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ABSTRACT OF THE DISSERTATION

Exploring and Justifying Ideas in an tergraduate Mathematics Course:

A Case Study

ANNA BROPHY

Dissertation Chairperson:atolyn A. Maher, Ed. D.

The improvement of mathematics education relies very heavily on the improvement
of undergraduate mathematics education for future teachers (National Research Council,
1989). It is important that undergraduate mathematics instructiggrospective teachers
demonstrates techniques to be used in their future classrooms (Blair, 2006; Senk, Keller,
& Ferrini-Mundy, 2004). Specifically, preervice teachers should develop an
understanding of the mathematical processes of exploratiopraoti(Senk, Keller, &

FerrinkMundy, 2004).

If problems that encourage mathematical exploration and justification are to be
brought into the undergraduate classroom, understanding how students build and justify
their solutions will be of importanc&he purpose of this research was to (1) investigate
how undergraduate students enrolled in a mathematics course solve and justify their

solution to a series of combinatorics tasks, (2) analyze the moves employed by the



instructor and (3) investigate how theafigions compare to the solutions of other

students involved in the same problsoiving tasks.

This case study was conducted in a mathematics class at a liberal arts college. The six
students in this class were all mathematics majors studying to berteddsiag
vi deotaped data and studentsd written work

their solutions and justified their answers to three combinatoric problems was conducted.

It was found that the strategies and justifications used byuberss in this study
were similar to those used by participants in earlier studies. Furthermoregstigating
how the college matstudents built their solutions to the problems, it was found that the

instructor played a critical role in the learninggess.

Findings from this study verify that mathematical learning can take place in a college
mathematics class that fosters mathematical exploration and justification with well
chosen tasks, collaboration with peers, studlentcentered instructianhis study also
has i mplications for i mplementation in oth
solutions to specific tasks as well as examples of how instructors can effectively interact
with students in a mathematical classroom that nurtures ttieematical processes of

conjecturing, generalizing, and justifying solutions to problems.
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CHAPTER 1: STATEMENT OF THE PROBLEM

There is a shared view among mathematics educators that undergradbateaties
education should provide alternative teaching techniques to the traditional style of
lecturing (Blair, 2006; Ganter & Barker, 2004). In particular, the use of active learning is
emphasizedActive learning speaks to one of the seven transitioadedefor the future
of mathematics education in the United States describdteiNational Research
Council (NRC, 1989). The NRC (1989) explains that this transition emphasizéisethat
learning and teaching of mathematics should shift from a body oft¢talaes memorized
to an exploratory fieldvhere themathematical processes of exploring and formulating

conjectures is highlighted.

At Rutgers University, there is an extensive body of research involving classroom
practices that embody this transformatioggested by the National Research Couhcil
In the book Combinatorics and Reasoniniglaher, Powell, and Uptegrove (2010)
discusghestrandof research that focusen the area of combinatoriddaher et al.
found that #Ain a prtasksrwahmminonal inteaentorihbhy ! |y sel e
educators who pay careful attention to stu
can perform mathematically at high | evel so
chosen for the study give rise to the mathérabprocesses of exploration and
justification. Maheretal. ond t hat the students fAbegan th

for patterns, organizing solutions, searching for completeness, deriving strategies for

! Videos and related metata ofstudents solving these problensed in the research at Rutgers
University can befoundat The Video Mesaic Collaborative websitétfp://videomosaic.ong



http://videomosaic.org/

keeping track and checking, and then gamiizing justifications into arguments that were

proofl i ke in structureo (p. 6).

Theresearcheam at Rutgers Universitas focused on many aspects of the
mathematical process including usimguristics and applying personal representations to
developingmathematickideas and forms of reasoninheresearch done at Rutgers
University has mainly focused on students in grade two through high sthowhal
research on these specific tasks has lbeaductedat the college level. Glass (2001,
2010) studid college freshman working on these tasks Gilwrentresearch project will
add to the understanding of how undergraduate college stumeictsind justify their

solutionson specific combinatoric tasks.

There are foupurposes of thisesearch whicliocuseson developing mathematical
ideas and forms of reasonimgth undergraduate students enrolled in a mathematics
course. These six undergraduate students are mathematics majors in their junior year of
college studying to be teachers. The first purpoghisfresearch is to understand how
these studentsuild their solutions to the tasks uskxd elementary and secondary
studentsn the earlier studieSecond, wat forms of reasonindo the college students

usein justifying the solutions of these tasks?

In understanding how students loLiiheir solutions, it is important to consider the
interventions of the instructoA third purpose of the study is to analyze the instructor

interventions in the problersolving explorations of the six participating stnds. Fourth,



in addition to analyzing how the college students built their solutions, their approaches

will be compared with the approaches of students from earlier research.

The questions that guide this study are:

1. How do preservice teachers in an undexduate math class build their solutions

to the problems they investigate?

2. How, if at all, do they justify their solutions?

3. What role does the instructor play in

ideas? What types of interventions, if any, ddeseamploy?

4. How do the solutions and justifications of these college students compare with the

solutions of other students at various ages doing the same problems?

There is a need to understand how undergraduate students solve problems in an
environment thiaencourages exploration and justification if an active learning style is to
be incorporated in undergraduate education. Understanding the types of interventions the
instructor used in the building of these ideas will also benefit future classroomslthat wi
participate in an exploratory learning experience. Furthermore, understanding how
learners develop mathematical ideas can benefit the teaching of matheGwtdsl and
detailed analysis of the process in which learners build their mathematicabideas
specific problems can bring us closeutalerstandinghe procesDifferent

mathematical problems provoke different ways of thinking. If we can analyze learners in



different environments while keeping the task consgerhapave can better undersi@n
how students do mathematics on specific tasks. The more evidence we have on students

working on the same tasks, the better we can understand the mathematical processes.



CHAPTER 2: LITERATURE REVIEW AND THEORITICAL FRAMEWORK

2.1 Introduction

This chapte is organized intdwo sections. The first section explains the theoretical
framework that guides this study. The second secboains the literature review. The
literature review begins with an explanatiortlod importance of reasoning and
justification in the school curriculum, how an active learning style suits the
undergraduate level, and how problems in combinatorics fit into this scheme. The
literature review continues with the three combinatoric tasks explored in this study and

reviews the reseeh on mathematical problem solvimglevant to these three tasks.

2.2 Theoretical Framework

Introduction

Under certain conditions the learning of mathematicdaies place These conditions
are based on a setting where students are given an opportuexyiore and justify
mathematical ideas in an environment where the communication of ideas is encouraged.
These conditions also require appropriate mathematical tasks and an instructor who can

guide the exploration and justification processes.

Framework

Mathematicians solve problems through a process that involves exploration and

justification (Fendel & Resek, 1990). The exploration process, which might involve



pattern finding, making guesses, or looking at examples, is about the discovery of new
ideas. One a conjecture is made, the mathematician seeks to justify the solution.
Mathematics instruction should mimic the way mathematics is achieved and
mathematical thinking occurs (Freudenthal, 1991; Pdlya, 1945, 1954; Schoenfeld, 1992).
Al f t he nakeaatiosihas @nythirig to do with the discovery of mathematics, the
student must be given some opportunity to do problems in wieidinst guesses and

then proves some mat hematical fact on an

Schoenfeld (1992) augs that when students learn mathematics as a series of algorithms

usingdriltandpr acti ce techniques, fithey are not

and other mathematicians who cherish mathematidali n ki ng h g\5657). n mi nd
Students shuld first be given opportunities to explore mathematics and create ideas.

Freudent hal (1991) calls this process Arei

ability, when acquired by oneds own acti vi

thanwhen i mposed by otherso (p. 47). During t

students buildheir own representations and understanding of the problem. Davis and
Maher( 1990) describe a series of steps that

a mahematical poblem.

=

Build a representation for the input data.

2. From thisdatarepresentation, carry out memory searches to retrieve or construct
a representation of (hopefully) relevant knowledge that can be used in solving the
problem or otherwise goingifther with the task.

3. Construct a mapping between tfetarepresentation and ttk@owledge
representation.

4. Check this mapping (and these constructions) to see if they seem to be correct.

(



5. When the constructions and the mapping appear to be satisfactotgchsical
devices (or other information) associated with the knowledge representation in
order to solve the problem. (p. 65)
This cycle is based on the idea that new mathematical representations are created
based omevising and extending previously biunathematical representations. This type
of learning is grounded on a constructivist perspective of learAsmgxplained by
O6Donnel |l -SandedmdI2d®13) , Aa constructivi st
individuals create meaning using their prior uistindings to make sense of new
experience and construct new understanding
built from previous knowledge might seem simplistic; however, it becomes profound
when we permit this type of learning in the classroomDasis and Maher (1997)

e x pl ai n studéniwho isidsing théwork of building or revising these personal

representationso (p. 94).

A T h e rdpresentatiorefers both to process and to produat other words, to
the act of capturing a mathematicancept or relationship in some form and to the form
itselfo ( NCT M, 2Refrl@sentafons ai@ @ Vital part of mathematics because
mathematics is about abstraction and generalization and it is these representations that
symbolize mathematical coapts. Understanding the meaning of an abstract
representation is much more valuable than focusing on the actual represeDgtisn.
(1992) explains that by allowing students to invent representations and to create a
personal representation of the task gaposed to telling students what to do) the focus

shifts to themeaningof these representations.



This process of exploration, also referred to as discelvasgd learning or active
learning, has many benefifairst, it allows the student to take owrt@psof their ideas.
Francisco and Maher (2005) found that the ownership of mathematical ideas was central
in studentsd success at problem solving. T
Amat hemati cal power . o
Students construct meaning as they leaathematics. They use what they are taught
to modify their prior beliefs and behavior, not simply to record and store what they
are told. It is students' acts of construction and invention that build their mathematical

power and enable them to solve proldethey have never seen before. (NRC, 1989,
p. 59)

This statement implies that greater transfer occurs when students construct their own
mathematical understanding of the problem because they retain the mathematics best

when they learn by internal congttion (NRC, 1989, p. 59). Freudenthal (1991) also
expressed this idea of greater transfer be
better in onebés heado (p. 47). However, it

construction that enables greatansfer but thactitself that aids in transfer.

When students seek understanding, they must recognize if they grasp a concept and
when they need more informati¢Bransford, Brown, & Cocking, 2000y hat is, they
must engage in the metacognitmocese s of fAmoni toring and cont
regul ationo (BThaesfet dcano®Be)i mproved by |

more aware of themselves as learners who actively monitor their learning strategies and



resources and assess their readinesssfarp i cul ar test and perforn

al., 2000, p. 67)

However, reinvention of mathematical ideas is not enough; students must also learn
to justify their solutions. Mathematicians justify thealutionsnot only todemonstrate
the answer is tre, butalsoto understand why it is true. The process of justifying a
mat hemati cal conjecture allows the mat hema
process of justifying is truly about understandiRgasoning is central in this
understanding (Ba. Bass, 2003)Maher (2005) found that, when the responsibility of
making sense of the solution was placed on

building of argumentso (p. 12).

By justifying their solutions, students monitor their learning argdforced to
reexamine their solutions. Teaching practices that help students monitor their learning
focus on sensmaking, reflection and sedssessment (Bransford et @000, p, 12). As
shown, | earning to moni t osfer.dhmseviévsis shazed byni n g
Pdlya. In order to justify the solution, students will have to reconsider their solution.
Pdlya (1945) explains that by reexamining and reconsidering the solutions, students can
Aconsolidate their knowkgdge aopildise e lobdp eim

refers to this process as Al ooking back. o

The two processes of mathematical exploration and justification are important in the
learning and understanding of mathematics for many reasons. However, in the learning

ard teaching of mathematias, order for students to engage in and learn from these



10

processesproblem solving should also involve 1) collaboration with peers, 2) proper

teacher intervention, and 3) appropriate mathematical tasks.

Schoenfeld (1992) explaitlsat mathematicians often discuss their ideas with their
peers and Adoing mathematics is increasing
coll aborative acto (p. 29). Maher et al . (
learning process isencouragin st udent s t o communicate thei
di scussing their solutions with peers, it
inadequate reasoning wil/ be exposed, and

(Springer, Stanne, & Donovan, 1999,25).

Furthermore, whelearnersarayor ki ng with peers, the proc
might be enhanced. If students are encouraged to justify their solutions to the teacher and
one another, they will have to go through a process of formulating arehpngsan
explanation of their solutions. Webb (2013) explains how by formulating an explanation,
students will have to reorganize, transform, and clarify their explanation so that others
can understand. The process of presenting these ideas may elicibintiae same
processes as formulating the explanation,
contradictions or incompleteness of ideas that are recognized by the explainer or are
pointed out by otherso (p. 28soanimpertati f ur t h
part of this process.

Listeners may engage in processes analogous to those carried out by presenters.

When comparing their own knowledge with what is being presented, listeners may
recognize and fill in gaps in their own knowledge, redmgand correct
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misconceptions, see contradictions that cause them to seek new information (e.g. by
asking question), and generate new connections between their own ideas, or between
their own anm20pt hersdé i1 deas
Therefore, collaboration with peeran enhance mathematical understanding because,
when learners shardaas, the need for clarification and reconsideration of the solution
becomes important. However, the processes of exploration and justification cannot occur
unless the students are givegopropriate mathematical tasks. The tasks should be open
ended and allow for abstraction and generalizafoar(cisca& Maher, 2005; Martin&
Maher, 1999; Maher et al., 201Granciscaand Maher (2005) describe the value of
supplying complex tasks apposed introducing simple problems that make up a more
complex problemFranciscaeand Maher explain that fthe opy
intricacies of a complex task provides the students with the opportunity to work on
unveiling complex mathematicallagionships, which enhances deep mathematical
understandingo (p. 371). However, the task

knowledge base and the teacher will needniderstand what constitutes challenging for

the teacher 6s owrMalet 19®0ent s (Martino and

Careful consideration of the level of the mathematical task is important. As explained
by Martino and Maher (1999), the teacher will have to determine the appropriate level
that is considered challenging for their specific students. Vyg¢i€ki8) named this
level thezone of proximal development The zone of proxi mal deve
distance between the actual developmental level as determined by independent problem

solving and the level of potential development as determined througleprsolving



12

under adult guidance or in collaboration w
86) . AAccording to Vygotsky, the zone of p
on atask in which the student cannot yet master the task on hisawvréut can

perform the task with appropriate guidance
( O6 Do nn el -bilve& 20H3nm 8).cAccording to this theory, the level of the task is
important but only if there is appropriate guidance. Thereforepthef the teacher is

also very important.

The role of the teacher is critical in a classroom environment that fosters exploration,
reinvention, and justification. I n this en
listener and guide as opposedatlecturer. The teacher must be ablprtvidetimely,
openended questions that promote conceptual understanding and pisadiieng skills
(Martino & Maher, 1999). The knowledge of what and when to ask these questions will
rely on acute listening, trng cont ent knowl edge, and knowl

understanding.

Both Pdlya (1945andFreudenthal (1991xpress how there is a fine line between
hel ping too much and not at all. As Freude
delicate balancebewe en t he force of teachib5f).g and t he
Martino and Maher (1999) stress that the students must have time to explore the problem
without any teacher intervention. The teac

builtasolut on, consulted with each other and po:
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(p. 56). It is at this point that the students are ready to be challenged to explain their

reasoning and justify their solutions.

Martino and Maher (1999) proposed four typéseacher questioning that will aid in
fostering understanding. They suggest questioning that 1) facilitates justification, 2)
offers opportunities for generalization, 3) invites opportunities to make connections, and
4) facilitates awareness of solutigmesented by other students. Examples of the types of
guestions include: ACan you explain your s
us that your method works?0 AHave you ever

there anything aboutyouod uti on thatodos the same as your

Martino and Maher further explain that the teacher must not only be knowledgeable
about the content domain hmust alsohave nowl edge about the stud
the teacher will have to make instructbnad eci si ons based upon st
actions that presented themselves during a
understanding the knowledge structure that might be available to the students is

imperative to be able to encourage further thigkiThis view is shared ddlya for

knowing how and whentoguide. The best i s, however, to hel
The teacher should put himself i n the stud
should try to understand what is goingiom t he student és mind, ani

indicate a step thabuld have occurred to the student himsePdlya 1954, pl)

To summarize, this study is situated in a theoretical perspective consistent with the

one presented by Maher etal. (2010).8t i s, fAstudents | earn ma
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the process of building their own personal representations, communicating them as ideas,
and then providing support for those ideas by reorganizing and restructuring
representat i on s ibatidnpf.apprbpriate tdsks, the processef ¢ o mb
explaining and justifying the solutions, and teacher questioning that promotes meaningful

mathematical learning.

2.3 Literature Review

2.3.1 Reasoning and Proof

Reasoning and proof is one of the five processdstals for all grade levels,
prekindergarten through grade 12, set forth by the National Council of Teachers of
Mathematics [NCTM]. As it is explained by NCTM, reasoning is an essential part of
mat hematics and shoul d be aficsedacgtiodn ar par't
throughout all grade | evels. fABeing abl e
mathematics. By developing ideas, exploring phenomena, justifying results, and using
mathematical conjectures in all content area®andh different expectatins of
sophisticatiod at all grade levels, students should see and expect that mathematics

makes senseodo HBNCTM, 2000, p.

The process described by NCTM of exploring and justification is akin to the
description by Fendel and Resek (1990) on how matheianagi work. In the textbook

titled Foundations of Higher Mathematics: Exploration and Prde#ndel and Resek

explain that mathematics entails explorat:.i
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examining a situation, with or without a particular qu@sin mind, and discovering
whatever you can about it. 't i nvidryinges O me
one thing and then another, | ooking at exa

(Fendel & Resek, 1990, p. 3).

The process of exploratios about constructing new ideas. Ball and Bass (2003)
explain that reasoning is a central instrument in this process. Instead of the phrase
Aexpl @r dthiegyn c al leasaning o§inqeihe Putthe fA t hi s proce
conjectures are made and thetimeanatician will want to prove these conjectures.
AMat hemati cal reasoning also functions <cen
claims, a process that we call tieasoning of justificatiosn ( Bal | & ®ass, 200
As FendebhndResek (1990gxplain, exploration and proof are not separate identities,
they are mutually supportive. The process of proof grows out of the process of
exploration. According to BalindBass, reasoning is the central aspect of these

processes.

The ultimate result ofrgumentation for a mathematician is a formal mathematical
proof (Yackel & Hanna, 2003, p. 228). dnAll
with acquiring understanding, and the separations between the stages are not always
sharply defined. But the hallark of the proof stage is that it is primarily concerned with
acquiringcertaintyp ( Fendel & Resek, 1990, p. 19). A

series of steps and logic demonstrating certainty about the mathematical discovery using



16

specialized communitian agreed upon by the mathematical community (Fendel &

Resek, 1990, p. 4).

Yackel and Hanna (2003) explain that fAa g
understand the meaning of what is being proved: to see not only that it is true but also
whyitistueo (p. 228). Mat hemati cians are conce
to understand a mathematical statement, one must understand why it is traadBall
Bass (2003) state h anathefatical understanding meaningless without a serious
emphasiso r e a  28).As théy explain, memorizing a series of steps in a
procedure without understanding the reasons for these steps is analogous to reading a text

without comprehension.

Therefore, mathematical instruction should emphasize reasoningsTihnahould

highlight a need for understanding why a mathematical statement is true.

From children's earliest experiences with mathematics, it is important to help them
understand that assertions should always have reasons. Questions such as "Why do
you think it is true?" and "Does anyone think the answer is different, and why do you
think so?" help students see that statements need to be supported or refuted by
evidence(NCTM, 2000, p. 56)
In summary, the central goal of mathematics is understarsindents need to
under st and t toamathematics,jwe aré corsternecdwiithythe
mathematics we are doing is true. In order for students to learn to mathematically reason,
teachers will need to fidevelopngoad(Bahlné&p

2003, p. 43). They will need to be equipped with mathematical tasksrtmabte

mathematical reasoning (Ball & Bass, 2003, p. 43). They will need to learn witnediis
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to reason mathematically and to be able to recognize mathennatisahing when it
occurs. AA challenge for mathematics educa
developing forms of classroom mathematics practice that foster mathematics as reasoning

andt hat can be carri ed outacke & ldama 203, pu 234)y on

2.3.2 UndergraduateMathematics

In the publicationEverybody Counts: A report to the nation on the future of
mathematics educatigiNational Research Council [NRC], 1989), the National Research
Council explains that improvemeof mathematics education is dependent on the
renewal of undergraduate mathematics education because most future teachers of

mathematics are educated in our colleges and universities.

Undergraduate mathematics is the linchpin for revitalization of mattesn
education. Not only do all the sciences depend on strong undergraduate
mathematics, but also all students who prepare to teach mathematics acquire
attitudes about mathematics, styles of teaching, and knowledge of content from
their undergraduate expence. No reform of mathematics education is possible
unless it begins with revitalization of undergraduate mathematics in both
curriculum and teaching style. (p. 39)
There is a shared view among mathematics educators that undergraduate mathematics
educdion should provide alternative teaching techniques to the traditional style of
lecturing (Blair, 2006; Ganter & Barker, 2004). In particular, the use of active learning is
emphasi zed. As Blair (2006) expl aias, nact
collaborative learning, discovebased learning, interactive lecturing and question

posing, and writing. Whichever format is chosen, the goal of the activity should be to

enhance conceptual wunderstandingo (p. 54).
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One of the formats of active learnirdiscoverybased learninggpeakgo one of the
seven transitions needed for the future of mathematics education in the United States
described by the National Research Council (NRC). This transition emphasizes a need for
exploration in mathematics. Disaeny-based learning, described by Blair (2006),
involves exploration by engaging students in the process of discovering concepts and
patterns. The seventh transition, recommended by the NRC, emphasizes that the learning
and teaching of mathematics shouldtdhom a body of laws to be memorized to an
exploratory field. The NRC states that teaching and learning of mathematics should focus

on:

A Seeking solutions, not just memori zi:r

A Exploring patterns, not just |l earni
A F o r maohjezttrésnngt just doing exercises.

As teaching begins to reflect these emphases, students will have opportunities to
study mathematics as an exploratory, dynamic, evolving discipline rather than as a
rigid, absolute, closed body of laws to be memariZéney will be encouraged to see
mathematics as a science, not as a canon, and to recognize that mathematics is really
about patterns and not merely about numbers. (NRC, 1989, p. 84)
This process of exploring patterns and formulating conjectures wasbeesearlier
by Ball and Bass (2003). They explained that this process requires mathematical
reasoning and that future educators will need to be equipped with the knowledge and the
mathematical tasks that will support and promote mathematical reasdriutgre
mathematics classrooms are to support this type of learning, the future educators will

need to be exposed to this type of learning. Since teachers are inclined to teach the way

they were taught, it is important that undergraduate mathematiascirstrfor

n ¢
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prospective teachers demonstrates techniques to be used in their future classrooms (Blair,

2006; Senk, Keller, & FerriiMundy, 2004).

Mathematics classrooms, at all grade levels, should incorporate styles of instruction
that emphasize the expédory and justification aspect of the mathematical process. Most
important is the education of our pservice teachers at the undergraduate level because
they are our future educators at thd Klevel. If our future educators are to emulate this
type ofinstruction in the classroom, they will need to be exposed to it in their own
education. It is essential that the mathematics courses taken-gsgrpiee teachers
devel op Aunderstanding of both mathemati ca
asdefni ng, conjecturing and -Pundyy2004,p0l48).Se n k , k
The improvement of mathematics education relies very heavily on the improvement in
undergraduate education for future teacher
betweemr esearch and schools and holds the powe

(NRC, 1989, p. 41).

2.3.3 Discrete Mathematics: Combinatorics

Principles and Standards for School Mathemagidational Council of Teachers of
Mathematics [NCTM], 2000) recommentlet discrete mathematics should be an
i mportant part of school mathematics and s
an active branch of contemporary mathematics that is widely used in business and
industry, discrete mathematics should be &egral part of the school mathematics

curriculum, and these topics naturally occ
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(NCTM, 2000, p. 31). The three main areas of discrete mathematics recommended by

NCTM are combinatorics, iteration and recursiand vertexedge graphs.

Discrete mathematics basically involves working with objects that are countable. That
is, the objects in the set can be enumerated by the set of natural numbers. Discrete
mathematics contrasts with continuous mathematics whides continuous
guantities. One of the branches of discrete mathematics is combinatorics. Simply put,
combinatorics is concerned with counting o
mathematics of systematic listing and counting. It facilitates solviolglgms such as
determining the number of different orders for picking up three friends or counting the
number of different computer passwords that are possible with five letters and two

numberso (Hart, Kenney, DeBellis, & Rosens

Discretemathematics is the basis of many other branches of mathematics including
probability, statistics, and computer science. These topics were listed under the fifth
transition for the future of mathematics education suggested by the NRC. This transition

expla ns the need for a greater emphasis on i

and future needso (NRC, 1989, p. 83).

Hart et al. (2008) explain the importance of discrete mathematics for the future of our
children and the future of our nation. A®yhexplain, since discrete mathematics is
closely tied to technology, 1t is fdAparticu
(p. 4). Furthermore, Hart et al. explain how problems in discrete mathematics are

Apedagogi cal |y p ootoalyincludedmpdrtant naathesmatical ¢toetgnt n
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but they also can be used to teach mat hema
discrete mathematics, students strengthen their skills in reasoning, proof, problem

solving, communication, connectiosn d r epresentation i n many

Freudenthal (1991) also explains how problems in discrete mathematics, specifically
combinatorics, give rise to the need for conjecturing and creating convincing proofs,
especially proofs in mathematical inductiéurthermore, Freudenthal explains the value
of combinatorics in the process of discove
explains:

Starting with numerical paradigms, guessing general relations, experiencing and

satisfying needs for good defimtis and convincing proofs, encountering

mathematical induction thanks to these efforts, and using mathematical induction,

first instinctively, then intentionally, and eventually in a more or less formally

verbalised manndr all this together appears to aemost efficient course in

reinvention. (p. 53)

According to Freduenthal (1991), reinvention involves discovery and organization
and, in the context of the | earmiANg enviro
explained, the student will discover sohiaty new to him but known to the guide in the
process of guided reinvention. AGuiding me

force of teaching and the freedom of | earn

of guided reinvention as an educatal practice.

Learners should be allowed to find their own levels and explore the paths leading

there with as much and as little guidance as each particular case requires. There are

sound pedagogical arguments in favour of this policy. First knowledgealalitg,

when acquired by oneds own activity, stic
when imposed by others. Second discovery can be enjoyable and so learning by
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reinvention may be motivating. Third it fosters the attitude of experiencing
mathenatics as a human activity. (p.47)

It has been shown that the educational value of solving problems in discrete
mathematics, specifically combinatorics, is tfetd. Firstly, combinatorics is pertinent to
mathematics that affect our professional and earyides especially in the
technological society in which we live. Secondly and maybe most importantly, is the
Apedagogically powerful 0o aspect of problem
mathematics education classrooms are ones in which the mathépratoess of
exploration and justification are to be nurtured, tasks in discrete mathematics will be very

beneficial.

2.3.4Rutgers University i The Longitudinal Study

An extensive body of research conducted at Rutgers University demonstrates how the
use d well-chosen combinatoric tasks can engage students in the mathematical processes
of exploration and justification. The problems were presented in a classroom community
where students were encouraged to share ideas, there was minimal teacher intervention,
and they were expected to justify their solutions. The researchers found that the students
Acreated models, invented notation, and ju
ideas and understandings to address new challenges. That is, they performed
ma hemati cs: created mat hemati cal i deas and
& Uptegrove, 2010, p. 203). Part of this body of research will be discussed in detail in

sections to follow.



23

The research at Rutgemsformally calledit he | onwdya,dimeadamti n 1
the bluecollar community of Kenilworth, New Jersey. The researchers were interested in
Awhat mat hemati cal concepts students coul d
teacherso (Maher et al ., 2dapedandaaongvdth . The
students6é written work and researchers not
the study were exposed to different topics in mathematics but the major strand of tasks
was grounded in the discipline of combinatorics. Theaeshers choose problems in
combinatorics because Ain working on these
organize their work systematically, look for patterns, and generalize their findings; also
counting problems were at the time outside the regdsmentary school curriculum and

therefore unfamiliar to the studentso ( Mah

The longitudinal study contains reseaatioutstudents in grades one through high
school. Some of the same students are followed from grade one thobgitiogyl and
beyond. Even at an early age, the students
patterns, organizing solutions, searching for completeness, deriving strategies for keeping
track and checking, and then reorganizing justifications irgoraents that were proof
l' i ke in structur eo nfiddladcreool, the teseardhers fourdd@hatdo , p .
the students more clearly defined these forms of reasoning. By middle and high school,
they could explain the underlying mathematical strees and make connections to

mat hemati cal concepts including the binomi
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Thelongitudinal studynvolved students from the Harding School in Kenilworth,
New Jersey. However, the interventions were also conducted alemverdgary schools
in the suburban community of Colts Neck, New Jersey and the urban community of New
Brunswick, New Jersey. Glass (2001) replicated some of the combinatorics tasks with a
group of community college students. These students were enrofidibaral arts
mat hematics course. The data was coll ected
over a two and a half year period starting in the spring semester of 1998 and concluding

with the spring semester of 2000.

The research at Rutgers Unisity, along with the study by Glass (2001), has
implications for teaching because it not only provides a detailed analysis on how
mathematical ideas are developed and justified but it provides research of effective tasks
that offer opportunities for studesi young children through young aduitso explore

patterns, formulate conjectures and justify their solutions.

2.3.5The Combinatoric Problems

Three of the combinatorics problems encountered in the longitudinal study are found
below. The research dhese three problems will be discussed in detail in the next
section. For each of these three tasks, common patterns, justifications, and organizational
strategies were identified from the solutions of the students. A glossary of these schemes
isincludedhere as a reference. The three combinatorics problems are: (1) tiaifour
towers problem, (2) thefoaroppi ng pi zza problem, and (3)

problems and their solutions are listed below as writtéoimbinatorics and Reasoning:
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Represating, Justifying and Building IsomorphisifMaher, Powell, & Uptegrove,

2010).

Four-Tall Towers

Your group has two colors of Unifix cubes. Work together and make as many
different towers four cubes tall as is possible when selecting from two color$. See |
you and your partner can plan a good way to find all the towers four cubes tall.

At each position in the tower, there are two color choices. Therefore, there are
2x2x2x2 = 16 possible towers that are four cubes tall. This can be generalized to an
n-tall tower with two colors to choose from; there are 2x2x2. . . 2"possible

towers that are cubes tall, when there are two colors to choose from. This can also
be generalized to amtall tower withm colors to choose from; there arxmxm. . .

xm=m" possible towers that arecubes tall withm colors to choose from. (Maher,
Powell, & Uptegrove, 2010, p. 207)

The FourTopping Pizza Problem

A local pizza shop has asked us to help design a form to keep track of perza
choices. They offer a cheese pizza with tomato sauce. A customer can then select
from the following toppings: peppers, sausage, mushrooms, and pepperoni. How
many different choices for pizza does a customer have? List all the possible choices.
Find a way to convince each other that you have accounted for all possible choices.

There are 2x2x2x2 = 16 possible pizzas. (Maher, Powell, & Uptegrove, 2010, p
210-211)

Ankur s Chall enge

Find all possible towers that are four cubes tall, selecting frdrascavailable in

three different colors, so that the resulting towers contain at least one of each color.
Convince us that you have found them all.

Suppose the colors are red, blue, and green. We are counting the towers in three
cases: (1) those with twed cubes, one blue cube and one green cube, (2) those with
one red cube, two blue cubes, and one green cube, and (3) those with one red cube,
one blue cube, and one green cube. The following equation gives the number of ways
of selectingn groups of objets of sizer, throughr,:

an Q_

% 8= 1 |

LRI PTRSS S oL P
So the number of fotall towers containing exactly two red cubes, one blue cube,
and two green cubes is:

n

, where §r =n
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o 4 ~
2 g & Sa7 =12
c211xr
Similarly, for the other two cases:
a49._44a9
% @ Eﬁ 8 12

Hence, the number of towers W|th the required condition is 12+12+12 = 36. (Maher,
Powell, & Uptegrove, 2010, 212213)

Unifix Cubes

Unifix cubes are plastic cubes that come in a variety of colors. They have a top and a
bottomandil ock o6 i nt o each o ttdll ®werdorists ob foumculie® we r s .
il ockedo together. Since a cube has a vert
towers problem requires the student to produce all of the combinations of toaterarth
be made when selecting from cubes of different colors. This problem can be modified to

make any height of a tower and selecting from any number of colors.

Figure 2.1 Example of a foutall tower.
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2.3.6 Glossary of Terms

When solving the towensroblem,students often used patterf®ur major patterns
are found throughout the literature and have been referenced as: opposites, cousins,

staircase, and the elevator pattern.

Opposites

This method i s occ asvisomopmsitédy |rfe fyeorur ehda vteo aa
then its opposite tower would have the opposite color cube from the original tower in
each position. For example, if one tower is blue, red, blue, blue. Then the opposite tower
would be red, blue, red, red (Maher & Martino, 1996ahb&ta% Martino, 1996b;

Martino, 1992).

Figure 2.2 Example of a pair of opposites.
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Cousins

Cousins are towers that, when one is flipped, they are identical. For example, a pair of
cousins would be red, red, red, blue and blue, red, red, red (Mahertad149964a;

Maher & Martino, 1996b; Martino, 1992).

Figure 2.3 Example of a pair of cousins.

Elevator

This technique is used for the towers that contain one cube that is a different color
from all of the other cubes in that tower. To create diffetewers, the cube is
systematically moved from position one to positiohe resulting towers, when placed
next to each other, resemble an elevator. For example, in the third grade, a student in the
Kenilworth study named Stephanie used this technigunwblving the foutall tower
problem. She created four towers systematically. The towers contained three red cubes
and one blue cube. She created the towers by moving the blue cube from position one to

position two, to three, and four (Maher & Martin®@96a, 1996b; Martino, 1992).
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Figure 2.4 Example of towers forming the elevator pattern.

Staircase

This pattern describes a group of four towers. When using red and blue as the cube
colors, the first tower would have a red on the bottom followed by thitess, the second
tower would have two red cubes on the bottom followed by two blues, the third tower
would have three reds on the bottom followed by one blue, and the last tower would
contain all red cubes. When placed next to each other, the redvenibesform a
staircase. For example, in the fourth grade, Stephanie used this technique when solving

the fivetall tower problem (Maher, Sran & Yankelewitz, 2010). See Figure 2.5.
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Figure 2.5 Example of towers forming the staircase pattern.

Controlling for variables

This phrase means to hold one variable constant while adjusting another variable.
Stephanie in grade four used this strategy when building towers that containkesof
the same color. She held the color of one of the tower positionsanbmgtile adjusting a
secondcubeof the same color in the remaining tower positions (Maher & Martino,

1996a).

Tree diagram

A tree diagram is a systematic way to list all elements of a set. According to Tarlow
(2010), an eleventh grade student named $hekd this technique to solve the pizza
problem. Shelly labeled the first node on the tree as plain. She then labeled the first four
branches that stem from this node as one of the four pizza toppings. From each of these
toppings, another branch extentsithg another topping. However, she was careful not to

repeat toppings. That is, from her first branch, that is labeled peppers, she had three
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branches each for mushroom, sausage, and pepperoni. But, in the next branch which is
labeled sausage, she ongdmushroom and pepperoni because the combination of
sausage and peppers was contained in the previous branch. She continued in this fashion

to create 16 pizzas.

Case Argument

A proof by cases is used in mathematics when it is easier to prove the stddgment
proving all of the smaller cases that make up the whole. For example, a justification
could be made when showing that there are a total of eight towergdhneben
choosing from two colors by grouping the towers into cases based on a certaiteattrib
Then, in a complete argument by cases, each case would be proven to be true. Much of
the research has shown that most of the students organized their cases by number of
cubesof a certain color. For example, if the towers were tiaechoosing frontwo
colors ofcubes the students would have four cases. They would organize their four cases
as (1) towers with noubesof that color, (2) towers with ormibeof the particular color,
(3) towers with twacubesof that color, and (4) towers with thregbesof the particular
color. This particular organization strategy was the most abundant among the students but
it was not the only choice. Stephanie, in grade four, provided a different approach to
casesforthethreeal | t ower s pr waddases(towess withfnoblue | ndi vi
cubes, one blue cube, two blue cubes stuck together. Three blue cubes, and finally, two

blue cubes separated by a ,p.3). cube) o (Mahe
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Inductive Argument

A mathematical proof by induction involves s¥ing that a statemepi(n) is true for
all whole number values of or for all values oh greater than a given numbér.
involves the following steps: (1) show the statement is true for the first case (this is

usually,n=0, n=1, orsome other small vaduofn) and then (2) assume the statement is

true forn and prove that it is true for +1. A proof of the formula2" as a solution othe
n-tall tower problem selecting from two colors using mathematical induction is as

follows:

Step el show the formula is true farx=1. That is, show that there are two towers
when the height is onaube Since, there are only two colors to choose from, say red or

blue, there are only two towers of oruehigh. Therefore, the formula is true forl

Step Two- Assume true fon, prove true fon+1.

Proof: Assume true fon. That is, when you are choosing from two colors, there
are 2" different towers that ane-tall. To create all of the towers that arel tall, you
can take albf the existinc2" different towers and addcabeto each one. Now, you
have two choices for thisube So eaclof the existinc2" different towers can make two
more towers. So the number of towers is two ti 2":s
2"*2

2"* 2
2n+1
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By induction, it has been proven that for towarsall, there are2" towers.

The inductive arguments that the students made are not as sophisticated as a
mathematical proof by induction. Howay there are some informal and basic ideas

based on this type of proof imbedded in their arguments.

In grade four, Milin (a classmate of Stephanie) did his proof by induction with the
actualcubes He started with towers one cube high and built four teweo-high by
adding a blue cube on one and a black on the other. He continued to do this ftallthree
towers. When he is questioned about how manyfaluitowers, he replied it would be
167 two for each of the eight he had already made. And whenl adaut fivetall

towers, he replied 32 (Alston & Mahdr993).

Milan used inductive reasoning to deduce that the number of towers doubles each
time the height of the tower increagssone He first demonstrated that his conjecture
was true for when thewers are oneubetall. (This is the first step in a mathematical
proof by induction.He thensaid that the number of towers doubles when you go from 1
tall to 2tall because eachtall tower can be used to generate twialRtowersi because
you can face either a blue cube obkackcube on the top of each towedfe also
explains thathis is also true when you go frorta&l to 3-tall, etc.(This is the second
step in a proof by induction.) Although he does not ugereralized formula,éh

demongtated that thén+1)-tall towers can be built from the towerdall.
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Isomorphism

Mat hematicians use the term is@gmdophi sm,
mat hemati cal systems that are fAnessentially
underlying stuctures of the solution to the fetopping pizza problem and the fetal
towers problem are isomorphic. The solution to both problems is two to the fourth power.

In the pizza problem, the four represents the number of toppings. In the towers problem,
the four is the height of the tower. The base of two in the solution represents the choice of
colors in the towers problem. In the pizza problem, the two represents the inclusion or
exclusion of the topping. Underneath, these two problems have the sammataiie

structure. That is, they are isomorphic.

Pascal 6s Triangl e

Thefollowingt r i angul ar array of numbers i s know
the last number in each row are ones. Starting with row two, the remaining numbers in
the row can bedund by adding the pair of numbers directly above. Also, the sum of each
row equals a power of two and each number represents a combination. In geméal, if

equal to the row number ands the numbered entry in tmeh row, then this entry is

equal ta ,C. (the number of combinations ofthings taken at a time).
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Table 2.1
First Seven Rows of Pascal 6s Tri ang
Pascal 6s Tr Row Sum Row Sum

expressed as a
power of two

Row O 1 1 20

Row 1 1 1 2 21

Row 2 1 21 4 22

Row 3 1 331 8 23

Row 4 146 41 16 24

Row 5 1510 10 5 1 32 25

Row 6 1 6 15 20 15 6 1 64 26

Row 7 1 7 21 35 3 21 7 1 128 27

P a s cldentidys

Pascidemtsi ty, also known as the addition
rth element in th@+1 row can be found by adding the tworaknts above it. That is, the
rth element in the+1 row can be found by adding th#n and ther-1)th element in the

nth row. Mathematically, this is written as:

g for 1¢r¢n+1

For examplethethird entry in the seventh row (the number 21) caridund by
adding the second and third entries in the sixth row (6 and 15). [In this example, using the

formula,nis six andr is 3.]
2.3.7 The Towers Problemi Building and Justifying a Solution

There is evidence of students solving this problem in etéang school (third, fourth,

andfifth grades), high school (eleventh grade), and collegthe section that follows,
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twenty-four solutionswill be discussedn detailorganized by grade level and concluding

with an overall summary of solutions and jtiséitions

Grade Three

Evidence of third graders working on the towers problem can be found in Martino
(1992) and Martino and Maher (1999). Martino (1992) describes the work of two pairs of
students that occurred on October 11, 1990. These pairs aréeghpSie and Dana and
(2) Michael and Jamie. Martino and Maher (1999) describe two students, Meredith and

Jackie, working on this problem on December 10, 1992.

Stephanie and Dana began by building opposites. For most of the session, this was the
only orgarzation strategy they had for building towers. At the end of the session, to
check to see that she had found all towers, Stephanie organized her towers with one blue
cube in an elevator pattern. They also checked using the strategy of cousins. To justify
that they had found all of the towers, Dana

and that every time they created a new tower, it was a duplicate.

On the same day, Michael and Jaime worked on this problem. Jaime also built towers
using the oppositeechnique. They organized their 16 towers into 8 groups of opposite
pairs. Michael and Jamie were not convinced that they had all of the towers because
many of the other students in the classroom had found more than 16 towers. Once the
other groups of stients found duplicates and concluded that the answer was 16, they

were convinced that they had the correct answer.
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Martino and Maher (1999) explain how Meredith and Jackie initially built towers in a
random fashion. They then moved to organizing the toiméygairs of opposites. When
guestioned by the teacher as to how they knew that they had found all of the towers,
Meredith explained that she could pick up an individual tower and check with each other
tower and find that acheraskedhedhow she kdew théti c at e .
there werenot anymore, she rearranged her
the number of cubes of a particular color. Furthermore, she organized the towers with one

cube of a particular color into an elevatottean.

Meredith had difficulty explaining the case that contained towers with two cubes of a
specific color. However, in an interview three days later, Meredith organized her towers
so that she could justify that there were only six towers in the cas® offta specific

color.

Meredith organized her six towers of height four into three pairs: a tower with exactly

two yell ow cubes separated by no red cube
two yellow cubes separat ed anyd oan et aveedr cwib
exactly two yell ow cubes separated by two

explained that there could not be a tower of height four with exactly two yellow cubes

separated by three red cubes unless the tower violated the iniiittico that it be

four cubes tall. (Martino and Maher, 1999, p. 64)

Meredith worked on the pizza problem on March 15, 1993. She was asked if the pizza
problem reminded her of any other problem. She replied that it reminded her of the

towers problem. Theonnecti ons she made can be found

Connections between Towers and Pizzas. o0



38

Grade Three Summary

All of the third graders used the pattern of opposites to create and organize their
towers. Two of the three groups used the elevatoenpetd show that they had found all
of the towers with one cube of a specific
cousins as another way to organize their p
found all of the towers because anytimeyticreated a new tower it was a duplicate.
Mi chael 6s group wasnodot convinced that they
other students in the class had also found 16 towers. Only Meredith organized her towers
by cases based on a specific color wag able to justify that she had found all of the
towers within each case. She may have been able to have such a strong justification
compared to the other third graders because of the types of questions that were asked by
her teacher. As MartinoandMahe ( 1999) report on page 75,
suggest that teacher questioning that is directed to probe for student justification of
solutions has the effect of stimulating students texa&mnine their original solution in an

attempttoofferanor e adequate explanation, justific

Grade Four

There are many articles written about students solving the tifwee, and fivetall
towers problem in the fourth grade (Alston & Maher, 1993; Maher, 1998; Maher &
Martino, 19%a; Maher & Martino, 1996b; Maher & Martino, 1997; Maher & Martino,

1998; Martino, 1992).
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Evidence of two fourth graders, Brandon and Justin, working on thedbtowers
problem on November 17, 1992 can be found in the article by Maher and Mart@®&).(19
They created towers using cousins and opposites. When they realized that using both
techniques created duplicates, they relied only on the opposite strategy and they
organized their answer in eight pairs of opposite towers. After working on the pizza
problem, Brandon was interviewed and asked if the pizza problem reminded him of any
other problem. He replied that it reminded him of the towers problem. In this interview,
conducted on April 5, 1993, he recreated the towers using opposites and whetotrying
make the connection, he organized his towers in cases based on the number of a certain
colored cube. His three cases contained (1) the solids, (2) the towers containing one of a
certain color, and (3) the towers containing two of a certain color.dfartre, he
organized his two groups with one cube of a certain color in an elevator pattern. The
connections he made between the towers and the pizza problem are described in the

section AMaking Connections between Towers

On February 6, 199&tephanie and Dana worked on solving the problem of finding
all five-tall towers when selecting from two colors. These two students had worked
together on the foutall towers problem in the third grade. Similar to the third grade, they
used the strategyf opposites to build their towers. As they checked the towers they had,
they also used the cousins strategy. To check that they had found all of the towers, they
organized their towers in groups that consisted of a tower, its opposite, its cousin, and the

cousin's opposite (Maher & Martino, 1996a; Maher & Martino, 1996b; Martino, 1992).
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In the same class as Stephanie and Dana, Michael and Milin worked together and
they also began by creating opposites. They eventually built 30 towers and decided that
they had found them all based on how much time passed before they found a duplicate.
Since over 10 minutes had passed without finding a duplicate, they proclaimed that they

were finished (Alston & Maher, 1993; Martino, 1992).

On March 10, 1992, the task movedrfr building towers thretll to justifying and
providing a convincing argument. Four students, Milin, Stephanie, Jeff and Michelle,
were i nterviewed and this session has come
this session, Milin provided a prooy Induction and Stephanie provided a proof by
cases. Stephanie created five casesvers with no blue cubes, towers with one blue
cube, towers with exactly two adjacent blue cubes, towers with three blue cubes, and
towers with two blue cubes apart. Milild his proof by induction by drawing the four
two-tall towers and showing how eight thrizdl towers can be built from the four two
tall towers (Maher, 1998; Maher & Martino, 1996a; Maher & Martino, 1996b; Maher &

Martino, 1997).

In an earlier interviewMilin did his proof by induction with the actualibes He
started with the two towers one cube high. He built four towers two high by putting a
blue cube on one of the otell towers and a blackubeon the other onall tower. He
continued to do thifor threetall towers. When hwas questioned about how many feur
tall towers, he replied it would be 16wo for each of the eight he had already made.

And when asked about fivtall towers, he replied 32 (Alston & Maher, 1993).

t
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Grade Four Summary

All of the fourth graders created their towers using the strategy of opposites.
Brandonds group also used cousins to build
when it started to create duplicates. Step
strategy. She and Dana created groups to justify they had found all of the towers. Their
groups contained a tower, the opposite tow
opposite. Brandonés group organized their
Milin and Michael justified that they could not fiadymorebecause too much time had

elapsed before they could think of another tower.

Brandon, Stephanie, and Milin all created sophisticated ways to justify that they had
found all towers. Brandon and Steyire did a proof by cases and Milin did a proof by
induction. These students were given considerable time to think about their solutions and
to revisit the problem. Also, the role of the teacher was very central in these

interventions.

Importantly, theselata show the advantage to revisiting tasks, group discussions
about ideas, and sharing strategies. All of these components play a key role in the
formulation and refinement of justifications. Stephanie and Milin, after having had
multiple opportunities tthink about and justify their ideas, presented a compelling
argument to classmates during the group evaluation setting. (Maher, Sran, &
Yankelwitz, 2010, p. 43)

Grade Five

In an article by Maher and Martino (1997), Stephanie created a proof by indoytion

recognizing a Adoubling pattern. o This wund
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of working with the towers over a yearos

t

26, 1993, Stephanie presented hernclaessxpl anat

She used cubes and built the towers starting with towers one high. She explained that for
each cube, there are two choices of colors to go on top, producing four towerg&go

high. She proceeded with this explanation until she created autgall towers.

Eleventh Grade

Evidence of the eleventh graders in the Kenilworth study solving the towers problem
can be found in Tarlow (2004). On November 13, 1998, six of the students in the
Kenilworth study worked on the towers problem inadtersdool session. The six
students worked in pairs: (1) Angela and Magda, (2) Michelle and Robert, and (3) Ali
and Sherly. Of these six students, only Robert and Michelle had worked on the towers

problem previously in the fourth grade.

Angela and Magda

They first created their towers by building the towers that created an elevator pattern.
They organized their towers in cases based on the number of blue cubes. They could not
explain how they found all of the towers
possibilities. o0 They deci deubeddllandtheyo k a't
found the answer to be eight. Angela came up with the for x" ilavherex is equal to
the number of colors andis equal to the height. Howevehngly did not explain the

reasoning for their (correct) formula.

w

h
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Michelle and Robert

Michelle and Robert initially worked separately. Robert built his towers using cases
based on a specific color while Michelle randomly built her towers and organized them as
opposites. Michelle justified that she had found them all because she could not think of
anymore Robert systematically demonstrated how he accounted for the towers with
exactly two blues. He explained that he kept the top cube blue as he moved théuether
cube into all of the positions. Then he moved the top blue cube to the second position and
moved the other blue cube into the remaining positions. Furthermore, Robert found a
formula for the group of towers containing two of a color. His correct famsin* (h/2-

1/2) whereh is the height of the tower. However, he was not able to explain why his

formula worked.

The instructor asked Robert and Michelle to find the number of-thle®wers
when choosing from two colors. After some thought, Robetie@ that there would be
eight because you could eliminate all of the ftalr towers that have a blue on top. The
remaining eight foutall towers with the yellow on top would create the eight tiadle
towers once the top yellow cube is removed. Roded Michelle realized that the
number of towers doubled as the height of the towers increased and they explain that the
formula is two raised ta (wheren is equal to the height of the tower). Thegre not
able to explain why the formula is two to theHowever, when asked how one could go
from a onetall tower to a twetall tower, Robert explained that he could add a blue or a

yellow cube to the top of the onall tower. Furthermore, Michelle and Robert
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discovered that the formula for any numberabcs for any height towers 8" wherex
equals the number of colors angs equal to the height of the tower. However, although

Robert was able to show inductively how the towers can be built, he was unable to

explain why the formulés x".

Sherly and Ali

Sherly and Ali initially organized their towers by opposites. To explain that they
found all of the towers, they organized their towers by cases based on the number of a
certain colored cube. They were able tolaxpthe cases containing one of a certain
color and three of another color by demonstrating the elevator pattern. However, they
were unable to explain how they found all of the towers in the case containing two of one
color and two of another color. Theglieved the answer to be 16 because, as they
explained, four times four is sixteen. Based on this logic, they predicted that for towers

that are thredall, the answer would be nine because three times three is nine.

Summary of the Eleventh Graders

The stidents used patterns to build their towers. These patterns included opposites
and the elevator pattern. All three groups organized their towers by cases based on the
number of a certain colored cube. All, except for Robert, had difficulty explaining that

they had found all of the towers in the case containing towers with two blue cubes. Two

of the groups discovered the formula toXSewherex is equal to the number of colors

andn is equal to the height of the tower. However, they weteable to explain the



45

reasoning for this formula. Roberticexplain how the towersoald be built inductively
by adding a cube to the top of the towers of the previous height. Howeveéd, ricg d

makea connection from his inductive argument to the fadan

College Students

Glass (2001) reported on 19 college students who solved th@afbtawers problem.
Some of these students also solved extensions of this problem including {tadi five
towers problem and towers fotall choosing from three colar©f these 19 students, 11
were highlighted for a case study. The rem
when appropriate. Because the analysis of

as detailed, only the 11 students that were tinginty described will be discussed.

In building the towers, most of these students used patterns to create the towers. Eight
of the 11 students created towers by using the strategy of opposites. One student,
Melinda, was reported to also use the strategyasins. Many students also used a

staircase or elevator pattern to build their towers.

Once the towers were built, they had to justify that they had found all of the towers.
Six of the students rearranged their towers using cases where each casedvas these
number of a certain selected cube within the tower. For example, if the colors were
yellow and red, the cases would be defined as (1) zero red, (2) one red, (3) two red, (4)

three red, and (5) four red. One student, Errol, organized his 16 toneet&o groups
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one group contained all of the towers with a red cube on top and the other group

contained all of the towers with a yellow on top.

Three of the remaining four students, Melinda, Wesley, and Elizabeth, created their
first two cases basemh the elevator and staircase pattern and their opposite towers.
Melinda organized the remaining eight towers using a mixture of cousins and opposites.
Elizabeth organized her remaining eight towers using opposites. And Wesley organized
his remaining eightowers into two groupsk towers with a red cube on top and towers
with a yellow cube on top. It is not clear how the remaining student, Donna, organized

her towers.

Initially, when the students were asked how they knew that they had found all of the

towes, many of them replied that they knew

find any moretowers or 2) the other students had gotten the same answer. A few students
doubted their answer because the instructor questioned if they were convinceeythat th
had found them all. Melinda believed the answer to be a multiple of the height but could
not justify this prediction. Four of the students (Wesley, Elizabeth, Stephanie, and Errol)
initially believed that the reason the answer was 16 was becauserfesarfdiur is 16 and

they predicted the answer 25 towers for fig# towers. However, they were not able to
justify this logic. Only Stephanie abandoned this prediction because she realized that the

answer must be even because each tower had an opposite.

The instructor urged the students to continue to think about the reason for their

solution. They investigated the fitell towers. Two students, Melinda and Lisa, were not

t
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able to justify their solanymhdreoh sF d wits, t hteud @ h
Mike, Elizabeth, Rob1, and Donnaoticed that the number of towers doubled each time

the height of the tower increased but were not able to explain why the number of towers
doubled. After a class discussion on the fundamental counting principlah&tlizwas

able to explain that the total number of towers can be calculated by two to the height of

the tower but she could not justify why this was true.

The remaining five students not only found that the number of towers doubled when
the height of theawers increaseldy onebuttheyalso were able to explain the doubling
pattern. They each explained separately that the towers doubled because there are two
choices of colored cubes to add to the top of the tower. Furthermore, Errol explained in
his homewaok how to build the towers inductively starting at the tath towers and
building up to the foutall towers. Rob2 also demonstrated in class how to build the four
tall towers inductively starting at the otal towers. Jeff and Rob2 (separately) prestic

that for threetall towers choosing from three colors, the answer would be 27.

College Students Summary

All of these students used patterns and organizational strategies to build their
solutions. These strategies included opposites, cousins, staicdsdevator patterns.
Almost all of the students used the strategy of opposites to build or justify their solution.
Many students organized their solutions into cases but not many of them could justify
why the solution was 16. Many of the students ineidahat they knew they were

fini shed becaus eanymbretovielsae (2) theygotlthd saie ansiver n d
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as other people in the class. Only five students were able to justify their solution

mathematically.

The five students who justified theiolution explained the reason for the doubling
pattern. Although nine students recognized the doubling pattern, only these five could
explain that, as the tower height increased, the number of towers doubled because you are
able to add a choice of two cub® the top of the tower. Furthermore, two of the students
demonstrated how to build the towers inductively starting at theéadina two-tall

towers.

Overall Summary

At every grade, the students used the strategies of opposites, elevator, and staircase
patterns to build and organize their towers. In the earlier years (grades three through
four), the students often organized their towers in sets of opposites and often offered their
initial justification as to (1) every time they found a new tower it svdsiplicate or (2) it
was the same answer as everyone else in the class. These were some of the same

justifications that the college students gave as well.

Milin and Stephanie were able to provide mathematical justifications to their
solutions but only aéir they had revisited the problem several times in the third and
fourth grade. Milin and Stephanie were able to explain the doubling pattern and Milin

provided a proof by induction. Stephanie, in the fourth grade, provided a proof by cases.
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Brandon (fourtlgrade) and Meredith (third grade) were also able to provide a proof by

cases in a separate interview with the teacher.

The eleventh gradeesid some of the college studediscovered that the number of
towers doubled as the height of the tower increabee eleventh gradefeund the
formula to be2" and the general formula to x". However, they were not able to
justify these formulas. The eleventh graders as well as some of the college students were

able to expmin, inductively, the reason for the doubling pattern.

2.3.8The Pizza Problemi Building and Justifying a Solution

There is evidence of students solving this problem in elementary school (third, fourth,
and fifth grades), high school (tenth and eleven#ugs), and collegé total of 33

solutions to the foutopping pizza problem ¥ be discussed in detail in this section.

Third Grade

Evidence of two third graders working on the pizza problem can be found in an
article by Martino and Maher (1999). Méith and Sarah worked on this problem on

March 15, 1993.

Meredith created a chart to build her pizzas. Across the top of the chart she wrote the
pizza topping names and she used checks to construct her pizzas. She systematically
constructed her pizzas ugichecks starting with the onepping pizzas and continuing

with the twao, three, and fourtopping pizzas. When creating the ttapping pizzas, she
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used a systematic approach by first combining sausage with each of the other three
toppings before movingnt o t he next topping. Sarah, Mel
pizzas using cases. However, her cases were based on a specific topping. That is, she

listed all of the pizza combinations that included peppers. Then she listed all of the pizza

combinatiors that included sausage (and not peppers), and so on.

Summary of the Third Graders

Each girl organized their solution by cases. Meredith created her cases based on the
number of toppings and Sarah created her cases based on a specific topping. Sarah listed
her pizzas whereas Meredith created a chart and used checks to symbolize that the
topping was included on the particular pizza. There is evidence of Meredith using a
controlling for variables strategy when creating her-teaping pizza by creating all

pizzas with sausage as a topping before moving on to the next topping.

Fourth Grade

Evidence of six fourth graders working on the ftoyping pizza problem can be
found in Bellisio (1999). These students are in the Colts Neck school system and they
were preented this problem on March 11, 1993. They worked in three groups of two.

The three groups are Kevin and Steve, Alana and Jamie, and Colin and Brandon.

Kevin and Steve ultimately solved the problem by cases focusing on a specific
topping. They first cread all of the pizzas that had peppers, then all of the pizzas that

had mushroom (without peppers), then all of the pizzas with sausage (without peppers or



51

mushroom), then all of the pizzas with pepperoni (without peppers, mushroom, or
sausage), and, fingllthe plain pizza. They found 16 pizzas. However, they did not have

a strong explanation for the reason that they had found them all (Bellisio, 1999, p. 57).

They initially used the word pepper and the variables p, s, and m to indicated
pepperoni, sausagand mushroom respectively. However, Steve suggested they use a
coding system instead. They decided to use the numbers 1, 2, 3, and 4 to stand for the
toppings. They used a 0 to represent the plain pizza. They used a circle and a combination
of the numbes written inside the circle to represent the different pizzas. For example, a
circle with a 1 2 3 in the middle of the circle represented a pizza with peppers,
mushroom, and sausage. They provided a key to demonstrate which topping each number

represented.

Alana and Jamie each created their own list of pizzas and checked with each other
occasionally. Alana used triangles to represent her pizzas. In the triangles, she used
symbols for each of the toppings and included a key in her final solution. Shedsted a
for peppers, a plus sign for sausage, a zero for pepperoni and a line (or a one) for
mushroom. Jamie wrote her combinations using the whole word for each topping. They
both created their pizzas based on the number of toppings. That is, they creztddeall
pizzas with one topping, two toppings, three toppings and then four toppings. Jamie
controlled for variables when she created the-twpping pizzas. That is, she created all
of the pizzas with pepperoni as one of the toppings. When she exhduptssidilities

for pepperoni, she created all of the pizzas with mushroom as a topping, careful not to
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include pepperoni. Then she created all of the pizzas with sausage and pepperoni. They
each found the total number of pizzas to be 15. However, bethvedwo of them, they
had found all 16 pizzas. They were unaware that they had different pizzas listed for the

threetopping pizzas.

Colin and Brandon worked separately but checked with each other periodically. They
both created charts to organize thérzps with the pizza toppings as headings for the
columns in their charts. Colin used check marks to indicate inclusion of the particular
topping while Brandon used a 1 to represent inclusion and a zero to represent that the
topping was not on the partieulpizza. Colin abbreviated the topping name while
Brandon used P, S, M, and pepperoni to label his columns. Brandon redid his chart four

times. In the last iteration of his chart, he used P, S, M, and P to represent the toppings.

Colin started by creatingll of the twetopping pizzas with peppers as one of the
toppings. After placing a check in the peppers column, he systematically moved his
check mark down in staircasdashion to each of the three remaining toppings. He then
created all of the twopping pizzas with sausage as one of the toppings and
systematically moved through the other toppings. He then created tHeppurg pizza.
Brandon, after several-grites, created 16 pizzas first focusing on the pizzas with zero
toppings, then the pizzagth one topping, then two toppings, three toppings, and finally,
the pizzas with four toppings. He was systematic in creating his pizzas. For-his one
topping pizzas, he created four pizzas by placing ones in dilstgrattern to make sure

that he inaided every topping. In his twtopping pizzas, he placed a one in the first
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column and placed one in each of the remaining columns in dils¢grattern until he
exhausted all possibilities. This process is similar to the method Colin used to create his
two-topping pizzas. He repeated this process for the remainintppping pizzas. He
was not as systematic in creating the thogging pizzas. After comparing, the boys

agreed that the answer was 16.

When asked by the researcher how they knew thattheyound all of the possible
pizzas, Colin could only explain that he h

Brandon was able to explain his reasoning more clearly.

[He] was able to explain that he had started with pizzas with one topping,ddlioy

two toppings, three toppings and then all four. He then explained how with multiple
toppings he had begun with peppers in theHaftd column and combined that with

each of the other toppings, going from left to right. He explained that when he bega

with sausages, there were fewer possibilities because sausages had already been

paired with peppers, and so forth. He pointed at the entrees from left to right showing

how he had combined toppings. He seemed very confident that he had found all of the
possi bilities but also gave the explanatio
line with his to make sure they had found the possibilities. (Bellisio, 1999, p. 72)

Summary of Fourth Graders

All of the students created and organized their pizzasabgs. Kevin and Steve
organized their cases by a specific topping, starting with the pizzas that included peppers.
The remaining students organized their pizzas by the number of toppings. Jamie listed her
pizzas using the f ul bupsceates pictubkes @ représenttleein d St
pizzas. Alana used symbols for toppings while Steve used numbers to represent toppings.

Colin and Brandon both used charts to create their pizzas. Colin used a system of checks
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and bl anks whileOBsandonepsedeftbsi aodusi on

topping respectively.

Jamie, Brandon, and Colin all controlled for variables when creating their two
topping pizzas. That is, they kept one topping constant while they combined it with all of
the other toppingsVhen they had exhausted all possibilities with that particular topping,
they repeated the process with the next topping, careful not to include the topping that
they had just held constant. The partners often checked with each other to verify their
pizzacombinations. To justify that they had found all of the possible pizzas, all but
Brandon explained that they knew they were done because they had compared with each
other. Brandon was the only studerito could clearly explain how he had accounted for

all of the possible pizza combinations.

Fifth Grade

Two groups of fifth grade students worked on this problem. Nineteen students in a
New Brunswick school system worked on this problem on March 30, 1993. Twelve

students in the Kenilworth school system workedhis problem on April 2, 1993.

New Brunswick Grade 5

Evidence of the 19 children working on this problem can be found in Bellisio (1999).
The children worked in groups: eight groups of two and one group of three. There was
only one video camera in tldassroom and it roamed from group to group. The Unifix

cubes were available and four of the groups used them to solve the problem.
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All four groups that used Unifix cubes organized their pizzas by cases based on the
number of toppings. All four of the gups found the answer to be 16. The groups were
(1) Latima, Shauntee, and Ebonie, (2) Patrick and Benny, (3) Stephanie and LaToya, and
(4) Desiree and Artesia. Each color cube represented a different topping and the height of
the tower represented the numbétoppings on a pizza. That is, a tial tower
represented a pizza with two toppings. Lat
cube on the bottom of all of their towers to represent the actual pizza to which they
Aappl i edo t oighpdf eachdower iS one indregthartiee number of toppings
that are included. However, they all organized their towers by height. In doing so, they

organized their pizzas by number of toppings.

Al | but Latimads group wr coneectadtokwhigh t 0 e x p
topping. Only Patrickos group explained ho
Patrick explained that they knew they were finished because every time they found
another pizza, it was already on their list. When building tbarets, Desiree and
Artesia organized them by number of toppings. However, when Artesia explained her
solution to the researcher, she organized the towers differently. She organized her towers
(pizzas) based on the bottom two cubes. That is, she groupddhaditowers that had a
yellow and red cube on the bottom. These towers ranged from height two to height five.

[Note: for her, the bottom cube represents the actual pizza base, not a topping.] She called
this grouping a nf amiltyorganzingherwiezasarrthis s he had

manner and the instructor suggested that she go back to her original organizational



56

structure by number of toppings. Furthermore, Artesia explained to the class that when
she built her twaopping pizzas, she first creatalfi of the towers with a yellow cube

(which represented a pizza) and a red cube (which represented peppers) and applied each
of the other toppings. When she exhausted all of the combinations with yellow and red,
she created all of the pizzas with yellomdaanother colored cube, careful not to

duplicate any tower she had created. This is an example of controlling for variables. She

kept one topping constant while she varied the second topping.

The remaining five groups did not use the Unifix cubes. Thesgps were: (1)
Marcel and Frederick, (2) Kersa and Ebonie, (3) Ronald and Ivan, (4) Bhapur and Victor,
and (5) Hector and Andre. They all found the answer to be 16. Three of the groups
organized their pizzas by cases based on the number of toppingenTdiring two

groups organized by cases but the cases that they used were not as identifiable.

Marcel and Frederick drew a giant circle and within the circle, they listed their pizzas
organized by number of toppings. They supplied a key at the bottora oirthe to
explain their representations. They used a C, S, M, P, and B to represent cheese, sausage,
mushroom, peppers, and pepperoni respectively. They included a C (cheese) on each of
the 16 pizzas. The instructor asked the group if they believethdratwereany more
pizzas and they replied that they did not believe there argmmore She asked them to
convince her. Mar c el replied, fABecause | ¢
itdéds jJjust mixed up and mndyamrehhatdoowdd finddor ehchf f er e

mi xed up oneo (Bellisio, 1999, p. 94).
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Kersa and Ebonie organized their pizzas by cases based on the number of toppings.
They listed their pizzas using the full names for the toppings (occasionally abbreviated
saus. for ausage and mush. for mushroom). When they were asked how they knew that
they had found all of the pizzas, they replied that whenever they created a new pizza, it

was already on their list.

Hector and Andrew drew circles with letters inside the circlesésemting the
toppings) to represent their pizzas. They used S, M, Ps, and Pi to symbolize sausage,
mushroom, peppers, and pepperoni respectively. They organized their pizzas by cases
based on the number of toppings. They explained that found them alsbebay kept
looking for more pizzas and they could not femdy morethat were different from the

ones on their list.

Bhapur and Victor listed their pizzas using the entire name for the topping. Their list
is organized as follows: 1) plain pizza, 2) eaed twoetopping pizzas with peppers, 3)
one and twetopping pizzas with sausage (without peppers), 4) ané twetopping
pizzas with mushroom (without peppers and sausage), &pppang mushroom pizza,
6) fourtopping pizzas, and 7) thréepping pizas. They grouped their pizzas together by
number of toppings for the zerdhree, and fourtopping pizzas. However, when it came
to the oneand tweotopping pizzas, they organized them based on a specific topping. In
this organizational strategy, itévident that they controlled for variables when creating

the twatopping pizzas. They justified that they had found all pizzas because they could
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not find anymore. As they explained, anytime they created a new pizza, it was already on

their list.

Ronald ad Ivan also listed their pizzas and used the full topping name. They first
listed all of the twetopping pizzas, then two of the thregpping pizzas, foutopping
pizza, the on¢opping pizzas, the plain, and the remaining thogping pizzas. They
organzed by cases based on the number of toppings but only partially because the three
topping pizzas are not grouped together. It is not explained how they built their pizzas.
However, it does appear that they controlled for variables when building their two
topping pizzas. They first listed all of the t@pping pizzas that contained sausage, then

mushroom, then peppers.

Summary of Fifth Grade New Brunswick Students

All nine groups organized their answers using cases based on the number of toppings.
Two ofthese groups did not do a complete organization by cases. The four groups that
used Unifix cubes to create their pizzas used similar strategies in that a certain color cube
represented a topping and the height of the tower demonstrated the number gktoppin
on the pizza. The only difference was that two groups used a base cube to represent the

pizza to which the toppings were applied.

The remaining five groups listed their pizzas using the full topping name, an
abbreviation of the topping name, or a letterepresent the topping. Two groups used

circles in their answer. Marcel and Frederick put their entire list within a giant circle.
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Hector and Andre created 16 circles with combinations of letters inside the circles to

represent each pizza.

There was edence of three of the groups using a controlling for variables strategy
when creating the twtopping pizzas. However, because there was only one video
camera in the classroom, the construction of ideas of all of the students was not captured.
With that inmind, only five of the groups explained how they knew that they had found
all of the pizzas. All of them claimed that there were no more pizzas because they were
not able to findanymore Three of the groups further explained that anytime they created

a rew pizza, it was already on their list.

Kenilworthi Grade 5

Twelve students in the Kenilworth school system worked on this problem on April 2,
1993 after working on the pizza problem with halves. [The pizza problem with halves
involves finding all possile pizza combinations choosing from two toppings where the
toppings can be placed on either the whole pizza or half of the pizza.] The twelve
students in the classroom were: Romina, Brian, Ankur, Jeff, Michelle I., Michelle R.,
Matt, Stephanie, AmyLynne, Mchael, Bobby, and Milan. Description of this session can
be found in Bellisio (1999), Maher et al. (2010), Muter (1999), and Tarlow (2004).
However, in each of these descriptions, only the work of six of the students is reported.

Romina, Ankur, Jeff and fgan worked together. Stephanie and Matt worked together.
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Rominads group decided to use P, S, M, an
mushroom, and pepperoni toppings. They also use PI to represent a plain pizza. They
systematically listed the 16 pasie pizza combinations by first listing the plain and-one
topping under the headi ng -toppingfittwdgappirey, 06 They
andfourt oppi ng pizzas under the heatgppingg of A mi
t hey st ar treeppem and pairel 8pd® withceach possible other topping. They
moved on to ASO for sausage and paired up
is, they used a controlling for variables strategy when creating thopypang pizzas.

They organizedheir pizzas by cases by number of toppings. When asked how they know
they had found all of the pizzas, Brian explains that they knew because they had a

systematic way to create the pizzas (Maher et al., 2010).

Stephanie and Matt listed their pizzas ugimgletters c, pr, s, pp, and m for cheese,
peppers, sausage, pepperoni and mushroom. They organized their pizzas by cases by
number of topping. Matt explained how he created thetbpping pizzas by keeping the
sausage constant as he added each toppihg tizza until he exhausted all of the
possible combinations. Then, he repeated the process with the remaining toppings careful
not to create a duplicate pizza. He used a controlling for variables strategy to
systematically create his twopping pizzasMatt was able to thoroughly explain how he
create his list of pizzas and how any other combination would be a duplicate of an

existing pizza.
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Summary of Fifth Grade Kenilworth Students

Both groups organized their solution by cases based on the nunmbppiogs and
one member of each group demonstrated the same controlling for variables strategy when
creating the twdopping pizzas. Each group used letters to symbolize their pizza
toppings. The only differences in their solutions were in the choicgntbals for the
cheese (plain pizza), peppers topping, and pepperoni topping. Both groups were able to
explain that they found all of the pizzas by explaining how they built their pizzas and that

there could not banymorecombinations.

Tenth Grade

Evidenceof five students working on the pizza problem can be found in Muter (1999)
and Muter & Uptegrove (2010). These five students, Ankur, Jeff, Romina, Brian and

Mike, had all previously worked on this problem in the fifth grade.

On December 12, 1997 in after-schoolsession, these five students worked on the
pizza problem. Initially, they discussed using factorials to solve the problem but soon
realized that factorials diabt work. At first, Romina and Jeff worked together and used
letters to represent thiggizza toppings. Ankur and Brian worked together and used
numbers to represent the different pizza toppings. And Mike worked alone. Ankur,
Romina, Jeff, and Brian decided that they should use one coding scheme and decided on
the number coding scheme susgigel by Ankur and Brian. These four students worked

together and found 8 pizzas when choosing from three toppings, 16 pizzas when choosing
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from four toppings and 31 pizzas when choosing from five toppings. They hypothesized
that a doubling rule could woffkr this problem and they thought they should rethink the
answer of 31 because it did not fit into the doubling pattern. At this point in the
discussion, Michael, who had been working alone, presented his solution to his

classmates.

Michael decided to use binary coding system to create his pizzas. A one represented
that the topping was on the pizza and a zero represented a topping not on the pizza. Each
position represented a different topping. For example, for adpping pizza, the series
of number€1000 could represent a pizza with one topping (i.e., mushroom). He
explained that, using this system, he believed the answer to tHeppeg pizza
problem to be 32. Furthermore, he explained that he believed the formul 2" o/bhee

nis equal to the number of toppings.

Brian mentions that this problem reminded him of the towers problem. The students
believed that the problems were similar but not the same. Ankur explained that in the
towers problem the order of the cubes mattérgdhe order of the toppings on a pizza
did not matter. However, because the class session was almost over, they did not discuss

this idea much further until later sessions.

Summary of the Tenth Graders

Unfortunately, the evidence does not show how, éxeat of the students built their

solutions to the pizza problem. However, the evidence shows how the students used
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binary numbers to solve the pizza problem and how they understood the solution to be

two to then wheren was equal to the number of topgs.

Eleventh Grade

The study by Tarlow (2004) describes the solutions of eight students in the eleventh
grade working on this problem on March 1, 1999. These students were a part of the
Kenilworth study and five of them had already solved this probletmeififth grade.

Four of the students that had already worked on the problem were placed in a group
together. They were Robert (Bobby), Stephanie, Shelly (Michelle), andLlAmmye. In

the other group, this problem was novel for each student except foelMichhis group

was composed of Angela, Magda, Michelle, and Sherly. The students expressed that they

only remembered the problem fAa I|little.o

Shelly and Stephanie initially wanted to solve the problem using factorials but were
unsuccessful. Robert, Stepina, Shelly, and AmyLynne each drew tree diagrams to
solve the problem. When listing the toppings, the students used the full name of the
topping, shorten names and symbols. Wéteidents used/mbols,they usedn and s for
mushroom and sausaggspectivey. For peppers, Appd and fApeod
pepperoni, fApep, 0 Apr, o0 and ApO were used.

subscripts. For peppers he u: p,Aand for pepperoni he us p,.

Stephanie, Shelly, amt@imy-Lynne included plain as a topping when creating their

tree diagrams. They each created every possible pizza and crossed out any duplicates.
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Robert was more systematic when creating his tree diagram. Robert controlled for
variables by finding all of thpizzas with peppers. Once he had exhausted all of the
combinations with peppers, he created the next branch in his tree with sausage and was
careful not to include peppers to avoid duplicates. He repeated this process until he

exhausted all of the toppiag

All four students listed their pizzas based on cases determined by the number of
toppings. The three girls made a connection from the number of pizzas to a row in
Pascal 6s triangle. They believed that they
of zerotopping, ongopping, twetopping, thregopping, and foutopping pizzas
matched up to the fourth row in the triangle. However, they were unable to explain why.
They were then instructed to find all the pizzas with five toppings and to explaitheow

addition rule in Pascal b6s triangle worked

Angela, Magda, Michelle, and Sherly each started the problem by creating tree
diagrams. However, they changed their approach because they thought the tree diagrams
were confusing. Insteathey listed the pizzas based on the number of toppings. They
found 16 pizzas and worked on the next problem which was to find the total number of
pizzas with five toppings. After finding the answer to be 32, they investigated the number
of threetopping pkzzas and found the answer to be eight. They realized that the solution
doubled each time you add a topping choice but they were unable to explain the doubling
pattern. They also connected their solutio

instructeddo expl ain how the addition rule in Pas
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Summary Eleventh Grade

A few of these students wanted to use combinatoric formulas to solve the problem but
were unsuccessful. All of them initially used a tree diagram Hrd them organized
their final solution by cases. Angel ads gr
Angela investigated the solution for towers thtak two-tall, etc. and found a pattern.
However, her group could not justify why the numbgtowers doubled. Robert
controlled for variables when creating his
justified that their answer was correct be
although they could not explain why it matched up. Tleye instructed to explore this
problem further by |l ooking at the addition
They made connections between the towers and the pizzas which is further explained in

the next secti onbetwéeMBoleir sg a@an Pe ztziaen D

College Summary

Glass (2001) reported on 19 college students who solved th®ofqung pizza
problem. They did not have Unifix cubes available and they worked on this problem
about five weeks after working on the towers problem. Theagzablem these students
encountered was slightly different that the one in this study. The difference is in the
choice of toppings. These students were given the choice of pepperoni, green peppers,
mushroom, and sausage. With these choices, these stdientd have any topping
names that started with the same letter. Some of the students were videotaped. The

anal ysis is based on videotape (i f availab



66

written work. The details to the solutions have beerttathbecause the solutions to the

problem were very similar. Instead, a summary is provided.

All of the students organized by cases and all but two organized their cases by
number of toppings. The remaining two students organized their cases basedaifica spe
topping. Lisa (partnered with Yolanda) made a chart and used checks to keep track of her
pizzas. The rest of the students listed their pizzas. When representing the topping, the
students used the first initial of the topping, abbreviated the topmingote the whole

name of the topping.

Five students discussed using permutation and combination formulas to solve the
problem. Only one student, who was currently taking a statistics course, was successful in
solving the problem using combinations (Gla2010). All of the students were
systematic when creatingthetwoo ppi ng pi zzas. As Glass (20C
one topping fixed and paired with the each of the other toppings. They then moved to the
next topping on t hestudants anly pairego topp@ds that werehotme o
previously paired while the other students listed alltemping pizzas and then
eliminated the duplicates. One student, Jeff, found histdwping pizzas by labeling the
vertices of a rectangle with the nasraf each of the toppings and connecting the vertices

with lines.

Four students recognized that the answer
unable to explain the connection. Two of these students justified that they knew they

were finishedbeaas e t he numbers matched up to Pasca
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justifications of their solutions were provided. However, they further explored this
problem by investigating the combinations for fiepping pizzas and investigating the
relationship between thtewers and the pizza problem. See the section tiledda k i n g

Connections between Towers and Pizzas. o0

Overall Summary

All of the students organized their solutions by cases and most organized their cases
based on the number of toppings. However, five stisderganized their cases based on a

specific topping. This was done at the third, fourth, fifth, and college levels.

At all of the ages, there is evidence of students being systematic when creating the
two-topping pizzas. Most of the students listed tpe&izas using the first initial of the
topping, an abbreviated form of the topping name, or the whole name of the topping.
Only two groups of students cd®not to use any part of the topping name as a
representation. Kevin and Steve (fourth grade) useddaimbers 1, 2, 3, and 4 to
symbolize the toppings and Alana (fourth grade) used a dot for peppers, a plus sign for

sausage, a zero for pepperoni and a line (or a one) for mushroom.

At the younger ages, many students used pictures and symbols to refhieperras.
The use of circles to represent pizzas was often used. At the high school and college
levels, the students ditbt use pictures. However, they often wanted to use formulas that

they had previously learned and most were unsuccessful in apgigifigrmulas.



68

Only one class (fifth graders) had the Unifix cubes available when solving this
problem. Almost half of the class used the cubes to solve the problem and they all used
the cubes in a similar fashion. They all created the pizza combinatianaispecific
colored cube to represent a topping and the height of the tower representing the number

of toppings on a particular pizza.

Only the eleventh graders used tree diagrams to solve this problem. Four students
organized their pizzas using chansldahese students were either in elementary school or
college. Meredith (third grader), Colin (fourth grader), and college students, Lisa and
Yolanda, created very similar charts. The columns of their charts contained the topping
names and each of them dssheck marks to indicate if the pizza contained the topping
or not. Brandon (fourth grader) created a similar chart but used zeros and ones to indicate

the absence or presence of the topping.

Michael (eleventh grade), like Brandon, used ones and zenmudi¢ate that a topping
was included on the pizza or not. However, Michael did not list all of the possible pizzas
using this method. Instead, he used this method to count the total number-of three
topping, fourtopping, and fivetopping pizzas. Furthermerbased on this binary coding

system, he was able to deduce that the formula for the total num&rEging pizzas

was 2" .

When asked how they knew that they had found all of the possible pizzas, the

students in the elementarydas ooms gave reasons such as

~

nw
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and got the same answer, o0 Awe coul dndét fin
pizzas, it was already on our |ist.o These
investigations. Only Brandondfirth grade) could thoroughly and systematically explain

how he accounted for all possible pizza combinations using his chart. Like Brandon, Matt
(eleventh grade) was able to thoroughly explain how he knew there were no more pizzas

by thoroughly explainingpow he built and organized his pizzas. Many of the high school

and coll ege students connected their solut
solution doubled each time another topping choice was presented. However, not until

they investigatedeeper by looking at extensions of the f#apping pizza problem,

Pascal 6s triangle, and the connection betw

they able to justify the solution of sixteen pizzas.

2.3.9Making Connections between Towers and Pizzas

There is evidence of students understandirtge isomorphism between the towers
and the pizza problem in elementary school (third and fourth grades), high school (tenth
and eleventh grades), and collegaerthermore, the older students made connectiatins w

ot her mat hemati cal concepts including Pasc

Grades Three and Four

Maher and Martino (1998) describe the connections Brandon (fourth grade) made
between the pizza problem and the towers problem. In anigteon Apri 5, 1993,

Brandon wa asked if the pizza problem reminded him of any other problem that he had
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worked on. He replied that it reminded him of the towers problem. In this interview,

Brandon recreated his chart using zeros and ones for the pizza problengamded the

pizzas by cases based on the number of toppings. He rebuilt the towers using Unifix

cubes using his technique of opposites. After he created all 16 towers and studied his

pizza chart, he reorganized his towers into three groups. The thrges gvere: (1) the

solid colored towers, (2) the eight towers that contain one of one color and three of the

other color and (3) the towers that contain two of each color. He connected the towers
containing one cube of a certain color with the pizzas withtopping. He then
connected the solid towers with what he ca
of the solid towers with the pizza that contained all of the toppings). Finally, he

connected the group of towers with two of each color to treapiwith two toppings.

Brandon considered the solid yellow tower and the solid red tower as the pizza with
everything and he categorized the towers with one yellow and three reds as well as the
towers with one red and three yellows as thetopging piz a s . Because he di
fully make the connection, the interviewer asked Brandon to focus just on one color. He
focused on the yellow cubes and rearranged his towers by cases based on the number of

yellow cubes.

It was a this point in the interviewadt Brandon, enthusiastically, expressed that the

group of four towers with exactly one yellow cube were like the four pizzas with the

one topping in his chart, and placed each tower on top of its corresponding pizza on

the chart. He explained howthermdit bes i n each tower <corres
on his pizza chart and how the yellow cubes in each towers corresponded to the
Aonebso on his chart. He then confidently
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towers to each of the sixteen pizzas represenehis chart. (Maher and Matrtino,
1998, p. 88)
He further explained that it doesndét matte
the toppings. He explained that the same connections could befrhadecused on the

red cube to represent the lugion of a topping.

Martino and Maher (1999) describe the connections made to the towers and the pizza
problem by two third graders, Meredith and Sarah. Meredith and Sarah are asked if the
pizza problem loo&dsimilar to any other problem they had worlad They replied that
it reminded them of the towers problem. Meredith useativesto create pizzas where a
different coloreccuberepresented a different topping and the height of the tower
indicated how many toppings were contained on the pizza. édththis is a way to
represent the pizzas using towers, it does not represent the isomorphism between the two

problems.

The teacher decided to show the girls Bra
She asked them if they understood the chart. Simeetki@dained to them that Brandon
thought that this problem reminded him of the towers problem. After looking at the chart
for some time, the girls indicated that they understood the chart and Sarah suggested that
the zero code would be the red cube andtiecode would be the yellow cube. The
teacher asked them if they could build the towers to represent the pizzas. Even though
they had made the connection between the red cube representing the topping being on the

pizza, they wanted to create the towesig four different colors to represent the four
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different toppings. The teacher asks them if it was possible to make the pizzas (towers)
using two colors. The decided that they could and they created all of the pizzas using red

and yellow cubes referrimrgo Br andonds binary chart.

Third and Fourth Grade Summary

For the third graders, it took some prodding by the tedondine studentso
understand the isomorphism between the two problems. Without the teacher intervention,
the girls consistently wanted make the towers using different colored cubes. The
teacher was able to use Brandonds solution

isomorphism between the problems.

Brandon was able to make the connection between the two problems after the teacher
had encouraged him to focus on one specific color in the towers problem. After he
rearranged his towers into groups based on the number of a specific color cube, he was
able to make the connection between the pizzas and the towers. Furthermore, he was able
to explain that it didndét matter if you fo

the connection.

Tenth Grade

In anafterschoolsession, on December 19, 1997, five students came to understand
the isomorphism between the towers problem and ttzapmblem as described by
Muter (1999) and Muter & Uptegrove (2010). These five students (Romina, Michael,

Jeff, Brian, and Ankur) had worked on the pizza problem a week earlier and at the end of
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the session, thought there was a connection between #zegablem and the towers

problem but due to time constraints, were not able to investigate the connection further.

On December 19, they began the class sess

scheme to solve the pizza problem and remembered thelfoh@inad come up with for

the pizza problem. The formula w2"wheren is equal to the number of toppings. They
understood that the exponent was equal to the number of toppings but they had not, at

this point, understood why the baddlee formula was 2.

Jeff and Michael discussed that if you keep the number of choices for colored cubes
in the towers problem to two, the towers and the pizza problem are the same. The three
other students were not convinced. Jeff explained that ifxeonple, you changed the
height of the tower from two to three, that would be similar to changing the pizza

problem from a tweopping pizza problem to a thréa@pping pizza problem.

Through further discussion, they were able to understand that the laseiothe
pizza formula indicates that the topping would either be on the pizza or not on the pizza.
They understood, from earlier investigations, that the base of two in the towers problem
represented the two colors from which to choose and that tlaexpn, is equal to the

height of the tower.

At the end of another session January®, 1998 the instructor asked the students if
t hey could explain Pascal d6s triangle in te

A

Pascal 6s tr i anogdrsan the éoptall ¢owersmpioldedn (wihéneselecting
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from two colors). Before they left for the evening, the teacher asked them to think about
how the additionruleinPasd 6 s t r i an gl eentty.iSgeeifetally, h@a s c al 0 s
asked them to undegstd how the six in row four is produced from the three and three in

row three.

On February6, 1998, when they meet again, they were able to connect the towers and
pizza problems to specific roweregabileto Pascal 0

explainP a s c @ehtity sising towers.

Tenth Grade Summary

Over time, these tenth graders were able to understand the isomorphism between the
towers and the pizza problem. They understood the formula2" fue both problems
and were ableotexplain what the base 2 and the exponentepresented in both
probl ems. Furthermore, they made the conne
and towers and they were able to explain P

connections were made &va period of five afterschool sessions.

Eleventh Grade

As described in earlier sections, Angela, Magda, Michelle, Robert (Bobby), and
Sherly worked on the towers problem on November 13, 1998. These five students, along
with Stephanie, Shelly, and Arlyynn, worked on the pizza problem on March 1, 1999.

After exploring the pizza problem, the groups further explored connections to the pizza
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probl em, Pascal 6s triangle, and the towers

be found in Tarlow (2004).

On March 1, 1999, the eight students were placed in two groups. Table A consisted of
Robert (Bobhy), Stephanie, Shelly (Michelle), and Abyyn. Table B was composed of
Angela, Magda, Michelle, and Sherly. Each of these groups quickly realized a connection
to Pascal dés triangle after completing the

groups to explain the addition rule in Pas

Table A

With some work, Stephanie was able to explain how the addition rule in @ascal
triangle works with pizzas. For example, the teacher asked Stephanie to explain how the
4 in the fourth row of Pascal és triangl e i
in the third row of Pascal 6salwiththreengl e. She
toppings] drops down and the three pizzas [with two toppings] get the new topping added

to them. Together there are four pizzas wi

Robert, after | ooking at P aemzadplslemttor i ang]l
be 2" wheren is equal to the number of toppings. However, he was not able to explain

why the base of the formula is two. After
rul e in Pascdyndelevedangplae, t Amyt wo in Rober

the fact that to create a new pizza, you either add the new topping or you do not.
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The teacher asked them if this problem reminded them of any other problem that they
worked on and they repd that it remnded them of the towers problem. Stephanie and
Shelly explained the addition rule in Pasc
explained the isomorphism between the towers and the pizza problem. He explained that
the answer to both questions are detaadiby the formuli2" wherenis equal to the
height of the tower or the number of toppings. The base, 2, which represents two colors
in the towers problem, also indicates, in terms of pizzas, the two choices: with or without
toppings.Furthermore, Stephanie explained how a particular position in the tower

represents a particular topping.

Table Bi Angela, Michelle, Sherly, and Magda

These four students determined that the number of pizzas doubled each time a new
topping was introducetb the problem. They remembered that the number of towers
doubled when the height increased but they were unable to explain the reason why the
number of towers doubled. They mentioned that the two problems were not the same
because the order of the colobesmattered in the towers problem but the order of the

toppings did not.

They saw that the fourth row in Pascal 6s
four-toppingpizza problem and the instructor asked them to explain how the addition

A

ruein Pascal 6s triangle worked in terms of p
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to explain the addition rule in terms of pizzas but they never described the connections

between the towers and the pizza problem.

Summary of the Eleventh Graders

Allofthe students connected the pizza sol uti
them were able to explain the addition rule in terms of pizza. Only Table A was able to
completely explain the isomorphism between the towers and pizza problem. These four
students at Table A had worked on the towers and the pizza problem in grades three, four,
and five. Michelle at Table B was the only student that had work on these problems in

earlier years.

College Summary

Of the eleven students profiled in the study bysSIg001), seven of them were able
to describe the complete isomorphism between the pizza problem and the towers
problem. That is, they were able to explain the base and exponent of the formulas for
both problems. They were able to explain how the colthetube in the tower
represents whether the topping is on the pizza or not. And they were able to explain that a

specific position in the tower represents a specific topping.

Of the remaining four students, Stephanie almost made the connection buiaias un
to explain completely that the position of the cube in the tower represented a specific
topping. Melinda could explain what each tower represented in terms of pizzas except for

the towers with twa@ubesof a specific topping. Robl believed they wezkated but
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could not explain how. He tried to relate the color of the cube to a topping but did not

investigate this further. Donna did not explain any connection at all.

Of the eleven students, five of the students connected the solution to the pizza
prod em to a row in Pascalds triangle. The r
Pascal 6s triangle. Of the five students, t

Pascal 6s triangle using pizzas.

Overall Summary

From as young as third grade, thes@lents were able to recognize the isomorphism
between the towers and the pizza problith some teacher intervention, the third and
fourth graders were able to explain which pizza a specific tower represented. At the high
school and college levels, th@jority of the students were able to explain the formulas
for both of the problems and make connections with mathematical concepts involving

Pascal 6s triangl e.

2310Ankur 6s Chall enge

Tenth Gradd Kenilworth Students

This problem was proposed to therklworth students by one of the students, Ankur,
at anafterschoolsession on January 9, 1998. At the time, they were in the tenth grade
and from the David Brearly High School in Kenilworth, New Jersey. They had been

participants in the Rutgers Univessienilworth Longitudinal study since the first
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grade. There were five students present: Ankur, Michael, Jeff, Romina, and Brian. Ankur
and Michael worked together in one group. Jeff, Romina, and Brian worked together in

another. Evidence of their work che found in Maher (2005) and Muter (1999).

Romina worked with Jeff and Brian on her solution. Howeverpsigan tovork
alone and the studies focus on her solution. She first decided that the towers must have
two of a specificandl ©@6s GSbereaperdséns,t Xbe

first wrote 24 towers, horizontally as shown in Figui@ 2.

1 1 X O X 01 X
1 1 O X X 1 O X
O O X 1 1 X 01
O 01 X 1 O X 1
X X 1 O O X 1 O
X X 01 O1 X O
O 1 X X 1 X X O
1 O X X O X X 1
X 1 O O X O 0 1
1 X OO0 1 O O X
O X 1 1 X1 1 O
X 011 O1 1 X
Figure 26. Replication of Rominadés original sc¢

She explained that there are two additional groupings of six that could be listed and
decided to crate a more general way to write all 36 towers instead of listing the
remaining two groups. After a few rewrites, she decided that the 1 would represent the
duplicate color. She found all of the possible positions for the duplicate color and found

six posshle different position combinations.
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She usd a controlling for variables strategy by keeping the one in the first column
and moving the other one to the other three positions. After she had exhausted all of the
possibilities, she mowkthe one to the send position and mowkthe remaining one to
the third and fourth position. And finally she motee one to the third position and

placel the remaining one in the fourth position.

She explained that in the other two spots, there must be one of eachtbkthsvo
colors which she represented using<aand anO. She explained that for each of the six
towers that she had drawn, there are two possibilities each (to account frazat@).
For example, the first tower drawn in the figure below represkat$,t1,0, X tower and
the 1, 1 X, O tower. Since there are two towers per drawing, there are a total of 12

possibilities. See Figure2.

1 1 O X
X O
1 O 1 X
X O
1 O X 1
X O
@ 1 1 X
X O
O 1 X 1
X O
O X 1 1
X O

Figure 27. Replication of Rominadés solution t
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For each of these 12 towers, the same would be true for each of the other two colors
creating a total of 36 towers. That is, treein the diagram aboveould represent each

of the three different colors.

As described by Muter (1999), Michael and Ankur began the problem by explaining
that there would be a total of &ur-tall towers when choosing from three colors. They
decided to create all of the towgusing paper and pencil. They used the numbers 1, 2,
and 3 to represent the red, yellow, and blue cubes respectively. They also used the
number zero to represent the variable cube. However, in using this method, they created
many duplicates. They decidaglfocus on the complement of the problem instead. That
is, they decided to find all of the fotall towers that did not have at least one of each

color.

While still working on the probl em, Mi c h a
of 36. They agrethat the answawvas 36. However, as they explained, they needed to
understand the remaining 45 towers to be convinced. (That is, they needed to prove that
the complement contained 45 towers.) They eventually created, on paper, the 45 towers
using a serie of numbers to represent the colors. They use 1, 2, and 3 to represent red,
blue, and yell ow. They used a zero to repr

presento (Muter, 1999, p. 110).

In organizing the 45 towers in the complement, they created ttases. The first
case contained all fodall towers that have three cubes of one specific color and one

cube of another color. See Figure 2.8.
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Figure28Re pl i cati on of Mi ke and Ankur 6s firsi

Each column above represents two towers because the zero represents any of the
other two colors not listed. Since there are 12 towers drawn, there are a total of 24 towers
in this case. To build thesewers, Ankur and Michael used a controlling for variables
strategy. That is, they kept the variable cube (the zero cube) constant (in the same
position) while they created each group of three towers. They also systematically moved
the zerocubeupapdasion each time they created a new

rowdo moves-lkefashibom a st air

The second case contained the solid towers. That is, this case contained three towers
that each only contained one coiathe all red tower, the all béutower, and the all

yellow tower.

The third case contained 18 towers with tubesof one color and twoubesof

another color. They created their towers as follows:

1 1 2 2 3 3 1 1 2 2 3 3
1 1 2 2 3 3 2 3 1 3 1 2
2 3 1 3 1 2 2 3 1 3 1 2
2 3 1 3 1 2 1 1 2 2 3 3
1 1 2 2 3 3
2 3 1 3 1 2
1 1 2 2 3 3
2 3 1 3 1 2

Figure29 Repl i cation of Mi ke and Ankurds thi
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In creating this case, they also used a controlling for variables strategy. In the first
group of six towers, they kept the top twabes the same as they changed the bottom two
cubes. The second group of six contains towers where the top and the bottom cubes are
the same color and the middle cubes are the same color. They kept the top and the bottom
cube constant as they changed thddie cubes. Then for the next six, they alternated the

cubes that were the same.

Summary of Tenth Graders

Romina solved this problem directly finding the 36 ftaif towers that contain at
least one of each color. She solved this problem using casesusyig on one specific
color and justifying that thengere 12 towers in this case. She used a controlling for
variables strategy to create the towers within the case. She did not create all three cases.
Instead, she justified that the remaining two cagmdd be created in the same way by

replacing the duplicate color.

Ankur and Michael ultimately solved this problem by looking at the complement.
They found the 45 towers thatre contained within the complement by using cases.
They created three casesbéd on the number of cubes of a certain color. The three cases
were: (1) the towers containing all four cubes of a particular color, (2) the towers
containing three cubes of a particular color and one different colored cube, and (3) the
towers containingwo cubes of a particular color and two cubes of one other color. They

also used a controlling for variables strategy when creating their cases.
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To represent the colors in the towers, Ankur and Mike used numbers while Romina
used a 1X andO. This group ohigh school students started to use binary numbers in
their solutions to the pizza and towers pr
after it was introduced to them by another student in the class (Maher, 2005; Muter,

1999).

College Students

Glass(2001) has evidence of five colleggidents at a community college solving

this problem. The five students are Errol, Penny, Mary, Rob1, and Rob 2.

Errol, Penny, and Mary were in the same class in the spring of 1999. This session was
not videotaped. Thenmal ysi s i s based on the instructor
written work. The three students worked separately and this problem was introduced to
them four weeks after they had worked on the-talirtowers problem when selecting

from two colors.

Mary explained that there is one color that must appear twice while each of the other
colors must appear once. She fixed the color that appears twice in the following cube
positions: first and second, first and third, first and fourth, second and thiothdsaicd
fourth, and the third and fourth. This strategy created six towers. For each of these six
towers, there are two possible towers because the remaining colors can be switched. This
method produced a total of 12 towers when one of the three col@aragpice. This

would be true for the remaining two colors, creating a total of 36 towers. See Figure 2.10
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for a diagram of heexplanationusing R to represent the color that appears twice. [The

towers are represented horizontally.]

R R
R R
R R
R R
R R

Figure2.10 Di agram of Maryés solution to Anku

Mary solved this problem directly using a cases approach. She focused on the 12
towers that had a certain duplicate color. Within this case, she usattallow for
variables strategy to create each of the six towers. That is, she kept the first cube constant
while she moved the other cube to the second, third, and fourth position. After she had
exhausted all of those possibilities, she started in t@nsegposition and repeated this

process.

Penny created a tree diagram of all possible 81 towergduwhoosing from three
colors and then crossed out any towers that did not have at least one of each color. That
is, she used a method of eliminatiorfitwl her towersAs Glass (2001) explains, Errol

uses an inductive method to find his towers:

He said that you could fix the first level as red. The second level could then be red,
yellow, or blue. If the second level were red than the third and fourthwawuld

have the other two colors yellow blue or blue yellow. If the second level were blue
then the third and fourth level would contain at least one yellow. It could be yellow
yellow, yellow red or red yellow, yellow blue or blue yellow. Similarly i& thsecond
level were yellow the third and fourth level could be blue blue, blue red or red blue,
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blue yellow or yellow blue. This gives twelve combinations which you multiply by
three since the first cube could be any of the three colors. (Glass, 208) p.

See Figure 2.11 for a diagram of Errol 6s s

Fourth Level| B Y Y R Y B Y B R B Y B

Third Level | Y B Y Y R Y B B B R B Y

Second Red Blue Yellow
Level

First Level Red

Figure2.11 Di agram of Errol és solution to Ank

Althoughthisc an be categorized as an inductive
considered a cases approach using a controlling for variables strategy. His three cases are
based on the color of the first cube. Then, he kept the second cube a constant color until

heexhausted all of the remaining possibilities.

Robl worked on this problem in the spring of 1999, four weeks after working on the
four-tall towers problem. He was not videotaped nor did he hand in his written work so
only the i nstr uaike Hesised theeadtudl Unifix tubes to solve thea v
problem. He focused on the towers that would have two yellow cubes. He created three
towers with a blue cube on top, and systematically moved the red cube into the second,
third, and fourth position, lfing in the remaining cubes with yellow. He then fixed the
top cubes as red, and systematically moved a blue cube into the second, third and fourth

positions, filling in the remaining cubes with yellow. See Figure 2.12
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Figure2.12 Di agr am first six towers |

The next three towers are produced in the same manner, keeping a yellow cube fixed
on the top and systematically moving a second yellow cube ingetiuad, third and
fourth position. Each of these positions would create two towers because the red and the

blue cube can be in alternate positions. See Figure 2.13.

YYY YYY

Y R R Y B B

RY B B Y R

B B Y R RY
Figure 2.13 Diagram of Rob1 secorst of six towers.

There are a total of 12 towers with two yellow cubes. This would be the same for two
red cubes and for two blue cubes, producing a total of 36 towers. He used a cases
approach focusing on the towers with two yellows. He then brokeakesup into three
subcases based on the color of the top cube. Within theseaséls, he used a
controlling for variables strategy by systematically moving the other cubstairease

fashion.

Rob2 worked on this problem in the spring of 2000, theesday as the fouall
towers problem choosing from two colors. He was videotaped. He initially approached

this problem by creating all six thréall towers that have one of each of the three colors.
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He added one of the three colored cubes to the botteach of these six towers and

then he added one of the three colored cubes to the top of each of the gialthree

towers. He removed any duplicates this approach created. However, he realized that he
missed some towers and changed to solving the pralderg a cases approach. (He
missed the towers that would have the duplicate colored cubes in the middle of the

tower.)

Rob26s second approach was based on focus
first three towers by keeping the two blues togethemaonng them to all possible
positions. He explained that for each of these three towers, there would be two towers
because the yellow and red cube can be alternated. He created the next two towers by
separating the blue cubes by one cube and moving titenall possible positions.
Finally, he created the last tower by separating the two blue cubes by two cubes. Each of
these six towers can be multiplied by two. Then, he explained, this process can be
repeated for each of the other two colors producingrswer of 36. Rob2 used a cases
approach in this problem by focusing on one dominant color. Furthermore, he controlled
for variables by initially keeping the blue cubes together and moving them into all
possible positions. Then, he created the towers wherkelue cubes would be separated
by one cube and finally he created the towers where the two blue cubes would be

separated by two cubes.
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Summary of College Students

All five students approached this problem directly. That is, they found the 36 towers
four-tall towers that contain one of each color when selecting from three colors. All but
two solutions involved a cases approach. Penny used a tree diagram to create all 81
towers that are four tall when selecting from three colors. She then eliminated/éne
that did not contain one of each col or.
created new towers based on previously built towers. He created altahesvers that
contained one of each color and then added cubes to either thehepbottom of this
tower. However, he was not successful in finding the answer using this approach and

abandoned it for a cases approach.

The remaining four solutions involved a justification by cases. Although Glass (2001)

categori zed Eindudiedtsan alsope veewed as casss. His three cases

are based on the color of the first cube. He explains how 12 towers would be created with

a particular color as the bottom cube. He does not create the remaining two cases but
explains that the lag would be the same for the remaining two colors as the bottom

cube.

Mary, Rob1, and Rob2 solved the problem by cases and created their cases based on a

dominant color (that is, a color that would appear twice in the tower). Mary and Rob2 had

similar appoaches, creating six towers and explaining each possible position for the

dominant color. They explained that for each of these six towers, the other two colored

cubes would be alternated creating two towers each for a total of 12 towers. They did not
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crede the remaining two cases but expiithat the same result would occur for the

other two colors creating a total of 36 towers.

Rob1 also solved by cases based on a dominant color. However, he created three sub
cases to create the 12 towers by keepiegdp cube constant with each of the three

colors and systematically moving the same cube down in dik&afashion.

Mary, Errol, Rob1, and Rob2 all used a controlling for variables approach when
creating their towers within their stdase. Mary and Rdbused similar approaches by
keeping the top cube constant while systematically moving another cube into the second,
third, and fourth positions. Once they exhausted all of the possibilities, they used a

similar approach to create the next group of towers.

Errol 6s controlling for wvariables strateg
cube constant. However, he then kept the second cube constant and changed the third and
fourth cubes until he exhausted all possibilities. He then changed the sebenahd

repeated the process until he created all 12 towers.

Rob2 controlled for variables by keeping the number of cubes that separated the blue
cubes constant until he exhausted all possibilities. That is, he first created all towers with
blues togethe(separated by zero cubes). Then he created towers with blues separated by

one cube then by two cubes.
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Other Undergraduate and Graduate Students

Il n a study by Glass and Maher (2004), the
Challenge were analyzed andegrized. These students were in high school,
undergraduate, or graduate school. Included in the 22 solutions are the solutions of
Romina and the six solutions of the five students in the 2001 study by Glass. Glass and
Maher organized the 22 solutions ifibar categories: (1) Justification by Cases, (2)

Inductive Arguments, (3) Elimination Arguments, and (4) Analytic Method.
Justification by Cases

Of the 22 solutions, nine solutions are categorized as using a justification by cases
approach. These nine inde the solutions of Romina, Rob1, Mary, and Robiich
were previously discussed. The remaining five students included three undergraduate and

two graduate students.

Two of the undergraduates in this study, April and Bernadette, and one graduate
studen, Traci, had similar solutions. April kept the blue cube on top of the towers to
create her 12 towers while Bernadette and Traci, using the same logic, kept a constant
colored cube on the bottom of the towers to create their 12 towers. That is, theg creat
their cases based on a specific color cube in a specific position for all 12 towers (top or

bottom).

2Bob in Glass & Maher (2004) is the same student as Rob2 in Glass (2001)
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April created her towers with a blue on top and then broke up this case into three sub
cases. The three sulses were blue as the second cube, puspleeasecond cube, and
white as the second cube. Keeping the first and second cube constant, she listed all of the
possible towers that could be made in the remaining two positions. She explained that

this same logic would be used for a white on top apdrple on top.

Traci created her towers in a manner very similar to the way in which April created
hers but used A, B, and C to represent her colors. She kept the bottom cube as color A
and created three swases based on the second cube. The first@écontains B as the
second cube, the second si#se contains C as the second cube and the thichseb
contains A as the second cube. Keeping the first and the second cube constant, she
created all of the possible towers by listing the possibilitiegh third and fourth cubes.
She explained that 12 towers could also be created, in the same way, with B on the

bottom and 12 towers could be created with C on the bottom.

Bernadette created her cases based on a specific color cube (blue) on the bottom of
the tower. She then created three-sabes. The first sutase contained all towers with
blue on the bottom and a second blue cube. She moved the second blue cube to all
possible positions in a staircase fashion from second, to third, to the fourtbrmp&ite
reasoned that the other two cubes could be either purple or white creating six towers in
this subcase. The next sutase, still containing blue as the bottom cube, contains two
purple cubes. There are three possible towers that can be creisctase as the white

cube will fill the other positions. And the last saéise, still containing blue on the
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bottom contains two white cubes with purple as the last cube creating three towers. See

Figure 2.14.
I, - PP w W
... B P P W w
B P P W W
B B B B B B B B B
SubCase 1 SubCase 2 SubCase 3
6 Towers 3 Towers 3 Towers

Figure2.14 Di agram of Bernadetteds solution t

As she explains there are also 12 towers for the purple on the itb@? towers

for the white on the bottom, for a total of 36 towers.

Joanne and her partner Donna (both undergraduate students) described each of the six
possible positions for two cubes of the same color in atidutower. They first
described threetvers that can be created with a blue as the top cube and systematically
moved the second blue cube to the fourth, third, and second position. Then they created
two towers where the blues are together in the second and third position and the third and
fourth position. Finally, the last tower is created by keeping the blue cubes in the second
and fourth position. Joanneb6s group expl ai
arrangements for two cubes of the same color, two towers can be created by alternating
the other two colors in the unfilled positions. As they explained, there are three different
colors that could be the dominant color so there are six color combinations (3 dominant
colors times 2 options per tower) for each for each of the six towers fditeebe

answer is 36 (six times six) possible towers.
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Tim, a graduate student, explained that there are six ways to creatallftanwvers
containing two each of two colorssay red and green. If you exchange a yellow cube for
one of the red cubes, ttieeare two possible ways to do this for each of the six towers. As
he explained, there are 2 times &2 ways to create a tower that contain a one yellow,

one red, and two green cubes.

All of these solutions are done by justification by cases. Furtherrooneof the five
students used a controlling for strategies approach when creating their towers within the
subcase. April and Traci kept the first and the second cube constant and exhausted all
possibilities for the third and the fourth cube. After thag exhausted all possibilities,
they kept the first cube constant and changed the color of the second cube. Keeping these
two new cubes constant, they created the towers for all possible colors for the third and
fourth tower. They repeated this processiluhey created all 12 towers within their sub

case.

Bernadetteds case was based on th-e col or
cases involved the towers that had two blues, two purples and two whites. Keeping the
blue on the bottom, she systernatly moved the blue cube in a staircase fashion to
create the blue case. To create the two purple and the two white cases, she kept the two
cubes together to create two towers and the two cubes separated by one cube to create the

third tower.

Joanne and @nna also created three towers similar to the way Bernadette did. They

kept the two blues together and then apart. They also kept a blue on the top, and
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systematically moved the blue to the second, third, and fourth position in a staircase

fashion.

Inductive Arguments

The solutions of foustudents are categorized under Inductive Arguments. This
includes Errol 6s and Rob206s solutions as
Frances (graduate student) created her towers the same way as Errddebgiby the
first cube as red and then breaking this case into threeamd@s where the second cube
could be red, yellow, or blue. Keeping the first and second cube constant, she created all
towers based on the possible colors for the third and fouréh éigomentioned
previously, this method could be categorized as an argument by cases. The cases are
based on the first color cube. Furthermore, this case is broken up intasegbased on
the second color cube. By keeping the two cubes constant, Fraasesntrolling her

variables.

Christina started with the firsubebeing either A, B, or C. Starting with ticabeA,
she created all towers with A, B, and C as the second cube. Then, she added A, B, and C
to each of these towers to create tkmdktowers. She eliminated any towers that had
three of one color. Finally, she added A, B, and C to the existing towers and eliminated
any towers that did not have at least one of each color. She repeated this process with the
towers that had B and C on thetoot. This is categorized as an inductive argument

because she created new towers based on existing towers. That is, she creaied two
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towers based on ortall towers. She created thresl towers based on twiall towers.

And finally, she created fottall towers based on the thr&sdl towers.

Elimination Arguments

Four students, including Penny, are categorized under the Elimination Arguments.
Robert (undergraduate), Liz (graduate), and Mary (graduate) started the problem with the
number of fowtall towers when choosing from three colors (81 towers) and subtracted
the towers that did not have at least one of each color. These three students used
formulas, as opposed to creating subsets of the towers. All three subtracted towers when
selecting from twaolors. All three accounted for the possibility of counting the solid

towers twice.

Analytic Method

The last category, Analytic Method, contains only one solution, by graduate student
Leana. Using factorials, Leana found all of the possible ways to arreBC. She then
divided by two factorial to account for repetition. Using this mathematical method, she
found 12 towers when A is repeated. She explained that she would do the same for B

repeated and C repeated to produce a total of 36 towers.

Summary

Thedominant approach to this problem was justification by cases. However, the cases

are done in different ways. Most students broke up their cases based on a dominant color
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or by keeping a certain cube (the top or the bottom cube) constant. In creatmgeis t
within the case, many students createdsages and used a controlling for variables

technique to keep the towers organized.

Only the graduate students and one senior undergraduate student correctly used
mathematical formulas to solve the problente@S & Maher, 2004). Most of the students

that used mathematical formulas were the students that used elimination arguments.

It could be argued that two of the examples that are listed under induction method are
examples of justification by cases. Althoudley created their towers based on the choice
for the first cube and then the second cube, because they are keeping this first cube a

constant color, they are focusing on a specificcage of the total solution.

Overall Summary

Nineteen solutionsto Ankr 6 s Chal l enge have been discu
high school, undergraduate, or graduate school when solving these problems. The most
popular type of justification was by cases. Eleven students directly found the 36 towers
by breaking the solutmoup into cases. Ankur and Mike also justified their solution by
cases but they found the solution indirectly by looking at the complement. A cases

approach was used at each grade level.

In the solutions that used cases and solved the problem directéy/wtbiee two

methods in determining their cases. They either based the cases on a dominant color cube
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or by keeping the top (or bottom) cube a constant color. All but one student, Tim,

controlled for variables when creating their towers within thecaige.

There were seven solutions that did not involve cases. Four students used an
elimination method, two students used an inductive method, and one student used an
analytic method. Three of the four students that used an elimination method used
formulas to stve the problem. Only one student, Penny, used a tree diagram. Penny
created all 81 foutall towers when selecting from three colors using a tree diagram and
eliminated the towers that did not have one of each color. Christina and Rob2 approached
the prollem inductively. (Rob2 eventually abandoned this approach for a cases
approach.) Leana, a graduate student, used combinatoric formulas to solve the problem

analytically.

Five students solved the problem indirectly. That is, they did not approach the
problam by finding the 36 towers immediately. Four of these students used an elimination
method that involved finding the 81 towers and subtracting the towers that did not have at
least one of each color. Mike and Ankur, two high school students, were thenesly o
that solved the problem by creating all of the towers in the complement (the towers that

did not have one of each color).

To solve this problem, all of the students discussed either built the towers with cubes
or wrote their solution on paper. For tbdbat wrote their solution on paper, they either
explained using words or representations. Of the representations used, most students used

the first letter of the color of theubethey were representing. Three students used the



99

letters A, B, and C to repsent the three different colors. Only the two tsghool

A

students used numbers and x6s and ob6s to r

The only distinctions that can be made between levels of academic study were in the
use of representations, the use of folas, and using the complement to solve the
problem. The high school students weretheonlyetesu s ed number s and X
to represent the colors. However, this group of high school students started to use binary
numbers in their solutionstotheg za and towers problem prior
Challenge after it was introduced to them by another student in the class (Maher, 2005;
Muter, 1999). Only the graduate students and one senior undergraduate student correctly
used mathematical formulas $olve the problem (Glass & Maher, 2004). There was only
one group of students that focused on the complement of the solution set; these students

were in high school.

Glass and Maher (2004) described four major categories for solving this problem.
These ategories are 1) justification by cases, 2) inductive method, 3) elimination
method, and 4) analytic method. In their article, all of the solutions discussed, except for
the solution by Ankur and Mike, were classified into one of those four categorias: Ank
and Mike solved the problem indirectly by looking at the complement. Although we only
have one example of this method, it is uniquely different than the others. It could be
argued that this method could be classified under justification by cases biéeause
students built the towers in the complement by cases. However, a distinction should be

made between an indirect proof and a direct proof by cases.
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Furthermore, it has been shown that there is some overlap between the categories and
it could be arguethat some solutions fall into more than one category depending on the
viewpoint. For example, it was argued that two explanations that were classified as
inductive methods by Glass and Maher (2004) might better be classified as justification
by cases. Nortbeless, there is definitely a pattern to which these students solve this
problem regardless of age. It has been shown that this problem naturally gives rise to

certain mathematical problem solving and justification strategies.
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CHAPTER 3: DESIGN OF THE STUDY

3.1 Background

This study took place ia mathematics course, Math Reasoning and Assessment,
duringthespring semestasf 2011. The course is required fme-servicemiddle school
math teachers at Felici@ollege. The class mawice a week for om hour and 15
minutes. The data from videotaped problsoiving sessions focusing on combinatorics
wasanalyzed for this studyl.hese sessiormccurred on February 11 and February 18.

See Appendix A for an outline of the entire cowsskedule.

3.2 Subjecs

Six undergraduate students in their junior yeare enrolled in the course Math
Reasoning and Assessment at Felician College in Rutherford, New Jersey during the
spring semester of 2011. The students in the wlass all mathematics majors studying
to be teachers. All of the subjeat®re womenAll six students agreed to véeotaped
and all of them agreed that their work could be used for this .stindyewas one

classroom instructor, Professor Elizabeth Uptegrove.

3.3 Data

To answer the researchagtions, dataame from videosnds t udent 6 s. wri tt e
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3.4 Setting

This study is a component of a design study in the third year of a grant funded by the
National Science Foundation (NBS& Rutgers University and University of Wisconsin,
Madison[awad DRL-0822204 directed byCarolyn A. Maher A component of the
project is to build a repository to store a collection of video data and related metadata
from earlier NSF funded projects. The videos and related metadata are being prepared for
pre/inservice teacher interventions. This study extends the work of the grant by
collecting and analyzing video data of students engaged in doing the mathematics before

studying videos of childrensdé6 reasoning.

3.5 Tasks

Thestudens in the study wrkedon a countinglombinatorics strand of tasks used in
earlier longitudinal and cross sectional research at Ruffjeesthree tasks analyzed in
this study are the towers problem, the piz
and the types of reasoning that arevpied from these tasks are explained in the

literature review section.

3.6 Data Collection

The data collected includevideo recordings of the pigervice teachers warlg on

the combinatoricstask$.h e st ud e nt svds alsorcapturedeon camevar k
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3.6.1 Video Recordings

In this studyup to two video cameras were used to videotape the sesSions
February 11, 2011, there was one video camera in the classroom. On February 18,

2011, there were two video cameras in the room.

362 Student sobdorlNri tten W

The studentsvereencouraged to write their findings and justifications down
on paperSome of tis written workwascaptured on videotap&his written work
wasuseful in the analysisecause it allowethe researcher to better understand

the storylire.

3.7 Method of Analysis of the Video Data

This study uséthe analytical model for analyzing video data outlined by Powell,
Francisco, and Maher (2003). Powell et al. (2003) describe sevdmaanphases of
studying video dat atheqitnied g Owiatnld fewide wign

narrativeo (p. 413).

3.7.1 Viewing

The first step of the analytical model provided by Powell et al. (2003) is to
watch the video several times to get a general idea of the content. This step allows
the researcheotget familiar with the session(s). At this phase, the researcher

viewedthe data without any specific analytical viewpoint.
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3.7.2 Describing

After the video is watched several times, the researcher ssgalescription
of the video. The analytical modgliggests describing the video in even 2to 5
minute intervals. Again, the descriptions should be descriptive only, devoid of any
inferential remarks. These intervals should be time coded to allow the researcher
to quickly find a particular event in futusgewings. Not only do these
descriptions enable the researcher to become more familiar with the data, they

also allow other individuals to get an idea of the content of the videos.

3.7.3 ldentifying Critical Events

At this stage of the study, the resdmacidentifiescritical events Critical
events were first defed by Maher and Martino (1986as episodes that provide
mathematical insights (p. 196 owell et al (2003) describe these events as
events that may ndeit her otlesen theymayber di s a
instances of cognitive victories, conflicting schemes, or naive generalizations;
they may represent correct leaps in logic or erroneous application of logic; they
may be any event that i s somebladyw signif

417).

As mentioned, critical events are significant to the research agenda.

Identifying critical eventsvasimportant because it enalllthe researcher to chart
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the development of ideas and to understand how these events influenced later

thinking (Maher, 2002).

3.7.4 Transcribing

All of the data wastranscribed to allow a more detailed analysis of the video.
The transcriptgareas close to exact as possible including not only verbal
expressions budlsogestures and descriptions of written work. Apgix A of the
reportGuidelines for Conducting Video Research in Educafierry, 2007)
provides a list of choices on how to transcribe common occurrences in speech and
gestures along with providing strengths and weaknesses of each choice. This
guidelinewasfollowed to provide consistency throughout the transcripts.

Transcripts were \erified byagraduate student for greater accuracy.

3.7.5Coding i A Categorization Approach

The purpose for this step is to identify themes to understand the building of
mathematical ideashe justification of the solutionsind the teacher
interventionsResearch has shown that certain tasks tend to evoke certain types of
justification and reasoning (see literature section for specificB)c at egor i zat i
appr oandeldévelaped after the dataswearefully studied (Barron, 2007, p.
160).These categories were based on the patterns and forms of reasoning that
were found in the existing research and listed in Sect®6. Zhat is, in the

towers problem, the researcheoked for evidence of using opposites, cousins,
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staircase, elevator, or any other patterns that might have emerged. In all three of
the problems, the researcher looked for evidence of controlling for variables, the
use of tree diagrams, the use of piegjror any other technique for building the
solution. And in all three problems, the researcher looked for evidence of
justifying by a cases argument, an inductive argument, or any other method for

justification.

Il n anal yzing t he taegodzhterappsoachwdsalsovent i o
used. The initial categories used were based on the categories suggested by
Martino and Maher (1999). The four types of teacher questioning they proposed
was questions thdi) facilitate justification, 2) offer opportunés for
generalization, 3) invite opportunities to make connections, and 4) facilitate
awareness of solutions presented by other studEmse categories were used

and while analyzing the data, other categories emerged.

Furthermore, since the data sesnsall f=6), a detailed analysis producing a
descriptive storyline was possibker ry et al . (2010) refer
by-p | ay . dy-plapdnayges are particularly effective at showing how the
sequentially developing context relates to tegppensnexda ( Derry et al
p. 22)Having a descriptive storyline enabled the researcher to identify the

categories.
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3.7.6 Constructing a Storyline

After transcribing and identifying critical events, Powell e(2003) suggest
constructing ateryline. This phase of the analysis reqgsirgerpretation and
inferences by the researcher based on t
requires the researcher to come up with insightful and coherent organizations of
the critical events,oftennv ol vi ng compl ex fl owchartin
430). This flowcharting, also referred to asace, provides insight into a

student 6s devel oping mat2@mati cal under

3.7.7 Composinga Narrative

During this phase, the reseber would reexamine the whole data set and
completed analysis afitical events and storylines. According to Powell,
Francisco and Maher (2003), this phase actually occurs from the beginning of the
research. MfnResear che-gathding gracedsrésiamdmsdiaas we
all imply explicit or implicit choices informed by open or hidden, conscious or
unexamined theoretical perspectives. It is in this sense that the construction of a
narrative begins at the initiation of research and accounts fpsarhewhere
within a research report, researchers o

al., 2003, p. 431)
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3.7.8 Document Analysis

This step is not one of the seven steps outlined by Powell et al. (ZD@3).
student s 6 thatwastcapieed onwideotkpeasexaminedo aid in the

data analysis ancbnstruction of the storyline.
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CHAPTER 4: RESULTS
4.1 The Towers Problem

The towers problem was introduced on February 11, 2011 and discussed again on

February 18, 2011. Both of these sessiware videotaped. The problem was presented

on the board (see figure 4.1). The board r
choose from. How many towers that are 4 cu

the answer? Part 2: Convincemath your answer is correct. o

[ [R—

[owers Problem

o~
-—

You have two colors of Unifix cubes to

choose from. How many towers that

are 4 cubes tall is it possible to build?
Part |:What'’s the answer?

Part 2: Convince me that your answer is
correct.

Figure 4.1 Camera view of the front board.

When discussing towers, the first cube described is the top cube and the fourth cube is the
bottom cube. For example, RRWW will symbolize a tower with two reds cubes on top,

followed by two white cubes.
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4.1.1 February 11, 2011

On Friday, February 11, all six of the students were present. The class began with the
instructor introducing the towers problem. There wasaameera and three groups of
two. One of thegroups of twdhad ateady worked on the problem in another clasese
students, Francesca C. @Rebeccawere not filmed building their solution. However,
they are filmed explaining their solution to the problem. The other two groups were: (1)
Jessica and Jamie and (2) Kamd Francesca S. Each of the three groups used the Unifix

cubes to solve the problem and each found the answer to be 16.

Jessica and Jamie (Red and White cubes)

The video began by showing Jessica and Jamie building their towers. Jessica
immediately buildsan all white tower and an all red tower. They then start to build
towers that have two reds and two whites. Jamie creates a tower that is WRWR. Jessica
then quickly builds its opposite RWRW. At
opposi tiLme lolibeJ&mie agrees. They continue to use this strategy of opposites.

Jamie builds RRWW and then Jessica builds WWRR. [Lines 1.1.1.10]

The camera focuses on the other group at this point. When it returns to Jessica and
Jamie, they have built RRV and RWWW. Their strategy has changed. This set of
towers is not an opposite. If flipped, it would be an opposite. Jamie creates the WWWR
tower and they spend some time trying to find with which tower it is to be paired. They

rearrange the three towers that WWWR is paired with RWWW. This pairing falls
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under the strategy of Acousins. o0 Jessica b
create the opposite of RRRW. At this point, they have built towers by trial and error and

then created the opposite foettower. They have 10 towers (one of these towers,

WWWR, is a duplicate). [Lines 1.1.111.1.18] Their organizational structure is as

shown in Figure 4.2 (the duplicate is emphasized in bold).

gzss

R R R
R R \W
R W W
R \W W
e a

Figure42 Di agr a

Jessica decides to reorganize the towers they have built. She takes four of the towers
and organizes them in a staircase patt€hat is, she organizes them so that she has no
white, one white on the bottom, two white on the bottom, and then three white on the
bottom. [Lines 1.1.18 1.1.20] She then begins to organize another four so that they are
the opposite of these four witto red, one red on the bottom, two red on the bottom, and
then three red on the bottom. However, when she gets to the WRRR tower, she realizes
that she does not have that tower and takes apart the duplicate WWWR and creates the
WRRR tower. They now havetatal of ten towers. [Lines 1.1.211.1.28] They have

RWRW and WRWR plus the eight towers as showRigure 4.3.

R R R R w W wW W
R R R W R W W W
R R W W R R W W
R W W W R R R W
Figure43 Di agram of Jessi ca adidthelstaincase 6s ei ght

pattern.
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They stare at these 10 towers for a few s
remember 20 and she creates a RWWR tower . |
this tower WRRW. They now have 12 towers. They have thganied as shown in

Figure 4.4. [Line 1.1.34]:

R R R R R R W W W W W W
R R R W W W R R R W W W
R R W W W R W R R R W W
R W W W R W R W R R R W
Figure44 Di agram of Jessica and Jamiebs 12 to

The first and the last group of four are thairsase pattern. In the middle they have the

towers with two reds and two whites, along with their opposites.

They look at their towers for a few seconds and count the number of whites in each
tower. Jessica then says, LnREelAEeecreate mov e
four towers in an elevator pattern. Each of these towers has three whites and one red.

They then create the opposites of these towers using three reds and one white. In addition
to the 12 towers, they now have eight more towers.Fgure 4.5 (duplicates

emphasized in bold).
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R R R W W W W R
R R W R W W R W
R W R R W R W W
W R R R R W W W
R R R R R R W W W W W W
R R R W W W R R R W W W
R R W W W R W R R R W W
R w W W R W R W R R R W
Figure 4.5 Diagramofl essi ca and Jamiebs 20 tower s.

The top eight towers are the towers with one cube of a certain tower, organized as in the
elevator pattern. The bottom two groups of four on each side contain the towers using the

staircase pattern. The middle four towens the towers with whites together and whites

apart (along with their opposites).

Jessica decides to reorganize the towers based on the number of reds. However,
during this process, they realize they have a duplicate and they remove one RWWW and
one WRRR]Line 1.1.78] They now have 18 towers as follows as shown in Figure 4.6

(duplicates emphasized in bold).

R R R W w W W R
R R W R W W R W
R W R R W R W W
W R R R R W W W
R R R R R W W W W W
R R R W W R R W W W
R R W W R W R R wW W
R W W R W R W R R W
Figure46 Di agram of Jessica and Jamieds 18
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The instructor asks them how they built their towers. Jessica explains that they built
the towers that have two of a color and they have four of them as shonas [LiL.88
1.1.93] She then explains that they did the towers that have one red and the towers that
have one white. They have a total of eight towers with these two groups as shown. [Lines
1.1.941.1.96] They explain that they have two towers that & ane color. [Line
1.1.98] Next, they move the RRRW and RRWW with the solid RRRR. And they move

WWRR and WWWR with the solid WWWW to form another grouping. [Line 1.1.98]

They conclude that they have found 18 towers. The instructor asks them if they are
finished and they say that they think there are more towers. They tell her that they would
like to keep working on it. The instructor leaves them to think. They focus on the four
towers that have two of each coteo and the
only way they can do two of a color. [Line 1.1.109] They try to build more towers but
they indicate that they believe that they have found all of them. The camera focuses on

the other group.

The camera returns with the instructor asking theexpain what they have found.
They still have 18 towers and they show the instructor how they have grouped them
together. Their organizational strategy has not changed since the last time the camera was
focused on them. The top two groups of four arestheator pattern. The middle four on
the bottom are the two whites Atogether an

groups of three are towers created by the staircase pattern, minus the last tower which is
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included in the elevator pattern. The orgatianal structure still contains duplicates. The

duplicates are within the staircase and elevator patterns. See Figure 4.7.

Figure47 Camera view of Jedl®owecsa and Jamieds 1

The instructor asks them to explain their organizationategfyeagain to her. Jessica
explains the group that has three reds and one white and the group that has three whites
and one red. [Lines 1.1.160L.1.164] There are a total of eight towers. As Jessica
explains the group with RRRR, RRRW, RRWW, they redlmy have a duplicate when
Jessica pulls the RRRW from the group with one white.

1.1.159 12:48 Instructor Ok, so, alright, explain your groupings one mo
time.

1.1.160 12:51 Jessica Alright. So this one is, we have three reds and
one white in all of thee. [ndicating Set 1,
RRRW, RRWR, RWRR, WRRR

1.1.161 12:55 Instructor Okay.



1.1.162

1.1.163

1.1.164

1.1.165

1.1.166

1.1.167

1.1.168

1.1.169

12:56

12:58

13:02

13:05

13:06

13:12

13:16

13:15

Jessica
Instrudor Ok ,
Jessica
Instructor Okay.
Jessica

maybe
Instructor
Jessica

of the same.
Instructor Yes you do.

116

So we just went up the linpginting to each
individual whitecubein Set ] to where each one
of them could be/so/look different.

[Pointing to Set 2 WWWR, WWRW, WRWW,

t hree
only way to do three reds and one white.

reds and o

n

RWWW And then we did the opposite with thre
whites and one red.

With this one [ndicating Set 3 RRRR, RRRW,
RRWW. Let me just pull this down so you can
see fnoving tower RRRW from Set 1 to SeCh

n o tPutth@RR{RW baclin Sét !

| see a problem now thgou pulled that one
down. Pull that one back down again.

[Putting RRRW back into S§t3 We 6 v e

After realizing they have a duplicate RRRW, they realize they also hdwgliaate

WWWR. They come to the conclusion that the answer is 16 towers. [Lines 1i1.170

1.1.186]

They organize the towers into 6 groups. These groups are (1) two groups of two

t ower s

of three towers with the elevator pattern of one cube starting at the second cube, and (3)

each with

t

w o

cubes

it o gtwotglowps

(0]

r

S

e
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two groups of three towers in the staircase pattern starting with a solid, then one cube on

bottom, then two cubes on bottom. See Figure 4.8.

Figure48 Camera view of Jeddlowecsa and Jamieds 1

They reorganize their towers into four groups and show the instructor what they have
found (see Figure 4.9). Two of the groups are the staircase pattern with solid, one cube on
bottom, two cubes obottom, and three cubes on bottom. Jessica explains the group of
four towers, each containing two colors as
together. o [Line 1.1.209] The fourth group
the second posan and then one different color in third position as shown below. The

girls do not explain why these four are grouped together.
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Figure49 Camera view of Jessi caalltowmeds. Jami eds r

After they show the instructor their towehey explain to her that they believe the
answer should be something mathematical . |
do with squares. o [Line 1.1.212] T-mky gues
shoul d be nine.welehsasdi clab rfeoma rfkosu,r ,ilnfaybe t h
[ Line 1.1.216] Tweel |i nashtyr udcotnobrt ryeopul itersy, tihr e

works out. o [Line 1.1.217]

They work on building the threll towers using black and white cubes. Jessica
immediately bids three towers in the staircase pattern of BBB, WBB, WWB, and Jamie
adds WWW to her collection. They move the WWW and make the two opposite towers
of the ones already createdhey are BWW and BBW. Next, they make BWB and

WBW. They have a total of eitjiowers (see Figure 4.10).
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Figure410 Camer a vi ew of Jestallitoovers. and Jami ebs ¢

Jessica says, fANotice this is eight and t
and it can be | ike col or s srgseditoeacdrtain not c ol
power . 0 [ LiilA.245] THey duild thd tdwers that are ttedl and find four
towers. Jessica says, AThatdéds what i s it.
five-tall will be 32 because that is two to the fifth. Jhell the instructor that they
believe they have figured it out. She says that she will be with them in a moment as she is
|l istening to Kim and Francesca S.06s explan

focuses on this group for a short period of time.

The instructor and the camera return to J
instructor that after they finished building the eight tkadktowers, they decided build
the twotall towers and found four towers. They realized that it was powfdveo. As
they are explaining what they have found to the instructor, they discover that the power is

equal to the height of the tower.
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1.1.260 21:15 Instructor Now | am ready to hear what you guys have to
say. [Camera turns and focuses on Jamie and
Jesst abs Jgroup.

1.1.261 21:22 Jamie We think we figured i
powers of two.

1.1.262 21:27 Jessica Yeah, because we, weeée
[inaudiblg pointing to 8 towers,-8all each we
only got eight. Swntawe

two and see what we get there and we got 4.
[Indicating group of 4 towers each twetall] So
you have two raised to the second power.

1.1.263 21:38 Jamie Do you know what it i
towersi

1.1.264 21:40 Jessica That Oswert he po

1.1.265 21:41 Jamie That s the power.

1.1.266 21:43 Instructor Oh é.
1.1.267 21:44 Jamie Two squared, two to the third, two to the fourth.

1.1.268 21:46 Instructor So you could tell me
five-tall T without doing it?

1.1.28 21:50 Jessica That 6s 32.

The instructor tells them that what they have discovered is very nice. She asks them
to explain their organizational strategy for the three tall towers. Jessica explains that, with
the group of three towers that form the si@see pattern (BBB, WBB, WWB) that they
could not put another tower there because it would be WWW and that is already in the

other group. [Line 1.1.272] She explains that because of this, there are no more towers in
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this group. The i thais likeipcoofdy consradigtion f n Qb ay c as 6

(@}

go any further down because thereds no pl a

agree.

The instructor asks them to repeat their formula again. Jamie explains that it is two to the

power where the posv is the height. [Line 1.1.278] And Jessica hypothesizes that the

two is equal to the number of colors. The instructor asks what they think the answer is if

there are three colors.

1.1.282 22:58 Jessica And two is the, the a
thinking.

1.1.283 23:04 Instructor Ok, so maybe you want, might need a piece of
paper for this. Suppose there was three célors

what 6s it gonna be?
1.1.284 23:11 Jamie Three raised to theé.
1.1.285 23:12 Jessica To however tall it is.

1.1.286 23:15 Instructor So, why dondét you get

She suggests that they start with three colorstalio[Line 1.1.289] Jessica and Jamie

work on this problem while the camera focuses on the other group.

When the camera returns, it is shown that they hawWene towers that are twitall
when choosing from three colors. They explain to the instructor that they found nine

towers. She asks them for the general formula for any color, any height.
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1.1.316 26:33 Instructor I already asked yibtheén:
cubes tall and you got two colors to choose fron
You know the answers for that. Now you got
colors to choose from, | want that equation.

1.1.317 26:46 Jessica Oh, 6cause we figured
tothenn. So now iemdssgoh oy

many t otnadtéen. Oh,

1.1.318 26:59 Jamie Right.

Jessica writes in her notebook both formi2"and m"wheremis equal to the colors

andn is equal to the height of the tower (see Figurd}.[Line 1.1.319]

P
e
. s
s

A

A

1

Figure4.11 Camer a view of Jessicads notebook.

After each group is finished working on the towers problem, each group presents their
findings to the class. This group was the last group to present. When they present their
four-tall towers, their organizational strategy has changed. They now have four groups of
four. However, they do not explain this different organizational strategy. The top two
groups contain the towers that create a staircase pattern. The bottom left group contain

the towers were two whites are Atogether

(0]
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last group contains the solids and two more towers with two cubes of two colors together

and their opposite. See Figure 4.12.

\«

Figure 4.12 Camera view of Jessicachkn J ami e6s 16 towers during

Jamie and Jessica do not explain their organizational strategy for their 16 towers to
the class. Instead, they explain the general rule for the towers problem. They explain that
the formula is the number oblors raised to the height of the tower. [Lines 1.1.860
1.1.373] They demonstrate the formula using three colors. They have built nitedltwo
towers when choosing from three colors. When the height is two, they explain to the class

that they have ninowers. [Lines 1.1.37# 1.1.378] The instructor begins a class

discussion about the reasons why the formu3"isThis class discussion will be

described after the explanation of Rebecca

Kim and Francesca.$Blue and Yellow cubes)
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The camera has focused on Jamie and Jessica for the first ten minutes of this session.
Therefore, the camera did not capture Kim and Francesca S. building their solution to the
towers problem. When the camera first focuses orgtioigp, the instructor asks them to
explain to her their strategy for building their towers. They explain that they built them
by doing opposites. Kim explains, #fALI ke, I
opposite. 0 [ Li ne askshertoleRolih oppokite. Shersays, r uct or
AnMeaning, I|ike for this one therebds bl ue,
yell ow, blue, vyell dw.l.128]&Heyhaws budt 14 tdwersand 1. 1.

they have organized them into six groupstaswn in Figure 4.13.

"".

3—‘1‘1“-‘- = =

= =

=l -

Figure413 Camer a view of Kim and Francesca S.
their 16 towers.

They explain that there is a group of two towers that are all of one color. The group of
three contains a tower with one bltwo blue, three blue in a staircase pattern. The

group of five contains an alternating blue and yellow tower with its opposite. This group
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of five also contains the three towers that create the elevator pattern: one yellow, two

yellow and three yellow.

The instructor explains to them that she does not see a pattern to their organizational
structure. Kim and Francesca S. explain to her that they are organized based on the order

of the cubes.

1.1.143 11:27 Kim It depends on the order.

1.1.144 11:28 Francesa S. Yeah.

1.1.145 11:29 Instructor Okay.

1.1.146 11:29 Kim Thereds a specific or.

1.1.147 11:30 Instructor Okayé. So explain the
goes heredointing to BYYB, YBBYnd not with
those over thergpinting to YBYB, BYBY

1.1148 11:38 Francesca S. [Points to YBYB, BYB¥Because these are
alternating. These are likaenpudible, pointing to
BYYB, YBBY

1.1.149 11:41 Instructor Okay, so0é so these ar
t woé you know, this i:
in the vided these are two took apamglicating
YBYB, BYBJand these are two stuck together,
kind of? [ndicating BYYB, YBBY

1.1.150 11:52 Kim Yeah, yeah.

The instructor suggests to them to organize the towers such that all the towers with one

color are together, all the towers with two colors are together, and all the towers with
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three are together. They continue to work on this and the camera focuses back on Jessica

and Jamie.

At 20:54, the camera returns to Kim and Francesca S. They haved§ @vd they
have organized them into five groups. The groups are composed of the towers that

contain zero blue cubes, one blue cube, two blue cubes, three blue cubes, and four blue

cubes. See Figure 4.14.

Figure 4.14 Camera view of Kim and Francesca8s second organi zatio
their 16 towers.

The instructor explains that she can see the pattern for all of the groups except for the
group of six in the middle. She explains that she does not see how these towers form a
group. Kie aspatté@tLn®Ro [Line 1.1.258] She

it. The camera leaves them as well.

At 23:46 and then again at 28:14, Kim and Francesca S. present their solution. They

explain that they have five groups. They are no blue, one blue |iedtbese six towers
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are broken into two sugroupsi it wo bl ues are stuck together

three blue, and all blue. [Lines 1.1.328.1.343]

Figure415 Camer a view of Kim and Francesca S.
their 16 towers.

Rebecca and Francesca C. (Blue and Orange cubes)

These girls are not filmed building their towers but the class and the videographer
focus on their towers at 29:33. They have towers that artatingvo-tall, threetall, and
four-tall. Each ®these groups of towers of different heights is organized. Francesca C.
explains how they organized the fetatl towers. They have all blue, three blues, a
middle group of six with two blues that were broken into pairs (opposites), three orange,
and allorange. [Lines 1.1.3451.1.350] Below these towers of four, they have towers
that are thredall, two-tall and ondall. See Figure 4.16 (the single blue cube is in

Rebeccads hand).
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Figure416 Camer a vi ew of Rebecca ftawes. Fr ancescée
Rebecca explains that if you start with towers that are one cube tall, there are only two

towers. She describes how to build towers one cube taller based on the towers of the

previous height. She explains that for the towers that are one debeytau can add

either a blue or an orange cube to the top of each tower.

1.1.352 30:47 Rebecca So, if you have just ontall tower, you only have
two [indicating one blueubeand one orange
cubg And then in order to get the second one wi
yellow,you can add a bl ue
[BOO . Or you can add an
this one PQ]. So, for each tower, you add one ol
the other to get the next group. To double it.

1.1.353 31:06 Rebecca See with this one, you can either add ahuget
that one, or an orange to get the next one.

She reiterates and expl ai ns, cubehighetyoren f or
can add either an orange or a blue, so it

1.1.357]
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The instructora y s AMany of yoidtdalblesi@audthsisthe t he r

explanation. Right? This is the reason why
see a pattern its time two. Hereds the rea
right ? See, that wasndét too bad. o [Line 1. 1. ¢

Next, Jessica and Jamie explain the general rule for the towers problem and
demonstrate the solution to the number of towerstéllavhen choosing from three
colors as described earlier. After their explanattbe instructor asks them to show the
group how many towers there would be for-¢alétowers choosing from three colors.
They say there are three towers. The instructor asks the class to explain why the base is
equal to the number of colors. Rebeccaanrg that to build a new tower from the

previous one, you have three colors to choose from so the towers triple each time.

1.1.390 35:07 Rebecca For each ongall tower you can, for this one
[indicating B you can add either a brown, a gree
or a maroon.For this one,ipdicating G you can
add either a brown, a green, or a maroon. So, f
each one, thereds thr
make to create it two tall. So, you add a green,
know, you can add a green, you can add a mar
or you can add bBrown. So you end up with, you
know, three more from what you already have.

1.1.391 35:33 Instructor Does that make sense to everybody?
1.1.392 35:35 Francesca C. So the answers triple.

1.1.393 35:36 Instructor T h at 0 Btherother bne was doubledd this
one now is tripled.
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1.1.394 35:40 FrancescaC. Because itodéds three co

The instructor introduces Ankuro6s Chall eng

these students work on solving Ankur 6és Cha

4.1.2 February 18, 2011

During the first 20 minutes of the class on Friday, February 18, the class revisits the
towers problem. Only four students were present and there were two videographers. They
worked in groups of two. The groups were the same as February 11, 2011. They were (1)
Jesica and Jamie and (2) Kim and Francesca S. The instructor began the session with a
Power Point slide on the board that reads a
our previous results: Two colors, four cubes tall: 16. You organized your towers by

number of blue cubes. How many towers for 0 blue, 1 blue, 2 blue, 3 blues, and 4 blues?

Two colors,n cubes tall 2" Why is it 2" ? mcolors,n cubes tall m" Why is it m"

? 0 ( Squee 4.F7)
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Figure 4.17 Camera view of front board.

Kim and Francesca S. (Blue and Orange cubes)

Kim and Francesca S. begin by building their towers in the staircase pattern.
Francesca S. builds the towers that contain one blue on top, two bluesthne®lues
on top, and the all blue tower. Kim builds the opposites of these four towers. She builds
the towers that contain one orange on top, two oranges on top, three oranges on top, and
the all orange tower. They have a total of eight towers. [L2ik471 2.1.12] They build
four more towers by building a tower and the opposite. These towers contain two blues

(BOBO, OBOB, OBBO, BOOB). [Lines 2.1.122.1.23]

They recognize that they are missing four because they understand the answer to be
16. Howeve, they are not sure which four they are missing. They sit silently. Using trial
and error, Kim makes the BOBB tower and asks Francesca S. if they have created that

one yet. [Line 2.1.27] Francesca S. replies that they have not. Kim, again using trial and
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error, makes another toweBBOB. [Line 2.1.29] (At this point, they do not build the
opposites of these two newly created towers.) They now have 14 towers. The instructor
joins their group and tells them that they are missing some. They agree. Slutsinstru
them to reorganize their towers so they have no blue, one blue, two blue, three blue and

four blue. [Line 2.1.33]

As they organize the towers in this manner, they realize they are missing two towers
with one blue cube. They build these two towers, OB®@ OOBO. These towers are
the opposite of the towers they had just created. They continue to organize their towers.

In the end, they have five groups organized by number of blues (see Figure 4.18). [Lines

2.1.347 2.1.68]

Figure 4.18 Cameraviewofkn and Francesca S. 6s 16 tower

They are instructed to write the number of no blue towers, one blue, two blues, etc. on
their paper. Kim writes the number of towers for the zero blue case, one blue, two blue,

three blue and four blue case (see Figure)4.19
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Figure 419 Camer a view of Kimés notebook.

The instructor asks them to explain, on their paper, why the form2"1 iEhe
instructor joins JessicaWendiXanmiwdhds igroup
n? 0 |t écsautswo thhee t wo represents the number
2.1.93] Kim and Francesca S. proceed to engage in a conversation about the formula after

hearing Jessica.

2.1.94 10:24 Kim Thatdés true. Tlwhingg ar e
2.1.95 10:29 FrancescaS Yeah, i1 tds the fubes col
2.1.96 10:32 Kim So then two to the fourth equals sixteen.
The camera focuses on Kimdéds paper. She wr

fincubestald Fr ancesca has, isthennuniberofcqgoessmmisthe t hat t
height of the tower. The instructor asks them if they remember the inductive explanation

that Rebecca had given a week earlier.
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2.1.120 13:30 Instructor Do you remember when she was doing her little
proof? She starteduot wi t h s omet h
going to take this away and put it back lat&hé
takes apart one of the towers previously bushe
started out with thS&ee
puts a single blue cube down and a single orange
cube dowr.You adually missed this discussion in
class on Wednesday so
[Talking to Francesca. T h at 0 spointing,
to the single orange and single blue clbgis is it.

2.1.121 13:46 Kim Oh, then dondét you add
oneéeé.

2.1.122 13:50 Instructor You addeé Well, sort of

2.1.123 13:53 Instructor Now this isé How does
doing i nduct i omtlltders.e 6
One tall towers, right? Step one, you pick some I
number.

2.1.124 14:03 Instructor Step two: you say Al o6n
have to think about that too much, but. What do
do for each one of the
You can either do what or what?

2.1.125 14:13 Kim Oh, you can put the blue on it or yoan put the
orange on it.

2.1.126 14:16 Instructor Right, so each one, you can put either a blue or ¢
orange and that gives
induction part no matter where you start the nexi
one is going to be twice as many because youloe
either the blue or the yellow.

After this discussion, Kim, Francesca S., and the instructor join Jessica and Jamie to

listen to Jessica and Jamie explain towers when choosing from three colors. (This
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conversation will be described after the desaiptf Jessica and Jamie building their

towers.)

Jessica and Jamie (Blue and White culieSecond Camera View

Jessica builds the all blue tower and the blue towers with one white cube. At the same
time, Jamie is building their oppositeshe all white tover and the white towers with one
blue cube. They both build the towers with one cube using the elevator pattern. They
separate the towers they have created into 4 groups: (1) all blue, (2) towers containing
one white cube, (3) towers containing one blueegand (4) all white. [Lines 2.2i1

2.2.3]

Jessica starts to build the towers with two blue by doing opposites. She creates
BBWW and then WWBB. They decide that they will each build the towers with 2 blues
and then compare and take out any extras. Zelssitds BWBW and WBWB. She builds
BWWB and WBBW. Jamie has built four towerBBWW, WWBB, BWBW, and
WBWB. They realize that all four of Jamiebd
six. They disregard Jami e0s tolversbbygroupswer s. T
based on the number of blue cubes in a tower as shown in Figure 4.20. [Linés 2.2.6

2.2.16]
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Figure420 Di agram of Jessica and Jamieds 16 t

The instructor tells them to write, in their notebook, the number of towers in each
group. As Jessica startsto write thseon t he nu mb e r Alrght, sdofduu e s, s |
blue can only have one tower, three blue we have four towers, and then two blue is six
towers. And | have to do one blue with the whit&hd takes the cubes and starts to
build towers] 6 [ L i nJessi@ explair’s fo]JJamie that she has to create the towers
with one blue and the tower will all white cubes while Jamie must create the towers that
have one white and the al/l bl ue tower. (Th

containing threavhite is equivalent to a group containing one blue.)

Jessica creates the towers with one blue and no blues. Jamie creates the towers with
one white and no white. As they are creating these towers, the instructor questions them

as to whether they must bdithose towers. At this point, they realize that these towers
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would be the same as towers they have already created. Regardless, they create them.

They have nine groups of towers as shown in Figure 4.21. [Lines 2.2.2610]

g

sleis

Figure 4.21 Cameraviewb Jessi ca atalldowelsami eds four

Jessica and Jamie write their results in their notebooks. They explain that the answer
is the same whether they base the solution on the number of blue cubes or the number of
white cubes. As Jessica writesinhetrmbook, she says, fiOne, f ol

the same thing for white.o [Line 2.2.41] J

The next assignment is to explain why the formu 2" sJamie immediately says,
AOh, bécahsetwo color thing?06 [Line 2.2.45
colors.o [Line 2.2.46] They ddinsteadtheyver bal |
answer the question, why ism"? Jessica explains thatis equal to the nuber of

colors and Jamie says thmatepresents the height of the tower.
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2.2.50 07:43 Jessica Why is itmto then? Becausenrepresents the
number of colors.

2.2.51 08:02 Jamie Amount of colors.

2.2.52 08:03 Jessica Different colors, maybe?

2.2.53 08:03 Jamie Uh-huh. Andn represents the height of the towe

2.2.54 08:19 Jessica Yeah. Pamie and Jessica write in their
notebooky.

The instructor asks them to explain, to her, their answers to why the forr2"a is
They tell her thathe two represents the two colors arid equal to the height of the
tower. They also explain that, in the form m", mis the number of colors amds the
height of the towers. She agrees but explains to them that they did reahexpy it is
2. Shel sagder itand two different colors bu
reason why nasdppgoset tw,cayttwotimes eA Why i snit two t

power 20 is the question. o6 [Line 2.2.65]

Theinstrc« t or asks them i f they remember Rebec
week. Jamie asks if it has to do with choi
all owed and you canét have the same thing
[Line2 2. 71] She tries to explain further, bu-
can remember truthfully is that you have two choices. You can either add a white one on

or you can add a bl uygroaeddo tatkahou inudtionrates 2 . 2 . 7

formula m".



2.2.74 10:27

2.2.75 10:38

2.2.76 10:40

2.2.77 10:48

2.2.78 10:51

2.2.79 10:58

Instructor

Jessica

Instructor

Jessica

Instructor

Jesga
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Okay, we said this | a:
i nduction. Right? So I
starting from, i ke i1
[points to the four towers with three blue cubed i
one white cuble each one of these, say it again,
you cané.

You can either have a white one or a blue one.

And the fact that you have two choices means
youdre multiplying by
getting & - multiplying by two, multiplying by two,
means two to the.

Oh, thatodés right.

And so similarly formto then, them choices.
Which means every single time you know you
have [naudiblg.

Yeah, you have that many choices; you have to
keep multiplying by that.

The instructor instructs them to write their findings in their notebook and to prepare to

explain 3"to Kim and Francesca S.

They discuss towers choosing fralmee colors and decide to use blue, white and

yellow cubes. They position a yellow cube on its side and one cube of each color above it

to represent the three towers that are-talowhen choosing from three colors where

yellow is the bottom cube. Thegpeat this process for blue as the bottom cube and for

white as the bottom cube. They have the cubes, laid on their sides, as shown in Figure

4.22. [Lines 2.2.86 2.2.97]
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Y B W Y B W Y B W
Y B wW
Figure 422 Di agr am of J eeassortioes explanationdfawmll e 6 s cub
towers choosing from three colors.

They discuss inductively how to build the ttadl towers when choosing from three

colors.

2.2.98 13:29 Jessica So one tall you have three choices which is thre
to the first power.

2.2.99 13:35 Jessica Two tall, you have three more choices pebe

2.2.100 13:39 Jamie Which equals nine.

2.2.101 13:39 Jessica Which equals nine.

They are asked to explain the formula for towers (any height) choosing from three
colors to the clas#t this point, the instructor, Kim and Francesca S. joins them to listen

to the explanation. Jamie and Jessica take turns explaining.

2.2.109 14:11 Jamie One tall, okay, on¢all would be three to the on
which is three.

2.2.110 14:16 Jessica Because yoonly have three choices.

2.2.111 14:17 Jamie 6Cause you can only |

2.2.112 14:20 Jessica Then when you get to two tall, you have three

choices per the one that you already have. Sc
you have the yellow can either be yellow
yellow, yellow-blue, or yellowwhite. Blue can
be blueyellow, blueblue, or bluewhite. And
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white can be whitgellow, whiteblue, or white
white. So, since you have three choices each
time, i1tds three squi
trying to thinkeéeé

2.2.113 14:47 Instructor Thatos it! Three squi

2.2.114 14:49 Jessica Three squared is nine. So you have nine total
choices, nine total ways that you can do it.

The instructor asks the class to tell her how many towers there are if the towers are
threetall. Francese S. says, fANine squared. o [Line 2.
[Line 2.2.118] The instructor | hmeancates th
t hr ee [cluibreed .20. 2. 120] The instructor replies
create a third v that would demonstrate towers that are thedlevhen choosing from
three colors (three to the thir-thngpower). J

They do not create all 27 towers. [Lines 2.2.1222.124]

The instructoratsdasy sg,r efe@k a yT,hesroe,6 st your i n
where you are at, you can always go to the
She asks the class if they are satisfied with that explanation. They reply that they are and

they begin to work orhie pizza problem.
4.2 The Pizza Problem

On February 18 after revisiting the towers problem, the students work on the pizza

problem. There are four students present and two videographers. The students are paired
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as previous problems. Kim and Francescar&.one group while Jamie and Jessica are
the other group. They start the pizza problem around minute 17:20. After they have
finished solving the pizza problem, they work on explaining the isomorphism between

the pizza problem and the towers problem.

Theinstructor presents the pizza problem with four toppings on a PowerPoint slide.
The slide reads:
The Pizza Problem
There are four possible pizza toppings:
Sausage
Peppers
Pepperoni
Mushrooms
You can have a plain pizza (no toppings), or a pizza with anpication of the
above toppings. How many pizzas is it possible to make?

Part 1: Whatos the answer?
Part 2: Convince me that your answer is correct.

Kim and Francesca S.

Kim and Francesca S. write in their notebooks to solve this problem. They work
separad |l y but occasionally talk to each other.
Francesca S. says, AdAltodés probably easier f

writing in their notebooks.

The camera focuses on Ki moedtrggdiageam.Oand s he

the top of her pa@peUnderhree ehtals tikPil sai me &Pd izrea,
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with four branches. Each of the branches is labeled Sausage, Peppers, Pepperoni, and

Mushroom. [Line 2.1.166]

Then, off the Sausage branch, Kineates three more branches and labels each of
themi Peppers, Pepperoni, and Mushroom. Off of the Peppers branch, she creates two
branches and labels them Pepperoni and Mushroom. Off of the Pepperoni branch she
creates one branch and labels it MushroomeS says, fAAnd by the tim

mushroom, therebés |ike nothing.o [Line 2.1

On the side of the paper, she writes pepperoni, sausage, and peppers. As she writes
them, she says, AThen you have plain peppe
pepperso. [Line 2.1.177] She numbers the p

pizza as #1. She counts that she has 11 pizzas. See Figure 4.23.
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@ Plain Pizza @ ®PEPPEIDni
@ CEP?EPPEIS IIIILSI'IIDDIII. / muﬁhgm
pepperoni . \ peppers
sausage

% Pepperoni
Sausage

Peppers
@ pepperoni
mushrooms \
mushroom
Figure 423Repl i cati on of Kimdéds first drawing of

The instructot ooks at Ki mdés work and asks her to
explains that she has a plain pizza, pepperoni pizza, sausage pizza, and peppers pizza.
The i nst rAnaherquestiaiishkoswy cio me you | eft out mush
2.1.191] Kimreplies,AOh! Ok. Mushroont [Line 2.1.192] She add

list and labels this as #5. (She does not realize that she has the mushroom pizza as #11.)

Kim continues to explain to the instructor her pizzas. She explains that the other
pizzas are the pias with two toppings (she does not go through them). She then realizes
that she has not done the pizzas with three toppings and renumbers her pizzas so that she

now has 12 pizzas (the mushroom pizza is counted twice). [Lines 2i1219200]
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Thecameradcuses on Francesca S. 6s paper. She
vi deographer asks her whmtj st dei Wl@i wigt h St
topping, then two topping, then three topping, then four topping. Like each different
that 6s | tkawatyheoeds®i éHerpitzasfare listecas ghowhin2 0 1 ]

Figures 4.24 and 4.25.
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Pepperoni
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Figure 424 Repl i cati on of ofheraohtoretsthe pizzaprodesr. n ot e b c
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