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ABSTRACT OF THE DISSERTATION

Optimal upper bound for the infinity norm of

eigenvectors of random matrices

by Ke Wang

Dissertation Director: Professor Van Vu

Let Mn be a random Hermitian (or symmetric) matrix whose upper diagonal and

diagonal entries are independent random variables with mean zero and variance one. It

is well known that the empirical spectral distribution (ESD) converges in probability

to the semicircle law supported on [−2, 2]. In this thesis we study the local convergence

of ESD to the semicircle law. One main result is that if the entries of Mn are bounded,

then the semicircle law holds on intervals of scale log n/n. As a consequence, we obtain

the delocalization result for the eigenvectors, i.e., the upper bound for the infinity

norm of unit eigenvectors corresponding to eigenvalues in the bulk of spectrum, is

O(
√

log n/n). The bound is the same as the infinity norm of a vector chosen uniformly

on the unit sphere in Rn. We also study the local version of Marchenko-Pastur law for

random covariance matrices and obtain the optimal upper bound for the infinity norm

of singular vectors. This is joint work with V. Vu.

In the last chapter, we discuss the delocalization properties for the adjacency ma-

trices of Erdős-Rényi random graph. This is part of some earlier results joint with L.

Tran and V. Vu.
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Terminology

Asymptotic notation is used under the assumption that n→∞. For functions f and g
of parameter n, we use the following notation as n→∞:

• f = O(g) if |f |/|g| is bounded from above;

• f = o(g) if f/g → 0;

• f = ω(g) if |f |/|g| → ∞, or equivalently, g = o(f);

• f = Ω(g) if g = O(f);

• f = Θ(g) if f = O(g) and g = O(f).

The expectation of a random variable X is denoted by E(X) and Var(X) denotes its
variance.

We use 1A for the characteristic function of a set A and |A| for the its cardinality.
For a vector x = (x1, . . . , xn) ∈ Cn, the 2-norm is

‖x‖2 =

√√√√ n∑
i=1

|xi|2

and the infinity norm is
‖x‖∞ = max

i
|xi|.

For an n× n matrix M = (Mij)1≤i,j≤n, we denote the trace

trace(M) =
n∑
i=1

Mii,

the spectral norm
‖M‖2 = sup

x∈Cn,‖x‖2=1
|Mx|,

and the Frobenius norm

‖M‖F =

√√√√ n∑
i,j=1

|Mij |2.
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Chapter 1

Preliminaries

1.1 Random matrices

Random matrices was introduced by Wishart [72] in 1928 in mathematical statistics

and starts to gain more attention after Wigner [70] used them as a prominent tool in

studying level spacing distributions of heavy nuclei in a complex nuclear system in the

fifties. A series of beautiful work have been established by Wigner, Mehta [47] and

Dyson [23, 24, 25, 22, 26] shortly after. Since then the subject of random matrix theory

has been developing deeper and more far reaching, not only because it is connected to

systems such as nuclear physics, quantum chaos [14], zeros of Riemann ζ functions (see

[13] and the reference therein) and etc but also finds many applications in areas as varied

as multivariate statistics and component analysis [42, 43], wireless communication [68]

and numerical analysis [27].

A major topic in random matrix theory is the universality conjecture, which as-

serts under certain conditions on the entries, the local-scale distribution of eigenvalues

of random matrices obeys the same asymptotic laws regardless of the distribution of

entries.

The celebrated Wigner’s semicircle law [71] is a universal result in the sense that

the eigenvalue distribution of Hermitian matrices with iid entries is independent of

the underlying distribution of the entries. The goal is to study the limiting spectral

behavior of random matrices as the matrix size tends to infinity. Consider the empirical

spectral distribution (ESD) function of an n×n Hermitian matrix Wn, which is a one-

dimensional function

FWn(x) =
1

n
|{1 ≤ j ≤ n : λj(W ) ≤ x}|.
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Theorem 1 (Wigner’s semicircle law, [71]). Let Mn = (ξij)1≤i,j≤n be an n×n random

symmetric matrix whose entries satisfy the conditions:

• The distribution law for each ξij is symmetric;

• The entries ξij with i ≤ j are independent;

• The variance of each ξij is 1;

• For every k ≥ 2, there is a uniform bound Ck on the kth moment of each ξij.

Then the ESD of Wn = 1√
n
Mn converges in probability to the semicircle law with density

function 1
2π

√
4− x2 that is supported on [−2, 2].

Other work regarding the universality of spectral properties includes those regarding

the edge spectral distributions for a large class of random matrices, see [19], [55, 57, 50],

[49] and [41] for instance. There are also universality type of results for the random

covariance matrices (will be defined in Chapter 3), for example, [11], [56] and [7].

More recently, major breakthroughs on Wigner matrices have been made by Erdős,

Schlein, Yau, Yin [29, 30, 31, 28] and Tao, Vu [66, 64]. The conclusion, roughly speak-

ing, asserts that the general local spectral statistics (say the largest eigenvalue, the

spectral gap etc) are universal, i.e. it follows the statistics of the corresponding Gaus-

sian ensembles, depending on the symmetry type of the matrix. The methods are also

developed to handle covariance matrices [62, 32, 51, 69].

In particular, the local semicircle law lies in the heart of understanding the individual

eigenvalue position and deriving the universality results. Our results refine the previous

ones obtained in the references mentioned above, and the proof strategies are adapted

from those.

1.2 Some concentration inequalities

Concentration inequalities estimate the probability that a random variable deviates

from some value (usually its expectation) and play an important role in the random

matrix theory. The most basic example is the law of large numbers, which states
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that under mild condition, the sum of independent random variables are around the

expectation with large probability. In the following, we collect a few concentration

inequalities that are used in this paper or frequently used in related references.

1.2.1 Chernoff bound

Chernoff bound gives exponentially decreasing bounds on tail distribution for the sum

of iid bounded random variables.

Theorem 2 (Theorem 2.3, [17]). Let X1, . . . , Xn be iid random variables with E(Xi) =

0 and Var(Xi) = σ2. Assume |Xi| ≤ 1. Let X =
∑n

i=1Xi, then

P(|X| ≥ εσ) ≤ 2e−ε
2/4,

for any 0 ≤ ε ≤ 2σ.

A more generalized version is the following

Theorem 3 (Theorem 2.10 and Theorem 2.13, [17]). Let X1, . . . , Xn be independent

random variables. And let X =
∑n

i=1Xi.

• If Xi ≤ E(Xi) + ai +M for 1 ≤ i ≤ n, then one has the upper tail

P(X ≥ E(X) + λ) ≤ e
− λ2

2(Var(X)+
∑n
i=1

a2
i
+Mλ/3) .

• If Xi ≥ E(Xi)− ai −M for 1 ≤ i ≤ n, then one has the lower tail

P(X ≤ E(X)− λ) ≤ e
− λ2

2(Var(X)+
∑n
i=1

a2
i
+Mλ/3) .

1.2.2 Azuma’s inequality

If the random variables Xi are not jointly independent, one may refer to the Azuma’s

inequality if {Xi} is a c-Lipschitz martingale introduced in Chapter 2, [17].

A martingale is a sequence of random variables {X1, X2, X3, . . .} that satisfies

E(|Xi|) ≤ ∞ and the conditional expectation

E(Xn+1|X1, . . . , Xn) = Xn.
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For a vector of positive entries c = (c1, . . . , cn), a martingale is said to be c-Lipschitz

if

|Xi −Xi−1| ≤ ci,

for 1 ≤ i ≤ n.

Theorem 4 (Theorem 2.19, [17]). If a martingale {X1, X2, X3, . . . , Xn} is c-Lipschitz

for c = (c1, . . . , cn). Let X =
∑n

i=1Xi, then

P(|X −E(X)| ≥ λ) ≤ 2e
− λ2

2
∑n
i=1

c2
i .

In particular, for independent random variables Xi, one has the following from

Azuma’s inequality.

Theorem 5 (Theorem 2.20, [17]). Let X1, . . . , Xn be independent random variables

that satisfy

|Xi −E(Xi)| ≤ ci,

for 1 ≤ i ≤ n. Let X =
∑n

i=1Xi. Then

P(|X −E(X)| > λ) ≤ 2e
− λ2

2
∑n
i=1

c2
i .

1.2.3 Talagrand’s inequality

Let Ω = Ω1 × . . .× Ωn be a product space equipped with product probability measure

µ = µ1 × . . . × µn. For any vector w = (w1, . . . , wn) with non-negative entries, the

weighted Hamming distance between two points x, y ∈ Ω is defined as

dw(x, y) =

n∑
i=1

wi1{xi 6=yi}.

For any subset A ⊂ Ω, the distances are defined as

dw(x,A) = inf
y∈A

dw(x, y)

and

D(x,A) = sup
w∈W

dw(x,A),

where

W := {w = (w1, . . . , wn)|wi ≥ 0, ‖wi‖ ≤ 1}.
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Talagrand investigated the concentration of measure phenomena in product space:

for any measurable set A ⊂ Ω with µ(A) > 1/2 (say), almost all points are concentrated

whin a small neighborhood of A.

Theorem 6 ([60]). For any subset A ⊂ Ω, one has

µ({x ∈ Ω|D(x,A) ≥ t}) ≤ e−t
2/4

µ(A)
,

for any t > 0.

Talagrand’s inequality turns out to be rather powerful in combinatorial optimiza-

tions and many other areas. See [60], [46] and [58] for more examples. One striking

consequence is the following version for independent uniformly bounded random vari-

ables.

Theorem 7 (Talagrand’s inequality,[60]). Let D be the unit disk {z ∈ C, |z| ≤ 1}. For

every product probability µ supported on a dilate K ·Dn of the unit disk for some K > 0,

every convex 1-Lipschitz function F : Cn → R and every t ≥ 0,

µ(|F −M(F )| ≥ t) ≤ 4 exp(−t2/16K2),

where M(F ) denotes the median of F .

One important application of Talagrand’s inequality in random matrix theory is a

result by Guionnet and Zeitouni in [39]. Consider a random Hermitian matrix Wn with

independent entries wij with support in a compact region S, say |wij | ≤ K. Let f be

a real convex L-Lipschitz function and define

Z :=
n∑
i=1

f(λi),

where λi’s are the eigenvalues of 1√
n
Wn. We are going to view Z as the function of the

variables wij .

The next concentration inequality is an extension of Theorem 1.1 in [39] (see also

Theorem F.5 [63]).

Lemma 8. Let Wn, f, Z be as above. Then there is a constant c > 0 such that for any

T > 0

P(|Z −E(Z)| ≥ T ) ≤ 4 exp(−c T 2

K2L2
).
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1.2.4 Hanson-Wright inequality

The Hanson-Wright inequality [40] controls the quadratic forms in random variables

and appears to be quite useful in studying random matrices. A random variable X

with mean λ is said to be sub-gaussian if there exists constants α, γ > 0 such that

P(|X − λ| ≥ t) ≤ αe−γt2 . (1.1)

For random variables with heavier tails than the gaussian, like the exponential

distribution, we can define sub-exponential random variable X with mean λ if there

exists constants α, γ > 0 such that

P(|X − λ| ≥ t) ≤ αe−γt. (1.2)

A random variable X is sub-gaussian if and only if X2 is sub-exponential.

Theorem 9 (Hanson-Wright inequality). If A = (aij) ∈ Rn×n is symmetric and x =

(x1, . . . , xn) ∈ Rn is a random vector with xi independent with mean zero, variance

one and sub-gaussian with constants α, γ as in (1.1). Let B = (|aij |), then there exist

constants C,C ′ > 0 such that

P(|xTAx− trace(A)| ≥ t) ≤ Ce−min{C′t2/‖A‖2F ,C
′t/‖B‖2} (1.3)

for any t > 0.

In Hanson and Wright’s paper [40], the random variables are assumed to be sym-

metric. Later, Wright [73] extends the result to non-symmetric random variables. We

record a proof for the sake of completeness.

Proof. First, we can assume that aii = 0 for every i. Otherwise, if aii 6= 0 for some i,

consider the diagonal matrix D = diag(a11, . . . , ann) and the matrix A1 = A−D. Thus

xTAx− trace(A) = xTA1x+

n∑
i=1

aii(x
2
i − 1).

Since xi are sub-gaussian random variables, x2i − 1 are independent mean-zero sub-

exponential random variables. By Bernstein’s inequality, there exists constant C1 de-

pending on α, γ such that

P(|
n∑
i=1

aii(x
2
i − 1)| > t) ≤ 2 exp

(
−C1 min(

t2∑
i a

2
ii

,
t

maxi |aii|
)

)
.
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On the other hand, ‖A‖2F ≥
∑

i a
2
ii and ‖B‖2 ≥ maxi |aii|. Notice also that ‖A‖F ≥

‖A1‖F and ‖B‖2 ≥ ‖B1‖2 where B1 = B − diag(|a11|, . . . , |ann|). Thus it is enough to

show that (1.3) holds for the matrix A1, a matrix with zero diagonal entries.

Now, under our assumption, E(xTAx) = trace(A) = 0. Let us first consider the

case that xi’s have symmetric distribution. By Markov’s inequality, for λ > 0, we have

P(xTAx > t) ≤ e−λtE(expλxTAx).

Let y = (y1, . . . , yn)T be a vector of independent standard normal random variables.

Assume y and x are independent. The idea is to show there exists a constant C1 that

depends only on α, γ as in (1.1) such that

E[exp(λxTAx)] ≤ E[exp(C1λy
TBy)]. (1.4)

This can be proved by observing

E[exp(λxTAx)] =
∞∑
k=0

λkE(xTAx)k

k!
=
∞∑
k=0

λkE(
∑n

i,j=1 aijxixj)
k

k!
.

Since the xi’s have symmetric distribution, in the expansion of E(
∑n

i,j=1 aijxixj)
k, only

the terms contain (the product of) E(x2si ) for some integer s ≥ 1 are nonzero. We can

use a change of variables to bound

E(x2si ) ≤
∫ ∞
0

x2sαe−γx
2
dx =

α
√
π

2
√
γ

1

(2γ)s

∫ ∞
−∞

1√
2π
y2se−y

2/2dy ≤ C2s
1 E(y2si ),

for some C1 depending on α and γ. By triangle inequality, (1.4) holds.

Since the matrix B is symmetric, it can be decomposed as B = UTΛU where U is

an n × n orthogonal matrix and Λ is diagonal matrix with µ1, . . . , µn, the eigenvalues

of B in the diagonal entries. And

n∑
i=1

aii =

n∑
i=1

µi = 0,

n∑
i=1

µ2i = trace(B)2 = ‖A‖2F .

Let z = Uy = (z1, . . . , zn). Then zi’s are iid standard normal. And yTBy =

zTΛz =
∑n

i=1 µiz
2
i =

∑n
i=1 µi(z

2
i − 1), where z2i − 1 are independent mean-zero χ2-

random variables of freedom one. By direct computation, there exists a constant C
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such that E[exp(C1λµi(z
2
i − 1))] ≤ exp(Cλ2µ2i ) for sufficiently small λ. Thus

E[exp(λxTAx)] ≤ E[exp(C1λy
TBy)] =

n∏
i=1

E[exp(C1λµi(z
2
i − 1))]

≤
n∏
i=1

exp(Cλ2µ2i ) = exp(Cλ2‖A‖2F ).

Therefore,

P(xTAx > t) ≤ e−λtE(expλxTAx) ≤ e−λt+Cλ2‖A‖2F .

Choose λ0 = min( tC′

‖A‖2F
, C′

‖B‖2 ) for some constant C ′ such that

e−λ0t+Cλ
2
0‖A‖2F ≤ e−λ0t/2.

This completes the proof for the case that the random variables have symmetric distri-

bution.

For the general case when the distributions of xi’s are not necessarily symmetric.

We use a coupling technique. Take independent random vector copies xk = (xk1, . . . , x
k
n)

for k = 1, 2, 3, 4 that have the same distribution as x. Then X = (xi−x1i )ni=1 is a vector

of independent symmetric, sub-gaussian random variables. Thus (1.3) holds for random

vector X. And

xTAx+ x1
T
Ax1 = XTAX + 2xTAx1. (1.5)

For the term xTAx1,

P(xTAx1 > t) ≤ e−λtE[exp(λxTAx1)].

Let Ex(·) denote the expectation conditioning on x. By Jensen’s inequality,

E[exp(−λxTAxk)] ≥ exp(E[−λxTAxk]) = 1,

thus

E[exp(λxTAx1)] = E
(
Ex[exp(λxTAx1)]

)
≤ E

(
Ex[exp(λxTA(x1 − x2)]

)
= E[exp(λxTA(x1 − x2))] = E

(
Ex1,x2 [exp(λxTA(x1 − x2))]

)
≤ E

(
Ex1,x2 [exp(λ(x− x3)TA(x1 − x2))]

)
= E[exp(λ(x− x3)TA(x1 − x2))]

≤ E[exp(CλyTBy′)],
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for some sufficiently large C depending on α, γ. The y, y′ in the last inequality are

independent vectors of independent standard normal random variables. And the last

inequality follows similar to the proof of (1.4) by a Taylor expansion since now the

vectors x− x3, x1 − x2 are symmetric and sub-gaussian.

Factor B = UTΛU . Then yTBy′ = (Uy)TΛUy′ := zTΛz′ =
∑n

i=1 µiziz
′
i, where z, z′

are independent random vectors and the entries are standard normal. By direct com-

putation or use Bernstein’s inequality (notice that ziz
′
i are mean-zero sub-exponential),

we can prove that

P(xTAx1 > t) ≤ e−C1 min{t2/‖A‖2F ,t/‖B‖2}.

Therefore, from (1.5),

P(xTAx > t) =

√
P(xTAx > t, x1TAx1 > t) ≤

√
P(xTAx+ x1TAx1 > 2t)

=
√

P(XTAX + 2xTAx1 > 2t) ≤ P(XTAX > t)1/2P(2xTAx1 > t)1/2

≤ C exp

(
−C ′min(

t2

‖A‖2F
,

t

‖B‖2
)

)
,

(1.6)

for some constants C and C ′.

For the upper bound P(xTAx < −t) = P(xT (−A)x > t), apply (1.6) with −A.
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Chapter 2

Random Hermitian matrices

2.1 Semicircle law

A Wigner matrix is a Hermitian (or symmetric in the real case) matrix that the upper

diagonal and diagonal entries are independent random variables. In this context, we

consider the Wigner matrix Mn = (ζij)1≤i,j≤n has the upper diagonal entries as iid

complex (or real) random variables with zero mean and unit variance, and the diagonal

entries as iid real random variables with bounded mean and variance.

A corner stone of random matrix theory is the semicircle law that dates back to

Wigner [71] in the fifties. Denote by ρsc the semi-circle density function with support

on [−2, 2],

ρsc(x) :=


1
2π

√
4− x2, |x| ≤ 2

0, |x| > 2.

(2.1)

Theorem 10 (Semicircular law). Let Mn be a Wigner matrix and let Wn = 1√
n
Mn.

Then for any real number x,

lim
n→∞

1

n
|{1 ≤ i ≤ n : λi(Wn) ≤ x}| =

∫ x

−2
ρsc(y) dy

in the sense of probability (and also in the almost sure sense, if the Mn are all minors of

the same infinite Wigner Hermitian matrix), where we use |I| to denote the cardinality

of a finite set I.

The semicircle law can be proved by using both the moment method and the Stieltjes

transform method (see [1, 8, 61] for details). We will mention the frameworks of both

method in the next subsections.
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Figure 2.1: Plotted above is the distribution of the (normalized) eigenvalues of a random
symmetric Bernoulli matrix with matrix size n = 5000. The red curve is the semicircle
law with density function ρsc(x).

Remark 11. Wigner [71] proved this theorem for special ensembles, i.e. for 1 ≤ i ≤

j ≤ n, ζij are real iid random variables that have symmetric distributions, variance

one and E(|ζij |2m) ≤ Bm for all m ≥ 1. Many extensions have been developed later.

For example, a more general version was proved by Pastur [48], where ζij(i ≤ j) are

assumed to be iid real random variables that have mean zero, variance one and satisfy

Linderberg condition. Thus it is sufficient to assume the 2 + ε (ε > 0) moment of ζij

are bounded. On the other hand, the semicircle law was first proved in the sense of

convergence in probability and later improved to the sense of almost sure convergence

by Arnold [2, 3] (see [1, 8] for a detailed discussion).

Remark 12. One consequence of Theorem 10 is that we expect most of the eigenvalues

of Wn to lie in the interval (−2 + ε, 2 + ε) for ε > 0 small; we shall thus refer to this

region as the bulk of the spectrum. And the region (−2− ε,−2 + ε) ∪ (2− ε, 2 + ε) is

referred as the edge of the spectrum.
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2.1.1 Moment method

The most direct proof of semicircle law is the moment method given in Wigner’s original

proof. It is also called the trace method as it invokes the trace formula: for a positive

integer k, the k-th moment of the ESD FWn(x) is given by

mk =

∫
xkFWn(dx) =

1

n
trace(W k

n ).

The starting point of moment method is the moment convergence theorem.

Theorem 13 (Moment convergence theorem). Let X is a random variable that all the

moments exist and assume the probability distribution of X is completely determined

by its moments. If

lim
n→∞

E(Xk
n) = E(Xk),

then the sequence {Xn} converges to X in distribution.

Specially, if the distribution of X is supported on a bounded interval, then the

convergence of moments is equivalent to the convergence in distribution.

For the semi-circle distribution, the moments are given by

Lemma 14. For odd moments k = 2m+ 1,

m2m+1,sc =

∫ 2

−2
x2k+1ρsc(x)dx = 0.

For even moments k = 2m,

m2m,sc =

∫ 2

−2
xkρsc(x)dx =

1

m+ 1

(
2m

m

)
.

Proof. For k = 2m+ 1, by symmetry,∫ 2

−2
xkρsc(x)dx = 0.

For k = 2m, recall that Beta function

B(x, y) = 2

∫ π/2

0
sin2x−1 θ cos2y−1 θdθ =

Γ(x)Γ(y)

Γ(x+ y)
.
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Thus

m2m,sc =

∫ 2

−2
xkρsc(x)dx =

1

π

∫ 2

0
xk
√

4− x2dx

=
2k+2

π

∫ π/2

0
sink θcos2 θdθ

=
2k+2

π

1

2
B(

k + 1

2
,
3

2
) =

2k+1

π

Γ(k+1
2 )Γ(32)

Γ(k+4
2 )

=
4m2

π

(2m)!

4mm!

(
√
π)2

2

1

(m+ 1)!
=

1

m+ 1

(
2m

m

)
.

Notice that from the trace formula,

E(mk) =
1

n
E(trace(Wn

k)) =
1

n

∑
1≤i1,...,ik≤n

Eζi1i2ζi2i3 · · · ζiki1 .

The problem of showing the convergence of moments is reduced to a combinatorial

counting problem. And the semicircle law can be proved by showing that

Lemma 15. For k = 2m+ 1,

1

n
E(trace(Wn

k)) = O(
1√
n

);

For k = 2m,

1

n
E(trace(Wn

k)) =
1

m+ 1

(
2m

m

)
+O(

1

n
).

And for each fixed k,

Var(
1

n
trace(W k

n )) = O(
1

n2
).

We are going to illustrate the calculation of Lemma 15 in section 4.5 for discrete

ensembles, similar to Wigner’s original proof. It is remarkable that the proof can be

applied, with essentially no modifications, for a more general class of matrices.

2.1.2 Stieltjes transform method

The Stieltjes transform sn(z) of a Hermitian matrix Wn is defined for any complex

number z not in the support of FWn(x),

sn(z) =

∫
R

1

x− z dF
Wn(x) =

1

n

n∑
i=1

1

λi(Wn)− z .
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The Stieltjes transform can be thought of as the generating function of the moments

from the observation: for z large enough,

sn(z) =
1

n
trace(Wn − z)−1 = − 1

n

n∑
k=0

trace(W k
n )

zk+1
= − 1

n

n∑
k=0

mk

zk+1
.

Since (Wn − z)−1 is called the resolvent of matrix Wn, this method is also known as

the resolvent method.

By a contour integral, the Stieltjes transform s(z) of the semi-circle distribution is

given by

s(z) :=

∫
R

ρsc(x)

x− z dx =
−z +

√
z2 − 4

2
,

where
√
z2 − 4 is the branch of square root with a branch cut in [−2, 2] and asymptot-

ically equals z at infinity.

The semicircle law follows from the criterion of convergence:

Proposition 16 (Section 2.4, [61]). Let µn be a sequence of probability measure defined

on the real line and µ be a deterministic probability measure. Then µn converges to µ

in probability if and only if sµn(z) converges to sµ(z) in probability for every z in the

upper half plane.

A more careful analysis of the Stieltjes transform sn(z) gives more accurate and

powerful control on the ESD of Wn. We can going to use the Stieltjes transform method

frequently in this paper to prove the local version of semicircle law, which subsumes

the semicircle law as a special case.

2.2 Local semicircle law and the new result

From the semicircle law, we can expect the number of eigenvalues ofWn = 1√
n
Mn on any

fixed interval I ⊂ (−2, 2) to be of order n|I|. It is natural to ask how many eigenvalues

of Wn lie on the interval I if the length |I| shrinks with n? The eigenvalue density on

the smaller scale still follows the semicircle distribution and this is usually called the

local semicircle law (LSCL). This problem lies in the heart of proving universality of

the local eigenvalue statistics, see [30, 29, 32, 28] and [66, 64].
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The leading idea is that we expect that the semi-circle law holds for small intervals

(or at small scale). Intuitively, we would like to have with high probability that

|NI − n
∫
I
ρsc(x) dx| ≤ δn|I|,

for any interval I and fixed δ > 0, where NI denotes the number of eigenvalues of Wn

on the interval I. Of course, the reader can easily see that I cannot be arbitrarily short

(since NI is an integer). Formally, we say that the LSCL holds at a scale f(n) if with

probability 1− o(1)

|NI − n
∫
I
ρsc(x) dx| ≤ δn|I|,

for any interval I in the bulk of length ω(f(n)) and any fixed δ > 0. Furthermore, we

say that f(n) is a threshold scale if the LSCL holds at scale f(n) but does not holds

at scale g(n) for any function g(n) = o(f(n)). (The reader may notice some similarity

between this definition and the definition of threshold functions for random graphs.)

We would like to raise the following problem.

Problem 17. Determine the threshold scale (if exists).

A recent result [10] shows that the maximum gap between two consecutive (bulk)

eigenvalues of GUE is of order Θ(
√

log n/n). Thus, if we partition the bulk into intervals

of length α
√

log n/n for some small α, one of these intervals contains at most one

eigenvalue with high probability. Thus, giving the universality phenomenon, one has

reasons to expect that the LSCL do not hold below the
√

log n/n scale, at least for a

large class of random matrices.

Question 18. Under which condition (for the atom variables of Mn) the local semi-

circle law holds for Mn at scale log n/n ?

There have been a number of partial results concerning this question. In [5], Bai et.

al. proved that the rate of convergence to the SCL is O(n−1/2) (under a sixth moment

assumption). Recently, the rate of convergence is improved to be O(n−1 logb n) for

some constant b > 3 by Götze and Tikhomirov [38], assuming the entries of Mn have

a uniform sub-exponential decay. In [30], Erdős, Schlein and Yau proved the LSCL for
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scale n−2/3 (under some technical assumption on the entries). At two later papers, they

strengthened this result significantly. In particular, in [31], they proved scale log2 n/n

for random matrices with subgaussian entries (this is a consequence of [31, Theorem

3.1]). In [66], Tao and Vu showed that if the entries are bounded by K (which may

depend on n), then the LSCL holds with scale K2 log20 n/n. The constant 20 was

reduced to 2 in a recent paper [67] by Tran, Vu and Wang.

The first main result of this paper is the following.

Theorem 19. For any constants ε, δ, C1 > 0 there is a constant C2 > 0 such that the

following holds. Let Mn be a random matrix with entries bounded by K where K may

depend on n. Then with probability at least 1− n−C1, we have

|NI − n
∫
I
ρsc(x) dx| ≤ δn

∫
I
ρsc(x) dx,

for all interval I ⊂ (−2 + ε, 2− ε) of length at least C2K
2 log n/n.

This provides an affirmative answer for Question 18 in the case when K = O(1)

(the matrix has bounded entries).

Theorem 20. Let Mn be a random matrix with bounded entries. Then the LSCL holds

for Mn at scale log n/n.

By Theorem 19, we now know (at least for random matrices with bounded entries)

that the right scale is log n/n. We can now formulate a sharp threshold question. Let

us fix δ and δ′. Then for each n, let Cn be the infimum of those C such that with

probability 1− δ′

|NI − n
∫
I
ρsc(x) dx| ≤ δn|I|

holds for any I, |I| ≥ C log n/n. Is it true that lim
n→∞

Cn exist? If so, can we compute

its value as a function of δ and δ′?

2.2.1 Proof of Theorem 19

Let sn(z) be the Stieltjes transform of Wn = 1√
n
Mn and s(z) be that of the semicircle

distribution. It is well known that if sn(z) is close to s(z), then the spectral distribution
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of Mn is close to the semi-circle distribution (see for instance [8, Chapter 11], [30]). In

order to show that sn(z) is close to s(z), the key observation that the equation

s(z) = − 1

z + s(z)
(2.2)

which defines the Stieltjes transform is stable. This observation was used by Bai et. al.

to prove the n−1/2 rate of convergence and also served as the starting point of Erdős

et. al. approach [30].

We are going to follow this approach whose first step is the following lemma. The

proof is a minor modification of the proof of Lemma 64 in [66]. See also the proof of

Corollary 4.2 from [30].

Lemma 21. Let 1/n < η < 1/10 and L, ε, δ > 0. For any constant C1 > 0, there exists

a constant C > 0 such that if one has the bound

|sn(z)− s(z)| ≤ δ

with probability at least 1 − n−C uniformly for all z with |Re(z)| ≤ L and Im(z) ≥ η,

then for any interval I in [−L+ ε, L− ε] with |I| ≥ max(2η, ηδ log 1
δ ), one has

|NI − n
∫
I
ρsc(x) dx| ≤ δn|I|

with probability at least 1− n−C1.

We are going to show (by taking L = 4, ε = 1)

|sn(z)− s(z)| ≤ δ (2.3)

with probability at least 1−n−C (C sufficiently large depending on C1, say C = C1+104

would suffice) for all z in the region {z ∈ C : |Re(z)| ≤ 4, Im(z) ≥ η}, where

η =
K2C2 log n

nδ6
.

In fact, it suffices to prove (2.3) for any fixed z in the related region. Indeed, notice

that sn(z) is Lipschitz continuous with the Lipschitz constant O(n2) in the region of

interest and equation (2.3) follows by a standard ε-net argument. See also the proof of

Theorem 1.1 in [29].
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By Schur’s complement, sn(z) can be written as

sn(z) =
1

n

n∑
k=1

1

− ζkk√
n
− z − Yk

(2.4)

where

Yk = a∗k(Wn,k − zI)−1ak,

and Wn,k is the matrix Wn with the kth row and column removed, and ak is the kth

row of Wn with the kth element removed.

The entries of ak are independent of each other and of Wn,k, and have mean zero

and variance 1/n. By linearity of expectation we have

E(Yk|Wn,k) =
1

n
Trace(Wn,k − zI)−1 = (1− 1

n
)sn,k(z)

where

sn,k(z) =
1

n− 1

n−1∑
i=1

1

λi(Wn,k)− z
is the Stieltjes transform of Wn,k. From the Cauchy interlacing law, we can get

|sn(z)− (1− 1

n
)sn,k(z)| = O(

1

n

∫
R

1

|x− z|2 dx) = O(
1

nη
) = o(δ2)

and thus

E(Yk|Wn,k) = sn(z) + o(δ2).

On the other hand, we have the following concentration of measure result.

Proposition 22. For 1 ≤ k ≤ n, |Yk −E(Yk|Wn,k)| ≤ δ2/
√
C holds with probability at

least 1− 20n−C uniformly for all z with |Re(z)| ≤ 4 and Im(z) ≥ η.

The proof of this Proposition in [30, 29, 31] relies on Hanson-Wright inequality. In

[66], Tao and Vu introduced a new argument based on the so-called projection lemma,

which is a cosequence of Talagrand inequality.

We will try to follow this argument here. However, the projection lemma is not

sufficiently strong for our purpose. The key new ingredient is a generalization called

weighted projection lemma. With this lemma, we are able to obtain better estimate on

Yk (which is a sum of many terms) by breaking its terms into the real and imaginery

part (the earlier argument in [66] only considered absolute values of the terms). The

details now follow.
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Lemma 23 (Weighted projection lemma). Let X = (ξ1, . . . , ξn) ∈ Cn be a random

vector whose entries are independent with mean 0 and variance 1. Assume for each i,

|ξi| ≤ K almost surely for some K, where K ≥ supi |ξi|4 + 1. Let H be a subspace of

dimension d with an orthonormal basis {u1, . . . , ud}. Assume c1, . . . , cd are constants

that 0 < cj ≤ 1 for every j. Then

P

|
√√√√ d∑

j=1

cj |u∗jX|2 −

√√√√ d∑
j=1

cj | ≥ t

 ≤ 10 exp(−t2/20K2).

In particular,

|
d∑
j=1

cj(|u∗jX|2 − 1)| ≤ 2t

√√√√ d∑
j=1

cj + t2 (2.5)

with probability at least 1− 10 exp(−t2/20K2).

The proof will be deferred to section 2.2.2.

First, we record a lemma that provides a crude upper bound on the number of

eigenvalues in short intervals. The proof is a minor modification of existing arguments

as Theorem 5.1 in [31] or Proposition 66 in [66].

Lemma 24. For any constant C1 > 0, there exists a constant C2 > 0 (C2 depending

on C1, say C2 > 10K(C1 + 10) suffices) such that for any interval I ⊂ (−4, 4) with

|I| ≥ C2K2 logn
n ,

NI � n|I|

with probability at least 1− n−C1.

Proof. By union bounds, it suffices to show for |I| = C2K2 logn
n . Suppose the interval

I = (x, x+ η) ⊂ (−4, 4) with η = |I|. Let z = x+
√
−1η.

NI =
n∑
i=1

1{λi(Wn)∈I} ≤ 2
∑

λi(Wn)∈I

η2

(λi(Wn)− x)2 + η2

≤ 2

n∑
i=1

η2

(λi(Wn)− x)2 + η2
= 2nηIm

1

n

n∑
i=1

1

λi(Wn)− x−
√
−1η

= 2nηImsn(z)

Recall the expression of sn(z) in (2.4),

sn(z) =
1

n

n∑
k=1

1

− ζkk√
n
− z − a∗k(Wn,k − zI)−1ak
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where Wn,k is the matrix Wn with the kth row and column removed and ak is the kth

row of Wn with the kth element removed. Thus ak = 1√
n
Xk where the entries of Xk

are independent random variable with mean 0 and variance 1. Applying the inequality

|Im1
z | ≤ 1/|Imz|, we have

NI ≤ 2η
n∑
k=1

1

η + Ima∗k(Wn,k − zI)−1ak
.

On the other hand,

a∗k(Wn,k − zI)−1ak =
n−1∑
j=1

|a∗kuj(Wn,k)|2
λj(Wn,k)− x−

√
−1η

,

and

Ima∗k(Wn,k − zI)−1ak =
η

n

n−1∑
j=1

|X∗kuj(Wn,k)|2
η2 + (λj(Wn,k)− x)2

≥ 1

2nη

∑
λj(Wn,k)∈I

|X∗kuj(Wn,k)|2.

Thus

NI ≤ 4n2η2
n∑
k=1

1

n

1∑
λj(Wn,k)∈I |X∗kuj(Wn,k)|2

.

Now we prove by contradiction. If NI ≥ Cnη for some constant C > 100, then there

exists k ∈ {1, 2, . . . , n} such that

4n2η2∑
λj(Wn,k)∈I |X∗kuj(Wn,k)|2

≥ Cnη.,

thus ∑
λj(Wn,k)∈I

|X∗kuj(Wn,k)|2 ≤
4nη

C
.

By Cauchy interlacing law, |{λj(Wn,k) ∈ I}| ≥ NI − 2 ≥ NI/2. By Lemma 23, one

concludes that ∑
λj(Wn,k)∈I

|X∗kuj(Wn,k)|2 ≥
NI

4
≥ Cnη

4

with probability at least 1− n−(C1+10), assuming C2 ≥ 10K(C1 + 10). Thus 4nη/C ≥

Cnη/4 contradicts C > 100. This completes the proof.
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Now we prove Proposition 22. Notice that

Yk = a∗k(Wn,k − zI)−1ak =
n−1∑
j=1

|uj(Wn,k)
∗ak|2

λj(Wn,k)− z
.

We evaluate

|Yk −E(Yk|Wn,k)| = |Yk − (1− 1

n
)sn,k(z)| = |

n−1∑
j=1

|uj(Wn,k)
∗ak|2 − 1

n

λj(Wn,k)− z
|

=
1

n
|
n−1∑
j=1

|uj(Wn,k)
∗Xk|2 − 1

λj(Wn,k)− z
| := 1

n
|
n−1∑
j=1

Rj

λj(Wn,k)− x−
√
−1η
|.

(2.6)

Without loss of generality, we just consider the case λj(Wn,k) − x ≥ 0. First, for the

set J of eigenvalues λj(Wn,k) such that 0 ≤ λj(Wn,k)− x ≤ η, from Lemma 24 one has

|J | � nη and in Lemma 23, by taking t = 4K
√
C log n,

1

n
|
∑
j∈J

Rj

λj(Wn,k)− x−
√
−1η
|

≤ 1

n
|
∑
j∈J

λj(Wn,k)− x
(λj(Wn,k)− x)2 + η2

Rj |+
1

n
|
∑
j∈J

η

(λj(Wn,k)− x)2 + η2
Rj |

≤ 1

nη
|
∑
j∈J

(λj(Wn,k)− x)η

(λj(Wn,k)− x)2 + η2
Rj |+

1

nη
|
∑
j∈J

η2

(λj(Wn,k)− x)2 + η2
Rj |

≤ 10

nη
(K
√
C log n

√
|J |+K2C log n)

≤ 20δ3√
C

with probability at least 1− 10n−C .

For the other eigenvalues, we divide the real line into small intervals. For integer

l ≥ 0, let Jl be the set of eigenvalues λj(Wn,k) such that (1 + α)lη < λj(Wn,k) − x ≤

(1 + α)l+1η. We use the parameters a = (1 + α)lη and α = 10 (say). The number of

such Jl is O(log n). By Lemma one has 24, |Jl| � naα. Again by Lemma 23 (take

t = K
√
C(l + 1)

√
log n),
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1

n
|
∑
j∈Jl

Rj

λj(Wn,k)− x−
√
−1η
|

≤ 1

n
|
∑
j∈Jl

λj − x
(λj − x)2 + η2

Rj |+
1

n
|
∑
j∈Jl

η

(λj − x)2 + η2
Rj |

≤ 1 + α

na
|
∑
j∈Jl

a(λj − x)

(1 + α)((λj − x)2 + η2)
Rj |+

η

na2
|
∑
j∈J

a2

(λj − x)2 + η2
Rj |

≤ (
1 + α

na
+

η

na2
)(K

√
C(l + 1)

√
log n

√
nαa+K2C(l + 1) log n)

≤ 20δ3√
C

l + 1

(1 + α)l/2
,

with probability at least 1− 10n−C(l+1).

Summing over l, we have

1

n
|
∑
l

∑
j∈Jl

Rj

λj(Wn,k)− x−
√
−1η
| ≤ 40δ3√

C
,

with probability at least 1− 10n−C . This completes the proof of Proposition 22.

Let |Yk −E(Yk|Wn,k)| := δ2C ≤ 200δ3/
√
C. Inserting the bounds into (2.4), one has

sn(z) +
1

n

n∑
k=1

1

sn(z) + z + δC
2 = 0

with probability at least 1 − 10n−C . The term |ζkk/
√
n| = o(δ2) as |ζkk| ≤ K by

assumption. For the error term δC , we can consider that either |sn(z) + z| = o(1) or

|sn(z) + z| ≥ C1 > 0 for some constant C1. In the former case, we have

sn(z) = −z + o(1).

In the later case, by choosing C large enough, we can operate a Taylor expansion to get

sn(z) +
1

z + sn(z)

(
1 +O(

δ2C
z + sn(z)

)

)
= 0.

And thus

sn(z) +
1

z + sn(z)
= O(δ2C),

with probability at least 1−10n−C . Multiplying z+sn(z) on both sides and completing

the perfect square, we have

sn(z) = −z
2
±
√

1− z2

4
+O(δ2C). (2.7)
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Now we consider the cases O(δ2C)/
√

4− z2 = O(δC) and 4−z2 = o(1). In the first case,

after a Taylor expansion, we can conclude

sn(z) = −z
2
±
√

1− z2

4
+O(δC).

In the second case, from (2.7), one has

sn(z) = −z
2

+O(δC) = s(z) +O(δC).

Recall that s(z) is the unique solution to the quadratic equation s(z) + 1
s(z)+z = 0 with

positive imaginary part and has the explicit form

s(z) =
−z +

√
z2 − 4

2
,

where
√
z2 − 4 is the branch of square root with a branch cut in [−2, 2] and asymptot-

ically equals z at infinity. In conclusion, we have in the region

|z| ≤ 10, |Re(z)| ≤ 4, Im(z) ≥ η,

either

sn(z) = −z + o(1), (2.8)

or

sn(z) = s(z)−
√
z2 − 4 +O(δC), (2.9)

or

sn(z) = s(z) +O(δC), (2.10)

with probability at least 1 − 10n−(C+100). By choosing C sufficiently large, it is not

hard to say that (2.8) and (2.9) or (2.8) and (2.10) do not hold at the same time.

Since otherwise, one has s(z) = O(δC) or s(z) + z = O(δC), which contradicts the

fact that |s(z) + z| and |s(z)| have positive lower bounds. And (2.9) and (2.10) are

disconnected from each other except |z2 − 4| = O(δ2). The possibility (2.8) or (2.9)

holds only when Im(z) = o(1) since sn(z) and z both have positive imaginary parts.

By a continuity argument, we can show that (2.10) must hold throughout the region

except that |z2 − 4| = O(δ2). In that case, (2.9) and (2.10) are actually equivalent.

Thus we always have (2.10) holds with probability at least 1− 10n−(C+100).

Applying Lemma 21, we have
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Theorem 25. For any constant C1 > 0, there exists a constant C2 > 0 such that for

0 ≤ δ ≤ 1/2 any interval I ⊂ (−3, 3) of length at least C2K
2 log n/nδ8,

|NI − n
∫
I
ρsc(x) dx| ≤ δn|I|

with probability at least 1− n−C1.

In particular, Theorem 19 follows.

2.2.2 Proof of Lemma 23

Denote f(X) =
√∑d

j=1 cj |u∗jX|2, which is a function defined on Cn.

First, f(X) is convex. Indeed, for 0 ≤ λ, µ ≤ 1 where λ+µ = 1 and any X,Y ∈ Cn,

by Cauchy-Schwardz inequality,

f(λX + µY ) ≤

√√√√ d∑
j=1

cj(λ|u∗jX|+ µ|u∗jY |)2

≤ λ

√√√√ d∑
j=1

cj |u∗jX|2 + µ

√√√√ d∑
j=1

cj |u∗jY |2 = λf(X) + µf(Y ).

Second, f(X) is 1-Lipschitz. Noticed that

f(X) ≤ ‖πH(X)‖ =

√√√√ d∑
j=1

|u∗jX|2 ≤ ‖X‖.

Since f(X) is convex, one has

1

2
f(X) = f(

1

2
X) = f(

1

2
(X − Y ) +

1

2
Y ) ≤ 1

2
f(X − Y ) +

1

2
f(Y ).

Thus f(X) − f(Y ) ≤ f(X − Y ) and f(Y ) − f(X) ≤ f(Y − X) = f(X − Y ), which

implies

|f(X)− f(Y )| ≤ f(X − Y ) ≤ ‖X − Y ‖.

Now we can apply the following Talagrand’s inequality (see Theorem 69, [66]):

Thus

P(|f(X)−Mf(X)| ≥ t) ≤ 4 exp(−t2/16K2). (2.11)

To conclude the proof, it suffices to show

|Mf(X)−

√√√√ d∑
j=1

cj | ≤ 2K.
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It is enough to prove that P(f(X) ≥ 2K +
√∑d

j=1 cj) ≤ 1/4 and P(f(X) ≤

−2K+
√∑d

j=1 cj) ≤ 1/4. And this can be done by applying the Chebyshev inequality.

Denote uj = (u1j , . . . , u
n
j ) ∈ Cn. Then

cj |u∗jX|2 = cj

n∑
i=1

|uij |2|ξi|2 + cj
∑
i 6=k

ūiju
k
j ξiξ̄k.

P

f(X) ≥ 2K +

√√√√ d∑
j=1

cj

 ≤ P

 d∑
j=1

cj |u∗jX|2 −
d∑
j=1

cj ≥ 4K

√√√√ d∑
j=1

cj


= P

 d∑
j=1

cj(

n∑
i=1

|uij |2|ξi|2 − 1) +

d∑
j=1

cj
∑
i 6=k

ūiju
k
j ξiξ̄k ≥ 4K

√√√√ d∑
j=1

cj


≤

E
(∑d

j=1 cj(
∑n

i=1 |uij |2|ξi|2 − 1) +
∑d

j=1 cj
∑

i 6=k ū
i
ju
k
j ξiξ̄k

)2
16K2(

∑d
j=1 cj)

≤
E
(∑d

j=1 cj(
∑n

i=1 |uij |2|ξi|2 − 1)
)2

+ E
(∑d

j=1 cj
∑

i 6=k ū
i
ju
k
j ξiξ̄k

)2
8K2(

∑d
j=1 cj)

Now we evaluate

S1 := E

 d∑
j=1

cj(

n∑
i=1

|uij |2|ξi|2 − 1)

2

and

S2 := E

 d∑
j=1

cj
∑
i 6=k

ūiju
k
j ξiξ̄k

2

.

S1 = E

 d∑
j=1

cj(

n∑
i=1

|uij |2|ξi|2 − 1)

2

= E

 d∑
j=1

cj(

n∑
i=1

|uij |2|ξi|2 − 1)

( d∑
k=1

ck(

n∑
s=1

|usk|2|ξs|2 − 1)

)

= E
d∑

j,k=1

cjck(
n∑
i=1

(uij)
2|ξi|2 − 1)(

n∑
s=1

(usk)
2|ξs|2 − 1)

= E
d∑

j,k=1

cjck

n∑
i=1

|uij |2|uik|2|ξi|4 + E
d∑

j,k=1

ckcj
∑
i 6=s
|uij |2|usk|2|ξi|2|ξs|2 −

d∑
j,k=1

cjck
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Therefore,

S1 ≤ (K + 1)

n∑
i=1

 d∑
j=1

cj |uij |2
2

+
∑
i 6=s

 d∑
j=1

cj |uij |2
( d∑

k=1

ck|usk|2
)

−
n∑

i,s=1

 d∑
j=1

cj |uij |2
( d∑

k=1

ck|usk|2
)

= (K + 1)
n∑
i=1

 d∑
j=1

cj |uij |2
2

−
n∑
i=1

 d∑
j=1

cj |uij |2
2

= K
n∑
i=1

 d∑
j=1

cj |uij |2
2

≤ K
n∑
i=1

 d∑
j=1

cj |uij |2
 = K

 d∑
j=1

cj


and

S2 = E

 d∑
j=1

cj
∑
i 6=k

ūiju
k
j ξiξ̄k

 d∑
l=1

cl
∑
s6=t

ūsl u
t
lξsξ̄t


=

d∑
j,l=1

cjcl
∑
i 6=k

ūiju
k
j ū

k
l u

i
l

=
d∑
j=1

c2j
∑
i 6=k
|uij |2|ukj |2 +

∑
j 6=l

cjcl
∑
i 6=k

(ūiju
i
l)(u

k
j ū

k
l )

≤
d∑
j=1

cj

n∑
i,k=1

|uij |2|ukj |2 =
d∑
j=1

cj ,

here we used the fact
∑

j 6=l cjcl
∑

i 6=k(ū
i
ju
i
l)(u

k
j ū

k
l ) ≤ 0, since for j 6= l,

0 = (

n∑
i=1

ūiju
i
l)(

n∑
k=1

ukj ū
k
l ) =

n∑
i=1

|uij |2|uil|2 +
∑
i 6=k

(ūiju
i
l)(u

k
j ū

k
l ).

Therefore,

P

f(X) ≥ 2K +

√√√√ d∑
j=1

cj

 ≤ (K + 1)/8K2 ≤ 1/4.

With the same argument, one can show

P

f(X) ≤ −2K +

√√√√ d∑
j=1

cj

 ≤ 1/4.

This completes the proof.
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Figure 2.2: Plotted above are the empirical cumulative distribution functions of the
distribution of

√
n×‖v‖∞ for n = 1000, evaluated from 500 samples. In the blue curve,

v is a unit eigenvector for GOE. And v is a unit eigenvector for symmetric random
sign matrix in the red curve. The green curve is generated for v to have a uniform
distribution on the unit sphere Sn.

2.3 Optimal upper bound for the infinity norm of eigenvectors

It has been long conjectured that ui must look like a uniformly chosen vector from the

unit sphere. Indeed, for one special random matrix model, the GOE, one can iden-

tify a random eigenvector with a random vector from the sphere, using the rotational

invariance property (see [47] for more details). For other models of random matrices,

this invariance is lost and only very recently we have some theoretical support for the

conjecture [65, 44]. In particular, it is proved in [65] that under certain assumption,

the inner product u ·a satisfies s central limit theorem, for any fixed vector a ∈ Sn. For

numerical simulation in Figure 2.2, we plot the cumulative distribution functions of the

(normalized) infinity norm of eigenvector v for GOE and random symmetric Bernoulli

matrix separately, and compare them with the vector chosen uniformly from the unit

sphere.

One important property of a random unit vector is that it has small infinity norm.

It is well-known and easy to prove that if w is chosen randomly (uniformly) from Sn

(the unit sphere in Rn), then with high probability ‖w‖∞ = O(
√

log n/n) and this
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bound is optimal up to the hidden constant in O. We are going to show

Theorem 26 (Delocalization of eigenvectors). For any constant C1 > 0 there is a

constant C2 > 0 such that the following holds.

• (Bulk case) For any ε > 0 and any 1 ≤ i ≤ n with λi(Wn) ∈ [−2 + ε, 2 − ε], let

ui(Wn) denote the corresponding unit eigenvector, then

‖ui(Wn)‖∞ ≤
C2K log1/2 n√

n

with probability at least 1− n−C1.

• (Edge case) For any ε > 0 and any 1 ≤ i ≤ n with λi(Wn) ∈ [−2 − ε,−2 + ε] ∪

[2− ε, 2 + ε], let ui(Wn) denote the corresponding unit eigenvector, then

‖ui(Wn)‖∞ ≤
C2K

2 log n√
n

with probability at least 1− n−C1.

2.3.1 Proof of the bulk case

With the concentration theorem for ESD, we are able to derive the eigenvector delo-

calization results thanks to the next lemma:

Lemma 27 (Eq (4.3), [29] or Lemma 41, [66]). Let

Bn =

 a X∗

X Bn−1



be an n×n symmetric matrix for some a ∈ C and X ∈ Cn−1, and let

 x

v

 be a unit

eigenvector of Bn with eigenvalue λi(Bn), where x ∈ C and v ∈ Cn−1. Suppose that

none of the eigenvalues of Bn−1 are equal to λi(Bn). Then

|x|2 =
1

1 +
∑n−1

j=1 (λj(Bn−1)− λi(Bn))−2|uj(Bn−1)∗X|2
,

where uj(Bn−1) is a unit eigenvector corresponding to the eigenvalue λj(Bn−1).
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Proof. From the equation a X∗

X Bn−1

 x

v

 = λi(Bn)

 x

v

 ,

one has

xX +Bn−1v = λi(Bn)v.

Since none of eigenvalues of Bn−1 are equal to λi(Bn), the matrix λi(Bn)I − Bn−1 is

invertible. Thus v = x(λi(Bn)I −Bn−1)−1X. Inserting the expression of v into the

|x|2 + ‖v‖2 = 1

and decomposing

(λi(Bn)I −Bn−1)−1 =
n−1∑
j=1

(λj(Bn−1)− λi(Bn))−1uj(Bn−1),

we prove that

|x|2 =
1

1 +
∑n−1

j=1 (λj(Bn−1)− λi(Bn))−2|uj(Bn−1)∗X|2
.

First, for the bulk case, for any λi(Wn) ∈ (−2 + ε, 2 − ε), by Theorem 19, one can

find an interval I ⊂ (−2 + ε, 2 − ε), centered at λi(Wn) and |I| = K2C log n/n, such

that NI ≥ δ1n|I| (δ1 > 0 small enough) with probability at least 1 − n−C1−10. By

Cauchy interlacing law, we can find a set J ⊂ {1, . . . , n− 1} with |J | ≥ NI/2 such that

|λj(Wn−1)− λi(Wn)| ≤ |I| for all j ∈ J .

By Lemma 27, we have

|x|2 =
1

1 +
∑n−1

j=1 (λj(Wn−1)− λi(Wn))−2|uj(Wn−1)∗
1√
n
X|2

≤ 1

1 +
∑

j∈J(λj(Wn−1)− λi(Wn))−2|uj(Wn−1)∗
1√
n
X|2

≤ 1

1 + n−1|I|−2∑j∈J |uj(Wn−1)∗X|2

≤ 1

1 + 100−1n−1|I|−2|J | ≤ 200|I|/δ1 ≤
K2C2

2 log n

n

(2.12)
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for some constant C2 with probability at least 1−n−C1−10. The third inequality follows

from Lemma 23 by taking t = δ1K
√
C log n/

√
n (say).

Thus, by union bound and symmetry, ‖ui(Wn)‖∞ ≤ C2K log1/2 n√
n

holds with proba-

bility at least 1− n−C1 .

2.3.2 Proof of the edge case

For the edge case, we use a different approach based on the next lemma:

Lemma 28 (Interlacing identity, Lemma 37, [64]). If none of the eigenvalues of Wn−1

is equal to λi(Wn), then

n−1∑
j=1

|uj(Wn−1)
∗Y |2

λj(Wn−1)− λi(Wn)
=

1√
n
ζnn − λi(Wn). (2.13)

Proof. Let ui(Wn) be the eigenvector corresponding to the eigenvalue λi(Wn). Let

u∗i = (v∗, x) where v ∈ Rn−1 and x ∈ R.

From the equation Wn−1 − λi(Wn)In−1 Y

Y ∗ ζnn√
n
− λi(Wn)

 v

x

 = 0

one has

(Wn−1 − λi(Wn)In−1)v + xY = 0

and

Y ∗v + x(ζnn/
√
n− λi(Wn)) = 0.

Since none of the eigenvalues of Wn−1 is equal to λi(Wn), one can solve v = −x(Wn−1−

λi(Wn)In−1)
−1Y from the first identity. Plugging into the second identity, we have

1√
n
ζnn − λi(Wn) = Y ∗(Wn−1 − λi(Wn)In−1)

−1Y.

The conclusion follows by composing

(Wn−1 − λi(Wn)In−1)
−1 =

n−1∑
j=1

uj(Wn−1)uj(Wn−1)
∗

λj(Wn−1)− λi(Wn)
.
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By symmetry, it suffices to consider the case λi(Wn) ∈ [2− ε, 2 + ε] for ε > 0 small.

By Lemma 27, in order to show |x|2 ≤ C4K4 log2 n/n (for some constant C > C1+100)

with a high probability, it is enough to show

n−1∑
j=1

|uj(Wn−1)
∗X|2

(λj(Mn−1)− λi(Mn))2
≥ n

C4K4 log2 n
.

By the projection lemma, |uj(Wn−1)
∗X| ≤ K

√
C log n with probability at least 1 −

10n−C . It suffices to show that with probability at least 1− n−C1−100,

n−1∑
j=1

|uj(Wn−1)
∗X|4

(λj(Mn−1)− λi(Mn))2
≥ n

C3K2 log n
.

Let Y = 1√
n
X, by Cauchy-Schwardz inequality, it is enough to show for some integers

1 ≤ T− < T+ ≤ n− 1 that

∑
T−≤j≤T+

|uj(Wn−1)
∗Y |2

|λj(Wn−1)− λi(Wn)| ≥
√
T+ − T−

C1.5K
√

log n
.

And by Lemma 28, we are going to show for T+ − T−1 = O(log n) (the choice of

T+, T− will be given later) that

|
∑

j≥T+orj≤T−

|uj(Wn−1)
∗Y |2

λj(Wn−1)− λi(Wn)
| ≤ 2− ε−

√
T+ − T−

C1.5K
√

log n
+ o(1), (2.14)

with probability at least 1− n−C1−100.

Now we divide the real line into disjoint intervals Ik for k ≥ 0. Let |I| = K2C logn
nδ8

with constant δ ≤ ε/1000. Denote βk =
∑k

s=0 δ
−8s. Let I0 = (λi(Wn)−|I|, λi(Wn)+|I|).

For 1 ≤ k ≤ k0 = log0.9 n (say),

Ik = (λi(Wn)− βk|I|, λi(Wn)− βk−1|I|] ∪ [λi(Wn) + βk−1|I|, λi(Wn) + βk|I|),

thus |Ik| = 2δ−8k|I| = o(1) and the distance from λi(Wn) to the interval Ik satisfies

dist(λi(Wn), Ik) ≥ βk−1|I|.

For each such interval, by Theorem 19, the number of eigenvalues

|Jk| = NIk ≤ nαIk |Ik|+ δkn|Ik|
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with probability at least 1− n−C1−100, where

αIk =

∫
Ik

ρsc(x)dx/|Ik|.

By Lemma 23, for the kth interval,

1

n

∑
j∈Jk

|uj(Wn−1)
∗X|2

|λj(Wn−1)− λi(Wn)| ≤
1

n

1

dist(λi(Wn), Ik)

∑
j∈Jk

|uj(Wn−1)
∗X|2

≤ 1

n

1

dist(λi(Wn), Ik)
(|Jk|+K

√
|Jk|
√
C log n+ CK2 log n)

≤ αIk |Ik|
dist(λi(Wn), Ik)

+
δk|Ik|

dist(λi(Wn), Ik)
+

CK2 log n

ndist(λi(Wn), Ik)

+
K
√
nαIk + nδk

√
|Ik|
√
C log n

ndist(λi(Wn), Ik)

≤ αIk |Ik|
dist(λi(Wn), Ik)

+ 2δk−16 + δ8k−8 + δ4k−15,

with probability at least 1− n−C1−100.

For k ≥ k0 + 1, let the interval Ik’s have the same length of |Ik0 | = 2δ−8k0 |I|. The

number of such intervals within [2 − 2ε, 2 + 2ε] is bounded crudely by o(n). And the

distance from λi(Wn) to the interval Ik satisfies

dist(λi(Wn), Ik) ≥ βk0−1|I|+ (k − k0)|Ik0 |.

The contribution of such intervals can be computed similarly by

1

n

∑
j∈Jk

|uj(Wn−1)
∗X|2

|λj(Wn−1)− λi(Wn)| ≤
1

n

1

dist(λi(Wn), Ik)

∑
j∈Jk

|uj(Wn−1)
∗X|2

≤ 1

n

1

dist(λi(Wn), Ik)
(|Jk|+K

√
|Jk|
√
C log n+ CK2 log n)

≤ αIk |Ik|
dist(λi(Wn), Ik)

+
δk|Ik|

dist(λi(Wn), Ik)
+

CK2 log n

ndist(λi(Wn), Ik)

+
K
√
nαIk + nδk

√
|Ik|
√
C log n

ndist(λi(Wn), Ik)

≤ αIk |Ik|
dist(λi(Wn), Ik)

+
100δk0

k − k0
,

with probability at least 1− n−C1−100.

Summing over all intervals for k ≥ 18 (say), we have

|
∑

j≥T+orj≤T−

|uj(Wn−1)
∗Y |2

λj(Wn−1)− λi(Wn)
| ≤ |

∑
Ik

αIk |Ik|
dist(λi(Wn), Ik)

|+ δ. (2.15)
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Using Riemann integration of the principal value integral,

∑
Ik

αIk |Ik|
dist(λi(Wn), Ik)

= p.v.

∫ 2

−2

ρsc(x)

λi(Wn)− x dx+ o(1),

where

p.v.

∫ 2

−2

ρsc(x)

λi(Wn)− x dx := lim
ε→0

∫
−2≤x≤2,|x−λi(Wn)|≥ε

ρsc(x)

λi(Wn)− x dx,

and using the explicit formula for the Stieltjes transform and from residue calculus, one

obtains

p.v.

∫ 2

−2

ρsc(x)

x− λi(Wn)
dx = −λi(Wn)/2

for |λi(Wn)| ≤ 2, with the right-hand side replaced by −λi(Wn)/2 +
√
λi(Wn)2 − 4/2

for |λi(Wn)| > 2. Finally, we always have

|
∑
Ik

αIk |Ik|
dist(λi(Wn), Ik)

| ≤ 1 + δ ≤ 1 + ε/1000.

Now for the rest of eigenvalues such that

|λi(Wn)− λj(Wn−1)| ≤ |I0|+ |I1|+ . . .+ |I18| ≤ |I|/δ60,

the number of eigenvalues is given by T+ − T− ≤ n|I|/δ60 = CK2 log n/δ68. Thus

√
T+ − T−

CK
√

log n
≤ 1

δ34
√
C
≤ ε/1000,

by choosing C sufficiently large. Thus, with probability at least 1− n−C1−10,

|x| ≤ C2K
2 log n√
n

.
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Chapter 3

Random covariance matrices

3.1 Marchenko-Pastur law

The sample covariance matrix plays an important role in fields as diverse as multivariate

statistics, wireless communications, signal processing and principal component analysis.

In this chapter, we extend the results obtained for random Hermitian matrices discussed

in the previous chapter to random covariance matrices, focusing on the changes needed

for the proofs.

Let X be a random vector X = (X1, . . . , Xp)
T ∈ Cp×1 and assume for simplicity

that X is centered. Then the true covariance matrix is given by

E(XX∗) = (cov(Xi, Xj))1≤i,j≤p.

Consider n independent samples or realizations x1, . . . , xn ∈ Cp and form the p×n data

matrix M = (x1, . . . , xn). Then the (sample) covariance matrix is an n×n non–negative

definite matrix defined as

Wn,p =
1

n
M∗M.

If n → +∞ and p is fixed, then the (sample) covariance matrix converges (entrywise)

to the true covariance matrix almost surely. Now we focus on the case that p and n

tend to infinity as the same time.

Let Mn,p = (ζij)1≤i≤p,1≤j≤n be a random p × n matrix, where p = p(n) is an

integer such that p ≤ n and limn→∞ p/n = y for some y ∈ (0, 1]. The matrix ensem-

ble M is said to obey condition C1 with constant C0 if the random variables ζij are

jointly independent, have mean zero and variance one, and obey the moment condition

supi,j E|ζij |C0 ≤ C for some constant C independent of n, p.
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For such a p× n random matrix M , we form the n× n (sample) covariance matrix

W = Wn,p = 1
nM

∗M . This matrix has at most p non-zero eigenvalues which are ordered

as

0 ≤ λ1(W ) ≤ λ2(W ) ≤ . . . ≤ λp(W ).

Denote σ1(M), . . . , σp(M) to be the singular values of M . Notice that σi(M) =

√
nλi(W )1/2. From the singular value decomposition, there exist orthonormal bases

u1, . . . , up ∈ Cn and v1, . . . , vp ∈ Cp such that Mui = σivi and M∗vi = σiui.

The first fundamental result concerning the asymptotic limiting behavior of ESD

for large covariance matrices is the Marchenko-Pastur Law (see [45] and [6]).

Theorem 29. (Marchenko-Pastur Law) Assume a p×n random matrix M obeys con-

dition C1 with C0 ≥ 4, and p, n → ∞ such that limn→∞ p/n = y ∈ (0, 1], the empir-

ical spectral distribution of the matrix Wn,p = 1
nM

∗M converges in distribution to the

Marchenko-Pastur Law with a density function

ρMP,y(x) :=
1

2πxy

√
(b− x)(x− a)1[a,b](x),

where

a := (1−√y)2, b := (1 +
√
y)2.

Remark 30. When y = 1, the density function ρMP,y(x) is supported on the interval

[0, 4] and

dµ

dx
= ρMP,y(x) =

1

2π

√
4− x
x

.

Actually, by a change of variable x→ x2, the distribution µ is the image of the semicircle

law.

In the following, we discuss briefly the frameworks for two approaches: the moment

method and Stieltjes transform method, the latter of which is the core of the proof for

our new results.
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Density Functions of Marchenko−Pastur Law

Figure 3.1: Plotted above are the density functions ρMP,y(x) of Marchenko-Pastur law
for y = 0.4, y = 0.6, y = 0.8 and y = 1. Notice that for y = 1, the density function has
a singularity at x = 0.

3.1.1 Moment method

Similar as the proof of semicircle law, we use the trace formula: for a positive integer

k, the k-th moment of the ESD FW(x) is given by

mk =

∫
xkFW(dx) =

1

p
trace(W k) =

1

n
trace((

M∗M

n
)k).

For the Marchenko-Pastur distribution, the moments are given by

Lemma 31. For k ≥ 0,

mk,MP =

∫ b

a
xkρMP,y(x)dx =

k−1∑
i=0

1

i+ 1

(
k

i

)(
k − 1

i

)
yi.
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 Eigenvalues
 Marchenko−Pastur, y = 0.8 

Figure 3.2: Plotted above is the distribution of the eigenvalues of 1
nM

∗M where M is
a p × n random Bernoulli matrix with n = 5000 and y = p/n = 0.8. The red curve is
the Marchenko-Pastur law with density function ρMP,y(x).

Proof. We have a = (1−√y)2, b = (1 +
√
y)2, a+ b = 2(1 + y) and b− a = 4

√
y.

mk,MP =

∫ b

a
xkρMP,y(x)dx =

∫ b

a
xk
√

(b− x)(x− a)

2πxy
dx

t=x−(a+b)/2
==========

1

2πy

∫ (b−a)/2

−(b−a)/2
(t+

a+ b

2
)k−1

√
(b− a)2

4
− t2dt

=
2

2πy

∫ 2
√
y

0

√
4y − t2

b k−1
2
c∑

i=0

(
k − 1

2i

)
t2i(y + 1)k−1−2idt

s= t2

4y
=====

b k−1
2
c∑

i=0

2

π

(
k − 1

2i

)
(4y)i(y + 1)k−1−2i

∫ 1

0
si−1/2(1− s)1/2ds.

Recall that Beta function

B(x, y) =

∫ 1

0
tx−1(1− t)y−1dt =

Γ(x)Γ(y)

Γ(x+ y)
.
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Thus

mk =
2

π

b k−1
2
c∑

i=0

(
k − 1

2i

)
(4y)i(y + 1)k−1−2iB(i+ 1/2, 3/2)

=
2

π

b k−1
2
c∑

i=0

(
k − 1

2i

)
(4y)i(y + 1)k−1−2i

(2i)!

4ii!

π

2

1

(i+ 1)!

=

b k−1
2
c∑

i=0

(
k − 1

2i

)
(2i)!

i!(i+ 1)!
yi
k−1−2i∑
j=0

(
k − 1− 2i

j

)
yj

=
r=i+j

=====
1

k

b k−1
2
c∑

i=0

k−1−i∑
r=i

k!

i!(i+ 1)!(r − i)!(k − 1− i− r)!y
r

=
1

k

k−1∑
r=0

min(r,k−1−r)∑
i=0

(
k

r

)
yr

1

(i+ 1)!(k − 1− i− r)!

=

k−1∑
i=0

1

i+ 1

(
k

i

)(
k − 1

i

)
yi.

From the trace formula, one has

E(mk) = E(
1

p
trace(W k)) = E(

1

n
trace((

M∗M

n
)k))

=
1

pnk

∑
{i1,...,ik}

∑
{j1,...,jk}

E(ζi1j1 ζ̄i2j1ζi2j2 ζ̄i3j2 · · · ζikjk ζ̄i1jk).

The Marckenko-Pastur law follows by showing

Lemma 32. For each fixed integer k,

E(
1

p
trace(W k)) =

k−1∑
r=0

(
p

n
)r

1

r + 1

(
k

r

)(
k − 1

r

)
+O(n−1), (3.1)

and

Var(
1

p
trace(W k)) = O(n−2). (3.2)

The detail of the proof, which is a combinatorial counting argument, can be found

in Chapter 3 of the book by Bai and Silverstein [8]. It is straightforward to show

(deterministically)

E(
1

p
trace(W k))→ mk,

for each fixed integer k. And (3.2) together with Borel–Cantelli lemma imply that, in

fact, p−1 trace(W k) is close to its expectation E(p−1 trace(W k)).



39

3.1.2 Stieltjes transform method

The Stieltjes transform of Marchenko-Pastur law is given by

sMP,y(z) :=

∫
R

1

x− z ρMP,y(x) dx =

∫ b

a

1

2πxy(x− z)
√

(b− x)(x− a) dx,

which is the unique solution to the equation

sMP,y(z) +
1

y + z − 1 + yzsMP,y(z)
= 0

in the upper half plane.

More explicitly,

sMP,y(z) = −y + z − 1−
√

(y + z − 1)2 − 4yz

2yz
,

where we take the branch of
√

(y + z − 1)2 − 4yz with cut at [a, b] that is asymptotically

y + z − 1 as z →∞.

By Proposition 16, the Marchenko-Pastur law follows by showing that s(z) →

sMP,y(z) in probability for every z in the upper half plane. Similar to the Hermi-

tian case, we are going to prove the local version of Marchenko-Pastur law, which is

much stronger.

3.2 Local Marchenko-Pastur law and the new result

The hard edge of the limiting support of spectrum refers to the left edge a when y = 1

where it gives rise to a singularity of x−1/2. The cases of left edge a when y < 1 and

the right edge b regardless of the value of y are called the soft edges. Recent progress

on studying the local convergence to Marchenko-Pastur law include [32], [51],[62],[69]

for the soft edge and [63], [16] for the hard edge. In this paper, we focus on improving

the previous results for the soft edge case.

Our main results for the random covariance matrices are the following quantitative

local Marchenko-Pastur law (LMPL).

Theorem 33. For any constants ε, δ, C1 > 0 there exists C2 > 0 such that the following

holds. Assume that p/n→ y for some 0 < y ≤ 1. Let M = (ζij)1≤i≤p,1≤j≤n be a random
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matrix with entries bounded by K where K may depend on n. Consider the covariance

matrix Wn,p = 1
nM

∗M . Then with probability at least 1− n−C1, one has

|NI(Wn,p)− p
∫
I
ρMP,y(x) dx| ≤ δp|I|.

for any interval I ⊂ (a+ ε, b− ε) of length at least C2K
2 log n/n.

Similarly to the Hermitian case, we compare the Stieltjes transform of the ESD of

matrix W

s(z) :=
1

p

p∑
i=1

1

λi(W )− z ,

with the Stieltjes transform of Marchenko-Pastur Law

sMP,y(z) :=

∫
R

1

x− z ρMP,y(x) dx =

∫ b

a

1

2πxy(x− z)
√

(b− x)(x− a) dx,

which is the unique solution to the equation

sMP,y(z) +
1

y + z − 1 + yzsMP,y(z)
= 0

in the upper half plane. We will show that s(z) satisfies a similar equation.

The analogue of Lemma 21 is the following:

Proposition 34. (Lemma 29, [62]) Let 1/10 ≥ η ≥ 1/n, and L1, L2, ε, δ > 0. For any

constant C1 > 0, there exists a constant C > 0 such that if one has the bound

|s(z)− sMP,y(z)| ≤ δ

with (uniformly) probability at least 1 − n−C for all z with L1 ≤ Re(z) ≤ L2 and

Im(z) ≥ η. Then for any interval I in [L1 − ε, L2 + ε] with |I| ≥ max(2η, ηδ log 1
δ ), one

has

|NI − n
∫
I
ρMP,y(x) dx| ≤ δn|I|

with probability at least 1− n−C1.

Our objective is to show

|s(z)− sMP,y(z)| ≤ δ (3.3)

with probability at least 1− n−C for all z in the region Ry, where

Ry = {z ∈ C : |z| ≤ 10, a− ε ≤ Re(z) ≤ b+ ε, Im(z) ≥ η}
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if y 6= 1, and

Ry = {z ∈ C : |z| ≤ 10, ε ≤ Re(z) ≤ 4 + ε, Im(z) ≥ η}

if y = 1. We use the parameter

η =
K2C2 log n

nδ6
.

In the defined region Ry,

|sMP,y(z)| = O(1).

The next lemma is an analogue of Lemma 24.

Lemma 35. For any constant C1 > 0, there exists a constant C2 > 0 (C2 depending

on C1, say C2 > 10K(C1+10) suffices) such that for any interval I = (x, x+η) ⊂ (a, b)

with |I| ≥ C2K2 logn
n and x > 0 constant,

NI � n|I|

with probability at least 1− n−C1.

Proof. By union bounds, it suffices to show for |I| = C2K2 logn
n . Suppose the interval

I = (x, x+ η) ⊂ (a, b) with η = |I|. Let z = x+
√
−1η.

NI =

n∑
i=1

1{λi(Wn)∈I} ≤ 2
∑

λi(Wn)∈I

η2

(λi(Wn)− x)2 + η2
= 2nηIms(z).

Recall the expression of s(z) in (2.4), we have

s(z) =
1

p

p∑
k=1

1

ξkk − z − a∗k(Wk − zI)−1ak
, (3.4)

where Yk = a∗k(Wk − zI)−1ak, and Wk is the matrix W ∗ = 1
nMM∗ with the kth row

and column removed, and ak is the kth row of W with the kth element removed. Let

Mk be the (p− 1)× n minor of M with the kth row removed and X∗i ∈ Cn (1 ≤ i ≤ p)

be the rows of M . Thus

ξkk = Xk
∗Xk/n = ||Xk||2/n, ak =

1

n
MkXk,Wk =

1

n
MkM

∗
k .



42

Applying the inequality |Im1
z | ≤ 1/|Imz|, we have

NI ≤
2nη

p

p∑
k=1

1

η + Ima∗k(Wk − zI)−1ak
.

On the other hand,

a∗k(Wk − zI)−1ak =

p−1∑
j=1

|a∗kvj(Mk)|2
λj(Wk)− z

=

p−1∑
j=1

1

n

λj(Wk)|X∗kuj(Mk)|2
λj(Wk)− z

,

where u1(Mk), . . . , up−1(Mk) ∈ Cn and v1(Mk), . . . , vp−1(Mk) ∈ Cp−1 are orthonormal

right and left singular vectors of Mk. Here we used the facts that

a∗kvj(Mk) =
1

n
X∗kM

∗
kvj(Mk) =

1

n
σj(Mk)X

∗
kuj(Mk)

and

σj(Mk)
2 = nλj(Wk).

And by hypothesis, for each k,

Ima∗k(Wk − zI)−1ak =
η

n2

n−1∑
p=1

σj(Mk)
2|X∗kuj(Mk)|2

(λj(Wk)− x)2 + η2

≥ η

n2

∑
λj(Wk)∈I

σj(Mk)
2|X∗kuj(Mk)|2

2η2

≥ 1

2nη

∑
λj(Wk)∈I

σj(Mk)
2

n
|X∗kuj(Mk)|2

� 1

nη

∑
λj(Wk)∈I

|X∗kuj(Mk)|2.

The last inequality is obtained by the fact σj(Mk)/
√
n = Θ(1) in the region considered.

Thus

NI �
n2η2

p

p∑
k=1

1

n

1∑
λj(Wk)∈I |X∗kuj(Mk)|2

.

Now we prove by contradiction. If NI ≥ Cnη for some constant C > 100, then there

exists k ∈ {1, 2, . . . , n} such that

n2η2∑
λj(Wk)∈I |X∗kuj(Mk)|2

≥ Cnη.

Therefore ∑
λj(Wk)∈I

|X∗kuj(Mk)|2 ≤
nη

C
.



43

By Cauchy interlacing law, |{λj(Wk) ∈ I}| ≥ NI − 2 ≥ NI/2. By Lemma 23, one

concludes that ∑
λj(Wk)∈I

|X∗kuj(Mk)|2 ≥
NI

4
≥ Cnη

4

with probability at least 1 − n−(C1+10), assuming C2 ≥ 10K(C1 + 10). Thus we get

contradiction nη/C ≥ Cnη/4 by choosing C large. This completes the proof.

Now we prove (3.3). First, by Schur’s complement, one can rewrite

s(z) =
1

p
Tr(W − zI)−1 =

1

p

p∑
k=1

1

ξkk − z − Yk
(3.5)

where Yk = a∗k(Wk − zI)−1ak, and Wk is the matrix W ∗ = 1
nMM∗ with the kth row

and column removed, and ak is the kth row of W with the kth element removed. Let

Mk be the (p− 1)× n minor of M with the kth row removed and X∗i ∈ Cn (1 ≤ i ≤ p)

be the rows of M . Thus ξkk = Xk
∗Xk/n = ||Xk||2/n, ak = 1

nMkXk,Wk = 1
nMkM

∗
k .

And

Yk =

p−1∑
j=1

|a∗kvj(Mk)|2
λj(Wk)− z

=

p−1∑
j=1

1

n

λj(Wk)|X∗kuj(Mk)|2
λj(Wk)− z

,

where u1(Mk), . . . , up−1(Mk) ∈ Cn and v1(Mk), . . . , vp−1(Mk) ∈ Cp−1 are orthonormal

right and left singular vectors of Mk. Here we used the facts that

a∗kvj(Mk) =
1

n
X∗kM

∗
kvj(Mk) =

1

n
σj(Mk)X

∗
kuj(Mk)

and

σj(Mk)
2 = nλj(Wk).

The entries of Xk are independent of each other and of Wk, and have mean 0 and

variance 1. Noticed uj(Mk) is a unit vector. By linearity of expectation we have

E(Yk|Wk) =

p−1∑
j=1

1

n

λj(Wk)

λj(Wk)− z
=
p− 1

n
+
z

n

p−1∑
j=1

1

λj(Wk)− z
=
p− 1

n
(1 + zsk(z))

where

sk(z) =
1

p− 1

p−1∑
i=1

1

λi(Wk)− z
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is the Stieltjes transform for the ESD of Wk. From the Cauchy interlacing law, we can

get

|s(z)− (1− 1

p
)sk(z)| = O(

1

p

∫
R

1

|x− z|2 dx) = O(
1

pη
)

and thus

E(Yk|Wk) =
p− 1

n
+ z

p

n
s(z) +O(

1

nη
) =

p− 1

n
+ z

p

n
s(z) + o(δ2).

In fact a similar estimate holds for Yk itself:

Proposition 36. For 1 ≤ k ≤ n, |Yk − E(Yk|Wk)| ≤ δ2/
√
C holds with probability at

least 1− 20n−C uniformly for all z in the region Ry.

To prove Proposition 36, we decompose

Yk −E(Yk|Wk) =

p−1∑
j=1

λj(Wk)

n

( |X∗kuj(Mk)|2 − 1

λj(Wk)− z

)

:=
1

n

p−1∑
j=1

λj(Wk)

λj(Wk)− x−
√
−1η

Rj .

(3.6)

The estimation of (3.6) is a repetition of the calculation in (2.6). Without loss

of generality, we may just consider the case λj(Wk) − x ≥ 0. By assumption, we

have |λj(Wk)| = Θ(1) and |λj(Wk)| ≤ 4. First, for the set J of eigenvalues λj(Wk)

such that 0 ≤ λj(Wk) − x ≤ η, one has |J | ≤ nη and thus by Lemma 23, by taking

t = 4K
√
C log n,

1

n
|
∑
j∈J

λj(Wk)

λj(Wk)− x−
√
−1η

Rj |

≤ 1

n
|
∑
j∈J

(λj(Wk)− x)λj(Wk)

(λj(Wk)− x)2 + η2
Rj |+

1

n
|
∑
j∈J

ηλj(Wk)

(λj(Wn,k)− x)2 + η2
Rj |

≤ 1

nη
|
∑
j∈J

(λj(Wk)− x)ηλj(Wk)

(λj(Wk)− x)2 + η2
Rj |+

1

nη
|
∑
j∈J

η2λj(Wk)

(λj(Wk)− x)2 + η2
Rj |

≤ 10

nη
(K
√
C log n

√
|J |+K2C log n)

≤ 20δ3√
C

with probability at least 1− 10n−C .

For the other eigenvalues, we divide the real line into small intervals. For the set

Jl of eigenvalues λj(Wk) such that a ≤ λj(Wk) − x ≤ (1 + α)a, where we use the
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parameters a = (1 + α)lη and α = 10 (say) , one has |Jl| ≤ naα. Thus by Lemma 23

(taking t = K
√
C(l + 1)

√
log n),

1

n
|
∑
j∈Jl

λj(Wk)

λj(Wk)− x−
√
−1η

Rj |

≤ 1

n
|
∑
j∈Jl

(λj(Wk)− x)λj(Wk)

(λj(Wk)− x)2 + η2
Rj |+

1

n
|
∑
j∈Jl

ηλj(Wk)

(λj(Wk)− x)2 + η2
Rj |

≤ 1 + α

na
|
∑
j∈Jl

a(λj(Wk)− x)λj(Wk)

(1 + α)((λj(Wk)− x)2 + η2)
Rj |+

η

na2
|
∑
j∈J

a2λj(Wk)

(λj(Wk)− x)2 + η2
Rj |

≤ (
1 + α

na
+

η

na2
)(K

√
C(l + 1)

√
log n

√
nαa+K2C(l + 1) log n)

≤ 20δ3√
C

l + 1

(1 + α)l/2
,

with probability at least 1− 10n−C(l+1).

Summing over l, we have

1

n
|
∑
l

∑
j∈Jl

λj(Wk)

λj(Wk)− x−
√
−1η

Rj | ≤
40δ3√
C

with probability at least 1− 10n−C .

Thus |Yk−E(Yk|Wk)| := δ2C ≤ 200δ2/
√
C. Therefore, inserting the bounds to (3.5),

we have

s(z) +
1

y + z − 1 + yzs(z) + δ2C
= 0

with probability at least 1− 10n−C .

Recall the explicit expression of sMP,y(z)

sMP,y(z) = −y + z − 1−
√

(y + z − 1)2 − 4yz

2yz
,

where we take the branch of
√

(y + z − 1)2 − 4yz with cut at [a, b] that is asymptotically

y + z − 1 as z →∞.

From (3.5) and Proposition 36, we have with high probability that

s(z) +
1

p
n + z − 1 + z pns(z) + δ2C

= 0,

where we used Lemma 23 to obtain that ξkk = ||Xk||2/n = 1 + o(1) with probability at

least 1− n−C .
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By assumption p/n→ y, when n is large enough,

s(z) +
1

y + z − 1 + yzs(z) + δ2C
= 0 (3.7)

holds with probability at least 1− 10n−C .

In (3.7), for the error term δ2C , one has either
δ2C

y+z−1+yzs(z) = O(δ2C) or y + z − 1 +

yzs(z) = o(1). In the latter case, we get s(z) = −y+z−1
yz + o(1). In the first case, we

impose a Taylor expansion on (3.7) (by choosing C sufficiently large),

s(z)(y + z − 1 + yzs(z)) + 1 +O(δ2C) = 0.

Completing a perfect square for s(z) in the above identity, one can solve the equation

for s(z),

√
yz(s(z) +

y + z − 1

2yz
) = ±

√
(y + z − 1)2

4yz
− 1 +O(δ2C). (3.8)

If
O(δ2C)√

(y+z−1)2

4yz
−1

= O(δC), by a Taylor expansion on the right hand side of (3.8), we have

√
yz(s(z) +

y + z − 1

2yz
) = ±

√
(y + z − 1)2

4yz
− 1 +O(δC).

Therefore,

s(z) = sMP,y(z) +O(δC)

or

s(z) = sMP,y(z)−
√

(y + z − 1)2 − 4yz

yz
+O(δC) = −sMP,y(z)−

y + z − 1

yz
+O(δC).

If (y+z−1)2
4yz − 1 = o(1), from (3.8) and the explicit formula for sMP,y(z), we still have

s(z) = sMP,y(z) + o(1).

To summarize the above discussion, one has, with overwhelming probability, either

s(z) = sMP,y(z) +O(δC), (3.9)

or

s(z) = sMP,y(z)−
√

(y + z − 1)2 − 4yz

yz
+O(δC)

= −sMP,y(z)−
y + z − 1

yz
+O(δC),

(3.10)
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or

s(z) = −y + z − 1

yz
+ o(1). (3.11)

We may assume the above trichotomy holds for all z = x+
√
−1η with a ≤ x ≤ b and

η0 ≤ η ≤ n10/δ where η0 = K2 log6 n
nδ8

.

When η = n10/δ, from |s(z)| ≤ 1/η and |sMP,y(z)| ≤ 1/η, we have s(z) and sMP,y(z)

are both O(δC) and therefore (3.9) holds in this case. By continuity, we conclude that

either (3.9) holds in the domain of interest or there exists some z in the domain such

that (3.9) and (3.10) or (3.9) and (3.11) hold together.

On the other hand, (3.9) and (3.11) cannot hold at the same time. Otherwise,

sMP,y(z) + y+z−1
yz = O(δC). However, from sMP,y(z)(sMP,y(z) + y+z−1

yz ) = − 1
yz and

|sMP,y(z)| ≤
√
2√

y(1−√y+√η0) , one can see that |sMP,y(z)+ y+z−1
yz | is bounded from below,

which implies a contradiction (by choosing C large enough).

Similarly, (3.9) or (3.10) cannot both hold except when (y + z − 1)2 − 4yz = o(1).

Otherwise, we can conclude that 2sMP,y(z)+ y+z−1
yz = O(δC). From the explicit formula

of sMP,y,

2sMP,y(z) +
y + z − 1

yz
=

√
(y + z − 1)2 − 4yz

yz
.

One can conclude |2sMP,y(z) + y+z−1
yz | is bounded from below, which is a contradiction

(by choosing C sufficiently large). Actually, if (y+z−1)2−4yz = o(1), (3.9) and (3.10)

are equivalent.

In conclusion, (3.9) holds with probability at least 1−n−C in the domain of interest.

By Proposition 34, one can derive the following LMPL for random covariance matrices.

Theorem 37. For any constants ε, δ, C1 > 0, there exists C2 > 0 such that the following

holds. Assume that p/n→ y for some 0 < y ≤ 1. Let M = (ζij)1≤i≤p,1≤j≤n be a random

matrix with entries bounded by K where K may depend on n. Consider the covariance

matrix Wn,p = 1
nM

∗M . Then with probability at least 1− n−C1, one has

|NI − p
∫
I
ρMP,y(x) dx| ≤ δp|I|,

for any interval I ⊂ (a− ε, b+ ε) if a 6= 0 and I ⊂ (ε, 4 + ε) if a = 0 of length at least

C2K
2 log n/nδ8.

In particular, Theorem 33 follows.
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3.3 Optimal upper bound for the infinity norm of singular vectors

Theorem 38 (Delocalization of singular vectors). For any constant C1 > 0 there is a

constant C2 > 0 such that the following holds.

• (Bulk case) For any ε > 0 and any 1 ≤ i ≤ p with σi(Mn,p)
2/n ∈ [a+ ε, b− ε], let

ui denote the corresponding (left or right) unit singular vector, then

‖ui‖∞ ≤
C2K log1/2 n√

n

with probability at least 1− n−C1.

• (Edge case) For any ε > 0 and any 1 ≤ i ≤ p with σi(Mn,p)
2/n ∈ [a − ε, a +

ε] ∪ [b − ε, b + ε] if a 6= 0 and σi(Mn,p)
2/n ∈ [4 − ε, 4] if a = 0, let ui denote the

corresponding (left or right) unit singular vector, then

‖ui‖∞ ≤
C2K

2 log n√
n

with probability at least 1− n−C1.

3.3.1 Proof of the bulk case

To prove the delocalization of singular vectors, we need the following formula that

expresses an entry of a singular vector in terms of the singular values and singular

vectors of a minor. By symmetry, it is enough to prove the delocalization for the right

unit singular vectors.

Lemma 39 (Corollary 25, [62]). Let p, n ≥ 1, and let

Mp,n =
(
Mp,n−1 X

)

be a p × n matrix for some X ∈ Cp, and let

 u

x

 be a right unit singular vector of

Mp,n with singular value σi(Mp,n), where x ∈ C and u ∈ Cn−1. Suppose that none of

the singular values of Mp,n−1 are equal to σi(Mp,n). Then

|x|2 =
1

1 +
∑min(p,n−1)

j=1
σj(Mp,n−1)2

(σj(Mp,n−1)2−σi(Mp,n)2)2
|vj(Mp,n−1)∗X|2

,
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where v1(Mp,n−1), . . . , vmin(p,n−1)(Mp,n−1) ∈ Cp is an orthonormal system of left singu-

lar vectors corresponding to the non-trivial singular values of Mp,n−1.

In a similar vein, if

Mp,n =

 Mp−1,n

Y ∗



for some Y ∈ Cn, and

 v

y

 is a left unit singular vector of Mp,n with singular value

σi(Mp,n), where y ∈ C and v ∈ Cp−1, and none of the singular values of Mp−1,n are

equal to σi(Mp,n), then

|y|2 =
1

1 +
∑min(p−1,n)

j=1
σj(Mp−1,n)2

(σj(Mp−1,n)2−σi(Mp,n)2)2
|uj(Mp−1,n)∗Y |2

,

where u1(Mp−1,n), . . . , umin(p−1,n)(Mp−1,n) ∈ Cn is an orthonormal system of right sin-

gular vectors corresponding to the non-trivial singular values of Mp−1,n.

Proof. First consider the right singular vectors. Since

M∗p,nMp,n

u
x

 = σi(Mp,n)2

u
x

 ,

we have M∗p,n−1Mp,n−1 M∗p,n−1X

X∗Mp,n−1 X∗X

u
x

 = σi(Mp,n)2

u
x

 .

Thus

M∗p,n−1Mp,n−1u+ xM∗p,n−1X = σi(Mp,n)2u.

By assumption, none of the singular values of Mp,n−1 are equal to σi(Mp,n), we can

solve

u = x(M∗p,n−1Mp,n−1 − σi(Mp,n)2)−1M∗p,n−1X

= x

min(p,n−1)∑
j=1

uj(Mp,n−1)uj(Mp,n−1)
∗

(σj(Mp,n−1)2 − σi(Mp,n)2)2
M∗p,n−1X

= x

min(p,n−1)∑
j=1

σj(Mp,n−1)uj(Mp,n−1)vj(Mp,n−1)
∗X

(σj(Mp,n−1)2 − σi(Mp,n)2)2
.



50

The second equality follows from

uj(Mp,n−1)uj(Mp,n−1)
∗Mp,n−1 = σj(Mp,n−1)uj(Mp,n−1)vj(Mp,n−1).

On the other hand, from |x|2 + ‖u‖2 = 1, one has

|x|2 =
1

1 +
∑min(p,n−1)

j=1
σj(Mp,n−1)2

(σj(Mp,n−1)2−σi(Mp,n)2)2
|vj(Mp,n−1)∗X|2

.

The formula for the left singular vectors can be proved similarly.

If λi(Wp,n) lies within the bulk of spectrum, by Theorem 37, one can find an interval

I ⊂ (a + ε, b − ε), centered at λi(Wp,n) and with length |I| = K2C2
2 log n/2n such

that NI ≥ δ1n|I| (δ1 > 0 small constant) with probability at least 1 − n−C1−10. By

Cauchy interlacing law, we can find a set J ⊂ {1, . . . , n− 1} with |J | ≥ NI/2 such that

|λj(Wn−1)− λi(Wn)| ≤ |I| for all j ∈ J . Applying Lemma 27, one has

min(p,n−1)∑
j=1

σj(Mp,n−1)
2

(σj(Mp,n−1)2 − σi(Mp,n)2)2
|vj(Mp,n−1)

∗X|2

≥ 1

n

∑
j∈J

λj(Wp,n−1)

(λj(Wp,n−1)− λi(Wp,n))2
|vj(Mp,n−1)

∗X|2

≥
∑
j∈J

n−1|I|−2|vj(Mp,n−1)
∗X|2 � n−1|I|−2|J | � |I|−1

with probability at least 1− n−C1−10.

Thus, by the union bound and Lemma 39, ‖ui(Mp,n)‖∞ ≤ C2K log1/2 n√
n

holds with

probability at least 1− n−C1 .

3.3.2 Proof of the edge case

For the edge case, where |λi(Wp,n)−a| = o(1) (a 6= 0) or |λi(Wp,n)− b| = o(1), we refer

to the analogue of Lemma 28.

Lemma 40 (Interlacing identity for singular values, Lemma 3.5 [69]). Assume the

notations in Lemma 39, then for every i,

min(p,n−1)∑
j=1

σj(Mp,n−1)
2|vj(Mp,n−1)

∗X|2
σj(Mp,n−1)2 − σi(Mp,n)2

= ||X||2 − σi(Mp,n)2. (3.12)
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Similarly, we have

min(p−1,n)∑
j=1

σj(Mp−1,n)2|uj(Mp−1,n)∗Y |2
σj(Mp−1,n)2 − σi(Mp,n)2

= ||Y ||2 − σi(Mp,n)2. (3.13)

Proof. Apply Lemma 28 to the matrix

M∗p,nMp,n =

 M∗p,n−1Mp,n−1 M∗p,n−1X

X∗Mp,n−1 ||X||2


with eigenvalue σi(Mp.n)2.

Since we have λj(M
∗
p,n−1Mp,n−1) = σj(Mp,n−1)

2 and

uj(M
∗
p,n−1Mp,n−1)

∗M∗p,n−1 = σj(Mp,n−1)vj(Mp,n−1)
∗,

(3.12) follows.

Similarly, to show (3.13), apply Lemma 40 to the matrix

Mp,nM
∗
p,n =

 M∗p−1,nMp−1,n Mp−1,nY

Y ∗M∗p−1,n ||Y ||2

 .

By the union bound and Lemma 27, in order to show |x|2 ≤ C4K2 log2 n/n with

probability at least 1− n−C1−10 for some large constant C > C1 + 100, it is enough to

show

min(p,n−1)∑
j=1

σj(Mp,n−1)
2

(σj(Mp,n−1)2 − σi(Mp,n)2)2
|vj(Mp,n−1)

∗X|2 ≥ n

C4K4 log2 n
.

By the projection lemma, |vj(Mp,n−1)
∗X| ≤ K

√
C log n with probability at least

1− 10n−C .

It suffices to show that with probability at least 1− n−C1−100,

min(p,n−1)∑
j=1

σj(Mp,n−1)
2

(σj(Mp,n−1)2 − σi(Mp,n)2)2
|vj(Mp,n−1)

∗X|4 ≥ n

C3K2 log n
.

By Cauchy-Schwardz inequality and the fact |σi(Mp,n−1)| = O(
√
n), it is enough to

show for some integers 1 ≤ T− < T+ ≤ min(p, n− 1) (the choice of T−, T+ will be given

later), ∑
T−≤j≤T+

1
nσj(Mp,n−1)

2

|σj(Mp,n−1)2 − σi(Mp,n)2| |vj(Mp,n−1)
∗X|2 ≥

√
T+ − T−

C1.5K
√

log n
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On the other hand, by the projection lemma, with probability at least 1−n−C1−100,

‖X‖2/n = y + o(1). By (3.12) in Lemma 40,

min(p,n−1)∑
j=1

1

n

σj(Mp,n−1)
2|vj(Mp,n−1)

∗X|2
σj(Mp,n−1)2 − σi(Mp,n)2

= y + o(1)− λi(Wp,n). (3.14)

It is enough to evaluate

∑
j≥T+orj≤T−

λj(Wp,n−1)|vj(Mp,n−1)
∗X|2

λj(Wp,n−1)− λi(Wp,n)
. (3.15)

Now we divide the real line into disjoint intervals Ik for k ≥ 0. Let |I| = K2C logn
nδ8

with constant δ ≤ ε/1000. Denote βk =
∑k

s=0 δ
−8s. Let I0 = (λi(Wp,n)−|I|, λi(Wp,n)+

|I|). For 1 ≤ k ≤ k0 = log0.9 n (say),

Ik = (λi(Wp,n)− βk|I|, λi(Wp,n)− βk−1|I|] ∪ [λi(Wp,n) + βk−1|I|, λi(Wp,n) + βk|I|),

thus |Ik| = 2δ−8k|I| = o(1) and the distance from λi(Wp,n) to the interval Ik satisfies

dist(λi(Wp,n), Ik) ≥ βk−1|I|.

For each such interval, by Theorem 19, the number of eigenvalues

|Jk| = NIk ≤ nαIk |Ik|+ δkn|Ik|

with probability at least 1− n−C1−100, where

αIk =

∫
Ik

ρMP,y(x)dx/|Ik|.

By Lemma 23, for the kth interval, with probability at least 1− n−C1−100,

1

n

∑
j∈Jk

|λj(Wp,n−1)||vj(Mp,n−1)
∗X|2

|λj(Wp,n−1)− λi(Wp,n)|

≤ 1

n
(1 +

λi(Wp,n)

dist(λi(Wn), Ik)
)
∑
j∈Jk

|vj(Wp,n−1)
∗X|2

≤ 1

n
(1 +

λi(Wp,n)

dist(λi(Wp,n), Ik)
)(|Jk|+K

√
|Jk|
√
C log n+ CK2 log n)

≤ 1

n
(1 +

λi(Wp,n)

dist(λi(Wp,n), Ik)
)(pαIk |Ik|+ δkp|Ik|+ 4K

√
C log n

√
n
√
|Ik|+ CK2 log n)

≤ y(1 +
λi(Wp,n)

dist(λi(Wp,n), Ik)
)αIk |Ik|+ 100δ−7k−4|I|.
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For k0 + 1 ≤ k ≤ N , let the interval Ik’s have the same length of |Ik0 | = 2δ−8k0 |I|.

The distance from λi(Wp,n) to the interval Ik satisfies

dist(λi(Wp,n), Ik) ≥ βk0−1|I|+ (k − k0)|Ik0 |.

The contribution of such intervals can be computed similarly by

1

n

∑
j∈Jk

|λj(Wp,n−1)||vj(Mp,n−1)
∗X|2

|λj(Wp,n−1)− λi(Wp,n)|

≤ 1

n
(1 +

λi(Wp,n)

dist(λi(Wn), Ik)
)
∑
j∈Jk

|vj(Wp,n−1)
∗X|2

≤ 1

n
(1 +

λi(Wp,n)

dist(λi(Wp,n), Ik)
)(|Jk|+K

√
|Jk|
√
C log n+ CK2 log n)

≤ y(1 +
λi(Wp,n)

dist(λi(Wp,n), Ik)
)αIk |Ik|+

100δk0−8

k − k0
,

with probability at least 1− n−C1−100.

Sum over all intervals for k ≥ 20 (say) and notice that Nδ−8k0 |I| = O(1). We have

k0∑
k=0

100δ−7k−4|I|+
N∑

k=k0

100δk0−8

k − k0
= o(1).

Using Riemann integration of the principal value integral,

y
∑
Ik

(1 +
λi(Wp,n)

dist(λi(Wp,n), Ik)
)αIk |Ik| = |p.v.

∫ b

a
y
xρMP,y(x)

x− λi(Wp,n)
dx|+ o(1)

= y

(
1 + p.v.λi(Wp,n)

∫ b

a

ρMP,y(x)

x− λi(Wp,n)
dx

)
,

(3.16)

where

p.v.

∫ b

a
y
xρMP,y(x)

x− λi(Wp,n)
dx =


√
y + o(1), if |λi(Wp,n)− a| = o(1),

−√y + o(1), if |λi(Wp,n)− b| = o(1).

(3.17)

by using the explicit formula for the Stieltjes transform and from residue calculus (see

below).

If |λi(Wp,n) − a| = o(1), using the formula for the Stieltjes transform, one obtains

from residue calculus that

p.v.

∫ b

a
y
xρMP,y(x)

x− λi(Wp,n)
dx = y

(
1 + p.v.λi(Wp,n)

∫ b

a

ρMP,y(x)

x− λi(Wp,n)
dx

)
= y

(
1 + (1−√y)2

1√
y − y

)
+ o(1)

=
√
y + o(1).



54

If |λi(Wp,n)− b| = o(1), we have

p.v.

∫ b

a
y
xρMP,y(x)

x− λi(Wp,n)
dx = y

(
1 + p.v.λi(Wp,n)

∫ b

a

ρMP,y(x)

x− λi(Wp,n)
dx

)
= y

(
1− (1 +

√
y)2

1√
y + y

)
+ o(1)

= −√y + o(1).

Now for the rest of eigenvalues such that

|λi(Wp,n)− λj(Wp,n−1)| ≤ |I0|+ |I1|+ . . .+ |I20| ≤ |I|/δ60,

the number of eigenvalues is given by T+ − T− � n|I|/δ60 = CK2 log n/δ68. Thus

√
T+ − T−

C1.5K
√

log n
� 1

δ34C
≤ ε/1000,

by choosing C sufficiently large. By comparing (3.14), (3.15) and (3.17), one can

conclude with probability at least 1− n−C1−10,

|x| ≤ C2K
2 log n√
n

.
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Chapter 4

Adjacency matrices of random graphs

4.1 Introduction

In this chapter, we consider the Erdős-Rényi random graph G(n, p). Given a real

number p = p(n),0 ≤ p ≤ 1, the Erdős-Rényi graph on a vertex set of size n is obtained

by drawing an edge between each pair of vertices, randomly and independently, with

probability p.

Given a graph G on n vertices, the adjacency matrix A of G is an n×n matrix whose

entry aij equals one if there is an edge between the vertices i and j and zero otherwise.

All diagonal entries aii are defined to be zero. The eigenvalues and eigenvectors of A

carry valuable information about the structure of the graph and have been studied by

many researchers for quite some time, with both theoretical and practical motivations

(see, for example, [9], [12], [33], [53] [37], [34], [36], [35], [66], [30], [54], [52]).

Let An be the adjacency matrix of G(n, p). Thus An is a random symmetric n× n

matrix whose upper triangular entries are independent identical distributed (iid) copies

of a real random variable ξ and diagonal entries are 0. ξ is a Bernoulli random variable

that takes values 1 with probability p and 0 with probability 1− p.

Eξ = p,Varξ = p(1− p) = σ2.

Usually it is more convenient to study the normalized matrix

Mn =
1

σ
(An − pJn),

where Jn is the n× n matrix all of whose entries are 1. Mn has entries with mean zero

and variance one. The global properties of the eigenvalues of An and Mn are essentially

the same (after proper scaling), thanks to the following lemma
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Figure 4.1: Plotted above is the probability density function of the ESD of G(2000, 0.2).

Lemma 41. (Lemma 36, [66]) Let A,B be symmetric matrices of the same size where

B has rank one. Then for any interval I,

|NI(A+B)−NI(A)| ≤ 1,

where NI(M) is the number of eigenvalues of M in I.

Theorem 42. For p = ω( 1
n), the empirical spectral distribution (ESD) of the matrix

1√
nσ
An converges in distribution to the semicircle distribution which has a density ρsc(x)

with support on [−2, 2],

ρsc(x) :=
1

2π

√
4− x2.

If np = O(1), the semicircle law no longer holds. In this case, the graph almost

surely has Θ(n) isolated vertices, so in the limiting distribution, the point 0 will have

positive constant mass.

In [20], Dekel, Lee and Linial, motivated by the study of nodal domains, raised the

following question.

Question 43. Is it true that almost surely every eigenvector u of G(n, p) has ||u||∞ =

o(1)?
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Later, in their journal paper [21], the authors added one sharper question.

Question 44. Is it true that almost surely every eigenvector u of G(n, p) has ||u||∞ =

n−1/2+o(1)?

The bound n−1/2+o(1) was also conjectured by V. Vu of this paper in an NSF pro-

posal (submitted Oct 2008). He and Tao [66] proved this bound for eigenvectors cor-

responding to the eigenvalues in the bulk of the spectrum for the case p = 1/2. If one

defines the adjacency matrix by writting −1 for non-edges, then this bound holds for

all eigenvectors [66, 64].

The above two questions were raised under the assumption that p is a constant in

the interval (0, 1). For p depending on n, the statements may fail. If p ≤ (1−ε) logn
n ,

then the graph has (with high probability) isolated vertices and so one cannot expect

that ‖u‖∞ = o(1) for every eigenvector u. We raise the following questions:

Question 45. Assume p ≥ (1+ε) logn
n for some constant ε > 0. Is it true that almost

surely every eigenvector u of G(n, p) has ||u||∞ = o(1)?

Question 46. Assume p ≥ (1+ε) logn
n for some constant ε > 0. Is it true that almost

surely every eigenvector u of G(n, p) has ||u||∞ = n−1/2+o(1)?

Our main result settles (positively) Question 44 and almost Question 45 . This

result follows from Corollary 52 obtained in Section 2.

Theorem 47. (Infinity norm of eigenvectors) Let p = ω(log n/n) and let An be the

adjacency matrix of G(n, p). Then there exists an orthonormal basis of eigenvectors of

An, {u1, . . . , un}, such that for every 1 ≤ i ≤ n, ||ui||∞ = o(1) almost surely.

For Questions 43 and 46, we obtain a good quantitative bound for those eigenvectors

which correspond to eigenvalues bounded away from the edge of the spectrum.

Definition 48. Let E be an event depending on n. Then E holds with overwhelming

probability if P(E) ≥ 1− exp(−ω(log n)).

For convenience, in the case when p = ω(log n/n) ∈ (0, 1), we write

p =
g(n) log n

n
,
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where g(n) is a positive function such that g(n) → ∞ as n → ∞ (g(n) can tend to ∞

arbitrarily slowly).

Theorem 49. Assume p = g(n) log n/n ∈ (0, 1), where g(n) is defined as above. Let

Bn = 1√
nσ
An. For any κ > 0, and any 1 ≤ i ≤ n with λi(Bn) ∈ [−2 + κ, 2 − κ],

there exists a corresponding eigenvector ui such that ||ui||∞ = Oκ(
√

log2.2 g(n) logn
np )with

overwhelming probability.

4.2 A small perturbation lemma

An is the adjacency matrix of G(n, p). In the proofs of Theorem 47 and Theorem 49,

we actually work with the eigenvectors of a perturbed matrix

An + εNn,

where ε = ε(n) > 0 can be arbitrarily small and Nn is a symmetric random matrix whose

upper triangular elements are independent with a standard Gaussian distribution.

The entries of An+ εNn are continuous and thus with probability 1, the eigenvalues

of An + εNn are simple. Let

µ1 < . . . < µn

be the ordered eigenvalues of An + εNn, which have a unique orthonormal system

of eigenvectors {w1, . . . , wn}. By the Cauchy interlacing principle, the eigenvalues of

An + εNn are different from those of its principal minors, which satisfies a condition of

Lemma 27.

Let λi’s be the eigenvalue of An with multiplicity ki that are defined in increasing

order:

. . . λi−1 < λi = λi+1 = . . . = λi+ki < λi+ki+1 . . .

By Weyl’s theorem, one has for every 1 ≤ j ≤ n,

|λj − µj | ≤ ε||Nn||op = O(ε
√
n). (4.1)

Thus the behaviors of eigenvalues of An and An + εNn are essentially the same by

choosing ε sufficiently small. And everything (except Lemma 27) we used in the proofs
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of Theorem 47 and Theorem 49 for An also applies for An + εNn by a continuity

argument. We will not distinguish An from An + εNn in the proofs.

The following lemma will allow us to transfer the eigenvector delocalization results

of An + εNn to those of An at some expense.

Lemma 50. With the notation above, there exists an orthonormal basis of eigenvectors

of An, denoted by {u1, . . . , un}, such that for every 1 ≤ j ≤ n,

||uj ||∞ ≤ ||wj ||∞ + α(n),

where α(n) can be arbitrarily small provided ε(n) is small enough.

Proof. First, since the coefficients of the characteristic polynomial of An are integers,

there exists a positive function l(n) such that either |λs−λt| = 0 or |λs−λt| ≥ l(n) for

any 1 ≤ s, t ≤ n.

By (4.1) and choosing ε sufficiently small, one can get

|µi − λi−1| > l(n) and |µi+ki − λi+ki+1| > l(n)

For a fixed index i, let E be the eigenspace corresponding to the eigenvalue λi and

F be the subspace spanned by {wi, . . . , wi+ki}. Both of E and F have dimension ki.

Let PE and PF be the orthogonal projection matrices onto E and F separately.

Applying the well-known Davis-Kahan theorem (see [59] Section IV, Theorem 3.6)

to An and An + εNn, one gets

||PE − PF ||op ≤
ε||Nn||op
l(n)

:= α(n),

where α(n) can be arbitrarily small depending on ε.

Define vj = PEwj ∈ E for i ≤ j ≤ i + ki, then we have ||vj − wj ||2 ≤ α(n). It is

clear that {vi, . . . , vki} are eigenvectors of An and

||vj ||∞ ≤ ||wj ||∞ + ||vj − wj ||2 ≤ ||wj ||∞ + α(n).

By choosing ε small enough such that nα(n) < 1/2, {vi, . . . , vki} are linearly inde-

pendent. Indeed, if
∑ki

j=i cjvj = 0, one has for every i ≤ s ≤ i+ki,
∑ki

j=i cj〈PEwj , ws〉 =
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0, which implies cs = −∑ki
j=i cj〈PEwj − wj , ws〉. Thus |cs| ≤ α(n)

∑ki
j=i |cj |, summing

over all s, we can get
∑ki

j=i |cj | ≤ kα(n)
∑ki

j=i |cj | and therefore cj = 0.

Furthermore the set {vi, . . . , vki} is “almost” an orthonormal basis of E in the sense

that

| ||vs||2 − 1 | ≤ ||vs − ws||2 ≤ α(n) for any i ≤ s ≤ i+ ki

|〈vs, vt〉| = |〈PEws, PEwt〉|

= |〈PEws − ws, PEwt〉+ 〈ws, PEwt − wt〉|

= O(α(n)) for any i ≤ s 6= t ≤ i+ ki

We can perform a Gram-Schmidt process on {vi, . . . , vki} to get an orthonormal

system of eigenvectors {ui, . . . , uki} on E such that

||uj ||∞ ≤ ||wj ||∞ + α(n),

for every i ≤ j ≤ i+ ki.

We iterate the above argument for every distinct eigenvalue of An to obtain an

orthonormal basis of eigenvectors of An.

4.3 Proof of Theorem 47

A key ingredient is the following concentration lemma.

Lemma 51. Let M be a n×n Hermitian random matrix whose off-diagonal entries ξij

are i.i.d. random variables with mean zero, variance 1 and |ξij | < K for some common

constant K. Fix δ > 0 and assume that the fourth moment M4 := supi,j E(|ξij |4) =

o(n). Then for any interval I ⊂ [−2, 2] whose length is at least Ω(δ−2/3(M4/n)1/3),

there is a constant c such that the number NI of the eigenvalues of Wn = 1√
n
M which

belong to I satisfies the following concentration inequality

P(|NI − n
∫
I
ρsc(t)dt| > δn

∫
I
ρsc(t)dt) ≤ 4 exp(−cδ

4n2|I|5
K2

).

The proof of Lemma 51 uses the approach of Guionnet and Zeitouni in [39]. Intu-

itively, one tries to apply Lemma 8 with

Z = NI =
n∑
i=1

1{λi(Wn)∈I}.
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However, the characteristic function 1{λi(Wn)∈I} is neither convex nor Lipschitz. Thus

we construct two auxiliary functions (piecewise linear, convex and Lipschitz) suggested

as in [39] to overcome the technical difficulty (see [67] for details).

Apply Lemma 51 for the normalized adjacency matrix Mn of G(n, p) with K = 1/
√
p

we obtain

Theorem 52. Consider the model G(n, p) with np → ∞ as n → ∞ and let δ > 0.

Then for any interval I ⊂ [−2, 2] with length at least
( log(np)

δ4(np)1/2

)1/5
, we have

|NI − n
∫
I
ρsc(x)dx| ≥ δn

∫
I
ρsc(x)dx

with probability at most exp(−cn(np)1/2 log(np)).

Lemma 53. Let Y = (ζ1, . . . , ζn) ∈ Cn be a random vector whose entries are i.i.d.

copies of the random variable ζ = ξ − p (with mean 0 and variance σ2). Let H be a

subspace of dimension d and πH the orthogonal projection onto H. Then

P(| ‖ πH(Y ) ‖ −σ
√
d| ≥ t) ≤ 10 exp(− t

2

4
).

In particular,

‖ πH(Y ) ‖= σ
√
d+O(ω(

√
log n)) (4.2)

with overwhelming probability.

Proof. The coordinates of Y are bounded in magnitude by 1. Apply Talagrand’s in-

equality to the map Y → ||πH(Y )||, which is convex and 1-Lipschitz. We can conclude

P(| ‖ πH(Y ) ‖ −M(‖ πH(Y ) ‖)| ≥ t) ≤ 4 exp(− t
2

16
) (4.3)

where M(‖ πH(Y ) ‖) is the median of ‖ πH(Y ) ‖.

Let P = (pij)1≤i,j≤n be the orthogonal projection matrix onto H.

One has trace(P 2) = trace(P ) =
∑

i pii = d and |pii| ≤ 1, as well as,

‖ πH(Y ) ‖2 =
∑

1≤i,j≤n
pijζiζj =

n∑
i=1

piiζ
2
i +

∑
i 6=j

pijζiζj
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and

E‖ πH(Y ) ‖2 = E(

n∑
i=1

piiζ
2
i ) + E(

∑
i 6=j

pijζiζj) = σ2d.

Take L = 4/σ. To complete the proof, it suffices to show

|M(‖ πH(Y ) ‖)− σ
√
d| ≤ Lσ. (4.4)

Consider the event E+ that ‖ πH(Y ) ‖≥ σL+σ
√
d, which implies that ‖ πH(Y ) ‖2 ≥

σ2(L2 + 2L
√
d+ d2).

Let S1 =
∑n

i=1 pii(ζ
2
i − σ2) and S2 =

∑
i 6=j pijζiζj . Now we have

P(E+) ≤ P(

n∑
i=1

piiζ
2
i ≥ σ2d+ L

√
dσ2) + P(

∑
i 6=j

pijζiζj ≥ σ2L
√
d).

By Chebyshev’s inequality,

P(

n∑
i=1

piiζ
2
i ≥ σ2d+ L

√
dσ2) = P(S1 ≥ L

√
dσ2)) ≤ E(|S1|2)

L2dσ4
,

where E(|S1|2) = E(
∑

i pii(ζ
2
i − σ2))2 =

∑
i p

2
iiE(ζ4i − σ4) ≤ dσ2(1 − 2σ2). Therefore,

P(S1 ≥ L
√
dσ4) ≤ dσ2(1− 2σ2)

L2dσ4
<

1

16
.

On the other hand, we have E(|S2|2) = E(
∑

i 6=j p
2
ijζ

2
i ζ

2
j ) ≤ σ4d and

P(
∑
i 6=j

pijζiζj ≥ σ2L
√
d) = P(S2 ≥ L

√
dσ2) ≤ E(|S2|2)

L2dσ4
<

1

10
.

It follows that P(E+) < 1/4 and hence M(‖ πH(Y ) ‖) ≤ Lσ +
√
dσ.

For the lower bound, consider the event E− that ‖ πH(Y ) ‖≤
√
dσ − Lσ and notice

that

P(E−) ≤ P(S1 ≤ −L
√
dσ2) + P(S2 ≤ −L

√
dσ2).

The same argument applies to get M(‖ πH(Y ) ‖) ≥
√
dσ − Lσ. Now the relations

(4.3) and (4.4) together imply (4.2).

Let λn(An) be the largest eigenvalue ofAn and u = (u1, . . . , un) be the corresponding

unit eigenvector. We have the lower bound λn(An) ≥ np. And if np = ω(log n), then

the maximum degree ∆ = (1 + o(1))np almost surely (See Corollary 3.14, [15]).
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For every 1 ≤ i ≤ n,

λn(An)ui =
∑
j∈N(i)

uj ,

where N(i) is the neighborhood of vertex i. Thus, by Cauchy-Schwarz inequality,

||u||∞ = maxi
|∑j∈N(i) uj |
λn(An)

≤
√

∆

λn(An)
= O(

1√
np

).

Let Bn = 1√
nσ
An. Since the eigenvalues of Wn = 1√

nσ
(An− pJn) are on the interval

[−2, 2], by Lemma 41, {λ1(Bn), . . . , λn−1(Bn)} ⊂ [−2, 2].

Recall that np = g(n) log n. By Corollary 52, for any interval I with length at least

( log(np)

δ4(np)1/2
)1/5,with overwhelming probability, if I ⊂ [−2 + κ, 2 − κ] for some positive

constant κ, one has NI(Bn) = Θ(n
∫
I ρsc(x)dx) = Θ(n|I|); if I is at the edge of [−2, 2],

with length o(1), one has NI(Bn) = Θ(n
∫
I ρsc(x)dx) = Θ(n|I|3/2). Thus we can find a

set J ⊂ {1, . . . , n − 1} with |J | = Ω(n|I0|) or |J | = Ω(n|I0|3/2) such that |λj(Bn−1) −

λi(Bn)| � |I0| for all j ∈ J , where Bn−1 is the bottom right (n− 1)× (n− 1) minor of

Bn. Here we take |I0| = (1/g(n)1/20)2/3. It is easy to check that |I0| ≥ ( log(np)

δ4(np)1/2
)1/5.

By the formula in Lemma 27, the entry of the eigenvector of Bn can be expressed

as

|x|2 =
1

1 +
∑n−1

j=1 (λj(Bn−1)− λi(Bn))−2|uj(Bn−1)∗ 1√
nσ
X|2

≤ 1

1 +
∑

j∈J(λj(Bn−1)− λi(Bn))−2|uj(Bn−1)∗ 1√
nσ
X|2

≤ 1

1 +
∑

j∈J n
−1|I0|−2|uj(Bn−1)∗ 1σX|2

=
1

1 + n−1|I0|−2||πH(Xσ )||2

≤ 1

1 + n−1|I0|−2|J |

(4.5)

with overwhelming probability, where H is the span of all the eigenvectors associated

to J with dimension dim(H) = Θ(|J |), πH is the orthogonal projection onto H and

X ∈ Cn−1 has entries that are iid copies of ξ. The last inequality in (4.5) follows from

Lemma 53 (by taking t = g(n)1/10
√

log n) and the relations

||πH(X)|| = ||πH(Y + p1n)|| ≥ ||πH1(Y + p1n)|| ≥ ||πH1(Y )||.

Here Y = X − p1n and H1 = H ∩ H2, where H2 is the space orthogonal to the all 1

vector 1n. For the dimension of H1, dim(H1) ≥ dim(H)− 1 .
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Since either |J | = Ω(n|I0|) or |J | = Ω(n|I0|3/2), we have n−1|I0|−2|J | = Ω(|I0|−1)

or n−1|I0|−2|J | = Ω(|I0|−1/2). Thus |x|2 = O(|I0|) or |x|2 = O(
√
|I0|). In both cases,

since |I0| → 0, it follows that |x| = o(1). �

4.4 Proof of Theorem 49

The following concentration lemma for G(n, p) will be a key input to prove Theorem 49.

The proof is very similar to that of Theorem 25 and is omitted here. Let Bn = 1√
nσ
An.

Lemma 54 (Concentration for ESD in the bulk). Assume p = g(n) log n/n. For any

constants ε, δ > 0 and any interval I in [−2+ε, 2−ε] with |I| = Ω(log2.2 g(n) log n/np),

the number of eigenvalues NI of Bn in I obeys the concentration estimate

|NI(Bn)− n
∫
I
ρsc(x) dx| ≤ δn|I|

with overwhelming probability.

With the formula in Lemma 27, it suffices to show the following lower bound

n−1∑
j=1

(λj(Bn−1)− λi(Bn))−2|uj(Bn−1)∗
1√
nσ

X|2 � np

log2.2 g(n) log n
(4.6)

with overwhelming probability, where Bn−1 is the bottom right n− 1× n− 1 minor of

Bn and X ∈ Cn−1 has entries that are iid copies of ξ. Recall that ξ takes values 1 with

probability p and 0 with probability 1− p, thus Eξ = p,Varξ = p(1− p) = σ2.

By Lemma 54, we can find a set J ⊂ {1, . . . , n − 1} with |J | � log2.2 g(n) logn
p such

that |λj(Bn−1) − λi(Bn)| = O(log2.2 g(n) log n/np) for all j ∈ J . Thus in (4.6), it is

enough to prove ∑
j∈J
|uj(Bn−1)T

1

σ
X|2 = ||πH(

X

σ
)||2 � |J |

or equivalently

||πH(X)||2 � σ2|J | (4.7)

with overwhelming probability, where H is the span of all the eigenvectors associated

to J with dimension dim(H) = Θ(|J |).
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Let H1 = H ∩H2, where H2 is the space orthogonal to 1n. The dimension of H1 is

at least dim(H) − 1. Denote Y = X − p1n. Then the entries of Y are iid copies of ζ.

By Lemma 53,

||πH1(Y )||2 � σ2|J |

with overwhelming probability.

Hence, our claim follows from the relations

||πH(X)|| = ||πH(Y + p1n)|| ≥ ||πH1(Y + p1n)|| = ||πH1(Y )||.

4.5 Proof of Theorem 42

We will show that the semicircle law holds for Mn. With Lemma 41, it is clear that

Theorem 42 follows Lemma 55 directly. The claim actually follows as a special case

discussed in the paper [18]. Our proof here uses a standard moment method.

Lemma 55. For p = ω( 1
n), the empirical spectral distribution (ESD) of the matrix

Wn = 1√
n
Mn converges in distribution to the semicircle law which has a density ρsc(x)

with support on [−2, 2],

ρsc(x) :=
1

2π

√
4− x2.

Let ηij be the entries of Mn = σ−1(An− pJn). For i = j, ηij = −p/σ; and for i > j,

ηij are iid copies of random variable η, which takes value (1− p)/σ with probability p

and takes value −p/σ with probability 1− p.

Eη = 0,Eη2 = 1,Eηs = O

(
1

(
√
p)s−2

)
for s ≥ 2.

For a positive integer k, the kth moment of ESD of the matrix Wn is∫
xkdFWn (x) =

1

n
E(Trace(Wn

k)),

and the kth moment of the semicircle distribution is∫ 2

−2
xkρsc(x)dx.
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On a compact set, convergence in distribution is the same as convergence of mo-

ments. To prove the theorem, we need to show, for every fixed number k,

1

n
E(trace(Wn

k))→
∫ 2

−2
xkρsc(x)dx, as n→∞. (4.8)

For k = 2m+ 1, by symmetry, ∫ 2

−2
xkρsc(x)dx = 0.

For k = 2m, ∫ 2

−2
xkρsc(x)dx =

1

m+ 1

(
2m

m

)
Thus our claim (4.8) follows by showing that

1

n
E(trace(Wn

k)) =


O( 1√

np) if k = 2m+ 1;

1
m+1

(
2m
m

)
+O( 1

np) if k = 2m.

(4.9)

We have the expansion for the trace of Wn
k,

1

n
E(trace(Wn

k)) =
1

n1+k/2
E(trace(Mn)k)

=
1

n1+k/2

∑
1≤i1,...,ik≤n

Eηi1i2ηi2i3 · · · ηiki1
(4.10)

Each term in the above sum corresponds to a closed walk of length k on the complete

graph Kn on {1, 2, . . . , n}. On the other hand, ηij are independent with mean 0. Thus

the term is nonzero if and only if every edge in this closed walk appears at least twice.

And we call such a walk a good walk. Consider a good walk that uses l different edges

e1, . . . , el with corresponding multiplicities m1, . . . ,ml, where l ≤ m, each mh ≥ 2 and

m1 + . . .+ml = k. Now the corresponding term to this good walk has form

Eηm1
e1 · · · ηmlel .

Since such a walk uses at most l + 1 vertices, a naive upper bound for the number

of good walks of this type is nl+1.
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When k = 2m+ 1, recall Eηs = Θ
(
(
√
p)2−s

)
for s ≥ 2, and so

1

n
E(Trace(Wn

k)) =
1

n1+k/2

m∑
l=1

∑
good walk of l edges

Eηm1
e1 · · · ηmlel

≤ 1

nm+3/2

m∑
l=1

nl+1(
1√
p

)m1−2 . . . (
1√
p

)ml−2

= O(
1√
np

).

When k = 2m, we classify the good walks into two types. The first kind uses

l ≤ m− 1 different edges. The contribution of these terms will be

1

n1+k/2

m−1∑
l=1

∑
1st kind of good walk of l edges

Eηm1
e1 · · · ηmlel

≤ 1

n1+m

m−1∑
l=1

nl+1(
1√
p

)m1−2 . . . (
1√
p

)ml−2

= O(
1

np
).

The second kind of good walk uses exactly l = m different edges and thus m + 1

different vertices. And the corresponding term for each walk has form

Eη2e1 · · · η2el = 1.

The number of this kind of good walk is given by the following result in the paper

([4], Page 617–618), which completes the proof of (4.8).

Lemma 56. The number of the second kind of good walk is

nm+1(1 +O(n−1))

m+ 1

(
2m

m

)
.

Then the second conclusion of (4.8) follows.

On the other hand,

Var(
1

n
E(trace(W k

n ))) = E(
1

n
trace(W k

n ))2 − (E(
1

n
trace(W k

n )))2

=
1

n2+k

E(
∑

1≤i1,...,ik≤n
ηi1i2ηi2i3 · · · ηiki1)2 − (E

∑
1≤i1,...,ik≤n

ηi1i2ηi2i3 · · · ηiki1)2


=

1

n2+k

∑
i

∑
j

[E(X(i)X(j)−E(X(i))E(X(j))],

(4.11)



68

where

X(i) :=
∑

1≤i1,...,ik≤n
ηi1i2ηi2i3 · · · ηiki1

and

X(j) :=
∑

1≤j1,...,jk≤n
ηj1j2ηj2j3 · · · ηjkj1 .

We still consider the term X(i) as a correspondence to a closed walk K(i) of length k on

the complete graph Kn on {1, 2, . . . , n}. If any edge in the closed walk in K(i) or K(j)

appears just once, then E(X(i)X(j)− E(X(i))E(X(j)) = 0 because the E(ηij) = 0. If

K(i) and K(j) do not share edges, then E(X(i)X(j) = E(X(i))E(X(j)).

Thus the nonzero contribution in (4.11) comes from the closed walk on {i1, i2, . . . , ik}

∪{j1, j2, . . . , jk} that each edge appears at least twice and there is at one edge that

appears four times. It is clear that such a closed walk can use at most k vertices. We

can use a trial upper bound nk for the number of such closed walks. Therefore,

Var(
1

n
E(trace(W k

n )))� n−2.

For each k, by Chebyshev’s inequality, for any constant ε > 0,

P(| 1
n

trace(W k
n )− 1

n
E(trace(W k

n ))| ≥ ε) = Oε(n
−2),

which implies that

∑
n

P(| 1
n

trace(W k
n )− 1

n
E(trace(W k

n ))| ≥ ε) <∞.

By Borel–Cantelli lemma, we have

1

n
trace(W k

n )→ 1

n
E(trace(W k

n ))

in probability. And together with (4.8), we have shown for each k, as n tends to infinity,

1

n
trace(W k

n )→
∫ 2

−2
xkρsc(x)dx

in probability. This completes the proof of Theorem 42.
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[50] S. Péché and A. Soshnikov. Wigner random matrices with non-symmetrically
distributed entries. Journal of Statistical Physics, 129(5):857–884, 2007.

[51] N.S. Pillai and J. Yin. Universality of covariance matrices. Arxiv preprint
arXiv:1110.2501, 2011.

[52] A. Pothen, H.D. Simon, and K.P. Liou. Partitioning sparse matrices with eigen-
vectors of graphs. SIAM Journal on Matrix Analysis and Applications, 11:430,
1990.

[53] G. Semerjian and L.F. Cugliandolo. Sparse random matrices: the eigenvalue spec-
trum revisited. Journal of Physics A: Mathematical and General, 35:4837–4851,
2002.

[54] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions
on pattern analysis and machine intelligence, 22(8):888–905, 2000.

[55] A. Soshnikov. Universality at the edge of the spectrum in wigner random matrices.
Commun. Math. Phys., 207(3):697–733, 1999.

[56] A. Soshnikov. A note on universality of the distribution of the largest eigenvalues
in certain sample covariance matrices. Journal of Statistical Physics, 108(5):1033–
1056, 2002.

[57] A. Soshnikov. Poisson statistics for the largest eigenvalues in random matrix en-
sembles. Mathematical physics of quantum mechanics, pages 351–364, 2006.

[58] J. M. Steele. Probability theory and combinatorial optimization. Society for Indus-
trial Mathematics, 1987.

[59] G.W. Stewart and Ji-guang. Sun. Matrix perturbation theory. Academic press New
York, 1990.

[60] M. Talagrand. A new look at independence. The Annals of probability, 24(1):1–34,
1996.

[61] T. Tao. Topics in random matrix theory, volume 132. Amer Mathematical Society,
2012.

[62] T. Tao and V. Vu. Random covariance matrices: Universality of local statistics of
eigenvalues. Arxiv preprint arXiv:0912.0966, 2009.



73

[63] T. Tao and V. Vu. Random matrices: The distribution of the smallest singular
values. Geometric And Functional Analysis, 20(1):260–297, 2010.

[64] T. Tao and V. Vu. Random matrices: Universality of local eigenvalue statistics up
to the edge. Communications in Mathematical Physics, pages 1–24, 2010.

[65] T. Tao and V. Vu. Random matrices: Universal properties of eigenvectors. Arxiv
preprint arXiv:1103.2801, 2011.

[66] T. Tao and V. Vu. Random matrices: Universality of local eigenvalue statistics.
Acta mathematica, 206(1):127–204, 2011.

[67] L. Tran, V. Vu, and K. Wang. Sparse random graphs: Eigenvalues and eigenvec-
tors. Random Structures & Algorithms, 2012.
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