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ABSTRACT OF THE DISSERTATION

Asymptotic behavior of solutions to the conformal quotient

equation

by Yunpeng Wang

Dissertation Director: Professor YanYan Li

We classify all radial admissible solutions to the conformal quotient equation on the

punctured Euclidean space and prove that an admissible solution to the conformal

quotient equation with an isolated singular point is asymptotic to a radial solution. We

also provide an alternative proof to obtain higher order expansion of solutions using

analysis of the linearized operators. This dissertation is based on a preprint of the

author [89].
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Chapter 1

Introduction

One of the most important problems in conformal geometry is the Yamabe Problem,

which is to determine whether there exists a conformal metric with constant scalar

curvature on any closed Riemannian manifold. In what follows, let n ≥ 3 and (Mn, g0)

be an n-dimensional compact Riemannian manifold with metric g0, Rg0 be the scalar

curvature of metric g0. Denoting the conformal change of metric as g = u
4

n−2 g0 for

some positive function u, Rg and Rg0 are related by the equation:

−∆g0u+
n− 2

4(n− 1)
Rg0u =

n− 2

4(n− 1)
Rgu

n+2
n−2 , (1.0.1)

where ∆g0 is the Laplace-Beltrami operator. The Yamabe problem is to solve (1.0.1)

for a positive function u with Rg ≡ c for some constant c.

The Yamabe problem has been solved through the works of Yamabe [90], Trudinger

[83], Aubin [1], and Schoen [77]. A crucial ingredient in their solution is to verify a

criteria for compactness of a minimizing sequence of the functional associated with

(1.0.1) and in the solution by Aubin, the non-vanishing of the Weyl tensor (a local

conformal invariant) plays the role in dimensions n ≥ 6 for (Mn, g) which is not locally

conformally �at. The remaining cases require a global invariant and Schoen used the

Positive Mass Theorem to complete the solution. An important fact is that SO(n+1, 1),

the group of conformal transformations of the n-sphere Sn with the round metric, is

non-compact. In [79], Schoen proved that if (M, g) is locally conformally �at and is

not conformally di�eomorphic to standard spheres, then the space of all solutions to

(1.0.1) is compact. When (Mn, g) is not locally conformally �at, the same conclusion

has been proved to hold by Li-Zhang [63] and Marques [68] independently in dimensions

n ≤ 7. For n = 3, 4, 5, see works of Druet [22, 23], Li-Zhu [65] and Li-Zhang [62]. For

8 ≤ n ≤ 24, it has been proved that this compactness result holds under the assumption
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that the Positive Mass Theorem holds in these dimensions; see Li-Zhang [63, 64] for

8 ≤ n ≤ 11, and Khuri-Marques-Schoen [45] for 12 ≤ n ≤ 24. On the other hand, there

exist counterexamples in dimensions n ≥ 25; see Brendle [6] for n ≥ 52, and Brendle

and Marques [7] for 25 ≤ n ≤ 50. For the corresponding problem to prescribe scalar

curvature, see, e.g., [3, 12, 17, 18, 19, 20, 41, 46, 55, 56, 57, 75, 80].

In recent years, there are many works on studying a fully nonlinear Yamabe Problem.

We recall the Schouten tensor

Ag =
1

n− 2

(
Ricg −

Rg
2(n− 1)

g

)
,

where Ricg denotes the Ricci tensor of g. This tensor arises naturally in the decompo-

sition of the full Riemannian curvature tensor

Rm = Wg +Ag � g,

where Wg is the Weyl tensor and � denotes the Kulkari-Nomizu product [4]. Since Wg

is conformally invariant, the behavior of the full curvature tensor under a conformal

change of metric is entirely determined by the Schouten tensor. Let F denote any

symmetric function of the eigenvalues, which is homogeneous of degree one, and consider

the equation

F (g) := F
(
g−1Ag

)
= constant. (1.0.2)

Under the conformal change g = e2ωg0, the Schouten tensor transforms as

Ag =

[
∇2ω + dω ⊗ dω − 1

2
|∇ω|2g0

]
+Ag0 ,

so equation (1.0.2) is equivalent to

F

(
g−1

(
∇2ω + dω ⊗ dω − |∇ω|

2

2
g0 +Ag0

))
= constant.

Let λ = (λ1, λ2, · · · , λn) be the set of eigenvalues of a symmetric n × n matrix A and

for 1 ≤ k ≤ n, σk denote the kth elementary symmetric function of the eigenvalues

σk(λ) =
∑

i1<···<ik

λi1 · · ·λik ,
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for the case of F = σ
1
k
k , the equation (1.0.2) has become known as the σk-Yamabe

equation :

σk(g) = constant. (1.0.3)

Let

Γ+
k = {Λ = (λ1, λ2, · · · , λn) ∈ Rn |σj(Λ) > 0,∀1 ≤ j ≤ k},

and we say g ∈ Γ+
k if g−1 ·Ag ∈ Γ+

k for every point x ∈M. We call ω k-admissible or in

the Γ+
k class in some region if e−2ωg0 ∈ Γ+

k there. If the metric g is k-admissible, then

the linearization of (1.0.3) at g is elliptic, and Guan-Viaclovsky-Wang[34] also proved

the algebraic fact that λ(Ag) ∈ Γ+
k for k ≥ n

2 implies the positivity of the Ricci tensor

(see also [14, 38]). When k = 1, σ1(Ag) = 1
2(n−1)Rg and (1.0.3) is the Yamabe equation.

When k = n, σn(Ag) = determinant of Ag. Fully nonlinear elliptic equations involving

F
(
λ
(
∇2u

))
have been investigated in the classic paper of Ca�arelli-Nirenberg-Spruck

[8]. Fully nonlinear elliptic equations involving the Schouten tensor and applications to

geometry and topology have been studied extensively in and after the pioneering works

of Viaclovsky [86, 87, 88] and Chang-Gursky-Yang [13, 14, 15, 16].

When k 6= n
2 and the manifold (M, g) is locally conformally �at, the equation

(1.0.3) is the Euler-Lagrange equation of the variational functional
∫
σk(Ag)dvg, and

in the exceptional case k = n
2 , the integral

∫
σk(Ag)dvg is a conformal invariant, see

viaclovsky [86]. We remark that when n = 4 and k = 2, the invariance of the integral∫
σ2(Ag)dvg is a re�ection of the Chern-Gauss-Bonnet formula [4]

8π2χ(M) =

∫
M

(
1

4
|W |2 + 4σ2(Ag)dvg.

In the case that (Mn, g) is locally conformally �at, there is much progress on the study

of the σk equation when the conformal structure admits metrics whose Schouten tensor

belongs to the cone Γ+
k . This is largely due to the result of Schoen-Yau [81] which as-

sures that the developing map of locally conformally �at manifolds having nonnegative

Yamabe invariants realizes the holonomy cover as a domain in Sn, and in addition,

the complement of Ω has small Hausdor� dimension: dim(Sn\Ω) ≤ n−2
2 , so that the

method of moving planes may be used to derive a priori estimates for such equations.

In particular Li-Li [52] classi�ed all of the solutions of the equation (1.0.3) on Rn, thus
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providing a priori estimates for this equation in the locally conformally �at case. Sub-

sequently, their results has been generalized to much more general classes of symmetric

functions F , see Li-Li [51, 53, 54]. In addition, Guan-Wang [36] applied the heat �ow

associated to the σk (k 6= n
2 ) equation to derive the conformally invariant Sobolev in-

equality for locally conformally �at manifolds. When (Mn, g) is locally conformally

�at, the existence of solution to (1.0.3) was obtained by Guan-Wang and Li-Li indepen-

dently in the above mentioned papers. In the case of general manifold, the existence

of solution to (1.0.3) was given by Chang-Gursky-Yang [14] �rst for k = 2, n = 4. As

for the existence result in arbitrary dimension n ≥ 3, when k = 2, see Ge-Wang [27]

and Sheng-Trudinger-Wang [82]; When k = n
2 , see Li-Nguyen [61] and Trudinger-Wang

[84]; When k > n
2 , see Gursky-viaclovsky [39, 40].

The proof of existence and compactness of solutions to (1.0.3) involves a bubbling

analysis, and the applications of various estimate techniques to determine the growth

rate of solutions at isolated singular points. Recall that a classical theorem of Bôcher [5]

asserts that any positive harmonic function in the punctured ball B1\{0} ⊂ Rn can be

expressed as the sum of a multiple of the fundamental solution of the Laplace equation

and a harmonic function in the whole unit ball B1. This can be viewed as a statement on

the asymptotic behavior of a positive harmonic function near its isolated singularities.

And a remarkable work related to the Yamabe problem by Ca�arelli-Gidas-Spruck [9]

proved the asymptotic radial symmetry of positive singular solutions to the conformal

scalar curvature equation

−∆u(x) =
n(n− 2)

4
u
n+2
n−2 (x) (1.0.4)

on a punctured ball, and further proved that such solutions are asymptotic to radial

singular solutions to (1.0.4) on Rn\{0}. Speci�cally, for any singular solution u(x) to

(1.0.4) in B1\{0}, there exists a radial singular solution u∗(|x|) to (1.0.4) on Rn\{0}

and some α > 0 such that

u(x) = u∗(|x|) (1 +O(|x|α)) as |x| → 0. (1.0.5)

In the same paper, they also proved that any positive solution to

−∆u(x) =
n(n− 2)

4
u
n+2
n−2 (x) on Rn
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is of the form

ua(x) =

(
2a

1 + a2|x− x̄|2

)n−2
2

for some x̄ ∈ Rn and a > 0. We note ua(x) is a sequence of functions whose norm

are constant in W 1,2(Rn), and the weak limit of the sequence is zero; hence it does not

have a convergent subsequence in L
2n
n−2 . This lack of compactness turns out to be at

the heart of many problems. A key ingredient in the proof of [9] uses a �measure theo-

retic� variation of the moving plane technique, while Korevaar-Mazzeo-Pacard-Schoen

[47] proved (1.0.5) through an analysis of linearized operators at those global singular

solutions. For the study of singular solutions to (1.0.1) in the positive scalar curvature

case, Schoen-Yau [81] proved that if a complete conformal metric g exists on a domain

Ω ⊂ Sn with σ1(Ag) having a positive lower bound, then the Hausdor� dimension of

∂Ω has to be ≤ (n − 2)/2. In [78] Schoen constructed complete conformal metrics on

Sn\Λ when Λ is either a �nite discrete set on Sn containing at least two points or a set

arising as the limit set of a Kleinian group action. Later Mazzeo-Pacard gave another

proof of this result in [70]; they also proved in [69] that if Ω ⊂ Sn is a domain such

that Sn\Ω consists of a �nite number of disjoint smooth submanifolds of dimension

1 ≤ k ≤ (n − 2)/2, then one can �nd a complete conformal metric g on Ω with its

scalar curvature identical to +1. For the negative scalar curvature case, the results

of Loewner-Nirenberg [66], Aviles [2], and Veron [85] imply that if Ω ⊂ Sn admits a

complete, conformal metric with negative constant scalar curvature, then the Hausdor�

dimension of ∂Ω > (n−2)/2. Loewer-Nirenberg [66] also proved that if Ω ⊂ Sn is a do-

main with smooth boundary ∂Ω of dimension> (n− 2)/2, then there exists a complete

conformal metric g on Ω with σ1(Ag) = −1. This result was later generalized by D.

Finn [24] to the case of ∂Ω consisting of smooth submanifolds of dimension> (n− 2)/2

and with boundary, see also [48, 49, 67, 74, 72] and the references therein.

Advancing beyond the singular Yamabe Problem case, there are some relevant re-

search on the singular solution to (1.0.3). Chang-Han-Yang [10] classi�ed all possible

radial solutions to (1.0.3) in Γ±k class on an annular domain including punctured ball

and punctured Euclidean space. In [58], Li proved that an admissible solution with an

isolated singularity at 0 ∈ Rn to (1.0.2) is asymptotically radially symmetric. Later
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Han-Li-Teixeira [43] studied the singular solution of (1.0.3) on a punctured ball when

2 ≤ k ≤ n. Let (r, θ) be the polar coordinates such that x = rθ = |x|θ with θ ∈ Sn−1,

t = − ln r be the cylindrical variable, and

g = u
4

n−2 (x)|dx|2 = e−2ω(t,θ)(dt2 + dθ2).

Then with the �exibility of treating (1.0.3) either as an equation for u(x) on BR\{0}

or as an equation for ω(t, θ) on a cylinder {(t, θ) : t > − lnR, θ ∈ Sn−1} with respect to

the background metric dt2 + dθ2, they were able to prove (1.0.5) and

|ω(t, θ)− ω∗(t)| ≤ Ce−αt for t→∞.

Also Chang-Hang-Yang [11] proved that if Ω ⊂ Sn (n ≥ 5) admits a complete, conformal

metric g with

σ1(Ag) ≥ c1 > 0, σ2(Ag) ≥ 0, and |Rg|+ |∇gRg| ≤ c0, (1.0.6)

then dim(Sn\Ω) < (n−4)/2. This has been generalized by M. Gonzalez [29] and Guan-

Lin-Wang [32] to the case of 2 < k < n/2 : if Ω ⊂ Sn admits a complete, conformal

metric g with

σ1(Ag) ≥ c1 > 0, σ2(Ag), · · ·σk(Ag) ≥ 0, and (1.0.6)

then dim(Sn\Ω) < (n− 2k)/2. Gonzalez also showed in [30] that isolated singularities

of C3 solutions of (1.0.3) with �nite volume are bounded, among other statements.

For the degenerate case of (1.0.2), Li [59] proved that a locally Lipschitz viscosity

solution in Rn\{0} must be radially symmetric about {0}, see Li-Nguyen [60] for recent

development in this direction.

We studied a special case of (1.0.2) with F =
(
σk
σl

) 1
k−l

, 1 ≤ l < k ≤ n, i.e., (1.0.2)

is the conformal quotient equation:

σk(g)

σl(g)
= c (1.0.7)

or, equivalently,

σk
σl

(
∇2ω + dω ⊗ dω − |∇ω|

2

2
g0 +Ag0

)
= ce2(l−k)ω, (1.0.8)
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where c is a positive constant. Similar to the work [10] of Chang, Han and Yang, we

prove Theorem 2.2.1 in [89], which is the a classi�cation result on radial solutions of

(1.0.8) in the Γ+
k class on the entire R×Sn−1. We state below a part of Theorem 2.2.1,

which omits the results for the case 2k ≥ n and h > 0.

Theorem 1.0.1. Any radial solution ξ(t) := ω(t, θ) of (1.0.8) in the Γ+
k class on

the entire R × Sn−1, when 1 ≤ l < k ≤ n and c is a positive constant, normalized

to be 2l−k (nk) / (nl ) , has the property that 1 − ξ2
t > 0 for all t. Furthermore, h :=

e(2k−n)ξ(t)(1 − ξ2
t (t))k − e(2l−n)ξ(1 − ξ2

t (t))l is a nonnegative constant. Moreover, if

h = 0, these solutions give rise to the round spherical metric on Rn ∪ {∞} = Sn. If

h > 0 and 2k < n, then h ≤ h∗ := (n−2k
n−2l )

n−2k
2 − (n−2k

n−2l )
n−2l

2 and ξ(t) is periodic and

gives rise to metric g = e−2ξ(ln|x|)

|x|2 |dx|2 on Rn\{0} which is complete.

When l = 0, σl(g) = 1, then (1.0.8) is (1.0.3), so our result is a generalization of

[10] for the Γ+
k class part. We note that [10] just need the condition that ξ(t) is well

de�ned for all t ∈ R to exclude h < 0 case, however, the phase plane of radial solutions

of (1.0.8) is di�erent from (1.0.3) and we also use the �ξ(t) ∈ Γ+
k condition to prove h is

nonnegative in Theorem 1.0.1. This theorem also exempli�es the result in Li [58] which

says any solution ω(t, θ) in the Γ+
k class to (1.0.2) must have a lower bound. Although

the analysis involved here is of elementary nature, these results provide useful guidance

in studying the behavior of singular solutions in punctured balls. Actually with some a

priori estimates and asymptotically radially symmetric properties for general conformal

equation established by Li [58] and the local �rst and second order gradient estimates by

Guan-Lin-Wang [33] and Li [59], we �nd that any admissible solution with an isolated

singularity at 0 ∈ Rn is asymptotic to a radial solution of the above theorem, i.e., we

prove the following theorem in [89], which is the generalization of the results in [43].

Theorem 1.0.2. Let ω(t, θ) be a smooth solution to (1.0.8) on {t > t0} × Sn−1 in

the Γ+
k class, where n ≥ 3, 1 ≤ l < k ≤ n, and c is normalized to be

2l−k(nk )

(nl ) . Then

there exist a radial solution ω∗(t) to (1.0.8) on R× Sn−1 in the Γ+
k class, and constants

α > 0, C > 0 such that
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|ω(t, θ)− ω∗(t)| ≤ Ce−αt for t > t0 + 1. (1.0.9)

First a linearization analysis and integral estimate showed that the radial average

of ω(t, θ) (denoted as γ(t)) solves some perturbation forms of both (2.2.1) and

e(2k−n)ξ(t)(1− ξ2
t (t))k − e(2l−n)ξ(1− ξ2

t (t))l = h. (1.0.10)

Note that (1.0.10) is the �rst integral of (2.2.1). By exploiting the perturbed ODE

satis�ed by γ(t), we prove that the radial average γ(t) is approximated by a (translated)

radial solution to (2.2.1) as t → ∞, moreover, Li [58] showed that the radial average

of the solution is a good approximation to the solution as t → ∞, thus we arrive at

Theorem 1.0.2. We note that when the radial average is bounded, a key ingredient is

a general asymptotic approximation result for solutions of certain ODEs (see Theorem

B in Section 3.1) by Han-Li-Teixeira [43]; when the radial average is unbounded from

above and 2k > n, a new estimate technique was provided to dig out the information

lim
t→∞

γt(t) = 1

which leads to the solution of Theorem 1.0.2; also a Pohozeav type identity established

by Han [42] plays a important role in the proof especially for the 2k < n and h = 0 case

(see proof of Claim 3.2.1). The study of singular solutions of equations of the above

type is related to the characterization of the size of the limit of the image domain in Sn

of the developing map of a locally conformally �at n-manifold. More speci�cally, one

is led to look for necessary/su�cient conditions on a domain Ω ⊂ Sn so that it admits

a metric g which is pointwisely conformal to the standard metric on Sn, complete, and

with its Weyl-Schouten tensor Ag in the Γ±k class. Theorem 1.0.2 would also be helpful

to study the blow-up phenomenon of solutions to more general equations to prescribe

arbitrary function f(x) for σk/σl. We note that for such prescribing problem, the case

n = 4, k = 2 and l = 1 was solved in [14]. When the underlying manifold (M, g0) is

locally conformally �at, thanks to the work of Schoen-Yau on the developing map, one

can even solve a more general equation, see [31, 54, 37]. When k > n
2 , the work of [40]

and the local estimates of [33] implies the existence. See also [25, 26] for the existences

on general compact Riemannian manifold.



9

Inspired by the work of Korevaar-Mazzeo-Pacard-Schoen [47] and Han-Li-Teixeira

[43], we obtain higher order expansions for solutions to (1.0.8) in [89]:

Theorem 1.0.3. Let ω(t, θ) be a solution to (1.0.8) on {t > t0}×Sn−1 in the Γ+
k class,

where n ≥ 3, 0 < l < k ≤ n
2 , and the constant c is normalized to be 2l−k (nk) / (nl ), and

let ω∗(t) = ξh(t + τ) be the radial solution to (1.0.8) on R × Sn−1 in the Γ+
k class for

which (1.0.9) holds. Let {Yj(θ) : j = 0, 1, · · · } denote the set of normalized spherical

harmonics. In the case k < n
2 and h > 0 let ρ be the in�mum of the positive character-

istic exponents de�ned through Floquent theory to the linearized equation of (1.0.8) at

ω∗(t) corresponding to higher order spherical harmonics Yj(θ), j > n; in the case k = n
2

or h = 0, a similar notion of ρ can also be de�ned in a straightforward fashion. Then

ρ > 1 and there is a

ω1(t, θ) =
n∑
j=1

aje
−t−τ

(
1 + ξ

′
h(t+ τ)

)
Yj(θ)

which is a solution to the linearized equation of (1.0.8) at ω∗(t), such that

|ω(t, θ)− ω∗(t)− ω1(t, θ)| ≤ Ce−min{2,ρ}t for t > t0 + 1 (1.0.11)

This theorem requires some knowledge on the spectrum of the linearized operator

of (1.0.8). We �rst establish the linearization equation and then a long algebraic com-

putation helps us to prove ρj > 1 for all λj ≥ 2n as in Lemma 4.2.4 in Section 4.2.

After this, for a non-homogeneous form of the linearization equation, we apply a de-

composition of the solutions with Wronskian function and Maximum principle to get

the higher order estimate, and then an elaborated iteration argument leads to Theorem

1.0.3. When we apply those analysis on the conformal quotient equation, the compu-

tation is highly more involved than the case in [43]. However, we introduce a crucial

quantity P (ξ, ξt) :=
(
e−2ξ

1−ξ2t

)k−l
and q(ξ, ξt) = P−1

1−P l
k

to simplify the algebraic expression

to a quadratic function of q(ξ, ξt) and then the computation is straightforward. Note

that if l = 0 as in [43], the algebraic expression would be a linear function of q(ξ, ξt),

and it is easy to verify Lemma 4.2.4. Also due to some new observations, we obtain the

anticipated estimate with a di�erent approach (see Section 4.2 for more description).

The analysis of linearized operator should be useful in constructing solutions to

(1.0.8) on Sn\Λ, and in analyzing the moduli space of solutions to (1.0.8) on Sn\Λ,
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when Λ is a �nite set. Actually Mazzieri-Ndiaye claimed in [73] the existence of constant

positive σk-curvature metrics which are complete and conformal to the standard metric

on Sn\Λ, where Λ ⊂ Sn is a �nite number of symmetrically balanced points of cardinality

at least 2, and n, k are positive integers such that 2 ≤ 2k < n. So we expect to obtain

the same result for σk/σl using this linearization analysis. Also our knowledge of the

spectrum of the linearized operator to (1.0.8) immediately yields Fredholm mapping

properties of these operators on appropriately de�ned spaces as in [71, 72].

This thesis is organized as follows. In Chapter 2, we establish a classi�cation of

radial solutions to the conformal quotient equation. In Chapter 3, we prove Theorem

1.0.2 by exploiting the ODE satis�ed by the radial average. In Chapter 4, we give

proofs for Theorem 1.0.2 and Theorem 1.0.3 by an analysis of the linearized operator.

We provide a proof for the phase plane results in Appendix A.
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Chapter 2

Classi�cation of radial solutions to the conformal quotient

equation

2.1 Phase plane

We begin with a phase plane result and will provide a proof in the Appendix A. We

consider the level set given by

G(x, y) = e(2k−n)x(1− y2)k − e(2l−n)x(1− y2)l = h (2.1.1)

in the region Ω ≡
{

(x, y) ∈ R2| |y| < 1
}
. We also set Ω− ≡

{
(x, y) ∈ R2| − 1 < y < 0

}
,

then

G(x, y) = G(x,−y) ∀(x, y) ∈ Ω−.

Let Sh denote the level set given by (2.1.1), then we have the following phase plane

result:

Case h=0 The level set Sh is

1− y2 = e−2x ⇐⇒ x = −1

2
ln(1− y2). (2.1.2)

Set W ≡
{

(x, y) ∈ Ω |x < −1
2 ln

(
1− y2

)}
and V ≡

{
(x, y) ∈ Ω |x > −1

2 ln
(
1− y2

)}
,

then obviously ∀(x, y) ∈ Ω solving (2.1.1), we have

(x, y) ∈W ⇐⇒ h < 0 while (x, y) ∈ V ⇐⇒ h > 0.

Case h>0 The level set Sh is classi�ed in the following subcases:

(P1) If 1 ≤ l < k < n
2 & 0 < h < h∗ := (n−2k

n−2l )
n−2k

2 − (n−2k
n−2l )

n−2l
2 , then Sh is a closed

curve in V .
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(P2) If 1 ≤ l < k < n
2 & h = h∗, then Sh is the point

(
1

2(k−l) ln
(
n−2l
n−2k

)
, 0
)
.

(P3) If 1 ≤ l < k < n
2 & h > h∗, there is no solution for (2.1.1).

(P4) If 1 ≤ l < k = n
2 & h < 1, then (2.1.1) de�nes a function y := y(x) for large

x in Ω−, and y(x) is strictly decreasing. Besides, y → −
√

1− k
√
h as x → ∞.

Roughly Sh is a U -shaped curve that opens right in V .

(P5) If 1 ≤ l < k = n
2 & h ≥ 1, there is no solution for (2.1.1).

(P6) If 1 ≤ l < k, n2 < k & h > 0 , then (2.1.1) de�nes a function y := y(x) for large

x in Ω−, and y(x) is strictly decreasing. Besides, y(x)→ −1 in Ω− as x→∞.

Roughly Sh is a U -shaped curve that opens right in V .

Case h<0 We introduce the notations below:

x(y) =
1

2
ln

(
( lk )

1
k−l

1− y2

)
|y| < 1 (2.1.3)

x̃(y) =
1

2
ln

(
2l−n
2k−n

) 1
k−l

1− y2
|y| < 1 (2.1.4)

(κ∗h, ζ
∗
h) ≡

−
√√√√√1−

(
l

k

) 1
k−l

 h(
l
k

) k
k−l −

(
l
k

) l
k−l

 2
n

,− 1

n
ln

 h(
l
k

) k
k−l −

(
l
k

) l
k−l




(ζ̃h,±κ̃h) =

−
1

n
ln

h
(

2l−n
2k−n

) −l
k−l(

2l−2k
2k−n

)
 ,±

√√√√√√√√1−
(

2l−n
2k−n

) 1
k−l

h
(

2l−n
2k−n

) −l
k−l(

2l−2k
2k−n

)


2
n


~ =

(
l

k

) 2k−n
2(k−l)

−
(
l

k

) 2l−n
2(k−l)

, ℘ =

(
n− 2l

n− 2k

) 2k−n
2(k−l)

−
(
n− 2l

n− 2k

) 2l−n
2(k−l)

and the level set Sh is classi�ed in the following subcases:

(N1) If 1 ≤ l < k, l < n
2 & h < ~, then Sh intersects with the x-axis only

at point (x∗h(0), 0), and (2.1.1) de�nes a function y := y(x) in {(x, y) |x <

1
2(k−l) ln( lk )}

⋂
Ω−, which is strictly increasing. Moreover, y(x)→ −1 in Ω− as

x→ −∞. Roughly Sh is an U -shaped curve that opens left in W .
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(N2) If 1 ≤ l < k, l < n
2 & ~ ≤ h < 0, then Sh intersects with the x-axis only

at point (x∗h(0), 0) and it also intersects with the curve (2.1.3) at (ζ∗h,±κ∗h).

Moreover, in Ω−, (2.1.1) de�nes a function x := x(y) − 1 < y < 0 and x(y)

satis�es 
∂x(y)
∂y > 0 if − 1 < y < κ∗h

∂x(y)
∂y < 0 if k∗h < y < 0

(N3) If 1 < l = n
2 < k & h ≤ −1, (2.1.1) has no solution.

(N4) If 1 < l = n
2 < k & −1 < h ≤ ~ = l

k − 1, then Sh intersects with the x-

axis only at point (x∗h(0), 0). (2.1.1) de�nes a function y = y(x) in {(x, y) |x <
1

2(k−l) ln( lk )}
⋂

Ω−, which is strictly increasing there. Moreover, y(x)→ −
√

1− l
√
−h

in Ω− as x→ −∞. Roughly Sh is a U -shaped curve that opens left in W .

(N5) If 1 < l = n
2 < k & ~ < h < 0, then Sh intersects with the x-axis only at point

(x∗h(0), 0), and in Ω− (2.1.1) de�nes a function x := x(y) −
√

1− l
√
−h < y < 0

and x(y) satis�es 
∂x(y)
∂y > 0 if −

√
1− l
√
−h < y < κ∗h

∂x(y)
∂y < 0 if k∗h < y < 0

(N6) If n
2 < l < k& ~ ≤ h < 0, then Sh is a closed curve, which intersects with

(2.1.3) at (ζ∗h,±κ∗h).

(N7) If n
2 < l < k&℘ < h < ~, then Sh is a closed curve, which doesn't intersect

with (2.1.3), and all (x, y) ∈ Ω solving (2.1.1) satis�es x < 1
2 ln( lk )

1
k−l . Also

it intersects with (2.1.4) at (ζ̃h,±κ̃h), and in Ω− (2.1.1) de�nes a function

y = y(x), which satis�es
∂y
∂x < 0 if x < ζ̃h

∂y
∂x > 0 if x > ζ̃h

(x, y) ∈ Ω−.

(N8) If n2 < l < k&h = ℘, Sh is a point (x̃(0), 0).

(N9) If n2 < l < k&h < ℘, (2.1.1) has no solution.
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2.2 Classi�cation of radial solutions

Chang, Han and Yang [10] showed that if ω(t, θ) =: ξ(t) is a function of t, then

σk(g) = 21−k (nk) (1− ξ2
t )k−1

[
k

n
ξtt +

(
1

2
− k

n

)
(1− ξ2

t )

]
e2kξ.

See Chapter 1 for notations. As a computation in [43], the conformal quotient equation

σk(g)

σl(g)
= c

in the radial case becomes

21−k (nk) (1− ξ2
t )k−1

[
k
nξtt +

(
1
2 −

k
n

)
(1− ξ2

t )
]
e2kξ

21−l
(
n
l

)
(1− ξ2

t )l−1
[
l
nξtt +

(
1
2 −

l
n

)
(1− ξ2

t )
]
e2lξ

= c. (2.2.1)

When the positive constant c is normalized to 2l−k (nk) / (nl ), (2.2.1) is just

(1− ξ2
t )k−1

[
k

n
ξtt +

(
1

2
− k

n

)
(1− ξ2

t )

]
e2kξ

= (1− ξ2
t )l−1

[
l

n
ξtt +

(
1

2
− l

n

)
(1− ξ2

t )

]
e2lξ,

and multiplying both sides by ne−nξξt, we get (1.0.10), i.e.,

e(2k−n)ξ(t)(1− ξ2
t (t))k − e(2l−n)ξ(1− ξ2

t (t))l = h

where h is constant. Since σk
σl

has a �xed sign on R × Sn−1, then either 1 − ξ2
t > 0 or

1− ξ2
t < 0 for all t ∈ R, and actually we can claim

1− ξ2
t > 0

by a contradiction argument. Indeed ξ(t) ∈ Γ+
t and k ≥ 2 imply σ1, σ2 > 0, if 1−ξ2

t < 0,

then

σ2 > 0 =⇒ 2

n
ξtt + (

1

2
− 2

n
)(1− ξ2

t ) < 0,

σ1 > 0 =⇒ 1

n
ξtt + (

1

2
− 1

n
)(1− ξ2

t ) > 0.

Combing these two inequalities,

(1− n

4
)(1− ξ2

t ) > ξtt > (1− n

2
)(1− ξ2

t ),

a contradiction. Furthermore, as a work [10] of Chang, Han and Yang, we proved the

following Theorem , which is a classi�cation result on radial solutions of (2.2.1) in the

Γ+
k class on the entire R× Sn−1.
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Theorem 2.2.1. Any radial solution ξ(t) := ω(t, θ) of (2.2.1) in the Γ+
k class on

the entire R × Sn−1, when 1 ≤ l < k ≤ n and c is a positive constant, normalized

to be 2l−k (nk) / (nl ) , has the property that 1 − ξ2
t > 0 for all t. Furthermore, h :=

e(2k−n)ξ(t)(1− ξ2
t (t))k − e(2l−n)ξ(1− ξ2

t (t))l is a nonnegative constant. Moreover,

1. If h = 0, then u
4

n−2 (|x|) = ( 2ρ
|x|2+ρ2

)2 for some positive parameter ρ. So these

solutions give rise to the round spherical metric on Rn ∪ {∞} = Sn.

2. If h > 0, then the behavior of u is classi�ed according to the relation between 2k

and n :

• If 2k < n, then h has the further restriction h ≤ h∗ := (n−2k
n−2l )

n−2k
2 − (n−2k

n−2l )
n−2l

2

and ξ(t) is a periodic function of t, giving rise to a metric g = e−2ξ(ln|x|)

|x|2 |dx|2 on

Rn\{0} which is complete. Note that the case h = h∗ gives rise to the cylindrical

metric |dx|
2

|x|2 on Rn\{0}.

• If 2k = n, then h satis�es the further restriction h < 1 and as |x| → 0, g =

u
4

n−2 (|x|)|dx|2 has the asymptotic

g ∼ |x|
−2

(
1−
√

1− k√
h

)
|dx|2 = e

−
(

2
√

1− k√
h

)
t
(dt2 + dθ2),

and as |x| → ∞,g = u
4

n−2 (|x|)|dx|2 has the asymptotic

g ∼ |x|
−2

(
1+
√

1− k√
h

)
|dx|2 = e

(
2
√

1− k√
h

)
t
(dt2 + dθ2).

Thus g gives rise to a metric on Rn\{0} singular at 0 and ∞ which behaves like

the cone metric, is incomplete with �nite volume.

• If 2k > n, then u
4

n−2 (|x|) has an asymptotic expansion of the form

u
4

n−2 (|x|) = ρ−2

{
1− k
√
h · k

2k − n

(
|x|
ρ

)2−n
k

+ · · ·

}

as |x| → 0, where ρ > 0 is a positive parameter, thus u(|x|) has a positive, �nite

limit, but urr(|x|) blows up at |x| → 0. The behavior of u as |x| → ∞ can

be described similarly. Putting them together, we conclude that u
4

n−2 (|x|)|dx|2

extends to a C2−n
k metric on Sn.
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Proof. We consider

e(2k−n)ξ(1− ξ2
t )k − e(2l−n)ξ(1− ξ2

t )l = h

with h as a constant, and �rst show h ≥ 0 in our setting with a contradiction argument.

When 1 ≤ l < k & l < n
2 , let ξ be a solution satisfying (2.2.1) and (1.0.10) with ξ(0) =

x∗h(0) and (−Th, Th) be the maximal open interval of ξ. If h ≤ ( lk )
2k−n
2(k−l) − ( lk )

2l−n
2(k−l) < 0,

then by the description for the level set in the above section, we have |ξt| < 1 and

limt→T ξ = −∞, thus Th =∞ and ξt is always decreasing as t increases, which implies

that ξtt ≤ 0 for all t. Now we can show that σk
(
e−2ξ(dt2 + dθ2)

)
≤ 0 everywhere and

the solution is not in the Γ+
k class. Assume σk

(
e−2ξ(dt2 + dθ2)

)
> 0 for some point

(t0, θ0) ∈ R× Sn−1, then at (t0, θ0),

k

n
ξtt + (

1

2
− k

n
)(1− ξ2

t ) > 0.

However in the equality

2−k(nk)

2−l(nl )
=

21−k(nk)(1− ξ2
t )k−1

(
k
nξtt + (1

2 −
k
n)(1− ξ2

t )
)
e2kξ

21−l(nl )(1− ξ2
t )l−1

(
l
nξtt + (1

2 −
l
n)(1− ξ2

t )
)
e2lξ

,

we have e2kξ < e2lξ and (1− ξ2
t )k−1 < (1− ξ2

t )l−1, so

k

n
ξtt + (

1

2
− k

n
)(1− ξ2

t ) >
l

n
ξtt + (

1

2
− l

n
)(1− ξ2

t ),

hence

ξtt > 1− ξ2
t > 0,

a contradiction. If ( lk )
2k−n
2(k−l) − ( lk )

2l−n
2(k−l) < h < 0, then from the above section , the level

set Sh intersects with (2.1.3) at (ζ∗h,±κ∗h). And as ξ → ζ∗h, and ξt → κ∗h, the coe�cient

of ξtt will approach 0 while the other parts will approach 1
2(1 − k

l )(1 − ξ
2
t ) in (2.2.1),

thus

lim
ξ→ζ∗h

ξtt = lim
ξ→ζ∗h

[(
1
2 −

k
n

)
−
(

1
2 −

l
n

)
e2(l−k)ξ(1− ξ2

t )l−k
]

l
ne

2(l−k)ξ(1− ξ2
t )l−k − k

n

= ∞,

which implies that 0 < Th < ∞ and limt→T ξ(t) = ζ∗h. This contradicts the fact that

the solution is de�ned all over R × Sn−1. If ξ is a solution de�ned on other pieces of
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the level set, the maximal interval of t is still �nite, a contradiction. The exclusion of

other cases with h < 0 is similar. Thus the solutions ξ(t) in our theorem must satisfy

(1.0.10) with h ≥ 0 and

1. when h = 0 we have

1− ξ2
t = e−2ξ,

so the solution is r−2e−2ξ = u
4

n−2 (|x|) = ( 2ρ
|x|2+ρ2

)2 for some positive parameter ρ

and these solutions give rise to the round spherical metric on Rn ∪ {∞} = Sn.

2. when h > 0, we consider it in the following subcases:

(a) If 2k < n, then by the phase plane results (P1)(P2)(P3) in Section 2.1, 0 <

h ≤ h∗ := (n−2k
n−2l )

n−2k
2 − (n−2k

n−2l )
n−2l

2 . If 0 < h < h∗ := (n−2k
n−2l )

n−2k
2 − (n−2k

n−2l )
n−2l

2 ,

then we can verify that the solution is in the Γ+
k class. By contradiction if

σk
(
e−2ξ(dt2 + dθ2)

)
≤ 0, then

k

n
ξtt + (

1

2
− k

n
)(1− ξ2

t ) ≤ 0.

However in the equality

2−k(nk)

2−l(nl )
=

21−k(nk)(1− ξ2
t )k−1

(
k
nξtt + (1

2 −
k
n)(1− ξ2

t )
)
e2kξ

21−l(nl )(1− ξ2
t )l−1

(
l
nξtt + (1

2 −
l
n)(1− ξ2

t )
)
e2lξ

,

we have 1− ξ2
t > e−2ξ which implies that

k

n
ξtt + (

1

2
− k

n
)(1− ξ2

t ) ≥ l

n
ξtt + (

1

2
− l

n
)(1− ξ2

t ),

hence

ξtt ≥ 1− ξ2
t > 0,

which implies σk
(
e−2ξ(dt2 + dθ2)

)
> 0, a contradiction. Meanwhile, for any

1 ≤ i < k, we have

i

n
ξtt + (

1

2
− i

n
)(1− ξ2

t )

=
i

k

(
k

n
ξtt + (

1

2
− k

n
)(1− ξ2

t )

)
+

(
1

2
− i

2k

)(
1− ξ2

t

)
> 0,
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so σi
(
e−2ξ(dt2 + dθ2)

)
> 0. Thus the solution ξ is in the Γ+

k class and ξ(t) is a

periodic function of t, giving rise to a metric g = e−2ξ(ln|x|)

|x|2 |dx|2 on Rn\{0} which

is complete. Note that the case h = h∗ gives rise to the cylindrical metric |dx|
2

|x|2

on Rn\{0}.

(b) If 2k = n, then by the phase plane results (P4)(P5) in Section 2.1, h satis�es

the further restriction h < 1. Furthermore Th = ∞ and ξ is the Γ+
k class. Also

as t→∞, ξ →∞ & ξt →
√

1− k
√
h, thus

ξ ∼
(√

1− k
√
h

)
t

which implies when |x| ∼ 0, we have

g ∼ |x|−2(1−
√

1− k√
h)|dx|2.

Similarly when |x| ∼ ∞, we have

g ∼ |x|−2(1+
√

1− k√
h)|dx|2.

These are incomplete, �nite volume metrics on Rn\{0} , corresponding to conical

metrics on Sn\{0,∞}.

(c) If 2k > n, then by the phase plane result (P6) in Section 2.1, Th = ∞ and ξ

is in the Γ+
k class. Also as t → ∞, ξ → ∞ & ξt → 1. Moreover, we can show

ζ(t) := e(2l−n)ξ(1− ξ2
t )l → 0 as t→∞, or else there exists sequences {tj}1≤j and

some ε > 0 such that as tj →∞,

ζ(tj) = e(2l−n)ξ(tj)(1− ξ2
t (tj))

l > ε.

However, from the de�nition of ζ(t), we get

e2ξ(tj)(1− ξ2
t (tj)) = ζ(tj)

1
l e

n
l
ξ(tj),

plugging it into the curve (1.0.10), then as tj →∞

h = ζ(tj)
k
l e(nk

l
−n)ξ(tj) − ζ(tj)

> ε
k
l e(nk

l
−n)ξ(tj) − ε

→ ∞,
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a contradiction. Thus as t→∞

1− ξ2
t ∼

k
√
he

n−2k
k

ξ,

1− ξt ∼
k
√
he

n−2k
k

ξ

2
,

and taking integral, we get as t→∞,

ξ − t = c+
k
√
h

2
· k

2k − n
e
n−2k
k

ξ + h.o.t.

for some constant c. Then u
4

n−2 (|x|) has an asymptotic expansion of the form

u
4

n−2 (|x|) = ρ−2

{
1− k
√
h · k

2k − n

(
|x|
ρ

)2−n
k

+ · · ·

}

as |x| → 0, where ρ = ec > 0 is a positive parameter. The analysis near x at ∞

can be carried out in a similar way. Thus we conclude that v−2|dx|2 extends to

a C2−n
k metric on Sn.
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Chapter 3

Exploiting the ODE satis�ed by the radial average

3.1 Several preliminary properties

In this section we present some needed preliminary properties for solutions derived

in [58]. Recall that under the Euclidean coordinates, we introduce u(x) to write the

conformal change of metric g as

g = u
4

n−2 (x)|dx|2 = e−2ω(t,θ)(dt2 + dθ2).

Then (1.0.7) is equivalent to

σk
(
−(n− 2)u(x)∇2u(x) + n∇u(x)⊗∇u(x)− |∇u(x)|2Id

)
σl (−(n− 2)u(x)∇2u(x) + n∇u(x)⊗∇u(x)− |∇u(x)|2Id)

= c · 2k · (n− 2)−2k · u
2kn
n−2 (x)

2l · (n− 2)−2l · u
2ln
n−2 (x)

. (3.1.1)

The following theorem is drawn from Theorem 1.1
′
and 1.3 in [58].

Theorem A (Y. Y. Li). Suppose that u ∈ C2(B2\{0}) is a positive solution to (3.1.1)

on BR\{0}, then

lim sup
x→0

|x|
n−2
2 u(x) <∞, (3.1.2)

and there exists some constant C > 0 such that

|u(x)− ū(|x|)| ≤ C|x| · ū(|x|) (3.1.3)

for all 0 < |x| ≤ 1, where

ū(|x|) =
1

|∂B|x|(0)|

∫
∂B|x|(0)

u(y)dσ(y)

is the spherical average of u(x) over ∂B|x|(0).
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As in the previous section, in terms of t = − ln r = − ln |x|, let

U(t, θ) = r
n−2
2 u(rθ) = e−

n−2
2
ω(t,θ)

β(t) = |Sn−1|−1

∫
Sn−1

U(t, θ)dθ

γ(t) = |Sn−1|−1

∫
Sn−1

ω(t, θ)dθ, (3.1.4)

then the inequality (3.1.2) is reformulated as

U(t, θ) ≤ C and e−2ω(t,θ) ≤ C, (3.1.5)

plus

|U(t, θ)− β(t)| ≤ Cβ(t)e−t,

and

|ω̂(t, θ)| := |ω(t, θ)− γ(t)| ≤ Ce−t. (3.1.6)

We also have the gradient estimate for positive singular solutions u(x) in the Γ+
k class

to (3.1.1) on BR(0)\{0}.

Proposition 3.1.1. Let u(x) be a positive singular solution to (3.1.1) on BR\{0} in

the Γ+
k class, U(t, θ), β(t), ω(t, θ) and γ(t) be de�ned above. Then for any 0 < δ small,

there exists a constant C > 0 depending on δ such that

|∇jt,θ(U(t, θ)− β(t))| ≤ Cβ(t)e−(1−δ)t

|∇jt,θ(ω(t, θ)− γ(t))| ≤ Ce−(1−δ)t (3.1.7)

for all t ≥ 0 and j = 1, 2.

We now provide an argument for (3.1.7). First, (3.1.5) and the gradient estimates

for solutions to (1.0.8), see [33], give a bound B > 0 depending on j > 0 and C in

(3.1.7), such that

|∇jt,θω(t, θ)| ≤ B, (3.1.8)
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which leads to

|∇jt,θγ(t)| ≤ B. (3.1.9)

Combining them together, we get

|∇jt,θ(ω(t, θ)− γ(t))| ≤ 2B

This estimate, together with (3.1.6) and interpolation, proves (3.1.7).

We also quote Theorem 3 in [43] here, which is an elaborated inductive argument

and plays a key role in proving Theorem 1.0.2.

Theorem B (Z.-C. Han-Y. Y. Li-E. V. Teixeira). Consider a solution β(t) to

β′′(t) = f(β′(t), β(t)) + e1(t) t ≥ 0

where f is locally Lipschitz, and ei(t) is considered as a perturbation term with e1(t)→ 0

as t→∞ at a su�ciently fast rate to be speci�ed later. Suppose that |β(t)|+ |β′(t)| is

bounded over t ∈ [0,∞). Then by a compactness argument there exists a sequence of

ti →∞ and a solution ψ(t) to

ψ′′(t) = f(ψ′(t), ψ(t)) (3.1.10)

which exists for all t ∈ R such that

β(ti + ·)→ ψ in C1
loc(−∞,∞) as i→∞ (3.1.11)

Suppose ψ(t) is a periodic solution with T ≥ 0, thus for some �nite m ≤M

ψ(R) = [m,M ].

We may do a time translation for ψ(t) so that ψ(0) = m,ψ′(0) = 0, then the approxi-

mation property (3.1.11) can be reformulated as, for some s,

β(ti + ·)− ψ(−s+ ·)→ 0 in C1
loc(−∞,∞) as i→∞

Suppose that (3.1.10) has a �rst integral in the form of

H(ψ′(t), ψ(t)) = 0

for some continuous function H(x, y), where H satis�es the following non-degeneracy

condition, depending on
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1. (ψ(t) := m is a constant ): there exist some ε1 > 0, A > 0 and l > 0

H(x, y) ≥ A(|x|l + |y −m|l) (3.1.12)

for any (x, y) with |x|+ |y −m| ≤ ε1;

2. (ψ(t) is non-constant): there exists some ε1 > 0, A > 0 and l > 0,

|H(0, y)| = |H(0, y)−H(0,m)| ≥ A|y −m|l (3.1.13)

for any y with |y −m| ≤ ε1.

Suppose also that β(t) has H as an approximate �rst integral

|H(β′(t), β(t))| ≤ e2(t) for t ≥ 0

where e2(t) → 0 as t → ∞. Without loss of generality, we may suppose that e2(t) is

monotone non-increasing in t. Finally suppose that∫ ∞
0

(
((e2(t))

1
l + supτ≥t|e1(τ)|

)
dt <∞

Then there exists some s∞ and C > 0 such that

|β(t)− ψ(t− s∞)|+ |β′(t)− ψ′(t− s∞)|

≤ C

∫ ∞
t−(T+2)

(
(e2(t′))

1
l + supτ≥t′ |e1(τ)|

)
dt′ → 0 as t→∞.

3.2 Perturbed ODEs

Let ω(t, θ) be a positive solution of (1.0.8) on BR\{0} in the Γ+
k class, where the constant

c is normalized to be 2l−k (nk) / (nl ), and γ(t) is de�ned in (3.1.4). We can make

mathn 3.2.1. If 1 ≤ l < k ≤ n, there exists some constant h such that{
2(1− γ2

t )k−1

[
k

n
γtt +

n− 2k

2n
(1− γ2

t )

]
+ η1(t)

}
e2kγ

=

{
2(1− γ2

t )l−1

[
l

n
γtt +

n− 2l

2n
(1− γ2

t )

]
+ η2(t)

}
e2lγ , (3.2.1)

[
(1− γ2

t )k + η3(t)
]
· e(2k−n)γ −

[
(1− γ2

t )l + η4(t)
]
· e(2l−n)γ = h (3.2.2)

where ηi(t), for i = 1, · · · 4, have the decay rate ηi(t) = O(e−2(1−δ)t) as t → ∞, for

arbitrarily small δ > 0 as in (3.1.7).
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Proof. We �rst prove (3.2.1). By equation (1.0.7) we have

2k · 1(
n
k

)σk(g−1
0 ·Ag) · e

2kω(t,θ) = 2l · 1(
n
l

)σl(g−1
0 ·Ag) · e

2lω(t,θ).

Let

σk(Aω) := σk(g
−1
0 ·Ag)

be a functional of ω(t, θ), then with ω̂(t, θ) = ω(t, θ) − γ(t), we have the following

expansion

σk(Aω) = σk(Aγ(t)) + Lγ(t)[ω̂(t, θ))] + η̂1(t, θ)

where Lγ(t) denotes the linearized operator for σk(Aω(t,θ)) at γ(t), and η̂1(t, θ) satis�es

|η̂1(t, θ)| = O(e−2(1−δ)t) as t→∞ by (3.1.7) and (3.1.9). Next,

e2kω(t,θ) = e2kγ(t) · e2kω̂(t,θ)

and

e2kω̂(t,θ) = 1 + 2kω̂(t, θ) + η̂2(t, θ)

where |η̂2(t, θ)| = O(e−2t) as t→∞ since (3.1.6). Putting them together, we have

σk(g
−1
0 ·Ag) · e

2kω(t,θ)

=
(
σk(Aγ(t)) + Lγ(t)[ω̂(t, θ))] + η̂1(t, θ)

)
(1 + 2kω̂(t, θ) + η̂2(t, θ)) · e2kγ(t)

= e2kγ(t)

{
σk(Aγ(t)) + Lγ(t)[ω̂(t, θ)] + η̂1(t, θ) + σk(Aγ(t)) · 2kω̂(t, θ)

+Lγ(t)[ω̂(t, θ)] · 2kω̂(t, θ) + η̂1(t, θ) · 2kω̂(t, θ) + σk(Aγ(t))η̂2(t, θ)

+Lγ(t)[ω̂(t, θ)]η̂2(t, θ) + η̂1(t, θ)η̂2(t, θ)

}
.

Integrating over θ ∈ Sn−1, we have

1

|Sn−1|

∫
Sn−1

σk(Aγ(t))dθ = 21−k (nk) (1− γ2
t )k−1

[
k

n
γtt +

n− 2k

2n
(1− γ2

t )

]
1

|Sn−1|

∫
Sn−1

Lγ(t)[ω̂(t, θ))]dθ = 0

1

|Sn−1|

∫
Sn−1

σk(Ar(t)) · 2kω̂(t, θ)dθ = 0

1

|Sn−1|

∫
Sn−1

Lγ(t)[ω̂(t, θ)] · 2kω̂(t, θ)dθ = O(e−(2−δ)t)
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1

|Sn−1|

∫
Sn−1

η̂1(t, θ) · 2kω̂(t, θ)dθ = O(e−(3−2δ)t)

1

|Sn−1|

∫
Sn−1

σk(g
−1
0 ·Aγ(t))η̂2(t, θ)dθ = O(e−2(1−δ)t)

1

|Sn−1|

∫
Sn−1

Lγ(t)[ω̂(t, θ)]η̂2(t, θ)dθ = O(e−3(1−δ)t)

1

|Sn−1|

∫
Sn−1

η̂1(t, θ)η̂2(t, θ)dθ = O(e−4(1−δ)t)

as t → ∞. Similarly we have the same estimate for the right side, and thus we have

(3.2.1).

Next we are ready to prove (3.2.2). First we show that, when 2k ≥ n or h 6= 0,

(3.2.2) follows from (3.2.1). We use C to denote a positive constant, which may vary

according to the context. Multiplying both sides of (3.2.1) by ne−nγ(t)γt(t), one has[
e(2k−n)γ(t)(1− γ2

t )k − e(2l−n)γ(t)(1− γ2
t )l
]
t

= ne−nγ(t)γt(t)
[
e2kγ(t)η1(t)− e2lγ(t)η2(t)

]
.

(3.2.3)

By the estimates (3.1.5) and (3.1.6), γ(t) ≥ −C ∀t ∈ [0,∞). For its upper bound, there

are two possibilities: γ(t) ≤ C, ∀t ∈ [0,∞), or supt∈[0,∞) γ(t) = ∞. We consider them

separately:

• If γ(t) ≤ C, ∀t ∈ [0,∞), then the right hand of (3.2.3) is of the order O(e−2(1−δ)t)

from the gradient estimates (3.1.9), and the decay rates of η(t). It then follows

that for some constant h, we have

e(2k−n)γ(t)(1− γ2
t )k − e(2l−n)γ(t)(1− γ2

t )l = h+O(e−2(1−δ)t),

thus (3.2.2) holds.

• If supt∈[0,∞) γ(t) =∞ and 2k > n, we claim that γ(t) is strictly increasing when t

is large enough, or else there must exist an increasing sequence {tj}j∈N such that

tj →∞& γ(tj)→∞ as j →∞,

γ(tj) = max
t∈[0,tj ]

γ(t), & γ(tj) > 2γ(tj−1) ∀j ≥ 2,

and

γt(tj) = 0 ∀j ∈ N.
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By taking the integral on [tj−1, tj ] for both sides of (3.2.3), we have

e(2k−n)γ(t)
(
1− γ2

t (t)
)k − e(2l−n)γ(t)

(
1− γ2

t (t)
)l |tjtj−1

=

∫ tj

tj−1

ne−nγ(s)γs(s)
[
e2kγ(s)η1(s)− e2lγ(s)η2(s)

]
ds. (3.2.4)

However, as j →∞, the left side of equation (3.2.4) satis�es

[
e(2k−n)γ(tj)

(
1− γ2

t (tj)
)k − e(2l−n)γ(tj)

(
1− γ2

t (tj)
)l]

−
[
e(2k−n)γ(tj−1)

(
1− γ2

t (tj−1)
)k − e(2l−n)γ(tj−1)

(
1− γ2

t (tj−1)
)l]

=
[
e(2k−n)γ(tj) − e(2l−n)γ(tj)

]
−
[
e(2k−n)γ(tj−1) − e(2l−n)γ(tj−1)

]
>

1

2
e(2k−n)γ(tj),

while the right hand side of (3.2.4) satis�es∫ tj

tj−1

ne−nγ(s)γs(s)
[
e2kγ(s)η1(s)− e2lγ(s)η2(s)

]
ds

≤ C

∫ tj

tj−1

(
e(2k−n)γ(s)|η1(s)|+ e(2l−n)γ(s)|η2(s)|

)
ds

≤ Ce(2k−n)γ(tj)

∫ tj

tj−1

e−2(1−δ)sds

≤ Ce(2k−n)γ(tj)e−2(1−δ)tj−1

<
1

2
e(2k−n)γ(tj),

a contradiction. Hence when t is large enough, γ(t) is strictly increasing and goes

to ∞, and with a similar argument, we can show that 1 − γ2
t → 0 as t → ∞.

Indeed, if there exists ε > 0 and an increasing sequence {t̄j}j∈N such that

t̄j → ∞

1− γ2
t (t̄j) > ε ∀j ∈ N

γ(t̄j) → ∞,

then by taking integral on [t̄j−1,t̄j ], we get

e(2k−n)γ(t)
(
1− γ2

t (t)
)k − e(2l−n)γ(t)

(
1− γ2

t (t)
)l |t̄j

t̄j−1

=

∫ t̄j

t̄j−1

ne−nγ(s)γs(s)
[
e2kγ(s)η1(s)− e2lγ(s)η2(s)

]
ds,



27

which leads to

εk

2
e(2k−n)γ(t̄j) < Ce(2k−n)γ(t̄j)e−2(1−δ)t̄j

as j →∞, a contradiction. Thus 1− γ2
t → 0 as t→∞, consequently,

lim
t→∞

γt(t) = 1.

Now let

η3(t) = e(n−2k)γ(t)

∫ t

0
ne−nγ(s)γs(s)

[
e2kγ(s)η1(s)− e2lγ(s)η2(s)

]
ds,

then clearly

d

dt

[
e(2k−n)γ(t)

((
1− γ2

t (t)
)k

+ η3(t)
)
− e(2l−n)γ(t)

(
1− γ2

t (t)
)l]

= 0,

so there exists a constant h such that

e(2k−n)γ(t)
((

1− γ2
t (t)

)k
+ η3(t)

)
− e(2l−n)γ(t)

(
1− γ2

t (t)
)l

= h.

Moreover, as t→∞,

|η3(t)| ≤ Ce(n−2k)γ(t)

∫ t

0
e(2k−n)γ(s) · e−2(1−δ)sds

≤ Ce(n−2k)(1−ε)t
∫ t

0
e(2k−n)(1+ε)s · e−2(1−δ)sds

≤ Ce−2[1−(δ+(2k−n)ε)]t,

where δ and ε could be arbitrarily small, so we have (3.2.2) with η4 = 0.

• If supt∈[0,∞) γ(t) = ∞, and 2k < n, it then follows that for some constant h, we

have

e(2k−n)γ(t)(1− γ2
t )k − e(2l−n)γ(t)(1− γ2

t )l = h+O(e−2(1−δ)t). (3.2.5)

If h 6= 0, then γ(t) is strictly increasing and limt→∞ γ(t) =∞, or else there exists

an increasing sequence {tj}j∈N such that

tj → ∞& γ(tj)→∞

γt(tj) = 0 ∀j ∈ N.
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Then as j →∞, the left side of (3.2.5)

e(2k−n)γ(t)(1− γ2
t )k − e(2l−n)γ(t)(1− γ2

t )l → 0

while the right side of (3.2.5) is h, a contradiction. Consequently by a similar

argument as above we can get (3.2.2) with

η3 = −e(n−2k)γ(t)

∫ ∞
t

ne−nγ(s)γs(s)
[
e2kγ(s)η1(s)− e2lγ(s)η2(s)

]
ds

and η4 = 0.

• If 2k = n, it is a similar argument as the case γ(t) ≤ C on [0,∞).

However we are unable to get (3.2.2) from (3.2.1) directly when 2k < n and h = 0

and have to utilize an approach with Pohozaev identity from [42]. Let us assume n 6= 2k

& n 6= 2l and during this proof we use η(t) to denote a quantity which has the decay

rate η(t) = O(e−2(1−δ)t) as t → ∞, and it may vary according to the context. Let T ba

and T̄ ba denote the components of Newton Tensor Tk−1 and Tl−1 respectively, then by

[42], we have the following identity:

< X,∇σk >=
1

2k − n
∇a
(
T ab ∇b(divX) + 2kσkX

a
)

< X,∇σl >=
1

2l − n
∇a
(
T̄ ab ∇b(divX) + 2lσlX

a
)
,

so let φt denote the local one-parameter family of conformal di�eomorphism of (M, g)generated

by X, then from the equation (1.0.7)

0 =
d

dt
|t=0(σk − cσl)

< X,∇(σk − cσl) >

= < X,∇σk > −c < X,∇σl >

=
1

2k − n
∇a
(
T ab ∇b(divX) + 2kσkX

a
)
− c

2l − n
∇a
(
T̄ ab ∇b(divX) + 2lσlX

a
)
.

Now taking M = R× Sn−1, g = e−2ω(t,θ)(dt2 + dθ2) and X = ∂t, we get∫
Sn−1

[
1

2k − n

(
2kσk − nT1bωtbe

2kω
)
− c

2l − n

(
2lσl − nT̄1bωtbe

2lω
)]
e−nωdθ = h

(3.2.6)
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where h is a constant. Let L̃γ(t) and L̄γ(t) denote the linearized operators for
∑n

b=1 Tb1ωbt

and
∑n

b=1 T̄b1ωbt at γ(t), then a computation in [43] shows that
n∑
b=1

Tb1ωbt =
2k

n
· 2−k(nk)(1− γ2

t )k−1γtt + L̃γ [ω̂(t, θ)] +O(e−2(1−δ)t),

n∑
b=1

T̄b1ωbt =
2l

n
· 2−l(nl )(1− γ2

t )l−1γtt + L̄γ [ω̂(t, θ)] +O(e−2(1−δ)t).

So we can write (3.2.6) as

h = E + F +G

where

E =

∫
Sn−1

− 1

2k − n

(
(1− γ2

t )k−1γtte
2kω
)
e−nω · 2k · 2−k(nk)dθ

+

∫
Sn−1

c

2l − n

(
(1− γ2

t )l−1γtte
2lω
)
· e−nω · 2l · 2−l(nl )dθ,

F =

∫
Sn−1

(
2k

2k − n
− 2l

2l − n

)
· σke−nωdθ,

G =

∫
Sn−1

−n
2k − n

(
L̃γ [ω̂(t, θ)] + η(t)

)
e(2k−n)ωdθ

+

∫
Sn−1

cn

2l − n
(
L̄γ [ω̂(t, θ)] + η(t)

)
e(2l−n)ωdθ.

Clearly

G = η(t) · e(2k−n)γ(t) + η(t) · e(2l−n)γ(t),

and

F =

∫
Sn−1

n(2l − 2k)

(2k − n)(2l − n)
σke
−nωdθ

=

∫
Sn−1

2n(l − k)2−k(nk)

(2k − n)(2l − n)

×
{

2(1− γ2
t )k−1

[
k

n
γtt +

n− 2k

2n
(1− γ2

t )

]
+ η(t)

}
e(2k−n)γdθ,

and by (3.2.1),

E =

∫
Sn−1

e−nγ · 2−k(nk)

(
−2k

2k − n

)
(1− γ2

t )k−1γtte
2kγdθ

+

∫
Sn−1

e−nγ · 2−k(nk)

(
2l

2l − n

)
(1− γ2

t )l−1γtte
2lγdθ

+

∫
Sn−1

η(t) · e(2k−n)γ(t) + η(t) · e(2l−n)γ(t)dθ
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=

∫
Sn−1

e−nγ · 2−k (nk)

(
−2n

2k − n

)
×
[
k

n

(
1− γ2

t

)k−1
γtt +

n− 2k

2n

(
1− γ2

t

)k]
e2kγdθ

−
∫
Sn−1

e−nγ · 2−k (nk) ·
(
1− γ2

t

)k
e2kγdθ

+

∫
Sn−1

e−nγ · 2−k (nk)

(
2n

2l − n

)
×
[
l

n

(
1− γ2

t

)l−1
γtt +

n− 2l

2n

(
1− γ2

t

)l]
e2lγdθ

+

∫
Sn−1

e−nγ · 2−k(nk) ·
(
1− γ2

t

)l
e2lγdθ

+ η(t) · e(2k−n)γ(t) + η(t) · e(2l−n)γ(t)

=

∫
Sn−1

e(2k−n)γ · 2−k (nk) ·
(

2n

2l − n
− 2n

2k − n

)
×
[(

1− γ2
t

)(k−1)
(
k

n
γtt +

n− 2k

2n
(1− γ2

t )

)]
dθ

+

∫
Sn−1

2−k (nk)
[
−
(
1− γ2

t

)
ke(2k−n)γ +

(
1− γ2

t

)
e(2l−n)γ

]
dθ

+ η(t) · e(2k−n)γ(t) + η(t) · e(2l−n)γ(t)

= −F +

∫
Sn−1

2−k(nk)

×
[(

(1− γ2
t )k + η(t)

)
e(2k−n)γ −

(
(1− γ2

t )l + η(t)
)
e(2l−n)γ

]
dθ.

Combining them together, we have

[
(1− γ2

t )k + η3(t)
]
· e(2k−n)γ −

[
(1− γ2

t )l + η4(t)
]
· e(2l−n)γ = h

for some constant h, where η3(t) and η4(t) have the decay rate O
(
e−2(1−δ)t) as t→∞.

Combing them together, we have (3.2.2) in all cases.

3.3 Asymptotic behavior of singular solutions

Now we are ready to prove Theorem 1.0.2. We �rst establish the following claim, which

help us to exclude the 2k < n & h < 0 case, then we apply Theorem B to (3.2.1) and

(3.2.2) to describe asymptotic behavior of singular solutions.



31

mathn 3.3.1. Let u(x) be a positive solution to (3.1.1) in the Γ+
k class in a punctured

ball BR\{0}, then

lim inf
x→0
|x|

n−2
2 u(x) > 0 =⇒ 2k < n and h > 0.

Especially in the case of 2k < n, we always have h ≥ 0, and

• If h > 0, then lim infx→0 |x|
n−2
2 u(x) > 0 and for some ε > 0, we have

1− γ2
t ≥ ε

for all su�ciently large t.

• If h = 0, then γt(t) > 0 for t large, and limt→∞ γ(t) =∞.

Proof. If lim infx→0 |x|
n−2
2 u(x) > 0, then by (3.1.5) and (3.1.6), we have

−C ≤ γ(t) ≤ C.

So by a rescaling and compactness argument on the translations to γ(t), with the help

of (3.1.8) and (3.2.2), One produces a limiting γ̂(t) which exists and is bounded for all

t ∈ R and satis�es the equation (2.2.1) with

e(2k−n)γ̂(t)(1− γ̂2
t (t))k − e(2l−n)γ̂(t)(1− γ̂2

t )l = h

for some h. But according to Theorem 2.2.1, the classi�cation result says that no

bounded admissible solution of (2.2.1) exists for all t ∈ R with h ≤ 0 or 2k ≥ n, which

implies h > 0 and 2k < n. And from (3.2.2), there is some ε > 0 depending on h such

that 1− γ2
t > ε for all su�ciently large t.

On the other hand, if lim infx→0 |x|
n−2
2 u(x) = 0 then

lim
x→0

sup γ(t) =∞. (3.3.1)

So when 2k < n, it follows from (3.1.8) and (3.2.2) that h = 0. Conversely if h = 0, it

follows from above that lim infx→0 |x|
n−2
2 u(x) = 0. In addition, it follows (3.2.2) that,

for su�ciently large t, γt(t) = 0 can occur only near γ(t) = 0. Together with (3.3.1),

we see that γt(t) > 0 for su�ciently large t and limt→∞ γ(t) =∞.
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The above claim leads to:

Proof of Theorem 1.0.2. By Claim 3.3.1, we just need to handle the four cases slightly

di�erently: Case (a), 2k < n and h > 0 ; Case (b), h = 0; Case (c), 2k > n and h 6= 0;

Case (d), 2k = n, and h 6= 0. The proof of case (a) needs the help of Theorem B.

Case (a) 2k < n and h > 0: For each h, γ(t) is bounded, thus equation (3.2.2) is

transformed into

e(2k−n)γ(1− γ2
t )k − e(2l−n)γ(1− γ2

t )l = h+ η(t)

where η(t) = O(e−2(1−δ)t) as t→∞, so h here is subject to the same upper bound as

in Theorem 1.0.1:

h ≤ h∗ =

(
n− 2k

n− 2l

)n−2k
2

−
(
n− 2k

n− 2l

)n−2l
2

.

Let

H(x, y) = h−
[
e(2k−n)y(1− x2)k − e(2l−n)y(1− x2)l

]
.

For each h ∈ (0, h∗], we have proved that γ(t) satis�es that |γ(t)| and |γ′(t)| are

bounded over t ∈ [0,∞), and by (3.2.1) and (3.2.2), it is a solution to the following

condition

γ′′(t) = f(γ′(t), γ(t)) + e1(t) t ≥ 0

|H(γ′(t), γ(t))| ≤ e2(t) t ≥ 0

where f is a locally Lipschitz function and e1(t), e2(t) = O(e−2(1−δ)t). Furthermore,

• When the solution of H(x, y) = 0 is a point , we take l = 2 to satisfy (3.1.12) .

• When the solution of H(x, y) = 0 is not a point, we take l = 1 to satisfy (3.1.13).

So we can apply Theorem B and (3.1.3) to get Theorem 1.0.2.

Case (b) h = 0: Using limt→∞ γ(t) =∞ back into (3.2.2), which now takes the form

e2kγ
{

(1− γ2
t )k + η3(t)

}
− e2lγ

{
(1− γ2

t )l + η4(t)
}

= 0,
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we see that 1− γ2
t (t) := η(t)→ 0 as t→∞. Since γt(t) > 0 for su�ciently large t, we

conclude that 1− γt(t)→ 0 as t→∞. As a consequence, γ(t) ≥ (1− ε)t+ γ0 for large

t and some ε > 0 small and γ0. This would imply through (3.2.2) that

|η(t)| ≤ Ce−
2(1−δ)
k

t

for some constant C > 0 and for large t, or as t→∞,

ηl � ηk � O(e−2(1−δ)t).

However (3.2.2) shows

ηk−l ≈ e2(l−k)γ(t)

η ≈ e−2γ(t),

a contradiction. Finally, we have

|γt(t)− 1| = |
√

1− η(t)− 1| ≤ Ce−
2(1−δ)
k

t,

from which we conclude that

γ(t)− t = τ +O(e−
2(1−δ)t

k )

for some τ as t→∞. Note that ξ0(t) = ln cosh(t), the solution to (2.2.1) with h = 0,

to which (3.2.1) is a perturbation, satis�es ξ0(t) = t− ln 2 +O(e−2t). Therefore, using

also (3.1.6),

ω(t, θ) = γ(t) + ω̂(t, θ) = ξ0(t+ τ + ln 2) +O(e−
2(1−δ)t

k )

as t→∞, which is (1.0.5). Furthermore,

u(x) = e−
n−2
2

(ω(t,θ)−t) = e
−n−2

2

(
ξ0(t+τ+ln 2)−t+O

(
e−

2(1−δ)t
k

))

= u∗(|x|)e
O

(
e−

2(1−δ)t
k

)

= u∗(|x|)
(

1 +O
(
e−

2(1−δ)t
k

))
where

u∗(|x|) = e−
n−2
2

(ξ0(t+τ+ln 2)−t)

=

(
4eτ

4e2τ + |x|2

)n−2
2
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is a positive radial solution to (3.1.1) on Rn\{0}. We also �nd in this case that

lim
x→0

u(x) = e−
n−2
2
τ := u(0) > 0

exists, with

|u(x)− u(0)| ≤ |u(0)||e
−n−2

2

(
ω̂(t,θ)+O(e−

2(1−δ)t
k )

)
− 1|

≤ Ce−
2(1−δ)t

k

≤ C|x|
2(1−δ)
k .

Case (c) 2k > n and h 6= 0: By Claim 3.3.1, lim infx→0 |x|
n−2
2 u(x) = 0 which implies

lim
t→∞

γ(t) =∞ (3.3.2)

Equation (3.2.2) implies that, for large t, γ′(t) = 0 can occur only when γ(t) is near

certain �nite value. Together with (3.3.2), this implies

γt > 0 for t large

which, together with (3.2.2), implies that (1− γ2
t )k → 0 as t→∞. Then the

conclusion of (1.0.5) is proved in an almost identical way as was done above for the

h = 0 case.

Case (d) 2k = n and h 6= 0: First from Claim 3.3.1,

lim
t→∞

γ(t) =∞.

In [7], they proved: If e−2ω(t,θ)(dt2 + dθ2) ∈ Γ+
2 for all θ ∈ Sn−1 at some t, then

1− γ2
t +

1

|Sn−1|

∫
Sn−1

|∇ω̂|2dθ ≥ 0,

and in (3.2.2), we have ∀ε>0,
−ε < (1− γ2

t )k + η3 < 1 + ε

0 < e−(2l−n)γ < ε .

when t is large enough

Thus

0 < h ≤ 1.
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Moreover, if h = 1, then when t is large enough, (1− γ2
t )k + η3 >

1
2 by (3.2.2), which

implies (1− γ2
t )l > 1

4 , thus

(1− γ2
t )l + η4 > 0.

Still using (3.2.2),

(1− γ2
t )k + η3 > 1,

from which we obtain

γt = O(e−(1−δ)t)

and

lim
t→∞

γ(t) = γ(1) +

∫ ∞
1

γtdt <∞,

a contradiction. So h must satisfy

0 < h < 1.

Arguing as before, we can also show γt > 0 when t is large enough. Then (3.2.2)

implies that (1− γ2
t )k → h as t→∞; and e−nγ(t) = O(e−αt) as t→∞ for some α > 0

depending on 0 < h < 1. Now with η(t) := 1− γ2
t (t), we �nd

ηk(t) = h+ e(2l−n)γ(t)
(

(1− γ2
t )l + η4(t)

)
− η3(t)

= h+O(e−αt)

as t→∞, and

γt(t) =
√

1− η(t) =

√
1− k
√
h+O(e−αt)

which implies that γ(t) =
√

1− k
√
ht+ γ0 +O(e−αt), for some γ0. Similarly, ξh(t)

satis�es ξh(t) =
√

1− k
√
ht+ ξ0 +O(e−αt) for some ξ0. Thus for some τ , we have

γ(t) = ξh(t+ τ) +O(e−αt)

and

u(x) = e−
n−2
2

(ω(t,θ)−t) = e−
n−2
2

(γ(t)−t+ω̂(t,θ)),

from which we �nd that

|x|
n−2
2

(
1−
√

1− k√
h

)
u(x) = e

−n−2
2

(
γ(t)−
√

1− k√
ht+ω̂(t,θ)

)

extends to a Cα(BR) positive function for some α > 0.
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Chapter 4

Analysis of the linearized operator

4.1 Linearization of the conformal quotient equation

In this section we provide a proof of Theorem 1.0.3 by an analysis of the linearized

operator of (1.0.8) at a radial solution ξ(t) to (1.0.8), where c is normalized to be

2l−k(nk)/(nl ). Clearly ξ(t) satis�es

(1− ξ2
t )k−1

[
k

n
ξtt + (

1

2
− k

n
)(1− ξ2

t )

]
e2kξ = (1− ξ2

t )l−1

[
l

n
ξtt + (

1

2
− l

n
)(1− ξ2

t )

]
e2lξ.

Let P (ξ, ξt) :=
(
e−2ξ

1−ξ2t

)k−l
, and we use P to denote the function P (ξ, ξt) all through the

paper and we obtain

ξtt =


(
e−2ξ

1−ξ2t

)k−l
· ( n2k −

l
k )− ( n2k − 1)

1− l
k ·
(
e−2ξ

1−ξ2t

)k−l
 (1− ξ2

t )

=

(
P ( n2k −

l
k )− ( n2k − 1)

1− P l
k

)
(1− ξ2

t )

=

(
1 +

n

2k
· P − 1

1− P l
k

)
(1− ξ2

t ). (4.1.1)

Since ξ(t) satis�es 1− ξ2
t > 0 and the �rst integral

e(2k−n)ξ(1− ξ2
t )k − e(2l−n)ξ(1− ξ2

t )l = h,

P must satisfy 
0 < P < 1 if h > 0

P = 1 if h = 0.
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Next we have the linearization of σk(Ag) at g = e−2ξ(t)(dt2 + dθ2) (for reference see

[43]),

Lξ(φ) =
(1− |ξ2

t |2)k−2

2k−2

(
n−1
k−1

)
× [A(t)φtt(t, θ) +B(t)φt(t, θ) + C(t)∆θφ(t, θ)] ,

where

A(t) =
1− |ξt|2

2

B(t) = −ξt(t)
[
(k − 1)ξtt(t) +

n− 2k

2
(1− |ξt|2)

]
C(t) =

k − 1

n− 1
ξtt(t) +

n− 2k + 1

n− 1
· 1− |ξt|2

2
.

We use L̇(φ) to denote the linearization of σl(Ag) at g = e−2ξ(t)(dt2 + dθ2) while Ḃ(t)

and Ċ(t) is de�ned correspondingly as well.

When c is normalized to be 2l−k(nk)/(nl ), the linearization of PDE (1.0.8) at ξ(t) is

Lξ(φ) + 2kσkφ− (ce−2(k−l)ξL̇ξ(φ) + 2lσkφ) = 0.

A direct computation shows

ce−2(k−l)ξL̇ξ(φ) =
2−k(nk)

2−l(nl )
· e−2(k−l)ξ · (1− |ξt|2)l−1

2l−1
(n−1
l−1 )

×

[
φtt +

Ḃ(t)

A(t)
φt +

Ċ(t)

A(t)
∆θφ(t, θ)

]

=
(1− |ξt|2)k−1

2k−1
(n−1
k−1) · l

k
·
(

e−2ξ

1− |ξt|2

)k−l
×

[
φtt +

Ḃ(t)

A(t)
φt +

Ċ(t)

A(t)
∆θφ(t, θ)

]
,

and also

σkφ = 21−k(nk)(1− ξ2
t )k−1

[
k

n
ξtt + (

1

2
− k

n
)(1− ξ2

t )

]
φ

=
(1− |ξt|2)k−1

2k−1
(n−1
k−1)

[
ξtt + (

n

2k
− 1)(1− |ξ2

t |)
]
φ

=
(1− |ξt|2)k−1

2k−1
(n−1
k−1)

[
n

2k

(
P − 1

1− P l
k

+ 1

)
(1− ξ2

t )

]
φ.
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Let Yj(θ) be the normalized eigenfunctions of ∆θ on L2(Sn−1) and λj be the eigenvalues

of ∆θ on L2(Sn−1) associated with Yj(θ). Thus

λ0 = 0, λ1 = · · · = λn = n− 1, λj ≥ 2n, for j > n.

If we take the projection of φ(t, θ) into spherical harmonics:

φ(t, θ) =
∑
j

φj(t)Yj(θ),

then φj(t) satis�es the ODE

Fλj (φj(t)) : =

{
φ
′′
j +

B(t)

A(t)
φ
′
j +

[
−λj

C(t)

A(t)
+ n

(
P − 1

1− P l
k

+ 1

)
(1− ξ2

t )

]
φj

}

− l
k
· P

{
φ
′′
j +

Ḃ(t)

A(t)
φ
′
j +

[
−λj

Ċ(t)

A(t)
+
n

P

(
P − 1

1− P l
k

+ 1

)
(1− ξ2

t )

]
φj

}
= 0 (4.1.2)

4.2 Decay rate

Now we try to �gure out the decay rate of the solutions of (4.1.2). Note that in

Fλj (φj(t)), the term
B(t)
A(t)φ

′
j − l

k ·
Ḃ(t)
A(t)φ

′
j is

ξt

[(
1− (n− 1)

C(t)

A(t)

)
− l

k
· P

(
1− (n− 1)

Ċ(t)

A(t)

)]
φ
′
j

and when 2k < n, it can always alter its sign as t → ∞, and hard to be controlled in

computation. In [43], l = 0 and they introduced an auxiliary function V (t) to remove

this term involving φ′j , more speci�cally, they obtained

V (t)Fλj
[
V −1φj

]
= φtt + E(t)φ(t)

to go through the computation. But when l 6= 0, it is hard to recover the anticipated

results by their method, however, we observe (4.2.1) and with the estimate |ξt| < 1 we

have

ξt

[(
1− (n− 1)

C(t)

A(t)

)
− l

k
· P

(
1− (n− 1)

Ċ(t)

A(t)

)]

<

(
1− (n− 1)

C(t)

A(t)

)
− l

k
· P

(
1− (n− 1)

Ċ(t)

A(t)

)
,
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and this upper bound help us to have the following properties for the decay rate of

solutions:

Fact 4.2.1. When 2k ≤ n and h ≥ 0

Fλj [e
±t] < 0

for all λj ≥ 2n and t ∈ R+.

Proof. First we state the following claim and provide a proof in the end,[
1− (n− 1)

C(t)

A(t)

]
− l

k
· P

[
1− (n− 1)

Ċ(t)

A(t)

]
< 0. (4.2.1)

By this we have

Fλj [e
−t] = e−t

{
1− B(t)

A(t)

+

[
−λj

C(t)

A(t)
+ n

(
P − 1

1− P l
k

+ 1

)
(1− ξ2

t )

]}

−e−t · l
k
· P

{
1− Ḃ(t)

A(t)

+

[
−λj

Ċ(t)

A(t)
+
n

P

(
P − 1

1− P l
k

+ 1

)
(1− ξ2

t )

]}

= e−t

{
1− ξt

(
1− (n− 1)

C(t)

A(t)

)

+

[
−λj

C(t)

A(t)
+ n

(
P − 1

1− P l
k

+ 1

)
(1− ξ2

t )

]}

−e−t · l
k
· P

{
1− ξt

(
1− (n− 1)

Ċ(t)

A(t)

)

+

[
−λj

Ċ(t)

A(t)
+
n

P

(
P − 1

1− P l
k

+ 1

)
(1− ξ2

t )

]}

≤ e−t

{
1−

(
1− (n− 1)

C(t)

A(t)

)

+

[
−λj

C(t)

A(t)
+ n

(
P − 1

1− P l
k

+ 1

)]}

−e−t · l
k
· P

{
1−

(
1− (n− 1)

Ċ(t)

A(t)

)

+

[
−λj

Ċ(t)

A(t)
+
n

P

(
P − 1

1− P l
k

+ 1

)]}
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If we replace λj by 2n and use F2n(t) to denote the right side of the last inequality,

then the above expression becomes

F2n[e−t] ≤ F2n(t) := −e−t
{[

(n+ 1)
C(t)

A(t)
− n

(
P − 1

1− P l
k

+ 1

)]

− l
k
· P

[
(n+ 1)

Ċ(t)

A(t)
− n

P

(
P − 1

1− P l
k

+ 1

)]}

= −e−t(n+ 1)

{[
C(t)

A(t)
− n

n+ 1

(
P − 1

1− P l
k

+ 1

)]

− l
k
· P

[
Ċ(t)

A(t)
− n

(n+ 1)P

(
P − 1

1− P l
k

+ 1

)]}
(4.2.2)

Let q(ξ, ξt) = P−1
1−P l

k

and use q to denote q(ξ, ξt) all through the paper, then P = q+1

1+q l
k

and obviously −1 < q ≤ 0 since 0 < P ≤ 1. By (4.1.1) we have

C(t)

A(t)
=

1

A(t)
·
(
k − 1

n− 1
ξtt +

n− 2k + 1

n− 1
· 1− ξ2

t

2

)
=

1

A(t)
·

[
k − 1

n− 1

(
1 +

n

2k
· P − 1

1− P l
k

)
(1− ξ2

t ) +
n− 2k + 1

n− 1
· 1− ξ2

t

2

]

= 1 +
k − 1

n− 1
· n
k
· P − 1

1− P l
k

= 1 +
k − 1

n− 1
· n
k
· q.

Now we plug it into (4.2.2) to get

F2n

[
e−t
]
≤ F2n(t) = −e−t(n+ 1)

{[(
1 +

k − 1

n− 1
· n
k
· q
)
− n

n+ 1
(q + 1)

]
− l
k

[(
1 +

l − 1

n− 1
· n
k
· q
)
P − n

(n+ 1)
(1 + q)

]}
= −e−t(n+ 1)

1

1 + l
kq

{
1− l

k
+

(k − 1)n

(n− 1)k
q(1 +

l

k
q)

− n

n+ 1
(q + 1)(1− l

k
)(1 +

l

k
q)− nl(l − 1)

k2(n− 1)
q(q + 1)

}
= −e−t n+ 1

1 + l
kq

{(
nl(k − l)
k2(n− 1)

− n(k − l)l
(n+ 1)k2

)
q2

+

(
n(k − l)(k + l − 1)

k2(n− 1)
− n(k − l)(k + l)

(n+ 1)k2

)
q +

1

n+ 1

(
1− l

k

)}
= −e−t k − l

k(1 + l
kq)

{
2nl

k(n− 1)
q2 +

n (2(k + l)− n− 1)

k(n− 1)
q + 1

}
.
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Next we consider two cases:

• If 2(k + l)− n− 1 ≤ 0, then the parabola

2nl

k(n− 1)
q2 +

n (2(k + l)− n− 1)

k(n− 1)
q + 1 ≥ 1

for all q ∈ (−1, 0], which implies that F2n

[
e−t
]
≤ F2n(t) < 0.

• If 2(k + l) − n − 1 > 0, we let a = n
2 − k, and a ≥ 0 by assumption, then the

discriminant of the parabola is

∆ =

(
n(2(k + l)− n− 1)

k(n− 1)

)2

− 4 · 2nl

k(n− 1)

=
n

k2(n− 1)2

(
n (2(k + l)− n− 1)2 − 8lk(n− 1)

)
=

n

k2(n− 1)2

(
n(2l − 2a− 1)2 − 4l(n− 2a)(n− 1)

)
≤ n(2l − 2a− 1)

k2(n− 1)2
(n(2l − 2a− 1)− 2(n− 2a)(n− 1))

≤ n(2l − 2a− 1)

k2(n− 1)2
(n(n− 4a− 1)− 2(n− 2a)(n− 1))

<
n(2l − 2a− 1)

k2(n− 1)2
(−2an− 2a)

< 0.

We still have
2nl

k(n− 1)
q2 +

n (2(k + l)− n− 1)

k(n− 1)
q + 1 > 0,

and thus

F2n[e−t] ≤ F2n(t) < 0.

Also we �nd the coe�cient of λj in Fλj
[
e−t
]
is

−e−t
(
C(t)

A(t)
− l

k
P
Ċ(t)

A(t)

)
=
F2n(t)− n(1− l

k )(q + 1)e−t

n+ 1
< 0,

which implies

Fλj
[
e−t
]
< F2n

[
e−t
]
< 0,

similarly we have Fλj
[
et
]
< 0.
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Finally it remains to verify (4.2.1), indeed,[
1− (n− 1)

C(t)

A(t)

]
− l

k
· P

[
1− (n− 1)

Ċ(t)

A(t)

]

=

[
1− (n− 1)

(
1 +

k − 1

n− 1
· n
k
q

)]
− l

k
· q + 1

1 + q lk

[
1− (n− 1)

(
1 +

l − 1

n− 1
· n
k
q

)]
=

1

k(k + ql)
{[(2− n)k − (k − 1)nq] (k + ql)− l(q + 1)[(2− n)k − (l − 1)nq}

=
1

k(k + ql)

{
(2− n)k2 + ((2− n)kl − (k − 1)nk)q − (k − 1)nlq2

−(2− n)kl + ((l − 1)nl − (2− n)kl)q + (l − 1)nlq2
}

=
1

k(k + ql)

{
(2− n)k(k − l) + (k − l)(1− k − l)nq + nl(l − k)q2

}
=

l − k
k(k + ql)

{
nlq2 + n(k + l − 1)q + (n− 2)k

}
,

Since the axis of symmetry of parabola l−k
k

{
nlq2 + n(k + l − 1)q + (n− 2)k

}
is

x = −n(k + l − 1)

2nl

and obviously

−1 > −n(k + l − 1)

2nl
,

we have l−k
k

{
nlq2 + n(k + l − 1)q + (n− 2)k

}
is decreasing when q > −1, thus[

1− (n− 1)
C(t)

A(t)

]
− l

k
· P

[
1− (n− 1)

Ċ(t)

A(t)

]

<
l − k
k

{
nl(−1)2 + n(k + l − 1)(−1) + (n− 2)k

}
=

l − k
k
{n− 2k}

≤ 0

for all q ∈ (−1, 0].

Fact 4.2.2. When n
2 < k < n and h > 0 we have

Fλj
[
e−t
]
< 0

for all λj ≥ 2n and t large enough. There also exists some small λ > 0 such that

Fλj

[
eλt
]
< 0
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for all λj ≥ 2n and t large enough.

Proof. First as t→∞, ξ →∞ and 1− ξ2
t → h

1
k e(n

k
−2)ξ → 0, and also

(1− ξ2
t )k = he(n−2k)ξ + (1− ξ2

t )le(2l−2k)ξ,

we get

P =

(
e−2ξ

1− ξ2
t

)k−l
→ h−

k−l
k e−

n(k−l)
k

ξ → 0,

thus q → −1 and

F2n

[
e−t
]
→ e−t

{
1−

[
1− (n− 1)

(
1 +

k − 1

n− 1
· n
k

(−1)

)]
− 2n

(
1 +

k − 1

n− 1
· n
k

(−1)

)}
= −e−t(n+ 1) · n− k

k(n− 1)

< 0,

Moreover, as t→∞, −C(t)
A(t) − P

l
k
Ċ(t)
A(t) →

k−n
k(n−1) < 0, which implies

Fλj
[
e−t
]

< F2n

[
e−t
]

< 0

as t→∞. Similarly there exist some λ > 0 such that

Fλj

[
eλt
]
< 0

as t→∞.

Using the same argument as in the proof of Proposition 2 in [43], we �nd out the

the solution basis
{
φ+

0 (t), φ−0 (t)
}
of (4.1.2) for λ0 = 0 and λj = n− 1:

• λ0 = 0 φ+
0 (t) = ∂tξ(t) φ−0 (t) = ∂hξh(t)

• λj = n − 1


φ+

0 (t) = [1− ∂tξ(t)] et, φ−0 (t) = [1 + ∂tξ(t)] e
−t if h > 0

φ+
0 (t) = cosh−1(t)

∫ 1
0 (cosh(s))nds, φ−0 (t) = cosh−1(t) if h = 0

and when h > 0, φ+
0 (t) grows unbounded and φ−0 (t) decays exponentially as

t→∞ if k < n.
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For λj ≥ 2n, it is not easy to write down the solution basis φ+
0 and φ−0 . However by

Fact 4.2.1 and 4.2.2 we can still use the comparison principle to prove that φ+
0 grows

unbounded and φ−0 (t) decays faster than e−t as t → ∞ if k < n. Consequently we

establish the following proposition. For details of the comparison principle proof see

proposition 2 of [43].

Proposition 4.2.3. For all solutions ξh(t) to (4.1.2) with h ≥ 0, k < n and j ≥ 1, the

following holds:

1. The basis of solution space to Fλj [φ] = 0 contains a pair of linearly independent

solutions on R, of which one grows unbounded and the other decays exponentially

as t→∞;

2. Any solution of Fλj [φ] = 0 which is bounded for R+ must decay exponentially;

3. Any solution of Fλj [φ] = 0 which is bounded for all of R must be identically 0;

4. Any non-zero solution of Fλj [φ] = 0 which is bounded for all of R+ must be

unbounded on R−.

While the asymptotic behavior of the solution basis is su�cient for providing a proof

for Theorem 1.0.2, Theorem 1.0.3 requires some more detailed knowledge about the

linearized operator to (1.0.8). More speci�cally, the decay rates of bounded solutions to

Fj [φ] = 0 on R+ need to be faster than e−t when λj ≥ 2n. In the case 2k < n and h > 0,

Lj is an ordinary di�erential operator with periodic coe�cient, so by Floquent Theory,

it has a set of well de�ned characteristic roots which give the exponential decay/grow

rates to solution φ of Fj [φ] = 0 on R, Indeed Theorem 5.1 in Chap. 3 of [21] which

applied to Fj implies that Fj [φ] = 0 has a set of fundamental solutions in the form

of eρjtp1(t) and e−ρjtp2(t) for some periodic functions p1(t) and p2(t), where ρj 6= 0.

When h = 0, ξ(t) = ln cosh(t), and (4.1.2) take the form of

Fj [φj ] = φ
′′
j + (2− n) tanh(t)φ

′
j +

[
−λj + n cosh−2(t)

]
φj , (4.2.3)

so a similar notion for characteristic roots can be de�ned, which is also the case when

2k = n. Fact 4.2.1 implies the following
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Lemma 4.2.4. When 2k ≤ n and h ≥ 0, there is a β∗ > 1 such that for all λj ≥ 2n,

the associated ρj satis�es ρj ≥ β∗.

4.3 Expansion in terms of Wronskian

With the knowledge from the previous section, we can now establish

Proposition 4.3.1. When 2k ≤ n, and suppose that φ(t, θ)→ 0 as t→∞ uniformally

in θ ∈ Sn−1 and also satis�es

Lξ(φ) + 2kσkφ−
(
ce−2(k−l)ξL̇ξ(φ) + 2lσkφ

)
= r(t, θ) (4.3.1)

for all t > t0 and θ ∈ Sn−1. Suppose that for some 0 < β < β∗ and β 6= 1, |r(t, θ)| .

e−βt. Then there exist constants aj for j = 1, · · · , n such that

|φ(t, θ)−
n∑
j=1

aje
−t(1 + ξt(t))Yj(θ)| . e−βt. (4.3.2)

In fact, when β∗ ≤ β < ρn+1, it continues to hold and when β > ρn+1 ,we will have

|φ(t, θ)−
n∑
j=1

aje
−t(1 + ξt(t))Yj(θ)| . e−ρn+1t; (4.3.3)

when β = 1 ,

|φ(t, θ)−
n∑
j=1

aje
−t(1 + ξt(t))Yj(θ)| . te−t; (4.3.4)

and when β = ρn+1,

|φ(t, θ)−
n∑
j=1

aje
−t(1 + ξt(t))Yj(θ)| . te−ρn+1t.

Proof. De�ne

φ̂(t, θ) = φ(t, θ)−
n∑
j=0

πj [φ(t, θ]Yj(θ)

where φj(t) := πj [φ(t, θ)] is the L2 orthogonal projection of φ(t, θ) onto span{Yj(θ)} .

Then ∫
Sn−1

φ̂(t, θ)Yj(θ)dθ =

∫
Sn−1

∇φ̂(t, θ) · ∇Yj(θ)dθ (4.3.5)

=

∫
Sn−1

∆θYj(θ)φ̂(t, θ)dθ = 0
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for j = 0, · · · , n. As a consequence,
∫
Sn−1 ∆θφ(t, θ)φ̂(t, θ)dθ = −

∫
Sn−1 |∇θφ̂(t, θ)dθ∫

Sn−1 φt(t, θ)φ̂(t, θ)dθ =
∫
Sn−1 φ̂t(t, θ)φ̂(t, θ)dθ = 1

2
d
dt

∫
Sn−1 |φ̂(t, θ)|2dθ.

(4.3.6)

In the following we will prove separately the expected decays for φ̂(t, θ) and φj(t) :=

πj [φ(t, θ)], for j = 0, 1, · · · , n. We �rst estimate φj(t) = πj [φ(t, θ)] for j = 0, · · · , n.

Multiplying both sides of (4.3.1) by{
(1− |ξt|2)k−1

2k−1

(
n−1
k−1

)(
1− l

k
P

)}−1

Yj(θ),

and integrating over θ ∈ Sn−1, we obtain

φ
′′
j (t) + Φφ

′
j(t) + Ψφj(t) = r̂j(t) (4.3.7)

where
Φ = −ξt

(
(n− 2) + n · P−1

k−Pl

(
k2−Pl2
k−Pl − 1

))
Ψ = 2n

{
(n+1)l

2k(n−1)q
2 + (n+1)(k+l)−2n

2(n−1)k q + 1
2

}
− n

1−P l
k

( P−1
1−P l

k

+ 1)(1− l
k )ξ2

t

r̂j(t) =
∫
Sn−1 r̂(t, θ)Yj(θ)dθ.

We will write out the details for the h > 0 case; the h = 0 has the same linearization

of (4.2.3) as σk = c case, so it was solved by [43]. For j = 1, · · · , n, λj = n − 1, and

φ−1 (t) := e−t(1+ξ
′
t(t)), φ

+
1 := et(1−ξ′t(t)) form a basis of solutions to the homogeneous

equation

φ
′′
j (t) + Φφ

′
j(t) + Ψφj(t) = 0.

Since φj(t) is a solution to (4.3.4) and φj(t)→ 0 as t→∞, by the variation of constant

formula,

φj(t) = cφ−1 (t) + φ−1 (t)

∫ t

0

φ+
1 (s)r̂j(s)

W1(s)
ds+ φ+

1 (t)

∫ t

0

φ−1 (s)r̂j(s)

W1(s)
ds (4.3.8)

for some constant c, where

W1(s) = φ+
1 (s)φ−

′

1 (s)− φ−1 (s)φ+
′

1 (s)

is the Wronskian of
{
φ−1 (t), φ+

1 (t)
}
, and satis�es

W
′
1(s) = −Φ(t)W1(s).
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Integrating this equation out, using

Φ = −ξt
(

(n− 2) + n · P − 1

k − Pl

(
k2 − Pl2

k − Pl
− 1

))
,

we �nd

W1(t) = (cosst.)e
∫ t
0 ξs

(
(n−2)+n· P−1

k−Pl

(
k2−Pl2
k−Pl −1

))
ds

= (cosst.)e
∫ t
0 ξs

(
(n−2)+n

(
P (k−l)
k(k−Pl)−

1
k

)(
Pl(k−l)
k−Pl +(k−1)

))
ds

= (cosst.)e

∫ t
0 ξs

(
(n−2k

k )+n
P2(k−l)
k(k−Pl)2

+
P (k−l)(k−l−1)

k(k−Pl)

)
ds

= (cosst.)e
n−2k
k

ξ(t) · e
∫ ξ(t)
ξ(0)

(
n
P2(k−l)
k(k−Pl)2

+
P (k−l)(k−l−1)

k(k−Pl)

)
dξ(s)

.

If 2k < n, then ξ(t) is bounded and ξt(t) is a function of ξ(t), thus W1(t) has a positive

upper and lower bound. If 2k = n, then P ∼ h−
k−l
k e−2(k−l)ξ → 0 as t→∞, thus

1 ≤ e
∫ ξ(t)
ξ(0)

(
n
P2(k−l)
k(k−Pl)2

+
P (k−l)(k−l−1)

k(k−Pl)

)
dξ(s)

≤ C.

Consequently W1(t) also has a positive upper and lower bound. According to our

assumption on the decay rate of r(t, θ), we have

|rj(s)| ≤ Ce−βs.

Thus ∣∣∣∣∫ ∞
t

φ−1 (s)r̂j(s)

W1(s)
ds

∣∣∣∣ . ∫ ∞
t

e−(1+β)sds . e−(1+β)t

from which we deduce that∣∣∣∣φ+
1 (t)

∫ ∞
t

φ−1 (s)r̂j(s)

W1(s)
ds

∣∣∣∣ . e−βt.

When β 6= 1, we also have∣∣∣∣∫ t

0

φ+
1 (s)r̂j(s)

W1(s)
ds

∣∣∣∣ . ∫ t

0
e(1−β)sds . e(1−β)t

from which we deduce that∣∣∣∣φ−1 (t)

∫ t

0

φ+
1 (s)r̂j(s)

W1(s)
ds

∣∣∣∣ . e−βt.

Putting these estimates into (4.3.8), we have

∣∣φj(t)− ce−t(1 + ξ′(t))
∣∣ . e−βt.
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When β = 1, (4.3.8) gives the modi�ed estimate.

For j = 0, φ+
0 (t) = ξ

′
h(t) and φ

′
0(t) = ∂hξh(t) also form a solution basis to the

homogeneous equation

φ
′′
j (t) + Φφ

′
j(t) + Ψφj(t) = 0.

Since φ0(t) is a solution to (4.3.7) and φ0(t)→ 0 as t→∞, a variant of (4.3.8) gives:

φ0(t) = −φ−0 (t)

∫ ∞
t

φ+
0 (s)r̂0(s)

W0(s)
ds+ φ+

0 (t)

∫ ∞
t

φ−0 (s)r̂0(s)

W0(s)
ds, (4.3.9)

where

W0(s) = φ+
0 (t)φ−

′

0 (t)− φ−0 (t)φ+
′

0 (t) (4.3.10)

is the Wronskian of
{
φ−0 (t), φ+

0 (t)
}
, and also satis�es

W
′
0(s) = −B(s)

A(s)
W0(s).

Thus, as for W1(s), W0(s) is a periodic function, having a positive upper and lower

bound. Let T (h) denote the minimal period of the solution ξh(t). Then ξh(t+ T (h)) =

ξh(t). Di�erentiating in h, we obtain

φ−0 (t+ T (h)) + T
′
(h)ξ

′
h(t+ T (h)) = φ−0 (t), (4.3.11)

which implies that φ−0 (t) grows in t at most linearly. Then (4.3.10) would imply that

|φ0(t)| . te−βt. This is not quite as claimed, but is good enough to be used in our

iterative argument in proving (1.0.9). To obtain the more precise estimate (4.3.2), note

that (4.3.11) implies that

p(t) := φ+
0 (t) +

T
′
(h)

T (h)
tξ
′
h(t) = φ−0 (t) +

T
′
(h)

T (h)
tφ+

0 (t)

is T (h) periodic. Thus we can express φ
′
0(t) as p(t)− T

′
(h)

T (h) tφ
+
0 (t) in (4.3.9) to obtain

φ0(t) = −

(
p(t)− T

′
(h)

T (h)
tφ+

0 (t)

)∫ ∞
t

φ+
0 (s)r̂0(s)

W0(s)
ds

+φ+
0

∫ ∞
t

(
p(s)− T

′
(h)

T (h) sφ
+
0 (s)r̂0(s)

)
W0(s)

ds

= −p(t)
∫ ∞
t

φ+
0 (s)r̂0(s)

W0(s)
ds+ φ+

0 (s)

∫ ∞
t

p(s)r̂0(s)

W0(s)
ds

−T
′
(h)

T (h)
φ+

0 (t)

∫ ∞
t

∫ ∞
s

φ+
0 (τ)r̂0(s)

W0(s)
dτds,
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from which |φ0(t)| . e−βt follows.

Finally, we estimate the decay rate of φ̂(t, θ). Multiplying both sides of (4.3.1) by{
(1− |ξt|2)k−1

2k−1

(
n−1
k−1

)(
1− l

k
P

)}−1

φ̂(t, θ),

integrating over θ ∈ Sn−1 and using (4.3.5) and (4.3.6), we �nd∫
Sn−1

{
φ̂tt(t, θ)φ̂(t, θ) + Φφ̂t(t, θ)φ̂(t, θ) (4.3.12)

+
k − l

1− l
kP
· n
k

(1 + q) (1− |ξ2
t |)|

∣∣∣φ̂(t, θ)
∣∣∣2} dθ

−
∫
Sn−1

{
λj

1− l
kP

[
C(t)

A(t)
− l

k
P
Ĉ(t)

A(t)

] ∣∣∣φ̂θ(t, θ)∣∣∣2
}
dθ

=

∫
Sn−1

r̂(t, θ)φ̂(t, θ)dθ, (4.3.13)

where

r̂(t, θ) =

{
(1− |ξt|2)k−1

2k−1

(
n−1
k−1

)(
1− l

k
P

)}−1

r(t, θ) ≈ r(t, θ)

De�ning

y(t) =

√∫
Sn−1

∣∣∣φ̂(t, θ)
∣∣∣2 dθ,

then

y′(t) =

∫
Sn−1

φ̂t(t, θ)φ̂(t, θ)dθ/y(t) whenever y(t) > 0,

and

y(t)y
′′
(t) =

∫
Sn−1

{
φ̂tt(t, θ)φ̂(t, θ) +

∣∣∣φ̂t(t, θ)∣∣∣2} dθ − ∣∣∣y′(t)∣∣∣2 .
The Cauchy-Schwarz inequality implies that

∣∣y′(t)∣∣2 ≤ ∫
Sn−1

∣∣∣φ̂t(t, θ)∣∣∣2 dθ.
Using these relations and plugging∫

Sn−1

∣∣∣∇θφ̂(t, θ)
∣∣∣2 dθ ≥ 2n

∫
Sn−1

∣∣∣φ̂(t, θ)
∣∣∣2 dθ

into (4.3.12) , we obtain

y(t)y
′′
(t) + Φy(t)y

′
(t) + Ψy2(t) ≥ − ||r̂(t, ·)||L2(Sn−1) y(t),
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whenever y(t) > 0, from which we deduce

y
′′
(t) + Φy(t) + Ψy(t) ≥ − ||r̂(t, ·)||L2(Sn−1)

whenever y(t) > 0. According to our assumption on r(t, θ), we have

||r̂(t, ·)||L2(Sn−1) ≤ Ce
−βt

for some constant C > 0. By Lemma 4.2.4,

(∂tt + Φ∂t + Ψ)
(
e−βt

)
≤ −εe−βt

for some ε > 0 when β < β∗. So z(t) := C
ε e
−βt satis�es

(∂tt + Φ∂t + Ψ) (z(t)− y(t)) ≤ 0 (4.3.14)

whenever y(t) > 0. We also know that y(t) → 0 as t → ∞. We may choose C > 0

large so that z(0) ≥ y(0). Then we claim that z(t) − y(t) ≥ 0 for all t ≥ 0, for if not,

min (z(t)− y(t)) < 0 is �nite, and is attained at some t∗, so y(t∗) > z(t∗) > 0, (4.3.14)

holds at t = t∗, and ∂t(z(t) − y(t))|t=t∗ = 0, as well as ∂tt(z(t) − y(t))|t=t∗ ≥ 0. This

contradicts (4.3.14). Thus we conclude√∫
Sn−1

∣∣∣φ̂(t, θ)
∣∣∣2 dθ = y(t) ≤ C

ε
e−βt.

We can now bootstrap this integral estimate to obtain a pointwise decay estimate∣∣∣φ̂(t, θ)
∣∣∣ . e−βt.

When β ≥ β∗, we can simply split those components φj of φ with λj = 2n from

φ̂(t, θ), and estimate them as we did for φj , j = 0, · · · , n, and estimate φ̂(t, θ) with an

exponential decay rate.

With Proposition 4.3.1 and a iteration argument from[43], we proved Theorem 1.0.3.

Proof of Theorem 1.0.3. Our starting point is still

Lξh(t+τ)(φ) + 2kσkφ−
(
ce−2(k−l)ξh(t+τ)L̇ξh(t+τ)(φ) + 2lσkφ

)
+Q(φ) = 0,
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and our premise is

|Q(φ)| . e−2αt whenever we have |φ, ∂φ, ∂2φ| . e−αt.

In Theorem 1.0.2 we have established

Step 1: For some α0 > 0, |φ, ∂φ, ∂2φ| . e−α0t.If α0 ≥ ρn+1, we stop and have now

proved |ω(t, θ) − ξh(t + τ)| = |φ(t, θ)| . e−ρn+1t, where ρn+1 >
√

2; if 1 ≤ α0 < ρn+1,

we jump to Step 3; if α0 ≤ 1, we move to

Step 2: Recall that we now have |Q(φ)| . e−2α0t. If 2α0 > ρn+1, then we can apply

Proposition 4.3.1 directly to conclude our proof; If 1 < 2α0 ≤ ρn+1, then we certainly

still have |Q(φ)| . e−2αt for some 1 < 2α < ρn+1 and can apply Proposition 4.3.1 to

imply that

|ω(t, θ)− ξh(t+ τ)−
n∑
j=1

aje
−(t+τ)(1 + ξ

′
h(t+ τ))Yj(θ)| . e−2αt,

for some constants aj for j = 1, · · · , n, and jump to Step 3; if 2α0 ≤ 1, we may take α0

to satisfy 2α0 < 1 and apply Proposition 4.3.1 to imply that

|φ(t, θ)−
n∑
j=1

aje
−(t+τ)(1 + ξ

′
h(t+ τ))Yj(θ)| . e−2α0t,

for some constant aj for j = 1, · · · , n. This certainly implies that

|φ(t, θ)| . e−2α0t. (4.3.15)

Next we use higher derivative estimates for ω(t, θ) and ξh(t+ τ) and interpolation with

(4.3.15) to obtain

|φ, ∂φ, ∂2φ| . e−2α′t

for any α′ < α0. Now we go back to the beginning of Step 2 and repeat the process

with a new α1 > α0 to replace the α0 there, say, α1 = 1.8α0. After a �nite number of

steps, we will reach a stage where 2α > 1 and ready to move onto

Step 3: At this stage, we have |φ(t, θ)| . e−t. Repeating the last part of Step 2

involving the derivative estimates for ω(t, θ) and ξh(t+ τ) to bootstrap the estimate for

Q(φ) to |Q(φ)| . e−αt, with α can be as close to 2 as one needs. Then, depending on

whether ρn+1 ≥ 2 or otherwise, one can apply Proposition 4.3.1 to obtain (4.3.2) and
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(4.3.3). In the �rst case, we can continue the iteration until 2α > 2. But due to the

presence of e−(t+τ)(1+ξ
′
h(t+τ))Yj(θ) in the estimate for φ, the estimate for Q(φ) cannot

be better than e−2t. This explains the appearance of min{2, ρn+1} in (1.0.11).
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Appendix A

Proof for the phase plane

Now we prove the result in Section 2.1. Remember that we consider the level set given

by

G(x, y) = e(2k−n)x(1− y2)k − e(2l−n)x(1− y2)l = h (2.1.1)

where (x, y) ∈ Ω ≡
{

(x, y) ∈ R2| |y| < 1
}
and h is a constant. We also recall that

Ω− ≡
{

(x, y) ∈ R2 | − 1 < y < 0
}
and the level set is symmetric with respect to x-axis,

i.e.,

G(x, y) = G(x,−y) (A.0.1)

for all (x, y) ∈ Ω. Moreover, we set W :=
{

(x, y) ∈ Ω |x < −1
2 ln

(
1− y2

)}
and V :={

(x, y) ∈ Ω |x > −1
2 ln

(
1− y2

)}
, and ∀(x, y) ∈ Ω solving (2.1.1),

(x, y) ∈W ⇐⇒ h < 0 while (x, y) ∈ V ⇐⇒ h > 0. (A.0.2)

Proof of (P1) (P2) (P3) in Case h > 0

Lemma A.0.2. If 1 < l < k < n
2 & h > 0, then ∂G

∂y > 0 in V ∩ Ω−. Besides, the set

< ≡
{

(x, y) ∈ Ω | ∂G∂x = 0
}
is the curve

x̄(y) =
1

2
ln

(
n−2l
n−2k

) 1
k−l

(1− y2)
|y| < 1 (A.0.3)

and it stays in V . Moreover, for all (x, y) ∈ Ω we have
∂G
∂x > 0 if x < x̄(y)

∂G
∂x < 0 if x > x̄(y)

(A.0.4)
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Proof. First if 1 < l < k < n
2 , we have that

∂G

∂y
= (−2y)

(
e(2k−n)xk(1− y2)k−1 − e(2l−n)xl(1− y2)l−1

)
= (−2y)(1− y2)−1

(
ke(2k−n)x(1− y2)k − le(2l−n)x(1− y2)l

)
> 0

in V ∩ Ω−. Secondly we solve

∂G

∂x
= (2k − n)e(2k−n)x(1− y2)k − (2l − n)e(2l−n)x(1− y2)l = 0

in Ω to obtain the curve

x̄(y) =
1

2
ln

(
n−2l
n−2k

) 1
k−l

(1− y2)
|y| < 1,

and obviously

x̄(y) > −1

2
ln
(
1− y2

)
if |y| < 1,

so < must stay in V . Consequently for all (x, y) ∈ Ω, we have ∂G
∂x > 0 if x < x̄(y) and

∂G
∂x < 0 if x > x̄(y).

Lemma A.0.3. If 1 < l < k < n
2 , then G(x, y) achieves its maximum h∗ :=

(n−2k
n−2l )

n−2k
2 − (n−2k

n−2l )
n−2l

2 only at
(

1
2(k−l) ln n−2l

n−2k , 0
)
in V . Moreover, if 0 < h < h∗,

the level set given by (2.1.1) is a closed curve in V ; and if h = h∗, it is the point

(x̄(0), 0) . All the sets {(x, y) |G(x, y) = h}, 0 < h < h∗ foliate V and there is no

solution to (2.1.1) in Ω if h > h∗.

Proof. By Lemma A.0.2 ∂G
∂y > 0 in V ∩ Ω− and (A.0.1), we have

G(x, y) < G(x, 0) ∀(x, y) ∈ V with y 6= 0. (A.0.5)

Also 
∂G
∂x (x, 0) > 0 if x < x̄(0)

∂G
∂x (x, 0) < 0 if x̄(0) < x,

(A.0.6)

which implies

G(x, 0) < G (x̄(0), 0) ≡ h∗ ∀x > 0 andx 6= x̄(0). (A.0.7)
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Combining (A.0.5) and (A.0.7),

G(x̄(0), 0) = max
(x,y)∈V

G(x, y) > G(x, y) ∀(x, y) ∈ V & (x, y) 6= (x̄(0), 0).

Besides,

G(0, 0) = lim
x→∞

G(x, 0) = 0,

so when 0 < h < h∗, by (A.0.6), there are just a1(h) & a2(h) such that 0 < a1(h) <

x̄(0) < a2(h) <∞ and

G(a1(h), 0) = G(a2(h), 0) = h.

If x ∈ (a1(h), a2(h)), we have G(x, 0) > h & G(x,−
√

1− e−2x) = 0, so there must exist

one unique y(x) such that −
√

1− e−2x < y(x) < 0 solving

G(x, y(x)) = h.

However, if (x, y) ∈ V with 0 < x < a1(h) or x > a2(h), then G(x, y) > h, so the

solution of (2.1.1) must be the set {(x,±y(x)) | a1(h) < x < a2(h)} by symmetry

(A.0.1), whose graph is a closed curve in V . When h = h∗, the graph of (2.1.1) is the

point (x̄(0), 0) . There is no solution to (2.1.1) if h > h∗.

Proof of (P4) (P5) in Case h > 0

Lemma A.0.4. If 1 ≤ l < k = n
2 & h > 0, then ∂G

∂y > 0 in V ∩ Ω− and ∂G
∂x > 0 in

Ω. Consequently in V ∩Ω− the function y(x) solving (2.1.1) is well de�ned and strictly

decreasing.

Proof. Similarly as Lemma A.0.2, we have

∂G

∂y
= (−2y)(1− y2)−1

(
k(1− y2)k − le(2l−2k)x(1− y2)l

)
= (−2y)(1− y2)l−1e(2l−2k)x(ke(2k−2l)x(1− y2)k−l − l)

> 0

in V ∩ Ω−, and also in Ω,

∂G

∂x
= (n− 2l)e(2l−n)x(1− y2) > 0. (A.0.8)
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Thus
∂y

∂x
= −

∂G
∂x
∂G
∂y

< 0

in V ∩Ω−, which implies that y(x) is well de�ned and strictly decreasing in V ∩Ω−.

Lemma A.0.5. If 1 ≤ l < k = n
2 & 0 < h < 1, the level set given by (2.1.1) is a

U -shaped curve which opens right. Moreover the function y(x) solving (2.1.1) is strictly

decreasing and y → −
√

1− k
√
h as x → ∞ in Ω−. If 1 ≤ l < k = n

2 & h ≥ 1, there is

no solution for (2.1.1) in Ω.

Proof. By Lemma A.0.4, if 1 ≤ l < k = n
2 , then

G(x, y) ≤ G(x, 0) < lim
x→∞

G(x, 0) = 1

for all (x, y) ∈ V . Thus when h ≥ 1, there is no solution for (2.1.1) in Ω. If 0 < h < 1,

the function y(x) solving (2.1.1) is well de�ned and strictly decreasing in V ∩ Ω−.

Besides, y → −
√

1− k
√
h as x → ∞ in Ω−, and by symmetry the level set is a U-

shaped curve that opens right in V .

Proof of (P6) in Case h > 0

Lemma A.0.6. If 1 ≤ l < k, n2 < k & h > 0, then ∂G
∂y > 0 in V ∩ Ω− and ∂G

∂x > 0 in

V , thus the function y(x) solving (2.1.1) is well de�ned and strictly decreasing in Ω−.

Moreover, y(x)→ −1 as x→∞ in Ω− and the level set given by (2.1.1) is a U -shaped

curve that opens right.

Proof. If 1 ≤ l < k, n2 < k & h > 0, then

∂G

∂x
= (2k − n)e(2k−n)x(1− y2)k − (2l − n)e(2l−n)x(1− y2)l

= e(2l−n)x(1− y2)l((2k − n)e(2k−2l)x(1− y2)k−l − (2l − n))

> 0

in V and same as above ∂G
∂y > 0 in Ω− ∩ V . Thus in Ω− ∩ V ,

∂y

∂x
= −

∂G
∂x
∂G
∂y

< 0,
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so the function y(x) solving (2.1.1) is well de�ned and strictly decreasing in V ∩ Ω−.

We claim y(x) → −1 as x → ∞ in Ω−, or else there exists one 0 > c > −1 such that

y(x) > c, then

h ≡ lim
x→∞

G(x, y(x)) >
1

2
lim
x→∞

e(2k−n)x(1− c2)k =∞

a contradiction. Hence y(x) → −1 as x → ∞ in Ω− and by symmetry the level set

given by (2.1.1) is a U -shaped curve that opens right in V .

Proof of (N1) (N2) in Case h < 0

Lemma A.0.7. If 1 ≤ l < k, l < n
2 & h < 0, then

∂G

∂x
> 0 (x, y) ∈W,

and ∀ y ∈ (−1, 1), there exists a unique x∗h(y) such that

G(x∗h(y), y) = h.

Moreover, x∗h(0) < 0 and

lim
y→−1

x∗h(y) = −∞. (A.0.9)

Proof. If 1 ≤ l < n
2 ≤ k, then in Ω,

∂G

∂x
= e(2l−n)x(1− y2)l((2k − n)e(2k−2l)x(1− y2)k−l − (2l − n))

> 0.

With (A.0.6), (A.0.8), we obtain that if 1 ≤ l < k, l < n
2 , then

∂G

∂x
> 0 (x, y) ∈W.

Besides, ∀y ∈ (−1, 1) 
G(x, y) = 0 if (x, y) ∈ ∂V

limx→∞G(x, y) = −∞ .

Thus there is one unique x∗h(y) such that (x∗h(y), y) ∈W by (A.0.2) and

G(x∗h(y), y) = h.
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Speci�cally x∗h(0) < 0. Also we claim

lim
y→−1

x∗h(y) = −∞,

or else there exist b and a sequence {yk}k∈Z such that yk
k→∞−−−→ −1 & x∗h(yk) > b, it

implies

h = lim
k→∞

G(x∗h(yk), yk)

> lim
k→∞

−e(2l−n)b(1− y2
k)
l

= 0,

contradiction.

Lemma A.0.8. If 1 ≤ l < k, l < n
2 &h < 0, set ℵ ≡ {(x(y), y) ∈ Ω} where

x(y) =
1

2
ln

(
( lk )

1
k−l

1− y2

)
|y| < 1, (A.0.10)

then ℵ stays in W , and also {(x, y) ∈ Ω | ∂G∂y = 0} = ℵ ∪ {(x, 0) |x ∈ R}. Moreover, for

all (x, y) ∈ Ω−, 
∂G
∂y < 0 if x < x(y)

∂G
∂y > 0 if x > x(y).

(A.0.11)

Proof. If 1 ≤ l < k, l < n
2 & h < 0,

∂G

∂y
= e(2k−n)xk(1− y2)k−1(−2y)− e(2l−n)xl(1− y2)l−1(−2y)

= (−2y)e(2l−n)x(1− y2)l−1
(
ke(2k−2l)x(1− y2)k−l − l

)
,

by solving ∂G
∂y = 0, we obtain y = 0 or the curve

x(y) =
1

2
ln

(
( lk )

1
k−l

1− y2

)
|y| < 1.

Thus {(x, y) ∈ Ω | ∂G∂y = 0} = ℵ ∪ {(x, 0) |x ∈ R} and obviously

x(y) < −1

2
ln(1− y2) |y| < 1,

so it stays in W . Moreover for all (x, y) ∈ Ω− with y 6= 0,
∂G
∂y < 0 if x < x(y)

∂G
∂y > 0 if x > x(y).
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Lemma A.0.9. Let ~ := ( lk )
2k−n
2(k−l) − ( lk )

2l−n
2(k−l) and if 1 ≤ l < k, l < n

2 &h < ~, then
∂G
∂y (x∗h(y), y) < 0 and consequently x∗h(y) satis�es

∂x∗h(y)

∂y
= −

∂G
∂y (x∗h(y), y)

∂G
∂x

(
x∗h(y), y

) > 0.

Thus the level set given by (2.1.1) is an U -shaped curve that opens left in W . If 1 ≤ l <

k, l < n
2 & ~ ≤ h < 0, let κ∗h ≡ −

√√√√1−
(
l
k

) 1
k−l

(
h

( lk )
k
k−l−( lk )

l
k−l

) 2
n

, then x∗h(y) satis�es


∂x∗h(y)
∂y > 0 if − 1 < y < κ∗h

∂x∗h(y)
∂y < 0 if k∗h < y < 0.

First we consider the equation system in Ω,
G(x, y) = h

x = x(y)

. (A.0.12)

If 1 ≤ l < k, l < n
2 &h < ~, there is no solution to (A.0.12), and x∗h(0) < x(0), thus

x∗h(y) < x(y).

By (A.0.11), ∂G∂y (x∗h(y), y) < 0 and by (A.0.4) & (A.0.8), ∂G∂x (x∗h(y), y) > 0, so

∂x∗h(y)

∂y
= −

∂G
∂y (x∗h(y), y)

∂G
∂x

(
x∗h(y), y

) > 0.

If 1 ≤ l < k, l < n
2 & ~ ≤ h < 0, let ζ∗h ≡ x(κ∗h) = − 1

n ln

(
h

( lk )
k
k−l−( lk )

l
k−l

)
, then

(A.0.12) has the solutions

(ζ∗h,±κ∗h). (A.0.13)

When −1 < y < k∗h, since (A.0.9), we have x∗h(y) < x(y), thus ∂G
∂y (x∗h(y), y) < 0 and

∂x∗h(y)

∂y
= −

∂G
∂y (x∗h(y), y)

∂G
∂x

(
x∗h(y), y

) > 0.

When κ∗h < y < 0, we have x∗h(y) > x(y), thus ∂G
∂y (x∗h(y), y) > 0 and

∂x∗h(y)

∂y
= −

∂G
∂y (x∗h(y), y)

∂G
∂x

(
x∗h(y), y

) < 0.

Proof of (N3) (N4) (N5) in Case h < 0
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Lemma A.0.10. If 1 < l = n
2 < k, then ∂G

∂x > 0 in Ω and also in Ω−
∂G
∂y < 0 if x < x(y)

∂G
∂y > 0 if x > x(y)

and then

G(x, y) > inf
(x,y)∈Ω

G(x, y) = −1 (x, y) ∈ Ω. (A.0.14)

So if 1 ≤ l < k ≤ n
2 & − 1 < h < ~, then ∂G

∂y (x∗h(y), y) < 0 and consequently x∗h(y)

satis�es

∂x∗h(y)

∂y
= −

∂G
∂y (x∗h(y), y)

∂G
∂x

(
x∗h(y), y

) > 0.

Thus the level set given by (2.1.1) is an U -shaped curve that opens left in Ω. If 1 ≤ l <

k ≤ n
2 & ~ ≤ h < 0, let κ∗h ≡ −

√√√√1−
(
l
k

) 1
k−l

(
h

( lk )
k
k−l−( lk )

l
k−l

) 2
n

, then x∗h(y) satis�es


∂x∗h(y)
∂y > 0 if − 1 < y < κ∗h

∂x∗h(y)
∂y < 0 if k∗h < y < 0.

If 1 < l = n
2 < k & h ≤ −1, there is no solution for (2.1.1).

Proof. If 1 < l = n
2 < k, then for (x, y) ∈ Ω,

∂G

∂x
= (2k − n)e(2k−n)x(1− y2)k > 0 (A.0.15)

and similar to Lemma A.0.8, we have that in Ω−
∂G
∂y < 0 if x < x(y)

∂G
∂y > 0 if x > x(y),

(A.0.16)

thus for any (x, y) ∈ Ω, ln
(
l
k

) 1
k−l < miny∈(−1,1) x(y) < x(y), consequently by (A.0.1),

(A.0.15) and (A.0.16), we obtain

G(x, y) ≥ G

(
min

{
x, ln

(
l

k

) 1
k−l
}
, y

)

≥ G

(
min

{
x, ln

(
l

k

) 1
k−l
}
, 0

)
> lim

x→−∞
G(x, 0)

= −1,
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so we have (A.0.14). If 1 < l = n
2 < k & h ≤ −1, there is no solution to (2.1.1).

The proof for 1 ≤ l < k ≤ n
2 & − 1 < h < ( lk )

2k−n
2(k−l) − ( lk )

2l−n
2(k−l) and 1 ≤ l < k ≤

n
2 & ( lk )

2k−n
2(k−l) − ( lk )

2l−n
2(k−l) ≤ h < 0 is same as Lemma A.0.9.

Proof of (N6) (N7) (N8) (N9) in Case h < 0

Lemma A.0.11. If n
2 < l < k, the set O = {(x, y) ∈ Ω | ∂G∂x = 0} is the curve

x̃(y) =
1

2
ln

(
2l−n
2k−n

) 1
k−l

1− y2
|y| < 1, (A.0.17)

and x̃(y) < x(y) < −1
2 ln(1− y2) ∀|y| < 1, which is de�ned in (A.0.10). Consequently

we have 

∂G
∂x < 0 & ∂G

∂y < 0 ifx < x̃(y)

∂G
∂x > 0 & ∂G

∂y < 0 if x̃(y) < x < x(y)

∂G
∂x > 0 & ∂G

∂y > 0 if x(y) < x.

Proof. If n2 < l < k, then we solve

0 =
∂G

∂x

= (2k − n)e(2k−n)x(1− y2)k − (2l − n)e(2l−n)x(1− y2)l

= e(2l−n)x(1− y2)l
(

(2k − n)e(2k−2l)x(1− y2)k−l − (2l − n)
)

in Ω to obtain the solution

x̃(y) =
1

2
ln

(
2l−n
2k−n

) 1
k−l

1− y2
|y| < 1.

Obviously

x̃(y) < x(y) < −1

2
ln(1− y2) ∀|y| < 1

and consequently 

∂G
∂x < 0 & ∂G

∂y < 0 ifx < x̃(y)

∂G
∂x > 0 & ∂G

∂y < 0 if x̃(y) < x < x(y)

∂G
∂x > 0 & ∂G

∂y > 0 if x(y) < x.

(A.0.18)
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Lemma A.0.12. If n2 < l < k, then G(x, y) achieves it is minimum ℘ :=
(
n−2l
n−2k

) 2k−n
2(k−l)−(

n−2l
n−2k

) 2l−n
2(k−l)

at point (x̃(0), 0). Also

1. If ~ ≤ h < 0, the level set given by (2.1.1) is a closed curve, and it has intersection

points (A.0.13) with (A.0.10).

2. If ℘ < h < ~, the level set given by (2.1.1) is a closed curve. This curve and

(A.0.17) have two intersection points

(ζ̃h,±κ̃h) =

−
1

n
ln

h
(

2l−n
2k−n

) −l
k−l(

2l−2k
2k−n

)
 ,±

√√√√√√√√1−
(

2l−n
2k−n

) 1
k−l

h
(

2l−n
2k−n

) −l
k−l(

2l−2k
2k−n

)


2
n

 ,

Besides, ∀(x, y) ∈ Ω solving (2.1.1) satis�es x < 1
2 ln( lk )

1
k−l , and in Ω− y(x) is

well de�ned, 
∂y
∂x < 0 if x < ζ̃h

∂G
∂y > 0 if x > ζ̃h

(x, y) ∈ Ω−.

3. If h = ℘, (2.1.1) is a point (x̃(0), 0).

4. If h < ℘, (2.1.1) has no solution.

Proof. If n2 < l < k, then
G(x, y) = 0 if (x, y) ∈ ∂V

G(x, y) = 0 if (x, y) ∈ ∂Ω

limx→−∞G(x, y) = 0 uniformally for y ∈ (−1, 1).

The critical point of G(x, y) in W is only

(x̃(0), 0),

and G(x̃(0), 0) = ℘ < 0, thus G(x, y) achieves it is minimum ℘ :=
(
n−2l
n−2k

) 2k−n
2(k−l) −(

n−2l
n−2k

) 2l−n
2(k−l)

at point (x̃(0), 0). If ~ ≤ h < 0, consider the equation system (A.0.12) in
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Ω, and we obtain the solutions (A.0.13). Since (A.0.18) and h > G(x(0), 0) > G(x̃(0), 0),

there exist only two points a3(h) & a4(h) such that

G(a3(h), 0) = G(a4(h), 0) = h,

and also 0 > a4(h) > x(0) > x̃(0) > a3(h). Repeating using (A.0.18) and (A.0.1), we

see the level set given by (2.1.1) is a closed curve with x ranging from a3(h) to ζ∗h.

The proof of the remaining cases is similar.
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