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ABSTRACT OF THE DISSERTATION 

Exploring and Justifying Ideas in an Undergraduate Mathematics Course: 

A Case Study 

ANNA BROPHY 

Dissertation Chairperson: Carolyn A. Maher, Ed. D. 

The improvement of mathematics education relies very heavily on the improvement 

of undergraduate mathematics education for future teachers (National Research Council, 

1989). It is important that undergraduate mathematics instruction for prospective teachers 

demonstrates techniques to be used in their future classrooms (Blair, 2006; Senk, Keller, 

& Ferrini-Mundy, 2004). Specifically, pre-service teachers should develop an 

understanding of the mathematical processes of exploration and proof (Senk, Keller, & 

Ferrini-Mundy, 2004). 

If problems that encourage mathematical exploration and justification are to be 

brought into the undergraduate classroom, understanding how students build and justify 

their solutions will be of importance. The purpose of this research was to (1) investigate 

how undergraduate students enrolled in a mathematics course solve and justify their 

solution to a series of combinatorics tasks, (2) analyze the moves employed by the 
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instructor and (3) investigate how their solutions compare to the solutions of other 

students involved in the same problem-solving tasks. 

This case study was conducted in a mathematics class at a liberal arts college. The six 

students in this class were all mathematics majors studying to be teachers. Using 

videotaped data and studentsô written work, a careful analysis of how the students built 

their solutions and justified their answers to three combinatoric problems was conducted.  

It was found that the strategies and justifications used by the students in this study 

were similar to those used by participants in earlier studies. Furthermore, in investigating 

how the college math students built their solutions to the problems, it was found that the 

instructor played a critical role in the learning process. 

Findings from this study verify that mathematical learning can take place in a college 

mathematics class that fosters mathematical exploration and justification with well-

chosen tasks, collaboration with peers, and student-centered instruction. This study also 

has implications for implementation in other settings by providing examples of studentsô 

solutions to specific tasks as well as examples of how instructors can effectively interact 

with students in a mathematical classroom that nurtures the mathematical processes of 

conjecturing, generalizing, and justifying solutions to problems. 
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CHAPTER 1: STATEMENT OF THE PROBLEM  

There is a shared view among mathematics educators that undergraduate mathematics 

education should provide alternative teaching techniques to the traditional style of 

lecturing (Blair, 2006; Ganter & Barker, 2004). In particular, the use of active learning is 

emphasized. Active learning speaks to one of the seven transitions needed for the future 

of mathematics education in the United States described by the National Research 

Council (NRC, 1989). The NRC (1989) explains that this transition emphasizes that the 

learning and teaching of mathematics should shift from a body of laws to be memorized 

to an exploratory field where the mathematical processes of exploring and formulating 

conjectures is highlighted. 

At Rutgers University, there is an extensive body of research involving classroom 

practices that embody this transformation suggested by the National Research Council.
1
 

In the book, Combinatorics and Reasoning, Maher, Powell, and Uptegrove (2010) 

discuss the strand of research that focuses on the area of combinatorics. Maher et al. 

found that ñin a program of carefully selected tasks, with minimal intervention by 

educators who pay careful attention to studentsô arguments and justifications, students 

can perform mathematically at high levelsò (p. xvi). The combinatoric tasks that were 

chosen for the study give rise to the mathematical processes of exploration and 

justification. Maher et al. found that the students ñbegan their investigations by searching 

for patterns, organizing solutions, searching for completeness, deriving strategies for 

                                                           
1
 Videos and related metadata of students solving these problems used in the research at Rutgers 

University can be found at The Video Mosaic Collaborative website (http://videomosaic.org). 

http://videomosaic.org/
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keeping track and checking, and then reorganizing justifications into arguments that were 

proof-like in structureò (p. 6). 

The research team at Rutgers University has focused on many aspects of the 

mathematical process including using heuristics and applying personal representations to 

developing mathematical ideas and forms of reasoning. The research done at Rutgers 

University has mainly focused on students in grade two through high school. Minimal 

research on these specific tasks has been conducted at the college level. Glass (2001, 

2010) studied college freshman working on these tasks. The current research project will 

add to the understanding of how undergraduate college students build and justify their 

solutions on specific combinatoric tasks. 

There are four purposes of this research which focuses on developing mathematical 

ideas and forms of reasoning with undergraduate students enrolled in a mathematics 

course. These six undergraduate students are mathematics majors in their junior year of 

college studying to be teachers. The first purpose of this research is to understand how 

these students build their solutions to the tasks used for elementary and secondary 

students in the earlier studies. Second, what forms of reasoning do the college students 

use in justifying the solutions of these tasks? 

In understanding how students build their solutions, it is important to consider the 

interventions of the instructor. A third purpose of the study is to analyze the instructor 

interventions in the problem-solving explorations of the six participating students. Fourth, 
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in addition to analyzing how the college students built their solutions, their approaches 

will be compared with the approaches of students from earlier research. 

The questions that guide this study are: 

1. How do pre-service teachers in an undergraduate math class build their solutions 

to the problems they investigate?  

2. How, if at all, do they justify their solutions?  

3. What role does the instructor play in the studentsô building and justifying of 

ideas? What types of interventions, if any, does she employ? 

4. How do the solutions and justifications of these college students compare with the 

solutions of other students at various ages doing the same problems? 

There is a need to understand how undergraduate students solve problems in an 

environment that encourages exploration and justification if an active learning style is to 

be incorporated in undergraduate education. Understanding the types of interventions the 

instructor used in the building of these ideas will also benefit future classrooms that will 

participate in an exploratory learning experience. Furthermore, understanding how 

learners develop mathematical ideas can benefit the teaching of mathematics. Careful and 

detailed analysis of the process in which learners build their mathematical ideas on 

specific problems can bring us closer to understanding the process. Different 

mathematical problems provoke different ways of thinking. If we can analyze learners in 
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different environments while keeping the task constant, perhaps we can better understand 

how students do mathematics on specific tasks. The more evidence we have on students 

working on the same tasks, the better we can understand the mathematical processes. 
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CHAPTER 2: LITERATURE REVIEW AND THEORITICAL FRAMEWORK  

2.1 Introduction 

This chapter is organized into two sections. The first section explains the theoretical 

framework that guides this study. The second section contains the literature review. The 

literature review begins with an explanation of the importance of reasoning and 

justification in the school curriculum, how an active learning style suits the 

undergraduate level, and how problems in combinatorics fit into this scheme. The 

literature review continues with the three combinatoric tasks explored in this study and 

reviews the research on mathematical problem solving relevant to these three tasks. 

2.2 Theoretical Framework 

Introduction 

Under certain conditions the learning of mathematics can take place. These conditions 

are based on a setting where students are given an opportunity to explore and justify 

mathematical ideas in an environment where the communication of ideas is encouraged. 

These conditions also require appropriate mathematical tasks and an instructor who can 

guide the exploration and justification processes. 

Framework 

Mathematicians solve problems through a process that involves exploration and 

justification (Fendel & Resek, 1990). The exploration process, which might involve 
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pattern finding, making guesses, or looking at examples, is about the discovery of new 

ideas. Once a conjecture is made, the mathematician seeks to justify the solution. 

Mathematics instruction should mimic the way mathematics is achieved and 

mathematical thinking occurs (Freudenthal, 1991; Pólya, 1945, 1954; Schoenfeld, 1992). 

ñIf the learning of mathematics has anything to do with the discovery of mathematics, the 

student must be given some opportunity to do problems in which he first guesses and 

then proves some mathematical fact on an appropriate levelò (P·lya, 1954, p. 160). 

Schoenfeld (1992) argues that when students learn mathematics as a series of algorithms 

using drill-and-practice techniques, ñthey are not developing the broad set of skills P·lya 

and other mathematicians who cherish mathematical thinking have in mindò (pp. 56-57). 

Students should first be given opportunities to explore mathematics and create ideas. 

Freudenthal (1991) calls this process ñreinventionò and explains that ñknowledge and 

ability, when acquired by oneôs own activity, stick better and are more readily available 

than when imposed by othersò (p. 47). During this process of mathematical discovery, 

students build their own representations and understanding of the problem. Davis and 

Maher (1990) describe a series of steps that occurs in oneôs mind when encountered with 

a mathematical problem. 

1. Build a representation for the input data. 

2. From this data representation, carry out memory searches to retrieve or construct 

a representation of (hopefully) relevant knowledge that can be used in solving the 

problem or otherwise going further with the task. 

3. Construct a mapping between the data representation and the knowledge 

representation. 

4. Check this mapping (and these constructions) to see if they seem to be correct. 
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5. When the constructions and the mapping appear to be satisfactory, use technical 

devices (or other information) associated with the knowledge representation in 

order to solve the problem. (p. 65) 

 

This cycle is based on the idea that new mathematical representations are created 

based on revising and extending previously built mathematical representations. This type 

of learning is grounded on a constructivist perspective of learning. As explained by 

OôDonnell and Hmelo-Silver (2013), ña constructivist perspective suggests that 

individuals create meaning using their prior understandings to make sense of new 

experience and construct new understandingsò (p. 6). The idea that new knowledge is 

built from previous knowledge might seem simplistic; however, it becomes profound 

when we permit this type of learning in the classroom. As Davis and Maher (1997) 

explain, ñit is the student who is doing the work of building or revising these personal 

representationsò (p. 94). 

ñThe term representation refers both to process and to product ï in other words, to 

the act of capturing a mathematical concept or relationship in some form and to the form 

itselfò (NCTM, 2000, p. 67). Representations are a vital part of mathematics because 

mathematics is about abstraction and generalization and it is these representations that 

symbolize mathematical concepts. Understanding the meaning of an abstract 

representation is much more valuable than focusing on the actual representation. Davis 

(1992) explains that by allowing students to invent representations and to create a 

personal representation of the task (as opposed to telling students what to do) the focus 

shifts to the meaning of these representations. 
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This process of exploration, also referred to as discovery-based learning or active 

learning, has many benefits. First, it allows the student to take ownership of their ideas. 

Francisco and Maher (2005) found that the ownership of mathematical ideas was central 

in studentsô success at problem solving. This act of construction builds the studentsô 

ñmathematical power.ò 

Students construct meaning as they learn mathematics. They use what they are taught 

to modify their prior beliefs and behavior, not simply to record and store what they 

are told. It is students' acts of construction and invention that build their mathematical 

power and enable them to solve problems they have never seen before. (NRC, 1989, 

p. 59) 

 

This statement implies that greater transfer occurs when students construct their own 

mathematical understanding of the problem because they retain the mathematics best 

when they learn by internal construction (NRC, 1989, p. 59). Freudenthal (1991) also 

expressed this idea of greater transfer because mathematics, when constructed, ñsticks 

better in oneôs headò (p. 47). However, it may not only be the product of the act of 

construction that enables greater transfer but the act itself that aids in transfer. 

When students seek understanding, they must recognize if they grasp a concept and 

when they need more information (Bransford, Brown, & Cocking, 2000). That is, they 

must engage in the metacognitive processes of ñmonitoring and controlò and ñself-

regulationò (Schoenfeld, 1992). ñTransfer can be improved by helping students become 

more aware of themselves as learners who actively monitor their learning strategies and 
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resources and assess their readiness for particular test and performances.ò (Bransford et 

al., 2000, p. 67) 

However, reinvention of mathematical ideas is not enough; students must also learn 

to justify their solutions. Mathematicians justify their solutions not only to demonstrate 

the answer is true, but also to understand why it is true. The process of justifying a 

mathematical conjecture allows the mathematician to ñmake senseò of their find. The 

process of justifying is truly about understanding. Reasoning is central in this 

understanding (Ball & Bass, 2003). Maher (2005) found that, when the responsibility of 

making sense of the solution was placed on the learner, this ñled to careful reasoning and 

building of argumentsò (p. 12). 

By justifying their solutions, students monitor their learning and are forced to 

reexamine their solutions. Teaching practices that help students monitor their learning 

focus on sense-making, reflection and self-assessment (Bransford et al., 2000, p, 12). As 

shown, learning to monitor oneôs learning leads to greater transfer. This view is shared by 

Pólya. In order to justify the solution, students will have to reconsider their solution. 

Pólya (1945) explains that by reexamining and reconsidering the solutions, students can 

ñconsolidate their knowledge and develop their ability to solve problemsò (pp. 14-15). He 

refers to this process as ñlooking back.ò  

The two processes of mathematical exploration and justification are important in the 

learning and understanding of mathematics for many reasons. However, in the learning 

and teaching of mathematics, in order for students to engage in and learn from these 
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processes, problem solving should also involve 1) collaboration with peers, 2) proper 

teacher intervention, and 3) appropriate mathematical tasks. 

Schoenfeld (1992) explains that mathematicians often discuss their ideas with their 

peers and ñdoing mathematics is increasingly coming to be seen as a social and 

collaborative actò (p. 29). Maher et al. (2010) explain that ña central component of the 

learning process is encouraging students to communicate their ideasò (p. 3). By 

discussing their solutions with peers, it is possible that ñcognitive conflicts will arise, 

inadequate reasoning will be exposed, and enriched understanding will emergeò 

(Springer, Stanne, & Donovan, 1999, p. 25). 

Furthermore, when learners are working with peers, the process of ñlooking backò 

might be enhanced. If students are encouraged to justify their solutions to the teacher and 

one another, they will have to go through a process of formulating and presenting an 

explanation of their solutions. Webb (2013) explains how by formulating an explanation, 

students will have to reorganize, transform, and clarify their explanation so that others 

can understand. The process of presenting these ideas may elicit many of the same 

processes as formulating the explanation, ñespecially when the presentation exposes 

contradictions or incompleteness of ideas that are recognized by the explainer or are 

pointed out by othersò (p. 20). Webb further explains that listening is also an important 

part of this process. 

Listeners may engage in processes analogous to those carried out by presenters. 

When comparing their own knowledge with what is being presented, listeners may 

recognize and fill in gaps in their own knowledge, recognize and correct 
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misconceptions, see contradictions that cause them to seek new information (e.g. by 

asking question), and generate new connections between their own ideas, or between 

their own and othersô ideas. (p. 20) 

 

Therefore, collaboration with peers can enhance mathematical understanding because, 

when learners share ideas, the need for clarification and reconsideration of the solution 

becomes important. However, the processes of exploration and justification cannot occur 

unless the students are given appropriate mathematical tasks. The tasks should be open-

ended and allow for abstraction and generalization (Francisco & Maher, 2005; Martino & 

Maher, 1999; Maher et al., 2010). Francisco and Maher (2005) describe the value of 

supplying complex tasks as opposed introducing simple problems that make up a more 

complex problem. Francisco and Maher explain that ñthe opportunity to attend to the 

intricacies of a complex task provides the students with the opportunity to work on 

unveiling complex mathematical relationships, which enhances deep mathematical 

understandingò (p. 371). However, the tasks must be appropriate for the studentsô 

knowledge base and the teacher will need to understand what constitutes challenging for 

the teacherôs own students (Martino and Maher, 1999). 

Careful consideration of the level of the mathematical task is important. As explained 

by Martino and Maher (1999), the teacher will have to determine the appropriate level 

that is considered challenging for their specific students. Vygotsky (1978) named this 

level the zone of proximal development. The zone of proximal development is ñthe 

distance between the actual developmental level as determined by independent problem 

solving and the level of potential development as determined through problem solving 
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under adult guidance or in collaboration with more capable peersò (Vygotsky, 1978, p. 

86). ñAccording to Vygotsky, the zone of proximal development is a level of competence 

on a task in which the student cannot yet master the task on his or her own but can 

perform the task with appropriate guidance and support from a more capable partnerò 

(OôDonnell & Hmelo-Silver, 2013, p. 8). According to this theory, the level of the task is 

important but only if there is appropriate guidance. Therefore, the role of the teacher is 

also very important. 

The role of the teacher is critical in a classroom environment that fosters exploration, 

reinvention, and justification. In this environment, the teacherôs role should be one of a 

listener and guide as opposed to a lecturer. The teacher must be able to provide timely, 

open-ended questions that promote conceptual understanding and problem-solving skills 

(Martino & Maher, 1999). The knowledge of what and when to ask these questions will 

rely on acute listening, strong content knowledge, and knowledge of studentsô prior 

understanding. 

Both Pólya (1945) and Freudenthal (1991) express how there is a fine line between 

helping too much and not at all. As Freudenthal explains, ñguiding means striking a 

delicate balance between the force of teaching and the freedom of learningò (p. 55). 

Martino and Maher (1999) stress that the students must have time to explore the problem 

without any teacher intervention. The teacher should intervene only ñafter students have 

built a solution, consulted with each other and posed a solution that they believe is validò 
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(p. 56). It is at this point that the students are ready to be challenged to explain their 

reasoning and justify their solutions.  

Martino and Maher (1999) proposed four types of teacher questioning that will aid in 

fostering understanding. They suggest questioning that 1) facilitates justification, 2) 

offers opportunities for generalization, 3) invites opportunities to make connections, and 

4) facilitates awareness of solutions presented by other students. Examples of the types of 

questions include: ñCan you explain your solution to me?ò ñCan you convince the rest of 

us that your method works?ò ñHave you ever worked on a problem like this before?ò ñIs 

there anything about your solution thatôs the same as your classmateôs?ò 

Martino and Maher further explain that the teacher must not only be knowledgeable 

about the content domain but must also have knowledge about the students. ñMany times 

the teacher will have to make instructional decisions based upon studentsô ideas and 

actions that presented themselves during a prior lessonò (p. 54). As they explain, 

understanding the knowledge structure that might be available to the students is 

imperative to be able to encourage further thinking. This view is shared by Pólya for 

knowing how and when to guide. ñThe best is, however, to help the student naturally. 

The teacher should put himself in the studentôs place, he should see the studentôs case, he 

should try to understand what is going on in the studentôs mind, and ask a question or 

indicate a step that could have occurred to the student himself.ò (Pólya, 1954, p. 1) 

To summarize, this study is situated in a theoretical perspective consistent with the 

one presented by Maher et al. (2010). That is, ñstudents learn mathematics by engaging in 
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the process of building their own personal representations, communicating them as ideas, 

and then providing support for those ideas by reorganizing and restructuring 

representationsò (p. 4). It is the combination of appropriate tasks, the process of 

explaining and justifying the solutions, and teacher questioning that promotes meaningful 

mathematical learning. 

2.3 Literature Review 

2.3.1 Reasoning and Proof 

Reasoning and proof is one of the five process standards for all grade levels, 

prekindergarten through grade 12, set forth by the National Council of Teachers of 

Mathematics [NCTM]. As it is explained by NCTM, reasoning is an essential part of 

mathematics and should be a regular part of a studentôs mathematics education 

throughout all grade levels. ñBeing able to reason is essential to understanding 

mathematics. By developing ideas, exploring phenomena, justifying results, and using 

mathematical conjectures in all content areas andðwith different expectations of 

sophisticationðat all grade levels, students should see and expect that mathematics 

makes senseò (NCTM, 2000, p. 56). 

The process described by NCTM of exploring and justification is akin to the 

description by Fendel and Resek (1990) on how mathematicians work. In the textbook 

titled Foundations of Higher Mathematics: Exploration and Proof, Fendel and Resek 

explain that mathematics entails exploration and proof. ñIn brief, exploration involves 



15 

 

 

examining a situation, with or without a particular question in mind, and discovering 

whatever you can about it. It involves ómessing aroundô with mathematical ideas ï trying 

one thing and then another, looking at examples, making guesses, asking questionsò 

(Fendel & Resek, 1990, p. 3). 

The process of exploration is about constructing new ideas. Ball and Bass (2003) 

explain that reasoning is a central instrument in this process. Instead of the phrase 

ñexploration,ò they call this step the ñreasoning of inquiry.ò Out of this process, 

conjectures are made and the mathematician will want to prove these conjectures. 

ñMathematical reasoning also functions centrally in justifying and proving mathematical 

claims, a process that we call the reasoning of justificationò (Ball & Bass, 2003, p. 30). 

As Fendel and Resek (1990) explain, exploration and proof are not separate identities, 

they are mutually supportive. The process of proof grows out of the process of 

exploration. According to Ball and Bass, reasoning is the central aspect of these 

processes. 

The ultimate result of argumentation for a mathematician is a formal mathematical 

proof (Yackel & Hanna, 2003, p. 228). ñAll stages of doing mathematics are concerned 

with acquiring understanding, and the separations between the stages are not always 

sharply defined. But the hallmark of the proof stage is that it is primarily concerned with 

acquiring certaintyò (Fendel & Resek, 1990, p. 19). A formal mathematical proof is 

series of steps and logic demonstrating certainty about the mathematical discovery using 
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specialized communication agreed upon by the mathematical community (Fendel & 

Resek, 1990, p. 4). 

Yackel and Hanna (2003) explain that ña good proof is one that also helps one 

understand the meaning of what is being proved: to see not only that it is true but also 

why it is trueò (p. 228). Mathematicians are concerned with understanding and to be able 

to understand a mathematical statement, one must understand why it is true. Ball and 

Bass (2003) state that ñmathematical understanding is meaningless without a serious 

emphasis on reasoningò (p. 28). As they explain, memorizing a series of steps in a 

procedure without understanding the reasons for these steps is analogous to reading a text 

without comprehension.  

Therefore, mathematical instruction should emphasize reasoning. That is, it should 

highlight a need for understanding why a mathematical statement is true.  

From children's earliest experiences with mathematics, it is important to help them 

understand that assertions should always have reasons. Questions such as "Why do 

you think it is true?" and "Does anyone think the answer is different, and why do you 

think so?" help students see that statements need to be supported or refuted by 

evidence. (NCTM, 2000, p. 56) 

 

In summary, the central goal of mathematics is understanding. Students need to 

understand that we just donôt do mathematics, we are concerned with why the 

mathematics we are doing is true. In order for students to learn to mathematically reason, 

teachers will need to ñdevelop and learn practices to support such learningò (Ball & Bass, 

2003, p. 43). They will need to be equipped with mathematical tasks that promote 

mathematical reasoning (Ball & Bass, 2003, p. 43). They will need to learn what it means 
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to reason mathematically and to be able to recognize mathematical reasoning when it 

occurs. ñA challenge for mathematics educators is to design means to support teachers in 

developing forms of classroom mathematics practice that foster mathematics as reasoning 

and that can be carried out successfully on a large scaleò (Yackel & Hanna, 2003, p. 234). 

2.3.2 Undergraduate Mathematics 

In the publication, Everybody Counts: A report to the nation on the future of 

mathematics education (National Research Council [NRC], 1989), the National Research 

Council explains that improvement of mathematics education is dependent on the 

renewal of undergraduate mathematics education because most future teachers of 

mathematics are educated in our colleges and universities. 

Undergraduate mathematics is the linchpin for revitalization of mathematics 

education. Not only do all the sciences depend on strong undergraduate 

mathematics, but also all students who prepare to teach mathematics acquire 

attitudes about mathematics, styles of teaching, and knowledge of content from 

their undergraduate experience. No reform of mathematics education is possible 

unless it begins with revitalization of undergraduate mathematics in both 

curriculum and teaching style. (p. 39) 

 

There is a shared view among mathematics educators that undergraduate mathematics 

education should provide alternative teaching techniques to the traditional style of 

lecturing (Blair, 2006; Ganter & Barker, 2004). In particular, the use of active learning is 

emphasized. As Blair (2006) explains, ñactive learning occurs in many formats such as 

collaborative learning, discovery-based learning, interactive lecturing and question 

posing, and writing. Whichever format is chosen, the goal of the activity should be to 

enhance conceptual understandingò (p. 54). 
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One of the formats of active learning, discovery-based learning, speaks to one of the 

seven transitions needed for the future of mathematics education in the United States 

described by the National Research Council (NRC). This transition emphasizes a need for 

exploration in mathematics. Discovery-based learning, described by Blair (2006), 

involves exploration by engaging students in the process of discovering concepts and 

patterns. The seventh transition, recommended by the NRC, emphasizes that the learning 

and teaching of mathematics should shift from a body of laws to be memorized to an 

exploratory field. The NRC states that teaching and learning of mathematics should focus 

on: 

Å Seeking solutions, not just memorizing procedures; 

Å Exploring patterns, not just learning formulas; 

Å Formulating conjectures, not just doing exercises. 

 

As teaching begins to reflect these emphases, students will have opportunities to 

study mathematics as an exploratory, dynamic, evolving discipline rather than as a 

rigid, absolute, closed body of laws to be memorized. They will be encouraged to see 

mathematics as a science, not as a canon, and to recognize that mathematics is really 

about patterns and not merely about numbers. (NRC, 1989, p. 84) 

 

This process of exploring patterns and formulating conjectures was described earlier 

by Ball and Bass (2003). They explained that this process requires mathematical 

reasoning and that future educators will need to be equipped with the knowledge and the 

mathematical tasks that will support and promote mathematical reasoning. If future 

mathematics classrooms are to support this type of learning, the future educators will 

need to be exposed to this type of learning. Since teachers are inclined to teach the way 

they were taught, it is important that undergraduate mathematics instruction for 
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prospective teachers demonstrates techniques to be used in their future classrooms (Blair, 

2006; Senk, Keller, & Ferrini-Mundy, 2004). 

Mathematics classrooms, at all grade levels, should incorporate styles of instruction 

that emphasize the exploratory and justification aspect of the mathematical process. Most 

important is the education of our pre-service teachers at the undergraduate level because 

they are our future educators at the K-12 level. If our future educators are to emulate this 

type of instruction in the classroom, they will need to be exposed to it in their own 

education. It is essential that the mathematics courses taken by pre-service teachers 

develop ñunderstanding of both mathematical content and mathematical processes such 

as defining, conjecturing and provingò (Senk, Keller, & Ferrini-Mundy, 2004, p. 148). 

The improvement of mathematics education relies very heavily on the improvement in 

undergraduate education for future teachers. ñUndergraduate mathematics is the bridge 

between research and schools and holds the power of reform in mathematics educationò 

(NRC, 1989, p. 41). 

2.3.3 Discrete Mathematics: Combinatorics 

Principles and Standards for School Mathematics (National Council of Teachers of 

Mathematics [NCTM], 2000) recommends that discrete mathematics should be an 

important part of school mathematics and should be incorporated at all grade levels. ñAs 

an active branch of contemporary mathematics that is widely used in business and 

industry, discrete mathematics should be an integral part of the school mathematics 

curriculum, and these topics naturally occur throughout the other strands of mathematicsò 
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(NCTM, 2000, p. 31). The three main areas of discrete mathematics recommended by 

NCTM are combinatorics, iteration and recursion, and vertex-edge graphs. 

Discrete mathematics basically involves working with objects that are countable. That 

is, the objects in the set can be enumerated by the set of natural numbers. Discrete 

mathematics contrasts with continuous mathematics which involves continuous 

quantities. One of the branches of discrete mathematics is combinatorics. Simply put, 

combinatorics is concerned with counting objects of a set. ñCombinatorics is the 

mathematics of systematic listing and counting. It facilitates solving problems such as 

determining the number of different orders for picking up three friends or counting the 

number of different computer passwords that are possible with five letters and two 

numbersò (Hart, Kenney, DeBellis, & Rosenstein, 2008, p. 2). 

Discrete mathematics is the basis of many other branches of mathematics including 

probability, statistics, and computer science. These topics were listed under the fifth 

transition for the future of mathematics education suggested by the NRC. This transition 

explains the need for a greater emphasis on ñtopics that are relevant to studentsô present 

and future needsò (NRC, 1989, p. 83). 

Hart et al. (2008) explain the importance of discrete mathematics for the future of our 

children and the future of our nation. As they explain, since discrete mathematics is 

closely tied to technology, it is ñparticularly relevant in todayôs digital information ageò 

(p. 4). Furthermore, Hart et al. explain how problems in discrete mathematics are 

ñpedagogically powerfulò because they not only include important mathematical content 
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but they also can be used to teach mathematical processes. They argue: ñIn working with 

discrete mathematics, students strengthen their skills in reasoning, proof, problem 

solving, communication, connections, and representation in many waysò (p. 5). 

Freudenthal (1991) also explains how problems in discrete mathematics, specifically 

combinatorics, give rise to the need for conjecturing and creating convincing proofs, 

especially proofs in mathematical induction. Furthermore, Freudenthal explains the value 

of combinatorics in the process of discovery, which he calls ñreinvention.ò Freudenthal 

explains: 

Starting with numerical paradigms, guessing general relations, experiencing and 

satisfying needs for good definitions and convincing proofs, encountering 

mathematical induction thanks to these efforts, and using mathematical induction, 

first instinctively, then intentionally, and eventually in a more or less formally 

verbalised manner ï all this together appears to be a most efficient course in 

reinvention. (p. 53) 

 

According to Freduenthal (1991), reinvention involves discovery and organization 

and, in the context of the learning environment, stresses ñguided reinvention.ò As 

explained, the student will discover something new to him but known to the guide in the 

process of guided reinvention. ñGuiding means striking a delicate balance between the 

force of teaching and the freedom of learningò (p.55). Freduenthal explains the benefits 

of guided reinvention as an educational practice. 

Learners should be allowed to find their own levels and explore the paths leading 

there with as much and as little guidance as each particular case requires. There are 

sound pedagogical arguments in favour of this policy. First knowledge and ability, 

when acquired by oneôs own activity, stick better and are more readily available than 

when imposed by others. Second discovery can be enjoyable and so learning by 
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reinvention may be motivating. Third it fosters the attitude of experiencing 

mathematics as a human activity. (p.47) 

 

It has been shown that the educational value of solving problems in discrete 

mathematics, specifically combinatorics, is two-fold. Firstly, combinatorics is pertinent to 

mathematics that affect our professional and everyday lives especially in the 

technological society in which we live. Secondly and maybe most importantly, is the 

ñpedagogically powerfulò aspect of problems in combinatorics. If the future of 

mathematics education classrooms are ones in which the mathematical process of 

exploration and justification are to be nurtured, tasks in discrete mathematics will be very 

beneficial. 

2.3.4 Rutgers University ï The Longitudinal Study 

An extensive body of research conducted at Rutgers University demonstrates how the 

use of well-chosen combinatoric tasks can engage students in the mathematical processes 

of exploration and justification. The problems were presented in a classroom community 

where students were encouraged to share ideas, there was minimal teacher intervention, 

and they were expected to justify their solutions. The researchers found that the students 

ñcreated models, invented notation, and justified, reorganized, and extended previous 

ideas and understandings to address new challenges. That is, they performed 

mathematics: created mathematical ideas and reasoned mathematicallyò (Maher, Powell, 

& Uptegrove, 2010, p. 203). Part of this body of research will be discussed in detail in 

sections to follow.  
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The research at Rutgers, informally called ñthe longitudinal studyò, began in 1987 in 

the blue-collar community of Kenilworth, New Jersey. The researchers were interested in 

ñwhat mathematical concepts students could learn with minimal intervention from 

teachersò (Maher et al., 2010, p. 6). The interventions were videotaped and along with 

studentsô written work and researchers notes, the sessions were analyzed. The students in 

the study were exposed to different topics in mathematics but the major strand of tasks 

was grounded in the discipline of combinatorics. The researchers choose problems in 

combinatorics because ñin working on these problems, students can find the need to 

organize their work systematically, look for patterns, and generalize their findings; also 

counting problems were at the time outside the regular elementary school curriculum and 

therefore unfamiliar to the studentsò (Maher et al., 2010, p. 11). 

The longitudinal study contains research about students in grades one through high 

school. Some of the same students are followed from grade one though high school and 

beyond. Even at an early age, the students ñbegan their investigations by searching for 

patterns, organizing solutions, searching for completeness, deriving strategies for keeping 

track and checking, and then reorganizing justifications into arguments that were proof-

like in structureò (Maher et al., 2010, p. 6). In middle school, the researchers found that 

the students more clearly defined these forms of reasoning. By middle and high school, 

they could explain the underlying mathematical structures and make connections to 

mathematical concepts including the binomial expansion and Pascalôs triangle.  
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The longitudinal study involved students from the Harding School in Kenilworth, 

New Jersey. However, the interventions were also conducted at two elementary schools 

in the suburban community of Colts Neck, New Jersey and the urban community of New 

Brunswick, New Jersey. Glass (2001) replicated some of the combinatorics tasks with a 

group of community college students. These students were enrolled in a liberal arts 

mathematics course. The data was collected, using videotapes and studentsô written work, 

over a two and a half year period starting in the spring semester of 1998 and concluding 

with the spring semester of 2000. 

The research at Rutgers University, along with the study by Glass (2001), has 

implications for teaching because it not only provides a detailed analysis on how 

mathematical ideas are developed and justified but it provides research of effective tasks 

that offer opportunities for students ï young children through young adults ï to explore 

patterns, formulate conjectures and justify their solutions.  

2.3.5 The Combinatoric Problems 

Three of the combinatorics problems encountered in the longitudinal study are found 

below. The research on these three problems will be discussed in detail in the next 

section. For each of these three tasks, common patterns, justifications, and organizational 

strategies were identified from the solutions of the students. A glossary of these schemes 

is included here as a reference. The three combinatorics problems are: (1) the four-tall 

towers problem, (2) the four-topping pizza problem, and (3) Ankurôs challenge. The 

problems and their solutions are listed below as written in Combinatorics and Reasoning: 
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Representing, Justifying and Building Isomorphisms (Maher, Powell, & Uptegrove, 

2010). 

Four-Tall Towers 

Your group has two colors of Unifix cubes. Work together and make as many 

different towers four cubes tall as is possible when selecting from two colors. See if 

you and your partner can plan a good way to find all the towers four cubes tall. 

 

At each position in the tower, there are two color choices. Therefore, there are 

2×2×2×2 = 16 possible towers that are four cubes tall. This can be generalized to an 

n-tall tower with two colors to choose from; there are 2×2×2. . . ×2= n2  possible 

towers that are n cubes tall, when there are two colors to choose from. This can also 

be generalized to an n-tall tower with m colors to choose from; there are m×m×m. . . 

×m= nm  possible towers that are n cubes tall with m colors to choose from. (Maher, 

Powell, & Uptegrove, 2010, p. 207) 

 

The Four-Topping Pizza Problem 

A local pizza shop has asked us to help design a form to keep track of certain pizza 

choices. They offer a cheese pizza with tomato sauce. A customer can then select 

from the following toppings: peppers, sausage, mushrooms, and pepperoni. How 

many different choices for pizza does a customer have? List all the possible choices. 

Find a way to convince each other that you have accounted for all possible choices. 

 

There are 2×2×2×2 = 16 possible pizzas. (Maher, Powell, & Uptegrove, 2010, pp. 

210-211) 

 

Ankurôs Challenge 

Find all possible towers that are four cubes tall, selecting from cubes available in 

three different colors, so that the resulting towers contain at least one of each color. 

Convince us that you have found them all. 

 

Suppose the colors are red, blue, and green. We are counting the towers in three 

cases: (1) those with two red cubes, one blue cube and one green cube, (2) those with 

one red cube, two blue cubes, and one green cube, and (3) those with one red cube, 

one blue cube, and one green cube. The following equation gives the number of ways 

of selecting m groups of objects of size 1r  through mr : 
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So the number of four-tall towers containing exactly two red cubes, one blue cube, 

and two green cubes is: 
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Similarly, for the other two cases: 
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Hence, the number of towers with the required condition is 12+12+12 = 36. (Maher, 

Powell, & Uptegrove, 2010, pp. 212-213) 

 

Unifix Cubes 

Unifix cubes are plastic cubes that come in a variety of colors. They have a top and a 

bottom and ñlockò into each other to form towers. A four-tall tower consists of four cubes 

ñlockedò together. Since a cube has a vertical orientation, so does a tower. Therefore, the 

towers problem requires the student to produce all of the combinations of towers that can 

be made when selecting from cubes of different colors. This problem can be modified to 

make any height of a tower and selecting from any number of colors.  

 
Figure 2.1. Example of a four-tall tower. 
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2.3.6 Glossary of Terms 

When solving the towers problem, students often used patterns. Four major patterns 

are found throughout the literature and have been referenced as: opposites, cousins, 

staircase, and the elevator pattern. 

Opposites 

This method is occasionally referred to as ñpair-wise opposites.ò If you have a tower, 

then its opposite tower would have the opposite color cube from the original tower in 

each position. For example, if one tower is blue, red, blue, blue. Then the opposite tower 

would be red, blue, red, red (Maher & Martino, 1996a; Maher & Martino, 1996b; 

Martino, 1992). 

 
Figure 2.2. Example of a pair of opposites. 
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Cousins 

Cousins are towers that, when one is flipped, they are identical. For example, a pair of 

cousins would be red, red, red, blue and blue, red, red, red (Maher & Martino, 1996a; 

Maher & Martino, 1996b; Martino, 1992). 

 
Figure 2.3. Example of a pair of cousins. 

 

Elevator 

This technique is used for the towers that contain one cube that is a different color 

from all of the other cubes in that tower. To create different towers, the cube is 

systematically moved from position one to position n. The resulting towers, when placed 

next to each other, resemble an elevator. For example, in the third grade, a student in the 

Kenilworth study named Stephanie used this technique when solving the four-tall tower 

problem. She created four towers systematically. The towers contained three red cubes 

and one blue cube. She created the towers by moving the blue cube from position one to 

position two, to three, and four (Maher & Martino, 1996a, 1996b; Martino, 1992). 
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Figure 2.4. Example of towers forming the elevator pattern. 

 

Staircase 

This pattern describes a group of four towers. When using red and blue as the cube 

colors, the first tower would have a red on the bottom followed by three blues, the second 

tower would have two red cubes on the bottom followed by two blues, the third tower 

would have three reds on the bottom followed by one blue, and the last tower would 

contain all red cubes. When placed next to each other, the red cubes would form a 

staircase. For example, in the fourth grade, Stephanie used this technique when solving 

the five-tall tower problem (Maher, Sran & Yankelewitz, 2010). See Figure 2.5. 
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Figure 2.5. Example of towers forming the staircase pattern. 

 

Controlling for variables 

This phrase means to hold one variable constant while adjusting another variable. 

Stephanie in grade four used this strategy when building towers that contain two cubes of 

the same color. She held the color of one of the tower positions constant while adjusting a 

second cube of the same color in the remaining tower positions (Maher & Martino, 

1996a).  

Tree diagram 

A tree diagram is a systematic way to list all elements of a set. According to Tarlow 

(2010), an eleventh grade student named Shelly used this technique to solve the pizza 

problem. Shelly labeled the first node on the tree as plain. She then labeled the first four 

branches that stem from this node as one of the four pizza toppings. From each of these 

toppings, another branch extends listing another topping. However, she was careful not to 

repeat toppings. That is, from her first branch, that is labeled peppers, she had three 
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branches each for mushroom, sausage, and pepperoni. But, in the next branch which is 

labeled sausage, she only had mushroom and pepperoni because the combination of 

sausage and peppers was contained in the previous branch. She continued in this fashion 

to create 16 pizzas. 

Case Argument 

A proof by cases is used in mathematics when it is easier to prove the statement by 

proving all of the smaller cases that make up the whole. For example, a justification 

could be made when showing that there are a total of eight towers three-tall when 

choosing from two colors by grouping the towers into cases based on a certain attribute. 

Then, in a complete argument by cases, each case would be proven to be true. Much of 

the research has shown that most of the students organized their cases by number of 

cubes of a certain color. For example, if the towers were three-tall choosing from two 

colors of cubes, the students would have four cases. They would organize their four cases 

as (1) towers with no cubes of that color, (2) towers with one cube of the particular color, 

(3) towers with two cubes of that color, and (4) towers with three cubes of the particular 

color. This particular organization strategy was the most abundant among the students but 

it was not the only choice. Stephanie, in grade four, provided a different approach to 

cases for the three-tall towers problem as ñfive individual cases (towers with no blue 

cubes, one blue cube, two blue cubes stuck together. Three blue cubes, and finally, two 

blue cubes separated by a red cube)ò (Maher & Martino, 1996b, p. 437). 
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Inductive Argument 

A mathematical proof by induction involves showing that a statement p(n) is true for 

all whole number values of n, or for all values of n greater than a given number. It 

involves the following steps: (1) show the statement is true for the first case (this is 

usually, n=0, n=1, or some other small value of n) and then (2) assume the statement is 

true for n and prove that it is true for n +1. A proof of the formula n2  as a solution of the 

n-tall tower problem selecting from two colors using mathematical induction is as 

follows: 

Step One ï show the formula is true for n=1. That is, show that there are two towers 

when the height is one cube. Since, there are only two colors to choose from, say red or 

blue, there are only two towers of one cube high. Therefore, the formula is true for n=1 

Step Two - Assume true for n, prove true for n+1. 

Proof: Assume true for n. That is, when you are choosing from two colors, there 

are 
n2  different towers that are n-tall. To create all of the towers that are n+1 tall, you 

can take all of the existing 
n2  different towers and add a cube to each one. Now, you 

have two choices for this cube. So each of the existing 
n2  different towers can make two 

more towers. So the number of towers is two times 
n2 . 

1

1

2

2*2

2*2

+n

n

n
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By induction, it has been proven that for towers n-tall, there are n2  towers. 

The inductive arguments that the students made are not as sophisticated as a 

mathematical proof by induction. However, there are some informal and basic ideas 

based on this type of proof imbedded in their arguments. 

In grade four, Milin (a classmate of Stephanie) did his proof by induction with the 

actual cubes. He started with towers one cube high and built four towers two-high by 

adding a blue cube on one and a black on the other. He continued to do this for three-tall 

towers. When he is questioned about how many four-tall towers, he replied it would be 

16 ï two for each of the eight he had already made. And when asked about five-tall 

towers, he replied 32 (Alston & Maher, 1993). 

Milan used inductive reasoning to deduce that the number of towers doubles each 

time the height of the tower increases by one. He first demonstrated that his conjecture 

was true for when the towers are one cube tall. (This is the first step in a mathematical 

proof by induction.) He then said that the number of towers doubles when you go from 1-

tall to 2-tall because each 1-tall tower can be used to generate two 2-tall towers ï because 

you can place either a blue cube or a black cube on the top of each tower.  He also 

explains that this is also true when you go from 2-tall to 3-tall, etc. (This is the second 

step in a proof by induction.) Although he does not use a generalized formula, he 

demonstrated that the (n+1)-tall towers can be built from the towers n-tall. 
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Isomorphism 

Mathematicians use the term isomorphism, which translates to ñsame form,ò for 

mathematical systems that are ñessentially the sameò (Fendel & Resek, 1990). The 

underlying structures of the solution to the four-topping pizza problem and the four-tall 

towers problem are isomorphic. The solution to both problems is two to the fourth power. 

In the pizza problem, the four represents the number of toppings. In the towers problem, 

the four is the height of the tower. The base of two in the solution represents the choice of 

colors in the towers problem. In the pizza problem, the two represents the inclusion or 

exclusion of the topping. Underneath, these two problems have the same mathematical 

structure. That is, they are isomorphic. 

Pascalôs Triangle 

The following triangular array of numbers is known as Pascalôs triangle. The first and 

the last number in each row are ones. Starting with row two, the remaining numbers in 

the row can be found by adding the pair of numbers directly above. Also, the sum of each 

row equals a power of two and each number represents a combination. In general, if n is 

equal to the row number and r is the numbered entry in the nth row, then this entry is 

equal to rnC  (the number of combinations of n things taken r at a time). 
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Table 2.1 

First Seven Rows of Pascalôs Triangle 

 Pascalôs Triangle Row Sum Row Sum 

expressed as a 

power of two 

Row 0 1 1 02  
Row 1 1    1 2 12  
Row 2 1   2   1 4 22  
Row 3 1   3   3   1 8 32  
Row 4 1   4   6   4   1 16 42  
Row 5 1   5   10   10   5   1 32 52  
Row 6 1   6   15   20   15   6   1 64 62  
Row 7 1   7   21   35   35   21   7   1 128 72  
 

Pascalôs Identity 

Pascalôs identity, also known as the addition rule in Pascalôs triangle, states that the 

rth element in the n+1 row can be found by adding the two elements above it. That is, the 

rth element in the n+1 row can be found by adding the rth and the (r-1)th element in the 

nth row. Mathematically, this is written as: 
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For example, the third entry in the seventh row (the number 21) can be found by 

adding the second and third entries in the sixth row (6 and 15). [In this example, using the 

formula, n is six and r is 3.] 

2.3.7 The Towers Problem ï Building and Justifying a Solution 

There is evidence of students solving this problem in elementary school (third, fourth, 

and fifth grades), high school (eleventh grade), and college. In the section that follows, 
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twenty-four solutions will be discussed in detail organized by grade level and concluding 

with an overall summary of solutions and justifications. 

Grade Three 

Evidence of third graders working on the towers problem can be found in Martino 

(1992) and Martino and Maher (1999). Martino (1992) describes the work of two pairs of 

students that occurred on October 11, 1990. These pairs are: (1) Stephanie and Dana and 

(2) Michael and Jamie. Martino and Maher (1999) describe two students, Meredith and 

Jackie, working on this problem on December 10, 1992. 

Stephanie and Dana began by building opposites. For most of the session, this was the 

only organization strategy they had for building towers. At the end of the session, to 

check to see that she had found all towers, Stephanie organized her towers with one blue 

cube in an elevator pattern. They also checked using the strategy of cousins. To justify 

that they had found all of the towers, Dana explained that they couldnôt think of anymore 

and that every time they created a new tower, it was a duplicate. 

On the same day, Michael and Jaime worked on this problem. Jaime also built towers 

using the opposite technique. They organized their 16 towers into 8 groups of opposite 

pairs. Michael and Jamie were not convinced that they had all of the towers because 

many of the other students in the classroom had found more than 16 towers. Once the 

other groups of students found duplicates and concluded that the answer was 16, they 

were convinced that they had the correct answer. 



37 

 

 

Martino and Maher (1999) explain how Meredith and Jackie initially built towers in a 

random fashion. They then moved to organizing the towers into pairs of opposites. When 

questioned by the teacher as to how they knew that they had found all of the towers, 

Meredith explained that she could pick up an individual tower and check with each other 

tower and find that it wasnôt a duplicate. As the teacher asked her how she knew that 

there werenôt anymore, she rearranged her towers and organized them by cases based on 

the number of cubes of a particular color. Furthermore, she organized the towers with one 

cube of a particular color into an elevator pattern. 

Meredith had difficulty explaining the case that contained towers with two cubes of a 

specific color. However, in an interview three days later, Meredith organized her towers 

so that she could justify that there were only six towers in the case of two of a specific 

color. 

Meredith organized her six towers of height four into three pairs: a tower with exactly 

two yellow cubes separated by no red cubes and its ñopposite,ò a tower with exactly 

two yellow cubes separated by one red cube and its ñoppositeò and a tower with 

exactly two yellow cubes separated by two red cubes and its ñopposite.ò She then 

explained that there could not be a tower of height four with exactly two yellow cubes 

separated by three red cubes unless the tower violated the initial condition that it be 

four cubes tall. (Martino and Maher, 1999, p. 64) 
 

Meredith worked on the pizza problem on March 15, 1993. She was asked if the pizza 

problem reminded her of any other problem. She replied that it reminded her of the 

towers problem. The connections she made can be found in the section ñMaking 

Connections between Towers and Pizzas.ò 
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Grade Three Summary 

All of the third graders used the pattern of opposites to create and organize their 

towers. Two of the three groups used the elevator pattern to show that they had found all 

of the towers with one cube of a specific color. Stephanieôs group used the strategy of 

cousins as another way to organize their pairs. Stephanieôs group justified that they had 

found all of the towers because anytime they created a new tower it was a duplicate. 

Michaelôs group wasnôt convinced that they had the correct number of towers until the 

other students in the class had also found 16 towers. Only Meredith organized her towers 

by cases based on a specific color and was able to justify that she had found all of the 

towers within each case. She may have been able to have such a strong justification 

compared to the other third graders because of the types of questions that were asked by 

her teacher. As Martino and Maher (1999) report on page 75, ñresults from this research 

suggest that teacher questioning that is directed to probe for student justification of 

solutions has the effect of stimulating students to re-examine their original solution in an 

attempt to offer a more adequate explanation, justification and/or generalizations.ò 

Grade Four 

There are many articles written about students solving the three-, four-, and five-tall 

towers problem in the fourth grade (Alston & Maher, 1993; Maher, 1998; Maher & 

Martino, 1996a; Maher & Martino, 1996b; Maher & Martino, 1997; Maher & Martino, 

1998; Martino, 1992).  
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Evidence of two fourth graders, Brandon and Justin, working on the four-tall towers 

problem on November 17, 1992 can be found in the article by Maher and Martino (1998). 

They created towers using cousins and opposites. When they realized that using both 

techniques created duplicates, they relied only on the opposite strategy and they 

organized their answer in eight pairs of opposite towers. After working on the pizza 

problem, Brandon was interviewed and asked if the pizza problem reminded him of any 

other problem. He replied that it reminded him of the towers problem. In this interview, 

conducted on April 5, 1993, he recreated the towers using opposites and when trying to 

make the connection, he organized his towers in cases based on the number of a certain 

colored cube. His three cases contained (1) the solids, (2) the towers containing one of a 

certain color, and (3) the towers containing two of a certain color. Furthermore, he 

organized his two groups with one cube of a certain color in an elevator pattern. The 

connections he made between the towers and the pizza problem are described in the 

section ñMaking Connections between Towers and Pizzas.ò 

On February 6, 1992, Stephanie and Dana worked on solving the problem of finding 

all five-tall towers when selecting from two colors. These two students had worked 

together on the four-tall towers problem in the third grade. Similar to the third grade, they 

used the strategy of opposites to build their towers. As they checked the towers they had, 

they also used the cousins strategy. To check that they had found all of the towers, they 

organized their towers in groups that consisted of a tower, its opposite, its cousin, and the 

cousin's opposite (Maher & Martino, 1996a; Maher & Martino, 1996b; Martino, 1992). 
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In the same class as Stephanie and Dana, Michael and Milin worked together and 

they also began by creating opposites. They eventually built 30 towers and decided that 

they had found them all based on how much time passed before they found a duplicate. 

Since over 10 minutes had passed without finding a duplicate, they proclaimed that they 

were finished (Alston & Maher, 1993; Martino, 1992). 

On March 10, 1992, the task moved from building towers three-tall to justifying and 

providing a convincing argument. Four students, Milin, Stephanie, Jeff and Michelle, 

were interviewed and this session has come to be known as ñThe Gang of Four.ò During 

this session, Milin provided a proof by induction and Stephanie provided a proof by 

cases. Stephanie created five cases ï towers with no blue cubes, towers with one blue 

cube, towers with exactly two adjacent blue cubes, towers with three blue cubes, and 

towers with two blue cubes apart. Milin did his proof by induction by drawing the four 

two-tall towers and showing how eight three-tall towers can be built from the four two-

tall towers (Maher, 1998; Maher & Martino, 1996a; Maher & Martino, 1996b; Maher & 

Martino, 1997). 

In an earlier interview, Milin did his proof by induction with the actual cubes. He 

started with the two towers one cube high. He built four towers two high by putting a 

blue cube on one of the one-tall towers and a black cube on the other one-tall tower. He 

continued to do this for three-tall towers. When he was questioned about how many four-

tall towers, he replied it would be 16 ï two for each of the eight he had already made. 

And when asked about five-tall towers, he replied 32 (Alston & Maher, 1993). 
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Grade Four Summary 

All of the fourth graders created their towers using the strategy of opposites. 

Brandonôs group also used cousins to build their towers but they abandoned this strategy 

when it started to create duplicates. Stephanieôs group used cousins as an organizational 

strategy. She and Dana created groups to justify they had found all of the towers. Their 

groups contained a tower, the opposite tower, the towerôs cousin and the cousinôs 

opposite. Brandonôs group organized their 16 towers in eight groups of opposites and 

Milin and Michael justified that they could not find anymore because too much time had 

elapsed before they could think of another tower. 

Brandon, Stephanie, and Milin all created sophisticated ways to justify that they had 

found all towers. Brandon and Stephanie did a proof by cases and Milin did a proof by 

induction. These students were given considerable time to think about their solutions and 

to revisit the problem. Also, the role of the teacher was very central in these 

interventions.  

Importantly, these data show the advantage to revisiting tasks, group discussions 

about ideas, and sharing strategies. All of these components play a key role in the 

formulation and refinement of justifications. Stephanie and Milin, after having had 

multiple opportunities to think about and justify their ideas, presented a compelling 

argument to classmates during the group evaluation setting. (Maher, Sran, & 

Yankelwitz, 2010, p. 43) 

 

Grade Five 

In an article by Maher and Martino (1997), Stephanie created a proof by induction by 

recognizing a ñdoubling pattern.ò This understanding occurred after a series of episodes 
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of working with the towers over a yearôs time beginning in March of 1992. On February 

26, 1993, Stephanie presented her explanation of the ñdoubling methodò with her class. 

She used cubes and built the towers starting with towers one high. She explained that for 

each cube, there are two choices of colors to go on top, producing four towers two cubes 

high. She proceeded with this explanation until she created all 16 four-tall towers. 

Eleventh Grade 

Evidence of the eleventh graders in the Kenilworth study solving the towers problem 

can be found in Tarlow (2004). On November 13, 1998, six of the students in the 

Kenilworth study worked on the towers problem in an after-school session. The six 

students worked in pairs: (1) Angela and Magda, (2) Michelle and Robert, and (3) Ali 

and Sherly. Of these six students, only Robert and Michelle had worked on the towers 

problem previously in the fourth grade. 

Angela and Magda 

They first created their towers by building the towers that created an elevator pattern. 

They organized their towers in cases based on the number of blue cubes. They could not 

explain how they found all of the towers with two blues except that there were ñno other 

possibilities.ò They decided to look at the towers that were three cubes tall and they 

found the answer to be eight. Angela came up with the formula nx   where x is equal to 

the number of colors and n is equal to the height. However, they did not explain the 

reasoning for their (correct) formula. 
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Michelle and Robert 

Michelle and Robert initially worked separately. Robert built his towers using cases 

based on a specific color while Michelle randomly built her towers and organized them as 

opposites. Michelle justified that she had found them all because she could not think of 

anymore. Robert systematically demonstrated how he accounted for the towers with 

exactly two blues. He explained that he kept the top cube blue as he moved the other blue 

cube into all of the positions. Then he moved the top blue cube to the second position and 

moved the other blue cube into the remaining positions. Furthermore, Robert found a 

formula for the group of towers containing two of a color. His correct formula is h* (h/2-

1/2) where h is the height of the tower. However, he was not able to explain why his 

formula worked. 

The instructor asked Robert and Michelle to find the number of three-tall towers 

when choosing from two colors. After some thought, Robert replied that there would be 

eight because you could eliminate all of the four-tall towers that have a blue on top. The 

remaining eight four-tall towers with the yellow on top would create the eight three-tall 

towers once the top yellow cube is removed. Robert and Michelle realized that the 

number of towers doubled as the height of the towers increased and they explain that the 

formula is two raised to n (where n is equal to the height of the tower). They were not 

able to explain why the formula is two to the n. However, when asked how one could go 

from a one-tall tower to a two-tall tower, Robert explained that he could add a blue or a 

yellow cube to the top of the one-tall tower. Furthermore, Michelle and Robert 
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discovered that the formula for any number of colors for any height towers is nx  where x 

equals the number of colors and n is equal to the height of the tower. However, although 

Robert was able to show inductively how the towers can be built, he was unable to 

explain why the formula is nx . 

Sherly and Ali 

Sherly and Ali initially organized their towers by opposites. To explain that they 

found all of the towers, they organized their towers by cases based on the number of a 

certain colored cube. They were able to explain the cases containing one of a certain 

color and three of another color by demonstrating the elevator pattern. However, they 

were unable to explain how they found all of the towers in the case containing two of one 

color and two of another color. They believed the answer to be 16 because, as they 

explained, four times four is sixteen. Based on this logic, they predicted that for towers 

that are three-tall, the answer would be nine because three times three is nine. 

Summary of the Eleventh Graders 

The students used patterns to build their towers. These patterns included opposites 

and the elevator pattern. All three groups organized their towers by cases based on the 

number of a certain colored cube. All, except for Robert, had difficulty explaining that 

they had found all of the towers in the case containing towers with two blue cubes. Two 

of the groups discovered the formula to be nx  where x is equal to the number of colors 

and n is equal to the height of the tower. However, they were not able to explain the 
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reasoning for this formula. Robert did explain how the towers could be built inductively 

by adding a cube to the top of the towers of the previous height. However, he did not 

make a connection from his inductive argument to the formula. 

College Students 

Glass (2001) reported on 19 college students who solved the four-tall towers problem. 

Some of these students also solved extensions of this problem including the five-tall 

towers problem and towers four-tall choosing from three colors. Of these 19 students, 11 

were highlighted for a case study. The remaining eight studentsô solutions were described 

when appropriate. Because the analysis of the remaining eight studentsô solutions are not 

as detailed, only the 11 students that were thoroughly described will be discussed. 

In building the towers, most of these students used patterns to create the towers. Eight 

of the 11 students created towers by using the strategy of opposites. One student, 

Melinda, was reported to also use the strategy of cousins. Many students also used a 

staircase or elevator pattern to build their towers. 

Once the towers were built, they had to justify that they had found all of the towers. 

Six of the students rearranged their towers using cases where each case was based on the 

number of a certain selected cube within the tower. For example, if the colors were 

yellow and red, the cases would be defined as (1) zero red, (2) one red, (3) two red, (4) 

three red, and (5) four red. One student, Errol, organized his 16 towers into two groups ï 
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one group contained all of the towers with a red cube on top and the other group 

contained all of the towers with a yellow on top.  

Three of the remaining four students, Melinda, Wesley, and Elizabeth, created their 

first two cases based on the elevator and staircase pattern and their opposite towers. 

Melinda organized the remaining eight towers using a mixture of cousins and opposites. 

Elizabeth organized her remaining eight towers using opposites. And Wesley organized 

his remaining eight towers into two groups ï towers with a red cube on top and towers 

with a yellow cube on top. It is not clear how the remaining student, Donna, organized 

her towers. 

Initially, when the students were asked how they knew that they had found all of the 

towers, many of them replied that they knew they were correct because 1) they couldnôt 

find any more towers or 2) the other students had gotten the same answer. A few students 

doubted their answer because the instructor questioned if they were convinced that they 

had found them all. Melinda believed the answer to be a multiple of the height but could 

not justify this prediction. Four of the students (Wesley, Elizabeth, Stephanie, and Errol) 

initially believed that the reason the answer was 16 was because four times four is 16 and 

they predicted the answer 25 towers for five-tall towers. However, they were not able to 

justify this logic. Only Stephanie abandoned this prediction because she realized that the 

answer must be even because each tower had an opposite. 

The instructor urged the students to continue to think about the reason for their 

solution. They investigated the five-tall towers. Two students, Melinda and Lisa, were not 
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able to justify their solutions further than, ñwe couldnôt find anymore.ò Four students, 

Mike, Elizabeth, Rob1, and Donna, noticed that the number of towers doubled each time 

the height of the tower increased but were not able to explain why the number of towers 

doubled. After a class discussion on the fundamental counting principle, Elizabeth was 

able to explain that the total number of towers can be calculated by two to the height of 

the tower but she could not justify why this was true. 

The remaining five students not only found that the number of towers doubled when 

the height of the towers increased by one but they also were able to explain the doubling 

pattern. They each explained separately that the towers doubled because there are two 

choices of colored cubes to add to the top of the tower. Furthermore, Errol explained in 

his homework how to build the towers inductively starting at the two-tall towers and 

building up to the four-tall towers. Rob2 also demonstrated in class how to build the four-

tall towers inductively starting at the one-tall towers. Jeff and Rob2 (separately) predicted 

that for three-tall towers choosing from three colors, the answer would be 27. 

College Students Summary 

All of these students used patterns and organizational strategies to build their 

solutions. These strategies included opposites, cousins, staircase, and elevator patterns. 

Almost all of the students used the strategy of opposites to build or justify their solution. 

Many students organized their solutions into cases but not many of them could justify 

why the solution was 16. Many of the students indicated that they knew they were 

finished because (1) they couldnôt find any more towers or (2) they got the same answer 
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as other people in the class. Only five students were able to justify their solution 

mathematically. 

The five students who justified their solution explained the reason for the doubling 

pattern. Although nine students recognized the doubling pattern, only these five could 

explain that, as the tower height increased, the number of towers doubled because you are 

able to add a choice of two cubes to the top of the tower. Furthermore, two of the students 

demonstrated how to build the towers inductively starting at the one-tall or two-tall 

towers. 

Overall Summary 

At every grade, the students used the strategies of opposites, elevator, and staircase 

patterns to build and organize their towers. In the earlier years (grades three through 

four), the students often organized their towers in sets of opposites and often offered their 

initial justification as to (1) every time they found a new tower it was a duplicate or (2) it 

was the same answer as everyone else in the class. These were some of the same 

justifications that the college students gave as well. 

Milin and Stephanie were able to provide mathematical justifications to their 

solutions but only after they had revisited the problem several times in the third and 

fourth grade. Milin and Stephanie were able to explain the doubling pattern and Milin 

provided a proof by induction. Stephanie, in the fourth grade, provided a proof by cases. 
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Brandon (fourth grade) and Meredith (third grade) were also able to provide a proof by 

cases in a separate interview with the teacher. 

The eleventh graders and some of the college students discovered that the number of 

towers doubled as the height of the tower increased. The eleventh graders found the 

formula to be n2  and the general formula to be nx . However, they were not able to 

justify these formulas. The eleventh graders as well as some of the college students were 

able to explain, inductively, the reason for the doubling pattern. 

2.3.8 The Pizza Problem ï Building and Justifying a Solution 

There is evidence of students solving this problem in elementary school (third, fourth, 

and fifth grades), high school (tenth and eleventh grades), and college. A total of 33 

solutions to the four-topping pizza problem will be discussed in detail in this section.  

Third Grade 

Evidence of two third graders working on the pizza problem can be found in an 

article by Martino and Maher (1999). Meredith and Sarah worked on this problem on 

March 15, 1993. 

Meredith created a chart to build her pizzas. Across the top of the chart she wrote the 

pizza topping names and she used checks to construct her pizzas. She systematically 

constructed her pizzas using checks starting with the one-topping pizzas and continuing 

with the two-, three-, and four-topping pizzas. When creating the two-topping pizzas, she 
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used a systematic approach by first combining sausage with each of the other three 

toppings before moving onto the next topping. Sarah, Meredithôs partner, made a list of 

pizzas using cases. However, her cases were based on a specific topping. That is, she 

listed all of the pizza combinations that included peppers. Then she listed all of the pizza 

combinations that included sausage (and not peppers), and so on. 

Summary of the Third Graders 

Each girl organized their solution by cases. Meredith created her cases based on the 

number of toppings and Sarah created her cases based on a specific topping. Sarah listed 

her pizzas whereas Meredith created a chart and used checks to symbolize that the 

topping was included on the particular pizza. There is evidence of Meredith using a 

controlling for variables strategy when creating her two-topping pizza by creating all 

pizzas with sausage as a topping before moving on to the next topping. 

Fourth Grade 

Evidence of six fourth graders working on the four-topping pizza problem can be 

found in Bellisio (1999). These students are in the Colts Neck school system and they 

were presented this problem on March 11, 1993. They worked in three groups of two. 

The three groups are Kevin and Steve, Alana and Jamie, and Colin and Brandon. 

Kevin and Steve ultimately solved the problem by cases focusing on a specific 

topping. They first created all of the pizzas that had peppers, then all of the pizzas that 

had mushroom (without peppers), then all of the pizzas with sausage (without peppers or 
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mushroom), then all of the pizzas with pepperoni (without peppers, mushroom, or 

sausage), and, finally, the plain pizza. They found 16 pizzas. However, they did not have 

a strong explanation for the reason that they had found them all (Bellisio, 1999, p. 57). 

They initially used the word pepper and the variables p, s, and m to indicated 

pepperoni, sausage, and mushroom respectively. However, Steve suggested they use a 

coding system instead. They decided to use the numbers 1, 2, 3, and 4 to stand for the 

toppings. They used a 0 to represent the plain pizza. They used a circle and a combination 

of the numbers written inside the circle to represent the different pizzas. For example, a 

circle with a 1 2 3 in the middle of the circle represented a pizza with peppers, 

mushroom, and sausage. They provided a key to demonstrate which topping each number 

represented. 

Alana and Jamie each created their own list of pizzas and checked with each other 

occasionally. Alana used triangles to represent her pizzas. In the triangles, she used 

symbols for each of the toppings and included a key in her final solution. She used a dot 

for peppers, a plus sign for sausage, a zero for pepperoni and a line (or a one) for 

mushroom. Jamie wrote her combinations using the whole word for each topping. They 

both created their pizzas based on the number of toppings. That is, they created all of the 

pizzas with one topping, two toppings, three toppings and then four toppings. Jamie 

controlled for variables when she created the two-topping pizzas. That is, she created all 

of the pizzas with pepperoni as one of the toppings. When she exhausted all possibilities 

for pepperoni, she created all of the pizzas with mushroom as a topping, careful not to 
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include pepperoni. Then she created all of the pizzas with sausage and pepperoni. They 

each found the total number of pizzas to be 15. However, between the two of them, they 

had found all 16 pizzas. They were unaware that they had different pizzas listed for the 

three-topping pizzas. 

Colin and Brandon worked separately but checked with each other periodically. They 

both created charts to organize their pizzas with the pizza toppings as headings for the 

columns in their charts. Colin used check marks to indicate inclusion of the particular 

topping while Brandon used a 1 to represent inclusion and a zero to represent that the 

topping was not on the particular pizza. Colin abbreviated the topping name while 

Brandon used P, S, M, and pepperoni to label his columns. Brandon redid his chart four 

times. In the last iteration of his chart, he used P, S, M, and P to represent the toppings. 

Colin started by creating all of the two-topping pizzas with peppers as one of the 

toppings. After placing a check in the peppers column, he systematically moved his 

check mark down in a staircase fashion to each of the three remaining toppings. He then 

created all of the two-topping pizzas with sausage as one of the toppings and 

systematically moved through the other toppings. He then created the four-topping pizza. 

Brandon, after several re-writes, created 16 pizzas first focusing on the pizzas with zero 

toppings, then the pizzas with one topping, then two toppings, three toppings, and finally, 

the pizzas with four toppings. He was systematic in creating his pizzas. For his one-

topping pizzas, he created four pizzas by placing ones in a stair-like pattern to make sure 

that he included every topping. In his two-topping pizzas, he placed a one in the first 
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column and placed one in each of the remaining columns in a stair-like pattern until he 

exhausted all possibilities. This process is similar to the method Colin used to create his 

two-topping pizzas. He repeated this process for the remaining two-topping pizzas. He 

was not as systematic in creating the three-topping pizzas. After comparing, the boys 

agreed that the answer was 16.  

When asked by the researcher how they knew that they had found all of the possible 

pizzas, Colin could only explain that he had checked his chart with Brandonôs. However, 

Brandon was able to explain his reasoning more clearly. 

[He] was able to explain that he had started with pizzas with one topping, followed by 

two toppings, three toppings and then all four. He then explained how with multiple 

toppings he had begun with peppers in the left-hand column and combined that with 

each of the other toppings, going from left to right. He explained that when he began 

with sausages, there were fewer possibilities because sausages had already been 

paired with peppers, and so forth. He pointed at the entrees from left to right showing 

how he had combined toppings. He seemed very confident that he had found all of the 

possibilities but also gave the explanation that he had compared Colinôs chart line for 

line with his to make sure they had found the possibilities. (Bellisio, 1999, p. 72) 

 

Summary of Fourth Graders 

All of the students created and organized their pizzas by cases. Kevin and Steve 

organized their cases by a specific topping, starting with the pizzas that included peppers. 

The remaining students organized their pizzas by the number of toppings. Jamie listed her 

pizzas using the full name. Alanaôs and Steveôs groups created pictures to represent their 

pizzas. Alana used symbols for toppings while Steve used numbers to represent toppings. 

Colin and Brandon both used charts to create their pizzas. Colin used a system of checks 



54 

 

 

and blanks while Brandon used 1ôs and 0ôs to represent inclusion and exclusion of a 

topping respectively. 

Jamie, Brandon, and Colin all controlled for variables when creating their two-

topping pizzas. That is, they kept one topping constant while they combined it with all of 

the other toppings. When they had exhausted all possibilities with that particular topping, 

they repeated the process with the next topping, careful not to include the topping that 

they had just held constant. The partners often checked with each other to verify their 

pizza combinations. To justify that they had found all of the possible pizzas, all but 

Brandon explained that they knew they were done because they had compared with each 

other. Brandon was the only student who could clearly explain how he had accounted for 

all of the possible pizza combinations. 

Fifth Grade 

Two groups of fifth grade students worked on this problem. Nineteen students in a 

New Brunswick school system worked on this problem on March 30, 1993. Twelve 

students in the Kenilworth school system worked on this problem on April 2, 1993. 

New Brunswick ï Grade 5 

Evidence of the 19 children working on this problem can be found in Bellisio (1999). 

The children worked in groups: eight groups of two and one group of three. There was 

only one video camera in the classroom and it roamed from group to group. The Unifix 

cubes were available and four of the groups used them to solve the problem. 
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All four groups that used Unifix cubes organized their pizzas by cases based on the 

number of toppings. All four of the groups found the answer to be 16. The groups were 

(1) Latima, Shauntee, and Ebonie, (2) Patrick and Benny, (3) Stephanie and LaToya, and 

(4) Desiree and Artesia. Each color cube represented a different topping and the height of 

the tower represented the number of toppings on a pizza. That is, a two-tall tower 

represented a pizza with two toppings. Latima and Desireeôs group also included a yellow 

cube on the bottom of all of their towers to represent the actual pizza to which they 

ñappliedò toppings. So the height of each tower is one more than the number of toppings 

that are included. However, they all organized their towers by height. In doing so, they 

organized their pizzas by number of toppings. 

All but Latimaôs group wrote a key to explain which color was connected to which 

topping. Only Patrickôs group explained how they knew that they had found all 16 pizzas. 

Patrick explained that they knew they were finished because every time they found 

another pizza, it was already on their list. When building their towers, Desiree and 

Artesia organized them by number of toppings. However, when Artesia explained her 

solution to the researcher, she organized the towers differently. She organized her towers 

(pizzas) based on the bottom two cubes. That is, she grouped all of the towers that had a 

yellow and red cube on the bottom. These towers ranged from height two to height five. 

[Note: for her, the bottom cube represents the actual pizza base, not a topping.] She called 

this grouping a ñfamily.ò However, she had difficulty organizing her pizzas in this 

manner and the instructor suggested that she go back to her original organizational 
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structure by number of toppings. Furthermore, Artesia explained to the class that when 

she built her two-topping pizzas, she first created all of the towers with a yellow cube 

(which represented a pizza) and a red cube (which represented peppers) and applied each 

of the other toppings. When she exhausted all of the combinations with yellow and red, 

she created all of the pizzas with yellow and another colored cube, careful not to 

duplicate any tower she had created. This is an example of controlling for variables. She 

kept one topping constant while she varied the second topping.  

The remaining five groups did not use the Unifix cubes. These groups were: (1) 

Marcel and Frederick, (2) Kersa and Ebonie, (3) Ronald and Ivan, (4) Bhapur and Victor, 

and (5) Hector and Andre. They all found the answer to be 16. Three of the groups 

organized their pizzas by cases based on the number of toppings. The remaining two 

groups organized by cases but the cases that they used were not as identifiable. 

Marcel and Frederick drew a giant circle and within the circle, they listed their pizzas 

organized by number of toppings. They supplied a key at the bottom of the circle to 

explain their representations. They used a C, S, M, P, and B to represent cheese, sausage, 

mushroom, peppers, and pepperoni respectively. They included a C (cheese) on each of 

the 16 pizzas. The instructor asked the group if they believed that there were any more 

pizzas and they replied that they did not believe there were anymore. She asked them to 

convince her. Marcel replied, ñBecause I considered all the things I could have done and 

itôs just mixed up and each one is different and there is only one that I could find for each 

mixed up oneò (Bellisio, 1999, p. 94). 
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Kersa and Ebonie organized their pizzas by cases based on the number of toppings. 

They listed their pizzas using the full names for the toppings (occasionally abbreviated 

saus. for sausage and mush. for mushroom). When they were asked how they knew that 

they had found all of the pizzas, they replied that whenever they created a new pizza, it 

was already on their list. 

Hector and Andrew drew circles with letters inside the circles (representing the 

toppings) to represent their pizzas. They used S, M, Ps, and Pi to symbolize sausage, 

mushroom, peppers, and pepperoni respectively. They organized their pizzas by cases 

based on the number of toppings. They explained that found them all because they kept 

looking for more pizzas and they could not find any more that were different from the 

ones on their list. 

Bhapur and Victor listed their pizzas using the entire name for the topping. Their list 

is organized as follows: 1) plain pizza, 2) one- and two-topping pizzas with peppers, 3) 

one- and two-topping pizzas with sausage (without peppers), 4) one- and two-topping 

pizzas with mushroom (without peppers and sausage), 5) one-topping mushroom pizza, 

6) four-topping pizzas, and 7) three-topping pizzas. They grouped their pizzas together by 

number of toppings for the zero-, three-, and four-topping pizzas. However, when it came 

to the one- and two-topping pizzas, they organized them based on a specific topping. In 

this organizational strategy, it is evident that they controlled for variables when creating 

the two-topping pizzas. They justified that they had found all pizzas because they could 
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not find anymore. As they explained, anytime they created a new pizza, it was already on 

their list. 

Ronald and Ivan also listed their pizzas and used the full topping name. They first 

listed all of the two-topping pizzas, then two of the three-topping pizzas, four-topping 

pizza, the one-topping pizzas, the plain, and the remaining three-topping pizzas. They 

organized by cases based on the number of toppings but only partially because the three-

topping pizzas are not grouped together. It is not explained how they built their pizzas. 

However, it does appear that they controlled for variables when building their two-

topping pizzas. They first listed all of the two-topping pizzas that contained sausage, then 

mushroom, then peppers.  

Summary of Fifth Grade New Brunswick Students 

All nine groups organized their answers using cases based on the number of toppings. 

Two of these groups did not do a complete organization by cases. The four groups that 

used Unifix cubes to create their pizzas used similar strategies in that a certain color cube 

represented a topping and the height of the tower demonstrated the number of toppings 

on the pizza. The only difference was that two groups used a base cube to represent the 

pizza to which the toppings were applied. 

The remaining five groups listed their pizzas using the full topping name, an 

abbreviation of the topping name, or a letter to represent the topping. Two groups used 

circles in their answer. Marcel and Frederick put their entire list within a giant circle. 
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Hector and Andre created 16 circles with combinations of letters inside the circles to 

represent each pizza. 

There was evidence of three of the groups using a controlling for variables strategy 

when creating the two-topping pizzas. However, because there was only one video 

camera in the classroom, the construction of ideas of all of the students was not captured. 

With that in mind, only five of the groups explained how they knew that they had found 

all of the pizzas. All of them claimed that there were no more pizzas because they were 

not able to find anymore. Three of the groups further explained that anytime they created 

a new pizza, it was already on their list. 

Kenilworth ï Grade 5 

Twelve students in the Kenilworth school system worked on this problem on April 2, 

1993 after working on the pizza problem with halves. [The pizza problem with halves 

involves finding all possible pizza combinations choosing from two toppings where the 

toppings can be placed on either the whole pizza or half of the pizza.] The twelve 

students in the classroom were: Romina, Brian, Ankur, Jeff, Michelle I., Michelle R., 

Matt, Stephanie, Amy-Lynne, Michael, Bobby, and Milan. Description of this session can 

be found in Bellisio (1999), Maher et al. (2010), Muter (1999), and Tarlow (2004). 

However, in each of these descriptions, only the work of six of the students is reported. 

Romina, Ankur, Jeff and Brian worked together. Stephanie and Matt worked together. 
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Rominaôs group decided to use P, S, M, and Pe to symbolize the peppers, sausage, 

mushroom, and pepperoni toppings. They also use Pl to represent a plain pizza. They 

systematically listed the 16 possible pizza combinations by first listing the plain and one-

topping under the heading of ñwhole.ò They then listed the two-topping, three-topping, 

and four-topping pizzas under the heading of ñmixed.ò As they listed the two-topping, 

they started with ñPò for peppers and paired up P with each possible other topping. They 

moved on to ñSò for sausage and paired up S with the remaining possible toppings. That 

is, they used a controlling for variables strategy when creating the two-topping pizzas. 

They organized their pizzas by cases by number of toppings. When asked how they know 

they had found all of the pizzas, Brian explains that they knew because they had a 

systematic way to create the pizzas (Maher et al., 2010). 

Stephanie and Matt listed their pizzas using the letters c, pr, s, pp, and m for cheese, 

peppers, sausage, pepperoni and mushroom. They organized their pizzas by cases by 

number of topping. Matt explained how he created the two-topping pizzas by keeping the 

sausage constant as he added each topping to the pizza until he exhausted all of the 

possible combinations. Then, he repeated the process with the remaining toppings careful 

not to create a duplicate pizza. He used a controlling for variables strategy to 

systematically create his two-topping pizzas. Matt was able to thoroughly explain how he 

create his list of pizzas and how any other combination would be a duplicate of an 

existing pizza. 
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Summary of Fifth Grade Kenilworth Students 

Both groups organized their solution by cases based on the number of toppings and 

one member of each group demonstrated the same controlling for variables strategy when 

creating the two-topping pizzas. Each group used letters to symbolize their pizza 

toppings. The only differences in their solutions were in the choice of symbols for the 

cheese (plain pizza), peppers topping, and pepperoni topping. Both groups were able to 

explain that they found all of the pizzas by explaining how they built their pizzas and that 

there could not be anymore combinations. 

Tenth Grade 

Evidence of five students working on the pizza problem can be found in Muter (1999) 

and Muter & Uptegrove (2010). These five students, Ankur, Jeff, Romina, Brian and 

Mike, had all previously worked on this problem in the fifth grade. 

On December 12, 1997 in an after-school session, these five students worked on the 

pizza problem. Initially, they discussed using factorials to solve the problem but soon 

realized that factorials did not work. At first, Romina and Jeff worked together and used 

letters to represent their pizza toppings. Ankur and Brian worked together and used 

numbers to represent the different pizza toppings. And Mike worked alone. Ankur, 

Romina, Jeff, and Brian decided that they should use one coding scheme and decided on 

the number coding scheme suggested by Ankur and Brian. These four students worked 

together and found 8 pizzas when choosing from three toppings, 16 pizzas when choosing 
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from four toppings and 31 pizzas when choosing from five toppings. They hypothesized 

that a doubling rule could work for this problem and they thought they should rethink the 

answer of 31 because it did not fit into the doubling pattern. At this point in the 

discussion, Michael, who had been working alone, presented his solution to his 

classmates. 

Michael decided to use a binary coding system to create his pizzas. A one represented 

that the topping was on the pizza and a zero represented a topping not on the pizza. Each 

position represented a different topping. For example, for a five-topping pizza, the series 

of numbers 01000 could represent a pizza with one topping (i.e., mushroom). He 

explained that, using this system, he believed the answer to the five-topping pizza 

problem to be 32. Furthermore, he explained that he believed the formula to be n2 where 

n is equal to the number of toppings. 

Brian mentions that this problem reminded him of the towers problem. The students 

believed that the problems were similar but not the same. Ankur explained that in the 

towers problem the order of the cubes mattered but the order of the toppings on a pizza 

did not matter. However, because the class session was almost over, they did not discuss 

this idea much further until later sessions. 

Summary of the Tenth Graders 

Unfortunately, the evidence does not show how, exactly, all of the students built their 

solutions to the pizza problem. However, the evidence shows how the students used 
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binary numbers to solve the pizza problem and how they understood the solution to be 

two to the n where n was equal to the number of toppings. 

Eleventh Grade 

The study by Tarlow (2004) describes the solutions of eight students in the eleventh 

grade working on this problem on March 1, 1999. These students were a part of the 

Kenilworth study and five of them had already solved this problem in the fifth grade. 

Four of the students that had already worked on the problem were placed in a group 

together. They were Robert (Bobby), Stephanie, Shelly (Michelle), and Amy-Lynne. In 

the other group, this problem was novel for each student except for Michelle. This group 

was composed of Angela, Magda, Michelle, and Sherly. The students expressed that they 

only remembered the problem ña little.ò 

Shelly and Stephanie initially wanted to solve the problem using factorials but were 

unsuccessful. Robert, Stephanie, Shelly, and Amy-Lynne each drew tree diagrams to 

solve the problem. When listing the toppings, the students used the full name of the 

topping, shorten names and symbols. When students used symbols, they used m and s for 

mushroom and sausage respectively. For peppers, ñppò and ñpeò were used. And for 

pepperoni, ñpep,ò ñpr,ò and ñpò were used. Robert is the only student who used 

subscripts. For peppers he used 1p and for pepperoni he used 2p . 

Stephanie, Shelly, and Amy-Lynne included plain as a topping when creating their 

tree diagrams. They each created every possible pizza and crossed out any duplicates. 
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Robert was more systematic when creating his tree diagram. Robert controlled for 

variables by finding all of the pizzas with peppers. Once he had exhausted all of the 

combinations with peppers, he created the next branch in his tree with sausage and was 

careful not to include peppers to avoid duplicates. He repeated this process until he 

exhausted all of the toppings. 

All four students listed their pizzas based on cases determined by the number of 

toppings. The three girls made a connection from the number of pizzas to a row in 

Pascalôs triangle. They believed that they had found all of the pizzas because the number 

of zero-topping, one-topping, two-topping, three-topping, and four-topping pizzas 

matched up to the fourth row in the triangle. However, they were unable to explain why. 

They were then instructed to find all the pizzas with five toppings and to explain how the 

addition rule in Pascalôs triangle worked in terms of pizzas. 

Angela, Magda, Michelle, and Sherly each started the problem by creating tree 

diagrams. However, they changed their approach because they thought the tree diagrams 

were confusing. Instead, they listed the pizzas based on the number of toppings. They 

found 16 pizzas and worked on the next problem which was to find the total number of 

pizzas with five toppings. After finding the answer to be 32, they investigated the number 

of three-topping pizzas and found the answer to be eight. They realized that the solution 

doubled each time you add a topping choice but they were unable to explain the doubling 

pattern. They also connected their solution to a row in Pascalôs triangle. They were 

instructed to explain how the addition rule in Pascalôs triangle worked in terms of pizzas. 
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Summary ï Eleventh Grade 

A few of these students wanted to use combinatoric formulas to solve the problem but 

were unsuccessful. All of them initially used a tree diagram and all of them organized 

their final solution by cases. Angelaôs group started to use inductive reasoning. That is, 

Angela investigated the solution for towers three-tall, two-tall, etc. and found a pattern. 

However, her group could not justify why the number of towers doubled. Robert 

controlled for variables when creating his pizza using a tree diagram. Stephanieôs group 

justified that their answer was correct because it matched up with Pascalôs triangle 

although they could not explain why it matched up. They were instructed to explore this 

problem further by looking at the addition rule in Pascalôs triangle in terms of pizzas. 

They made connections between the towers and the pizzas which is further explained in 

the next section, ñMaking Connections between Towers and Pizzas.ò 

College Summary 

Glass (2001) reported on 19 college students who solved the four-topping pizza 

problem. They did not have Unifix cubes available and they worked on this problem 

about five weeks after working on the towers problem. The pizza problem these students 

encountered was slightly different that the one in this study. The difference is in the 

choice of toppings. These students were given the choice of pepperoni, green peppers, 

mushroom, and sausage. With these choices, these students did not have any topping 

names that started with the same letter. Some of the students were videotaped. The 

analysis is based on videotape (if available), instructorôs field notes, and the studentsô 
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written work. The details to the solutions have been omitted because the solutions to the 

problem were very similar. Instead, a summary is provided. 

All of the students organized by cases and all but two organized their cases by 

number of toppings. The remaining two students organized their cases based on a specific 

topping. Lisa (partnered with Yolanda) made a chart and used checks to keep track of her 

pizzas. The rest of the students listed their pizzas. When representing the topping, the 

students used the first initial of the topping, abbreviated the topping, or wrote the whole 

name of the topping. 

Five students discussed using permutation and combination formulas to solve the 

problem. Only one student, who was currently taking a statistics course, was successful in 

solving the problem using combinations (Glass, 2010). All of the students were 

systematic when creating the two-topping pizzas. As Glass (2001) explains, ñthey held 

one topping fixed and paired with the each of the other toppings. They then moved to the 

next topping on the listò (p. 287). Some of her students only paired toppings that were not 

previously paired while the other students listed all two-topping pizzas and then 

eliminated the duplicates. One student, Jeff, found his two-topping pizzas by labeling the 

vertices of a rectangle with the names of each of the toppings and connecting the vertices 

with lines. 

Four students recognized that the answer was a row in Pascalôs triangle but they were 

unable to explain the connection. Two of these students justified that they knew they 

were finished because the numbers matched up to Pascalôs triangle. No other 
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justifications of their solutions were provided. However, they further explored this 

problem by investigating the combinations for five-topping pizzas and investigating the 

relationship between the towers and the pizza problem. See the section titled, ñMaking 

Connections between Towers and Pizzas.ò 

Overall Summary 

All of the students organized their solutions by cases and most organized their cases 

based on the number of toppings. However, five students organized their cases based on a 

specific topping. This was done at the third, fourth, fifth, and college levels. 

At all of the ages, there is evidence of students being systematic when creating the 

two-topping pizzas. Most of the students listed their pizzas using the first initial of the 

topping, an abbreviated form of the topping name, or the whole name of the topping. 

Only two groups of students chose not to use any part of the topping name as a 

representation. Kevin and Steve (fourth grade) used the numbers 1, 2, 3, and 4 to 

symbolize the toppings and Alana (fourth grade) used a dot for peppers, a plus sign for 

sausage, a zero for pepperoni and a line (or a one) for mushroom. 

At the younger ages, many students used pictures and symbols to represent the pizzas. 

The use of circles to represent pizzas was often used. At the high school and college 

levels, the students did not use pictures. However, they often wanted to use formulas that 

they had previously learned and most were unsuccessful in applying the formulas. 
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Only one class (fifth graders) had the Unifix cubes available when solving this 

problem. Almost half of the class used the cubes to solve the problem and they all used 

the cubes in a similar fashion. They all created the pizza combination using a specific 

colored cube to represent a topping and the height of the tower representing the number 

of toppings on a particular pizza. 

Only the eleventh graders used tree diagrams to solve this problem. Four students 

organized their pizzas using charts and these students were either in elementary school or 

college. Meredith (third grader), Colin (fourth grader), and college students, Lisa and 

Yolanda, created very similar charts. The columns of their charts contained the topping 

names and each of them used check marks to indicate if the pizza contained the topping 

or not. Brandon (fourth grader) created a similar chart but used zeros and ones to indicate 

the absence or presence of the topping. 

Michael (eleventh grade), like Brandon, used ones and zeros to indicate that a topping 

was included on the pizza or not. However, Michael did not list all of the possible pizzas 

using this method. Instead, he used this method to count the total number of three-

topping, four-topping, and five-topping pizzas. Furthermore, based on this binary coding 

system, he was able to deduce that the formula for the total number of n-topping pizzas 

was 
n2  . 

When asked how they knew that they had found all of the possible pizzas, the 

students in the elementary classrooms gave reasons such as ñwe checked with each other 
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and got the same answer,ò ñwe couldnôt find anymore,ò and ñanytime we created another 

pizzas, it was already on our list.ò These students were not introduced to further 

investigations. Only Brandon (fourth grade) could thoroughly and systematically explain 

how he accounted for all possible pizza combinations using his chart. Like Brandon, Matt 

(eleventh grade) was able to thoroughly explain how he knew there were no more pizzas 

by thoroughly explaining how he built and organized his pizzas. Many of the high school 

and college students connected their solution to Pascalôs triangle or recognized that the 

solution doubled each time another topping choice was presented. However, not until 

they investigated deeper by looking at extensions of the four-topping pizza problem, 

Pascalôs triangle, and the connection between the towers and the pizzas problem were 

they able to justify the solution of sixteen pizzas. 

2.3.9 Making Connections between Towers and Pizzas 

There is evidence of students understanding of the isomorphism between the towers 

and the pizza problem in elementary school (third and fourth grades), high school (tenth 

and eleventh grades), and college. Furthermore, the older students made connections with 

other mathematical concepts including Pascalôs triangle and Pascalôs identity. 

Grades Three and Four 

Maher and Martino (1998) describe the connections Brandon (fourth grade) made 

between the pizza problem and the towers problem. In an interview on April 5, 1993, 

Brandon was asked if the pizza problem reminded him of any other problem that he had 
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worked on. He replied that it reminded him of the towers problem. In this interview, 

Brandon recreated his chart using zeros and ones for the pizza problem and organized the 

pizzas by cases based on the number of toppings. He rebuilt the towers using Unifix 

cubes using his technique of opposites. After he created all 16 towers and studied his 

pizza chart, he reorganized his towers into three groups. The three groups were: (1) the 

solid colored towers, (2) the eight towers that contain one of one color and three of the 

other color and (3) the towers that contain two of each color. He connected the towers 

containing one cube of a certain color with the pizzas with one topping. He then 

connected the solid towers with what he calls ñthe all groupò (that is, he connected both 

of the solid towers with the pizza that contained all of the toppings). Finally, he 

connected the group of towers with two of each color to the pizzas with two toppings.  

Brandon considered the solid yellow tower and the solid red tower as the pizza with 

everything and he categorized the towers with one yellow and three reds as well as the 

towers with one red and three yellows as the one-topping pizzas. Because he didnôt quite 

fully make the connection, the interviewer asked Brandon to focus just on one color. He 

focused on the yellow cubes and rearranged his towers by cases based on the number of 

yellow cubes.  

It was a this point in the interview that Brandon, enthusiastically, expressed that the 

group of four towers with exactly one yellow cube were like the four pizzas with the 

one topping in his chart, and placed each tower on top of its corresponding pizza on 

the chart. He explained how the red cubes in each tower corresponded to the ñzeroôsò 

on his pizza chart and how the yellow cubes in each towers corresponded to the 

ñoneôsò on his chart. He then confidently proceeded to match each of the sixteen 
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towers to each of the sixteen pizzas represented on his chart. (Maher and Martino, 

1998, p. 88) 

 

He further explained that it doesnôt matter if you focus on the yellow cube to represent 

the toppings. He explained that the same connections could be made if he focused on the 

red cube to represent the inclusion of a topping. 

Martino and Maher (1999) describe the connections made to the towers and the pizza 

problem by two third graders, Meredith and Sarah. Meredith and Sarah are asked if the 

pizza problem looked similar to any other problem they had worked on. They replied that 

it reminded them of the towers problem. Meredith used the cubes to create pizzas where a 

different colored cube represented a different topping and the height of the tower 

indicated how many toppings were contained on the pizza. Although this is a way to 

represent the pizzas using towers, it does not represent the isomorphism between the two 

problems. 

The teacher decided to show the girls Brandonôs binary chart for the pizza problem. 

She asked them if they understood the chart. She then explained to them that Brandon 

thought that this problem reminded him of the towers problem. After looking at the chart 

for some time, the girls indicated that they understood the chart and Sarah suggested that 

the zero code would be the red cube and the one code would be the yellow cube. The 

teacher asked them if they could build the towers to represent the pizzas. Even though 

they had made the connection between the red cube representing the topping being on the 

pizza, they wanted to create the towers using four different colors to represent the four 
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different toppings. The teacher asks them if it was possible to make the pizzas (towers) 

using two colors. The decided that they could and they created all of the pizzas using red 

and yellow cubes referring to Brandonôs binary chart. 

Third and Fourth Grade Summary 

For the third graders, it took some prodding by the teacher for the students to 

understand the isomorphism between the two problems. Without the teacher intervention, 

the girls consistently wanted to make the towers using different colored cubes. The 

teacher was able to use Brandonôs solution as a tool to help the girls recognize the 

isomorphism between the problems. 

Brandon was able to make the connection between the two problems after the teacher 

had encouraged him to focus on one specific color in the towers problem. After he 

rearranged his towers into groups based on the number of a specific color cube, he was 

able to make the connection between the pizzas and the towers. Furthermore, he was able 

to explain that it didnôt matter if you focused on the yellow cube or the red cube to make 

the connection. 

Tenth Grade 

In an after-school session, on December 19, 1997, five students came to understand 

the isomorphism between the towers problem and the pizza problem as described by 

Muter (1999) and Muter & Uptegrove (2010). These five students (Romina, Michael, 

Jeff, Brian, and Ankur) had worked on the pizza problem a week earlier and at the end of 
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the session, thought there was a connection between the pizza problem and the towers 

problem but due to time constraints, were not able to investigate the connection further. 

On December 19, they began the class session by recalling Michealôs binary coding 

scheme to solve the pizza problem and remembered the formula he had come up with for 

the pizza problem. The formula was n2 where n is equal to the number of toppings. They 

understood that the exponent was equal to the number of toppings but they had not, at 

this point, understood why the base of the formula was 2. 

Jeff and Michael discussed that if you keep the number of choices for colored cubes 

in the towers problem to two, the towers and the pizza problem are the same. The three 

other students were not convinced. Jeff explained that if, for example, you changed the 

height of the tower from two to three, that would be similar to changing the pizza 

problem from a two-topping pizza problem to a three-topping pizza problem. 

Through further discussion, they were able to understand that the base of two in the 

pizza formula indicates that the topping would either be on the pizza or not on the pizza.  

They understood, from earlier investigations, that the base of two in the towers problem 

represented the two colors from which to choose and that the exponent, n, is equal to the 

height of the tower. 

At the end of another session on January 9, 1998, the instructor asked the students if 

they could explain Pascalôs triangle in terms of towers. Ankur explained how row four in 

Pascalôs triangle represented the towers in the four-tall towers problem (when selecting 
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from two colors). Before they left for the evening, the teacher asked them to think about 

how the addition rule in Pascalôs triangle worked (Pascalôs identity). Specifically, she 

asked them to understand how the six in row four is produced from the three and three in 

row three. 

On February 6, 1998, when they meet again, they were able to connect the towers and 

pizza problems to specific rows in Pascalôs triangle. Furthermore, they were able to 

explain Pascalôs identity using towers.  

Tenth Grade Summary 

Over time, these tenth graders were able to understand the isomorphism between the 

towers and the pizza problem. They understood the formula to be n2  for both problems 

and were able to explain what the base 2 and the exponent, n, represented in both 

problems. Furthermore, they made the connection to Pascalôs triangle with both pizzas 

and towers and they were able to explain Pascalôs identity using towers. These 

connections were made over a period of five after- school sessions. 

Eleventh Grade 

As described in earlier sections, Angela, Magda, Michelle, Robert (Bobby), and 

Sherly worked on the towers problem on November 13, 1998. These five students, along 

with Stephanie, Shelly, and Amy-Lynn, worked on the pizza problem on March 1, 1999. 

After exploring the pizza problem, the groups further explored connections to the pizza 
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problem, Pascalôs triangle, and the towers problem. Evidence of these investigations can 

be found in Tarlow (2004). 

On March 1, 1999, the eight students were placed in two groups. Table A consisted of 

Robert (Bobby), Stephanie, Shelly (Michelle), and Amy-Lynn. Table B was composed of 

Angela, Magda, Michelle, and Sherly. Each of these groups quickly realized a connection 

to Pascalôs triangle after completing the pizza problem. The instructor asked each of the 

groups to explain the addition rule in Pascalôs triangle in terms of the pizzas. 

Table A 

With some work, Stephanie was able to explain how the addition rule in Pascalôs 

triangle works with pizzas. For example, the teacher asked Stephanie to explain how the 

4 in the fourth row of Pascalôs triangle is created, in terms of pizzas, from the 3 and the 1 

in the third row of Pascalôs triangle. She explained that ñthe one pizza [with three 

toppings] drops down and the three pizzas [with two toppings] get the new topping added 

to them. Together there are four pizzas with three toppingsò (Tarlow, 2004, p. 139). 

Robert, after looking at Pascalôs triangle, figured the formula for the pizza problem to 

be 
n2  where n is equal to the number of toppings. However, he was not able to explain 

why the base of the formula is two. After hearing Stephanieôs explanation of the addition 

rule in Pascalôs triangle, Amy-Lynn believed that the two in Robertôs formula is based on 

the fact that to create a new pizza, you either add the new topping or you do not. 
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The teacher asked them if this problem reminded them of any other problem that they 

worked on and they replied that it reminded them of the towers problem. Stephanie and 

Shelly explained the addition rule in Pascalôs triangle using towers. Then, Robert 

explained the isomorphism between the towers and the pizza problem. He explained that 

the answer to both questions are determined by the formula n2  where n is equal to the 

height of the tower or the number of toppings. The base, 2, which represents two colors 

in the towers problem, also indicates, in terms of pizzas, the two choices: with or without 

toppings. Furthermore, Stephanie explained how a particular position in the tower 

represents a particular topping.  

Table B ï Angela, Michelle, Sherly, and Magda 

These four students determined that the number of pizzas doubled each time a new 

topping was introduced to the problem. They remembered that the number of towers 

doubled when the height increased but they were unable to explain the reason why the 

number of towers doubled. They mentioned that the two problems were not the same 

because the order of the colored cubes mattered in the towers problem but the order of the 

toppings did not. 

They saw that the fourth row in Pascalôs triangle was the same as their solution to the 

four-topping pizza problem and the instructor asked them to explain how the addition 

rule in Pascalôs triangle worked in terms of pizzas. After some discussion, they were able 
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to explain the addition rule in terms of pizzas but they never described the connections 

between the towers and the pizza problem. 

Summary of the Eleventh Graders 

All of the students connected the pizza solution to a row in Pascalôs triangle and all of 

them were able to explain the addition rule in terms of pizza. Only Table A was able to 

completely explain the isomorphism between the towers and pizza problem. These four 

students at Table A had worked on the towers and the pizza problem in grades three, four, 

and five. Michelle at Table B was the only student that had work on these problems in 

earlier years. 

College Summary 

Of the eleven students profiled in the study by Glass (2001), seven of them were able 

to describe the complete isomorphism between the pizza problem and the towers 

problem. That is, they were able to explain the base and exponent of the formulas for 

both problems. They were able to explain how the color of the cube in the tower 

represents whether the topping is on the pizza or not. And they were able to explain that a 

specific position in the tower represents a specific topping. 

Of the remaining four students, Stephanie almost made the connection but was unable 

to explain completely that the position of the cube in the tower represented a specific 

topping. Melinda could explain what each tower represented in terms of pizzas except for 

the towers with two cubes of a specific topping. Rob1 believed they were related but 
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could not explain how. He tried to relate the color of the cube to a topping but did not 

investigate this further. Donna did not explain any connection at all. 

Of the eleven students, five of the students connected the solution to the pizza 

problem to a row in Pascalôs triangle. The remaining six students did not mention 

Pascalôs triangle. Of the five students, two of these students explained the addition rule in 

Pascalôs triangle using pizzas. 

Overall Summary 

From as young as third grade, these students were able to recognize the isomorphism 

between the towers and the pizza problem. With some teacher intervention, the third and 

fourth graders were able to explain which pizza a specific tower represented. At the high 

school and college levels, the majority of the students were able to explain the formulas 

for both of the problems and make connections with mathematical concepts involving 

Pascalôs triangle.  

2.3.10 Ankurôs Challenge 

Tenth Grade ï Kenilworth Students 

This problem was proposed to the Kenilworth students by one of the students, Ankur, 

at an after-school session on January 9, 1998. At the time, they were in the tenth grade 

and from the David Brearly High School in Kenilworth, New Jersey. They had been 

participants in the Rutgers University-Kenilworth Longitudinal study since the first 
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grade. There were five students present: Ankur, Michael, Jeff, Romina, and Brian. Ankur 

and Michael worked together in one group. Jeff, Romina, and Brian worked together in 

another. Evidence of their work can be found in Maher (2005) and Muter (1999).  

Romina worked with Jeff and Brian on her solution. However, she began to work 

alone and the studies focus on her solution. She first decided that the towers must have 

two of a specific color. She used 1ôs, Xôs, and Oôs to represent three different colors. She 

first wrote 24 towers, horizontally as shown in Figure 2.6. 

1 1 X O  X O 1 X 

1 1 O X  X 1 O X 

O O X 1  1 X O 1 

O O 1 X  1 O X 1 

X X 1 O  O X 1 O 

X X O 1  O 1 X O 

         

O 1 X X  1 X X O 

1 O X X  O X X 1 

X 1 O O  X O O 1 

1 X O O  1 O O X 

O X 1 1  X 1 1 O 

X O 1 1  O 1 1 X 

Figure 2.6. Replication of Rominaôs original solution to Ankurôs Challenge. 

 

She explained that there are two additional groupings of six that could be listed and 

decided to create a more general way to write all 36 towers instead of listing the 

remaining two groups. After a few rewrites, she decided that the 1 would represent the 

duplicate color. She found all of the possible positions for the duplicate color and found 

six possible different position combinations. 
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She used a controlling for variables strategy by keeping the one in the first column 

and moving the other one to the other three positions. After she had exhausted all of the 

possibilities, she moved the one to the second position and moved the remaining one to 

the third and fourth position. And finally she moved the one to the third position and 

placed the remaining one in the fourth position. 

She explained that in the other two spots, there must be one of each of the other two 

colors which she represented using an X and an O. She explained that for each of the six 

towers that she had drawn, there are two possibilities each (to account for each X and O). 

For example, the first tower drawn in the figure below represents the 1, 1, O, X tower and 

the 1, 1, X, O tower. Since there are two towers per drawing, there are a total of 12 

possibilities. See Figure 2.7. 

1 

 

 1 

 

 O 

X 

 X 

O 

       

1 

 

 O 

X 

 1 

 

 X 

O 

       

1 

 

 O 

X 

 X 

O 

 1 

 

       

O 

X 

 1 

 

 1 

 

 X 

O 

       

O 

X 

 1 

 

 X 

O 

 1 

 

       

O 

X 

 X 

O 

 1 

 

 1 

 

Figure 2.7. Replication of Rominaôs solution to Ankurôs Challenge. 
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For each of these 12 towers, the same would be true for each of the other two colors, 

creating a total of 36 towers. That is, the one in the diagram above could represent each 

of the three different colors. 

As described by Muter (1999), Michael and Ankur began the problem by explaining 

that there would be a total of 81 four-tall towers when choosing from three colors. They 

decided to create all of the towers, using paper and pencil. They used the numbers 1, 2, 

and 3 to represent the red, yellow, and blue cubes respectively. They also used the 

number zero to represent the variable cube. However, in using this method, they created 

many duplicates. They decided to focus on the complement of the problem instead. That 

is, they decided to find all of the four-tall towers that did not have at least one of each 

color. 

While still working on the problem, Michael and Ankur listened to Rominaôs solution 

of 36. They agreed that the answer was 36. However, as they explained, they needed to 

understand the remaining 45 towers to be convinced. (That is, they needed to prove that 

the complement contained 45 towers.) They eventually created, on paper, the 45 towers 

using a series of numbers to represent the colors. They use 1, 2, and 3 to represent red, 

blue, and yellow. They used a zero to represent ñany one of 3 except the one thatôs 

presentò (Muter, 1999, p. 110). 

In organizing the 45 towers in the complement, they created three cases. The first 

case contained all four-tall towers that have three cubes of one specific color and one 

cube of another color. See Figure 2.8. 
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1 2 3 1 2 3 1 2 3 0 0 0 

1 2 3 1 2 3 0 0 0 1 2 3 

1 2 3 0 0 0 1 2 3 1 2 3 

0 0 0 1 2 3 1 2 3 1 2 3 

Figure 2.8. Replication of Mike and Ankurôs first case of towers. 

 

 

Each column above represents two towers because the zero represents any of the 

other two colors not listed. Since there are 12 towers drawn, there are a total of 24 towers 

in this case. To build these towers, Ankur and Michael used a controlling for variables 

strategy. That is, they kept the variable cube (the zero cube) constant (in the same 

position) while they created each group of three towers. They also systematically moved 

the zero cube up a position each time they created a new set of three towers. The ñzero 

rowò moves up in a stair-like fashion. 

The second case contained the solid towers. That is, this case contained three towers 

that each only contained one color ï the all red tower, the all blue tower, and the all 

yellow tower. 

The third case contained 18 towers with two cubes of one color and two cubes of 

another color. They created their towers as follows: 

1 1 2 2 3 3 1 1 2 2 3 3 

1 1 2 2 3 3 2 3 1 3 1 2 

2 3 1 3 1 2 2 3 1 3 1 2 

2 3 1 3 1 2 1 1 2 2 3 3 

 

1 1 2 2 3 3 

2 3 1 3 1 2 

1 1 2 2 3 3 

2 3 1 3 1 2 

Figure 2.9. Replication of Mike and Ankurôs third case of towers. 
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In creating this case, they also used a controlling for variables strategy. In the first 

group of six towers, they kept the top two cubes the same as they changed the bottom two 

cubes. The second group of six contains towers where the top and the bottom cubes are 

the same color and the middle cubes are the same color. They kept the top and the bottom 

cube constant as they changed the middle cubes. Then for the next six, they alternated the 

cubes that were the same. 

Summary of Tenth Graders 

Romina solved this problem directly finding the 36 four-tall towers that contain at 

least one of each color. She solved this problem using cases by focusing on one specific 

color and justifying that there were 12 towers in this case. She used a controlling for 

variables strategy to create the towers within the case. She did not create all three cases. 

Instead, she justified that the remaining two cases would be created in the same way by 

replacing the duplicate color. 

Ankur and Michael ultimately solved this problem by looking at the complement. 

They found the 45 towers that were contained within the complement by using cases. 

They created three cases based on the number of cubes of a certain color. The three cases 

were: (1) the towers containing all four cubes of a particular color, (2) the towers 

containing three cubes of a particular color and one different colored cube, and (3) the 

towers containing two cubes of a particular color and two cubes of one other color. They 

also used a controlling for variables strategy when creating their cases. 



84 

 

 

To represent the colors in the towers, Ankur and Mike used numbers while Romina 

used a 1, X and O. This group of high school students started to use binary numbers in 

their solutions to the pizza and towers problem prior to working on Ankurôs Challenge 

after it was introduced to them by another student in the class (Maher, 2005; Muter, 

1999). 

College Students 

Glass (2001) has evidence of five college students at a community college solving 

this problem. The five students are Errol, Penny, Mary, Rob1, and Rob 2. 

Errol, Penny, and Mary were in the same class in the spring of 1999. This session was 

not videotaped. The analysis is based on the instructorôs field notes and the studentsô 

written work. The three students worked separately and this problem was introduced to 

them four weeks after they had worked on the four-tall towers problem when selecting 

from two colors. 

Mary explained that there is one color that must appear twice while each of the other 

colors must appear once. She fixed the color that appears twice in the following cube 

positions: first and second, first and third, first and fourth, second and third, second and 

fourth, and the third and fourth. This strategy created six towers. For each of these six 

towers, there are two possible towers because the remaining colors can be switched. This 

method produced a total of 12 towers when one of the three colors appears twice. This 

would be true for the remaining two colors, creating a total of 36 towers. See Figure 2.10 



85 

 

 

for a diagram of her explanation using R to represent the color that appears twice. [The 

towers are represented horizontally.] 

R  R     

R    R   

R      R 

  R  R   

  R    R 

    R  R 

Figure 2.10. Diagram of Maryôs solution to Ankurôs Challenge. 

 

Mary solved this problem directly using a cases approach. She focused on the 12 

towers that had a certain duplicate color. Within this case, she used a controlling for 

variables strategy to create each of the six towers. That is, she kept the first cube constant 

while she moved the other cube to the second, third, and fourth position. After she had 

exhausted all of those possibilities, she started in the second position and repeated this 

process. 

Penny created a tree diagram of all possible 81 towers four-tall choosing from three 

colors and then crossed out any towers that did not have at least one of each color. That 

is, she used a method of elimination to find her towers. As Glass (2001) explains, Errol 

uses an inductive method to find his towers: 

He said that you could fix the first level as red. The second level could then be red, 

yellow, or blue. If the second level were red than the third and fourth level would 

have the other two colors yellow blue or blue yellow. If the second level were blue 

then the third and fourth level would contain at least one yellow. It could be yellow 

yellow, yellow red or red yellow, yellow blue or blue yellow. Similarly if the second 

level were yellow the third and fourth level could be blue blue, blue red or red blue, 
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blue yellow or yellow blue. This gives twelve combinations which you multiply by 

three since the first cube could be any of the three colors. (Glass, 2001, p. 236) 

 

See Figure 2.11 for a diagram of Errolôs solution. 

Fourth Level B Y Y R Y B Y B R B Y B 

Third Level Y B Y Y R Y B B B R B Y 

Second 

Level 

Red Blue Yellow 

First Level Red 

Figure 2.11. Diagram of Errolôs solution to Ankurôs Challenge. 

 

Although this can be categorized as an inductive approach, Errolôs strategy is also 

considered a cases approach using a controlling for variables strategy. His three cases are 

based on the color of the first cube. Then, he kept the second cube a constant color until 

he exhausted all of the remaining possibilities. 

Rob1 worked on this problem in the spring of 1999, four weeks after working on the 

four-tall towers problem. He was not videotaped nor did he hand in his written work so 

only the instructorôs field notes are available. He used the actual Unifix cubes to solve the 

problem. He focused on the towers that would have two yellow cubes. He created three 

towers with a blue cube on top, and systematically moved the red cube into the second, 

third, and fourth position, filling in the remaining cubes with yellow. He then fixed the 

top cubes as red, and systematically moved a blue cube into the second, third and fourth 

positions, filling in the remaining cubes with yellow. See Figure 2.12 
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B B B  R R R 

R Y Y  B Y Y 

Y R Y  Y B Y 

Y Y R  Y Y B 

Figure 2.12. Diagram of Rob1 first six towers in his solution to Ankurôs Challenge. 

 

The next three towers are produced in the same manner, keeping a yellow cube fixed 

on the top and systematically moving a second yellow cube into the second, third and 

fourth position. Each of these positions would create two towers because the red and the 

blue cube can be in alternate positions. See Figure 2.13. 

Y Y Y  Y Y Y 

Y R R  Y B B 

R Y B  B Y R 

B B Y  R R Y 

Figure 2.13. Diagram of Rob1 second set of six towers. 

 

There are a total of 12 towers with two yellow cubes. This would be the same for two 

red cubes and for two blue cubes, producing a total of 36 towers. He used a cases 

approach focusing on the towers with two yellows. He then broke his case up into three 

sub-cases based on the color of the top cube. Within these sub-cases, he used a 

controlling for variables strategy by systematically moving the other cube in a staircase 

fashion. 

Rob2 worked on this problem in the spring of 2000, the same day as the four-tall 

towers problem choosing from two colors. He was videotaped. He initially approached 

this problem by creating all six three-tall towers that have one of each of the three colors. 
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He added one of the three colored cubes to the bottom of each of these six towers and 

then he added one of the three colored cubes to the top of each of the six three-tall 

towers. He removed any duplicates this approach created. However, he realized that he 

missed some towers and changed to solving the problem using a cases approach. (He 

missed the towers that would have the duplicate colored cubes in the middle of the 

tower.) 

Rob2ôs second approach was based on focusing on one color, blue. He created his 

first three towers by keeping the two blues together and moving them to all possible 

positions. He explained that for each of these three towers, there would be two towers 

because the yellow and red cube can be alternated. He created the next two towers by 

separating the blue cubes by one cube and moving them into all possible positions. 

Finally, he created the last tower by separating the two blue cubes by two cubes. Each of 

these six towers can be multiplied by two. Then, he explained, this process can be 

repeated for each of the other two colors producing an answer of 36. Rob2 used a cases 

approach in this problem by focusing on one dominant color. Furthermore, he controlled 

for variables by initially keeping the blue cubes together and moving them into all 

possible positions. Then, he created the towers where the blue cubes would be separated 

by one cube and finally he created the towers where the two blue cubes would be 

separated by two cubes. 
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Summary of College Students 

All five students approached this problem directly. That is, they found the 36 towers 

four-tall towers that contain one of each color when selecting from three colors. All but 

two solutions involved a cases approach. Penny used a tree diagram to create all 81 

towers that are four tall when selecting from three colors. She then eliminated the towers 

that did not contain one of each color. Rob2ôs first approach was inductive because he 

created new towers based on previously built towers. He created all three-tall towers that 

contained one of each color and then added cubes to either the top or the bottom of this 

tower. However, he was not successful in finding the answer using this approach and 

abandoned it for a cases approach. 

The remaining four solutions involved a justification by cases. Although Glass (2001) 

categorized Errolôs approach as inductive, it can also be viewed as cases. His three cases 

are based on the color of the first cube. He explains how 12 towers would be created with 

a particular color as the bottom cube. He does not create the remaining two cases but 

explains that the logic would be the same for the remaining two colors as the bottom 

cube. 

Mary, Rob1, and Rob2 solved the problem by cases and created their cases based on a 

dominant color (that is, a color that would appear twice in the tower). Mary and Rob2 had 

similar approaches, creating six towers and explaining each possible position for the 

dominant color. They explained that for each of these six towers, the other two colored 

cubes would be alternated creating two towers each for a total of 12 towers. They did not 
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create the remaining two cases but explained that the same result would occur for the 

other two colors creating a total of 36 towers. 

Rob1 also solved by cases based on a dominant color. However, he created three sub-

cases to create the 12 towers by keeping the top cube constant with each of the three 

colors and systematically moving the same cube down in a stair-like fashion. 

Mary, Errol, Rob1, and Rob2 all used a controlling for variables approach when 

creating their towers within their sub-case. Mary and Rob1 used similar approaches by 

keeping the top cube constant while systematically moving another cube into the second, 

third, and fourth positions. Once they exhausted all of the possibilities, they used a 

similar approach to create the next group of towers. 

Errolôs controlling for variables strategy was slightly different. He also kept the first 

cube constant. However, he then kept the second cube constant and changed the third and 

fourth cubes until he exhausted all possibilities. He then changed the second cube and 

repeated the process until he created all 12 towers. 

Rob2 controlled for variables by keeping the number of cubes that separated the blue 

cubes constant until he exhausted all possibilities. That is, he first created all towers with 

blues together (separated by zero cubes). Then he created towers with blues separated by 

one cube then by two cubes. 

 



91 

 

 

Other Undergraduate and Graduate Students 

In a study by Glass and Maher (2004), the solutions of 22 students to Ankurôs 

Challenge were analyzed and categorized. These students were in high school, 

undergraduate, or graduate school. Included in the 22 solutions are the solutions of 

Romina and the six solutions of the five students in the 2001 study by Glass. Glass and 

Maher organized the 22 solutions into four categories: (1) Justification by Cases, (2) 

Inductive Arguments, (3) Elimination Arguments, and (4) Analytic Method. 

Justification by Cases 

Of the 22 solutions, nine solutions are categorized as using a justification by cases 

approach. These nine include the solutions of Romina, Rob1, Mary, and Rob2
2
 which 

were previously discussed. The remaining five students included three undergraduate and 

two graduate students.  

Two of the undergraduates in this study, April and Bernadette, and one graduate 

student, Traci, had similar solutions. April kept the blue cube on top of the towers to 

create her 12 towers while Bernadette and Traci, using the same logic, kept a constant 

colored cube on the bottom of the towers to create their 12 towers. That is, they created 

their cases based on a specific color cube in a specific position for all 12 towers (top or 

bottom). 

                                                           
2
 Bob in Glass & Maher (2004) is the same student as Rob2 in Glass (2001) 
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April created her towers with a blue on top and then broke up this case into three sub-

cases. The three sub-cases were blue as the second cube, purple as the second cube, and 

white as the second cube. Keeping the first and second cube constant, she listed all of the 

possible towers that could be made in the remaining two positions. She explained that 

this same logic would be used for a white on top and a purple on top. 

Traci created her towers in a manner very similar to the way in which April created 

hers but used A, B, and C to represent her colors. She kept the bottom cube as color A 

and created three sub-cases based on the second cube. The first sub-case contains B as the 

second cube, the second sub-case contains C as the second cube and the third sub-case 

contains A as the second cube. Keeping the first and the second cube constant, she 

created all of the possible towers by listing the possibilities for the third and fourth cubes. 

She explained that 12 towers could also be created, in the same way, with B on the 

bottom and 12 towers could be created with C on the bottom. 

Bernadette created her cases based on a specific color cube (blue) on the bottom of 

the tower. She then created three sub-cases. The first sub-case contained all towers with 

blue on the bottom and a second blue cube. She moved the second blue cube to all 

possible positions in a staircase fashion from second, to third, to the fourth position. She 

reasoned that the other two cubes could be either purple or white creating six towers in 

this sub-case. The next sub-case, still containing blue as the bottom cube, contains two 

purple cubes. There are three possible towers that can be created in this case as the white 

cube will fill the other positions. And the last sub-case, still containing blue on the 
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bottom contains two white cubes with purple as the last cube creating three towers. See 

Figure 2.14. 

    B  P    P  W    W 

  B    P  P    W  W   

B        P  P    W  W 

B  B  B  B  B  B  B  B  B 

Sub-Case 1  Sub-Case 2  Sub-Case 3 

6 Towers  3 Towers  3 Towers 

Figure 2.14. Diagram of Bernadetteôs solution to Ankurôs Challenge. 

 

As she explains there are also 12 towers for the purple on the bottom and 12 towers 

for the white on the bottom, for a total of 36 towers. 

Joanne and her partner Donna (both undergraduate students) described each of the six 

possible positions for two cubes of the same color in a four-tall tower. They first 

described three towers that can be created with a blue as the top cube and systematically 

moved the second blue cube to the fourth, third, and second position. Then they created 

two towers where the blues are together in the second and third position and the third and 

fourth position. Finally, the last tower is created by keeping the blue cubes in the second 

and fourth position. Joanneôs group explained that for each of the six possible 

arrangements for two cubes of the same color, two towers can be created by alternating 

the other two colors in the unfilled positions. As they explained, there are three different 

colors that could be the dominant color so there are six color combinations (3 dominant 

colors times 2 options per tower) for each for each of the six towers. Therefore, the 

answer is 36 (six times six) possible towers. 
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Tim, a graduate student, explained that there are six ways to create four-tall towers 

containing two each of two colors ï say red and green. If you exchange a yellow cube for 

one of the red cubes, there are two possible ways to do this for each of the six towers. As 

he explained, there are 2 times 6 = 12 ways to create a tower that contain a one yellow, 

one red, and two green cubes. 

All of these solutions are done by justification by cases. Furthermore, four of the five 

students used a controlling for strategies approach when creating their towers within the 

sub-case. April and Traci kept the first and the second cube constant and exhausted all 

possibilities for the third and the fourth cube. After they had exhausted all possibilities, 

they kept the first cube constant and changed the color of the second cube. Keeping these 

two new cubes constant, they created the towers for all possible colors for the third and 

fourth tower. They repeated this process until they created all 12 towers within their sub-

case. 

Bernadetteôs case was based on the color of the bottom cube (blue). Her three sub-

cases involved the towers that had two blues, two purples and two whites. Keeping the 

blue on the bottom, she systematically moved the blue cube in a staircase fashion to 

create the blue case. To create the two purple and the two white cases, she kept the two 

cubes together to create two towers and the two cubes separated by one cube to create the 

third tower. 

Joanne and Donna also created three towers similar to the way Bernadette did. They 

kept the two blues together and then apart. They also kept a blue on the top, and 
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systematically moved the blue to the second, third, and fourth position in a staircase 

fashion. 

Inductive Arguments 

The solutions of four students are categorized under Inductive Arguments. This 

includes Errolôs and Rob2ôs solutions as described previously and Frances and Christina. 

Frances (graduate student) created her towers the same way as Errol did by keeping the 

first cube as red and then breaking this case into three sub-cases where the second cube 

could be red, yellow, or blue. Keeping the first and second cube constant, she created all 

towers based on the possible colors for the third and fourth cube. As mentioned 

previously, this method could be categorized as an argument by cases. The cases are 

based on the first color cube. Furthermore, this case is broken up into sub-cases based on 

the second color cube. By keeping the two cubes constant, Frances was controlling her 

variables. 

Christina started with the first cube being either A, B, or C. Starting with the cube A, 

she created all towers with A, B, and C as the second cube. Then, she added A, B, and C 

to each of these towers to create three-tall towers. She eliminated any towers that had 

three of one color. Finally, she added A, B, and C to the existing towers and eliminated 

any towers that did not have at least one of each color. She repeated this process with the 

towers that had B and C on the bottom. This is categorized as an inductive argument 

because she created new towers based on existing towers. That is, she created two-tall 
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towers based on one-tall towers. She created three-tall towers based on two-tall towers. 

And finally, she created four-tall towers based on the three-tall towers. 

Elimination Arguments 

Four students, including Penny, are categorized under the Elimination Arguments. 

Robert (undergraduate), Liz (graduate), and Mary (graduate) started the problem with the 

number of four-tall towers when choosing from three colors (81 towers) and subtracted 

the towers that did not have at least one of each color. These three students used 

formulas, as opposed to creating subsets of the towers. All three subtracted towers when 

selecting from two colors. All three accounted for the possibility of counting the solid 

towers twice. 

Analytic Method 

The last category, Analytic Method, contains only one solution, by graduate student 

Leana. Using factorials, Leana found all of the possible ways to arrange AABC. She then 

divided by two factorial to account for repetition. Using this mathematical method, she 

found 12 towers when A is repeated. She explained that she would do the same for B 

repeated and C repeated to produce a total of 36 towers. 

Summary 

The dominant approach to this problem was justification by cases. However, the cases 

are done in different ways. Most students broke up their cases based on a dominant color 
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or by keeping a certain cube (the top or the bottom cube) constant. In creating the towers 

within the case, many students created sub-cases and used a controlling for variables 

technique to keep the towers organized. 

Only the graduate students and one senior undergraduate student correctly used 

mathematical formulas to solve the problem (Glass & Maher, 2004). Most of the students 

that used mathematical formulas were the students that used elimination arguments. 

It could be argued that two of the examples that are listed under induction method are 

examples of justification by cases. Although they created their towers based on the choice 

for the first cube and then the second cube, because they are keeping this first cube a 

constant color, they are focusing on a specific sub-case of the total solution. 

Overall Summary 

Nineteen solutions to Ankurôs Challenge have been discussed. These students were in 

high school, undergraduate, or graduate school when solving these problems. The most 

popular type of justification was by cases. Eleven students directly found the 36 towers 

by breaking the solution up into cases. Ankur and Mike also justified their solution by 

cases but they found the solution indirectly by looking at the complement. A cases 

approach was used at each grade level. 

In the solutions that used cases and solved the problem directly, there were two 

methods in determining their cases. They either based the cases on a dominant color cube 
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or by keeping the top (or bottom) cube a constant color. All but one student, Tim, 

controlled for variables when creating their towers within the sub-case. 

There were seven solutions that did not involve cases. Four students used an 

elimination method, two students used an inductive method, and one student used an 

analytic method. Three of the four students that used an elimination method used 

formulas to solve the problem. Only one student, Penny, used a tree diagram. Penny 

created all 81 four-tall towers when selecting from three colors using a tree diagram and 

eliminated the towers that did not have one of each color. Christina and Rob2 approached 

the problem inductively. (Rob2 eventually abandoned this approach for a cases 

approach.) Leana, a graduate student, used combinatoric formulas to solve the problem 

analytically. 

Five students solved the problem indirectly. That is, they did not approach the 

problem by finding the 36 towers immediately. Four of these students used an elimination 

method that involved finding the 81 towers and subtracting the towers that did not have at 

least one of each color. Mike and Ankur, two high school students, were the only ones 

that solved the problem by creating all of the towers in the complement (the towers that 

did not have one of each color). 

To solve this problem, all of the students discussed either built the towers with cubes 

or wrote their solution on paper. For those that wrote their solution on paper, they either 

explained using words or representations. Of the representations used, most students used 

the first letter of the color of the cube they were representing. Three students used the 
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letters A, B, and C to represent the three different colors. Only the two high school 

students used numbers and xôs and oôs to represent the different colors. 

The only distinctions that can be made between levels of academic study were in the 

use of representations, the use of formulas, and using the complement to solve the 

problem. The high school students were the only ones who used numbers and xôs and oôs 

to represent the colors. However, this group of high school students started to use binary 

numbers in their solutions to the pizza and towers problem prior to working on Ankurôs 

Challenge after it was introduced to them by another student in the class (Maher, 2005; 

Muter, 1999). Only the graduate students and one senior undergraduate student correctly 

used mathematical formulas to solve the problem (Glass & Maher, 2004). There was only 

one group of students that focused on the complement of the solution set; these students 

were in high school. 

Glass and Maher (2004) described four major categories for solving this problem. 

These categories are 1) justification by cases, 2) inductive method, 3) elimination 

method, and 4) analytic method. In their article, all of the solutions discussed, except for 

the solution by Ankur and Mike, were classified into one of those four categories. Ankur 

and Mike solved the problem indirectly by looking at the complement. Although we only 

have one example of this method, it is uniquely different than the others. It could be 

argued that this method could be classified under justification by cases because the 

students built the towers in the complement by cases. However, a distinction should be 

made between an indirect proof and a direct proof by cases. 
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Furthermore, it has been shown that there is some overlap between the categories and 

it could be argued that some solutions fall into more than one category depending on the 

viewpoint. For example, it was argued that two explanations that were classified as 

inductive methods by Glass and Maher (2004) might better be classified as justification 

by cases. Nonetheless, there is definitely a pattern to which these students solve this 

problem regardless of age. It has been shown that this problem naturally gives rise to 

certain mathematical problem solving and justification strategies. 
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CHAPTER 3: DESIGN OF THE STUDY 

 

3.1 Background 

This study took place in a mathematics course, Math Reasoning and Assessment, 

during the spring semester of 2011. The course is required for pre-service middle school 

math teachers at Felician College. The class met twice a week for one hour and 15 

minutes. The data from videotaped problem-solving sessions focusing on combinatorics 

was analyzed for this study. These sessions occurred on February 11 and February 18. 

See Appendix A for an outline of the entire course schedule. 

3.2 Subjects 

Six undergraduate students in their junior year were enrolled in the course Math 

Reasoning and Assessment at Felician College in Rutherford, New Jersey during the 

spring semester of 2011. The students in the class were all mathematics majors studying 

to be teachers. All of the subjects were women. All six students agreed to be videotaped 

and all of them agreed that their work could be used for this study. There was one 

classroom instructor, Professor Elizabeth Uptegrove. 

3.3 Data 

To answer the research questions, data came from videos and studentôs written work. 
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3.4 Setting 

This study is a component of a design study in the third year of a grant funded by the 

National Science Foundation (NSF) at Rutgers University and University of Wisconsin, 

Madison [award DRL-0822204] directed by Carolyn A. Maher. A component of the 

project is to build a repository to store a collection of video data and related metadata 

from earlier NSF funded projects. The videos and related metadata are being prepared for 

pre/in-service teacher interventions. This study extends the work of the grant by 

collecting and analyzing video data of students engaged in doing the mathematics before 

studying videos of childrensô reasoning. 

3.5 Tasks 

The students in the study worked on a counting/combinatorics strand of tasks used in 

earlier longitudinal and cross sectional research at Rutgers. The three tasks analyzed in 

this study are the towers problem, the pizza problem, and Ankurôs Challenge. These tasks 

and the types of reasoning that are provoked from these tasks are explained in the 

literature review section. 

3.6 Data Collection 

The data collected included video recordings of the pre-service teachers working on 

the combinatorics tasks. The studentsô written work was also captured on camera. 
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3.6.1 Video Recordings 

In this study, up to two video cameras were used to videotape the sessions. On 

February 11, 2011, there was one video camera in the classroom. On February 18, 

2011, there were two video cameras in the room. 

3.6.2 Studentsô Written Work 

The students were encouraged to write their findings and justifications down 

on paper. Some of this written work was captured on videotape. This written work 

was useful in the analysis because it allowed the researcher to better understand 

the storyline. 

3.7 Method of Analysis of the Video Data 

This study used the analytical model for analyzing video data outlined by Powell, 

Francisco, and Maher (2003). Powell et al. (2003) describe seven non-linear phases of 

studying video data beginning with ñviewing attentivelyò and ending with ñcomposing 

narrativeò (p. 413).  

 3.7.1 Viewing 

The first step of the analytical model provided by Powell et al. (2003) is to 

watch the video several times to get a general idea of the content. This step allows 

the researcher to get familiar with the session(s). At this phase, the researcher 

viewed the data without any specific analytical viewpoint. 
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 3.7.2 Describing 

After the video is watched several times, the researcher records a description 

of the video. The analytical model suggests describing the video in even 2 to 5 

minute intervals. Again, the descriptions should be descriptive only, devoid of any 

inferential remarks. These intervals should be time coded to allow the researcher 

to quickly find a particular event in future viewings. Not only do these 

descriptions enable the researcher to become more familiar with the data, they 

also allow other individuals to get an idea of the content of the videos. 

 3.7.3 Identifying Critical Events 

At this stage of the study, the researcher identifies critical events. Critical 

events were first defined by Maher and Martino (1996a) as episodes that provide 

mathematical insights (p. 196). Powell et al. (2003) describe these events as 

events that may ñeither confirm or disaffirm research hypotheses; they may be 

instances of cognitive victories, conflicting schemes, or naïve generalizations; 

they may represent correct leaps in logic or erroneous application of logic; they 

may be any event that is somehow significant to a studyôs research agendaò (p. 

417). 

As mentioned, critical events are significant to the research agenda. 

Identifying critical events was important because it enabled the researcher to chart 
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the development of ideas and to understand how these events influenced later 

thinking (Maher, 2002). 

 3.7.4 Transcribing 

All of the data was transcribed to allow a more detailed analysis of the video. 

The transcripts are as close to exact as possible including not only verbal 

expressions but also gestures and descriptions of written work. Appendix A of the 

report Guidelines for Conducting Video Research in Education (Derry, 2007) 

provides a list of choices on how to transcribe common occurrences in speech and 

gestures along with providing strengths and weaknesses of each choice. This 

guideline was followed to provide consistency throughout the transcripts. 

Transcripts were verified by a graduate student for greater accuracy. 

 3.7.5 Coding ï A Categorization Approach 

The purpose for this step is to identify themes to understand the building of 

mathematical ideas, the justification of the solutions, and the teacher 

interventions. Research has shown that certain tasks tend to evoke certain types of 

justification and reasoning (see literature section for specifics). A ñcategorization 

approachò can be developed after the data was carefully studied (Barron, 2007, p. 

160). These categories were based on the patterns and forms of reasoning that 

were found in the existing research and listed in Section 2.3.6. That is, in the 

towers problem, the researcher looked for evidence of using opposites, cousins, 
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staircase, elevator, or any other patterns that might have emerged. In all three of 

the problems, the researcher looked for evidence of controlling for variables, the 

use of tree diagrams, the use of pictures, or any other technique for building the 

solution. And in all three problems, the researcher looked for evidence of 

justifying by a cases argument, an inductive argument, or any other method for 

justification. 

In analyzing the teacherôs interventions, a categorization approach was also 

used. The initial categories used were based on the categories suggested by 

Martino and Maher (1999). The four types of teacher questioning they proposed 

was questions that 1) facilitate justification, 2) offer opportunities for 

generalization, 3) invite opportunities to make connections, and 4) facilitate 

awareness of solutions presented by other students. These categories were used 

and while analyzing the data, other categories emerged. 

Furthermore, since the data set is small (n=6), a detailed analysis producing a 

descriptive storyline was possible. Derry et al. (2010) refer to this step as a ñplay-

by-play.ò ñPlay-by-play analyses are particularly effective at showing how the 

sequentially developing context relates to what happens next.ò (Derry et al., 2010, 

p. 22) Having a descriptive storyline enabled the researcher to identify the 

categories. 
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3.7.6 Constructing a Storyline 

After transcribing and identifying critical events, Powell et al. (2003) suggest 

constructing a storyline. This phase of the analysis requires interpretation and 

inferences by the researcher based on the data provided. ñConstructing a storyline 

requires the researcher to come up with insightful and coherent organizations of 

the critical events, often involving complex flowchartingò (Powell et al., 2003, p. 

430). This flowcharting, also referred to as a trace, provides insight into a 

studentôs developing mathematical understanding (Maher, 2002). 

 3.7.7 Composing a Narrative 

During this phase, the researcher would re-examine the whole data set and 

completed analysis of critical events and storylines. According to Powell, 

Francisco and Maher (2003), this phase actually occurs from the beginning of the 

research. ñResearchersô questions as well as data-gathering procedures and media 

all imply explicit or implicit choices informed by open or hidden, conscious or 

unexamined theoretical perspectives. It is in this sense that the construction of a 

narrative begins at the initiation of research and accounts for why somewhere 

within a research report, researchers outline their theoretical biases.ò (Powell et 

al., 2003, p. 431) 
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 3.7.8 Document Analysis 

This step is not one of the seven steps outlined by Powell et al. (2003). The 

studentsô written work that was captured on videotape was examined to aid in the 

data analysis and construction of the storyline.  
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CHAPTER 4: RESULTS 

4.1 The Towers Problem 

The towers problem was introduced on February 11, 2011 and discussed again on 

February 18, 2011. Both of these sessions were videotaped. The problem was presented 

on the board (see figure 4.1). The board read, ñYou have two colors of Unifix cubes to 

choose from. How many towers that are 4 cubes tall is it possible to build? Part 1: Whatôs 

the answer? Part 2: Convince me that your answer is correct.ò 

  
Figure 4.1. Camera view of the front board. 

 

 

When discussing towers, the first cube described is the top cube and the fourth cube is the 

bottom cube. For example, RRWW will symbolize a tower with two reds cubes on top, 

followed by two white cubes. 
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4.1.1 February 11, 2011 

On Friday, February 11, all six of the students were present. The class began with the 

instructor introducing the towers problem. There was one camera and three groups of 

two. One of the groups of two had already worked on the problem in another class. These 

students, Francesca C. and Rebecca, were not filmed building their solution. However, 

they are filmed explaining their solution to the problem. The other two groups were: (1) 

Jessica and Jamie and (2) Kim and Francesca S. Each of the three groups used the Unifix 

cubes to solve the problem and each found the answer to be 16. 

Jessica and Jamie (Red and White cubes) 

The video began by showing Jessica and Jamie building their towers. Jessica 

immediately builds an all white tower and an all red tower. They then start to build 

towers that have two reds and two whites. Jamie creates a tower that is WRWR. Jessica 

then quickly builds its opposite RWRW. At this point, Jessica says, ñBecause thatôs the 

opposite one?ò [Line 1.1.5] Jamie agrees. They continue to use this strategy of opposites. 

Jamie builds RRWW and then Jessica builds WWRR. [Lines 1.1.1 ï 1.1.10] 

The camera focuses on the other group at this point. When it returns to Jessica and 

Jamie, they have built RRRW and RWWW. Their strategy has changed. This set of 

towers is not an opposite. If flipped, it would be an opposite. Jamie creates the WWWR 

tower and they spend some time trying to find with which tower it is to be paired. They 

rearrange the three towers so that WWWR is paired with RWWW. This pairing falls 
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under the strategy of ñcousins.ò Jessica builds WWWR (which they already have) to 

create the opposite of RRRW. At this point, they have built towers by trial and error and 

then created the opposite for the tower. They have 10 towers (one of these towers, 

WWWR, is a duplicate). [Lines 1.1.11 ï 1.1.18] Their organizational structure is as 

shown in Figure 4.2 (the duplicate is emphasized in bold). 

R W  W R  R W  R W  R W 

R W  R W  R W  W W  R W 

R W  W R  W R  W W  R W 

R W  R W  W R  W R  W R 

Figure 4.2. Diagram of Jessica and Jamieôs first organizational strategy of their towers. 

 

Jessica decides to reorganize the towers they have built. She takes four of the towers 

and organizes them in a staircase pattern. That is, she organizes them so that she has no 

white, one white on the bottom, two white on the bottom, and then three white on the 

bottom. [Lines 1.1.18 ï 1.1.20] She then begins to organize another four so that they are 

the opposite of these four with no red, one red on the bottom, two red on the bottom, and 

then three red on the bottom. However, when she gets to the WRRR tower, she realizes 

that she does not have that tower and takes apart the duplicate WWWR and creates the 

WRRR tower. They now have a total of ten towers. [Lines 1.1.21 ï 1.1.28] They have 

RWRW and WRWR plus the eight towers as shown in Figure 4.3. 

R R R R   W W W W 

R R R W   R W W W 

R R W W   R R W W 

R W W W   R R R W 

Figure 4.3. Diagram of Jessica and Jamieôs eight towers organized in the staircase 

pattern. 
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They stare at these 10 towers for a few seconds and Jessica says, ñOh! In the middle, 

remember?ò and she creates a RWWR tower. [Line 1.1.29] Jamie makes the opposite of 

this tower WRRW. They now have 12 towers. They have them organized as shown in 

Figure 4.4. [Line 1.1.34]: 

R R R R  R R W W  W W W W 

R R R W  W W R R  R W W W 

R R W W  W R W R  R R W W 

R W W W  R W R W  R R R W 

Figure 4.4. Diagram of Jessica and Jamieôs 12 towers. 

 

The first and the last group of four are the staircase pattern. In the middle they have the 

towers with two reds and two whites, along with their opposites. 

They look at their towers for a few seconds and count the number of whites in each 

tower. Jessica then says, ñRemember, move it down the line?ò [Line 1.1.41] They create 

four towers in an elevator pattern. Each of these towers has three whites and one red. 

They then create the opposites of these towers using three reds and one white. In addition 

to the 12 towers, they now have eight more towers. See Figure 4.5 (duplicates 

emphasized in bold). 
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R R R W   W W W R 

R R W R   W W R W 

R W R R   W R W W 

W R R R   R W W W 

 

R R R R  R R W W  W W W W 

R R R W  W W R R  R W W W 

R R W W  W R W R  R R W W 

R W W W  R W R W  R R R W 

Figure 4.5. Diagram of Jessica and Jamieôs 20 towers. 

 

The top eight towers are the towers with one cube of a certain tower, organized as in the 

elevator pattern. The bottom two groups of four on each side contain the towers using the 

staircase pattern. The middle four towers are the towers with whites together and whites 

apart (along with their opposites). 

Jessica decides to reorganize the towers based on the number of reds. However, 

during this process, they realize they have a duplicate and they remove one RWWW and 

one WRRR. [Line 1.1.78] They now have 18 towers as follows as shown in Figure 4.6 

(duplicates emphasized in bold). 

R R R W   W W W R 

R R W R   W W R W 

R W R R   W R W W 

W R R R   R W W W 

 

R R R   R R W W   W W W 

R R R   W W R R   W W W 

R R W   W R W R   R W W 

R W W   R W R W   R R W 

Figure 4.6. Diagram of Jessica and Jamieôs 18 reorganized towers. 

 



114 

 

 

The instructor asks them how they built their towers. Jessica explains that they built 

the towers that have two of a color and they have four of them as shown. [Lines 1.1.88 ï 

1.1.93] She then explains that they did the towers that have one red and the towers that 

have one white. They have a total of eight towers with these two groups as shown. [Lines 

1.1.94-1.1.96] They explain that they have two towers that are all of one color. [Line 

1.1.98] Next, they move the RRRW and RRWW with the solid RRRR. And they move 

WWRR and WWWR with the solid WWWW to form another grouping. [Line 1.1.98] 

They conclude that they have found 18 towers. The instructor asks them if they are 

finished and they say that they think there are more towers. They tell her that they would 

like to keep working on it. The instructor leaves them to think. They focus on the four 

towers that have two of each color and they conclude that ñtogether or separateò are the 

only way they can do two of a color. [Line 1.1.109] They try to build more towers but 

they indicate that they believe that they have found all of them. The camera focuses on 

the other group. 

The camera returns with the instructor asking them to explain what they have found. 

They still have 18 towers and they show the instructor how they have grouped them 

together. Their organizational strategy has not changed since the last time the camera was 

focused on them. The top two groups of four are the elevator pattern. The middle four on 

the bottom are the two whites ñtogether and separateò and their opposites. The two 

groups of three are towers created by the staircase pattern, minus the last tower which is 
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included in the elevator pattern. The organizational structure still contains duplicates. The 

duplicates are within the staircase and elevator patterns. See Figure 4.7. 

 
Figure 4.7. Camera view of Jessica and Jamieôs 18 four-tall towers. 

 

The instructor asks them to explain their organizational strategy again to her. Jessica 

explains the group that has three reds and one white and the group that has three whites 

and one red. [Lines 1.1.160 ï 1.1.164] There are a total of eight towers. As Jessica 

explains the group with RRRR, RRRW, RRWW, they realize they have a duplicate when 

Jessica pulls the RRRW from the group with one white.  

1.1.159 12:48 Instructor Ok, so, alright, explain your groupings one more 

time. 

1.1.160 12:51 Jessica Alright. So this one is, we have three reds and 

one white in all of these. [Indicating Set 1, 

RRRW, RRWR, RWRR, WRRR] 

1.1.161 12:55 Instructor Okay. 
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1.1.162 12:56 Jessica So we just went up the line [pointing to each 

individual white cube in Set 1] to where each one 

of them could be/so/look different. 

1.1.163 12:58 Instructor Ok, three reds and one white. I believe thatôs the 

only way to do three reds and one white. 

1.1.164 13:02 Jessica [Pointing to Set 2 ï WWWR, WWRW, WRWW, 

RWWW] And then we did the opposite with three 

whites and one red. 

1.1.165 13:05 Instructor Okay. 

1.1.166 13:06 Jessica With this one [Indicating Set 3 RRRR, RRRW, 

RRWW]. Let me just pull this down so you can 

see [moving tower RRRW from Set 1 to Set 3]. Oh 

maybe not causeé [Putting RRRW back in Set 1] 

1.1.167 13:12 Instructor I see a problem now that you pulled that one 

down. Pull that one back down again.   

1.1.168 13:16 Jessica [Putting RRRW back into Set 3] Weôve have two 

of the same. 

1.1.169 13:15 Instructor Yes you do. 

 

After realizing they have a duplicate RRRW, they realize they also have a duplicate 

WWWR. They come to the conclusion that the answer is 16 towers. [Lines 1.1.170 ï 

1.1.186] 

They organize the towers into 6 groups. These groups are (1) two groups of two 

towers each with two cubes ñtogether or separateò (and their opposites), (2) two groups 

of three towers with the elevator pattern of one cube starting at the second cube, and (3) 
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two groups of three towers in the staircase pattern starting with a solid, then one cube on 

bottom, then two cubes on bottom. See Figure 4.8. 

 
Figure 4.8. Camera view of Jessica and Jamieôs 16 four-tall towers. 

 

They reorganize their towers into four groups and show the instructor what they have 

found (see Figure 4.9). Two of the groups are the staircase pattern with solid, one cube on 

bottom, two cubes on bottom, and three cubes on bottom. Jessica explains the group of 

four towers, each containing two colors as ñkeeping the two apart, keeping the two 

together.ò [Line 1.1.209] The fourth group is a group of four with one different color in 

the second position and then one different color in third position as shown below. The 

girls do not explain why these four are grouped together. 
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Figure 4.9. Camera view of Jessica and Jamieôs reorganized 16 four-tall towers. 

 

After they show the instructor their towers they explain to her that they believe the 

answer should be something mathematical. [Line 1.1.211] Jessica says, ñMaybe it has to 

do with squares.ò [Line 1.1.212] They guess that the number of towers that are three-tall 

should be nine. Jessica remarks, ñIf we had 16 for four, maybe three would be nine.ò 

[Line 1.1.216] The instructor replies, ñWell why donôt you try three and see how that 

works out.ò [Line 1.1.217] 

They work on building the three-tall towers using black and white cubes. Jessica 

immediately builds three towers in the staircase pattern of BBB, WBB, WWB, and Jamie 

adds WWW to her collection. They move the WWW and make the two opposite towers 

of the ones already created ï they are BWW and BBW. Next, they make BWB and 

WBW. They have a total of eight towers (see Figure 4.10).  
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Figure 4.10. Camera view of Jessica and Jamieôs eight three-tall towers. 

 

Jessica says, ñNotice this is eight and that was 16. Maybe we will have four for two 

and it can be like colors squared, not colors, umé two, yeah, two raised to a certain 

power.ò [Lines 1.1.244 ï 1.1.245] They build the towers that are two-tall and find four 

towers. Jessica says, ñThatôs what is it. The powers of 2.ò [Line 1.1.249] They say that 

five-tall will be 32 because that is two to the fifth. They tell the instructor that they 

believe they have figured it out. She says that she will be with them in a moment as she is 

listening to Kim and Francesca S.ôs explanation to the towers problem. The camera 

focuses on this group for a short period of time. 

The instructor and the camera return to Jamie and Jessicaôs group. They explain to the 

instructor that after they finished building the eight three-tall towers, they decided build 

the two-tall towers and found four towers. They realized that it was powers of two. As 

they are explaining what they have found to the instructor, they discover that the power is 

equal to the height of the tower. 
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1.1.260 21:15 Instructor Now I am ready to hear what you guys have to 

say. [Camera turns and focuses on Jamie and 

Jessicaôs group.] 

1.1.261 21:22 Jamie We think we figured it out. We think itôs the 

powers of two. 

1.1.262 21:27 Jessica Yeah, because we, weé when you told us to do 

[inaudible, pointing to 8 towers, 3-tall each] we 

only got eight. So we were like letôs go down to 

two and see what we get there and we got 4. 

[Indicating group of 4 towers ï each two-tall] So 

you have two raised to the second power. 

1.1.263 21:38 Jamie Do you know what it is? Itôs whatever number of 

towers ï  

1.1.264 21:40 Jessica Thatôs the power. 

1.1.265 21:41 Jamie Thatôs the power. 

1.1.266 21:43 Instructor Ohé. 

1.1.267 21:44 Jamie Two squared, two to the third, two to the fourth. 

1.1.268 21:46 Instructor So you could tell me how many thereôs gonna be 

five-tall ï without doing it? 

1.1.269 21:50 Jessica Thatôs 32. 

 

The instructor tells them that what they have discovered is very nice. She asks them 

to explain their organizational strategy for the three tall towers. Jessica explains that, with 

the group of three towers that form the staircase pattern (BBB, WBB, WWB) that they 

could not put another tower there because it would be WWW and that is already in the 

other group. [Line 1.1.272] She explains that because of this, there are no more towers in 
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this group. The instructor says, ñOkay, so that is like proof by contradiction - if you canôt 

go any further down because thereôs no place else to go, right?ò [Line 1.1.275] They 

agree. 

The instructor asks them to repeat their formula again. Jamie explains that it is two to the 

power where the power is the height. [Line 1.1.278] And Jessica hypothesizes that the 

two is equal to the number of colors. The instructor asks what they think the answer is if 

there are three colors. 

1.1.282 22:58 Jessica And two is the, the amount of um, the colors. Iôm 

thinking. 

1.1.283 23:04 Instructor Ok, so maybe you want, might need a piece of 

paper for this. Suppose there was three colors ï 

whatôs it gonna be? 

1.1.284 23:11 Jamie Three raised to theé. 

1.1.285 23:12 Jessica To however tall it is. 

1.1.286 23:15 Instructor So, why donôt you get a third color? 

 

She suggests that they start with three colors two-tall. [Line 1.1.289] Jessica and Jamie 

work on this problem while the camera focuses on the other group. 

When the camera returns, it is shown that they have built nine towers that are two-tall 

when choosing from three colors. They explain to the instructor that they found nine 

towers. She asks them for the general formula for any color, any height. 



122 

 

 

1.1.316 26:33 Instructor I already asked youé the extensions was if there n 

cubes tall and you got two colors to choose from. 

You know the answers for that. Now you got m 

colors to choose from, I want that equation. 

1.1.317 26:46 Jessica Oh, ócause we figured out when you have 2 colors 

to the n. So now itôs going to be mé so however 

many totalé. Oh, m to the n. 

1.1.318 26:59 Jamie Right. 

 

Jessica writes in her notebook both formulas n2 and nm where m is equal to the colors 

and n is equal to the height of the tower (see Figure 4.11). [Line 1.1.319] 

  
Figure 4.11. Camera view of Jessicaôs notebook. 

 

After each group is finished working on the towers problem, each group presents their 

findings to the class. This group was the last group to present. When they present their 

four-tall towers, their organizational strategy has changed. They now have four groups of 

four. However, they do not explain this different organizational strategy. The top two 

groups contain the towers that create a staircase pattern. The bottom left group contain 

the towers were two whites are ñtogether or separateò as well as their opposites. And the 
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last group contains the solids and two more towers with two cubes of two colors together 

and their opposite. See Figure 4.12. 

 

Figure 4.12. Camera view of Jessica and Jamieôs 16 towers during their presentation. 

 

Jamie and Jessica do not explain their organizational strategy for their 16 towers to 

the class. Instead, they explain the general rule for the towers problem. They explain that 

the formula is the number of colors raised to the height of the tower. [Lines 1.1.360 ï 

1.1.373] They demonstrate the formula using three colors. They have built nine two-tall 

towers when choosing from three colors. When the height is two, they explain to the class 

that they have nine towers. [Lines 1.1.374 ï 1.1.378] The instructor begins a class 

discussion about the reasons why the formula is n3 . This class discussion will be 

described after the explanation of Rebecca and Francesca C.ôs results. 

Kim and Francesca S. (Blue and Yellow cubes) 
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The camera has focused on Jamie and Jessica for the first ten minutes of this session. 

Therefore, the camera did not capture Kim and Francesca S. building their solution to the 

towers problem. When the camera first focuses on this group, the instructor asks them to 

explain to her their strategy for building their towers. They explain that they built them 

by doing opposites. Kim explains, ñLike, I would do one thing and then she would do the 

opposite.ò [Line 1.1.124] The instructor asks her to explain opposite. She says, 

ñMeaning, like for this one thereôs blue, yellow, blue, blue. So then the opposite is 

yellow, blue, yellow, yellow.ò [Lines 1.1.126 ï 1.1.128] They have built 16 towers and 

they have organized them into six groups as shown in Figure 4.13. 

 
Figure 4.13. Camera view of Kim and Francesca S.ôs first organizational structure for 

their 16 towers. 

 

They explain that there is a group of two towers that are all of one color. The group of 

three contains a tower with one blue, two blue, three blue in a staircase pattern. The 

group of five contains an alternating blue and yellow tower with its opposite. This group 
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of five also contains the three towers that create the elevator pattern: one yellow, two 

yellow and three yellow.  

The instructor explains to them that she does not see a pattern to their organizational 

structure. Kim and Francesca S. explain to her that they are organized based on the order 

of the cubes. 

1.1.143 11:27 Kim It depends on the order.  

1.1.144 11:28 Francesca S. Yeah. 

1.1.145 11:29 Instructor Okay. 

1.1.146 11:29 Kim Thereôs a specific order. 

1.1.147 11:30 Instructor Okayé. So explain the order. Explain why this 

goes here [pointing to BYYB, YBBY] and not with 

those over there [pointing to YBYB, BYBY] 

1.1.148 11:38 Francesca S. [Points to YBYB, BYBY] Because these are 

alternating. These are like [inaudible, pointing to 

BYYB, YBBY]. 

1.1.149 11:41 Instructor Okay, soé so these are blue. You mean, so this is 

twoé you know, this is sort of like what she said 

in the video ï these are two took apart [indicating 

YBYB, BYBY] and these are two stuck together, 

kind of? [Indicating BYYB, YBBY]. 

1.1.150 11:52 Kim  Yeah, yeah. 

 

The instructor suggests to them to organize the towers such that all the towers with one 

color are together, all the towers with two colors are together, and all the towers with 
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three are together. They continue to work on this and the camera focuses back on Jessica 

and Jamie. 

At 20:54, the camera returns to Kim and Francesca S. They have 16 towers and they 

have organized them into five groups. The groups are composed of the towers that 

contain zero blue cubes, one blue cube, two blue cubes, three blue cubes, and four blue 

cubes. See Figure 4.14. 

 

 
Figure 4.14. Camera view of Kim and Francesca S.ôs second organizational structure for 

their 16 towers. 

 

The instructor explains that she can see the pattern for all of the groups except for the 

group of six in the middle. She explains that she does not see how these towers form a 

group. Kim asks, ñLike a pattern?ò [Line 1.1.258] She agrees and leaves them to work on 

it. The camera leaves them as well. 

At 23:46 and then again at 28:14, Kim and Francesca S. present their solution. They 

explain that they have five groups. They are no blue, one blue, two blue (these six towers 
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are broken into two sub-groups ï ñtwo blues are stuck togetherò and ñseparated bluesò), 

three blue, and all blue. [Lines 1.1.328 ï 1.1.343] 

 
Figure 4.15. Camera view of Kim and Francesca S.ôs third organizational structure for 

their 16 towers. 

 

Rebecca and Francesca C. (Blue and Orange cubes) 

These girls are not filmed building their towers but the class and the videographer 

focus on their towers at 29:33. They have towers that are one-tall, two-tall, three-tall, and 

four-tall. Each of these groups of towers of different heights is organized. Francesca C. 

explains how they organized the four-tall towers. They have all blue, three blues, a 

middle group of six with two blues that were broken into pairs (opposites), three orange, 

and all orange. [Lines 1.1.345 ï 1.1.350] Below these towers of four, they have towers 

that are three-tall, two-tall and one-tall. See Figure 4.16 (the single blue cube is in 

Rebeccaôs hand). 
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Figure 4.16. Camera view of Rebecca and Francesca C.ôs presentation of towers. 

 

Rebecca explains that if you start with towers that are one cube tall, there are only two 

towers. She describes how to build towers one cube taller based on the towers of the 

previous height. She explains that for the towers that are one cube taller, you can add 

either a blue or an orange cube to the top of each tower.  

1.1.352 30:47 Rebecca So, if you have just one-tall tower, you only have 

two [indicating one blue cube and one orange 

cube] And then in order to get the second one with 

yellow, you can add a blue and youôll get this one 

[BO]. Or you can add another orange and youôll get 

this one [OO]. So, for each tower, you add one or 

the other to get the next group. To double it.  

1.1.353 31:06 Rebecca See with this one, you can either add a blue to get 

that one, or an orange to get the next one. 

 

She reiterates and explains, ñSo then for each toweré. to make it one cube higher, you 

can add either an orange or a blue, so it would essentially double what you have.ò [Line 

1.1.357] 
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The instructor says, ñMany of you discovered the rule ï it doubles ï and this is the 

explanation. Right? This is the reason why it doubles. So thereôs more than just, yeah, we 

see a pattern its time two. Hereôs the reason why its time two. Right? Inductive reasoning, 

right? See, that wasnôt too bad.ò [Line 1.1.358] 

Next, Jessica and Jamie explain the general rule for the towers problem and 

demonstrate the solution to the number of towers two-tall when choosing from three 

colors as described earlier. After their explanation, the instructor asks them to show the 

group how many towers there would be for one-tall towers choosing from three colors. 

They say there are three towers. The instructor asks the class to explain why the base is 

equal to the number of colors. Rebecca explains that to build a new tower from the 

previous one, you have three colors to choose from so the towers triple each time. 

1.1.390 35:07 Rebecca For each one-tall tower you can, for this one 

[indicating B] you can add either a brown, a green, 

or a maroon.  For this one, [indicating G] you can 

add either a brown, a green, or a maroon.  So, for 

each one, thereôs three possible towers you can 

make to create it two tall. So, you add a green, you 

know, you can add a green, you can add a maroon, 

or you can add a brown. So you end up with, you 

know, three more from what you already have. 

1.1.391 35:33 Instructor Does that make sense to everybody? 

1.1.392 35:35 Francesca C. So the answers triple. 

1.1.393 35:36 Instructor Thatôs right ï the other one was doubled and this 

one now is tripled. 
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1.1.394 35:40 Francesca C. Because itôs three colors. 

 

The instructor introduces Ankurôs Challenge and for the remainder of the class session, 

these students work on solving Ankurôs Challenge. 

4.1.2 February 18, 2011 

During the first 20 minutes of the class on Friday, February 18, the class revisits the 

towers problem. Only four students were present and there were two videographers. They 

worked in groups of two. The groups were the same as February 11, 2011. They were (1) 

Jessica and Jamie and (2) Kim and Francesca S. The instructor began the session with a 

PowerPoint slide on the board that reads as follows, ñThe Towers Problems. Summarize 

our previous results: Two colors, four cubes tall: 16. You organized your towers by 

number of blue cubes. How many towers for 0 blue, 1 blue, 2 blue, 3 blues, and 4 blues? 

Two colors, n cubes tall: n2  Why is it n2 ? m colors, n cubes tall: nm  Why is it nm

?ò(See Figure 4.17) 
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Figure 4.17. Camera view of front board. 

 

Kim and Francesca S. (Blue and Orange cubes) 

Kim and Francesca S. begin by building their towers in the staircase pattern. 

Francesca S. builds the towers that contain one blue on top, two blues on top, three blues 

on top, and the all blue tower. Kim builds the opposites of these four towers. She builds 

the towers that contain one orange on top, two oranges on top, three oranges on top, and 

the all orange tower. They have a total of eight towers. [Lines 2.1.1 ï 2.1.12] They build 

four more towers by building a tower and the opposite. These towers contain two blues 

(BOBO, OBOB, OBBO, BOOB). [Lines 2.1.12 ï 2.1.23] 

They recognize that they are missing four because they understand the answer to be 

16. However, they are not sure which four they are missing. They sit silently. Using trial 

and error, Kim makes the BOBB tower and asks Francesca S. if they have created that 

one yet. [Line 2.1.27] Francesca S. replies that they have not. Kim, again using trial and 
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error, makes another tower ï BBOB. [Line 2.1.29] (At this point, they do not build the 

opposites of these two newly created towers.) They now have 14 towers. The instructor 

joins their group and tells them that they are missing some. They agree. She instructs 

them to reorganize their towers so they have no blue, one blue, two blue, three blue and 

four blue. [Line 2.1.33] 

As they organize the towers in this manner, they realize they are missing two towers 

with one blue cube. They build these two towers, OBOO and OOBO. These towers are 

the opposite of the towers they had just created. They continue to organize their towers. 

In the end, they have five groups organized by number of blues (see Figure 4.18). [Lines 

2.1.34 ï 2.1.68] 

 
Figure 4.18. Camera view of Kim and Francesca S.ôs 16 towers. 

 

They are instructed to write the number of no blue towers, one blue, two blues, etc. on 

their paper. Kim writes the number of towers for the zero blue case, one blue, two blue, 

three blue and four blue case (see Figure 4.19). 
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Figure 4.19. Camera view of Kimôs notebook. 

 

The instructor asks them to explain, on their paper, why the formula is n2 . The 

instructor joins Jessica and Jamieôs group and Jessica says, ñWe did ñwhy is it two to the 

n?ò Itôs two because the two represents the number of colors. Two is the base.ò [Line 

2.1.93] Kim and Francesca S. proceed to engage in a conversation about the formula after 

hearing Jessica. 

2.1.94 10:24 Kim Thatôs true. There are two colors. [laughing] 

2.1.95 10:29 Francesca S. Yeah, itôs the two colors and the four cubes. 

2.1.96 10:32 Kim So then two to the fourth equals sixteen. 

 

The camera focuses on Kimôs paper. She writes that the ñtwo means blue/orangeò and 

ñn cubes tall.ò Francesca has, on her paper, that two is the number of colors and n is the 

height of the tower. The instructor asks them if they remember the inductive explanation 

that Rebecca had given a week earlier. 
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2.1.120 13:30 Instructor Do you remember when she was doing her little 

proof? She started out with something like... Iôm 

going to take this away and put it back later. [She 

takes apart one of the towers previously built.] She 

started out with thereôs one tall towers, right? [She 

puts a single blue cube down and a single orange 

cube down.] You actually missed this discussion in 

class on Wednesday so itôs good to go over. 

[Talking to Francesca S.] Thatôs it, right? [pointing 

to the single orange and single blue cube] This is it. 

2.1.121 13:46 Kim Oh, then donôt you add one and then it would be like 

oneé. 

2.1.122 13:50 Instructor You addé Well, sort of, yes. 

2.1.123 13:53 Instructor Now this isé How does this relate to what we are 

doing induction? Hereôs step one ï n tall towers. 

One tall towers, right? Step one, you pick some low 

number. 

2.1.124 14:03 Instructor Step two: you say ñIôm at some height.ò We donôt 

have to think about that too much, but. What do you 

do for each one of these? You started to say ité 

You can either do what or what? 

2.1.125 14:13 Kim Oh, you can put the blue on it or you can put the 

orange on it. 

2.1.126 14:16 Instructor Right, so each one, you can put either a blue or an 

orange and that gives you two choices. Thereôs the 

induction part ï no matter where you start the next 

one is going to be twice as many because you can do 

either the blue or the yellow. 

 

After this discussion, Kim, Francesca S., and the instructor join Jessica and Jamie to 

listen to Jessica and Jamie explain towers when choosing from three colors. (This 
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conversation will be described after the description of Jessica and Jamie building their 

towers.) 

Jessica and Jamie (Blue and White cubes) ï Second Camera View 

Jessica builds the all blue tower and the blue towers with one white cube. At the same 

time, Jamie is building their opposites ï the all white tower and the white towers with one 

blue cube. They both build the towers with one cube using the elevator pattern. They 

separate the towers they have created into 4 groups: (1) all blue, (2) towers containing 

one white cube, (3) towers containing one blue cube, and (4) all white. [Lines 2.2.1 ï 

2.2.3] 

Jessica starts to build the towers with two blue by doing opposites. She creates 

BBWW and then WWBB. They decide that they will each build the towers with 2 blues 

and then compare and take out any extras. Jessica builds BWBW and WBWB. She builds 

BWWB and WBBW. Jamie has built four towers - BBWW, WWBB, BWBW, and 

WBWB. They realize that all four of Jamieôs towers are contained in Jessicaôs group of 

six. They disregard Jamieôs four towers. They have organized their towers by groups 

based on the number of blue cubes in a tower as shown in Figure 4.20. [Lines 2.2.6 ï 

2.2.16] 
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Figure 4.20. Diagram of Jessica and Jamieôs 16 towers. 

 

The instructor tells them to write, in their notebook, the number of towers in each 

group. As Jessica starts to write based on the number of blues, she says, ñAlright, so four 

blue can only have one tower, three blue we have four towers, and then two blue is six 

towers. And I have to do one blue with the whites. [She takes the cubes and starts to 

build towers.]ò [Line 2.1.25] Jessica explains to Jamie that she has to create the towers 

with one blue and the tower will all white cubes while Jamie must create the towers that 

have one white and the all blue tower. (They do not realize that Jamieôs group of towers 

containing three white is equivalent to a group containing one blue.)  

Jessica creates the towers with one blue and no blues. Jamie creates the towers with 

one white and no white. As they are creating these towers, the instructor questions them 

as to whether they must build those towers. At this point, they realize that these towers 
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would be the same as towers they have already created. Regardless, they create them. 

They have nine groups of towers as shown in Figure 4.21. [Lines 2.2.26 ï 2.2.40] 

 
Figure 4.21. Camera view of Jessica and Jamieôs four-tall towers. 

 

Jessica and Jamie write their results in their notebooks. They explain that the answer 

is the same whether they base the solution on the number of blue cubes or the number of 

white cubes. As Jessica writes in her notebook, she says, ñOne, four, six, four, one. And 

the same thing for white.ò [Line 2.2.41] Jamie replies, ñIs the same thing.ò [Line 2.2.42] 

The next assignment is to explain why the formula is 
n2 . Jamie immediately says, 

ñOh, because of the two color thing?ò [Line 2.2.45] Jessica agrees, ñBecause itôs two 

colors.ò [Line 2.2.46] They do not verbally explain why the exponent n. Instead, they 

answer the question, why is it nm ? Jessica explains that m is equal to the number of 

colors and Jamie says that n represents the height of the tower. 
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2.2.50 07:43 Jessica Why is it m to the n? Because m represents the 

number of colors. 

2.2.51 08:02 Jamie Amount of colors. 

2.2.52 08:03 Jessica Different colors, maybe? 

2.2.53 08:03 Jamie Uh-huh. And n represents the height of the tower? 

2.2.54 08:19 Jessica Yeah. [Jamie and Jessica write in their 

notebooks.] 

 

The instructor asks them to explain, to her, their answers to why the formula is n2 . 

They tell her that the two represents the two colors and n is equal to the height of the 

tower. They also explain that, in the formula nm , m is the number of colors and n is the 

height of the towers. She agrees but explains to them that they did not explain why it is 

n2 . She says, ñI understand two different colors but you didnôt exactly give me 100% 

reason why itôs two to the n as opposed to, say, two times n. ñWhy is it two to the n 

power?ò is the question.ò [Line 2.2.65]  

The instructor asks them if they remember Rebeccaôs explanation from the previous 

week. Jamie asks if it has to do with choices. Jamie says, ñYeah, the choices that you are 

allowed and you canôt have the same thing so that eliminates like the extra choices?ò 

[Line 2.2.71] She tries to explain further, but cannot. Jessica says, ñé the only thing I 

can remember truthfully is that you have two choices. You can either add a white one on 

or you can add a blue one on.ò [Line 2.2.73] They proceed to talk about induction and the 

formula nm . 
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2.2.74 10:27 Instructor Okay, we said this last time. Thatôs sort of like 

induction. Right? So no matter where youôre 

starting from, like if youôre starting from these 

[points to the four towers with three blue cubes and 

one white cube], each one of these, say it again, 

you cané. 

2.2.75 10:38 Jessica You can either have a white one or a blue one. 

2.2.76 10:40 Instructor And the fact that you have two choices means 

youôre multiplying by two. So thatôs what Iôm 

getting at - multiplying by two, multiplying by two, 

means two to the n. 

2.2.77 10:48 Jessica Oh, thatôs right. 

2.2.78 10:51 Instructor And so similarly for m to the n, the m choices. 

Which means every single time you know you 

have [inaudible]. 

2.2.79 10:58 Jessica Yeah, you have that many choices; you have to 

keep multiplying by that. 

 

The instructor instructs them to write their findings in their notebook and to prepare to 

explain n3 to Kim and Francesca S.  

They discuss towers choosing from three colors and decide to use blue, white and 

yellow cubes. They position a yellow cube on its side and one cube of each color above it 

to represent the three towers that are two-tall when choosing from three colors where 

yellow is the bottom cube. They repeat this process for blue as the bottom cube and for 

white as the bottom cube. They have the cubes, laid on their sides, as shown in Figure 

4.22. [Lines 2.2.86 ï 2.2.97] 



140 

 

 

Y B W  Y B W  Y B W 

 Y    B    W  

Figure 4.22. Diagram of Jessica and Jamieôs cubes for their explanation of two-tall 

towers choosing from three colors. 

 

They discuss inductively how to build the two-tall towers when choosing from three 

colors. 

2.2.98 13:29 Jessica So one tall you have three choices which is three 

to the first power. 

2.2.99 13:35 Jessica Two tall, you have three more choices per cube. 

2.2.100 13:39 Jamie Which equals nine. 

2.2.101 13:39 Jessica Which equals nine. 

 

They are asked to explain the formula for towers (any height) choosing from three 

colors to the class. At this point, the instructor, Kim and Francesca S. joins them to listen 

to the explanation. Jamie and Jessica take turns explaining.  

2.2.109 14:11 Jamie One tall, okay, one-tall would be three to the one 

which is three. 

2.2.110 14:16 Jessica Because you only have three choices. 

2.2.111 14:17 Jamie óCause you can only have three choices. 

2.2.112 14:20 Jessica Then when you get to two tall, you have three 

choices per the one that you already have. So 

you have the yellow can either be yellow-

yellow, yellow-blue, or yellow-white. Blue can 

be blue-yellow, blue-blue, or blue-white. And 



141 

 

 

white can be white-yellow, white-blue, or white-

white. So, since you have three choices each 

time, itôs three squared this timeé um.. Iôm 

trying to thinké 

2.2.113 14:47 Instructor Thatôs it! Three squared isé 

2.2.114 14:49 Jessica Three squared is nine. So you have nine total 

choices, nine total ways that you can do it. 

 

The instructor asks the class to tell her how many towers there are if the towers are 

three-tall. Francesca S. says, ñNine squared.ò [Line 2.2.116] Kim says, ñNine cubed.ò 

[Line 2.2.118] The instructor indicates that they are incorrect and Kim says, ñI mean 

three cubed.ò [Line 2.2.120] The instructor replies, ñYes.ò Jessica and Jamie start to 

create a third row that would demonstrate towers that are three-tall when choosing from 

three colors (three to the third power). Jessica remarks that it is like the ñtree-thing.ò 

They do not create all 27 towers. [Lines 2.2.122 ï 2.2.124] 

The instructor says, ñOkay, so, thatôs great! Thereôs your induction, right? No matter 

where you are at, you can always go to the next step with times three.ò [Line 2.2.125] 

She asks the class if they are satisfied with that explanation. They reply that they are and 

they begin to work on the pizza problem. 

4.2 The Pizza Problem 

On February 18
th
, after revisiting the towers problem, the students work on the pizza 

problem. There are four students present and two videographers. The students are paired 
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as previous problems. Kim and Francesca S. are one group while Jamie and Jessica are 

the other group. They start the pizza problem around minute 17:20. After they have 

finished solving the pizza problem, they work on explaining the isomorphism between 

the pizza problem and the towers problem. 

The instructor presents the pizza problem with four toppings on a PowerPoint slide. 

The slide reads: 

The Pizza Problem 

There are four possible pizza toppings: 

Sausage 

Peppers 

Pepperoni 

Mushrooms 

You can have a plain pizza (no toppings), or a pizza with any combination of the 

above toppings. How many pizzas is it possible to make? 

Part 1: Whatôs the answer? 

Part 2: Convince me that your answer is correct. 

 

Kim and Francesca S. 

Kim and Francesca S. write in their notebooks to solve this problem. They work 

separately but occasionally talk to each other. Kim suggests that they use a ñtree.ò 

Francesca S. says, ñItôs probably easier for me to just list it.ò [Line 2.1.165] They are 

writing in their notebooks. 

The camera focuses on Kimôs paper and she is drawing a modified tree diagram. On 

the top of her paper, she has ñPlain Pizza.ò Underneath this heading, she has a big circle 
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with four branches. Each of the branches is labeled Sausage, Peppers, Pepperoni, and 

Mushroom. [Line 2.1.166] 

Then, off the Sausage branch, Kim creates three more branches and labels each of 

them ï Peppers, Pepperoni, and Mushroom. Off of the Peppers branch, she creates two 

branches and labels them Pepperoni and Mushroom. Off of the Pepperoni branch she 

creates one branch and labels it Mushroom. She says, ñAnd by the time you get to the 

mushroom, thereôs like nothing.ò [Line 2.1.176] 

On the side of the paper, she writes pepperoni, sausage, and peppers. As she writes 

them, she says, ñThen you have plain pepperoni, then you have plain sausage, plain 

peppersò. [Line 2.1.177] She numbers the pizzas she has created starting with the plain 

pizza as #1. She counts that she has 11 pizzas. See Figure 4.23. 
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Figure 4.23. Replication of Kimôs first drawing of her solution to the pizza problem. 
 

The instructor looks at Kimôs work and asks her to explain what she has done. She 

explains that she has a plain pizza, pepperoni pizza, sausage pizza, and peppers pizza. 

The instructor asks, ñAnother question ï how come you left out mushroom?ò [Line 

2.1.191] Kim replies, ñOh! Ok. Mushroom.ò  [Line 2.1.192] She adds mushroom to the 

list and labels this as #5. (She does not realize that she has the mushroom pizza as #11.)  

Kim continues to explain to the instructor her pizzas. She explains that the other 

pizzas are the pizzas with two toppings (she does not go through them). She then realizes 

that she has not done the pizzas with three toppings and renumbers her pizzas so that she 

now has 12 pizzas (the mushroom pizza is counted twice). [Lines 2.1.193 ï 2.1.200] 
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The camera focuses on Francesca S.ôs paper. She has the pizzas listed. The 

videographer asks her what she is doing. She replies, ñIôm just doing with the one 

topping, then two topping, then three topping, then four topping. Like each different ï 

thatôs like the easiest way to do it.ò [Line 2.1.201] Her pizzas are listed as shown in 

Figures 4.24 and 4.25. 

1     Plain 

 

2     S 

3     Pep    1 Topping 

4     Pepperoni 

5     Mushroom 

6     S, P 

7     S, Peperoni   2 Toppings 

8     S, Mush 

9     Pep, Pepperoni 

10   Pep, Mushrooms 

Figure 4.24. Replication of Francesca S.ôs notebook of her solution to the pizza problem. 

 

 
Figure 4.25. Camera view of Francesca S.ôs notebook of her solution to the pizza problem. 

 


