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ABSTRACT OF THE DISSERTATION

The skein algebra of arcs and links and the decorated Teichmüller
space

by Tian Yang

Dissertation Director: Feng Luo

This dissertation is based on a joint work with Dr. Julien Roger. We define an associative

C[[h]]–algebra ASh(Σ) generated by framed arcs and links over a punctured surface Σ which

is a quantization of the Poisson algebra C(Σ) of arcs and curves on Σ. We also construct a

Poisson algebra homomorphism from C(Σ) to the space of smooth functions on the decorated

Teichmüller space endowed with the Weil-Petersson Poisson structure. The construction re-

lies on a collection of geodesic lengths identities in hyperbolic geometry which generalizes

Penner’s Ptolemy relation, the trace identity and Wolpert’s cosine formula.
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Chapter 1

Introduction

Let Σ be a surface with punctures obtained from a closed oriented surface Σ. The first goal of

this dissertation is to extend the notion of skein algebra generated by links over Σ by adding arcs

connecting the punctures. The second goal is to relate this algebra to the decorated Teichmüller

space of Σ in the context of quantization of Poisson algebras. As a motivation for this work,

let us recall some of the key steps of a similar construction in the case of the skein algebra of

links.

Let q be the formal power series e
h
4 ∈ C[[h]]. The skein algebra Sh(Σ), introduced by

Przytycki [17] and Turaev [19], is the C[[h]]–algebra generated by isotopy classes of framed

links in Σ× [0, 1] subject to the Kauffman bracket skein relation

= q + q−1

as well as the framing relation = −q2 − q−2. In [20], Turaev studied the relationship

between the skein algebra and the Lie algebra of curves on Σ introduced by Goldman [9]. In

turn, in the work of Goldman, the Lie bracket on curves is related to the Weil-Petersson Poisson

structure on the SL2(C)–character variety X(Σ) of Σ. A direct relationship between the skein

algebra and the character variety is given by Bullock [6], with the construction of a surjective

homomorphism between the commutative algebra S0(Σ) and the coordinate ring ofX(Σ). This

map turns out to be an isomorphism by the work of Przytycki and Sikora [18]. Up to a sign,

it assigns to each free homotopy class of curves γ in Σ its trace function trγ on X(Σ), given

by evaluating the trace of representations along γ. One of the key ingredients is then given

by the trace identities which relate the product of traces of two intersecting curves with the

traces of their resolutions at one point. This identity, in turn, comes from the classical formula

trA · trB = trAB + trAB−1 relating traces in SL2(C). Using this isomorphism, Bullock,

Frohman and Kania-Bartoszyńska [7] showed that the skein algebra is in fact a quantization of
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the character variety for the Goldman-Weil-Petersson bracket, in the sense of deformation of

Poisson algebras. The key fact is that S0(Σ), endowed with the Poisson bracket inherited from

the commutator on Sh(Σ), is isomorphic as a Poisson algebra to the coordinate ring of X(Σ).

Our goal is to extend some of the steps described above by introducing framed arcs in the

definition of the skein algebra for a surface with punctures. We define a generalized framed

link to be the embedding of a collection of annuli and strips in Σ× [0, 1], so that the ends of the

strips are above the punctures (see Section 2 for a more precise definition). A component given

by a strip will be called a framed arc. Then the skein algebra of arcs and links ASh(Σ) of Σ

will be generated by isotopy classes of generalized framed links. For the relations, the usual

skein relation still applies for crossings occurring above Σ, where some of the strands can be

arcs. When two arcs meet at a puncture we have the so-called puncture-skein relation

. =
1

v

(
q

1
2 . + q−

1
2 . )

.

Here v is a central element associated to the puncture whose meaning will be made clearer

later on. The framing relation still applies and is supplemented with the puncture relation

. = q + q−1.

In the non-quantum case, we consider the algebra C(Σ) generated by arcs and curves on

Σ itself subject to (classical) skein relations. It has a Poisson bracket given by resolutions of

intersections inside the surface and at the punctures which generalizes Goldman’s Lie bracket

on loops. Using arguments similar to the ones in [7], we show that this bracket comes from the

commutator in ASh(Σ) that is

Theorem 1.0.1. ASh(Σ) is a quantization of C(Σ)

The next step of our construction is to relate the algebra C(Σ) to the SL2(R)–character

variety, or in our case to the Teichmüller space T (Σ) of Σ. In fact, since Σ has punctures we

are led to work with a variant of this space, the so-called decorated Teichmüller space T d(Σ)

introduced by Penner [15]. It is a bundle over T (Σ) with fiber Rs>0, where s is the number of

punctures. Given a hyperbolic metric m ∈ T (Σ), the choice of a point in the fiber corresponds

to fixing the length of a horocycle at each of the punctures of Σ. This, in turn, permits to assign

a well-defined length l(α) to each arc α between punctures. A more convenient quantity is the
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so-called lambda-length of α given by λ(α) = e
l(α)
2 . They satisfy the Ptolemy relation

λ(e)λ(e′) = λ(a)λ(c) + λ(b)λ(d)

where a, b, c, d are the consecutive edges of a square and e and e′ are its diagonals. Graphically,

the Ptolemy relation can the be rewritten:

e e' = a c +
b

d

which we want to interpret as a (non-quantum) skein relation.

Using these notions, we obtain the following theorem.

Theorem 1.0.2. There is a well-defined homomorphism of Poisson algebras

Φ: C(Σ)→ C∞(T d(Σ))

Up to signs, the map sends links to their traces, arcs to their lambda-lengths and punctures

to horocycle lengths around them. The Poisson structure on T d(Σ) is an extension of the usual

Weil-Petersson Poisson bracket on T (Σ) and was described by Mondello [13]. The proof of

the theorem relies on a collection of identities which generalizes Penner’s Ptolemy relation, the

trace identity and Wolpert’s cosine formula [21] for the Poisson bracket of two trace functions.

These identities are derived in turn from a set of cosine laws which can be found in the appendix

of [10] by Guo and Luo.

Combining Theorems 1.0.1 and 1.0.2, it is tempting to interpret ASh(Σ) as a quantization

of the decorated Teichmüller space. This would require restricting the range of the homomor-

phism in Theorem 1.0.2 to a carefully chosen subalgebra so that the map becomes surjective and

possibly an isomorphism. The image of this homomorphism is essentially generated by traces

and lambda-lengths. It is known that, for a surface without punctures, traces alone generate the

coordinate ring over Teichmüller space in the algebro-geometric sense. The question is then

if this fact generalizes in some sense to the decorated Teichmüller space. Another approach

would be to use the fact that, given a maximal collection of edges on Σ, that is, given an ideal

triangulation of Σ, lambda-lengths along them form a system of coordinates over T d(Σ). In

addition, trace functions have a simple expression as Laurent polynomials in these coordinates
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(see Lemma 3.4.1), so the two points of view might be related by restricting to the algebra of

Laurent polynomials in these coordinates. However, it is not clear at this point how well this

fact translates at the level of the skein algebra ASh(Σ).

The fact that the trace identity and the Ptolemy relation can be combined into generalized

skein relations involving both arcs and curves has been used recently in works of Dupont and

Palesi [8] and Musiker and Williams [14], in the context of cluster algebras associated to trian-

gulated surfaces. It would be interesting to see if our work applies to the context of quantum

cluster algebras as defined by Berenstein and Zelevinsky [2]. Closely related to these consider-

ations is the construction of so-called quantum trace functions in the context of the quantization

of Teichmüller space. This problem was solved recently by Bonahon and Wong in [4, 5] using

the skein relation in a crucial way. In turn, their construction is based on the use of shear coor-

dinates [3] which are closely related to lambda-length. We hope that our work could shed new

light on the relationship between the skein algebra and the quantum Teichmüller space.
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Chapter 2

The algebraic aspect

2.1 The skein algebra of arcs and links

Let Σ be a closed oriented surface and let V be a (possibly empty) finite subset of Σ. We

consider the surface with punctures Σ = Σ− V and call V the set of punctures of Σ. As a first

step, we need to generalize the notion of a framed link in the 3-manifold Σ× [0, 1] to allow for

components joining the punctures.

Definition 2.1.1. A continuous map α =
∐
i αi t

∐
j lj from a domain D consisting of a finite

collection of strips
∐
i [0, 1] × (−ε, ε) and annuli

∐
j S

1 × (−ε, ε) into Σ × [0, 1] is called a

generalized framed link in Σ× [0, 1] if

(1) α is an injection into Σ× (0, 1);

(2) each lj is an embedding into Σ× [0, 1];

(3) the restriction of each αi to (0, 1)× (−ε, ε) is an embedding into Σ× [0, 1];

(4) the restriction of each αi to {0, 1} × (−ε, ε) is an orientation preserving embedding into

V × [0, 1].

Two generalized framed links α and β are isotopic if there exists a continuous map H : D ×

[0, 1] → Σ × [0, 1] such that H0 = α and H1 = β, and Ht is a generalized framed link for

each t ∈ (0, 1).

Each strip αi in a generalized link α will be called a framed arc, with the understanding

that such a component can be “knotted”. Condition (1) implies that each arc ends at a different

height above the punctures of Σ. Condition (4) prevents a framed arc from doing a “half-twist”

between two punctures.
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Some conventions are needed when considering a diagram of a generalized link projected

onto Σ. Firstly, modulo an isotopy, we can assume that the framing of a generalized link

always points in the vertical direction. On a link diagram this will correspond to the direction

pointing toward the reader. Secondly, we use the usual convention to encode which strand of a

generalized link passes over another in Σ×[0, 1] and we assume that the diagram only possesses

ordinary double points in Σ. We generalize this convention as follows when two strands of arcs

meet at a puncture:

.
Here the left strand ends above the right one at the puncture. However, there might be more

than two strands meeting at a puncture. In this case, such a picture

.

will be supplemented with an explanation of the respective positions of the strands lying under

the top one.

As is well known, two diagrams correspond to isotopic framed links if and only if one can

be obtained from the other by a sequence of Reidemeister Moves II and III. This is also true in

the case of a generalized link if we add the move described in Figure 2.1, which we will call

Reidemeister Move II′. Indeed, this move is obtained by replacing one of the crossings in Rei-

.. ..
Figure 2.1: Reidemeister Move II′.

demeister Move II by a crossings at a puncture. The only possible move obtained by replacing

both of the crossings in Reidemeister Move II by crossings at punctures is a composition of

Reidemeister Moves II and II′ as follows:

.

.
.
. .

.
.
.II II' II'
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There are no analogous moves to Reidemeister Move III, since a strand of a generalized link

cannot be isotoped through a puncture.

Given two generalized links α and β in Σ× [0, 1] we define the stacking of α over β to be

the link in Σ× [0, 1] obtained by rescaling α to Σ× [1
2 , 1] and β to Σ× [0, 1

2 ] and taking there

union. This operation is compatible with isotopies.

With these definitions and conventions we define the skein algebra of arcs and links over Σ

as follows:

Definition 2.1.2. Let C[[h]][L, V ±1] be the free C[[h]]-module generated by the set of isotopy

classes of generalized framed links L in Σ × [0, 1] and the set V ±1 of punctures v and there

formal inverses v−1. Let q be the formal power series e
h
4 ∈ C[[h]]. The skein algebra of

arcs and links ASh(Σ) is the quotient of C[[h]][L, V ±1] by the sub-module generated by the

following relations:

(1) Kauffman Bracket Skein Relation: For a crossing in the surface, we have

= q + q−1 ;

(2) Puncture-Skein Relation: For a crossing at a puncture v, we have

. =
1

v

(
q

1
2 . + q−

1
2 . )

;

(3) Framing Relation: For the isotopy class of a trivial circle, we have

= −q2 − q−2;

(4) Puncture Relation: For the isotopy class of a circle around a puncture, we have

. = q + q−1.

The multiplication in ASh(Σ) is defined by:

• the product α · β of α and β in L is obtained by stacking α over β;

• the elements of V ±1 are central and v · v−1 = 1 for each v ∈ V .
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Some comments are in order to justify this definition. Firstly, note that if V is empty, then

ASh(Σ) corresponds to the usual Kauffman bracket skein algebra as defined in [17] and [19].

Secondly, The choice of the coefficients q±1/2 in the puncture-skein relation turns out to be

essential for proving that this algebra is well-defined and that the product is associative. It will

also have a geometrical justification which will be explained in Section 3. Finally, the central

elements v associated to the punctures will be related to geometric data given by the choice of

horocycle lengths around the punctures. At the algebraic level however, one could work with

the quotient ofASh(Σ) by the module generated by V ±1, and carry the computations that will

follow in the same way.

We recall that a C[[h]]-moduleM is called topologically free if there exists a C-vector space

V so that M is isomorphic to V[[h]] (see for example [11]). We have the following

Theorem 2.1.3. The skein algebra
(
ASh(Σ), ·

)
is a well defined topologically free associative

C[[h]]–algebra.

Proof. In order to verify the well definition of the multiplication, it suffices to show that it is

invariant under Reidemeister Moves II, II′ and III. The invariance under Reidemeister Moves

II and III is the same as in [17]. For Reidemeister Move II′, we calculate that

. =
1

v

(
q

1
2

. + q−
1
2 . )

=
1

v
(q

1
2 (−q2 − q−2) + q−

1
2 (q + q−1)) =

1

v
(q

1
2 − q

5
2 ),

where v is the puncture and the second equality is from the framing and the puncture relations.

With this, we have

. = q . + q−1 .

=
1

v
q
(
q

1
2 . + q−

1
2 . )

+
1

v
q−1(q

1
2 − q

5
2 ) .

=
1

v

(
q

1
2 . + q−

1
2 . )

= . ,

where the first equality is from the Kauffman bracket skein relation and the second equality

is from the puncture-skein relation and the previous calculation. The well definition under the

other Reidemeister Move II′ is verified similarly.
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To show that a ·
⊙

=
⊙
· a = (q + q−1)a, the only case we need to consider is when

⊙
is a circle around a puncture v and a is a framed arc with v one of its end points. For a ·

⊙
, we

have

. = q . + q−1 . =
(
q + q−1

) . ;

and similarly for
⊙
· a = (q + q−1)a.

When three links cross inside the surface, the associativity follows from the same arguments

as in [17], and similarly if some intersections happen at a puncture as long as there are no triple

points. If three arcs a, b and c meet at a puncture v, say in counterclockwise order, we have for

(a · b) · c that

. ' =
1

v

(
q

1
2 . + q−

1
2 . )

=
1

v

(
q

3
2 . + q−

1
2 . + q−

1
2 . )

;

and for a · (b · c) that

. ' =
1

v

(
q

1
2 . + q−

1
2 . )

=
1

v

(
q

3
2 . + q−

1
2 . + q−

1
2 . )

.

The case when a, b and c are ordered clockwise is similar.

The proof that ASh(Σ) is topologically free is in the spirit of [17]. A diagram of a gener-

alized framed link in Σ× (0, 1) is a graph in Σ which is four-valent in Σ and many-valent at V

with crossings and vertical framing. Two diagrams represent the same generalized framed link

if and only if they differ by a sequence of isotopies of Σ and Reidemeister Moves II, II′ and III.

A diagram S is called a state if S does not contain trivial circles, circles around a puncture and

crossings neither in the surface nor at punctures. IfW is the C-vector space generated by the

set of states on Σ, then we claim thatASh(Σ) ∼= V[[h]] where V =W⊗C[V ±1], i.e.,ASh(Σ)

is topologically free. Indeed, we first resolve the crossings at punctures once at a time to get

diagrams with crossings only in the surface. Then, we resolve the crossings in the surface once

a time to obtain a diagram without crossings. Finally, we send trivial circles to −q2 − q−2 and

circles around a puncture to q + q−1.



10

Remark 2.1.4. In the rest of this dissertation, we also call an element of V = W ⊗ C[V ±] a

state.

2.2 The Poisson algebra of curves on a surface

The classical counterpart of the skein algebra can be defined in terms of curves on the surface Σ

itself. We define a generalized curve to be a union of immersed closed curves and arcs in Σ with

ends at the punctures. Any two generalized curves α and β will be considered to be equivalent

if one can be obtained from the other by a sequence of isotopies of Σ and Reidemeister Moves

II, II′ and III. We do not however identify curves differing by a Reidemeister Move I.

Definition 2.2.1. The algebra of curves C(Σ) on Σ is the quotient of the C-vector space gener-

ated by the equivalence classes of generalized curves on Σ, the punctures of Σ and their formal

inverses, modulo the subspace generated by the following relations:

(1′) Kauffman Bracket Skein Relation: = + for an intersection in Σ;

(2′) Puncture-Skein Relation: . = v−1
( . + . )

for an intersection at v;

(3′) Framing Relation: = −2;

(4′) Puncture Relation: . = 2.

The product α · β of two generalized curves α and β is given by taking their union.

The fact that C(Σ) is a well defined commutative algebra follows from the same arguments

as forASh(Σ). These two algebras are related naturally as follows: let p : ASh(Σ)→ C(Σ) be

the map which to a generalized link in Σ× [0, 1] with vertical framing associates its projection

on Σ. We also let p(h) = 0 and p(v) = v for every puncture. In this way, p maps relations

(1) – (4) to the corresponding relations (1′) – (4′), and maps the stacking of generalized framed

links in Σ× [0, 1] to the union of generalized curves on Σ.

Proposition 2.2.2. The quotient map p : ASh(Σ)/hASh(Σ) → C(Σ) is an isomorphism of

C–algebras.
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Proof. Since ASh(Σ) ∼= V[[h]] is topologically free, each element a ∈ ASh(Σ) can be

uniquely written as a power series
∑
akh

k with coefficients ai ∈ V . By the definition of

p, we have p(a) = p(a0). Remember that the elements of V are diagrams without crossings

neither in Σ nor at V , hence p is injective on V . Since a0 ∈ V , we have p(a0) = 0 if and

only if a0 = 0. As a consequence, ker p = hASh(Σ) and p induces a C–algebra isomorphism

p : ASh(Σ)/hASh(Σ)→ C(Σ).

In [9], Goldman defines a Lie bracket on the free algebra generated by free homotopy

classes of curves on Σ. It can be described in terms of resolutions of intersections and is of a

purely topological nature. Following this construction, we consider the Goldman bracket on

C(Σ) to be the bilinear map { , } : C(Σ)× C(Σ)→ C(Σ) defined as follows:

• for a puncture v and a generalized curve α, we let {v, α} = 0;

• for two generalized curves α and β, we let

{α, β} =
1

2

∑
p∈α∩β∩Σ

(αpβ
+ − αpβ−) +

1

4

∑
v∈α∩β∩V

1

v
(αvβ

+ − αvβ−).

Here, the positive resolution αpβ+ of α and β at p is obtained by going along β toward p then

turning right at p, and the negative resolution αpβ− by going along β then turning left (see the

figure below);

α β αpβ
+ αpβ

−

the positive resolution αvβ+ of α and β at the puncture v is obtained by going along β toward

v then turning right around v, and the negative resolution αpβ− by going along β then turning

left (see the figure below).

α
.

β
.

αvβ
+

.
αvβ

−

With these notions, we have the following theorem.

Theorem 2.2.3. The algebra
(
C(Σ), ·, { , }

)
is a well defined Poisson algebra.

The following Lemma is needed in the proof of Theorem 2.2.3.
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Lemma 2.2.4. We have the following identities:

(1) = −

(2) . = 0, and

(3) . = . + 2 . .

Proof. For (1), we have

= + = − 2 = − .

For (2), we have

. =
1

v

( . + . )
=

1

v
(2− 2) = 0.

For (3), we have

. = . + . = . + 2 . .

Proof of Theorem 2.2.3. In order to verify the well definition, it suffices to show that { , } is

invariant under Reidemeister Moves II, II′ and III. The invariance under Reidemeister Moves

II and III follows from arguments in [9]. For the invariance under Reidemeister Move II′, we

denote by { . } the sum of the terms in {α, β} coming from the crossings in the dotted circle.

We have { . }
=

1

2

( . − . )
+

1

4v

( . − . )
=

1

2v

( . + . )
+

1

4v

(
− 3 . − . )

=
1

4v

( . − . )
=
{ . }

,

where the second equality follows from Lemma 2.2.4. The anti-symmetry of { , } follows from

the fact that αxβ± = βxα
∓ for each x ∈ α ∩ β either in the surface or at the punctures. The

verification of the Jacobi identity is in the spirit of Goldman [9] separating the following two

cases:
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(1) α ∩ β ∩ γ ∩ V = ∅, and

(2) α ∩ β ∩ γ ∩ V 6= ∅.

In case (1), we let α, β and γ be three generalized curves on Σ. We let c(x, y) = 1
4 if x, y ∈ Σ

and c(x, y) = 1
16x
−1y−1 if x, y ∈ V ; and if only one of x and y, say x, is a puncture of Σ, we

let c(x, y) = 1
8x
−1. Then we have

{{α, β}, γ}

=
∑

x ∈ α ∩ β

y ∈ β ∩ γ

c(x, y)
(
(αxβ

+)yγ
+ − (αxβ

+)yγ
− − (αxβ

−)yγ
+ + (αxβ

−)yγ
−)

+
∑

x ∈ α ∩ β

z ∈ γ ∩ α

c(x, z)
(
(αxβ

+)zγ
+ − (αxβ

+)zγ
− − (αxβ

−)zγ
+ + (αxβ

−)zγ
−),

and

{{β, γ}, α}

=
∑

y ∈ β ∩ γ

z ∈ γ ∩ α

c(y, z)
(
(βyγ

+)zα
+ − (βyγ

+)zα
− − (βyγ

−)zα
+ + (βyγ

−)zα
−)

+
∑

y ∈ β ∩ γ

x ∈ α ∩ β

c(y, x)
(
(βyγ

+)xα
+ − (βyγ

+)xα
− − (βyγ

−)xα
+ + (βyγ

−)xα
−).

By definition, we have that (αxβ
+)yγ

+ = (βyγ
+)xα

−, (αxβ
+)yγ

− = (βyγ
−)xα

−, (αxβ
−)yγ

+ =

(βyγ
+)xα

+ and (αxβ
−)yγ

− = (βyγ
−)xα

+ for each x ∈ α∩β and y ∈ β∩γ, so the summands

in the first row of the expansion of {{α, β}, γ} cancels out the summands in the second row of

the expansion of {{β, γ}, α}. By the similar reason, the summands in the second row of the

expansion of {{α, β}, γ} and the first row of the expansion of {{β, γ}, α} cancel out the sum-

mands in the expansion of {{γ, α}, β}. Hence {{α, β}, γ} + {{β, γ}, α} + {{γ, α}, β} = 0.

In case (2), let v ∈ α ∩ β ∩ γ, and we may without loss of generality assume that α, β and

γ are counter-clockwise ordered at v. Then all the summands in {{α, β}, γ} + {{β, γ}, α} +

{{γ, α}, β} cancel out in pairs as in case (1) except three summands around v which are from

1
4v
−1{αvβ+, γ}, 1

4v
−1{βvγ+, α} and 1

4v
−1{γvα+, β} respectively; and for the sum of them,
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we have{ . }
+
{ . }

+
{ . }

=
1

2

( . − . )
+

1

2

( . − . )
+

1

2

( . − . )
= 0.

The Leibniz rule is directly from the definition and that (α · β)∩ γ = (α∪ β)∩ γ = (α∩ γ)∪

(β ∩ γ).

A topologically free C[[h]]–algebra Ah is called a quantization of a Poisson algebra A if

there is a C–algebra isomorphism Θ: Ah/hAh → A such that

Θ
( ᾱ · β̄ − β̄ · ᾱ

h

)
= {α, β}

for all ᾱ ∈ Θ−1(α) and β̄ ∈ Θ−1(β) (see for example [12]). Using the isomorphism from

Proposition 2.2.2, we obtain the following theorem.

Theorem 2.2.5. The C[[h]]–algebra ASh(Σ) is a quantization of C(Σ) via the C–algebra

isomorphism p.

Proof. This is an analogue of the arguments in [7]. Given a diagram on the surface, we let

p±(S) respectively be the number of positive and negative resolutions in the surface used to

obtain the state S, and let v±(S) respectively be the number of positive and negative resolutions

at the punctures used to obtain S. Keeping track of the crossings, we have

{α, β} =
∑
S

(1

2

(
p+(S)− p−(S)

)
+

1

4

(
v+(S)− v−(S)

))
S,

where the summation is taken over all states S obtained from resolving α ∪ β, and

ᾱ · β̄ − β̄ · ᾱ =
∑
S

(
q(p+(S)−p−(S))+ 1

2
(v+(S)−v−(S))

− q−(p+(S)−p−(S))− 1
2

(v+(S)−v−(S))
)
S,

in which the coefficient of h is exactly {α, β}.

In particular, the proof of Theorem 2.2.5 explains the relationship between the coefficients

q±1/2 in the puncture-skein relation used in the definition of ASh(Σ) and the coefficient 1
4

in front of the puncture terms in the Goldman bracket on C(Σ). Both of these choices were

essential at some point in the well-definition of ASh(Σ) and { , } and turn out to be related to

the geometric aspects of the theory described in the next chapter.
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Chapter 3

Relationship with hyperbolic geometry

An essential aspect of the skein algebra is its relationship with the character varietyX(Σ). This

connection can be found in the work of Turaev [20] and was unraveled by the work of Bullock,

Frohman and Kania-Bartoszyńska [7] and Przytycki and Sikora [18]. In our context the right

framework is that of the decorated Teichmüller space and the notion of λ-length, which as we

will see can be understood as generalized trace functions.

3.1 The decorated Teichmüller space and its Poisson structure

As before we let Σ be a surface with a set of punctures V = {v1, . . . , vs}. We consider the

cusped Teichmüller space Tc(Σ) defined as the set of isotopy classes of complete hyperbolic

metrics on Σ with finite area. A decoration r of a hyperbolic metric m ∈ Tc(Σ) is given by a

choice of a positive real number ri = r(vi) associated to each of the punctures. Geometrically,

a decoration should be interpreted as a choice of a horocycle of length ri centered at each of

the punctures vi of Σ for the metric m. The decorated Teichmüller space T d(Σ) is then the

set of decorated hyperbolic metrics (m, r), m ∈ Tc(Σ). It was introduced by Penner in [15].

Topologically, it is the fiber bundle T d(Σ) = Tc(Σ)×RV>0 over the cusped Teichmüller space.

One of the reasons for introducing the notion of decorations is to permit the measure of the

length of arcs between punctures. More precisely, given a decorated hyperbolic metric (m, r)

and an arc α in Σ between two punctures, consider a geodesic lift α̃ of α to the universal cover

H2 of (Σ,m). The length l(α) of α for (m, r) is then defined to be the signed length of the

segment of α̃ between the horocycles given by the decoration, where the sign is chosen to be

positive if the horocycles do not intersect and negative if they do. A number of properties

concerning length of arcs can in fact be expressed in terms of the associated λ-length λ(α) =

e
l(α)
2 . In particular, if a, b, c, d are the consecutive sides of a square in Σ and e, e′ are its
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diagonals, they satisfy the Ptolemy relation [16]

λ(e)λ(e′) = λ(a)λ(c) + λ(b)λ(d).

Let T be an ideal triangulation of Σ, that is, a maximal collection of isotopy classes of

arcs between punctures in Σ which decompose the surface into ideal triangles. We let E be

the set of edges of T . Then the associated lengths l(e), e ∈ E, form a coordinate system

on T d(Σ). In these coordinates, Mondello [13] introduces a Poisson bi-vector field on T d(Σ)

defined as follows: For two geodesic arcs α and β on a decorated hyperbolic surface Σ meeting

at a puncture v, let θv be the generalized angle from α to β, that is, the length of the horocycle

segment measured counterclockwise from α to β, and let θ′v be the generalized angle from β to

α at v. Then the Poisson bi-vector field

ΩWP =
1

4

∑
v∈V

∑
α,β∈E
α∩β=v

θ′v − θv
r(v)

∂

∂l(α)
∧ ∂

∂l(β)

on the decorated Teichmüller space descends to the usual Weil-Petersson Poisson bi-vector field

on the Teichmüller space Tc(Σ). It can be shown by a direct calculation that this expression is

invariant under a diagonal switch. As a consequence, ΩWP is independent of the choice of the

ideal triangulation T .

If α is a closed curve on Σ and m ∈ Tc(Σ), we consider the quantity λ(α) = 2 cosh l(α)
2

where l(α) is the length of the geodesic representative of α for m. Up to a sign, it is equal to

the trace tr(ρ(α)) of the monodromy representation ρ : π1(Σ) → PSL2(R) associated to m.

We purposefully used the same notations as for λ-lengths and call λ(α) the generalized trace

of α, where α can be an arc or a closed curve on Σ.

The goal of this chapter is to construct a map from the algebra of curves C(Σ) to the algebra

of functions over T d(Σ) by associating to a generalized curve the product of the generalized

traces of its components. One issue however is the fact that elements of C(Σ) are not identified

up to Reidemeister Move I, and hence we need to introduce the following definition.

Definition 3.1.1. In Figure 3.1, we call c a curl and p its vertex. If α is an arc or a non-null-

homotopic curve on Σ, then the curling number c(α) of α is the maximal number of the one

way Reidemeister Move I (Figure 3.1) α carries; and if α is a null-homotopic curve, then c(α)

is the corresponding number plus one.
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c

p

Figure 3.1: One way Reidemeister Move I.

Example 3.1.2. c(
⊙

) = 0 and c(©) = 1.

Example 3.1.3. Since a geodesic minimizes self-intersections, the curling number of a geodesic

is always 0.

Using this definition, if α = α1 ∪ · · · ∪ αn is a generalized curve, that is, a union of

equivalence classes of arcs and closed curves on Σ, then we let c(α) =
∑

i c(αi) and λ(α) =∏
i λ(αi). We recall that, if (m, r) is a decorated hyperbolic metric, then r(v) denotes the

length of the horocycle at the puncture v of Σ.

Theorem 3.1.4. The map Φ: C(Σ)→ C∞(T d(Σ)) defined on the generators by Φ(v) = r(v)

if v is a puncture and Φ(α) = (−1)c(α)λ(α) if α is a generalized curve is a well defined Poisson

algebra homomorphism with respect to { , } on C(Σ) and the Weil-Petersson Poisson bracket

on C∞(T d(Σ)) associated to the bi-vector field ΩWP .

The remainder of this article will be dedicated to the proof of this theorem. Firstly, we

are going to derive a series of lengths identities in hyperbolic geometry which generalize the

Ptolemy relation, the trace identity and Wolpert’s cosine formula for the Weil-Petersson Poisson

bracket of length functions. Together with an analysis of the behavior of the curling number

under resolutions, half of these identities can be combined into generalized trace identities

which imply that the map defined above is an algebra homomorphism. Finally, combined

with a lemma about the expression of generalized trace functions in terms of the λ-lengths

associated to the edges of a fixed ideal triangulation, the other half will give the Poisson algebra

homomorphism.

3.2 The lengths identities

In this chapter we are going to derive a series of identities involving geodesic lengths of curves

and arcs between horocycles which are the heart of the proof of Theorem 3.1.4. They rely on a
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set of “cosine laws” for various types of generalized hyperbolic triangles which can be found in

the appendix of [10]. The twisted version of them are also needed and included in the appendix

to this dissertation.

Throughout this section, we will fix a punctured surface Σ and a decorated hyperbolic

metric (m, r) ∈ T d(Σ). We recall that if α and β are two geodesics on Σ for (m, r), then the

angle from α to β at p ∈ α ∩ β in Σ is the angle measured counterclockwise from α to β, and

the generalized angle from α to β at v ∈ α ∩ β at V is the length of the horocycle segment

measured counterclockwise from α to β.

Lemma 3.2.1. Let α and β be two closed geodesics of lengths a and b, and let θ be the angle

from α to β at p ∈ α∩β. If x and y respectively are the lengths of the geodesic representatives

of αpβ+ and αpβ−, then we have

(1) cosh x
2 + cosh y

2 = 2 cosh a
2 cosh b

2 ,

(2) cosh x
2 − cosh y

2 = 2 sinh a
2 sinh b

2 cos θ.

A

B
C

M

0

oo

A
B C

1

2
1 1

2
2

0

oo

(A) (B)

A 2 A 1 C 2C 1

B2

B 1

M x

ax1

2

a

1

2

Figure 3.2:

Proof. Formula (1) is from the trace identity trA · trB = trAB + trAB−1. For formula

(2), let us look at (A) of Figure 3.2. Let 0∞ be a lift of the geodesic β in the universal cover

H2 of Σ. Let {Bi}i∈Z be the lifts of p on 0∞ so that |BiBi+1| = b. Let Ai and Ci for

i = 1, 2 be the points on the lift of the geodesic α passing through Bi so that |AiBi| =

|BiCi| = a
2 , hence |AiCi| = a and AiCi is a lift of α for i = 1, 2. Now take the mid-point
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M of B1B2, and connect A1 and C2 to M by geodesics. Since |A1B1| = |B2C2| = a
2 and

|B1M | = |MB2| = b
2 , and ∠A1B1M = ∠MB2C2 = π − θ, the triangles A1B1M and

MB2C2 are isometric, hence the anlges ∠A1MB1 = ∠B2MC2 and ∠B1A1M = ∠MC2B2.

Therefore, the points A1, M and C2 are on the geodesic representing a lift of αpβ+, and

|A1M | = |MC2| = x
2 . By the same argument, we have thatA2,M andC1 are on a lift of αpβ−

and |A2M | = |MC1| = y
2 . Applying the cosine law to the triangles A1B1M and A2B2M

respectively, we have cos(π − θ) =
− cosh x

2
+cosh a

2
cosh b

2

sinh a
2

sinh b
2

and cos θ =
− cosh y

2
+cosh a

2
cosh b

2

sinh a
2

sinh b
2

.

Since cos(π − θ) = − cos θ, the difference of the two equalities implies formula (2). Note that

from the sum of these two equalities we also get formula (1).

Lemma 3.2.2. Let α be a geodesic arc of length a and let β be a closed geodesic of length b.

Let θ be the angle from α to β at p ∈ α ∩ β. If x and y respectively are the lengths of geodesic

representatives of the arcs αpβ+ and αpβ−, then we have

(1) e
x
2 + e

y
2 = 2e

a
2 cosh b

2 ,

(2) e
x
2 − e

y
2 = 2e

a
2 sinh b

2 cos θ.

Proof. Let us look at (B) of Figure 3.2. Let 0∞ be a lift of α in the universal cover H2. Let

{Bi}i∈Z be the lifts of p on 0∞ so that |Bi, Bi+1| = a, and letAi and Ci for i = 1, 2 be the end

points of the lifts of β passing through Bi. Let M be the intersection of 0∞ and the geodesic

connecting A1 and C2. Let a1 be the distance from Bi to the horocycle centered at Ai and let

a2 be the distance fromBi toCi for i = 1, 2 so that a1 +a2 = a, and let x1 be the distance from

M to the horocycle centered at A1 and let x2 be the distance from M to the horocycle centered

at C2 so that x1 + x2 = x. Since ∠A1B1M = ∠C2B2M and ∠A1MB1 = ∠C2MB2,

we have that the ideal triangles A1B1M and C2B2M of type (0, 1, 1) are isometric which

implies that |B1M | = |MB2| = b
2 . Applying the cosine law to the triangle A1B1M , we have

cos(π − θ) =
−ex1+ea1 cosh b

2

ea1 sinh b
2

. Applying the sine law to the triangles A1B1M and C2B2M ,

we have ea1
ex1 = sin∠A1MB1

sin∠A1B1M
= sin∠C2MB2

sin∠C2B2M
= ea2

ex2 , hence a2−a1
2 = x2−x1

2 . With this the cosine

law above becomes cos(π − θ) =
−e

x
2 +e

a
2 cosh b

2

e
a
2 sinh b

2

. By the same argument to the generalized

triangles A2B2M and B1C1M , we have cos θ =
−e

y
2 +e

a
2 cosh b

2

e
a
2 sinh b

2

. Formula (1) is from the sum

of the two equalities above and formula (2) follows from the difference of them.
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Lemma 3.2.3. (Penner [16]) Let α and β be two geodesic arcs of lengths a and b, and let θ

be the angle from α to β at p ∈ α ∩ β. If x and x′ respectively are the lengths of the geodesic

representatives of the arc components of αpβ+, and y and y′ respectively are the lengths of the

geodesic representatives of the arc components of αpβ−, then we have

(1) e
x
2 e

x′
2 + e

y
2 e

y′
2 = e

a
2 e

b
2 ,

(2) e
x
2 e

x′
2 − e

y
2 e

y′
2 = e

a
2 e

b
2 cos θ. �

Lemma 3.2.4. If α and β are two geodesic arcs of lengths a and b meeting at a puncture v,

and θ and θ′ respectively are the generalized angle from α to β and the generalized angle from

β to α. Let r be the length of the horocycle centered at v, and let x and y respectively be the

lengths of the geodesic representatives of αvβ+ and αvβ−. Then we have

(1) e
x
2 + e

y
2 = re

a
2 e

b
2 ,

(2) e
x
2 − e

y
2 = (θ′ − θ)e

a
2 e

b
2 .

a
b

x
y

a
'

A

B

C

1
2

1

A

Figure 3.3:

Proof. Let us look at Figure 3.3. Let C be a lift of v in the universal cover H2, and let A1C

and B1C be the lifts of α and β passing through C respectively. Then A2B1 and A1B1 are

respectively lifts of αvβ+ and αvβ−. Applying the cosine law to the ideal triangles CA2B1

and CA1B1, we have θ′ = e
x−a−b

2 and θ = e
y−a−b

2 . Since r = θ + θ′, the sum of the two

equalities above implies formula (1), and the difference implies formula (2).
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For each point of self-intersection p of an arc or a closed curve α, one of its two resolutions

at p is connected and the other one is not. We call the former one the non-separating resolution

of α and the later one the separating resolution of α. Note that if α is an arc, then the separating

resolution of α consists of an arc and a closed curve, which we call the arc component and the

closed component respectively. We have

Lemma 3.2.5. Let α be a closed geodesic or a geodesic arc. Then the curling number c(β) of

the non-separating resolution β of α at each of its points of self-intersection is at most 1; and

the only possibility that c(β) = 1 is as shown in Figure 3.4.

p ' p '

p

Figure 3.4: The possibility that c(β) = 1.

Proof. If c(β) > 0, then let c be one of its curl and let p′ be the vertex of c. Let α1 and α2 be

the components of α− p, there are the following three cases:

(a) p′ ∈ αi and c ⊂ αi for i = 1 or 2,

(b) p′ ∈ α1 ∩ α2, or

(c) p′ ∈ αi but c * αi for i = 1 or 2.

If (a) occurred, then the geodesic αwould contain a curl, which is excluded; and if (b) occurred,

then α would contain a bi-gon, which is also excluded. Therefore, the only possibility is (c). In

this case, if p′ ∈ α1, then α2 ⊂ c and c is the unique curl in β. Since the curl c is contractible,

the arc α2 must be simple, which is the case as in Figure 3.4.

Lemma 3.2.6. If α is a closed geodesic of length a and p is one of its self-intersection points.

Let x and y respectively be the lengths of the geodesic representatives of the two components

of the separating resolution of α, and let z be the length of the geodesic representative of the

non-separating resolution β of α.
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(1) If c(β) = 0, then

cosh
a

2
= 2 cosh

x

2
cosh

y

2
+ cosh

z

2
.

(2) If c(β) = 1, then

cosh
a

2
= 2 cosh

x

2
cosh

y

2
− cosh

z

2
.

Moreover, the formulae still hold when some components of the resolutions of α are circles

around a puncture.

(A) (B )

P P'
M 2

X 2
X1

M1
N 2

Y2
Y1 N 1

Z2 Z'2
N '1Z1

X

Y
Z

A

B B'

P P' A
B B'

M1

Z1 Z2Z'2

N '1 N 1

T

Figure 3.5:

Proof. For (1), let us look at (A) of Figure 3.5. Let P be a lift of p in the universal cover H2,

and let θ the angle between the two lifts A and B of α passing through P . Let X and Y be

the corresponding lifts of the components of the separating resolution of α, and let Z be the

corresponding lift of the non-separating resolution of α. Let M1 ∈ A, N1 ∈ B and Z1, Z2 ∈ Z

such that |M1Z1| realizes the distance d(A,Z) and |N1Z2| realizes the distance d(B,Z). Let

P ′ be the lift of p on A next to P and let B′ be the lift of α passing through P ′. Let N ′1 ∈ B′

and Z ′2 ∈ Z such that |N ′1Z ′2| realizes d(B′, Z). Then N ′1Z
′
2 and N1Z2 are the lifts of the

same geodesic segment, which implies that |N ′1Z ′2| = |N1Z2|. Since ∠N ′1P
′M1 = ∠N1PM1,

the generalized triangles M1Z1Z
′
2N
′
1P
′ and M1Z1Z2N1P of type (1,−1,−1) are isometric.

Therefore, the lengths |Z ′2Z1| = |Z1Z2| = z
2 and |P ′M1| = |PM1|

.
= a1. Let M ′′1 ∈ A

and X1 ∈ X such that |M ′′1X1| realizes d(A,X), and let N ′′1 ∈ B and Y1 ∈ Y such that

|N ′′1 Y1| realizes d(B, Y ). By a similar argument as above, we see that |PM ′′1 | = 1
2 |P

′P | = a1

and PN ′′1 = PN1
.
= a2. Let M2 ∈ B, N2 ∈ A, X2 ∈ X and Y2 ∈ Y such that |M2X2|
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realizes d(B,X) and |N2Y2| realizes d(A, Y ). Then as above, we have |PM2| = a1 and

|PN2| = a2. Since |PM1| = |PM2| = 1
2 |P

′P |, the points M1 and M2 cover the same point

on the surface Σ, henceX1 andX2 cover the same point on Σ and |X1X2| = x. The same argu-

ment implies |Y1Y2| = y. Applying the cosine law to the generalized triangles PM1X1X2M2

and PN1Y1Y2N2 of type (1,−1,−1), we have cos θ =
− coshx+sinh2 a1

2

cosh2 a1
2

=
− cosh y+sinh2 a2

2

cosh2 a2
2

,

which implies sin2 θ
2 =

cosh x
2

cosh y
2

cosh
a1
2

cosh
a2
2

. Applying the cosine law to the generalized triangle

PM1Z1Z2N1 of the same type, we have cos(π − θ) =
− cosh z

2
+sinh

a1
2

sinh
a2
2

cosh
a1
2

cosh
a2
2

. From the last

two equations and the identity cos(π − θ) = 2 sin2 θ
2 − 1, we get the result. Note that when

some components of the resolutions of α are curves around a puncture, then the correspond-

ing lengths x, y or z tend to 0, and the corresponding generalized triangles become union of

generalized ideal triangles of type (0, 1, 1). Applying the cosine law for such triangles we get

formula (1) in these degenerated cases.

For (2), let us look at (B) of Figure 3.5. Similarly Applying the cosine law to the gen-

eralized triangles PM1X1X2M2 and PN1Y1Y2N2 of type (1,−1,−1), we have cos θ =

− coshx+sinh2 a1
2

cosh2 a1
2

=
− cosh y+sinh2 a2

2

cosh2 a2
2

, which implies sin2 θ
2 =

cosh x
2

cosh y
2

cosh
a1
2

cosh
a2
2

. Since c(β) = 1,

there is an intersection T of B and B′ and the generalized triangle PM1Z1Z2N1 of type

(1,−1,−1) is twisted. Applying the cosine law for such generalized triangle (see Appendix),

we have cos(π− θ) =
cosh z

2
+sinh

a1
2

sinh
a2
2

cosh
a1
2

cosh
a2
2

, and the identity cos(π− θ) = 2 sin2 θ
2 − 1 implies

the result.

Lemma 3.2.7. If α is a geodesic arc of length a and p is one of its points of self-intersection. Let

x be the length of the geodesic representative of closed component of the separating resolution

of α and let y be the length of the geodesic representative of the arc component in the sepa-

rating resolution of α. Let z be the length of the geodesic representative of the non-separating

resolution β of α.

(1) If c(β) = 0, then

e
a
2 = 2 cosh

x

2
e
y
2 + e

z
2 .

(2) If c(β) = 1, then

e
a
2 = 2 cosh

x

2
e
y
2 − e

z
2 .
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Moreover, the formulae still hold when the closed component in the separating resolution of α

is a circle around a puncture.

(B )(A)

P
A

Y

X

Z
M N

X

Z

Y

1 2

1 2
B

D D

X

P P' AN

T

YY2 1

B B'

1

Z2

1

D1

Figure 3.6:

Proof. For (1), let P in (A) of Figure 3.6 be a lift of p in the universal cover H2, and let A

and B be the two lifts of α passing through P with θ the angle between them at p. Let the

end point Y of A and the end point Y1 of B respectively be the lifts of the two end points of

α so that Y Y1 is a lift of the geodesic representative of the arc component of the separating

resolution of α. Let X be the corresponding lift of the geodesic representative of the closed

curve component of the separating resolution of α, and letD andD1 be the lifts of the geodesic

representative of the non-separating resolution of α. We take points X1 and X2 ∈ X , M ∈ B

and N ∈ A such that |MX1| realizes d(B,X) and |NX2| realizes d(A,X). Since MX1 and

NX2 cover the same curve on Σ, we have |MX1| = |NX2|. Applying the sine law to the

generalized triangle PMX1X2N of type (−1,−1, 1), we have |PM | = |PN | .= a3
2 . Suppose

M ′ ∈ A′, N ′ ∈ A, Z1 ∈ D and Z2 ∈ D1 are the points such that |M ′Z1| realizes d(B,D) and

|N ′Z2| realizes d(A,D1). Then M ′Z1 and N ′Z2 cover the same curve on Σ, hence |M ′Z1| =

|N ′Z2|. Applying the cosine law the the generalized ideal triangles PY Z1M
′ and PY1Z2N

′

of type (−1, 0, 1), we see that sinh |PM ′| = 1+cos(π−θ) cosh |M ′Z1|
sin(π−θ) sinh |M ′Z1| = 1+cos(π−θ) cosh |N ′Z2|

sin(π−θ) sinh |N ′Z2| =

sinh |PN ′|. Therefore, we have |PM ′| = |PN ′|. Hence M ′ = M , N ′ = N and |PM ′| =

|PN ′| = a3
2 . Let HY and HY1 respectively be the horocycles centered at Y and Y1, and a1 =

d(P,HY ), a2 = d(P,HY1), z1 = d(Z1, HY ) and z2 = d(Z2, HY1). Then a = a1 + a2 + a3

and z = z1 + z2. Applying the cosine law to the generalized ideal triangles PY Z1M , we have
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cos(π−θ) =
−ez1+ea1 sinh

a3
2

ea1 cosh
a3
2

. From the sine law to the generalized ideal trianglesPY Z1M and

PY1Z2N , we have ez1
ea1 = sin(π−θ)

sinh |MZ1| = sin(π−θ)
sinh |NZ2| = ez2

ea2 . Hence a2−a1
2 = z2−z1

2 . With this the

cosine law above becomes cos(π − θ) =
−e

z
2 +e

a1+a2
2 sinh

a3
2

e
a1+a2

2 cosh
a3
2

, hence e
z
2 = e

a1+a2
2 (sinh a3

2 +

cosh a3
2 cos θ). Applying the cosine law to the generalized triangle PMX1X2N , we have

cos θ =
− coshx+sinh2 a3

2

cosh2 a3
2

, which implies 2 cosh x
2 = 2 cosh a3

2 sin θ
2 ; and the cosine law to the

generalized ideal triangle PY Y1 of type (0, 0, 1) gives e
y
2 = e

a1+a2
2 sin θ

2 . Therefore, we have

2 cosh x
2e

y
2 + e

z
2 = e

a1+a2
2 (sinh a3

2 + cosh a3
2 cos θ + 2 cosh a3

2 sin2 θ
2) = e

a1+a2
2 e

a3
2 = e

a
2 .

For (2), let us look at (B) of Figure 3.6. Similarly applying the cosine law to the gen-

eralized triangle PMX1X2N , we have cos θ =
− coshx+sinh2 a3

2

cosh2 a3
2

, which implies 2 cosh x
2 =

2 cosh a3
2 sin θ

2 ; and the cosine law to the generalized ideal triangle PY Y ′ of type (0, 0, 1)

gives e
y
2 = e

a1+a2
2 sin θ

2 . When c(β) = 1, there is an intersection T of A′ and A′′ and the

generalized triangles PNZ2Y
′ and P ′NZ2Y

′′ of type (0, 1,−1) are twisted. Applying the

cosine law to PNZ2Y
′, we have cos(π− θ) =

ez1+ea1 sinh
a3
2

ea1 cosh
a3
2

. From the sine law to the gener-

alized ideal triangles PNZ2Y
′ and PNZ2Y

′′, we have ez1
ea1 = sin(π−θ)

sinh |NZ2| = ez2
ea2 , which implies

a2−a1
2 = z2−z1

2 . With this the cosine law above becomes cos(π−θ) =
e
z
2 +e

a1+a2
2 sinh

a3
2

e
a1+a2

2 cosh
a3
2

, hence

−e
z
2 = e

a1+a2
2 (sinh a3

2 + cosh a3
2 cos θ). Therefore, we have 2 cosh x

2e
y
2 − e

z
2 = e

a
2 .

Lemma 3.2.8. If α is a geodesic arc of length a both of whose end points meet at a puncture

v, and r is the length of the horocycle centered at v. Let x and y respectively be the length of

the geodesic representative of α±v . Then we have

e
a
2 =

2

r
(cosh

x

2
+ cosh

y

2
).

Moreover, the formula still holds when some of the components of the resolutions of α are

circles around a puncture.

Proof. In Figure 3.7, let V be the lift of v and let HV be the lift of the horocylce centered

at V , let AV and A1V be the lifts of α passing through V in the universal cover H2. Let

θ1 be the generalized angle between AV and A1V and let BB′ be the corresponding lift of

the geodesic representative of the homotopy class of α+
v . We take the point A, A1, B and B′

such that |AB| realizes the distance from AV to BB′ and |A1B
′| realizes the distance from
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Figure 3.7:

A1V to BB′. Since AB and A1B′ cover the same line in Σ, we have |AB| = |A1B
′| and

|BB′| = x. By the sine law to the generalized triangle CABB′A′ of type (0,−1,−1), we

have ed(A,HV )

sinh |A1B′| = ed(A1,HV )

sinh |AB| = 1, which implies that d(A,HV ) = d(A1, HV ) = a
2 . Applying

the cosine law to the generalized triangle CABB′A′, we have θ2
1 = coshx+1

ea

2

, which implies

that θ1 =
2 cosh x

2

e
a
2

. Similarly, let A2V be the other lift of α adjacent to AV and let θ2 be the

generalized angle between AV and A2V , and have θ2 =
2 cosh y

2

e
a
2

, from which and the previous

identity the formula follows.

3.3 Generalized trace identities and the algebra homomorphism

Combining the results from the previous section, we obtain the following generalized trace

identities.

Proposition 3.3.1. (a) For a generalized curve α with p one of its self-intersection points in

Σ, let α1 and α2 be the components of the separating resolution of α at p and let β be the

non-separating resolution of α at p. Then we have

(−1)c(α)λ(α) = (−1)c(α1)+c(α2)λ(α1)λ(α2) + (−1)c(β)λ(β).

(b) Let α and β be two generalized curves with p ∈ Σ one of their intersections. If γ1 and γ2

are the resolutions of α and β at p, then we have

(−1)c(α)+c(β)λ(α)λ(β) = (−1)c(γ1)λ(γ1) + (−1)c(γ2)λ(γ2).
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Proof. By (1) of Lemma 3.2.1 - 3.2.3, Lemma 3.2.6 and 3.2.7, the formulae (a) and (b) are

true when α and β are geodesics. In the general case that the generalized curves are not all

geodesics, we use induction. If a generalized curve α has only one self-intersection p which is

a vertex of a curl C, then we let α′ be the generalized curve obtained from α by removing C

via a Reidemeister Move I. We let α1 and α2 be the components of the separating resolution

of α at p, and let β be the non-separating resolution of α at p. Note that one of α1 and α2, say

α1, is a trivial loop since p is the vertex of the curl C; and α2 and β are equivalent to α′. We

have (−1)c(α)λ(α) = −(−1)c(α
′)λ(α′) and (−1)c(α1)+c(α2)λ(α1)λ(α2) + (−1)c(β)λ(β) =

−(−1)c(α2)2λ(α2) + (−1)c(β)λ(β) = −(−1)c(α
′)λ(α′). Hence (a) is true in this case. If α

has only one self-intersection and no curl, then α is equivalent to a geodesic, and (a) is true by

Lemma 3.2.6 and 3.2.7. If two simple generalized curves α and β have only one intersection,

then α and β are equivalent to geodesics, and (b) is true by (1) of Lemma 3.2.1 - 3.2.3. Now

we assume that formula (a) holds when the number of self-intersections of α is less then n, and

formula (b) holds when the number of crossings α ∪ β is less than n.

For (a), if the number of self-intersections of α is equal to n, there are the following two

cases to be considered:

(1) p is not a vertex of a bigon bounded by α; and

(2) p is a vertex of a bigon B bounded by α.

We denote by γ the unique geodesic in the homotopy class of a generalized curve γ. In case

(1), we have that c(α) = c(α1) + c(α2) and 0 6 c(β)− c(α) 6 1. Moreover, c(β)− c(α) = 1

if and only if the non-separating resolution β′ of α contains a curl, i.e., c(β) − c(α) = c(β′).

The way to see this is that we first push all the curls together by isotopy so that away from the

curls the curve is equivalent to a geodesic and then apply Proposition 3.2.5. In this case, we

have

(−1)c(α)λ(α) = (−1)c(α)λ(α)

= (−1)c(α)
(
λ(α1)λ(α2) + (−1)c(β

′)λ(β′)
)

= (−1)c(α1)+c(α2)λ(α1)λ(α2) + (−1)c(β)λ(β).

In case (2), there is a curl C generated from the bigon B whose vertex is the other vertex p′

of B . If C is in one of the component of the separating resolution of α, say α1, then let α′1
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be the curve obtained from α1 by removing C via a Reidemeister Move I. Let α′ be the curve

obtained from α by removing B via a Reidemeister Move II. Then we have c(α′) = c(α) and

c(α′1) = c(α1)− 1, and formula (a) is equivalent to

(−1)c(β)λ(β) = (−1)c(α
′)λ(α′) + (−1)c(α

′
1)+c(α2)λ(α′1)λ(α2),

which holds by the inductive assumption to formula (a). Indeed, the generalized curves α′1

and α2 are the components of the separating resolution of β at p′ and α′ is the non-separating

resolution of β at p′, and the number of self-intersections of β is less than n. If C ⊂ β,

then let β′ be the curve obtained from β by removing C via a Reidemeister Move I. We have

c(β′) = c(β)− 1, and that formula (a) is equivalent to

(−1)c(α1)+c(α2)λ(α1)λ(α2) = (−1)c(α
′)λ(α′) + (−1)c(β

′)λ(β′),

which holds by the induction assumption to formula (b). Indeed, the generalized curves α′ and

β′ are resolutions of α1 ∪ α2 at p′.

For (b), we have to consider the following two cases:

(1) p is not a vertex of a bigon bounded by α and β; and

(2) p is a vertex of a bigon B bounded by α and β.

We denote by γ the unique geodesic in the homotopy class of a generalized curve γ. In case (1),

the resolutions p do not change the number of curls. We have c(α) + c(β) = c(γ1) = c(γ2),

and

(−1)c(α)+c(β)λ(α)λ(β) = (−1)c(α)+c(β)λ(α)λ(β)

= (−1)c(α)+c(β)
(
λ(γ1) + λ(γ2)

)
= (−1)c(γ1)λ(γ1) + (−1)c(γ2)λ(γ2).

In case (2), there is a curl C generated from the bigon B whose vertex is the other vertex p′ of

B. If C ⊂ γ1, say, then let γ′1 be the curve obtained from α1 be removing C via a Reidemeister

Move I. Let α′ and β′ be the curve obtained from α and β by removing B via a Reidemeister
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Move II. We have c(α′) = c(α), c(β′) = c(β) and c(γ′1) = c(γ1) − 1, and the result is

equivalent to

(−1)c(γ2)λ(γ2) = (−1)c(α
′)+c(β′)λ(α′)λ(β′) + (−1)c(γ

′
1)λ(γ′1),

which holds by formula (a), since α′ and β′ are the components of the separating resolution of

γ2 at p′ and γ′1 is the non-separating resolution of γ2 at p′.

Proposition 3.3.2. (a) For an arc α both of whose end points are at the same puncture v, let

β and γ be the resolutions of α at v, and let r(v) be the length of the horocycle centered at

v. Then we have

(−1)c(α)λ(α) =
1

r(v)

(
(−1)c(β)λ(β) + (−1)c(γ)λ(γ)

)
.

(b) Let α and β be two arcs intersecting at a puncture v. If γ1 and γ2 are the resolutions of α

and β at v, then we have

(−1)c(α)+c(β)λ(α)λ(β) =
1

r(v)

(
(−1)c(γ1)λ(γ1) + (−1)c(γ2)λ(γ2)

)
.

Proof. By Lemma 3.2.8, part (a) is true when α is a geodesic. In the general case when α is

not a geodesic, there are the following two cases:

(1) v is not a vertex of a generalized bigon bounded by α, that is, a bigon with one of its

vertices a punctue; and

(2) v is a vertex of a generalized bigon B bounded by α.

In case (1), we have c(α) = c(β) = c(γ), and the formula follows from the case that α is

geodesic. In case (2), we see one of the resolutions of α at v, say γ, contains a curl from the

generalized bigon B, then the other resolution β is the one enclosing the puncture v. We let

β1 be the non-separating resolution of β and let β2 be the component of the separating res-

olution of β which is not a circle around v. Then we have c(γ) = c(β2) + 1 and λ(γ) =

λ(β2), hence (−1)c(γ)λ(γ) = −(−1)c(β2)λ(β2). By Lemma 3.3.1, we have (−1)c(β)λ(β) =

(−1)c(β1)λ(β1)+(−1)c(β2)2λ(β2),which implies that (−1)c(β)λ(β)+(−1)c(γ)λ(γ) = (−1)c(β1)λ(β1)+

(−1)c(β2)λ(β2). Let α′ be the curve obtained from α by removing the generalized bigon B via
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a Reidemeister Move II′, then β1 and β2 are the resolutions of α′ at v. By case (1) and the last

equation above, we have

(−1)c(α)λ(α) = (−1)c(α
′)λ(α′)

=
1

r(v)

(
(−1)c(β1)λ(β1) + (−1)c(β2)λ(β2)

)
=

1

r(v)

(
(−1)c(β)λ(β) + (−1)c(γ)λ(γ)

)
Formula (b) is a consequence of Lemma 3.2.4 (1); and the proof is similar to that of (a).

Combining Propositions 3.3.1 and 3.3.2, we obtain the following intermediate theorem.

Theorem 3.3.3. The map Φ: C(Σ)→ C∞(T d(Σ)) defined in Theorem 3.1.4 is a well defined

commutative algebra homomorphism.

3.4 The homomorphism of Poisson algebras

To complete the proof of Theorem 3.1.4, we need the following lemma.

Lemma 3.4.1. Let T be an ideal triangulation of a punctured surface Σ with a set of edges E.

Suppose α is a generalized curve on Σ and i(α, e) is the number of intersection points of α and

e ∈ E. Then the product α ·
∏
e∈E e

i(α,e) in C(Σ) can be expressed as a polynomial Pα with

variables in E.

a

e
.

.

.

.

.

.
+

(A) (B )

Figure 3.8:

Proof. Let e ∈ E such that α∩e 6= ∅ and p ∈ α∩e. As in (A) of Figure 3.8, each resolution of

α ·e at p has less intersection number with e than α does. Resolving the product α
∏
e∈E e

i(α,e)

at each point of intersection p ∈ α ∩ (
⋃
e∈E e) ∩ Σ, we see that each component of the final
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resolution has no intersection with each edge e ∈ E in the surface, hence must lie in a triangle

in T . Since a triangle is contractible, each component of the final resolution is either 0 or up to

sign an edge e ∈ E (as in (B) of Figure 3.8).

Proof of Theorem 3.1.4. For the Poisson structures, we let T be a triangulation of Σ with

a set of edges E. If e and e′ are two edges in E meeting at a puncture v, and x and y

are the resolutions of e and e′ at v, then {e, e′} = 1
4v
−1(x − y). By Theorem 3.3.3 and

Lemma 3.2.4 (2), we have Φ({e, e′}) = 1
4r(v)(e

l(x)
2 − e

l(y)
2 ) = 1

4
θ′−θ
r(v) e

l(e)
2 e

l(e′)
2 . We also

have that ΩWP (e
l(e)
2 , e

l(e′)
2 ) = 1

16
θ′−θ
r(v) e

l(e)
2 e

l(e′)
2 . If e and e′ are two disjoint edges in E, then

Φ({e, e′}) = 4ΩWP (e
l(e)
2 , e

l(e′)
2 ) = 0. Therefore, we have that Φ({e, e′}) = 4ΩWP (λ(e), λ(e′))

for all pairs of edges in E. Now for each generalized curve α, by lemma 3.4.1, we have

α
∏
e∈E e

i(α,e) = Pα for some polynomial Pα with variables in E. Since {, } is a Poisson

bracket, we have {α
∏
e∈E e

i(α,e), e0} =
∏
e∈E e

i(α,e){α, e0}+
∑

e′∈E α
∏
e6=e′ e

i(α,e){e′, e0}

for each edge e0 in E, from which we see that
∏
e∈E e

i(α,e){α, e0} = {Pα, e0} −Q for some

polynomial Q in α, e and {e, e0} in which the degrees of α and {e, e0} are equal to 1. Since Φ

is a C–algebra homomorphism and ΩWP is a bi-vector field, we have

Pα(λ(e)) = (−1)c(α)λ(α)
∏
e∈E

λ(e)i(α,e),

and

ΩWP

(
(−1)c(α)λ(α)

∏
e∈E

λ(e)i(α,e), λ(e0)
)

=
∏
e∈E

λ(e)i(α,e)ΩWP

(
(−1)c(α)λ(α), λ(e0)

)
+ (−1)c(α)Qλ,

where Qλ is the value of Q at λ(α), λ(e) and ΩWP (λ(e), λ(e0)). As a consequence, since

λ(e) 6= 0 for each e ∈ E, we have

Φ({α, e0}) =
Φ({Pα, e0})− Φ(Q)∏

e∈E Φ(e)i(α,e)

=
4ΩWP

(
Pα(λ(e)), λ(e0)

)
− (−1)c(α)4Qλ∏

e∈E λ(e)i(α,e)

= 4ΩWP

(
(−1)c(α)λ(α), λ(e0)

)
.

For two generalized curves α an β, we let α
∏
e∈E e

i(α,e) = Pα and β
∏
e∈E e

i(β,e) = Pβ

as in Lemma 3.4.1. Then we have
∏
e∈E e

i(α,e)+i(β,e){α, β} = {Pα, Pβ} − R, where R is a
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polynomial in α, β, e, {α, e}, {e, β} and {e, e′} such that the degrees of α, β, {α, e}, {e, β}

and {e, e′} are all equal to 1. Therefore, we have Φ(R) = 4Rλ, where Rλ is the value of R at

λ(α), λ(β), λ(e), ΩWP (λ(α), λ(e)), ΩWP (λ(e), λ(β)) and ΩWP (λ(e), λ(e′)), and

Φ({α, β}) =
Φ({Pα, Pβ})− Φ(R)∏
e∈E Φ(e)i(α,e)+i(β,e)

=
4ΩWP

(
Pα(λ(e)), Pβ(λ(e))

)
− (−1)c(α)+c(β)4Rλ∏

e∈E λ(e)i(α,e)+i(β,e)

= 4ΩWP

(
(−1)c(α)λ(α), (−1)c(β)λ(β)

)
.

Let π : T d(Σ) → RV>0 be the projection onto the fiber. By Mondello [13], the kernel of

ΩWP is the pull-back π∗(T ∗RV>0) of the cotangent space of RV>0. Since d(r(v)) = π∗(dv) ∈

π∗(T ∗RV>0), we have

Φ({v, α}) = 4ΩWP

(
r(v), (−1)c(α)λ(α)

)
= 0

for each puncture v and each generalized curve α.

As a consequence of Theorem 3.1.4, Wolpert’s cosine formula generalizes to the bi-vector

field ΩWP as follows:

Corollary 3.4.2. Let θp be the angle from α to β at p ∈ α∩β in Σ. If α and β are two geodesic

arcs, then let θv be the generalized angle from α to β and let θ′v be the generalized angle from

β to α at a puncture v ∈ α ∩ β. We have

ΩWP (l(α), l(β)) =
1

2

∑
p∈α∩β∩Σ

cos θp +
1

4

∑
v∈α∩β∩V

θ′v − θv
r(v)

.

Proof. We let λ′(α) = sinh l(α)
2 if α is a closed curve on Σ, and let λ′(α) = 1

2e
l(α)
2 if α is an
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arc on Σ. By Theorem 3.1.4 and (2) of Lemma 3.2.1 - 3.2.4, we have

ΩWP (l(α), l(β))

=
1

λ′(α)λ′(β)
ΩWP (λ(α), λ(β))

=
1

4λ′(α)λ′(β)
Φ({α, β})

=
1

4λ′(α)λ′(β)
Φ
(1

2

∑
p∈α∩β∩Σ

(αpβ
+ − αpβ−) +

1

4

∑
v∈α∩β∩V

1

v
(αvβ

+ − αvβ−)
)

=
1

8

∑
p∈α∩β∩Σ

λ(αpβ
+)− λ(αpβ

−)

λ′(α)λ′(β)
+

1

16

∑
v∈α∩β∩V

1

r(v)

λ(αvβ
+)− λ(αvβ

−)

λ′(α)λ′(β)

=
1

2

∑
p∈α∩β∩Σ

cos θp +
1

4

∑
v∈α∩β∩V

θ′v − θv
r(v)

.
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