1, ..., n1} denote the

interim continuous measurements assumed to be independent identically distributed with

N(νXj , σ
2
X), where j = 0 represents the active control arm and j = 1, 2 denotes the two

experimental treatment arms. Let {Y (j)
i |i = 1, ..., n}, j = 0, 1, 2 denotes the final continuous

measurements that are independent identically distributed with N(µYj , σ
2
Y ). Assume the

variances σ2
X and σ2

Y are known, and X
(j)
i and Y

(j)
i are correlated with a correlation ρ, i.e.,

corr(X
(j)
i , Y

(j)
i ) = ρ.

Let the interim sample means be X̄
(j)
n1 = (1/n1)

∑n1
i=1X

(j)
i , j = 0, 1, 2, and the final

sample means be Ȳ
(j)
n = (1/n)

∑n
i=1 Y

(j)
i , j = 0, 1, 2. Similar to Shun et al. (2008), we use



29

the following selection procedure at the interim look:


Keep Treatment 1 , when X̄

(1)
n1 > X̄

(2)
n1 ,

Keep Treatment 2 , when X̄
(2)
n1 > X̄

(1)
n1 .

The goal of the design is to select only one experimental treatment at the interim selection.

Let ∆j = µYj − µY0 be the unknown treatment effect of the jth experimental treatment

versus the active control at the final analysis, where j = 1 or 2. We consider the following

non-inferiority hypotheses:

H0 : ∆1 ≤ −ε and ∆2 ≤ −ε, versus H1 : ∆1 > −ε or ∆2 > −ε, (3.1)

where ε (≥ 0) is the pre-specified non-inferiority margin which can be interpreted as the

largest clinically and statistically acceptable difference. Notice that, when ε = 0, the hy-

potheses in (3.1) becomes superiority hypotheses H0 : ∆1 ≤ 0 and ∆2 ≤ 0, which is more

preferred in general than H0 : ∆1 = 0 and ∆2 = 0 in Shun et al. (2008).

The alternative hypothesis H1 states that either treatment 1 or treatment 2 is non-

inferior to the active control within an acceptable non-inferiority margin. Assume that the

target treatment effect of the trial design is ∆j = δj , we define the final test statistic as:

W ∗ =


Ȳ

(1)
n −Ȳ

(0)
n +ε√

2σ2
Y
n

= Z
(1)
n +

√
n

2σ2
Y
ε, if Vn1 > 0,

Ȳ
(2)
n −Ȳ

(0)
n +ε√

2σ2
Y
n

= Z
(2)
n +

√
n

2σ2
Y
ε, if Vn1 < 0,

where Vn1 =
√

n1

2σ2
X

(X̄
(1)
n1 − X̄

(2)
n1 ). Note that Vn1 follows a normal distribution with mean λ

and variance 1, where

λ =

√
n1

2σ2
X

(νX1 − νX2 ).

The null hypothesis H0 is rejected when the value of W ∗ is large, say W ∗ > c∗. To

determine c∗, we begin by studying the distribution of W ∗. Specifically, we consider two

scenarios: 1) The surrogate endpoint is different from the final endpoint; 2) same endpoint
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is used at both the interim and the final analyses.

3.2 Distribution of the Test Statistic

3.2.1 Different Endpoints at Interim and Final Analyses

When the endpoint at the interim is different from the endpoint at the final analysis, we

follow the argument of Shun et al. (2008) and derive the distribution of W ∗ as:

FW ∗(w) =Pr(W ∗ ≤ w;λ, δ1, δ2, τ, ρ)

=

∫ w−
√

n

2σ2
Y

δ1−
√

n

2σ2
Y

ε

−∞
Φ

(
λ+ ηz√

1− η2

)
φ (z) dz

+

∫ w−
√

n

2σ2
Y

δ2−
√

n

2σ2
Y

ε

−∞
Φ

(
−λ+ ηz√

1− η2

)
φ (z) dz

=p

[
1

p

∫ w−w1−
√

n

2σ2
Y

ε

−∞
Φ

(
λ+ ηz√

1− η2

)
φ (z) dz

]

+ q

[
1

q

∫ w−w2−
√

n

2σ2
Y

ε

−∞
Φ

(
−λ+ ηz√

1− η2

)
φ (z) dz

]
=pF1(w − w1 −

√
n

2σ2
Y

ε) + qF2(w − w2 −
√

n

2σ2
Y

ε), (3.2)

where wj =
√

n
2σ2
Y
δj , j = 1, 2; η = cov(Z

(1)
n , Vn1) =

√
τ

2 ρ; p = Pr(Vn1 > 0) = Φ(λ), q =

1− p, and

Fj(w) =

∫ w

−∞
fj(z)dz, forj = 1, 2,

where f1(w) = 1
pΦ( λ+ηw√

1−η2
)φ(w), f2(w) = 1

qΦ(−λ+ηw√
1−η2

)φ(w).

The density function of W ∗ can be written as,

fW ∗(w) = pf1(w − w1 −
√

n

2σ2
Y

ε) + qf2(w − w2 −
√

n

2σ2
Y

ε).
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3.2.2 Same Endpoints at Interim and Final Analyses

When the endpoints at the interim and the final analyses are the same, it implies ρ = 1 and

η =
√
τ

2 ρ =
√
τ

2 . As a result,

λ =

√
n1

2σ2
X

(νX1 − νX2 ) =

√
n1

2σ2
X

(δ1 − δ2) =
√
τ(w1 − w2) = 2η(w1 − w2),

is a function of η, w1 and w2.

By replacing the λ with 2η(w1 − w2) in Equation 3.2, we derive the distribution of W ∗

as follows:

FW ∗(w) = Pr(W ∗ ≤ w; δ1, δ2, τ)

=

∫ w−w1−
√

n

2σ2
Y

ε

−∞
Φ

(
2η(w1 − w2) + ηz√

1− η2

)
φ (z) dz

+

∫ w−w2−
√

n

2σ2
Y

ε

−∞
Φ

(
−2η(w1 − w2) + ηz√

1− η2

)
φ (z) dz

= pF1(w − w1 −
√

n

2σ2
Y

ε) + qF2(w − w2 −
√

n

2σ2
Y

ε). (3.3)

The density function of W ∗ can be written as,

fW ∗(w) = pf1(w − w1 −
√

n

2σ2
Y

ε) + qf2(w − w2 −
√

n

2σ2
Y

ε),

where,

f1(w) =
1

p
Φ(

2η(w1 − w2) + ηw√
1− η2

)φ(w), f2(w) =
1

q
Φ(
−2η(w1 − w2) + ηw√

1− η2
)φ(w),

and p = Φ(2η(w1 − w2)), q = 1− p.

Notice that the distribution function of W ∗ takes the same form no matter different

or same endpoints are used at the interim and the final analyses (see Equation 3.2 and

Equation 3.3). However, the individual fj(z)’s, j = 1, 2 in the density functions are defined

differently as summarized in (3.4) and (3.5).
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f1(w) =


1
pΦ( λ+ηw√

1−η2
)φ(w), if different endpoints ,

1
pΦ(2η(w1−w2)+ηw√

1−η2
)φ(w), if same endpoints .

(3.4)

and

f2(w) =


1
qΦ(−λ+ηw√

1−η2
)φ(w), if different endpoints,

1
qΦ(−2η(w1−w2)+ηw√

1−η2
)φ(w), if same endpoints.

(3.5)

3.3 Type I Error

3.3.1 Different Endpoints at Interim and Final Analyses

When different endpoints are used at the interim and the final analyses, given ε, we consider

the type I error of a test with size α associated with W ∗ as:

α = sup
λ,δ1≤−ε,δ2≤−ε

Pr(W ∗ > c∗;λ, δ1, δ2, η)

= sup
λ,w1≤−

√
n

2σ2
Y

ε,w2≤−
√

n

2σ2
Y

ε

Pr(W ∗ > c∗;λ,w1, w2, η), (3.6)

where w1 =
√

n
2σ2
Y
δ1, w2 =

√
n

2σ2
Y
δ2, and c∗ is the critical value of the test. We define a

function γ as:

γ(b;λ,w1, w2, η) = Pr(W ∗ > b;λ,w1, w2, η)

= 1−
∫ b−w1−

√
n

2σ2
Y

ε

−∞
Φ

(
λ+ ηz√

1− η2

)
φ (z) dz −

∫ b−w2−
√

n

2σ2
Y

ε

−∞
Φ

(
−λ+ ηz√

1− η2

)
φ (z) dz.

where b is some cut-off value. Equation 3.6 can be rewritten as:

α = sup
λ,w1≤−

√
n

2σ2
Y

ε,w2≤−
√

n

2σ2
Y

ε

γ(c∗;λ,w1, w2, η).

In order to find the supremum of γ(c∗;λ,w1, w2, η), we have proven the following two
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lemmas in Appendix B.1 and B.2.

Lemma 3.3.1. Given λ, η and b, γ(b;λ,w1, w2, η) is monotonically increasing with w1 and

w2.

Lemma 3.3.2. Given b, η, w1 and w2, the maximum of γ(b;λ,w1, w2, η) occurs at λ =

w1−w2
2η , if ρ > 0.

Using these two lammas, we can show the following:

Theorem 3.1. For any 0 ≤ η < 1 and b ≥ 0,

sup
λ,w1≤−

√
n

2σ2
Y

ε,w2≤−
√

n

2σ2
Y

ε

γ(b;λ,w1, w2, η) = γ(b;λ = 0, w1 = −
√

n

2σ2
Y

ε, w2 = −
√

n

2σ2
Y

ε, η).

Proof. For any −∞ < λ <∞, w1 ≤ −
√

n
2σ2
Y
ε and w2 ≤ −

√
n

2σ2
Y
ε, Lemma 3.3.1 shows that

γ(b;λ,w1, w2, η) ≤ γ(b;λ,−
√

n

2σ2
Y

ε,−
√

n

2σ2
Y

ε, η).

Lemma 3.3.2 shows that

γ(b;λ,−
√

n

2σ2
Y

ε,−
√

n

2σ2
Y

ε, η) ≤ γ(b; 0,−
√

n

2σ2
Y

ε,−
√

n

2σ2
Y

ε, η).

Hence we have

γ(b;λ,w1, w2, η) ≤ γ(b; 0,−
√

n

2σ2
Y

ε,−
√

n

2σ2
Y

ε, η).

Theorem 3.1 shows that the type I error in Equation 3.6 can be further simplified to:

α = γ(c∗;λ = 0, w1 = −
√

n

2σ2
Y

ε, w2 = −
√

n

2σ2
Y

ε, η). (3.7)

An interesting observation of (3.7) is that, when ε = 0, the critical value for the test

statistic of the corresponding superiority hypothesis in (3.1) is the same as that for H0 :

∆1 = 0 and ∆2 = 0 in Shun et al. (2008), so are the evaluations of powers and sample sizes.
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In other word, we can replace the null hypothesis in Shun et al. (2008) with the preferred

one H0 : ∆1 ≤ 0 and ∆2 ≤ 0.

Since

γ(c∗;λ = 0, w1 = −
√

n

2σ2
Y

ε, w2 = −
√

n

2σ2
Y

ε, η)

= 1−
∫ c∗−w1−

√
n

2σ2
Y

ε

−∞
Φ

(
λ+ ηz√

1− η2

)
φ (z) dz −

∫ c∗−w2−
√

n

2σ2
Y

ε

−∞
Φ

(
−λ+ ηz√

1− η2

)
φ (z) dz

= 1− 2

∫ c∗+
√

n

2σ2
Y

ε−
√

n

2σ2
Y

ε

−∞
Φ

(
ηz√

1− η2

)
φ (z) dz

= 1− 2

∫ c∗

−∞
Φ

(
ηz√

1− η2

)
φ (z) dz,

given type I error α, c∗ can be determined by solving

α = 1− 2

∫ c∗

−∞
Φ(

ηz√
1− η2

)φ(z)dz. (3.8)

Equation 3.8 shows that the critical-value c∗ determined by the type I error rate α does

not depend on ε nor the sample size n. It only depends on the parameter η, which is

a function of the information time τ and the correlation ρ between the interim and final

endpoints. This property is not only useful for testing the non-inferiority hypothesis, but

also useful for determining the power and sample size when designing a trial.

Table 3.1 shows the critical value c∗ for selective τ and ρ when α = 0.025 when a

surrogate endpoint is used. For η > 0, the critical values are all greater than the usual

critical value 1.96. If we use this conventional value of 1.96 in the two-stage winner design,

the type I error rate will be erroneously inflated, due to the interim selection. In general, the

critical value increases with ρ between the interim and the final endpoints. It also increases

with τ . If η is the same for different combinations of τ and ρ, the resulted critical value

will be the same. Figure 3.1 shows the relationship between η and c∗ at α = 0.025 when

different endpoints are used at the interim and the final analyses.
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Figure 3.1: The association between η and c∗ at α = 0.025
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Table 3.1: Critical value of c∗ for two-stage winner designs with two experimental and an
active control arms by η at α = 0.025 when different endpoints at interim and final analyses.

(τ, ρ)
(0.25, 0) (0.33, 0) (0.5, 0) (0.75, 0) (1, 0)

η 0 0 0 0 0

c∗ 1.960 1.960 1.960 1.960 1.960

(τ, ρ)
(0.25, 0.2) (0.33, 0.2) (0.5, 0.2) (0.75, 0.2) (1, 0.2)

η 0.05 0.057 0.071 0.087 0.100

c∗ 1.998 2.004 2.013 2.024 2.034

(τ, ρ)
(0.25, 0.5) (0.33, 0.5) (0.5, 0.5) (0.75, 0.5) (1, 0.5)

η 0.125 0.144 0.177 0.217 0.25

c∗ 2.050 2.062 2.082 2.104 2.122

(τ, ρ)
(0.25, 0.8) (0.33, 0.8) (0.5, 0.8) (0.75, 0.8) (1, 0.8)

η 0.2 0.300 0.283 0.346 0.400

c∗ 2.095 2.111 2.138 2.165 2.184

With given τ and ρ, η =
√
τ

2 ρ.

3.3.2 Same Endpoints at Interim and Final Analyses

When same endpoints are used at the interim and the final analyses, given ε, we consider

the type I error of a test with size α associated with W ∗ as:

α = sup
δ1≤−ε,δ2≤−ε

Pr(W ∗ > c∗; δ1, δ2, η)

= sup
w1≤−

√
n

2σ2
Y

ε,w2≤−
√

n

2σ2
Y

ε

Pr(W ∗ > c∗;w1, w2, η), (3.9)

where w1 =
√

n
2σ2
Y
δ1, w2 =

√
n

2σ2
Y
δ2, and c∗ is the critical value of the test.

We define a function γ as:

γ(b;w1, w2, η) = Pr(W ∗ > b;w1, w2, η)

= 1−
∫ b−w1−

√
n

2σ2
Y

ε

−∞
Φ

(
2η(w1 − w2) + ηz√

1− η2

)
φ (z) dz

−
∫ b−w2−

√
n

2σ2
Y

ε

−∞
Φ

(
−2η(w1 − w2) + ηz√

1− η2

)
φ (z) dz,
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where b is some cut-off value. The type I error rate in Equation 3.9 can be rewritten as:

α = sup
w1≤−

√
n

2σ2
Y

ε,w2≤−
√

n

2σ2
Y

ε

γ(c∗;w1, w2, η).

In order to find the supremum of γ(c∗;w1, w2, η), we have proven the following lemma in

Appendix B.3

Lemma 3.3.3. For any 0 ≤ η < 1, and 0 ≤ u1 ≤ u2,

∫ u1

−∞
Φ

(
2η(u2 − u1) + ηz√

1− η2

)
φ (z) dz +

∫ u2

−∞
Φ

(
−2η(u2 − u1) + ηz√

1− η2

)
φ (z) dz

≥ 2

∫ u1

−∞
Φ

(
ηz√

1− η2

)
φ (z) dz

Using Lemma 3.3.3, we can show the following

Theorem 3.2. For any 0 ≤ η < 1, and b ≥ 0,

sup
w1≤−

√
n

2σ2
Y

ε,w2≤−
√

n

2σ2
Y

ε

γ(b;w1, w2, η) = γ(b;−
√

n

2σ2
Y

ε,−
√

n

2σ2
Y

ε, η).

Proof. For w1 ≤ −
√

n
2σ2
Y
ε and w2 ≤ −

√
n

2σ2
Y
ε, without loss of generality, assume that

w1 ≥ w2, we have u1 = b− w1 −
√

n
2σ2
Y
ε ≥ 0, u2 = b− w2 −

√
n

2σ2
Y
ε ≥ 0, and 0 ≤ u1 ≤ u2.

By Lemma 3.3.3,

γ(b;w1, w2, η) = 1−
∫ b−w1−

√
n

2σ2
Y

ε

−∞
Φ

(
2η(w1 − w2) + ηz√

1− η2

)
φ (z) dz

−
∫ b−w2−

√
n

2σ2
Y

ε

−∞
Φ

(
−2η(w1 − w2) + ηz√

1− η2

)
φ (z) dz

= 1−
∫ u1

−∞
Φ

(
2η(u2 − u1) + ηz√

1− η2

)
φ (z) dz −

∫ u2

−∞
Φ

(
−2η(u2 − u1) + ηz√

1− η2

)
φ (z) dz

≤ 1− 2

∫ u1

−∞
Φ

(
ηz√

1− η2

)
φ (z) dz

≤ 1− 2

∫ b

−∞
Φ

(
ηz√

1− η2

)
φ (z) dz = γ(b;−

√
n

2σ2
Y

ε,−
√

n

2σ2
Y

ε, η)
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Table 3.2: Critical value of c∗ for the 2-stage winner designs with two experimental and an
active control arms by τ at α = 0.025 when same endpoints at interim and final analyses.

τ
0.25 0.33 0.5 0.75 1

η 0.25 0.287 0.354 0.433 0.500

c∗ 2.122 2.140 2.168 2.195 2.212

With given information time τ , η =
√
τ

2 .

Theorem 3.2 shows that the type I error in Equation 3.9 can be further simplified to

α = γ(c∗;w1 = −
√

n

2σ2
Y

ε, w2 = −
√

n

2σ2
Y

ε, η) = 1− 2

∫ c∗

−∞
Φ(

ηz√
1− η2

)φ(z)dz.

Hence given type I error rate α, the critical value c∗ can be determined by solving

α = 1− 2

∫ c∗

−∞
Φ(

ηz√
1− η2

)φ(z)dz. (3.10)

Notice that Equations 3.8 and 3.10 are exactly the same. This implies that the critical

value c∗ is the same regardless using same or different endpoints at the interim and the final

analyses. The critical value c∗ does not depend on ε nor n. However, η only depends on τ

when the same endpoint is used at the interim and final analyses.

Table 3.2 shows the critical value c∗ for selected τ when α = 0.025 when same endpoints

are used at the interim and the final analyses. For τ > 0, the critical values are all greater

than 1.96, a commonly used critical value. If we use this conventional value 1.96 in the

two-stage winner design, the type I error rate would be erroneously inflated. The inflation

increases as τ increases.

When a surrogate endpoint is not used, if the given τ resulted in the same η as when

a surrogate endpoint is used, the corresponding critical values c∗ will be the same. For

example, in Table 3.2, when τ = 0.25, the corresponding η = 0.25, the critical value

c∗ = 2.122 is exactly the same for η = 0.25 in Table 3.1. Figure 3.2 shows the relationship

between the τ and c∗ at α = 0.025.
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Figure 3.2: Information time τ against c∗ when α = 0.025.



40

3.4 Power and Sample Size Calculation

In this section, we discuss how the power and sample size can be calculated. Note that the

power we discuss here is the power of rejecting the non-inferiority hypothesis H0, not the

probability of selecting the right winner.

3.4.1 Power

3.4.1.1 Different Endpoints at Interim and Final Analyses

When different endpoints are used at the interim and the final analyses, we define the power

1− β as follows:

1− β = Pr(W ∗ > c∗;H1)

= γ(c∗;λ,w1, w2, η)

= 1−
∫ c∗−w1−

√
n

2σ2
Y

ε

−∞
Φ

(
λ+ ηz√

1− η2

)
φ (z) dz

−
∫ c∗−w2−

√
n

2σ2
Y

ε

−∞
Φ

(
−λ+ ηz√

1− η2

)
φ (z) dz. (3.11)

In the following paragraphs, we discuss the power function under two scenarios.

• Case I: δ1 = δ2 = δ.

When δ1 = δ2 = δ, the overall targeted power 1− β can be calculated as

1− β = γ(c∗;λ,w1 = w2 =

√
n

2σ2
Y

δ, η)

= 1−
∫ c∗−

√
n

2σ2
Y

(δ+ε)

−∞
Φ

(
λ+ ηz√

1− η2

)
φ (z) dz

−
∫ c∗−

√
n

2σ2
Y

(δ+ε)

−∞
Φ

(
−λ+ ηz√

1− η2

)
φ (z) dz. (3.12)

From Equation 3.12, power is a function of n, c∗, ε, η, σY , δ and λ. For different

combinations of δ and ε, as long as the sum of these two parameters are the same, so

is the power. Given α and η, critical value c∗ can be obtained from Equation 3.8.
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Table 3.3: Probability of selecting treatment 1, by τ and νX1 − νX2 when different endpoints
at interim and final analyses.

νX1 − νX2 = 0
τ = 0.25 τ = 0.5 τ = 0.75

n 100 250 500 1000 2000 100 250 500 1000 2000 100 250 500 1000 2000

p 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

νX1 − νX2 = 0.05
τ = 0.25 τ = 0.5 τ = 0.75

n 100 250 500 1000 2000 100 250 500 1000 2000 100 250 500 1000 2000

p 0.57 0.61 0.65 0.71 0.79 0.60 0.65 0.71 0.79 0.87 0.62 0.69 0.75 0.83 0.91

νX1 − νX2 = 0.1
τ = 0.25 τ = 0.5 τ = 0.75

n 100 250 500 1000 2000 100 250 500 1000 2000 100 250 500 1000 2000

p 0.64 0.71 0.79 0.87 0.94 0.69 0.79 0.87 0.94 0.99 0.73 0.83 0.91 0.97 1.00

νX1 − νX2 = 0.3
τ = 0.25 τ = 0.5 τ = 0.75

n 100 250 500 1000 2000 100 250 500 1000 2000 100 250 500 1000 2000

p 0.86 0.95 0.99 1.00 1.00 0.93 0.99 1.00 1.00 1.00 0.97 1.00 1.00 1.00 1.00

To study the effect of n, ε and νX1 − νX2 on power, we show the power curves for

δ1 = δ2 = δ when α = 0.025, τ = 0.25, ρ = 0.8, σX = σY = 1 in Figure 3.3. When

ν12 changes, there is no obviously changes on the power in the figures. This is clear

since the final targeted treatment effects are the same (δ1 = δ2), the experimental

treatment effects at interim look have minimum impact on the power. As ε increases,

power curves shift to the left, suggesting the increase on the power.

To study the effect of n, τ and ρ on the power, we show the power curves for for

δ1 = δ2 = δ when α = 0.025, νX1 − νX2 = 0.1, σX = σY = 1, ε = 0.1 in Figure 3.4.

When τ or ρ increases, there is no visual increase on the power. This is clear because

the two experimental treatments have the same effect at the final analysis, the timing

of the interim analysis, or the correlation between the interim and the final endpoints

have minimum effect on the power.

• Case II: δ1 6= δ2.

When δ1 6= δ2, the power 1− β can be expressed as

1− β = γ(c∗;λ,w1 =

√
n

2σ2
Y

δ1, w2 =

√
n

2σ2
Y

δ2, η)



42

Figure 3.3: power curves for δ1 = δ2 = δ when α = 0.025, τ = 0.25, ρ = 0.8 and σX = σY = 1
by n, ε and ν12 = νX1 − νX2 when different endpoints at interim and final analyses.
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Figure 3.4: Power curves for δ1 = δ2 = δ when α = 0.025, νX1 − νX2 = 0.1, σX = σY = 1, ε =
0.1 by n, τ and ρ when different endpoints at interim and final analyses.
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= 1−
∫ c∗−

√
n

2σ2
Y

(δ1+ε)

−∞
Φ

(
λ+ ηz√

1− η2

)
φ (z) dz

−
∫ c∗−

√
n

2σ2
Y

(δ2+ε)

−∞
Φ

(
−λ+ ηz√

1− η2

)
φ (z) dz. (3.13)

From Equation 3.13, the power is a function of parameters c∗, δ1, δ2, λ, σY , η, ε and

n. Given α and η, critical value c∗ can be obtained from Equation 3.8.

To study the effect of n and ν12 = νX1 − νX2 on the power, we show the contour

of power surface for δ1 6= δ2 when τ = 0.25, ρ = 0.8, ε = 0.1, σX = σY = 1 and

α = 0.025 in Figure 3.5. When νX1 − νX2 increases, power increases. Table 3.3 provide

the probability of selecting treatment 1, by τ and νX1 − νX2 . When n = 100, as

the νX1 − νX2 increase to 0.3, the probability of selecting treatment 1 at the interim

selection is at least 0.86. Therefore, the bottom 3 figures in Figure 3.5 show that

δ2 has a minimal impact on power. As n increases, power surfaces shift to the left

suggesting the increase on power.

To study the effect of τ and ρ on the power, we show the contour of power surface

for δ1 6= δ2 when n = 250, νX1 − νX2 = 0.1, ε = 0.1, σX = σY = 1 and α = 0.025 in

Figure 3.6. As seen in Table 3.3, when n = 250, νX1 − νX2 = 0.1, the probability of

selecting treatment 1 increases from 0.71 to 0.83, as τ increases from 0.25 to 0.75. As

a result, the power increases when τ increases. On the other hand, when ρ increases,

it have minimum impact on the power.

Figure 3.6 and Figure 3.7 are similar except for the selected values of νX1 − νX2

(νX1 − νX2 = 0.1 in Figure 3.6, and 0.3 in Figure 3.7. Comparing these two figures, we

can see that the power surface shifts to the left when νX1 −νX2 = 0.3, which implies the

increase on the power. Furthermore, when νX1 − νX2 = 0.3, according to Table 3.3, we

have at least 90% of probability to select treatment 1. Therefore, the power depends

much more on δ1 then δ2 in Figure 3.7.

To study the effect of ε and η on power, we show the contour of power surface

for δ1 6= δ2 when νX1 − νX2 = 0.1, n = 250, σX = σY = 1 and α = 0.025 in Figure 3.8.

When η increases, the surface changes only a little bit. Since η is a function of τ and
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Figure 3.5: Contour of power surface for δ1 6= δ2 when τ = 0.25, ρ = 0.8, ε = 0.1, σX =
σY = 1 and α = 0.025 by n, and ν12 = νX1 − νX2 when different endpoints at interim and
final analyses.
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Figure 3.6: Contour of power surface for δ1 6= δ2 when νX1 −νX2 = 0.1, n = 250, ε = 0.1, σX =
σY = 1 and α = 0.025 by τ and ρ when different endpoints at interim and final analyses.
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Figure 3.7: Contour of power surface for δ1 6= δ2 when νX1 −νX2 = 0.3, n = 250, ε = 0.1, σX =
σY = 1 and α = 0.025 by τ and ρ when different endpoints at interim and final analyses.
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ρ, it hard for us to see its individual effect on the power. On the other hand, power

increases as the ε increases.

3.4.1.2 Same Endpoints at Interim and Final Analyses

When the interim and final endpoints are the same, we define the power 1− β as follows:

1− β = Pr(W ∗ > c∗;H1)

= γ(c∗;w1, w2, η)

= 1−
∫ c∗−w1−

√
n

2σ2
Y

ε

−∞
Φ

(
2η(w1 − w2) + ηz√

1− η2

)
φ (z) dz

−
∫ c∗−w2−

√
n

2σ2
Y

ε

−∞
Φ

(
−2η(w1 − w2) + ηz√

1− η2

)
φ (z) dz. (3.14)

From Equation 3.14, we know the power is a function of c∗, δ’s, σY , ε, n and η or τ .

Given α and η, critical value c∗ can be obtained from Equation 3.10.

• Case I: δ1 = δ2 = δ.

When δ1 = δ2 = δ, the overall power 1− β can be calculated as

1− β = 1− 2

∫ c∗−
√

n

2σ2
Y

(δ+ε)

−∞
Φ

(
ηz√

1− η2

)
φ (z) dz. (3.15)

As seen in Equation 3.15, for different combinations of δ and ε, as long as the sum

of these two parameters are the same, so is the power.

To study the effect of τ, n and ε on the power, we show the power curves for

δ1 = δ2 = δ when α = 0.025 and σY = 1 in Figure 3.9. Obviously, power increases

with n and ε. For same ε, power remains the same for all choices of τ . This is because

when δ1 = δ2 and the endpoint at the interim and the final analysis are the same, it

does not matter when and which treatment is selected at the interim.

• Case II: δ1 6= δ2.
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Figure 3.8: Contour of power surface δ1 6= δ2 when νX1 − νX2 = 0.1, n = 250, σX = σY = 1
and α = 0.025 by ε and η when different endpoints at interim and final analyses.
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Figure 3.9: Power curve for δ1 = δ2 = δ when α = 0.025 and σY = 1 by τ, n and ε when
same endpoints at interim and final analyses.



51

When δ1 6= δ2 , the power 1− β can be expressed as

1− β = 1−
∫ c∗−

√
n

2σ2
Y

(δ1+ε)

−∞
Φ

(
2η(w1 − w2) + ηz√

1− η2

)
φ (z) dz

−
∫ c∗−

√
n

2σ2
Y

(δ2+ε)

−∞
Φ

(
−2η(w1 − w2) + ηz√

1− η2

)
φ (z) dz. (3.16)

Equation 3.16 shows the power function is symmetric in δ1 and δ2. Regardless

δ1 > δ2 or δ1 < δ2, as long as the value of the δ’s are the same, so is the power.

To study the effect of τ and ε on the power, we show the power curves for δ1 6= δ2

when n = 250, σY = 1 and α = 0.025 in Figure 3.10. As we can see in the figures,

power increases as either ε or τ increases.

To study the effect of n and ε on the power, we show the power curves for δ1 6= δ2

when τ = 0.5, σY = 1 and α = 0.025 in Figure 3.11. It is obvious that power increases

as either ε or n increases.

3.4.2 Sample Size Calculation

3.4.2.1 Different Endpoints at Interim and Final Analyses

• Case I: δ1 = δ2 = δ.

When δ1 = δ2 = δ, we can determine the sample size n per group by solving

Equation 3.12, given the α, η, c∗, λ, σY , power 1− β and δ.

Table 3.4 provides an example of the estimated sample size for δ1 = δ2 = δ when

νX1 − νX2 = 0.1, ρ = 0.8, σX = σY = 1, α = 0.025 with 80% or 90% power by τ, δ

and ε. At given power and τ , sample size decreases as ε or δ increases. At given

power, ε and δ, sample size increases with τ . When the sum of δ and ε is the same

by fixing other parameters, power remains the same. For example, at τ = 0.25 with

80% power, the sample size needed is the same when ε = 0, δ = 0.2(ε + δ = 0.2) and

when ε = 0.1, δ = 0.1(ε+ δ = 0.2).

• Case II: δ1 6= δ2.
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Figure 3.10: Contour of power surface for δ1 6= δ2 when n = 250, σY = 1 and α = 0.025 by
τ and ε when same endpoints at interim and final analyses.
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Figure 3.11: Contour of power surface for δ1 6= δ2 when τ = 0.5, σY = 1 and α = 0.025 by
n and ε when same endpoints at interim and final analyses.
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Table 3.4: Estimated sample size for δ1 = δ2 = δ when νX1 − νX2 = 0.1, ρ = 0.8, σX = σY =
1, α = 0.025 with 80% or 90% power by τ, δ and ε when different endpoints at interim and
final analyses.

τ = 0.25, ρ = 0.8(i.e. η = 0.2)
ε = 0 ε = 0.1 ε = 0.2

δ 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

1− β = 0.8 1658 394 173 97 62 394 173 97 62 43 173 97 62 43 32
1− β = 0.9 2226 530 232 130 83 530 232 130 83 58 232 130 83 58 42

τ = 0.5, ρ = 0.8(i.e. η = 0.28)
ε = 0 ε = 0.1 ε = 0.2

δ 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

1− β = 0.8 1746 402 173 96 61 402 173 96 61 42 173 96 61 42 31
1− β = 0.9 2321 544 233 129 82 544 233 129 82 57 233 129 82 57 42

τ = 0.75, ρ = 0.8(i.e. η = 0.35)
ε = 0 ε = 0.1 ε = 0.2

δ 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

1− β = 0.8 1797 413 174 95 60 413 174 95 60 42 174 95 60 42 31
1− β = 0.9 2371 559 235 128 81 559 235 128 81 56 235 128 81 56 41

When δ1 6= δ2, we can use Equation 3.13 to determine the sample size given the

α, η, c∗, λ, σY , power 1− β and δ’s.

Table 3.5 provides an example of the estimated sample size for δ1 6= δ2 when

νX1 −νX2 = 0.1, ρ = 0.8, σX = σY = 1, α = 0.025 with 80% or 90% power by τ, δ1, δ2 and

ε. When the effect of two treatments are close (e.g.δ1 = 0.3, δ2 = 0.1), a larger sample

size is required to maintain the same power level as compared to when difference in

the two treatments are bigger (δ1 = 0.5, δ2 = 0.1). For instance, when τ = 0.25, δ1 =

0.3, δ2 = 0.1, we need 344 subjects to achieve 80% power, whereas, we only need 299

subjects to achieve the same power when δ1 = 0.5, δ2 = 0.1. When ε or τ increases,

by fixing other parameters, smaller sample is needed. When the interim treatment

effect is in the same direction as the final endpoints, smaller sample size is needed to

maintain the same power level. For example, at interim selection, when νX1 − νX2 > 0,

it implies the final endpoint be in the same direction if δ1 > δ2.

3.4.2.2 Same Endpoints at Interim and Final Analyses

• Case I: δ1 = δ2 = δ.

When δ1 = δ2 = δ, we can determine the sample size n per group by solving
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Table 3.5: Estimated sample size for δ1 6= δ2 when νX1 − νX2 = 0.1, ρ = 0.8, σX = σY =
1, α = 0.025 with 80% or 90% power by τ, δ1, δ2 and ε when different endpoints at interim
and final analyses.

τ = 0.25, ρ = 0.8( i.e. η = 0.2)
ε = 0 ε = 0.1 ε = 0.2

(δ1, δ2) (0.3,0.1) (0.5,0.1) (0.3,0.1) (0.5,0.1) (0.3,0.1) (0.5,0.1)

1− β = 0.8 344 299 167 138 95 77
1− β = 0.9 615 613 258 252 138 131

τ = 0.5, ρ = 0.8( i.e. η = 0.28)
ε = 0 ε = 0.1 ε = 0.2

(δ1, δ2) (0.3,0.1) (0.5,0.1) (0.3,0.1) (0.5,0.1) (0.3,0.1) (0.5,0.1)

1− β = 0.8 275 186 147 107 88 66
1− β = 0.9 422 395 214 197 124 111

τ = 0.75, ρ = 0.8( i.e. η = 0.35)
ε = 0 ε = 0.1 ε = 0.2

(δ1, δ2) (0.3,0.1) (0.5,0.1) (0.3,0.1) (0.5,0.1) (0.3,0.1) (0.5,0.1)

1− β = 0.8 247 142 136 90 83 59
1− β = 0.9 352 290 190 162 114 97

Equation 3.15 given the α, τ, c∗, δ, σY , power 1− β and ε.

Table 3.6 provides an example of the estimated sample size for δ1 = δ2 = δ when

σY = 1 and α = 0.025 with 80% or 90% power by τ, δ and ε. Given target treatment

effect (i.e. δ) and ε, as τ increases, we need smaller sample size.

When the sum of δ and ε are the same, sample sizes are the same even individual δ

and ε may vary. For example, in Table 3.6, at τ = 0.25, when ε = 0, δ = 0.2, the

estimated sample size needed to achieve 80% power is 378, which is the same as when

ε = 0.1, δ = 0.1.

• Case II: δ1 6= δ2.

When δ1 6= δ2, we can determine the sample size n per group by solving Equa-

tion 3.16 given the α, τ, c∗, δ1, δ2, σY , power 1− β and ε.

Table 3.7 provides an example of the estimated sample size for δ1 6= δ2 when

σY = 1 and α = 0.025 with 80% or 90% power by τ, δ1, δ2 and ε. As τ or ε increases,

the required sample size decreases.
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Table 3.6: Estimated sample size for δ1 = δ2 = δ when σY = 1 and α = 0.025 with 80% or
90% power by τ, δ, δ and ε when same endpoints at interim and final analyses.

τ = 0.25
ε = 0 ε = 0.1 ε = 0.2

δ 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

1− β = 0.8 1510 378 168 95 61 378 168 95 61 42 168 95 61 42 31
1− β = 0.9 2020 505 225 127 81 505 225 127 81 57 225 127 81 57 42

τ = 0.5
ε = 0 ε = 0.1 ε = 0.2

δ 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

1− β = 0.8 1451 363 162 91 59 363 162 91 59 41 162 91 59 41 30
1− β = 0.9 1940 485 216 122 78 485 216 122 78 54 216 122 78 54 40

τ = 0.75
ε = 0 ε = 0.1 ε = 0.2

δ 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

1− β = 0.8 1394 349 155 88 56 349 155 88 56 39 155 88 56 39 29
1− β = 0.9 1860 465 207 117 75 465 207 117 75 52 207 117 75 52 38

Table 3.7: Estimated sample size for δ1 6= δ2 when σY = 1 and α = 0.025 with 80% or 90%
power by τ, δ1, δ2 and ε when same endpoints at interim and final analyses.

τ = 0.25
ε = 0 ε = 0.1 ε = 0.2

(δ1, δ2) (0.3,0.1) (0.5,0.1) (0.3,0.1) (0.5,0.1) (0.3,0.1) (0.5,0.1)

1− β = 0.8 236 83 134 59 83 44
1− β = 0.9 328 112 186 82 114 62

τ = 0.5
ε = 0 ε = 0.1 ε = 0.2

(δ1, δ2) (0.3,0.1) (0.5,0.1) (0.3,0.1) (0.5,0.1) (0.3,0.1) (0.5,0.1)

1− β = 0.8 212 76 120 53 76 40
1− β = 0.9 281 99 160 71 102 53

τ = 0.75
ε = 0 ε = 0.1 ε = 0.2

(δ1, δ2) (0.3,0.1) (0.5,0.1) (0.3,0.1) (0.5,0.1) (0.3,0.1) (0.5,0.1)

1− β = 0.8 207 75 115 52 73 38
1− β = 0.9 271 98 152 68 96 50
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3.5 Normal Approximation

3.5.1 Density Function

Recall that the density function of the final test statistic W ∗ is:

fW ∗(w) = pf1(w − w1 −
√

n

2σ2
Y

ε) + qf2(w − w2 −
√

n

2σ2
Y

ε).

Using results in Shun et al. (2008), the density function of W ∗ can be approximated by:

fW ∗(w) ≈ p

σ1
φ(
w − w1 − µ1 −

√
n

2σ2
Y
ε

σ1
) +

q

σ2
φ(
w − w2 − µ2 −

√
n

2σ2
Y
ε

σ2
), (3.17)

where

µ1 =
Λ

p
, σ2

1 = 1− ληµ1 − µ2
1,

µ2 =
Λ

q
, σ2

2 = 1 + ληµ2 − µ2
2, (3.18)

with Λ = η√
2π
e−

1
2
λ2
, p = Φ(λ), q = 1−p; and on the other hand, when a surrogate endpoint

is not used, λ depends on η, w1 and w2, to be more specific, λ = 2η(w1 − w2). We need

only to replace λ in (3.18), Λ and p with λ = 2η(w1 − w2).

3.5.2 Type I Error

By Shun et al. (2008), under H0, W ∗−µ0

σ0
can be approximated by a standard normal

distribution, where

µ0 =

√
2

π
η, σ2

0 = 1− 2

π
η2. (3.19)

Therefore, the rejection region Ω based on c∗, Ω = {W ∗ : W ∗ > c∗} can be approximated

by a region Ω̃, Ω̃ = {W ∗ : W ∗ > zασ0 + µ0}. When a surrogate endpoint is used, η =
√
τ

2 ρ;

when a surrogate endpoint is not used, η =
√
τ

2 .
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3.5.3 Power and Sample Size Estimation using Normal Approximation

3.5.3.1 Different Endpoints at Interim and Final Analyses

When different endpoints are used at interim and final analyses, the power 1−β is calculated

by

1− β = Pr(W ∗ > c∗;H1) = γ(c∗;λ,w1, w2, η)

=1−
∫ c∗−w1−

√
n

2σ2
Y

ε

−∞
Φ

(
λ+ ηz√

1− η2

)
φ (z) dz

−
∫ c∗−w2−

√
n

2σ2
Y

ε

−∞
Φ

(
−λ+ ηz√

1− η2

)
φ (z) dz.

• Case I: δ1 6= δ2.

When δ1 6= δ2, the power 1− β can be calculated as:

1− β = 1−
∫ c∗−

√
n

2σ2
Y

δ1−
√

n

2σ2
Y

ε

−∞
Φ

(
λ+ ηz√

1− η2

)
φ (z) dz

−
∫ c∗−

√
n

2σ2
Y

δ2−
√

n

2σ2
Y

ε

−∞
Φ

(
−λ+ ηz√

1− η2

)
φ (z) dz

= 1− pF1(c∗ −
√

n

2σ2
Y

δ1 −
√

n

2σ2
Y

ε)− pF2(c∗ −
√

n

2σ2
Y

δ2 −
√

n

2σ2
Y

ε)

= 1− pβ1 − qβ2,

where βj = Fj(c
∗ −

√
n

2σ2
Y
δj −

√
n

2σ2
Y
ε), for j = 1, 2.

By normal approximation,

βj = Φ(−zβj )

= Fj(c
∗ −

√
n

2σ2
Y

δj −
√

n

2σ2
Y

ε)

' Φ

c∗ −
√

n
2σ2
Y
δj −

√
n

2σ2
Y
ε− µj

σj

 ,
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Therefore, the power 1− β can be approximated by:

1− β = 1− pF1(c∗ −
√

n

2σ2
Y

δ1 −
√

n

2σ2
Y

ε)− pF2(c∗ −
√

n

2σ2
Y

δ2 −
√

n

2σ2
Y

ε)

' 1− pΦ

c∗ −
√

n
2σ2
Y
δ1 −

√
n

2σ2
Y
ε− µ1

σ1

− qΦ
c∗ −

√
n

2σ2
Y
δ2 −

√
n

2σ2
Y
ε− µ2

σ2

 .

Let wβj = −(c∗ −
√

n
2σ2
Y
δj −

√
n

2σ2
Y
ε), for j = 1, 2, then

−zβjσj ' −wβj − µj ,

which means

wβj ' zβjσj − µj .

Under null hypothesis, the type I error of size α is calculated by

α = Pr(W ∗ > c∗;H0)

= γ(c∗;λ = 0, w1 = w2 = −
√

n

2σ2
Y

ε, η)

=

[
1− 2

∫ c∗

−∞
Φ

(
ηz√

1− η2

)
φ (z) dz

]

= 1− F0(c∗),

where F0(w) = 2
∫ w
−∞Φ

(
ηz√
1−η2

)
φ (z) dz.

By normal approximation,

1− α = Φ(zα) = F0(c∗) ' Φ

(
c∗ − µ0

σ0

)
.

Hence,

zασ0 ' c∗ − µ0,

we have

c∗ ' zασ0 + µ0.
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Therefore,

c∗ + wβj =

√
n

2σ2
Y

(δj + ε) ' zασ0 + µ0 + zβjσj − µj , for j = 1, 2.

The sample size n per group needed for the study to maintain the power of 1− β can

be approximated by

n ' 2
(
zασ0 + µ0 + zβjσj − µj

)2( σY
δj + ε

)2

, for j = 1 or 2, (3.20)

subject to the constraints


zασ0+µ0+zβ1

σ1−µ1

zασ0+µ0+zβ2
σ2−µ2

= (δ1+ε)
(δ2+ε) ,

1− β = 1− pβ1 − qβ2.

(3.21)

In order to solve Equation 3.20 subject to constraints in (3.21), we discuss the following

two scenarios:

1. Pre-determined timing of the interim selection τ :

When the timing of the interim selection is pre-determined: given τ, ρ, νX1 −

νX2 , and σX , we can calculate η, and λ as a function of n:

η =

√
τ

2
ρ,

λ =

√
n1

2σ2
X

(
νX1 − νX2

)
=

√
nτ

2σ2
X

(
νX1 − νX2

)
. (3.22)

We can plug the parameters in (3.22) into (3.18) and (3.19) to get µj and σj ,

for j = 0, 1, 2. We also have

zβj =

√
n

2σ2
Y

(δj + ε)− zασ0 − µ0 + µj

σj
, for j = 1, 2. (3.23)

Hence, given α, 1− β, σY , δ’s and ε, by solving the following three non-linear
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Table 3.8: Comparison of sample size estimates using the exact distribution (upper row) and
normal approximation (lower row in parenthesis) when τ = 0.5, α = 0.025, ρ = 0.8, νX1 −
νX2 = 0.1 and σY = σX = 1, for different endpoints at interim and final analyses.

ε = 0 ε = 0.1 ε = 0.2
(δ1, δ2) (0.3,0.1) (0.5,0.1) (0.3,0.1) (0.5,0.1) (0.3,0.1) (0.5,0.1)

1− β = 0.8 275 88 147 58 88 41
(275) (88) (147) (58) (88) (41)

1− β = 0.9 422 124 214 80 124 56
(422) (124) (214) (80) (124) (56)

Note: The sample size estimates were rounded up to the integer.

equations, we can get solutions of the three unknown parameters n, β1 and β2:


zβ1 =

√
n

2σ2
Y

(δ1+ε)−zασ0−µ0+µ1

σ1
,

zβ2 =

√
n

2σ2
Y

(δ2+ε)−zασ0−µ0+µ2

σ2
,

1− β = 1− pβ1 − qβ2.

(3.24)

Mathematica program is provided in appendix D.1 to solve the above non-

linear equations.

Table 3.8 provides an example to show the sample size estimates based on the

exact distribution and based on the normal approximation approach. We pre-

determined the timing of the interim selection to be τ = 0.5. The numbers on the

top show the sample size estimates from the exact distribution, and the numbers

in the parenthesis is the sample size estimates from the normal approximation.

We can see that the sample size estimates between these two approaches are very

close.

2. Pre-determined winning probability p:

During the planning stage of a two-stage winner design, if the winning prob-

ability p is pre-determined: given p, ρ, σX , and νX1 − νX2 we can calculate n1 and

λ, and η as a function of n:

n1 =
2σ2

Xzp
2(

νX1 − νX2
)2 ,



62

Table 3.9: Comparison of sample size estimates using the exact distribution (upper row) and
normal approximation (lower row in parenthesis) when p = 0.65, α = 0.025, ρ = 0.8, νX1 −
νX2 = 0.1 and σY = σX = 1, for different endpoints at interim and final analyses.

ε = 0 ε = 0.1 ε = 0.2

(δ1, δ2) (0.15, 0.1) (0.15, 0.1) (0.15, 0.1)

1− β = 0.8 n1 = 30 n1 = 30 n1 = 30
(n1 = 30) (n1 = 30) (n1 = 30)

n 964 295 142
(964) (295) (142)

1− β = 0.9 n1 = 30 n1 = 30 n1 = 30
(n1 = 30) (n1 = 30) (n1 = 30)

n 1394 404 192
(1394) (404) (192)

Note: The sample size estimates were rounded up to the integer.

λ =

√
n1

2σ2
X

(
νX1 − νX2

)
,

η =

√
τ

2
ρ =

ρ

2

√
n1

n
. (3.25)

We can plug the parameters in (3.25) into (3.18) and (3.19) to get µj and σj ,

for j = 0, 1, 2. We also have Equation 3.23. Hence, given α, 1− β, σY , δ’s and ε,

by solving the following 3 non-linear equations in (3.24), we can get the solutions

for the 3 unknown parameters n, β1 and β2. Mathematica program is provided

in appendix D.2 to solve the non-linear equations.

Table 3.9 provides an example to show the sample size estimates based on

the exact distribution and based on the normal approximation approach. We

pre-determined the winning probability p = 0.65. The numbers on the top show

the sample size estimates from the exact distribution, and the numbers in the

parenthesis is the sample size estimates from the normal approximation. We can

see that the sample size estimates between these two approaches are very close.

• Case II: δ1 = δ2 = δ.

When δ1 = δ2 = δ, it is a special case of Case I. Using the same normal approximation

procedure described in Case I, we can get the sample size estimates.
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Table 3.10: Comparison of sample size estimates using the exact distribution (upper row)
and normal approximation (lower row in parenthesis) when τ = 0.25, α = 0.025, νX1 − νX2 =
0.1, ρ = 0.8, and σY = σX = 1, for different endpoints at interim and final analyses.

ε = 0
δ 0.1 0.2 0.3 0.4 0.5

1− β = 0.8 1658 394 173 97 62
(1657) (394) (173) (97) (62)

1− β = 0.9 2226 530 232 130 83
(2225) (530) (232) (130) (83)

ε = 0.1
δ 0.1 0.2 0.3 0.4 0.5

1− β = 0.8 394 173 97 62 43
(394) (173) (97) (62) (43)

1− β = 0.9 530 232 130 83 58
(530) (232) (130) (83) (58)

ε = 0.2
δ 0.1 0.2 0.3 0.4 0.5

1− β = 0.8 173 97 62 43 32
(173) (97) (62) (43) (32)

1− β = 0.9 232 130 83 58 42
(232) (130) (83) (58) (42)

Note: The sample size estimates were rounded up to the integer.

Table 3.10 provides an example to show the comparison of the sample size esti-

mates using Equation 3.12 based on the exact distribution and based on the normal

approximation. We pre-determined the information time τ = 0.25. The numbers on

the top is the sample size estimates from the exact distribution, and the numbers in

the parenthesis is the sample size from the normal approximation. We can see that

the sample size estimates between these two approaches are very close.

Table 3.11 provides an example to show the sample size estimates based on the ex-

act distribution and based on the normal approximation approach. We pre-determined

the winning probability p = 0.65. The numbers on the top show the sample size esti-

mations from the exact distribution, and the numbers in the parenthesis is the sample

size estimates from the normal approximation. We can see that the sample size esti-

mates between these two approaches are very close.
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Table 3.11: Comparison of sample size estimates using the exact distribution (upper row)
and normal approximation (lower row in parenthesis) when p = 0.65, α = 0.025, ρ =
0.8, νX1 − νX2 = 0.1 and σY = σX = 1, for different endpoints at interim and final analyses.

ε = 0 ε = 0.1 ε = 0.2

δ 0.1 0.2 0.1 0.2 0.1 0.2

1− β = 0.8 n1 = 30 n1 = 30 n1 = 30 n1 = 30 n1 = 30 n1 = 30
(n1 = 30) (n1 = 30) (n1 = 30) (n1 = 30) (n1 = 30) (n1 = 30)

n 1571 392 392 173 173 97
(1571) (392) (392) (173) (173) (97)

1− β = 0.9 n1 = 30 n1 = 30 n1 = 30 n1 = 30 n1 = 30 n1 = 30
(n1 = 30) (n1 = 30) (n1 = 30) (n1 = 30) (n1 = 30) (n1 = 30)

n 2103 525 525 232 232 130
(2103) (525) (525) (232) (232) (130)

Note: The sample size estimates were rounded up to the integer.

3.5.3.2 Same Endpoints at Interim and Final Analyses

When the same endpoints are used at the interim and the final analyses, we can calculate

the power of 1− β as:

1− β = Pr(W ∗ > c∗;H1) = γ(c∗;w1, w2, η)

= 1−
∫ c∗−w1−

√
n

2σ2
Y

ε

−∞
Φ

(
2η(w1 − w2) + ηz√

1− η2

)
φ (z) dz

−
∫ c∗−w2−

√
n

2σ2
Y

ε

−∞
Φ

(
−2η(w1 − w2) + ηz√

1− η2

)
φ (z) dz,

• Case I: δ1 6= δ2.

When δ1 6= δ2, the power 1− β is:

1− β = 1−
∫ c∗−

√
n

2σ2
Y

δ1−
√

n

2σ2
Y

ε

−∞
Φ

(
2η (w1 − w2) + ηz√

1− η2

)
φ (z) dz

−
∫ c∗−

√
n

2σ2
Y

δ2−
√

n

2σ2
Y

ε

−∞
Φ

(
−2η (w1 − w2) + ηz√

1− η2

)
φ (z) dz

= 1− pF1(c∗ −
√

n

2σ2
Y

δ1 −
√

n

2σ2
Y

ε)− qF2(c∗ −
√

n

2σ2
Y

δ2 −
√

n

2σ2
Y

ε)

= 1− pβ1 − qβ2,
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where βj = Fj(c
∗ −

√
n

2σ2
Y
δj −

√
n

2σ2
Y
ε), for j = 1, 2. Fj(w) =

∫ w
−∞ fj(t)dt, with the

density function f1(w) = 1
pΦ(2η(w1−w2)+ηw√

1−η2
)φ(w), f2(w) = 1

qΦ(−2η(w1−w2)+ηw√
1−η2

)φ(w).

Following the same normal approximation procedure as described in Section 3.5.3.1,

the sample size n per group needed for a study to have power of 1−β can be determined

by Equation 3.20 subject to the constraints (3.21). In order to solve Equation 3.20

subject to constraints in (3.21), we discuss the following two scenarios:

1. Pre-determined timing of the interim selection τ :

If the timing of the interim selection is pre-determined: given τ, σY , δ1 and δ2,

we can calculate η, and λ as a function of n:

η =

√
τ

2
,

λ =

√
nτ

2σ2
Y

(δ1 − δ2). (3.26)

We can plug the parameters in (3.26) into (3.18) and (3.19) to get µj and σj ,

for j = 0, 1, 2.

We also have Equation 3.23. Hence, given α, 1 − β and ε, by solving the 3

non-linear equations in (3.24), we can get solutions for the 3 unknown parameters

n, β1, and β2. Mathematica program is provided in appendix D.3 to solve the

non-linear equations.

Table 3.12 provides an example to show the sample size estimates based on the

exact distribution and based on the normal approximation approach. We pre-

determined the timing of the interim selection to be τ = 0.5. The numbers on the

top show the sample size estimates from the exact distribution, and the numbers

in the parenthesis is the sample size estimates from the normal approximation.

We can see that the sample size estimates between these two approaches are very

close.

2. Pre-determined winning probability p:

During the planning stage of a two-stage winner design, if the winning proba-

bility p is pre-determined: given p, δ1, δ2 and σY , we can calculate n1 and λ, and
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Table 3.12: Comparison of sample size estimates using the exact distribution (upper row)
and normal approximation (lower row in parenthesis) when τ = 0.5, α = 0.025, ρ = 1 and
σY = 1, for same endpoints at interim and final analyses.

ε = 0 ε = 0.1 ε = 0.2
(δ1, δ2) (0.3,0.1) (0.5,0.1) (0.3,0.1) (0.5,0.1) (0.3,0.1) (0.5,0.1)

1− β = 0.8 212 76 120 53 76 40
(212) (75) (120) (53) (76) (40)

1− β = 0.9 281 99 160 71 102 53
(280) (99) (160) (70) (101) (53)

Note: The sample size estimates were rounded up to the integer.

η as a function of n:

n1 =
2σ2

Y zp
2

(δ1 − δ2)2
,

λ =

√
n1

2σ2
Y

(δ1 − δ2),

η =

√
τ

2
=

1

2

√
n1

n
. (3.27)

We can plug the parameters in (3.27) into (3.18) and (3.19) to get µj and σj ,

for j = 0, 1, 2. We also have Equation 3.23. Hence, given α, 1 − β, and ε, by

solving the following 3 non-linear equations in (3.24), we can get solutions for

the three unknown parameters n, β1, and β2. Mathematica program is provided

in appendix D.4 to solve the non-linear equations.

Table 3.13 provides an example to show the sample size estimates based on

the exact distribution and based on the normal approximation approach. We

pre-determined the winning probability p = 0.65. The numbers on the top show

the sample size estimations from the exact distribution, and the numbers in the

parenthesis is the sample size estimates from the normal approximation. We can

see that the sample size estimations between these two approaches are very close.

• Case II: δ1 = δ2 = δ.
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Table 3.13: Comparison of sample size estimates using the exact distribution (upper row)
and normal approximation (lower row in parenthesis) when p = 0.65, α = 0.025, ρ = 1 and
σY = 1, for same endpoints at interim and final analyses.

ε = 0 ε = 0.1 ε = 0.2

(δ1, δ2) (0.15, 0.1) (0.15, 0.1) (0.15, 0.1)

1− β = 0.8 n1 = 119 n1 = 119 n1 = 119
(n1 = 119) (n1 = 119) (n1 = 119)

n 946 280 126
(945) (279) (124)

1− β = 0.9 n1 = 119 n1 = 119 n1 = 119
(n1 = 119) (n1 = 119) (n1 = 119)

n 1367 386 175
(1367) (385) (174)

Note: The sample size estimates were rounded up to the integer.

When δ1 = δ2 = δ, the power 1− β can be calculated by

1− β = 1− 2

∫ c∗−
√

n

2σ2
Y

δ−
√

n

2σ2
Y

ε

−∞
Φ

(
ηz√

1− η2

)
φ (z) dz

= 1− F0(c∗ −
√

n

2σ2
Y

δ −
√

n

2σ2
Y

ε),

where F0 denotes the distribution function with density function

f0(w) = 2Φ( ηw√
1−η2

)φ(w), with mean µ0 =
√

2
πη and variance σ2

0 = 1− ( 2
π )η2.

By Shun et al.(2008), the sample size for δ1 = δ2 = δ can be approximated by:

n ' 2σ2
0(zβ + zα)2(

σY
δ + ε

)2, (3.28)

where σ2
0 = 1− ( 2

π )η2 = 1− τ
2π .

From Equation 3.28, given τ, δ, α, β, σY and ε, we can get the sample size esti-

mates. If there is a need to predetermine n1 instead of τ , we can replace τ by n1
n in

Equation 3.28. The sample size can be determined by:

n ' 2σ2
0(zβ + zα)2(

σY
δ + ε

)2

= (2− n1

nπ
)(zβ + zα)2(

σY
δ + ε

)2.
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Solving the above equation, we have

n ' (zβ + zα)2(
σY
δ + ε

)2

(
1 +

√
1− n1

π(zβ + zα)2( σYδ+ε)
2

)
. (3.29)

Notice that when no surrogate endpoints are used, Equations 3.28 and 3.29 for

estimating the sample size for a non-inferiority trial as similar to the ones in Shun et

al. (2008). The differences are: 1) we assume ρ = 1 because no surrogate endpoints

are used; 2) sample size estimates depend on the non-inferiority margin ε.

Table 3.14 provides an example to show the sample size estimates based on the ex-

act distribution and based on the normal approximation approach. We pre-determined

the timing of the interim selection at τ = 0.5. The numbers on the top show the sam-

ple size estimates from the exact distribution, and the numbers in the parenthesis is

the sample size estimates from the normal approximation. We can see that the sample

size estimates between these two approaches are very close.

When δ1 = δ2 = δ, the winning probability p = Φ(2η(w1−w2)) = Φ(0) = 1
2 always

equals 0.5. Which means that there is no need to choose a winner at the interim

analysis as there is equal chance to select either arm. In addition, the denominator

of the n1 =
2σ2
Y zp

2

(δ1−δ2)2 becomes 0 and undefined. Therefore, when δ1 = δ2 = δ, it is

meaningless to pre-determine p for a two-stage winner design.

Table 3.15 and 3.16 summarized the difference among the sample size estimation formula

using normal approximation with pre-determine τ , and pre-determined p, respectively.
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Table 3.14: Comparison of sample size estimates using the exact distribution (upper row)
and normal approximation (lower row in parenthesis) when τ = 0.5, α = 0.025, ρ = 1 and
σY = 1, for same endpoints at interim and final analyses.

ε = 0
δ 0.1 0.2 0.3 0.4 0.5

1− β = 0.8 1451 363 162 91 59
(1445) (362) (161) (91) (58)

1− β = 0.9 1940 485 216 122 78
(1935) (484) (215) (121) (78)

ε = 0.1
δ 0.1 0.2 0.3 0.4 0.5

1− β = 0.8 363 162 91 59 41
(362) (161) (91) (58) (41)

1− β = 0.9 485 216 122 78 54
(484) (215) (121) (78) (54)

ε = 0.2
δ 0.1 0.2 0.3 0.4 0.5

1− β = 0.8 162 91 59 41 30
(161) (91) (58) (41) (30)

1− β = 0.9 216 122 78 54 40
(215) (121) (78) (54) (40)

Note: The sample size estimates were rounded up to the integer.
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Table 3.15: Summary of sample size estimation formula using normal approximation with
pre-determined τ .

Different Endpoints

Given τ, Case I: δ1 6= δ2

ρ, νX1 − νX2 , ε, n ' 2(zασ0 + µ0 + zβjσj − µj)2( σY
δj+ε

)2, for j = 1 or 2,

σX , σY , α, 1− β, δ’s subject to
zασ0+µ0+zβ1

σ1−µ1

zασ0+µ0+zβ2
σ2−µ2

= (δ1+ε)
(δ2+ε) , 1− β = 1− pβ1 − qβ2,

where η =
√
τ

2 ρ,

λ =
√

nτ
2σ2
X

(νX1 − νX2 ),

Case II: δ1 = δ2

n ' 2(zασ0 + µ0 + zβjσj − µj)2( σYδ+ε)
2, for j = 1 or 2,

subject to
zασ0+µ0+zβ1

σ1−µ1

zασ0+µ0+zβ2
σ2−µ2

= (δ+ε)
(δ+ε) , 1− β = 1− pβ1 − qβ2,

where η =
√
τ

2 ρ,

λ =
√

nτ
2σ2
X

(νX1 − νX2 ),

Same Endpoints

Given τ, Case I: δ1 6= δ2

ε, σY , α, n ' 2(zασ0 + µ0 + zβjσj − µj)2( σY
δj+ε

)2, for j = 1 or 2,

1− β, δ’s subject to
zασ0+µ0+zβ1

σ1−µ1

zασ0+µ0+zβ2
σ2−µ2

= (δ1+ε)
(δ2+ε) , 1− β = 1− pβ1 − qβ2,

where η =
√
τ

2 ,

λ =
√

nτ
2σ2
Y

(δ1 − δ2),

Case II: δ1 = δ2

n ' 2σ2
0(zβ + zα)2( σYδ+ε)

2,

where σ2
0 = 1− ( 2

π )η2 = 1− τ
2π ,

η =
√
τ

2 ,

Note: µ1 = Λ
p , σ

2
1 = 1− ληµ1 − µ2

1, µ2 = Λ
q , σ

2
2 = 1 + ληµ2 − µ2

2, µ0 =
√

2
πη, σ

2
0 = 1− 2

πη
2,

Λ = η√
2π
e−

1
2
λ2
, p = Φ(λ), q = 1− p.
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Table 3.16: Summary of sample size estimation formula using normal approximation with
pre-determined p.

Different Endpoints

Given p, Case I: δ1 6= δ2

ρ, νX1 − νX2 , ε, α, n ' 2(zασ0 + µ0 + zβjσj − µj)2( σY
δj+ε

)2, for j = 1 or 2,

σX , σY , 1− β, δ’s. subject to
zασ0+µ0+zβ1

σ1−µ1

zασ0+µ0+zβ2
σ2−µ2

= (δ1+ε)
(δ2+ε) , 1− β = 1− pβ1 − qβ2,

with n1 =
2σ2
Xzp

2

(νX1 −νX2 )2 ,

λ =
√

n1

2σ2
X

(νX1 − νX2 ),

η =
√
τ

2 ρ = ρ
2

√
n1
n .

Case II: δ1 = δ2

n ' 2(zασ0 + µ0 + zβjσj − µj)2( σYδ+ε)
2, for j = 1 or 2,

subject to
zασ0+µ0+zβ1

σ1−µ1

zασ0+µ0+zβ2
σ2−µ2

= (δ+ε)
(δ+ε) , 1− β = 1− pβ1 − qβ2,

with n1 =
2σ2
Xzp

2

(νX1 −νX2 )2 ,

λ =
√

n1

2σ2
X

(νX1 − νX2 ),

η =
√
τ

2 ρ = ρ
2

√
n1
n .

Same Endpoints

Given p, Case I: δ1 6= δ2

ε, σY , α, n ' 2(zασ0 + µ0 + zβjσj − µj)2( σY
δj+ε

)2, for j = 1 or 2,

1− β, δ’s subject to
zασ0+µ0+zβ1

σ1−µ1

zασ0+µ0+zβ2
σ2−µ2

= (δ1+ε)
(δ2+ε) , 1− β = 1− pβ1 − qβ2,

with n1 =
2σ2
Y zp

2

(δ1−δ2)2 ,

λ =
√

n1

2σ2
Y

(δ1 − δ2),

η =
√
τ

2 = 1
2

√
n1
n .

Case II: δ1 = δ2

NA

Note: µ1 = Λ
p , σ

2
1 = 1− ληµ1 − µ2

1, µ2 = Λ
q , σ

2
2 = 1 + ληµ2 − µ2

2, µ0 =
√

2
πη, σ

2
0 = 1− 2

πη
2,

Λ = η√
2π
e−

1
2
λ2
, p = Φ(λ), q = 1− p.
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Chapter 4

Two-Stage Winner Design-Extension to the Trial with Three

Experimental Arms

In Chapter 3, we developed the methodology for a non-inferiority trial in a two-stage winner

design with two experimental treatment and one active control arms. In this chapter, we

will extend the work to a two-stage winner design with three experimental treatment and

one control arms. Similar to the setting in Chapter 3, a balanced sample size n for each arm

is planned and one interim analysis will be performed at the information time τ = n1
n , where

n1 (< n) is the interim sample size. Let {X(j)
i |i = 1, ..., n1} be the interim continuous mea-

surements assumed to be independent identically distributed with N(νXj , σ
2
X), where j = 0

denote the control arm and j = 1, 2, 3, denote the three experimental treatment arms. Let

{Y (j)
i |i = 1, ..., n}, j = 0, 1, 2, 3 denote the final continuous measurements that are assumed

to be independent identically distributed with N(µYj , σ
2
Y ). Assume the variances σ2

X and σ2
Y

are known, and X
(j)
i and Y

(j)
i are correlated with a correlation ρ, i.e., corr(X

(j)
i , Y

(j)
i ) = ρ.

In this chapter, we discuss two kinds of hypotheses, superiority and non-inferiority hy-

potheses, and we discuss two commonly used scenarios depends on whether the same or

different endpoints are used at the interim and the final analyses.

4.1 Settings and Test Statistic

Let the interim sample means be X̄
(j)
n1 = (1/n1)

∑n1
i=1X

(j)
i , j = 0, 1, 2, 3 and the final sample

means be Ȳ
(j)
n = (1/n)

∑n
i=1 Y

(j)
i , j = 0, 1, 2, 3. Similar to Shun et al. (2008), we use the
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following procedure at the interim look:


Keep Treatment 1, when X̄

(1)
n1 > X̄

(2)
n1 , andX̄

(1)
n1 > X̄

(3)
n1 ,

Keep Treatment 2, when X̄
(2)
n1 > X̄

(1)
n1 , andX̄

(2)
n1 > X̄

(3)
n1 ,

Keep Treatment 3, when X̄
(3)
n1 > X̄

(1)
n1 , andX̄

(3)
n1 > X̄

(2)
n1 ,

The goal of the design is to select only one experimental treatment at the interim analysis.

4.1.1 Test Statistic for Superiority Hypothesis

Let ∆j = µYj − µY0 be the unknown treatment effect of the jth experimental treatment

versus active control at the final analysis, where j = 1 or 2 or 3. We consider the following

hypotheses:

H0 : ∆1 ≤ 0 and ∆2 ≤ 0 and ∆3 ≤ 0

versus

H1 : ∆1 > 0 or ∆2 > 0, or ∆3 > 0.

Assume the targeted treatment effects of the designs are ∆j = δj , j = 1, 2, 3. Let the

test statistics be

Z(j)
n =

√
n

2σ2
Y

(Ȳ (j)
n − Ȳ (0)

n ),

for j=1,2, and 3, respectively. Let

V (12)
n1

=

√
n1

2σ2
X

(X̄(1)
n1
− X̄(2)

n1
),

V (13)
n1

=

√
n1

2σ2
X

(X̄(1)
n1
− X̄(3)

n1
),

V (23)
n1

=

√
n1

2σ2
X

(X̄(2)
n1
− X̄(3)

n1
) = V (13)

n1
− V (12)

n1
.

It can be seen that

η = Cov(Z(1)
n , V (12)

n1
) = Cov(Z(1)

n , V (13)
n1

) =

√
τ

2
ρ,
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η = −Cov(Z(2)
n , V (12)

n1
) = Cov(Z(2)

n , V (23)
n1

) =

√
τ

2
ρ,

Under H0, V
(12)
n1 ∼ N(0, 1), V

(13)
n1 ∼ N(0, 1), and V

(23)
n1 ∼ N(0, 1). Under H1, V

(12)
n1 ∼

N(λ(12), 1), V
(13)
n1 ∼ N(λ(13), 1), and V

(23)
n1 ∼ N(λ(23), 1). where

λ(12) =

√
n1

2σ2
X

(νX1 − νX2 ),

λ(13) =

√
n1

2σ2
X

(νX1 − νX3 ),

λ(23) = λ(13) − λ(12) =

√
n1

2σ2
X

(νX2 − νX3 ).

We define the final test statistic W as follows:

W =



Ȳ
(1)
n −Ȳ

(0)
n√

2σ2
Y
n

= Z
(1)
n , if X̄

(1)
n1 = max(X̄

(1)
n1 , X̄

(2)
n1 , X̄

(3)
n1 ),

Ȳ
(2)
n −Ȳ

(0)
n√

2σ2
Y
n

= Z
(2)
n , if X̄

(2)
n1 = max(X̄

(1)
n1 , X̄

(2)
n1 , X̄

(3)
n1 ),

Ȳ
(3)
n −Ȳ

(0)
n√

2σ2
Y
n

= Z
(3)
n , if X̄

(3)
n1 = max(X̄

(1)
n1 , X̄

(2)
n1 , X̄

(3)
n1 ),

(4.1)

H0 is rejected if W > c, where c is the critical value to be determined in Section 4.3.

The distribution of W is introduced in Section 4.2 with the mathematical details provided

in Appendix C.1.

4.1.2 Test Statistic for Non-inferiority Hypothesis

Use the same setting and notation as in the previous section. Let ∆j = µYj − µY0 be the

unknown treatment effect of the jth experimental treatment versus the control at the final

analysis, where j = 1 or 2 or 3. We consider the following non-inferiority hypotheses:

H0 : ∆1 ≤ −ε and ∆2 ≤ −ε and ∆3 ≤ −ε

versus

H1 : ∆1 > −ε or ∆2 > −ε, or ∆3 > −ε
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where ε (> 0) is the pre-specified non-inferiority margin which can be interpreted as the

largest clinically and statistically acceptable difference. The alternative hypothesisH1 states

that either treatment 1 or treatment 2 or treatment 3 is non-inferior to the active control

within an acceptable non-inferiority margin. To test the non-inferiority hypotheses with a

pre-specified non-inferiority margin ε in the final analysis, we define the final test statistic

W ∗ as follows:

W ∗ =



Ȳ
(1)
n −Ȳ

(0)
n +ε√

2σ2
Y
n

= Z
(1)
n +

√
n

2σ2
Y
ε, if X̄

(1)
n1 = max(X̄

(1)
n1 , X̄

(2)
n1 , X̄

(3)
n1 ),

Ȳ
(2)
n −Ȳ

(0)
n +ε√

2σ2
Y
n

= Z
(2)
n +

√
n

2σ2
Y
ε, if X̄

(2)
n1 = max(X̄

(1)
n1 , X̄

(2)
n1 , X̄

(3)
n1 ),

Ȳ
(3)
n −Ȳ

(0)
n +ε√

2σ2
Y
n

= Z
(3)
n +

√
n

2σ2
Y
ε, if X̄

(3)
n1 = max(X̄

(1)
n1 , X̄

(2)
n1 , X̄

(3)
n1 ),

(4.2)

H0 is rejected if W ∗ > c∗, where c∗ is the critical value to be determined in Section 4.3.

The distribution of W for superiority hypothesis is a special case of the distribution of

W ∗ for non-inferiority hypothesis. Therefore, we will focus on the distribution of W ∗. In

addition, the distribution of the test statistic and related statistical properties can be discuss

in two scenarios depends on whether surrogate endpoint is used at the interim analysis or

not. The first scenario is when surrogate endpoint is used at the interim analysis, in other

words, different endpoints are used at the interim and the final analysis. The second scenario

is when same endpoints are used at the interim and final analysis.

4.2 Distribution of the Test Statistic

4.2.1 Different Endpoints at Interim and Final Analyses

In Appendix C.1, we derived the distribution of the test statistic W and have proved the

following lemma:

Lemma 4.2.1.

FW (w) =

√
3

4
− η2

∫ w−w1

−∞
φ(z)

∫ λ(12)+ηz√
1−η2

−∞
φ(s)Φ(

(
λ(13) + ηz

)√
1− η2 − (1

2 − η
2)s√

3
4 − η2

)dsdz
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+

√
3

4
− η2

∫ w−w2

−∞
φ(z)

∫ −λ(12)+ηz√
1−η2

−∞
φ(s)Φ(

(
λ(13) − λ(12) + ηz

)√
1− η2 − (1

2 − η
2)s√

3
4 − η2

)dsdz

+

√
3

4
− η2

∫ w−w3

−∞
φ(z)

∫ −λ(13)+ηz√
1−η2

−∞
φ(s)Φ(

(
λ(12) − λ(13) + ηz

)√
1− η2 − (1

2 − η
2)s√

3
4 − η2

)dsdz.

Therefore, the distribution of the test statistic W ∗ for non-inferiority hypothesis can be

derived as:

FW ∗(w) = Pr
(
W ∗ < w, λ(12), λ(13), w1, w2, w3, η

)
=

√
3

4
− η2

∫ w−w1−
√

n

2σ2
Y

ε

−∞
φ(z)

∫ λ(12)+ηz√
1−η2

−∞
φ(s)

× Φ(

(
λ(13) + ηz

)√
1− η2 − (1

2 − η
2)s√

3
4 − η2

)dsdz

+

√
3

4
− η2

∫ w−w2−
√

n

2σ2
Y

ε

−∞
φ(z)

∫ −λ(12)+ηz√
1−η2

−∞
φ(s)

× Φ(

(
λ(13) − λ(12) + ηz

)√
1− η2 − (1

2 − η
2)s√

3
4 − η2

)dsdz

+

√
3

4
− η2

∫ w−w3−
√

n

2σ2
Y

ε

−∞
φ(z)

∫ −λ(13)+ηz√
1−η2

−∞
φ(s)

× Φ(

(
λ(12) − λ(13) + ηz

)√
1− η2 − (1

2 − η
2)s√

3
4 − η2

)dsdz. (4.3)

where

w1 =

√
n

2σ2
Y

δ1, w2 =

√
n

2σ2
Y

δ2, and w3 =

√
n

2σ2
Y

δ3.

Φ(.) and φ(.) denote the C.D.F. and the P.D.F. of the standard normal distribution, re-

spectively. Mathematical derivation can be found in Appendix C.1. When ε = 0 in (4.3),

it becomes the distribution of W for a two-stage winner design with superiority hypothesis

as shown in Lemma 4.2.1.
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4.2.2 Same Endpoints at Interim and Final Analyses

When the interim and the final endpoints are the same, then νXj = µYj for j = 1, 2, 3, and

σY = σX . Therefore, η =
√
τ

2 ρ =
√
τ

2 . The parameters λ(12) or λ(13) become the function of

η (or τ), w1 and w2.

λ(12) =

√
n1

2σ2
X

(νX1 − νX2 ) =

√
n1

2σ2
X

(µY1 − µY2 ) =

√
n1

2σ2
X

(δ1 − δ2)

=

√
n1

2σ2
X

√
2σ2

Y

n
(w1 − w2) =

√
τ(w1 − w2) = 2η(w1 − w2),

λ(13) =

√
n1

2σ2
X

(νX1 − νX3 ) =

√
n1

2σ2
X

(µY1 − µY3 ) =

√
n1

2σ2
X

(δ1 − δ3)

=

√
n1

2σ2
X

√
2σ2

Y

n
(w1 − w3) =

√
τ(w1 − w3) = 2η(w1 − w3).

The distribution of W ∗ becomes:

FW ∗(w) = Pr
(
W ∗ < w, λ(12), λ(13), w1, w2, w3, η

)
=

√
3

4
− η2

∫ w−w1−
√

n

2σ2
Y

ε

−∞
φ(z)

∫ 2η(w1−w2)+ηz√
1−η2

−∞
φ(s)

× Φ(
(2η(w1 − w3) + ηz)

√
1− η2 − (1

2 − η
2)s√

3
4 − η2

)dsdz

+

√
3

4
− η2

∫ w−w2−
√

n

2σ2
Y

ε

−∞
φ(z)

∫ 2η(w2−w1)+ηz√
1−η2

−∞
φ(s)

× Φ(
(2η(w2 − w3) + ηz)

√
1− η2 − (1

2 − η
2)s√

3
4 − η2

)dsdz

+

√
3

4
− η2

∫ w−w3−
√

n

2σ2
Y

ε

−∞
φ(z)

∫ 2η(w3−w1)+ηz√
1−η2

−∞
φ(s)

× Φ(
(2η(w3 − w2) + ηz)

√
1− η2 − (1

2 − η
2)s√

3
4 − η2

)dsdz. (4.4)

where

w1 =

√
n

2σ2
Y

δ1, w2 =

√
n

2σ2
Y

δ2, and w3 =

√
n

2σ2
Y

δ3.
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When ε = 0, it becomes the distribution of W for a two-stage winner design with superiority

hypothesis. Note the distribution of W ∗ in (4.4) is in the same form as in (4.3) if we let

2η(w1 − w2) = λ(12), 2η(w1 − w3) = λ(13) and 2η(w3 − w2) = λ(12) − λ(13).

4.3 Type I Error

4.3.1 Different Endpoints at Interim and Final Analyses

4.3.1.1 Non-inferiority Hypothesis

Given ε, the type I error of size α test associated with W ∗ is,

α = sup
λ(12),λ(13),δ1≤−ε,δ2≤−ε,δ3≤−ε

Pr(W ∗ > c∗;λ(12), λ(13), δ1, δ2, δ3, η)

= sup
λ(12),λ(13),w1≤−

√
n

2σ2
Y

ε,w2≤−
√

n

2σ2
Y

ε,w3≤−
√

n

2σ2
Y

ε

Pr(W ∗ > c∗;λ(12), λ(13), w1, w2, w3, η),

(4.5)

where wj =
√

n
2σ2
Y
δj , j = 1, 2, 3, and c∗ is the critical value. To determine c∗, we define a

function γ as:

γ
(
b;λ(12), λ(13), w1, w2, w3, η

)
= Pr

(
W ∗ > b;λ(12), λ(13), w1, w2, w3, η

)
=1−

√
3

4
− η2

∫ b−w1−
√

n

2σ2
Y

ε

−∞
φ(z)

∫ λ(12)+ηz√
1−η2

−∞
φ(s)

× Φ(

(
λ(13) + ηz

)√
1− η2 − (1

2 − η
2)s√

3
4 − η2

)dsdz

−
√

3

4
− η2

∫ b−w2−
√

n

2σ2
Y

ε

−∞
φ(z)

∫ −λ(12)+ηz√
1−η2

−∞
φ(s)

× Φ(

(
λ(13) − λ(12) + ηz

)√
1− η2 − (1

2 − η
2)s√

3
4 − η2

)dsdz

−
√

3

4
− η2

∫ b−w3−
√

n

2σ2
Y

ε

−∞
φ(z)

∫ −λ(13)+ηz√
1−η2

−∞
φ(s)

× Φ(

(
λ(12) − λ(13) + ηz

)√
1− η2 − (1

2 − η
2)s√

3
4 − η2

)dsdz,
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where b is some cut-off value. The type I error rate in Equation 4.5 can be rewritten to:

α = sup
λ(12),λ(13),w1≤−

√
n

2σ2
Y

ε,w2≤−
√

n

2σ2
Y

ε,w3≤−
√

n

2σ2
Y

ε

Pr(W ∗ > c∗;λ(12), λ(13), w1, w2, w3, η)

= sup
λ(12),λ(13),w1≤−

√
n

2σ2
Y

ε,w2≤−
√

n

2σ2
Y

ε,w3≤−
√

n

2σ2
Y

ε

γ(c∗;λ(12), λ(13), w1, w2, w3, η).

In order to find the supremum of γ(b;λ(12), λ(13), w1, w2, w3, η), we have proven the

following lemmas in Appendices C.2 and C.3. Notice that for superiority hypotheses (ε = 0),

if we use the same type of null hypothesis as in Shun et al. (2008),

H0 : ∆1 = 0 and ∆2 = 0 and ∆3 = 0,

we don’t need to use the following lemmas, and the generalization of the results in Shun et

al. (2008) would be much easier. But we prefer to consider the superiority test as a special

case of the framework laid out in this section.

Lemma 4.3.1. Given b, η, λ(12) and λ(13), γ(b;λ(12), λ(13), w1, w2, w3, η) is monotonically

increasing with w1, w2 and w3.

Lemma 4.3.2. Given b, η, w1, w2 and w3, λ(12) = λ(13) = 0 is a critical point of

γ(b;λ(12), λ(13), w1, w2, w3, η).

The uniqueness of the critical point in Lemma 4.3.2 would imply that the global maxi-

mum of γ is at λ(12) = λ(13) = 0, but it is hard to theoretically prove the uniqueness. We

used numeric justifications in Appendices C.3.

Hence, for −∞ < λ(12) < ∞, −∞ < λ(13) < ∞ and w1 ≤ −
√

n
2σ2
Y
ε, w2 ≤ −

√
n

2σ2
Y
ε and

w3 ≤ −
√

n
2σ2
Y
ε,

γ
(
c∗;λ(12), λ(13), w1, w2, w3, η

)
≤ γ

(
c∗;λ(12), λ(13),−

√
n

2σ2
Y

ε,−
√

n

2σ2
Y

ε,−
√

n

2σ2
Y

ε, η

)
≤ γ

(
c∗; 0, 0,−

√
n

2σ2
Y

ε,−
√

n

2σ2
Y

ε,−
√

n

2σ2
Y

ε, η

)
.
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Therefore, the type I error in Equation 4.5 can be further simplified to

α = γ

(
c∗;λ(12) = λ(13) = 0, w1 = w2 = w3 = −

√
n

2σ2
Y

ε, η

)
, (4.6)

where,

γ

(
c∗;λ(12) = λ(13) = 0, w1 = w2 = w3 = −

√
n

2σ2
Y

ε, η

)
=1−

√
3

4
− η2

∫ c∗+
√

n

2σ2
Y

ε−
√

n

2σ2
Y

ε

−∞
φ(z)

∫ ηz√
1−η2

−∞
φ(s)Φ(

ηz
√

1− η2 − (1
2 − η

2)s√
3
4 − η2

)dsdz

−
√

3

4
− η2

∫ c∗+
√

n

2σ2
Y

ε−
√

n

2σ2
Y

ε

−∞
φ(z)

∫ ηz√
1−η2

−∞
φ(s)Φ(

ηz
√

1− η2 − (1
2 − η

2)s√
3
4 − η2

)dsdz

−
√

3

4
− η2

∫ c∗+
√

n

2σ2
Y

ε−
√

n

2σ2
Y

ε

−∞
φ(z)

∫ ηz√
1−η2

−∞
φ(s)Φ(

ηz
√

1− η2 − (1
2 − η

2)s√
3
4 − η2

)dsdz

=1− 3

√
3

4
− η2

∫ c∗

−∞
φ(z)

∫ ηz√
1−η2

−∞
φ(s)Φ(

ηz
√

1− η2 − (1
2 − η

2)s√
3
4 − η2

)dsdz.

Given type I error α and η, we can determine the critical value c∗ by the following equation:

α = 1− 3

√
3

4
− η2

∫ c∗

−∞
φ(z)

∫ ηz√
1−η2

−∞
φ(s)Φ(

ηz
√

1− η2 − (1
2 − η

2)s√
3
4 − η2

)dsdz. (4.7)

Table 4.1 shows some selective critical values c∗ by η when α = 0.025. Figure 4.1 shows

the critical value c∗ versus η when α = 0.025. Since η is a function of τ and ρ, for different

combinations of τ and ρ, as long as the corresponding η’s are the same, the critical value

will be the same for a given α.

4.3.1.2 Superiority Hypothesis

When ε = 0, all the properties for the γ(b;λ(12), λ(13), w1, w2, w3) function can be applied to

the case for superiority hypothesis. Therefore, given the type I error α and η, the critical

value c can be derived by solving:

α = 1− 3

√
3

4
− η2

∫ c

−∞
φ(z)

∫ ηz√
1−η2

−∞
φ(s)Φ(

ηz
√

1− η2 − (1
2 − η

2)s√
3
4 − η2

)dsdz. (4.8)
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Figure 4.1: Critical value c∗ versus η at α = 0.025 when the interim and the final endpoints
are different.
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Notice that the Equation 4.8 to solve the critical value c for superiority hypothesis and

the Equation 4.7 to solve the critical value c∗ for non-inferiority are exactly the same. Hence

the critical values for controlling the type I error in a two-stage winner design are the same

for superiority and for non-inferiority hypotheses. The critical value c or c∗ depend on the

value of η, which is a function of information time τ and correlation ρ between the interim

and the final endpoints.

4.3.2 Same Endpoints at Interim and Final Analyses

4.3.2.1 Non-inferiority Hypothesis

When same endpoints at interim and final analysis, we have

λ(12) =
√
τ(w1 − w2) = 2η(w1 − w2),

λ(13) =
√
τ(w1 − w3) = 2η(w1 − w3).

Given ε, the type I error of size α test associated with W ∗ is,

α = sup
δ1≤−ε,δ2≤−ε,δ3≤−ε

Pr(W ∗ > c∗; δ1, δ2, δ3, η)

= sup
w1≤−

√
n

2σ2
Y

ε,w2≤−
√

n

2σ2
Y

ε,w3≤−
√

n

2σ2
Y

ε

Pr(W ∗ > c∗;w1, w2, w3, η). (4.9)

To determine c∗, we define a function γ as:

γ(b;w1, w2, w3, η) = Pr (W ∗ > b;w1, w2, w3, η)

=1−
√

3

4
− η2

∫ b−w1−
√

n

2σ2
Y

ε

−∞
φ(z)

∫ 2η(w1−w2)+ηz√
1−η2

−∞
φ(s)

× Φ(
(2η(w1 − w3) + ηz)

√
1− η2 − (1

2 − η
2)s√

3
4 − η2

)dsdz

−
√

3

4
− η2

∫ b−w2−
√

n

2σ2
Y

ε

−∞
φ(z)

∫ 2η(w2−w1)+ηz√
1−η2

−∞
φ(s)

× Φ(
(2η(w2 − w3) + ηz)

√
1− η2 − (1

2 − η
2)s√

3
4 − η2

)dsdz
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−
√

3

4
− η2

∫ b−w3−
√

n

2σ2
Y

ε

−∞
φ(z)

∫ 2η(w3−w1)+ηz√
1−η2

−∞
φ(s)

× Φ(
(2η(w3 − w2) + ηz)

√
1− η2 − (1

2 − η
2)s√

3
4 − η2

)dsdz,

where b is some cut-off value. The type I error rate in Equation 4.9 can be rewritten as:

α = sup
w1≤−

√
n

2σ2
Y

ε,w2≤−
√

n

2σ2
Y

ε,w3≤−
√

n

2σ2
Y

ε

Pr(W ∗ > c∗;w1, w2, w3, η)

= sup
w1≤−

√
n

2σ2
Y

ε,w2≤−
√

n

2σ2
Y

ε,w3≤−
√

n

2σ2
Y

ε

γ(c∗;w1, w2, w3, η)

In order to find the supremum of γ(b;w1, w2, w3), we use numerical justification in

Appendix C.4 to show the property 4.3.3. We defer the theoretical justification in the

future work.

Property 4.3.3. Given b, γ(b;w1, w2, w3) is monotonically increasing with w1, w2 and w3

at α = 0.025, 0.05.

Hence under H0, for w1 ≤ −
√

n
2σ2
Y
ε, w2 ≤ −

√
n

2σ2
Y
ε and w3 ≤ −

√
n

2σ2
Y
ε, we have

γ(c∗;w1, w2, w3, η) ≤ γ(c∗;−
√

n

2σ2
Y

ε,−
√

n

2σ2
Y

ε,−
√

n

2σ2
Y

ε, η).

Therefore, the type I error of size α test can be further simplified to

α = γ(c∗;w1 = w2 = w3 = −
√

n

2σ2
Y

ε, η),

where

γ(c∗;w1 = w2 = w3 = −
√

n

2σ2
Y

ε, η)

=1−
√

3

4
− η2

∫ c∗

−∞
φ(z)

∫ ηz√
1−η2

−∞
φ(s)Φ(

ηz
√

1− η2 − (1
2 − η

2)s√
3
4 − η2

)dsdz
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−
√

3

4
− η2

∫ c∗

−∞
φ(z)

∫ ηz√
1−η2

−∞
φ(s)Φ(

ηz
√

1− η2 − (1
2 − η

2)s√
3
4 − η2

)dsdz

−
√

3

4
− η2

∫ c∗

−∞
φ(z)

∫ ηz√
1−η2

−∞
φ(s)Φ(

ηz
√

1− η2 − (1
2 − η

2)s√
3
4 − η2

)dsdz.

Hence, given type I error α and η (or τ), we can determine the critical value c∗ by the

following equation:

α = 1− 3

√
3

4
− η2

∫ c∗

−∞
φ(z)

∫ ηz√
1−η2

−∞
φ(s)Φ(

ηz
√

1− η2 − (1
2 − η

2)s√
3
4 − η2

)dsdz. (4.10)

Table 4.2 shows some critical values c∗ with selective information time τ when α = 0.025.

Figure 4.2 shows the critical value c∗ versus τ when α = 0.025 .

4.3.2.2 Superiority Hypothesis

When ε = 0, all the properties for the γ(b;w1, w2, w3) function can be applied to the case

for superiority hypothesis. Therefore, given the type I error α, the critical value c can be

derived by solving:

α = 1− 3

√
3

4
− η2

∫ c

−∞
φ(z)

∫ ηz√
1−η2

−∞
φ(s)Φ(

ηz
√

1− η2 − (1
2 − η

2)s√
3
4 − η2

)dsdz. (4.11)

Notice that the Equation 4.11 to solve the c for superiority hypothesis and the Equa-

tion 4.10 to solve the c∗ for non-inferiority are exactly the same. Based on the Equations

(4.7), (4.8), (4.10) and (4.11), we have the following findings: 1) Critical value c for superi-

ority trial is the same as the critical value c∗ for non-inferiority trial; 2) Critical value will

be the same regardless when surrogate endpoint is used or not.

When surrogate endpoint is not used, if a given τ resulted in the same η value as when

surrogate endpoint is used, the resulting critical value will be the same. For example, when

surrogate endpoint is not used, at τ = 0.25, the corresponding η = 0.25 with critical value

2.206 (see Table 4.2), which is the same as the critical value when surrogate endpoint is

used at η = 0.25 (see Table 4.1).
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Table 4.1: Critical value c∗ of two-stage winner designs with superiority or non-inferiority
hypothesis with three experimental treatment and one active control arms when α = 0.025,
and when different endpoints at the interim and the final analyses.

(τ, ρ)
(0.25, 0) (0.33, 00) (0.5, 0) (0.75, 0) (1, 0)

η 0 0 0 0 0

c∗ 1.96 1.96 1.96 1.96 1.96

(τ, ρ)
(0.25, 0.2) (0.33, 0.2) (0.5, 0.2) (0.75, 0.2) (1, 0.2)

η 0.050 0.057 0.071 0.087 0.100

c∗ 2.018 2.026 2.040 2.057 2.071

(τ, ρ)
(0.25, 0.5) (0.33, 0.5) (0.5, 0.5) (0.75, 0.5) (1, 0.5)

η 0.125 0.144 0.177 0.217 0.250

c∗ 2.096 2.114 2.145 2.179 2.206

(τ, ρ)
(0.25, 0.8) (0.33, 0.8) (0.5, 0.8) (0.75, 0.8) (1, 0.8)

η 0.200 0.230 0.283 0.346 0.400

c∗ 2.165 2.190 2.231 2.274 2.304

With given τ and ρ, η =
√
τ

2 ρ can be determined.

Table 4.2: Critical value c∗ of the two-stage winner design for superiority or non-inferiority
hypothesis with three experimental treatment and one active control arms when α = 0.025
and when same endpoints at the interim and the final analyses.

τ
0.25 0.33 0.5 0.75 1

η 0.250 0.287 0.354 0.433 0.500

c∗ 2.206 2.234 2.278 2.321 2.349

With given information time τ , the η can be determined by η =
√
τ

2 .
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Figure 4.2: Critical value c∗ versus τ when α = 0.025 and when same endpoints at the
interim and the final analyses.
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4.4 Power

In this section, we discuss the power of the test.

4.4.1 Different Endpoints at Interim and Final Analyses

When different endpoints are used at the interim and the final analyses, we define the power

1− β as follow:

1− β = Pr (W ∗ > c∗;H1)

=γ(c∗;λ(12), λ(13), w1, w2, w3, η)

=1−
√

3

4
− η2

∫ c∗−w1−
√

n

2σ2
Y

ε

−∞
φ(z)

∫ λ(12)+ηz√
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−∞
φ(s)

× Φ(

(
λ(13) + ηz

)√
1− η2 − (1

2 − η
2)s√

3
4 − η2

)dsdz

−
√

3

4
− η2

∫ c∗−w2−
√

n

2σ2
Y

ε

−∞
φ(z)

∫ −λ(12)+ηz√
1−η2

−∞
φ(s)

× Φ(

(
λ(13) − λ(12) + ηz

)√
1− η2 − (1

2 − η
2)s√

3
4 − η2

)dsdz

−
√

3

4
− η2

∫ c∗−w3−
√

n

2σ2
Y

ε

−∞
φ(z)

∫ −λ(13)+ηz√
1−η2

−∞
φ(s)

× Φ(

(
λ(12) − λ(13) + ηz

)√
1− η2 − (1

2 − η
2)s√

3
4 − η2

)dsdz. (4.12)

When ε = 0, Equation 4.12 becomes the power function for superiority hypothesis. Given

type I error α and η, critical value c∗ can be obtained from Equation 4.7. In the following

paragraphs, we discuss the power function under three scenarios.

• Case I: δ1 = δ2 = δ3 = δ.

When δ1 = δ2 = δ3 = δ, the power 1− β can be calculated as:

1− β = Pr (W ∗ > c∗;H1)

=γ(c∗;λ(12), λ(13), w1 = w2 = w3 =

√
n

2σ2
Y

δ, η)
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=1−
√
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3
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√

n

2σ2
Y
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∫ −λ(12)+ηz√
1−η2
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φ(s)

× Φ(

(
λ(13) − λ(12) + ηz

)√
1− η2 − (1

2 − η
2)s√

3
4 − η2

)dsdz

−
√

3

4
− η2

∫ c∗−
√

n

2σ2
Y

(δ+ε)

−∞
φ(z)

∫ −λ(13)+ηz√
1−η2

−∞
φ(s)

× Φ(

(
λ(12) − λ(13) + ηz

)√
1− η2 − (1

2 − η
2)s√

3
4 − η2

)dsdz (4.13)

From Equation 4.13, the power is a function of c∗, δ, ε, σY , λ
(12), λ(13), n and η when

different endpoints at the interim and the final analyses. For different combinations

of δ and ε, as long as the sum of these two parameters are the same, so is the power.

For instance, when δ = 0.1, ε = 0.1 the power will be the same as when δ = 0, ε = 0.2.

To study the effect of τ, n and ε on power, we show the power curves for δ1 = δ2 =

δ3 = δ when νX1 − νX2 = 0, σX = σY = 1, α = 0.025, νX1 − νX3 = 0, and ρ = 0.5 in

Figure 4.3. When τ increases, there is no changes on power in the figures. When ε or

n increases, the power increase.

To study the effect of ρ, n and ε on power, we show the power curves for δ1 = δ2 =

δ3 = δ when νX1 − νX2 = 0, νX1 − νX3 = 0, α = 0.025, σX = σY = 1 and τ = 0.5 in

Figure 4.4. As seen in the figures, ρ have minimum effect on the power. However,

it is obvious that when ε or n increases, the power curves shift to the left suggesting

power increase.

To study the effect of νX1 −νX2 and νX1 −νX3 on power, we show the power curves for

δ1 = δ2 = δ3 = δ when νX1 − νX2 = 0.1, νX1 − νX3 = 0.3, α = 0.025, σX = σY = 1, ρ =

0.2, 0.5, 0.8, ε = 0, 0.1, 0.2 and τ = 0.5 in Figure 4.5. The only difference between

Figure 4.5 and 4.4 is the νX1 − νX2 and νX1 − νX3 at the interim look. Comparing the

Figure 4.5 and 4.4, when νX1 − νX2 increases νX1 − νX3 , there is difference in these
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Figure 4.3: Power curves for δ1 = δ2 = δ3 = δ when νX1 − νX2 = 0, νX1 − νX3 = 0, α =
0.025, σX = σY = 1 and ρ = 0.5 by τ, n and ε when different endpoints at interim and final
analyses.
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Figure 4.4: Power curves for δ1 = δ2 = δ3 = δ when νX1 − νX2 = 0, νX1 − νX3 = 0, α =
0.025, σX = σY = 1 and τ = 0.5 by ρ, n and ε when different endpoints at interim and final
analyses.
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Table 4.3: Probability of selecting each experimental treatment, by information time τ ,
νX1 − νX2 and νX1 − νX3 .

νX1 − νX2 = 0, νX1 − νX3 = 0
τ = 0.25 τ = 0.5 τ = 0.75

n 100 250 500 100 250 500 100 250 500

p1 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33
p2 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33
p3 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33

νX1 − νX2 = 0.1, νX1 − νX3 = 0.3
τ = 0.25 τ = 0.5 τ = 0.75

n 100 250 500 100 250 500 100 250 500

p1 0.59 0.70 0.78 0.67 0.78 0.87 0.72 0.83 0.91
p2 0.33 0.28 0.21 0.30 0.21 0.13 0.26 0.17 0.09
p3 0.08 0.02 0.004 0.03 0.004 < 0.001 0.01 < 0.001 < 0.001

νX1 − νX2 = 0, νX1 − νX3 = 0.3
τ = 0.25 τ = 0.5 τ = 0.75

n 100 250 500 100 250 500 100 250 500

p1 0.47 0.49 0.50 0.49 0.5 0.5 0.5 0.5 0.5
p2 0.47 0.49 0.50 0.49 0.5 0.5 0.5 0.5 0.5
p3 0.05 0.01 0.001 0.02 0.001 < 0.001 0.007 0.0001 0.0001

power curves. This is because when δ1 = δ2 = δ3 = δ, and the endpoints at the

interim and the final are different, the power does not depend on the treatment effect

of the surrogate endpoint at interim analysis.

Figures 4.3, 4.4 and 4.5 show that when δ1 = δ2 = δ3 = δ, the power does not

depend on the τ , ρ, νX1 − νX2 = 0.1 or νX1 − νX3 = 0.3. This is clear since there is

no differences between the experimental treatment arms and the active control at the

final analysis, regardless when or which treatment we select, it have no impact on the

power.

• Case II: δ1 = δ2 = δ 6= δ3.

When δ1 = δ2 = δ 6= δ3, the power can be calculated as:

1− β = Pr (W ∗ > c∗;H1)

=γ(c∗;λ(12), λ(13), w1 = w2 =

√
n

2σ2
Y

δ, w3 =

√
n

2σ2
Y

δ3, η)

=1−
√

3

4
− η2

∫ c∗−
√

n

2σ2
Y

(δ+ε)

−∞
φ(z)

∫ λ(12)+ηz√
1−η2

−∞
φ(s)



92

Figure 4.5: Power curve for δ1 = δ2 = δ3 = δ when νX1 − νX2 = 0.1, νX1 − νX3 = 0.3, α =
0.025, σX = σY = 1 and τ = 0.5 by ρ, n and ε when different endpoints at interim and final
analyses.
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× Φ(
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−
√
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4
− η2

∫ c∗−
√

n

2σ2
Y

(δ3+ε)

−∞
φ(z)

∫ −λ(13)+ηz√
1−η2

−∞
φ(s)

× Φ(

(
λ(12) − λ(13) + ηz

)√
1− η2 − (1

2 − η
2)s√

3
4 − η2

)dsdz. (4.14)

From Equation 4.14, the power is a function of c∗, δ1 = δ2 = δ, δ3, ε, σY , λ
(12), λ(13), n

and η.

Figure 4.6 shows the effect of νX1 − νX2 = ν12 and νX1 − νX3 = ν13 on the power

when δ1 = δ2 = δ 6= δ3, τ = 1, ρ = 0.5, n = 250, σX = σY = 1, ε = 0 and α = 0.025. If

the treatment effects at the interim is in the same direction as the final endpoints, the

power will be bigger as compare to when it’s in the opposite direction. For example,

when δ1 = δ2 = δ > δ3, the power will be bigger if ν12 < ν13 than if ν12 > ν13.

Table 4.3 provides the probability of selecting each arm by τ, n, νX1 − νX2 and

νX1 − νX3 . When νX1 − νX2 > 0 and νX1 − νX3 > 0, regardless the size of n or τ ,

the probability of selecting treatment 1 or 2 is way higher than selecting treatment 3.

Therefore, as seen in the figures, the power depend mainly on the effect of δ1 = δ2 = δ,

but not δ3.

Figure 4.7 shows the effects of τ and ρ on power when δ1 = δ2 = δ 6= δ3, n =

250, ε = 0, νX1 − νX2 = 0, νX1 − νX3 = 0.3, σX = σY = 1 and α = 0.025. When

τ changes, the power did not change much. When νX1 − νX2 = 0, νX1 − νX3 = 0.3,

and n = 250, we know the probability of selecting treatment 1 or 2 are almost 0.5,

regardless when we perform the interim selection (see Table 4.3). Therefore, when τ

increase, we do not see much increase on the power. Furthermore, as ρ changes, the

power surface did not change much suggesting it have minimum impact on the power.
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Figure 4.6: Contour of power surface for δ1 = δ2 = δ 6= δ3, when α = 0.025, τ = 1, ρ =
0.5, σX = σY = 1, ε = 0 and n = 250 by ν12 = νX1 − νX2 and ν13 = νX1 − νX3 when different
endpoints at interim and final analyses.
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Figure 4.7: Contour of power surface for δ1 = δ2 = δ 6= δ3 when n = 250, α = 0.025, ε =
0, νX1 − νX2 = 0, σX = σY = 1 and νX1 − νX3 = 0.3 by τ and ρ when different endpoints at
interim and final analyses.
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Figure 4.8 shows the effects of τ and ε on power for δ1 = δ2 6= δ3 when νX1 −νX2 = 0,

νX1 − νX3 = 0.3, ρ = 0.8, α = 0.025, σX = σY = 1 and n = 250. When τ changes,

we can hardly see any changes in the power. This is because when νX1 − νX2 = 0,

νX1 − νX3 = 0.3, there is an equal probability of selecting the treatment 1 or 2, and

that probability is almost 0.5(see Table 4.3). Therefore, regardless when we perform

the interim selection, the probability of selecting the treatment 1 and 2 will not change

much. As a result, the power surface does not depend on δ3 very much. Furthermore,

as either ε or δ increases, the power increases.

• Case III: δ1 6= δ2 6= δ3.

When δ1 6= δ2 6= δ3, the power can be calculated by

1− β = Pr (W ∗ > c∗;H1)

=γ(c∗;λ(12), λ(13), w1 =

√
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2σ2
Y
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)dsdz. (4.15)

From Equation 4.15, the power is a function of c∗, δ1, δ2, δ3, σY , ε, λ
(12), λ(13), n and

η.

Figure 4.9 shows the effects of δ3 and n on the contour plot of power surface for

δ1 6= δ2 6= δ3 when νX1 − νX2 = 0.1, νX1 − νX3 = 0.3, η = 0.25, ε = 0, σX = σY = 1 and

α = 0.025. As δ3 increases, there is no visual changes on the power surfaces. This
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Figure 4.8: Contour of power surface for δ1 = δ2 6= δ3 when νX1 − νX2 = 0, νX1 − νX3 =
0.3, α = 0.025, ρ = 0.8, σX = σY = 1 and n = 250 by τ and ε when different endpoints at
interim and final analyses.
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is because of the parameters that we choose here for the figures. In the figures, we

choose νX1 − νX2 = 0.1, νX1 − νX3 = 0.3 τ = 1 and ρ = 0.5, there is slim chance to pick

treatment arm 3 (see Table 4.3) at the interim look, therefore, δ3 did not have much

impact on the power. On the other hand, as n increases, power increases.

Figure 4.10 shows the effects of τ and ρ on the power for δ1 6= δ2 6= δ3 when

νX1 − νX2 = 0.1, νX1 − νX3 = 0.3, n = 250, δ3 = 0.1, σX = σY = 1, ε = 0 and α = 0.025.

As τ increases, so is the probability of selecting the right winner, therefore, the power

increases. On the other hand, as ρ changes, we can hardly see any changes on the

power.

Figure 4.11 shows the effects of ε and n on the power surface for δ1 6= δ2 6= δ3 when

νX1 − νX2 = 0.1, νX1 − νX3 = 0.3, α = 0.025, τ = 1, ρ = 0.5(i.e.η = 0.25), σX = σY = 1

and δ3 = 0.1. As the sample size n increases, the power increases. When ε increases,

the power surface shifts to left suggesting power increases.

Figure 4.12 shows the effects of τ and ε for δ1 6= δ2 6= δ3 when νX1 − νX2 =

0.1, νX1 − νX3 = 0.3, δ3 = 0.1, n = 250, α = 0.025, σX = σY = 1 and ρ = 0.8. From

the figures, when the we perform interim selection at a later time during the trial

(i.e. increases τ), the power increases. As ε increases, the power surface shift to left

suggesting increases on power.

4.4.2 Same Endpoints at Interim and Final Analyses

When same endpoints are used at the interim and final analysis, we can calculate the power

1− β as follows:

1− β =Pr (W ∗ > c∗;H1)

=γ(c∗;w1, w2, w3, η)

=1−
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3

4
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× Φ(
(
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√
1− η2 − (1

2 − η
2)s√

3
4 − η2

)dsdz
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Figure 4.9: Contour of power surface for δ1 6= δ2 6= δ3 when νX1 −νX2 = 0.1, α = 0.025, νX1 −
νX3 = 0.3, τ = 1, σX = σY = 1, ε = 0 and ρ = 0.5 by δ3 and n when different endpoints at
interim and final analyses.
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Figure 4.10: Contour of power surface for δ1 6= δ2 6= δ3 when νX1 −νX2 = 0.1, α = 0.025, νX1 −
νX3 = 0.3, n = 250, σX = σY = 1, ε = 0 and δ3 = 0.1 by τ and ρ when different endpoints at
interim and final analyses.
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Figure 4.11: Contour of power surface for δ1 6= δ2 6= δ3 when νX1 − νX2 = 0.1, νX1 − νX3 =
0.3, α = 0.025, τ = 1, ρ = 0.5(i.e.η = 0.25), σX = σY = 1 and δ3 = 0.1 by ρ and ε when
different endpoints at interim and final analyses.
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Figure 4.12: Contour of power surface for δ1 6= δ2 6= δ3 when νX1 − νX2 = 0.1, νX1 − νX3 =
0.3, α = 0.025, δ3 = 0.1, ρ = 0.8, σX = σY = 1 and n = 250 by τ and ε when different
endpoints at interim and final analyses.
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When ε = 0, Equation 4.16 becomes the power function for superiority hypothesis.

Given type I error α and η, the critical value c∗ can be determined by Equation 4.10. In

the following paragraphs, we discuss the power function under three scenarios.

• Case I: δ1 = δ2 = δ3 = δ.

When δ1 = δ2 = δ3 = δ, the overall power 1− β can be calculated as:

1− β = Pr

(
W ∗ > c∗;w1 = w2 = w3 =

√
n

2σ2
Y

δ, η

)
=1− 3

√
3

4
− η2

∫ c∗−
√

n

2σ2
Y

(δ+ε)

−∞
φ(z)

∫ ηz√
1−η2

−∞
φ(s)Φ(

ηz
√

1− η2 − (1
2 − η

2)s√
3
4 − η2

)dsdz.

(4.17)

From Equation 4.17, the power is a function of c∗, σY , n, δ, ε and η (or τ). Equa-

tion 4.17 shows that for a various combinations of δ and ε, as long as the sum of these

two parameters are the same, so is the power.

Figure 4.13 shows the effects of n, τ and ε on the power curve for δ1 = δ2 = δ3 = δ

when α = 0.025, σY = 1. As τ increases, there is no visual difference on the power,

that is because now the interim and the final endpoints are the same, and under the

case that δ1 = δ2 = δ3, there is no difference on the power regardless when or which

treatment we select. On the other hand, power increases as ε, n or δ increases.

• Case II: δ1 = δ2 = δ 6= δ3.
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Figure 4.13: Power curve for δ1 = δ2 = δ3 = δ when α = 0.025, σY = 1 by information time
τ and ε when same endpoints at interim and final analyses.
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When δ1 = δ2 = δ 6= δ3, the power 1− β can be calculated as:

1− β =1−
√

3

4
− η2

∫ c∗−
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n

2σ2
Y

(δ+ε)
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2)s√

3
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)dsdz
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3

4
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3
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3
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−∞
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× Φ(
(
√
τ(w3 − w2) + ηz)

√
1− η2 − (1

2 − η
2)s√

3
4 − η2

)dsdz. (4.18)

From Equation 4.18, we know that the power is a function of τ, n, σY , δ1 = δ2 =

δ, δ3, and ε.

Figure 4.14 shows the effects of τ and ε on the power when δ1 = δ2 = δ 6= δ3, α =

0.025 and n = 250, σY = 1. Because the endpoints for the interim and the final

analysis are the same, the later we perform the interim selection, the probability of

selecting the right treatment in higher. This can been seen from the figures that

the power surface shift to the left when the τ increases. The timing for the interim

selection play an important role under this scenario.

Figure 4.15 shows the effects of n and ε on the power for δ1 = δ2 = δ 6= δ3 when

α = 0.025, σY = 1 and τ = 0.5. When sample size n increases, the power increases.

The power surface shift to the left when ε increase, this implies the power increase.

• Case III: δ1 6= δ2 6= δ3.

When δ1 6= δ2 6= δ3, the power 1− β can be calculated as:

1− β =Pr (W ∗ > c∗;H1)

=γ(c∗;w1, w2, w3, η)
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Figure 4.14: Contour of power surface for δ1 = δ2 = δ 6= δ3 when n = 250, σY = 1 and
α = 0.025 by τ and ε when same endpoints at interim and final analyses.
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Figure 4.15: Contour of power surface for δ1 = δ2 = δ 6= δ3 when τ = 0.5, σY = 1 and
α = 0.025 by n and ε when same endpoints at interim and final analyses.
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From Equation 4.19, the power is a function of τ, n, δ1, δ2, δ3, ε.

Figure 4.16 shows the effects of δ3 and ε on the power for δ1 6= δ2 6= δ3 when

τ = 0.5, n = 250, σY = 1 and α = 0.025. When δ3 increases, the power increases. As

seen in the figures, the power surface is not monotonic with respective to δ1 or δ2 or

δ3.

Figure 4.17 shows effects of τ and ε on power for δ1 6= δ2 6= δ3 when δ3 = 0.1, n =

250, σY = 1 and α = 0.025. When τ increases, the power increases. Notice that the

power surface is not monotonic with respective to δ1 or δ2 or δ3.

Figure 4.18 shows the effects of n and ε on power for δ1 6= δ2 6= δ3 when δ3 =

0.1, τ = 0.5, σY = 1 and α = 0.025. When n increases, the power increases. When ε

increase to 0.1 or 0.2, or when sample size increase to 300, the power surface is not

monotonic with respective to δ1 or δ2 or δ3.

4.5 Sample Size Estimation

4.5.1 Different Endpoints at Interim and Final Analyses

• Case I: δ1 = δ2 = δ3 = δ.

When δ1 = δ2 = δ3 = δ, as shown in Equation 4.13, sample size can be determined
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Figure 4.16: Contour of power surface for δ1 6= δ2 6= δ3 when τ = 0.5, n = 250, σY = 1 and
α = 0.025 by δ3 and ε when same endpoints at interim and final analyses.
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Figure 4.17: Contour of power surface when δ1 6= δ2 6= δ3 with vary information time τ and
ε when δ3 = 0.1, n = 250, σY = 1 and α = 0.025 when same endpoints at interim and final
analyses.
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Figure 4.18: Contour of power surface when δ1 6= δ2 6= δ3 by n and ε when τ = 0.5, δ3 =
0.1, σY = 1 and α = 0.025 when same endpoints at interim and final analyses.
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Table 4.4: Estimated sample size for δ1 = δ2 = δ3 = δ, when νX1 − νX2 = 0.1, νX1 − νX3 =
0.3, σY = σX = 1, α = 0.025 and ε = 0 with targeted power of 80% or 90% by τ, ρ and δ
when different endpoints used at the interim and the final analysis.

τ = 0.25
ρ = 0.2 ρ = 0.5 ρ = 0.8

δ 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

1− β = 0.8 1619 400 177 99 64 1686 408 178 100 63 1744 413 179 99 63
1− β = 0.9 2164 535 237 133 85 2249 546 239 133 85 2324 553 240 133 84

τ = 0.5
ρ = 0.2 ρ = 0.5 ρ = 0.8

δ 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

1− β = 0.8 1653 406 179 100 64 1766 421 183 101 64 1862 431 183 100 63
1− β = 0.9 2203 543 239 134 86 2338 563 244 135 86 2453 577 246 135 85

τ = 0.75
ρ = 0.2 ρ = 0.5 ρ = 0.8

δ 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

1− β = 0.8 1678 411 181 101 64 1819 433 186 103 65 1933 448 188 102 63
1− β = 0.9 2229 550 241 135 86 2393 579 249 137 87 2525 599 252 137 85

given the type I error α, power 1− β, η, c∗, δ, λ(12), λ(13), σY and ε.

Table 4.4 provides an example of the estimated sample size for δ1 = δ2 = δ3 = δ,

when νX1 −νX2 = 0.1, νX1 −νX3 = 0.3, σY = σX = 1, α = 0.025 and ε = 0 with targeted

power of 80% or 90% by τ, ρ and δ. At a given τ , δ and power, as ρ increases,

the sample size increases. Given power, when δ increases, the required sample size

decreases and when τ increases, sample size increases.

Table 4.5 provides an example of the estimated sample size for δ1 = δ2 = δ3 = δ,

when νX1 − νX2 = 0.1, νX1 − νX3 = 0.3, σY = σX = 1, τ = 0.5 and α = 0.025 with

targeted power of 80% or 90% by ρ, ε and δ. From Equation 4.13, we know that as

long as the sum of the δ and the ε are the same, sample size are the same when the

other parameters are fixed. For example, in table 4.4, when ρ is fixed, the estimated

sample size for δ = 0.1, ε = 0.2 is the same as for δ = 0.2, ε = 0.1. When δ increases

from 0.1 to 0.2, the required sample size drop dramatically. When ε = 0, the sample

size will matches the sample size estimated in table 4.4 with the same parameters.

• Case II: δ1 = δ2 = δ 6= δ3.

When δ1 = δ2 = δ 6= δ3, as shown in Equation 4.14, sample size can be determined

given the type I error α, power 1− β, η, c∗, δ, δ3, λ
(12), λ(13), σY and ε.
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Table 4.5: Estimated sample size for δ1 = δ2 = δ3 = δ, when νX1 − νX2 = 0.1, νX1 − νX3 =
0.3, σY = σX = 1, τ = 0.5 and α = 0.025 with targeted power of 80% or 90% by ρ, ε and δ
when different endpoints used at the interim and the final analysis.

ε = 0
ρ = 0.2 ρ = 0.5 ρ = 0.8

δ 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

1− β = 0.8 1653 406 179 100 64 1766 421 183 101 64 1862 431 183 100 63
1− β = 0.9 2203 543 239 134 86 2338 563 244 135 86 2453 577 246 135 85

ε = 0.1
ρ = 0.2 ρ = 0.5 ρ = 0.8

δ 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

1− β = 0.8 406 179 100 64 44 421 183 101 64 44 431 183 100 63 43
1− β = 0.9 543 239 134 86 59 563 244 135 86 59 577 246 135 85 58

ε = 0.2
ρ = 0.2 ρ = 0.5 ρ = 0.8

δ 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

1− β = 0.8 179 100 64 44 33 183 101 64 44 32 183 100 63 43 32
1− β = 0.9 239 134 86 59 44 244 135 86 59 43 246 135 85 58 42

Table 4.6 provides an example of the estimated sample size for δ1 = δ2 = δ 6= δ3

when νX1 − νX2 = 0.1, νX1 − νX3 = 0.3, σY = σX = 1, ρ = 0.8 and α = 0.025 with

targeted power of 80% or 90% by τ, ε, δ and δ3. When the two treatment are the

same and close to the third treatment (for example δ1 = δ2 = 0.5 > δ3 = 0.4), we

will need a smaller sample size to achieve the targeted power compare to when two

treatment are the same and far apart from the third treatment arm (for example

δ1 = δ2 = 0.5 > δ3 = 0.1). When the non-inferiority margin increase, a smaller

sample will be needed to achieve the targeted power.

• Case III: δ1 6= δ2 6= δ3.

When δ1 6= δ2 6= δ3, as shown in Equation 4.15, sample size can be determined given

the type I error α, power 1− β, η, c∗, δ1, δ2, δ3, λ
(12), λ(13), σY and ε.

Table 4.7 provides an example of the estimated sample size for δ1 6= δ2 6= δ3 when

νX1 − νX2 = 0.1, νX1 − νX3 = 0.3, σY = σX = 1, ρ = 0.8 and α = 0.025 with targeted

power of 80% or 90% by τ, ε, δ1, δ2 and δ3. When the treatment effects for the surrogate

endpoint are in the same direction as the final endpoints, (i.e. ν12 > ν13 is in the same

direction as δ1 < δ2 < δ3), performing the interim analysis at a later time, it will save

the sample size to maintain the same power. For example, in table 4.7, we choose
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Table 4.6: Estimated sample size for δ1 = δ2 = δ 6= δ3 when νX1 − νX2 = 0.1, νX1 − νX3 =
0.3, σY = σX = 1, ρ = 0.8 and α = 0.025 with targeted power of 80% or 90% by τ, ε, δ and
δ3 when different endpoints used at the interim and the final analysis.

τ = 0.25, ρ = 0.8, (i.e.η = 0.2)
ε = 0 ε = 0.1

(δ, δ3) (0.1,0.3) (0.3,0.4) (0.5,0.4) (0.5,0.1) (0.1,0.3) (0.3,0.4) (0.5,0.4) (0.5,0.1)

1− β = 0.8 1744 177 66 78 412 97 46 55
1− β = 0.9 2324 239 88 109 553 131 61 79

τ = 0.5, ρ = 0.8, (i.e.η = 0.28)
ε = 0 ε = 0.1

(δ, δ3) (0.1,0.3) (0.3,0.4) (0.5,0.4) (0.5,0.1) (0.1,0.3) (0.3,0.4) (0.5,0.4) (0.5,0.1)

1− β = 0.8 1862 183 64 71 431 100 44 50
1− β = 0.9 2453 246 86 95 577 135 59 67

τ = 0.75, ρ = 0.8, (i.e.η = 0.35)
ε = 0 ε = 0.1

(δ, δ3) (0.1,0.3) (0.3,0.4) (0.5,0.4) (0.5,0.1) (0.1,0.3) (0.3,0.4) (0.5,0.4) (0.5,0.1)

1− β = 0.8 1933 188 64 68 448 102 44 47
1− β = 0.9 2525 252 86 90 599 137 59 63

ν12 = 0.1 < ν13 = 0.3, which is in the same direction as final endpoint δ1 > δ2 > δ3.

When ε = 0 and δ1 = 0.3 > δ2 = 0.2 > δ3 = 0.1, performing the interim analysis

at τ = 0.25, we need 242 subjects to achieve 80% power, whereas when we perform

interim selection at τ = 0.5, we only need 224 subjects to achieve 80% power. If the

treatment effect of the final endpoint are in the opposite direction as the surrogate

endpoints, we need a larger sample size to achieve the targeted power. For example,

in table 4.7, when δ1 = 0.1 < δ2 = 0.2 < δ3 = 0.3, the sample size required to achieve

80% power is 1705, on the other hand, when δ1 = 0.3 > δ2 = 0.2 > δ3 = 0.2, we

only need 242 subjects to achieve the same power. When the non-inferiority margin

increase, smaller sample is needed to achieve the targeted power.

4.5.2 Same Endpoints at Interim and Final Analyses

• Case I: δ1 = δ2 = δ3 = δ.

When δ1 = δ2 = δ3 = δ, as shown in Equation 4.17, sample size can be determined

given the type I error α, power 1− β, τ (or η), c∗, δ, σY and ε.

Table 4.8 provides an example of the estimated sample size for δ1 = δ2 = δ3 = δ

when σY = 1 and α = 0.025 with targeted power of 80% or 90% by τ, ε and δ. From
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Table 4.7: Estimated sample size for δ1 6= δ2 6= δ3 when νX1 −νX2 = 0.1, νX1 −νX3 = 0.3, σY =
σX = 1, ρ = 0.8 and α = 0.025 with targeted power of 80% or 90% by τ, ε, δ1, δ2 and δ3

when different endpoints used at the interim and the final analysis.

τ = 0.25, ρ = 0.8(i.e.η = 0.2)
ε = 0 ε = 0.1

(δ1, δ2, δ3) (0.1,0.2,0.3) (0.2,0.3,0.5) (0.3,0.2,0.1) (0.1,0.2,0.3) (0.2,0.3,0.5) (0.3,0.2,0.1)

1− β = 0.8 1705 366 242 366 151 131
1− β = 0.9 2308 520 328 520 216 177

τ = 0.5, ρ = 0.8(i.e.η = 0.28)
ε = 0 ε = 0.1

(δ1, δ2, δ3) (0.1,0.2,0.3) (0.2,0.3,0.5) (0.3,0.2,0.1) (0.1,0.2,0.3) (0.2,0.3,0.5) (0.3,0.2,0.1)

1− β = 0.8 1858 409 224 409 166 123
1− β = 0.9 2452 566 299 566 233 163

τ = 0.75, ρ = 0.8(i.e.η = 0.35)
ε = 0 ε = 0.1

(δ1, δ2, δ3) (0.1,0.2,0.3) (0.2,0.3,0.5) (0.3,0.2,0.1) (0.1,0.2,0.3) (0.2,0.3,0.5) (0.3,0.2,0.1)

1− β = 0.8 1932 438 218 438 176 119
1− β = 0.9 2525 595 287 595 245 157

Equation 4.17, we know that as long as the sum of the δ and the ε are the same, sample

size are the same when the other parameters are fixed. For example, in table 4.8, when

τ = 0.25, ε = 0 and δ = 0.3, the estimated sample size needed to achieve 80% power

is 166, which is the same then when τ = 0.25, ε = 0.1 and δ = 0.2. When δ increases

from 0.1 to 0.2, the required sample size drop dramatically. When same endpoints are

used at the interim and the final analysis, when we perform the interim selection at a

later time, we need a smaller sample size to achieve the targeted power. For example,

in table 4.8, when ε = 0, and δ = 0.1, as τ increases from 0.25 to 0.5, the sample size

required to achieve 80% power drop from 1486 to 1404.

• Case II: δ1 = δ2 = δ 6= δ3.

When δ1 = δ2 = δ 6= δ3, as shown in Equation 4.18, sample size can be determined

given the type I error α, power 1− β, τ (or η), c∗, δ, δ3, σY and ε.

Table 4.9 provides an example of the estimated sample size for δ1 = δ2 = δ 6= δ3

when σY = 1 and α = 0.025 with targeted power of 80% or 90% by τ, ε, δ and δ3.

If the two experimental treatments that have the same effect is selected at interim

analysis and is inferior to the third arm (i.e. δ1 = δ2 < δ3), we need to have a larger

sample size to reach the targeted power compare to when the two is superior than
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Table 4.8: Estimated sample size for δ1 = δ2 = δ3 = δ when σY = 1 and α = 0.025 with
targeted power of 80% or 90% by τ, ε and δ when same endpoints used at the interim and
the final analysis.

τ = 0.25
ε = 0 ε = 0.1 ε = 0.2

δ 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

1− β = 0.8 1486 372 166 93 60 372 166 93 60 42 166 93 60 42 31
1− β = 0.9 1988 497 221 125 80 497 211 125 80 56 221 125 80 56 40

τ = 0.5
ε = 0 ε = 0.1 ε = 0.2

δ 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

1− β = 0.8 1404 351 156 88 57 351 156 88 57 39 156 88 57 39 29
1− β = 0.9 1876 469 209 118 76 469 209 118 76 53 209 118 76 53 39

τ = 0.75
ε = 0 ε = 0.1 ε = 0.2

δ 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

1− β = 0.8 1324 331 148 83 53 331 148 83 53 37 148 83 53 37 28
1− β = 0.9 1765 442 197 111 71 442 197 111 71 50 197 111 71 50 37

the third arm (i.e. δ1 = δ2 > δ3). For example, in table 4.9, at τ = 0.25, ε = 0, when

δ1 = δ2 = 0.1 < δ3 = 0.2, we need 623 subjects to achieve 80% power. Whereas,

when δ1 = δ2 = 0.2 > δ3 = 0.1, we only need 442 subjects to achieve 80% power. The

sample size needed is smaller as the treatment are far apart than the treatment are

close. For example, in table 4.9, at τ = 0.25, ε = 0, when δ1 = δ2 = 0.1 < δ3 = 0.2, we

need at least 623 samples to achieve 80% power. On the other hand, when δ1 = δ2 =

0.1 < δ3 = 0.5, we only need 96 subjects to achieve 80% power. As τ or ε increases,

the required sample size to reach the targeted power decreases.

• Case III: δ1 6= δ2 6= δ3.

When δ1 6= δ2 6= δ3, as shown in Equation 4.19, sample size can be determined given

the type I error α, power 1− β, τ (or η), c∗, δ1, δ2, δ3, σY and ε. From Equation 4.19,

we can see that as long as the value of the δ’s are the same, regardless which one is

superior or inferior (i.e. δ1 > δ2 > δ3 or δ1 < δ2 < δ3), the sample size needed will be

the same by fixing other parameters. For example, in table 4.10, at τ = 0.25, ε = 0,

when δ1 = 0.1 < δ2 = 0.2 < δ3 = 0.3, we need 259 subjects to achieve 80 power, which

is the same when δ1 = 0.3 > δ2 = 0.2 > δ3 = 0.1 (results are not shown in the table).

Table 4.10 provides an example of the estimated sample size for δ1 6= δ2 6= δ3
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Table 4.9: Estimated sample size for δ1 = δ2 = δ 6= δ3 when σY = 1 and α = 0.025 with
targeted power of 80% or 90% by τ, ε, δ and δ3 when same endpoints used at the interim
and the final analysis.

τ = 0.25
ε = 0 ε = 0.1

(δ, δ3) (0.1,0.2) (0.1,0.5) (0.2,0.1) (0.5,0.1) (0.1,0.2) (0.1,0.5) (0.2,0.1) (0.5,0.1)

1− β = 0.8 623 96 442 69 247 70 193 49
1− β = 0.9 877 132 598 91 338 99 261 65

τ = 0.5
ε = 0 ε = 0.1

(δ, δ3) (0.1,0.2) (0.1,0.5) (0.2,0.1) (0.5,0.1) (0.1,0.2) (0.1,0.5) (0.2,0.1) (0.5,0.1)

1− β = 0.8 532 83 405 64 222 59 179 45
1− β = 0.9 709 108 537 85 298 78 238 59

τ = 0.75
ε = 0 ε = 0.1

(δ, δ3) (0.1,0.2) (0.1,0.5) (0.2,0.1) (0.5,0.1) (0.1,0.2) (0.1,0.5) (0.2,0.1) (0.5,0.1)

1− β = 0.8 499 81 384 62 208 57 168 43
1− β = 0.9 655 105 507 81 275 74 223 57

when σY = 1 and α = 0.025 with targeted power of 80% or 90% by τ, ε, δ1, δ2 and

δ3. As τ increases, by fixing the other parameters, the required sample size to achieve

the targeted power decreases. For example, in table 4.10, at ε = 0, (δ1 = 0.1, δ2 =

0.3, δ3 = 0.5), we need 95 subjects to achieve 80% power when we perform interim

selection at τ = 0.25, whereas, when we perform interim selection at τ = 0.5, we only

need 83 subjects to achieve 80% power. As τ or ε increases, the required sample size

to reach the targeted power decreases.

4.6 Normal Approximation and Estimation

4.6.1 Normal Approximation

In this section, we graphically demonstrated that the distribution of W ∗ in Lemma 4.2.1

can be approximated by a mixture of three normal distributions. To reduce redundancy, we

only provided detailed work to verify the first component of the distribution of W ∗. The

other two components can be verified in a similar fashion. It has been shown in the previous
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Table 4.10: Estimated sample size for δ1 6= δ2 6= δ3 when σY = 1 and α = 0.025 with
targeted power of 80% or 90% by τ, ε, δ1, δ2 and δ3 when same endpoints used at the interim
and the final analysis.

τ = 0.25
ε = 0 ε = 0.1

(δ1, δ2, δ3) (0.1,0.2,0.3) (0.1,0.3,0.5) (0.1,0.4,0.5) (0.1,0.2,0.3) (0.1,0.3,0.5) (0.1,0.4,0.5)

1− β = 0.8 259 95 83 138 65 57
1− β = 0.9 357 130 111 190 90 77

τ = 0.5
ε = 0 ε = 0.1

(δ1, δ2, δ3) (0.1,0.2,0.3) (0.1,0.3,0.5) (0.1,0.4,0.5) (0.1,0.2,0.3) (0.1,0.3,0.5) (0.1,0.4,0.5)

1− β = 0.8 228 83 76 124 57 52
1− β = 0.9 302 110 100 165 76 69

τ = 0.75
ε = 0 ε = 0.1

(δ1, δ2, δ3) (0.1,0.2,0.3) (0.1,0.3,0.5) (0.1,0.4,0.5) (0.1,0.2,0.3) (0.1,0.3,0.5) (0.1,0.4,0.5)

1− β = 0.8 216 79 73 117 54 50
1− β = 0.9 283 104 96 154 71 65

section that the first part of the density function of W ∗ can be written as:

f1(z) =

√
3
4 − η2

p1
φ(z)

∫ λ(12)+ηz√
1−η2

−∞
φ(s)Φ(

(
λ(13) + ηz

)√
1− η2 − (1

2 − η
2)s√

3
4 − η2

)ds.

where

p1 = Pr

(
X̄(1)
n1

= max(X̄(1)
n1
, X̄(2)

n1
, X̄(3)

n1
)

)
=Pr(X̄(1)

n1
> X̄(2)

n1
, X̄(1)

n1
> X̄(3)

n1
)

=

∫
Pr(X̄(1)

n1
> X̄(2)

n1
, X̄(1)

n1
> X̄(3)

n1
|X̄(1)

n1
= x1)f

X̄
(1)
n1

(x1)dx1
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=

∫
Pr(x1 > X̄(2)

n1
, x1 > X̄(3)

n1
)f
X̄

(1)
n1

(x1)dx1

=

∫
Pr(X̄(2)

n1
< x1)Pr(X̄(3)

n1
< x1)f

X̄
(1)
n1

(x1)dx1

=

∫
F
X̄

(2)
n1

(x1)F
X̄

(3)
n1

(x1)f
X̄

(1)
n1

(x1)dx1.

Hence the mean can be calculated as follows:

µ1 =

∫ ∞
−∞

zf1(z)dz

=

√
3
4 − η2

p1

∫ ∞
−∞

zφ(z)

∫ λ(12)+ηz√
1−η2

−∞
φ(s)Φ(

(
λ(13) + ηz

)√
1− η2 − (1

2 − η
2)s√

3
4 − η2

)dsdz,

and the variance can be calculated as follows:

σ2
1 = E(z2)− µ2

1

=

√
3
4 − η2

p1

∫ ∞
−∞

z2φ(z)

∫ λ(12)+ηz√
1−η2

−∞
φ(s)Φ(

(
λ(13) + ηz

)√
1− η2 − (1

2 − η
2)s√

3
4 − η2

)dsdz − µ2
1.

By numerical computation of the mean and the variance, we plotted the density function

of the normal distribution with mean µ1 and variance σ2
1, and compared it with the curve

of f1(z) with η =
√
τ

2 ρ = 0.35, λ(12) =
√

n1

2σ2
X

(νX1 − νX2 ) = 0, λ(13) =
√

n1

2σ2
X

(νX1 − νX3 ) = 0.

Results in Figure 4.19 showed that the two pdf curves are very close, suggesting f1(z) can

be reasonably approximated by the normal distribution with the same mean and variance

of f1(z).

4.6.2 Estimation

Similar to Shun et al. (2008), we propose to estimate the final treatment effect ∆, by ∆̂n :

∆̂n =


Ȳ

(1)
n − Ȳ (0)

n , if X̄
(1)
n1 = max(X̄

(1)
n1 , X̄

(2)
n1 , X̄

(3)
n1 ),

Ȳ
(2)
n − Ȳ (0)

n , if X̄
(2)
n1 = max(X̄

(1)
n1 , X̄

(2)
n1 , X̄

(3)
n1 ),

Ȳ
(3)
n − Ȳ (0)

n , if X̄
(3)
n1 = max(X̄

(1)
n1 , X̄

(2)
n1 , X̄

(3)
n1 ),

(4.20)



120

Let ∆̂
δj
n denote the conditional treatment effect when jth treatment is selected at the

interim, where δj denotes the jth treatment effect for j = 1, 2, or 3. Using the normal

approximation results in Section 4.6.1 and the same arguments of Shun et al. (2008), the

(1− 2α)100% “conditional” confidence interval for δj can be approximated by

∆̂
δj
n −

√
2σ2

Y

n
(µj + σjzα) < δj < ∆̂

δj
n −

√
2σ2

Y

n
(µj − σjzα).

Note that µj and σj can be replaced with the estimates using the interim data as shown

in Shun et al. (2008). The confidence intervals can also be derived based on the exact

distributions in a similar fashion.

Figure 4.19: Comparison of f1(z) and the normal pdf with mean µ1 = 0.42 and σ1 = 0.94
when νX1 − νX2 = 0, νX1 − νX3 = 0, δ1 = 0.1, δ2 = 0.2, δ3 = 0.3, τ = 0.5, n = 50, σY = 1, σX =
1, ρ = 1, ε = 0.
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Chapter 5

Summary, Discussion and Future work

5.1 Summary

In Chapter 3 of this dissertation, we developed the methodology for conducting a non-

inferiority trial of a two-stage winner design with two experimental treatment and one active

control arms. Two scenarios are discussed depending on whether a surrogate endpoint is

used at the interim analysis or not. The methodology is summarized as follows:

1. When a surrogate endpoint is used at the interim analysis, the final test statistic

differ from the test statistic for superiority hypothesis in Shun et al. (2008) by a

constant. We assume the interim and the final endpoints are normally distributed

and the variances for the surrogate and the final endpoints are known and equal.

The exact distribution for the final test statistic is derived and the critical value that

control the size of type I error is studied. Numerical calculation of sample size and

power are summarized and shown in tables and graphs.

Since the final test statistic in Shun et al. can be approximated by normal dis-

tributions, the test statistic for non-inferiority hypothesis can also be approximated

by normal distributions. Sample size estimations based on the exact distribution and

the normal approximation are compared under two scenarios. The first scenario is to

pre-specify the information time τ . The second scenario is to pre-specify the winning

probability p. In both scenarios, the sample size estimates based on the exact distri-

bution and the normal approximation are almost identical. Mathematica programs

are provided in Appendix D for solving the sample size estimates using the normal

approximation.

2. When a surrogate endpoint is not used at the interim analyses, with the same trial
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settings and assumptions, it is shown that the distribution of the final test statistic take

the same form regardless when a surrogate endpoint is used or not. However, under

this scenario, the parameter λ is a function of other parameters, more specifically

λ = 2η(w1 − w2). The critical value that control the size of type I error is studied.

Numerical calculation of sample size and power are summarized and shown in tables

and graphs.

The distribution of the final test statistic can also be approximated by normal

distributions under this scenario. Sample size estimations based on the exact distri-

bution and the normal approximation are compared under two scenarios. The first

scenario is to pre-specify the information time τ . The second scenario is to pre-specify

the winning probability p. In both scenarios, the sample size estimates based on the

exact distribution and the normal approximation are almost identical. Mathematica

programs are provided in Appendix D for solving the sample size estimates using the

normal approximation.

In Chapter 4 of this dissertation, we extended the methodology of Chapter 3 to a non-

inferiority trial with three experimental treatment and one control arms using a two-stage

winner design. The trial setting and assumptions are similar to those in Chapter 3. Su-

periority hypothesis is considered as a special case of non-inferiority hypothesis when non-

inferiority margin ε = 0. The results are also discussed depending on whether a surrogate

endpoint is used at the interim analysis or not. We summarize the methodology as follows:

1. We first study the case when surrogate endpoints is used in the interim selection. The

distribution of the final test statistic is derived for a two-stage winner design with

three experimental treatments and one active control. We assume that the interim

and the final endpoints are normally distributed with known and equal variances. The

tail probability of the test statistic are studied and their related statistical properties

are discussed. Numerical calculation of sample size and power are summarized and

shown in tables and graphs.

2. When the endpoints for the interim and the final analyses are the same, with the same

trial settings and assumptions, the distribution function of the final test statistic is in
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the same form as when a surrogate endpoint is used at interim analysis. The difference

are in the parameters λ(12), and λ(13), more specifically, λ(12) = 2η(w1 − w2), λ(13) =

2η(w1 − w3)). The tail probability of the test statistic are studied and their related

statistical properties are discussed. Numerical calculation of sample size and power

are summarized and shown in tables and graphs.

5.2 Discussion

In Chapter 3, based on the findings in Shun et al. (2008), we extended the methodology

to two-stage winner designs for non-inferiority trials. The motivation of two-stage winner

design in non-inferiority trial is from an example of a clinical trial with two experimental

treatment versus one active control arms. LUCENTIS R© has been approved as an effective

treatment for improving visual acuity for patients with age-related macular degeneration

(AMD) and it has been on the market for other indications. However, the recommended

monthly regimen with invasive eye injection make a big burden for this patient population

as most of patients were the elderly. More recently, investigators are seeking alternative

treatment regimen that will achieve the same efficacy as the approved one but patient do

not need to come in for the monthly injections. Therefore, it is more appropriate to compare

the new dosing regimens with the approved dosing regimen (active control) than with the

placebo directly. Because one needs only to demonstrate the new dosing regimen is no less

effective than the approved regimen, it is preferable to employ the non-inferiority test for

this purpose.

Based on this real example, it came to our mind to develop methodology for conducting

non-inferiority trials. Because the drug have been approved on the market, we did not

consider to design a traditional phase II trials to select one or few promising doses. Recently,

there has been considerable interest in adaptive seamless designs that combine the initial

”selection” phase followed by a hypothesis testing phase. Adaptive seamless designs offer

the flexibility and allows for statistical inference to depend on data from both phases while

maintaining and controlling the overall false positive rate. Among the various choices of

adaptive seamless design, two-stage seamless adaptive design are frequently used due to it’s

simplicity. With the appropriate design and good candidate of surrogate endpoints, we can
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save a lot of time and resources in clinical development.

With the above consideration in mind, we proposed to conduct a two-stage winner design

for non-inferiority trials. The clinical endpoint is assumed to be normally distributed and

one interim selection is planned to select a ”winner” between the two experimental arms. We

assume the interim and final endpoints are normally distributed with known and equal vari-

ances. The hypothesis we are interested in is whether one of the high dose of LUCENTIS R©

with different treatment regimen is not inferior to the approved LUCENTIS R© on the mar-

ket. If we can reject the null hypothesis and prove that one of the experimental treatments

is non-inferior to the approved drug (active control), patients will be benefit from receiving

a less frequent dosing regimen with invasive injections in the eyes. By using a two-stage

winner design, we can save time and resources for conducting a trial.

We first propose a methodology to conduct a non-inferiority trial with two experimental

treatment and one active control arms. The methodology is then extended to a trial with

three experimental treatment and one active control arms and both superiority and non-

inferiority hypotheses are considered. In both methodologies, we discussed two commonly

used scenarios depends on whether a surrogate endpoint is used at the interim analysis or

not. The first scenario is a surrogate endpoint is used at the interim analysis, in other

words, when different endpoints are used at the interim and the final analyses. The second

scenario is when a surrogate endpoint is not used, in other words, same endpoints are used

at the interim and the final analyses. The distribution of the final test statistics take the

same form under these two scenarios, but the underlying definition of the parameters are

different.

In a non-inferiority trial with two experimental treatment and one active control arms,

when surrogate endpoints is used, the distribution of the final test statistic has a constant

shift from the one been studied in Shun et al.(2008). The final test statistic is a mixture

of two density functions. Each of the density function can be approximated by a normal

distribution, respectively. And the final test statistic can be approximated by a mixture of

two normal distributions. We studied the tail probability of the final test statistic γ function

under H0. In order to determine the critical value that control the type I error rate, we

proved two lemmas related to the γ(b;λ,w1, w2, η) function when surrogate endpoint is
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used: 1) γ(b;λ,w1, w2, η) is monotonically increasing with w1 and w2; 2) γ(b;λ,w1, w2, η) is

maximized at λ = w1−w2
2η when ρ > 0. When the same endpoints are used at the interim and

the final analyses, we found that the γ(b;w1, w2, η) function is maximized at the boundary

of w1 and w2. Using these lemmas and theorem, we found the critical value that control

the type I error rate in a non-inferiority trial of a two-stage winner design. It turns out

that this critical value in a non-inferiority trial is the same as that for a superiority trial

and regardless when surrogate endpoint is used or not.

The power and the sample size of the design in association with the parameters τ , ρ, ε

and λ are studied. The power we discussed in this dissertation is the power of rejecting the

null hypothesis, not the probability of selecting the right winner. When a surrogate endpoint

is used, if the treatment effect for the surrogate endpoint is in the opposite direction as the

final endpoint, the power will be smaller. As the non-inferiority margin increases, so is

the power. Compared to τ and ε, ρ plays a small role on the power and the sample size.

When no surrogate endpoint is used, if the two experimental treatments are close, we will

need a larger sample size to achieve the targeted power as compare to the case when the

two experimental treatments are far away. When we perform the interim selection at a

later time, that chances that we will select the right ”winner” is bigger, and therefore, we

will need only smaller sample size to achieved the targeted power as compare to the case

when we perform interim selection early. Again, as the non-inferiority margin increases, the

power increases.

The final test statistics of a two-stage winner design for non-inferiority hypothesis only

differ by a constant with the ones for superiority hypothesis. Since the final test statistic for

superiority hypothesis in Shun et al.(2008) had been proved can be approximated by normal

distributions, the final test statistic for non-inferiority hypothesis can be approximated by

normal distributions as well. Sample size estimation using both the exact distribution

and the normal approximation are compared and we found that the results from the two

methods are almost identical. When we do the sample size estimation using the normal

approximation, it is not a trivial process because it involve iteration process to solve non-

linear equations. With today’s computing power, computer programs to solve the sample

size from the exact distribution is much easier as compare to the normal approximation.
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The second part of this dissertation extent the work in chapter 3 to the non-inferiority

trial with three active treatment arms versus one active control. The trial settings and

the assumptions are the same as the ones with two active treatment arms. Both supe-

riority and non-inferiority hypotheses are considered. The distribution of the final test

statistic for superiority only differ by a constant with the one for non-inferiority hypoth-

esis. We studied the tail probability γ functions. We proved two lemmas related to the

γ(b;λ(12), λ(13), w1, w2, w3, η) function when surrogate endpoint is used: 1) Given b, η, λ(12)

and λ(13), γ(b;λ(12), λ(13), w1, w2, w3, η) is monotonically increasing with w1, w2 and w3; 2)

given b, η, w1, w2 and w3, λ(12) = λ(13) = 0 is a critical point of γ(b;λ(12), λ(13), w1, w2, w3, η).

When the same endpoints are used at the interim and the final analyses, we use numerical

justification to show that given b and η, γ(b;w1, w2, w3, η) is monotonically increase with

respect to w1, w2 and w3. Using these lemmas and property, we found the critical value that

control the type I error rate in a non-inferiority trial of a two-stage winner design. It turns

out that this critical value in a non-inferiority trial is the same as that for a superiority trial

and regardless when surrogate endpoint is used or not.

The power and the sample size of the design in association with the parameters τ , ρ,

ε, λ(12), and λ(13) are studied. When a surrogate endpoint is used, if the treatment effect

for the surrogate endpoint is in the opposite direction as the final endpoint, the power will

be smaller. As the non-inferiority margin increases, so is the power. Compared to τ and

ε, ρ plays a small role on the power and the sample size. Similar findings as the trial with

two experimental treatment and one active control. When no surrogate endpoint is used, if

the two experimental treatments are close, we will need a larger sample size to achieve the

targeted power as compare to the case when the two experimental treatments are far away.

When we perform the interim selection at a later time, that chances that we will select the

right ”winner” is bigger, and therefore, we will need only smaller sample size to achieved

the targeted power as compare to the case when we perform interim selection early. Again,

as the non-inferiority margin increases, the power increases.

The normality assumption for the surrogate or the final endpoints is not critical for the

application of the proposed approach, as long as the interim and the final test statistics

are normally distributed, the methodology can be applied with given correlation η between
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the interim and the final test statistics. The endpoints that we discussed in this disserta-

tion mainly focus on the efficacy measurements. However, proper estimation of the safety

endpoints should also be considered. In addition, the selection of appropriate surrogate

endpoints is not the focus in this dissertation, we only assume the surrogate endpoint and

final endpoint are correlated with a correlation. Monotonicity of the tail probability of the

test statistic is yet to be proved theoretically. Due to the variety of concepts that used

in two-stage winner design and various clinical settings, there are some interesting issues

remain unresolved.

5.3 Future Work

With the above discussion in mind, the following directions are considered as important

potentials in the future.

• Theoretical justification for the monotonicity property of the γ functions in Chapter

4.

• Theoretically prove normal approximation of the distribution of W ∗ in Chapter 4.

• In this dissertation, we only consider the endpoints followed normal distributions. A

future work is to study alternatives, such as binomial or survival outcomes.

• Generalize the designs proposed in this thesis to more than three experimental treat-

ments.

• We only select one winner at the interim analysis, a potential research direction is to

study designs that select more-than-one winners or drop-the-losers.
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Appendix A

Useful formulas and properties for the density function of

the standard normal distribution

Lemma A.1.

∫ c

−∞
φ(t)φ(a+ bt)dt

=

∫ c

−∞

1√
2π
e
− 1

2
[ a2

(1+b2)
]
φ(t
√

1 + b2 +
ab√

1 + b2
)dt,

=
1√

1 + b2
φ(

a√
1 + b2

)Φ(c
√

1 + b2 +
ab√

1 + b2
),

where Φ(.) and φ(.) is the cumulative distribution function (CDF ) and probability density

function (PDF ) of the standard normal distribution.

Proof.

∫ c

−∞
φ(t)φ(a+ bt)dt

=

∫ c

−∞

1√
2π
e−

1
2
t2 1√

2π
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1
2

(a+bt)2
dt
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∫ c
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1√
2π

)2e−
1
2

(t2+a2+2abt+b2t2)dt
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∫ c

−∞
(

1√
2π

)2e−
1
2
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∫ c

−∞
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1√
2π

)2e
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2
(
√

1+b2)2[t2+ 2abt
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+ a2
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]
dt

=

∫ c

−∞
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2π
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2
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√
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−∞
(

1√
2π

)2e
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2
(
√
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=

∫ c

−∞
(

1√
2π

)e
− 1

2
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√

1+b2)2[ a2

(1+b2)2
]
φ(t
√

1 + b2 +
ab√

1 + b2
)dt

=
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2
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(1+b2)
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∫ c

−∞
φ(t
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1 + b2 +
ab√

1 + b2
)dt.
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T = t
√

1 + b2 +
ab√

1 + b2
,
dT

dt
=
√

1 + b2,

Hence,

1√
2π
e
− 1

2
[ a2

(1+b2)
]
∫ c

−∞
φ(t
√

1 + b2 +
ab√

1 + b2
)dt

=
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2π
e
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2
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∫ ab√
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a√
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ab√
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)

Lemma A.2. For any ∆ ≥ 0, let G∆(x) = Φ (x+ ∆) + Φ (x−∆)− 2Φ (x) , then G∆(x) is

an odd function, and for any x ≤ 0.

G∆(x) = Φ (x+ ∆) + Φ (x−∆)− 2Φ (x) ≥ 0

where Φ(.) is the cumulative distribution function of the standard normal distribution.

Proof

G∆(−x) = Φ (−x+ ∆) + Φ (−x−∆)− 2Φ (−x)

=

∫ −x+∆

−x
φ (z) dz +

∫ −x−∆

−x
φ (z) dz

= −
∫ x−∆

x
φ (z) dz −

∫ x+∆

x
φ (z) dz = −G∆(x),
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so G∆(x) is an odd function. Furthermore we have

G∆(x) = Φ (x+ ∆) + Φ (x−∆)− 2Φ (x)

=

∫ x−∆

x
φ (z) dz +

∫ x+∆

x
φ (z) dz

=

∫ x+∆

x
φ (z) dz −

∫ x

x−∆
φ (z) dz

=

∫ x+∆

x
φ (z) dz −

∫ x+∆

x
φ (∆− z) dz

=

∫ x+∆

x
(φ (z)− φ (∆− z)) dz

(∆− z)2

2
=
z2 − 2z∆ + ∆2

2
=
z2

2
− z∆ +

∆2

2
=
z2

2
−∆(z − ∆

2
)

φ (z)− φ (∆− z) =
1√
2π

(
e−

z2

2 − e−
(∆−z)2

2

)
= φ (z) (1− e∆(z−∆

2
)) ≥ 0

for z ≤ ∆
2 . Therefore for x ≤ −∆

2 , x+ ∆ ≤ ∆
2

G∆(x) =

∫ x+∆

x
(φ (z)− φ (∆− z)) dz ≥ 0

and for −∆
2 ≤ x ≤ 0, we have −x ≤ ∆

2 ≤ x+ ∆ ≤ ∆, since

∫ x+∆

−x
(φ (z)− φ (∆− z)) dz =

∫ x+∆

−x
φ (z) dz +

∫ −x
x+∆

φ (y) dy = 0,

by letting y = ∆− z in the above second term, and

G∆(x) =

∫ x+∆

x
(φ (z)− φ (∆− z)) dz

=

∫ −x
x

(φ (z)− φ (∆− z)) dz +

∫ x+∆

−x
(φ (z)− φ (∆− z)) dz

=

∫ −x
x

(φ (z)− φ (∆− z)) dz ≥ 0.

Therefore, for any x ≤ 0, G∆(x) ≥ 0.
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Appendix B

Proofs in Chapter 3

B.1 Proof of Lemma 3.3.1

Proof. For any w1 and w2,

∂

∂w1
γ(b;λ,w1, w2, η) = Φ

λ+ η

(
b− w1 −

√
n

2σ2
Y
ε

)
√

1− η2

φ

(
b− w1 −

√
n

2σ2
Y

ε

)
> 0,

and

∂

∂w2
γ(b;λ,w1, w2, η) = Φ

−λ+ η

(
b− w2 −

√
n

2σ2
Y
ε

)
√

1− η2

φ

(
b− w2 −

√
n

2σ2
Y

ε

)
> 0.

Therefore, given λ and b, γ(b;λ,w1, w2, η) is monotonically increasing with w1 and w2.

B.2 Proof of Lemma 3.3.2

Proof.

∂

∂λ
γ(b;λ,w1, w2, η) =

∫ b−w1−
√

n

2σ2
Y

ε

−∞

1√
1− η2

φ

(
λ+ ηz√

1− η2

)
φ (z) dz

−
∫ b−w2−

√
n

2σ2
Y

ε

−∞

1√
1− η2

φ

(
−λ+ ηz√

1− η2

)
φ (z) dz,

let

a =
λ√

1− η2
, b =

η√
1− η2

,
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√
1 + b2 =

√
1 +

η2

1− η2
=

√
1− η2 + η2

1− η2
=

1√
1− η2

,

a√
1 + b2

=
λ√

1− η2

√
1− η2 = λ

ab√
1 + b2

=
λ√

1− η2

η√
1− η2

√
1− η2 =

λη√
1− η2

,

by Lemma A.1, we have

∫ b−w1−
√

n

2σ2
Y

ε

−∞

1√
1− η2

φ

(
λ+ ηz√

1− η2

)
φ (z) dz

=
1√

1− η2

√
1− η2φ (λ) Φ


(
b− w1 −

√
n

2σ2
Y
ε

)
+ λη√

1− η2

 .
Similarly, let

a =
−λ√
1− η2

, b =
η√

1− η2
,

√
1 + b2 =

√
1 +

η2

1− η2
=

√
1− η2 + η2

1− η2
=

1√
1− η2

,

a√
1 + b2

=
λ√

1− η2

√
1− η2 = −λ

ab√
1 + b2

=
−λ√
1− η2

η√
1− η2

√
1− η2 =

−λη√
1− η2

,

by Lemma A.1, we have

∫ b−w2−
√

n

2σ2
Y

ε

−∞

1√
1− η2

φ

(
−λ+ ηz√

1− η2

)
φ (z) dz

=
1√

1− η2

√
1− η2φ (−λ) Φ


(
b− w2 −

√
n

2σ2
Y
ε

)
− λη√

1− η2

 .
Therefore,

∫ b−w1−
√

n

2σ2
Y

ε

−∞

1√
1− η2

φ

(
λ+ ηz√

1− η2

)
φ (z) dz
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−
∫ b−w2−

√
n

2σ2
Y

ε

−∞

1√
1− η2

φ

(
−λ+ ηz√

1− η2

)
φ (z) dz

= φ (λ) Φ


(
b− w1 −

√
n

2σ2
Y
ε

)
√

1− η2
+

λη√
1− η2



− φ (−λ) Φ


(
b− w2 −

√
n

2σ2
Y
ε

)
√

1− η2
− λη√

1− η2



= φ (λ)

Φ


(
b− w1 −

√
n

2σ2
Y
ε

)
+ λη√

1− η2

− Φ


(
b− w2 −

√
n

2σ2
Y
ε

)
− λη√

1− η2


 .

When ρ > 0, η =
√
τ

2 ρ > 0, we have

(
b− w1 −

√
n

2σ2
Y

ε

)
+ λη >

(
b− w2 −

√
n

2σ2
Y

ε

)
− λη,

2λη > w1 − w2,

λ >
w1 − w2

2η
.

Therefore, for any λ > w1−w2
2η , we have

Φ


(
b− w1 −

√
n

2σ2
Y
ε

)
+ λη√

1− η2

− Φ


(
b− w2 −

√
n

2σ2
Y
ε

)
− λη√

1− η2

 > 0,

and for any λ < w1−w2
2η , we have

Φ


(
b− w1 −

√
n

2σ2
Y
ε

)
+ λη√

1− η2

− Φ


(
b− w2 −

√
n

2σ2
Y
ε

)
− λη√

1− η2

 < 0.

This implies that γ(b;λ,w1, w2, η) is monotonically increasing with λ when λ > w1−w2
2η ,

and monotonically decreasing with λ when λ < w1−w2
2η , hence the maximum of γ(b;λ,w1, w2, η)

occurs at λ = w1−w2
2η , for any given w1, w2 and b when ρ > 0.
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B.3 Proof of Lemma 3.3.3

Proof. For any 0 ≤ η < 1 and 0 ≤ u1 ≤ u2, let ∆ = 2η(u2−u1)√
1−η2

, then ∆ ≥ 0 and by

Lemma A.2, G∆

(
ηz√
1−η2

)
is an odd function of z and G∆

(
ηz√
1−η2

)
≥ 0 for any z ≤ 0.

Therefore

∫ u1

−∞
Φ

(
2η(u2 − u1) + ηz√

1− η2

)
φ (z) dz +

∫ u2

−∞
Φ

(
2η(u1 − u2) + ηz√

1− η2

)
φ (z) dz

− 2

∫ u1

−∞
Φ

(
ηz√

1− η2

)
φ (z) dz

=

∫ u2

u1

Φ

(
ηz√

1− η2
−∆

)
φ (z) dz

+

∫ u1

−∞

(
Φ

(
ηz√

1− η2
+ ∆

)
+ Φ

(
ηz√

1− η2
−∆

)
− 2Φ

(
ηz√

1− η2

))
φ (z) dz

≥
∫ u1

−∞

(
Φ

(
ηz√

1− η2
+ ∆

)
+ Φ

(
ηz√

1− η2
−∆

)
− 2Φ

(
ηz√

1− η2

))
φ (z) dz

=

∫ u1

−∞
G∆

(
ηz√

1− η2

)
φ (z) dz

=

∫ −u1

−∞
G∆

(
ηz√

1− η2

)
φ (z) dz

≥ 0.
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Appendix C

Proofs in Chapter 4

C.1 Proof of Lemma 4.2.1

Proof. From assumptions, (Z
(1)
n , V

(12)
n1 , V

(13)
n1 ) follows the multivariate normal distribution

with mean µ = (w1, λ
(12), λ(13))T and variance

Σ =


1 η η

η 1 1/2

η 1/2 1

 .

Therefore, (V
(12)
n1 , V

(13)
n1 )T |Z(1)

n follows the bivariate normal distribution with the mean

 λ(12)

λ(13)

+

 η

η

(Z(1)
n − w1

)
=

 λ(12) + η
(
Z(1) − w1

)
λ(13) + η

(
Z(1) − w1

)
 ,

and the variance

 1 1/2

1/2 1

−
 η

η

 (η, η) =

 1− η2 1/2− η2

1/2− η2 1− η2.

 ,

i.e.,

 V
(12)
n1

V
(13)
n1

 |Z(1)
n ∼ N


 λ(12) + η

(
Z

(1)
n − w1

)
λ(13) + η

(
Z

(1)
n − w1

)
 ,

 1− η2 1/2− η2

1/2− η2 1− η2


 .
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By symmetry, we have

 V
(21)
n1

V
(23)
n1

 |Z(2)
n ∼ N


 λ(21) + η

(
Z

(2)
n − w2

)
λ(23) + η

(
Z

(2)
n − w2

)
 ,

 1− η2 1/2− η2

1/2− η2 1− η2


 ,

and

 V
(31)
n1

V
(32)
n1

 |Z(3) ∼ N


 λ(31) + η

(
Z

(3)
n − w3

)
λ(32) + η

(
Z

(3)
n − w3

)
 ,

 1− η2 1/2− η2

1/2− η2 1− η2


 ,

where V
(ij)
n1 =

√
n

2σ2
X

(X
(i)
n1
−X(j)

n1
) and λ(ij) =

√
n

2σ2
X

(νXi − νXj ) for i 6= j.

In terms of V
(12)
n1 , V

(13)
n1 , λ(12) and λ(13), we have

 V
(12)
n1

V
(13)
n1

 |Z(1)
n ∼ N


 λ(12) + η

(
Z

(1)
n − w1

)
λ(13) + η

(
Z

(1)
n − w1

)
 ,

 1− η2 1/2− η2

1/2− η2 1− η2




=

 λ(12) + η
(
Z

(1)
n − w1

)
λ(13) + η

(
Z

(1)
n − w1

)
−N

 0

0

 ,

 1− η2 1/2− η2

1/2− η2 1− η2



=

 λ(12) + η
(
Z

(1)
n − w1

)
λ(13) + η

(
Z

(1)
n − w1

)
−

 S

T

 ,

 V
(12)
n1

V
(12)
n1 − V (13)

n1

 |Z(2)
n = −

 V
(21)
n1

V
(23)
n1

 |Z(2)
n

∼ N


 λ(12) − η

(
Z

(2)
n − w2

)
λ(12) − λ(13) − η

(
Z

(2)
n − w2

)
 ,

 1− η2 1/2− η2

1/2− η2 1− η2




=

 λ(12) − η
(
Z

(2)
n − w2

)
λ(12) − λ(13) − η

(
Z

(2)
n − w2

)


+N

 0

0

 ,

 1− η2 1/2− η2

1/2− η2 1− η2


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=

 λ(12) − η
(
Z

(2)
n − w2

)
λ(12) − λ(13) − η

(
Z

(2)
n − w2

)
+

 S

T

 ,

and

 V
(13)
n1

V
(13)
n1 − V (12)

n1

 |Z(3) = −

 V
(31)
n1

V
(32)
n1

 |Z(3)

∼ N


 λ(13) − η

(
Z

(3)
n − w3

)
λ(13) − λ(12) − η

(
Z

(3)
n − w3

)
 ,

 1− η2 1/2− η2

1/2− η2 1− η2




=

 λ(13) − η
(
Z

(3)
n − w3

)
λ(13) − λ(12) − η

(
Z

(3)
n − w3

)


+N

 0

0

 ,

 1− η2 1/2− η2

1/2− η2 1− η2


=

 λ(13) − η
(
Z

(3)
n − w3

)
λ(13) − λ(12) − η

(
Z

(3)
n − w3

)
+

 S

T

 ,

where  S

T

 ∼ N
 0

0

 ,

 1− η2 1/2− η2

1/2− η2 1− η2

 . (C.1.1)

Notice that

 S

T

 only depends on η.

From the above results, we can derive the distribution of the test statistic W as follows:

FW (w) = Pr(W < w)

= Pr

(
Z(1)
n < w, X̄(1)

n1
= max(X̄(1)

n1
, X̄(2)

n1
, X̄(3)

n1
)

)
+ Pr

(
Z(2)
n < w, X̄(2)

n1
= max(X̄(1)

n1
, X̄(2)

n1
, X̄(3)

n1
)

)
+ Pr

(
Z(3)
n < w, X̄(3)

n1
= max(X̄(1)

n1
, X̄(2)

n1
, X̄(3)

n1
)

)
=

∫ w

−∞

[
φ(z − w1)P (V (12)

n1
> 0, V (13)

n1
> 0) +φ(z − w2)P (V (12)

n1
< 0, V (13)

n1
> V (12)

n1
)
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+φ(z − w3)P (V (13)
n1

< 0, V (13)
n1

< V (12)
n1

)
]
dz

=

∫ w

−∞

[
φ(z − w1)P (S < λ(12) + η (z − w1) , T < λ(13) + η (z − w1))

+φ(z − w2)P (S < −λ(12) + η (z − w2) , T < λ(13) − λ(12) + η (z − w2))

+φ(z − w3)P (S < −λ(13) + η (z − w3) , T < λ(12) − λ(13) + η (z − w3))
]
dz

=

∫ w−w1

−∞
φ(z)P (S < λ(12) + ηz, T < λ(13) + ηz)dz

+

∫ w−w2

−∞
φ(z)P (S < −λ(12) + ηz, T < λ(13) − λ(12) + ηz)dz

+

∫ w−w3

−∞
φ(z)P (S < −λ(13) + ηz, T < λ(12) − λ(13) + ηz)dz.

From (C.1.1), we have

S ∼ N(0, 1− η2), T |S ∼ N
(
sρ,
(
1− η2

)
(1− ρ2)

)
.

where ρ =
1
2
−η2

1−η2 , 1− ρ2 = 1− ( 1
2
−η2)

2

(1−η2)2 =
1−2η2+η4− 1

4
+η2−η4

(1−η2)2 =
3
4
−η2

(1−η2)2 . Therefore, for any a

and b,

P (S < a, T < b) =

∫ a

−∞

∫ b

−∞
f(s, t)dtds =

∫ a

−∞
f(s)

∫ b

−∞
f(t|s)dtds

=

∫ a

−∞
φ(

s√
1− η2

)

∫ b

−∞
φ(

t− sρ√
(1− η2) (1− ρ2)

)dtds

=
√

(1− η2) (1− ρ2)

∫ a

−∞
φ(

s√
1− η2

)Φ(
b− sρ√

(1− η2) (1− ρ2)
)ds

=

√
3
4 − η2

1− η2

∫ a

−∞
φ(

s√
1− η2

)Φ(
b− sρ√

3
4
−η2

1−η2

)ds

=

√
(
3

4
− η2)

∫ a√
1−η2

−∞
φ(s′)Φ(

b− s′
√

1− η2
( 1

2
−η2

1−η2

)
√

3
4
−η2

1−η2

)ds′

=

√
(
3

4
− η2)

∫ a√
1−η2

−∞
φ(s)Φ(

b
√

1− η2 − (1
2 − η

2)s√
3
4 − η2

)ds. (C.1.2)
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By (C.1.2), the distribution of W can be further derived as follows:

∫ w−w1

−∞
φ(z)P (S < λ(12) + ηz, T < λ(13) + ηz)dz

+

∫ w−w2

−∞
φ(z)P (S < −λ(12) + ηz, T < λ(13) − λ(12) + ηz)dz

+

∫ w−w3

−∞
φ(z)P (S < −λ(13) + ηz, T < λ(12) − λ(13) + ηz)dz

=

√
3

4
− η2

∫ w−w1

−∞
φ(z)

∫ λ(12)+ηz√
1−η2

−∞
φ(s)Φ(

(
λ(13) + ηz

)√
1− η2 − (1

2 − η
2)s√

3
4 − η2

)dsdz

+

√
3

4
− η2

∫ w−w2

−∞
φ(z)

∫ −λ(12)+ηz√
1−η2

−∞
φ(s)Φ(

(
λ(13) − λ(12) + ηz

)√
1− η2 − (1

2 − η
2)s√

3
4 − η2

)dsdz

+

√
3

4
− η2

∫ w−w3

−∞
φ(z)

∫ −λ(13)+ηz√
1−η2

−∞
φ(s)Φ(

(
λ(12) − λ(13) + ηz

)√
1− η2 − (1

2 − η
2)s√

3
4 − η2

)dsdz.

C.2 Proof of Lemma 4.3.1

Proof.

∂

∂w1
γ(b;λ(12), λ(13), w1, w2, w3)

=

√
(
3

4
− η2)

∫ λ(12)+η(b−w1−
√

n
2σ2
Y

ε)

√
1−η2

−∞
φ(b− w1 −

√
n

2σ2
Y

ε)φ(s)

× Φ(

[
λ(13) + η(b− w1 −

√
n

2σ2
Y
ε)

]√
1− η2 − (1

2 − η
2)s√

3
4 − η2

)ds > 0.

∂

∂w2
γ(b;λ(12), λ(13), w1, w2, w3)

=

√
(
3

4
− η2)

∫ −λ(12)+η(b−w2−
√

n
2σ2
Y

ε)

√
1−η2

−∞
φ(b− w2 −

√
n

2σ2
Y

ε)φ(s)
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× Φ(

[
λ(13) − λ(12) + η(b− w2 −

√
n

2σ2
Y
ε)

]√
1− η2 − (1

2 − η
2)s√

3
4 − η2

)ds > 0.

∂

∂w3
γ(b;λ(12), λ(13), w1, w2, w3)

=

√
(
3

4
− η2)

∫ −λ(13)+η(b−w3−
√

n
2σ2
Y

ε)

√
1−η2

−∞
φ(b− w3 −

√
n

2σ2
Y

ε)φ(s)

× Φ(

[
λ(12) − λ(13) + η(b− w3 −

√
n

2σ2
Y
ε)

]√
1− η2 − (1

2 − η
2)s√

3
4 − η2

)ds > 0.

Given b, λ(12) and λ(13), we know that γ(b;λ(12), λ(13), w1, w2, w3) is monotonically in-

creasing with w1, w2 and w3.

C.3 Proof of Lemma 4.3.2

Proof. By Lemma 4.3.1, given b, λ(12) and λ(13), we know γ(b;λ(12), λ(13), w1, w2, w3) is

monotonically increasing with w1, w2 and w3.

Let w1 = w2 = w3 = 0 in γ(b;λ(12), λ(13), w1, w2, w3) , we have

γ(b;λ(12), λ(13), w1 = w2 = w3 = 0)

= 1−
√

(
3

4
− η2)

∫ b−
√

n

2σ2
Y

ε

−∞
φ(z)

∫ λ(12)+ηz√
1−η2

−∞
φ(s)Φ(

(
λ(13) + ηz

)√
1− η2 − (1

2 − η
2)s√

3
4 − η2

)dsdz

−
√

(
3

4
− η2)

∫ b−
√

n

2σ2
Y

ε

−∞
φ(z)

∫ −λ(12)+ηz√
1−η2

−∞
φ(s)Φ(

(
λ(13) − λ(12) + ηz

)√
1− η2 − (1

2 − η
2)s√

3
4 − η2

)dsdz

−
√

(
3

4
− η2)

∫ b−
√

n

2σ2
Y

ε

−∞
φ(z)

∫ −λ(13)+ηz√
1−η2

−∞
φ(s)Φ(

(
λ(12) − λ(13) + ηz

)√
1− η2 − (1

2 − η
2)s√

3
4 − η2

)dsdz,

by taking the partial derivative with respect to λ(12) in γ when w1 = w2 = w3 = 0, we have

∂

∂λ(12)
γ(b;λ(12), λ(13), w1 = w2 = w3 = 0)
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= −

√
3
4 − η2

1− η2

∫ b−
√

n

2σ2
Y

ε

−∞
φ(z)φ(

λ(12) + ηz√
1− η2

)Φ


(
λ(13) + ηz

)√
1− η2 − (1

2 − η
2)

(
λ(12)+ηz√

1−η2

)
√

3
4 − η2

 dz

+

√
3
4 − η2

1− η2

∫ b−
√

n

2σ2
Y

ε

−∞
φ(z)φ(

−λ(12) + ηz√
1− η2

)

× Φ


(
λ(13) − λ(12) + ηz

)√
1− η2 − (1

2 − η
2)

(
−λ(12)+ηz√

1−η2

)
√

3
4 − η2

 dz

+
√

1− η2

∫ b−
√

n

2σ2
Y

ε

−∞
φ(z)

∫ −λ(12)+ηz√
1−η2

−∞
φ(s)φ

(λ(13) − λ(12) + ηz
)√

1− η2 − (1
2 − η

2)s√
3
4 − η2

 dsdz

−
√

1− η2

∫ b−
√

n

2σ2
Y

ε

−∞
φ(z)

∫ −λ(13)+ηz√
1−η2

−∞
φ(s)φ

(λ(12) − λ(13) + ηz
)√

1− η2 − (1
2 − η

2)s√
3
4 − η2

 dsdz.

When λ(12) = λ(13) = 0,

∂

∂λ(12)
γ(b;λ(12), λ(13), w1 = w2 = w3 = 0)|λ(12)=λ(13)=0

= −

√
3
4 − η2

1− η2

∫ b−
√

n

2σ2
Y

ε

−∞
φ(z)φ(

ηz√
1− η2

)Φ

ηz
√

1− η2 − (1
2 − η

2)

(
ηz√
1−η2

)
√

3
4 − η2

 dz

+

√
3
4 − η2

1− η2

∫ b−
√

n

2σ2
Y

ε

−∞
φ(z)φ(

ηz√
1− η2

)Φ

ηz
√

1− η2 − (1
2 − η

2)

(
ηz√
1−η2

)
√

3
4 − η2

 dz

+
√

1− η2

∫ b−
√

n

2σ2
Y

ε

−∞
φ(z)

∫ ηz√
1−η2

−∞
φ(s)φ

ηz√1− η2 − (1
2 − η

2)s√
3
4 − η2

 dsdz

−
√

1− η2

∫ b−
√

n

2σ2
Y

ε

−∞
φ(z)

∫ ηz√
1−η2

−∞
φ(s)φ

ηz√1− η2 − (1
2 − η

2)s√
3
4 − η2

 dsdz,

let

a =
ηz√
3
4
−η2

(1−η2)

, b = −
1
2 − η

2√
3
4 − η2

.

1 + b2 = 1 +

(
1
2 − η

2
)2

3
4 − η2

=
3
4 − η

2 + 1
4 − η

2 + η4

3
4 − η2

=
η4 − 2η2 + 1

3
4 − η2

=

(
1− η2

)2
3
4 − η2

.
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√
1 + b2 =

(
1− η2

)√
3
4 − η2

.

ab√
1 + b2

=
ηz√
3
4
−η2

(1−η2)

ρ
√

1− η2√
3
4
−η2

(1−η2)

√
3
4 − η2

(1− η2)
= −

(
1− η2

)
3
4 − η2

ηz

√
3
4 − η2

1− η2

(
1
2 − η

2

1− η2

)

= −
ηz
(

1
2 − η

2
)√(

3
4 − η2

)
(1− η2)

a√
1 + b2

=
ηz√
3
4
−η2

(1−η2)

√
3
4 − η2

(1− η2)
=

ηz√
(1− η2) .

by Lemma A.1, we have

∫ ηz√
1−η2

−∞
φ(s)φ(

ηz
√

1− η2 − (1
2 − η

2)s√
3
4 − η2

)ds

=

√
3
4 − η2

(1− η2)
φ(

ηz√
(1− η2)

)Φ

 ηz√
1− η2

(
1− η2

)√
3
4 − η2

−
ηz
(

1
2 − η

2
)√(

3
4 − η2

)
(1− η2)

 .

Therefore,

∂

∂λ(12)
γ(b;λ(12), λ(13), w1 = w2 = w3 = 0)|λ(12)=λ(13)=0

= −

√
3
4 − η2

1− η2

∫ b−
√

n

2σ2
Y

ε

−∞
φ(z)φ(

ηz√
1− η2

)Φ

ηz
√

1− η2 − (1
2 − η

2)

(
ηz√
1−η2

)
√

3
4 − η2

 dz

+

√
3
4 − η2

1− η2

∫ b−
√

n

2σ2
Y

ε

−∞
φ(z)φ(

ηz√
1− η2

)Φ

ηz
√

1− η2 − (1
2 − η

2)

(
ηz√
1−η2

)
√

3
4 − η2

 dz

+

√
3
4 − η2

1− η2

∫ b−
√

n

2σ2
Y

ε

−∞
φ(z)φ(

ηz√
1− η2

)Φ

ηz
√

1− η2 − (1
2 − η

2)

(
ηz√
1−η2

)
√

3
4 − η2

 dz

−

√
3
4 − η2

1− η2

∫ b−
√

n

2σ2
Y

ε

−∞
φ(z)φ(

ηz√
1− η2

)Φ

ηz
√

1− η2 − (1
2 − η

2)

(
ηz√
1−η2

)
√

3
4 − η2

 dz

= 0.
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Similarly, taking the partial derivative with respect to λ(13) in γ when w1 = w2 = w3 = 0,

we have

∂

∂λ(13)
γ(b;λ(12), λ(13), w1 = w2 = w3 = 0)

= −
√

1− η2

∫ b−
√

n

2σ2
Y

ε

−∞
φ(z)

∫ λ(12)+ηz√
1−η2

−∞
φ(s)φ(

(
λ(13) + ηz

)√
1− η2 − (1

2 − η
2)s√

3
4 − η2

)dsdz

−
√

1− η2

∫ b−
√

n

2σ2
Y

ε

−∞
φ(z)

∫ −λ(12)+ηz√
1−η2

−∞
φ(s)φ(

(
λ(13) − λ(12) + ηz

)√
1− η2 − (1

2 − η
2)s√

3
4 − η2

)dsdz

+

√
3
4 − η2

1− η2

∫ b−
√

n

2σ2
Y

ε

−∞
φ(z)φ(

−λ(13) + ηz√
1− η2

)

× Φ


(
λ(12) − λ(13) + ηz

)√
1− η2 − (1

2 − η
2)

(
−λ(13)+ηz√

1−η2

)
√

3
4 − η2

 dz

+
√

1− η2

∫ b−
√

n

2σ2
Y

ε

−∞
φ(z)

∫ −λ(13)+ηz√
1−η2

−∞
φ(s)φ(

(
λ(12) − λ(13) + ηz

)√
1− η2 − (1

2 − η
2)s√

3
4 − η2

)dsdz.

When λ(12) = λ(13) = 0,

∂

∂λ(13)
γ(b;λ(12), λ(13), w1 = w2 = w3 = 0)|λ(12)=λ(13)=0

= −
√

1− η2

∫ b−
√

n

2σ2
Y

ε

−∞
φ(z)

∫ ηz√
1−η2

−∞
φ(s)φ(

ηz
√

1− η2 − (1
2 − η

2)s√
3
4 − η2

)dsdz

−
√

1− η2

∫ b−
√

n

2σ2
Y

ε

−∞
φ(z)

∫ ηz√
1−η2

−∞
φ(s)φ(

ηz
√

1− η2 − (1
2 − η

2)s√
3
4 − η2

)dsdz

+

√
3
4 − η2

1− η2

∫ b−
√

n

2σ2
Y

ε

−∞
φ(z)φ(

ηz√
1− η2

)Φ

ηz
√

1− η2 − (1
2 − η

2)

(
ηz√
1−η2

)
√

3
4 − η2

 dz

+
√

1− η2

∫ b−
√

n

2σ2
Y

ε

−∞
φ(z)

∫ ηz√
1−η2

−∞
φ(s)φ(

ηz
√

1− η2 − (1
2 − η

2)s√
3
4 − η2

)dsdz,
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let

a =
ηz√
3
4
−η2

(1−η2)

, b = −
1
2 − η

2√
3
4 − η2

.

1 + b2 = 1 +

(
1
2 − η

2
)2

3
4 − η2

=
3
4 − η

2 + 1
4 − η

2 + η4

3
4 − η2

=
η4 − 2η2 + 1

3
4 − η2

=

(
1− η2

)2
3
4 − η2

.

√
1 + b2 =

(
1− η2

)√
3
4 − η2

.

ab√
1 + b2

=
ηz√
3
4
−η2

(1−η2)

ρ
√

1− η2√
3
4
−η2

(1−η2)

√
3
4 − η2

(1− η2)
= −

(
1− η2

)
3
4 − η2

ηz

√
3
4 − η2

1− η2

(
1
2 − η

2

1− η2

)

= −
ηz
(

1
2 − η

2
)√(

3
4 − η2

)
(1− η2)

a√
1 + b2

=
ηz√
3
4
−η2

(1−η2)

√
3
4 − η2

(1− η2)
=

ηz√
(1− η2) .

by Lemma A.1, we have

∫ ηz√
1−η2

−∞
φ(s)φ(

ηz
√

1− η2 − (1
2 − η

2)s√
3
4 − η2

)ds

=

√
3
4 − η2

(1− η2)
φ(

ηz√
(1− η2)

)Φ

 ηz√
1− η2

(
1− η2

)√
3
4 − η2

−
ηz
(

1
2 − η

2
)√(

3
4 − η2

)
(1− η2)

 .

Therefore,

∂

∂λ(13)
γ(b;λ(12), λ(13), w1 = w2 = w3 = 0)|λ(12)=λ(13)=0

=−
√

1− η2

∫ b−
√

n

2σ2
Y

ε

−∞
φ(z)

∫ ηz√
1−η2

−∞
φ(s)φ(

ηz
√

1− η2 − (1
2 − η

2)s√
3
4 − η2

)dsdz

−
√

1− η2

∫ b−
√

n

2σ2
Y

ε

−∞
φ(z)

∫ ηz√
1−η2

−∞
φ(s)φ(

ηz
√

1− η2 − (1
2 − η

2)s√
3
4 − η2

)dsdz

+

√
3
4 − η2

1− η2

∫ b−
√

n

2σ2
Y

ε

−∞
φ(z)φ(

ηz√
1− η2

)Φ

ηz
√

1− η2 − (1
2 − η

2)

(
ηz√
1−η2

)
√

3
4 − η2

 dz
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+
√

1− η2

∫ b−
√

n

2σ2
Y

ε

−∞
φ(z)

∫ ηz√
1−η2

−∞
φ(s)φ(

ηz
√

1− η2 − (1
2 − η

2)s√
3
4 − η2

)dsdz

= −
√

1− η2

∫ b−
√

n

2σ2
Y

ε

−∞
φ(z)

∫ ηz√
1−η2

−∞
φ(s)φ(

ηz
√

1− η2 − (1
2 − η

2)s√
3
4 − η2

)dsdz

+
√

1− η2

∫ b−
√

n

2σ2
Y

ε

−∞
φ(z)

∫ ηz√
1−η2

−∞
φ(s)φ(

ηz
√

1− η2 − (1
2 − η

2)s√
3
4 − η2

)dsdz

−

√
3
4 − η2

1− η2

∫ b−
√

n

2σ2
Y

ε

−∞
φ(z)φ(

ηz√
1− η2

)Φ

ηz√1− η2√
3
4 − η2

−
ηz
(

1
2 − η

2
)√(

3
4 − η2

)
(1− η2)

 dz

+

√
3
4 − η2

1− η2

∫ b−
√

n

2σ2
Y

ε

−∞
φ(z)φ(

ηz√
1− η2

)Φ

ηz
√

1− η2 − (1
2 − η

2)

(
ηz√
1−η2

)
√

3
4 − η2

 dz

= 0.

This implies that given b, λ(12) = λ(13) = 0 is the critical point of γ(b;λ(12), λ(13), w1, w2, w3)

when w1 = w2 = w3 = 0. The proof of uniqueness of the critical point is not easy, through

numeric justification, Figure C.1 and C.2 demonstrate that λ(12) = λ(13) = 0 is the unique

critical point under H0.

C.4 Numeric Justification for Property 4.3.3

We use numerical justification to show that given b, γ(b;w1, w2, w3) is monotonically in-

creasing with w1, w2, w3 at α = 0.025, 0.05. Figure C.3 and Figure C.4 show the Pr(W >

b) = 0.025 and the Pr(W > b) = 0.05 versus w2 and w3 by w1 and τ when the interim

and final endpoints are the same. As seen in the figures, under H0, the Pr(W > b) is

monotonically increasing with w1, w2 and w3.
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Figure C.1: Pr(W > b) = 0.025 versus λ(12) and λ(13) when w1 = w2 = w3 = 0 by τ and η
when different endpoints at interim and final analyses.
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Figure C.2: Pr(W > b) = 0.05 versus λ(12) and λ(13) when w1 = w2 = w3 = 0 by τ and η
when different endpoints at interim and final analyses.
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Figure C.3: Pr(W > b) = 0.025 versus w2, and w3 by w1 and τ when same endpoints at
interim and final analyses.
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Figure C.4: Pr(W > b) = 0.05 versus w2, and w3 by w1 and τ when same endpoints at
interim and final analyses .
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Appendix D

Mathematica Program for Solving the Non-linear Equations

for Normal Approximation of the Sample Size

D.1 Pre-determine the Information Time τ when Different Endpoints at

Interim and Final Analyses

NIapproximation[NItau_,

NIrho_,

NIalpha_,

NIsigmaX_,

NIsigmaY_,

NInu12_,

NIbeta_,

NIdelta1_,

NIdelta2_,

NIepsilon_,

NInInitial_,

NIbeta1Initial_,

NIbeta2Initial_

] :=

Module[{NIeta,

NIsqrt2pi,

NI2sigmaX2,

NI2sigmaY2,

NInu12square,

NIzalpha,

NIPvalue,

NIequation0Value,
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NIequation1Value,

NIequation2Value

},

(

NIeta = Sqrt[NItau]/2*NIrho;

NIsqrt2pi = N[Sqrt[2*Pi]];

NI2sigmaX2 = 2*NIsigmaX*NIsigmaX;

NI2sigmaY2 = 2*NIsigmaY*NIsigmaY;

NInu12square = NInu12^2;

NIzalpha = Quantile[NormalDistribution[0, 1], 1-NIalpha];

NIlambda[n_] :=

Sqrt[n * NItau / NI2sigmaX2] * NInu12;

NILambda[n_] :=

NIeta / NIsqrt2pi * Exp[-NIlambda[n]^2/2];

NIp[n_] :=

CDF[NormalDistribution[0, 1], NIlambda[n]];

NImu0 = Sqrt[2/Pi]*NIeta;

NIsigma0 = Sqrt[1 - 2/Pi*NIeta*NIeta];

NImu1[n_] :=

NILambda[n] / NIp[n];

NIsigma1[n_] :=

Sqrt[1 - NIlambda[n]*NIeta*NImu1[n] - NImu1[n]^2];

NImu2[n_] :=

NILambda[n] / (1-NIp[n]);

NIsigma2[n_] :=

Sqrt[1 + NIlambda[n]*NIeta*NImu2[n] - NImu2[n]^2];

NIequation0[n_, beta1_, beta2_] :=

Module[{rv},

(rv = N[NIp[n] * beta1 + (1 - NIp[n]) * beta2 - (1-NIbeta)];

Return[rv]

)

];

NIequation1[n_, beta1_] :=

Module[{rv},
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(rv =

Quantile[NormalDistribution[0, 1], 1-beta1] * NIsigma1[n] +

NIzalpha * NIsigma0 +

NImu0 - NImu1[n] - Sqrt[n/2/NIsigmaY^2] * (NIdelta1 + NIepsilon);

Return[rv]

)

];

NIequation2[n_, beta2_] :=

Module[{rv},

(rv =

Quantile[NormalDistribution[0, 1], 1-beta2] * NIsigma2[n] +

NIzalpha * NIsigma0 +

NImu0 - NImu2[n] - Sqrt[n/2/NIsigmaY^2] * (NIdelta2 + NIepsilon);

Return[rv]

)

];

NIsolution =

N[FindRoot[{NIequation0[nx, beta1x, beta2x],

NIequation1[nx, beta1x],

NIequation2[nx, beta2x]

},

{{nx, NInInitial},

{beta1x, NIbeta1Initial},

{beta2x, NIbeta2Initial}

},

MaxIterations -> 100000

]];

NIequation0Value =

N[NIequation0[nx/.NIsolution, beta1x/.NIsolution, beta2x/.NIsolution]];

NIequation1Value =

N[NIequation1[nx/.NIsolution, beta1x/.NIsolution]];

NIequation2Value =

N[NIequation2[nx/.NIsolution, beta2x/.NIsolution]];

NIPvalue = N[NIp[nx /. NIsolution]];
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Return[Join[{tau -> NItau,

rho -> NIrho,

alpha -> NIalpha,

sigmaX -> NIsigmaX,

sigmaY -> NIsigmaY,

nu12 -> NInu12,

beta -> NIbeta,

delta1 -> NIdelta1,

delta2 -> NIdelta2,

epsilon -> NIepsilon,

e0 -> NIequation0Value,

e1 -> NIequation1Value,

e2 -> NIequation2Value,

p -> NIPvalue,

},

NIsolution

]

]

)

]

D.2 Pre-determine the Winning Probability p when Different Endpoints

at Interim and Final Analyses

NIapproximation[NIp_,

NIrho_,

NIalpha_,

NIsigmaX_,

NIsigmaY_,

NInu12_,

NIbeta_,

NIdelta1_,

NIdelta2_,

NIepsilon_,
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NInInitial_,

NIbeta1Initial_,

NIbeta2Initial_

] :=

Module[{NIzp,

NIn1,

NIlambda,

NIsqrt2pi,

NI2sigmaX2,

NI2sigmaY2,

NInu12square,

NIzalpha,

NIequation0Value,

NIequation1Value,

NIequation2Value

},

(

NIsqrt2pi = N[Sqrt[2*Pi]];

NI2sigmaX2 = 2*NIsigmaX*NIsigmaX;

NI2sigmaY2 = 2*NIsigmaY*NIsigmaY;

NInu12square = NInu12^2;

NIzalpha = Quantile[NormalDistribution[0, 1], 1-NIalpha];

NIzp =

Quantile[NormalDistribution[0, 1], 1-NIp];

NIn1 =

NI2sigmaY2 * NIzp^2 / NInu12square;

NItau[n_] :=

NIn1 / n;

NIeta[n_] := Sqrt[NItau[n]]/2*NIrho;

NIlambda =

Sqrt[NIn1 / NI2sigmaY2] * NInu12;

NILambda[n_] :=

NIeta[n] / NIsqrt2pi * Exp[-NIlambda^2/2];

NImu0[n_] :=
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Sqrt[2/Pi]*NIeta[n];

NIsigma0[n_] :=

Sqrt[1 - 2/Pi*NIeta[n]*NIeta[n]];

NImu1[n_] :=

NILambda[n] / NIp;

NIsigma1[n_] :=

Sqrt[1 - NIlambda*NIeta[n]*NImu1[n] - NImu1[n]^2];

NImu2[n_] :=

NILambda[n] / (1-NIp);

NIsigma2[n_] :=

Sqrt[1 + NIlambda*NIeta[n]*NImu2[n] - NImu2[n]^2];

NIequation0[n_, beta1_, beta2_] :=

Module[{rv},

(rv = N[NIp * beta1 + (1 - NIp) * beta2 - (1-NIbeta)];

Return[rv]

)

];

NIequation1[n_, beta1_] :=

Module[{rv},

(rv =

Quantile[NormalDistribution[0, 1], 1-beta1] * NIsigma1[n] +

NIzalpha * NIsigma0[n] +

NImu0[n] - NImu1[n] - Sqrt[n/2/NIsigmaY^2] * (NIdelta1 + NIepsilon);

Return[rv]

)

];

NIequation2[n_, beta2_] :=

Module[{rv},

(rv =

Quantile[NormalDistribution[0, 1], 1-beta2] * NIsigma2[n] +

NIzalpha * NIsigma0[n] +

NImu0[n] - NImu2[n] - Sqrt[n/2/NIsigmaY^2] * (NIdelta2 + NIepsilon);

Return[rv]

)
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];

NIsolution =

N[FindRoot[{NIequation0[nx, beta1x, beta2x],

NIequation1[nx, beta1x],

NIequation2[nx, beta2x]

},

{{nx, NInInitial},

{beta1x, NIbeta1Initial},

{beta2x, NIbeta2Initial}

},

MaxIterations -> 1000000

]];

NIequation0Value =

N[NIequation0[nx/.NIsolution, beta1x/.NIsolution, beta2x/.NIsolution]];

NIequation1Value =

N[NIequation1[nx/.NIsolution, beta1x/.NIsolution]];

NIequation2Value =

N[NIequation2[nx/.NIsolution, beta2x/.NIsolution]];

NItauValue = N[NItau[nx /. NIsolution]];

Return[Join[{p -> NIp,

rho -> NIrho,

alpha -> NIalpha,

sigmaX -> NIsigmaX,

sigmaY -> NIsigmaY,

nu12 -> NInu12,

beta -> NIbeta,

delta1 -> NIdelta1,

delta2 -> NIdelta2,

epsilon -> NIepsilon,

e0 -> NIequation0Value,

e1 -> NIequation1Value,

e2 -> NIequation2Value,

tau -> NItauValue,

zp -> NIzp,
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n1 -> NIn1,

lambda -> NIlambda

},

NIsolution

]

]

)

]

D.3 Pre-determine the Information Time τ when Same Endpoints at In-

terim and Final Analyses

NIapproximation[NItau_,

NIrho_,

NIalpha_,

NIsigmaY_,

NIbeta_,

NIdelta1_,

NIdelta2_,

NIepsilon_,

NInInitial_,

NIbeta1Initial_,

NIbeta2Initial_

] :=

Module[{NIeta,

NIsqrt2pi,

NI2sigmaY2,

NIzalpha,

NIPvalue,

NIequation0Value,

NIequation1Value,

NIequation2Value

},

(
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NIeta = Sqrt[NItau]/2*NIrho;

NIsqrt2pi = N[Sqrt[2*Pi]];

NI2sigmaY2 = 2*NIsigmaY*NIsigmaY;

NIzalpha = Quantile[NormalDistribution[0, 1], 1-NIalpha];

NIlambda[n_] :=

Sqrt[n * NItau / NI2sigmaY2] * (NIdelta1-NIdelta2);

NILambda[n_] :=

NIeta / NIsqrt2pi * Exp[-NIlambda[n]^2/2];

NIp[n_] :=

CDF[NormalDistribution[0, 1], NIlambda[n]];

NImu0 = Sqrt[2/Pi]*NIeta;

NIsigma0 = Sqrt[1 - 2/Pi*NIeta*NIeta];

NImu1[n_] :=

NILambda[n] / NIp[n];

NIsigma1[n_] :=

Sqrt[1 - NIlambda[n]*NIeta*NImu1[n] - NImu1[n]^2];

NImu2[n_] :=

NILambda[n] / (1-NIp[n]);

NIsigma2[n_] :=

Sqrt[1 + NIlambda[n]*NIeta*NImu2[n] - NImu2[n]^2];

NIequation0[n_, beta1_, beta2_] :=

Module[{rv},

(rv = N[NIp[n] * beta1 + (1 - NIp[n]) * beta2 - (1-NIbeta)];

Return[rv]

)

];

NIequation1[n_, beta1_] :=

Module[{rv},

(rv =

Quantile[NormalDistribution[0, 1], 1-beta1] * NIsigma1[n] +

NIzalpha * NIsigma0 +

NImu0 - NImu1[n] - Sqrt[n/2/NIsigmaY^2] * (NIdelta1 + NIepsilon);

(*Print["NIequation1.rv=", rv];*)

Return[rv]
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)

];

NIequation2[n_, beta2_] :=

Module[{rv},

(rv =

Quantile[NormalDistribution[0, 1], 1-beta2] * NIsigma2[n] +

NIzalpha * NIsigma0 +

NImu0 - NImu2[n] - Sqrt[n/2/NIsigmaY^2] * (NIdelta2 + NIepsilon);

(*Print["NIequation2.rv=", rv];*)

Return[rv]

)

];

NIsolution =

N[FindRoot[{NIequation0[nx, beta1x, beta2x],

NIequation1[nx, beta1x],

NIequation2[nx, beta2x]

},

{{nx, NInInitial},

{beta1x, NIbeta1Initial},

{beta2x, NIbeta2Initial}

},

MaxIterations -> 100000

]];

NIequation0Value =

N[NIequation0[nx/.NIsolution, beta1x/.NIsolution, beta2x/.NIsolution]];

NIequation1Value =

N[NIequation1[nx/.NIsolution, beta1x/.NIsolution]];

NIequation2Value =

N[NIequation2[nx/.NIsolution, beta2x/.NIsolution]];

NIPvalue = N[NIp[nx /. NIsolution]];

Return[Join[{tau -> NItau,

rho -> NIrho,

alpha -> NIalpha,

sigmaY -> NIsigmaY,
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beta -> NIbeta,

delta1 -> NIdelta1,

delta2 -> NIdelta2,

epsilon -> NIepsilon,

e0 -> NIequation0Value,

e1 -> NIequation1Value,

e2 -> NIequation2Value,

p -> NIPvalue,

},

NIsolution

]

]

)

]

D.4 Pre-determine the Winning Probability p when Same Endpoints at

Interim and Final Analyses

NIapproximation[NIp_,

NIrho_,

NIalpha_,

NIsigmaY_,

NIbeta_,

NIdelta1_,

NIdelta2_,

NIepsilon_,

NInInitial_,

NIbeta1Initial_,

NIbeta2Initial_

] :=

Module[{NIzp,

NIn1,

NIlambda,

NIsqrt2pi,
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NI2sigmaY2,

NIzalpha,

NIequation0Value,

NIequation1Value,

NIequation2Value

},

(

NIsqrt2pi = N[Sqrt[2*Pi]];

NI2sigmaY2 = 2*NIsigmaY*NIsigmaY;

NIzalpha = Quantile[NormalDistribution[0, 1], 1-NIalpha];

NIzp =

Quantile[NormalDistribution[0, 1], 1-NIp];

NIn1 =

NI2sigmaY2 * NIzp^2 / (NIdelta1-NIdelta2)^2;

NItau[n_] :=

NIn1 / n;

NIeta[n_] := Sqrt[NItau[n]]/2*NIrho;

NIlambda =

Sqrt[NIn1 / NI2sigmaY2] * (NIdelta1-NIdelta2);

NILambda[n_] :=

NIeta[n] / NIsqrt2pi * Exp[-NIlambda^2/2];

NImu0[n_] :=

Sqrt[2/Pi]*NIeta[n];

NIsigma0[n_] :=

Sqrt[1 - 2/Pi*NIeta[n]*NIeta[n]];

NImu1[n_] :=

NILambda[n] / NIp;

NIsigma1[n_] :=

Sqrt[1 - NIlambda*NIeta[n]*NImu1[n] - NImu1[n]^2];

NImu2[n_] :=

NILambda[n] / (1-NIp);

NIsigma2[n_] :=

Sqrt[1 + NIlambda*NIeta[n]*NImu2[n] - NImu2[n]^2];

NIequation0[n_, beta1_, beta2_] :=
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Module[{rv},

(rv = N[NIp * beta1 + (1 - NIp) * beta2 - (1-NIbeta)];

Return[rv]

)

];

NIequation1[n_, beta1_] :=

Module[{rv},

(rv =

Quantile[NormalDistribution[0, 1], 1-beta1] * NIsigma1[n] +

NIzalpha * NIsigma0[n] +

NImu0[n] - NImu1[n] - Sqrt[n/2/NIsigmaY^2] * (NIdelta1 + NIepsilon);

Return[rv]

)

];

NIequation2[n_, beta2_] :=

Module[{rv},

(rv =

Quantile[NormalDistribution[0, 1], 1-beta2] * NIsigma2[n] +

NIzalpha * NIsigma0[n] +

NImu0[n] - NImu2[n] - Sqrt[n/2/NIsigmaY^2] * (NIdelta2 + NIepsilon);

Return[rv]

)

];

NIsolution =

N[FindRoot[{NIequation0[nx, beta1x, beta2x],

NIequation1[nx, beta1x],

NIequation2[nx, beta2x]

},

{{nx, NInInitial},

{beta1x, NIbeta1Initial},

{beta2x, NIbeta2Initial}

},

MaxIterations -> 1000000

]];
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NIequation0Value =

N[NIequation0[nx/.NIsolution, beta1x/.NIsolution, beta2x/.NIsolution]];

NIequation1Value =

N[NIequation1[nx/.NIsolution, beta1x/.NIsolution]];

NIequation2Value =

N[NIequation2[nx/.NIsolution, beta2x/.NIsolution]];

NItauValue = N[NItau[nx /. NIsolution]];

Return[Join[{p -> NIp,

rho -> NIrho,

alpha -> NIalpha,

sigmaY -> NIsigmaY,

beta -> NIbeta,

delta1 -> NIdelta1,

delta2 -> NIdelta2,

epsilon -> NIepsilon,

e0 -> NIequation0Value,

e1 -> NIequation1Value,

e2 -> NIequation2Value,

tau -> NItauValue,

zp -> NIzp,

n1 -> NIn1,

lambda -> NIlambda

},

NIsolution

]

]

)

]
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Appendix E

R Program for determine the critical value, sample size and

power for the test statistic

#=====================================================================

#Find the Critical-value for non-inferiority test (surrogate endpoints

#used)-for two-stage winner design with two experimental treatments and

#an active control. Function findCutOffw12_eta_cstar is the function

#to determine the critical value for a two-stage winner design with

#one interim treatment selection, input parameters are:

#cstarBegin, cstarEnd(range to search the critical value), alpha

#(type I error), and eta(sqrt(tau)/2*rho).

#=======================================================================

gamma_w1w2_eta_cstar <- function(cstar,eta) {

#----------------------------------------------------------------------

sOneEta2 <- sqrt(1-eta^2)

k<-eta/sOneEta2

#----------------------------------------------------------------------

term1 <- integrate(function(z1e) {

d1 <- dnorm(z1e)

d3 <- pnorm(k*z1e)

rvTerm1Function <- d1*d3

return(rvTerm1Function)

}

, -Inf, cstar)$value

#---------------------------------------------------------------------

return(1-2*term1)

#---------------------------------------------------------------------

}
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findCutOffw12_eta_cstar<- function(cstarBegin, cstarEnd, alpha,eta)

{

return(uniroot(function(cstar) { return(alpha -

gamma_w1w2_eta_cstar (cstar,eta) )},

c(cstarBegin, cstarEnd))$root)

}

#=======================================================================

#Tail probability of the test statistic(surrogate endpoints are used)-

#for two-stage winner design with two experimental treatments and an

#active control nu12=nu1-nu2 is the unknown treatment effect difference

#between the two experimental treatments at the interim look

#delta1 and delta2 are the target treatment effect at the final analysis

#Need to find the cstar using the function "findCutOffw12_eta_cstar" with

#given eta

#======================================================================

gamma_w1w2 <- function(cstar, n, tau, rho, nu12, delta1,delta2,sigmaX,

sigmaY,epsilon) {

#---------------------------------------------------------------------

n1<-n*tau

eta <- sqrt(tau)/2*rho

lambda <- sqrt(n1/2/sigmaX^2)*(nu12)

sOneEta2 <- sqrt(1-eta^2)

k0 <- lambda / sOneEta2

k <- eta / sOneEta2

w1<-sqrt(n/2/sigmaY^2)*delta1

w2<-sqrt(n/2/sigmaY^2)*delta2

const<-sqrt(n/2/sigmaY^2)*epsilon

#----------------------------------------------------------------------

term1 <- integrate(function(z1e) {

d1 <- dnorm(z1e)

d3 <- pnorm(k0 + k*z1e)

rvTerm1Function <- d1*d3

return(rvTerm1Function)

}
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, -Inf, cstar-w1-const)$value

#-----------------------------------------------------------------------

term2 <- integrate(function(z1e) {

d1 <- dnorm(z1e)

d3 <- pnorm(-k0 + k*z1e)

rvTerm2Function <- d1*d3

return(rvTerm2Function)

}, -Inf, cstar-w2-const)$value

#-----------------------------------------------------------------------

return(1-term1-term2)

#-----------------------------------------------------------------------

}

#=========================================================================

#Sample size estimation(surrogate endpoints are used)-

#for two-stage winner design with two experimental treatments and an

#active control .nu12=nu1-nu2 is the unknown treatment effect difference

#between the two experimental treatments at the interim look

#delta1 and delta2 are the target treatment effect at the final analysis

#cstar need to determined using the function "findCutOffw12_eta_cstar"

#=========================================================================

find_sample_size_two_arm <- function(nBegin, nEnd, power,cstar, tau, rho,

nu12,delta1,delta2,sigmaX,sigmaY,epsilon) {

return(uniroot(function(n) { return(power - gamma_w1w2(cstar, n, tau,

rho, nu12,delta1,delta2,sigmaX,sigmaY,epsilon))},

c(nBegin, nEnd))$root)

}

#=========================================================================

#Find the Critical-value for non-inferiority test (surrogate endpoints

#are used)-

#for two-stage winner design with three experimental treatments and an

#active control

#=========================================================================

library(mvtnorm)

PP <- function(b, lambda12 ,lambda13,w1, w2, w3, eta) {
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#-----------------------------------------------------------------------

sigma2 <- matrix(c(1-eta^2,.5-eta^2,.5-eta^2,1-eta^2),nrow=2)

cc <- 0*c(1,1)

P1<-function(z) {

sapply(z, function(x) { dnorm(x)*pmvnorm(lower=-Inf,

upper=c(lambda12+eta*(x),lambda13+eta*(x)),

mean=cc, sigma=sigma2 )})}

P2<-function(z) {

sapply(z, function(x) { dnorm(x)*pmvnorm(lower=-Inf,

upper=c(-lambda12+eta*(x),lambda13-lambda12+eta*(x)),

mean=cc, sigma=sigma2 )})}

P3<-function(z) {

sapply(z, function(x) { dnorm(x)*pmvnorm(lower=-Inf,

upper=c(-lambda13+eta*(x),lambda12-lambda13+eta*(x)),

mean=cc, sigma=sigma2 )})}

Int.P1 <- integrate(P1, -Inf, b-w1)$value

Int.P2 <- integrate(P2, -Inf, b-w2)$value

Int.P3 <- integrate(P3, -Inf, b-w3)$value

return(1-Int.P1-Int.P2-Int.P3)

#--------------------------------------------------------------------

}

#======================================================================

#find the critical value c, when X NEQ Y

#=========================================================================

findCutOff <- function(rBegin, rEnd, alpha,eta, lambda12=0,

lambda13=0, w1=0, w2=0, w3=0 ) {

return(uniroot(function(b) { return(alpha - PP(b,lambda12,

lambda13,w1,w2,w3,eta) )},

c(rBegin, rEnd))$root)

}
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# =====================================================================

#Power and Sample size computation

# =====================================================================

Power_X_NE_Y <- function(b, nu12 ,nu13,delta1, delta2, delta3,

tau,n,sigmaY,sigmaX,rho) {

#---------------------------------------------------------------------

eta<-(sqrt(tau)/2)*rho

n1<-n*tau

w1<-sqrt(n/2/sigmaY^2)*delta1

w2<-sqrt(n/2/sigmaY^2)*delta2

w3<-sqrt(n/2/sigmaY^2)*delta3

lambda12<-sqrt(n1/2/sigmaX^2)*nu12

lambda13<-sqrt(n1/2/sigmaX^2)*nu13

sigma2 <- matrix(c(1-eta^2,.5-eta^2,.5-eta^2,1-eta^2),nrow=2)

cc <- 0*c(1,1)

P1<-function(z) {

sapply(z, function(x) { dnorm(x)*pmvnorm(lower=-Inf,

upper=c(lambda12+eta*(x),lambda13+eta*(x)),

mean=cc, sigma=sigma2 )})}

P2<-function(z) {

sapply(z, function(x) { dnorm(x)*pmvnorm(lower=-Inf,

upper=c(-lambda12+eta*(x),lambda13-lambda12+eta*(x)),

mean=cc, sigma=sigma2 )})}

P3<-function(z) {

sapply(z, function(x) { dnorm(x)*pmvnorm(lower=-Inf,

upper=c(-lambda13+eta*(x),lambda12-lambda13+eta*(x)),

mean=cc, sigma=sigma2 )})}

Int.P1 <- integrate(P1, -Inf, b-w1)$value

Int.P2 <- integrate(P2, -Inf, b-w2)$value

Int.P3 <- integrate(P3, -Inf, b-w3)$value
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#cat("Int.P1=", Int.P1, "\n")

#cat("Int.P2=", Int.P2, "\n")

#cat("Int.P3=", Int.P3, "\n")

rv<-1-Int.P1-Int.P2-Int.P3

#cat("rv=", rv, "\n")

return(rv)

#--------------------------------------------------------------------

}

# =====================================================================

#find the sample size

# =====================================================================

find_sample_size <- function(nBegin, nEnd, power,b, nu12 ,nu13,delta1,

delta2, delta3, tau,sigmaY,sigmaX,rho) {

return(uniroot(function(n) { return(power - Power_X_NE_Y(b, nu12 ,

nu13,delta1, delta2, delta3, tau,n,sigmaY,sigmaX,rho))},

c(nBegin, nEnd))$root)

}

# =====================================================================

#Find the Critical-value for non-inferiority test (Same endpoints at

#interim and final analyses)

#for two-stage winner design with two experimental treatments and an active

#control

# =========================================================================

gamma_w1w2_tau_cstar <- function(cstar,tau) {

#----------------------------------------------------------------------------

eta<-sqrt(tau)/2

sOneEta2 <- sqrt(1-eta^2)

k<-eta/sOneEta2

#----------------------------------------------------------------------------

term1 <- integrate(function(z1e) {
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d1 <- dnorm(z1e)

d3 <- pnorm(k*z1e)

rvTerm1Function <- d1*d3

return(rvTerm1Function)

}

, -Inf, cstar)$value

#----------------------------------------------------------------------------

return(1-2*term1)

#----------------------------------------------------------------------------

}

gamma_w1w2_tau_cstar_cut<- function(cstarBegin, cstarEnd, alpha,tau) {

return(uniroot(function(cstar) { return(alpha - gamma_w1w2_tau_cstar

(cstar,tau) )},

c(cstarBegin, cstarEnd))$root)

}

#----------------------------------------------------------------------------

power_x_eq_y_two_arm <- function(cstar, n, tau, delta1,delta2,sigmaY,epsilon) {

#----------------------------------------------------------------------------

eta <- sqrt(tau)/2

w1<-sqrt(n/2/sigmaY^2)*delta1

w2<-sqrt(n/2/sigmaY^2)*delta2

lambda <- sqrt(tau)*(w1-w2)

sOneEta2 <- sqrt(1-eta^2)

k0 <- lambda / sOneEta2

k <- eta / sOneEta2

const<-sqrt(n/2/sigmaY^2)*epsilon

#----------------------------------------------------------------------------

term1 <- integrate(function(z1e) {

d1 <- dnorm(z1e)

d3 <- pnorm(k0 + k*z1e)

rvTerm1Function <- d1*d3

return(rvTerm1Function)

}
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, -Inf, cstar-w1-const)$value

#----------------------------------------------------------------------------

term2 <- integrate(function(z1e) {

d1 <- dnorm(z1e)

d3 <- pnorm(-k0 + k*z1e)

rvTerm2Function <- d1*d3

return(rvTerm2Function)

}, -Inf, cstar-w2-const)$value

#----------------------------------------------------------------------------

return(1-term1-term2)

#----------------------------------------------------------------------------

}

#----------------------------------------------------------------------------

#find sample size

#----------------------------------------------------------------------------

find_sample_size_two_arm_x_eqY <- function(nBegin, nEnd, power,cstar, tau, delta1,

delta2,sigmaY,epsilon) {

return(uniroot(function(n) { return(power - power_x_eq_y_two_arm(cstar, n, tau,

delta1,delta2,sigmaY,epsilon))},

c(nBegin, nEnd))$root)

}

#----------------------------------------------------------------------------

#for two-stage winner design with three experimental treatments and an active

# control.

#Find the Critical-value for non-inferiority test

#----------------------------------------------------------------------------

library(mvtnorm)

PP_X_EQ_Y <- function(b, w1, w2, w3, tau) {

#----------------------------------------------------------------------------

lambda12 <- sqrt(tau)*(w1-w2)

lambda13 <- sqrt(tau)*(w1-w3)

#----------------------------------------------------------------------------

eta <- sqrt(tau)/2
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sigma2 <- matrix(c(1-eta^2,.5-eta^2,.5-eta^2,1-eta^2),nrow=2)

cc <- 0*c(1,1)

P1<-function(z) {

sapply(z, function(x) { dnorm(x)*pmvnorm(lower=-Inf,upper=c(lambda12

+eta*(x),lambda13+eta*(x)),

mean=cc, sigma=sigma2 )})}

P2<-function(z) {

sapply(z, function(x) { dnorm(x)*pmvnorm(lower=-Inf,upper=c(-lambda12

+eta*(x),lambda13-lambda12+eta*(x)),

mean=cc, sigma=sigma2 )})}

P3<-function(z) {

sapply(z, function(x) { dnorm(x)*pmvnorm(lower=-Inf,upper=c(-lambda13

+eta*(x),lambda12-lambda13+eta*(x)),

mean=cc, sigma=sigma2 )})}

Int.P1 <- integrate(P1, -Inf, b-w1)$value

Int.P2 <- integrate(P2, -Inf, b-w2)$value

Int.P3 <- integrate(P3, -Inf, b-w3)$value

return(1-Int.P1-Int.P2-Int.P3)

#----------------------------------------------------------------------------

}

#----------------------------------------------------------------------------

#----------------------------------------------------------------------------

findCutOffb <- function(bBegin, bEnd, alpha,tau, w1=0, w2=0, w3=0 ) {

return(uniroot(function(b) { return(alpha - PP_X_EQ_Y (b,w1, w2, w3,tau) )},

c(bBegin, bEnd))$root)

}

# =========================================================================

#power and sample size

# =========================================================================

library(mvtnorm)

PP_X_EQ_Y_eta_sample_epsilon <- function(b, n, sigmaY, delta1,delta2,delta3,
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tau,rho=1, epsilon) {

#----------------------------------------------------------------------------

eta<-(sqrt(tau)/2)*rho

w1<-sqrt(n/2/sigmaY^2)*delta1

w2<-sqrt(n/2/sigmaY^2)*delta2

w3<-sqrt(n/2/sigmaY^2)*delta3

lambda12 <- 2*eta*(w1-w2)

lambda13 <- 2*eta*(w1-w3)

const<-sqrt(n/2/sigmaY^2)*epsilon

#----------------------------------------------------------------------------

sigma2 <- matrix(c(1-eta^2,.5-eta^2,.5-eta^2,1-eta^2),nrow=2)

cc <- 0*c(1,1)

P1<-function(z) {

sapply(z, function(x) { dnorm(x)*pmvnorm(lower=-Inf,upper=c(lambda12+eta*(x),

lambda13+eta*(x)),

mean=cc, sigma=sigma2 )})}

P2<-function(z) {

sapply(z, function(x) { dnorm(x)*pmvnorm(lower=-Inf,upper=c(-lambda12+eta*(x),

lambda13-lambda12+eta*(x)),

mean=cc, sigma=sigma2 )})}

P3<-function(z) {

sapply(z, function(x) { dnorm(x)*pmvnorm(lower=-Inf,upper=c(-lambda13+eta*(x),

lambda12-lambda13+eta*(x)),

mean=cc, sigma=sigma2 )})}

Int.P1 <- integrate(P1, -Inf, b-w1-const)$value

Int.P2 <- integrate(P2, -Inf, b-w2-const)$value

Int.P3 <- integrate(P3, -Inf, b-w3-const)$value

#cat("term1=", Int.P1, "\n")

#cat("term2=", Int.P2, "\n")

#cat("term3=", Int.P3, "\n")

rv <- 1-Int.P1-Int.P2-Int.P3

#cat("delta1=", delta1, "\n")
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#cat("delta2=", delta2, "\n")

#cat("delta3=", delta3, "\n")

#cat("rv =", rv, "\n")

return(rv)

#----------------------------------------------------------------------------

}

find_sample_size_x_eq_y_epsilon <- function(nBegin, nEnd, power,b, sigmaY, delta1,

delta2,delta3, tau,rho=1, epsilon) {

return(uniroot(function(n) { return(power - PP_X_EQ_Y_eta_sample_epsilon(b, n,

sigmaY, delta1,delta2,delta3, tau,rho=1, epsilon))},

c(nBegin, nEnd))$root)

}
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