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THESIS ABSTRACT

RESEARCH AND DEVELOPMENT OF A GENETIC DESIGN

TOOL

By Brahmaji Mutthoju

Thesis Director:

Dr. Desmond S. Lun

Computers are aiding biotechnology researchers to rapidly develop new engineered strains

of organisms with favorable product accumulation. The organisms being engineered can be

represented as constraint based metabolic models. These models are analyzed using com-

putational methods to find optimal genetic manipulation strategies such as gene knockouts.

Due to growing biological knowledge, there has been a corresponding increase in the size

and complexity of the in silico metabolic models. Therefore the biotechnology research

community needs access to an effective computational method and an efficient implemen-

tation of the method that reasonably quickly solves the problem of searching for genetic

manipulations. Furthermore, the biotechnology researchers are of diverse backgrounds and

their computer skills are different. This should not hinder the community from using these

computational techniques. In order to address the above requirements, an efficient and

user-friendly software solution has been proposed and developed for discovering strategies

that may enhance the yield of chemical compounds of interest.
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1 Introduction

Many organisms have the capability to produce compounds which can be used in chemicals,

food and drugs. Micro-organism E. coli for instance can produce acetate and succinate.

Succinate is an important chemical compound used in food and pharmaceutical industries.

Bacillus subtillis, another micro-organism has the ability to produce antibiotics, high quality

enzymes and proteins, nucleosides, and vitamins [1, 2]. Such organisms can be used as cell

factories to sustainably produce bulk chemicals, pharmaceuticals, food ingredients, enzymes

and other products. However, the product yields of these organisms have been identified to

be very low as compared to their theoretically possible maximums [3].

In order to enhance the yield of these compounds, the organisms are genetically engineered

to obtain new strains. Genetic engineering is a process of manipulating the genome (the

hereditary information) of an organism. One of the types of genetic manipulations is the

removal of genes called ”gene knockouts”. Such a manipulation is accomplished through the

use of nuclease, an enzyme that can cleave certain bonds in Deoxyribonucleic Acid (DNA)

or Ribonucleic Acid (RNA). These knockouts ensure that the production of the desired

compound is an obligatory bi-product of growth [3]. Nevertheless, the space of all possible

genetic manipulations is too vast to be practically tried out with actual organisms.

To search for favorable genetic manipulation strategies, a number of computational methods

have been developed which are based on in silico (computer based) models of organisms’

metabolic networks. Metabolic network is a network of reactions related to the organism’s

metabolic function of converting available raw materials to energy. The computational

methods however have different computational complexities and hence different efficiencies.

The methods are also not directly accessible to users unfamiliar with the computational

methods.

To aid genetic engineering in identifying new strains of organisms, an accessible, efficient

and user friendly genetic design tool would be beneficial. The genetic design tool must be
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available to all the potential users which improves accessibility and also enables contribu-

tion to the software. The tool must be based on a computational method that identifies

genetic manipulations efficiently to enable rapid genetic engineering. The tool should be

implemented efficiently to achieve good performance even on low-end or medium-end com-

puters. Furthermore, the tool must be user-friendly to users with diverse backgrounds and

different technical skills in computer usage.

1.1 Statement of the Problem

The challenges present in developing a genetic design software tool for identifying manipu-

lation strategies which enhance an organism’s capability to produce compounds of interest

are related to three important aspects of a software system: Accessibility, efficiency, and

usability. If the genetic design tool is not accessible, it would not be reachable to a wide

range of users. Secondly, if the genetic design tool does not identify strategies efficiently

utilizing available computational resources economically, the tool may not be able to serve

rapid engineering and may in turn affect accessibility due to a demand for higher-end com-

puting systems. Finally, if the genetic design tool is not usable by all the potential users

of the system, the software system may render itself to be impractical for aiding genetic

engineering.

Accessibility: Accessibility is an important facet of a software system because lack of this

attribute creates an impediment to a wide range of users from using the system. Accessibility

is defined as the degree to which a product, device, service, or environment is available to

as many people as possible. A software system with good accessibility will be able to reach

users in academic settings, users in industrial settings and hobbyists.

A genetic design tool that is based on proprietary computational method and a software

implementation using proprietary tools and packages which need licensing fee may hinder

its accessibility to a wider range of users.
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Efficiency: In addition to having the ability to use the software system, the users may also

benefit from a computationally efficient algorithm and performance optimized implemen-

tation of the algorithm. Efficiency is defined as the extent to which time, effort or cost

is used well for the intended task or purpose. An efficient software system utilizes time

more economically which may result in increased productivity or may even be able to sup-

port immediate needs. A genetic design tool is based on a computational method and a

programming language based implementation of the computational method.

The computational method should be efficient to search the vast space of possible genetic

manipulations. This space becomes larger as the size and complexity of the organisms

being studied increases. An inefficient computational method may result in a genetic design

software tool that is impractical for identifying genetic manipulation strategies for large and

complex organisms.

Furthermore, an efficient computational method is necessary but may not be sufficient for

obtaining an efficient software application. An inefficient implementation of the computa-

tional method will not be able to utilize the available computational resources economically

and as a result it may demand faster computers which are often expensive. This may in

turn affect the accessibility of the genetic design tool for users with medium-end computing

systems.

Usability: Finally, an accessible, efficient software system when combined with usability

may further benefit the users. Usability is defined as the ease of use and learnability of a

human-made object such as a software application. A software system that is not usable

may not serve the purpose for which it was constructed in providing service to users in

need. The users of the genetic design tool may be of diverse backgrounds with different

levels of familiarity with computational methods for metabolic engineering or with different

technical skills in computer usage. As a consequence, an unfriendly genetic design tool may

fail to aid effective metabolic engineering.
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1.2 Background and Need

The research addressed three principle areas related to genetic design software application

development. The first area dealt with improving accessibility. The second area dealt with

efficiency and the third area addressed usability of the genetic design tool.

The first area addressed in the study was accessibility of the genetic design tool to a wide

range of users. This may be accomplished by providing a software implementation that

utilized freely accessible computational method, tools and supporting software libraries.

The computational method implemented was Genetic Design through Branch and Bound

(GDBB) which is accessible [4]. The programming language used was Java which has

free support and the requisite software tools and packages which can be downloaded and

installed for free. Finally, the computational method GDBB required Mixed Integer Linear

Programming (MILP) solver and hence Gurobi v5.5 solver was employed which is free to

use under academic license.

The second area that was dealt with in the study was efficiency of the genetic design

tool. Two major aspects namely computational method and implementation performance

that affect efficiency of the software system were addressed. GDBB is a computational

method that relatively quickly identifies genetic manipulation strategies as compared to

previous methods such as OptKnock [3] and Genetic Design through Local Search (GDLS)

[5]. OptKnock is a method that uses global search which searches the entire space of all

possible genetic manipulations and GDLS uses local search which searches for a fixed number

of manipulations starting from a set of previously identified best strategies. On the other

hand, GDBB uses Branch and Bound optimization method and reports all intermediate

near optimal solutions with each solution having higher optimal value than the previously

reported solutions.

Another aspect that affects efficiency of the genetic design tool is the implementation of

the computational method. To utilize the available computational resources (such as CPU
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and memory) economically, effective code optimization principles used for numerical com-

putations were applied [6]. This included optimizing code to improve data locality [7],

utilizing super-scalar architecture and avoiding unnecessary operations to reduce load on

the functional units of the CPU (such as adders, multipliers and dividers).

The third area that the study addressed was usability of the genetic design tool by a wide

group of users. Irrespective of user’s familiarity with computational methods and technical

skill in computer usage, the software tool must be user-friendly to the potential users of the

application. In order to address this aspect, user interface design principles [8] were applied

to design the user interface and ”User Testing Through Thinking Out Loud” [9] intervention

was used to identify user interface bugs which guided in making necessary design changes

to alleviate any trouble in the usage of the genetic design tool.

1.3 Research Questions

The following research questions corresponding to the three areas namely accessibility, effi-

ciency and usability will be addressed in this study.

1. How can a genetic design tool be implemented efficiently?

2. What software packages and tools improve the accessibility of genetic design tool?

3. How can the usability of the genetic design tool be improved for the purpose of

metabolic engineering research?

1.4 Purpose of Research

1.4.1 Purpose Statement

The purpose of the study was to use GDBB computational method, code performance

optimization principles and user interface design principles to construct a software tool that
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identifies genetic manipulation strategies for aiding industrial and medical biotechnology

research to optimize the production of certain compounds of interest.

1.4.2 Rationale for Research

Certain organisms are capable of producing compounds of interest which are used in food

and drugs. In order to increase the yield of the compounds, the organisms are geneti-

cally engineered. To search for possible genetic manipulations efficiently, computational

methods based on computer based models of metabolic networks of organisms have been

developed. Among many computational methods, an efficient method that can quickly

identify strategies for large and complex models is more likely to support rapid genetic

engineering. Additionally, an efficient implementation of the computational method may

be beneficial since an unoptimized implementation may not utilize computational resources

economically which may increase the need for a faster computer system and in turn affect

the availability of the tool to all potential users. Furthermore, these computational methods

are not user-friendly to those users who are unfamiliar with the computational methods or

who lack technical expertise in computer usage.

1.4.3 Description

In order to aid industrial and medical biotechnology research in identifying genetic manip-

ulation strategies to increase production of compounds of interest, the researcher developed

a software tool implementing GDBB computational method [4], code performance opti-

mization principles [6, 7, 10] and user interface design principles [8]. GDBB identifies near-

optimal gene knockout strategies in seconds or minutes [4]. The computational method was

implemented in Java programming language and solved using Gurobi MILP solver (Gurobi

Optimization).

Performance optimization principles such as a combination of compiler optimization tech-

niques, and memory access optimization strategies which take into account the modern

www.gurobi.com
www.gurobi.com
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superscalar computer architecture and memory hierarchy, are expected to enhance the effi-

ciency of the software implementation [6, 7, 10]. Subroutine level profiling was applied to

identify inefficient code sections and for each construct, appropriate optimization technique

listed in table A.1 was applied. Timing template as given in appendix B was used as an

intervention to measure efficiency gain before and after the application of the optimization

technique.

User interface design principles are intended to improve usability of the software for in-

dustrial and medical biotechnology research community considering their different levels of

computer usage skills. The principle of user testing [11] which is a user interface design

principle was used as an intervention for user interface testing. An undergraduate student

in dentistry from India and two PhD students in Computational Biology department at

Rutgers Camden were introduced to the principle and the results of the observation were

recorded. Finally the narrative data was used to fix bugs in the user interface.

1.4.4 Expected Results

As a result of the implementation of GDBB, performance optimization principles for coding,

optimal utilization of memory hierarchy of a computer system and user interface design prin-

ciples, we are expected to obtain an easily accessible, efficient and user-friendly standalone

software application for genetic design catering to the needs of biotechnological research.

1.5 Significance to the Field

An efficient computational method which is capable of quickly identifying near optimal

gene knockout strategies and progressively finding better strategies with time has been

implemented. This may result in rapid genetic engineering which may be beneficial to meet

the demands of chemical and pharmaceutical industries.
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Code optimization principles have improved the performance of the implementation which

has resulted in utilizing the available computational resources more economically as com-

pared to un-optimized implementation. This may decrease the demand for buying faster

computers to run problems of higher complexity and size. As a result, the application may

be able to run on medium-end machines which could improve the availability of the software

to a wider range of users.

The user interface design principles and the User Testing Through Observation [9] interven-

tion were able to enhance the user experience of the genetic design tool among the sample

group of users. Hence the method may prove effective to further enhance the usability of

the genetic design tool for real users of the application.

Finally, the packages utilized to develop the software are freely available through academic

license which has enabled the software to be made available for download and use. This leads

to improvement in accessibility and may even lead to contribution towards improvement of

other aspects of the software such as the computational method and software efficiency.

1.6 Definitions

• Branch and bound: An algorithm for finding optimal solutions of various optimization

problems, especially in discrete and combinatorial optimization

• Combinatorial optimization: optimization problem of finding an optimal object from

a finite set of objects.

• Discrete optimization: optimization problem in which variables are restricted to as-

sume only discrete values such as integers.

• Gene: A gene is a molecular unit of heredity of a living organism. It is widely

accepted by the scientific community as a name given to some stretches of DNA

(Deoxyribonucleic Acid) and RNA (Ribonucleic Acid)
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• Genetic engineering: manipulation of an organism’s genome using biotechnology. For

example, genes may be removed or knocked out using nuclease (an enzyme capable of

cleaving certain bonds in nucleic acids).

• Genome: entirety of an organism’s hereditary information. It is encoded in DNA or

in RNA (in many viruses)

• Linear optimization: it is a technique for optimization of a linear objective function,

subject to linear equality and linear inequality constraints.

• Memory hierarchy: It is the organization of a memory subsystem in the form of

different levels based on response time. There are four major storage levels

– Internal: Processor registers and cache

– Main: System RAM and controller cards

– Off-line bulk storage: Tertiary and off-line storage

– On-line mass storage: Secondary storage

• Superscalar architecture: A superscalar CPU architecture implements a form of par-

allelism called instruction level parallelism within a single processor. Instruction level

parallelism is a measure of how many of the operations in a computer program can

be performed simultaneously.

• User interface (UI): It is the system by which users interact with a machine.

1.7 Limitations

One of the limitations of the computational method GDBB is that the algorithm is designed

to find near optimal solutions in order to improve efficiency. Truncation time is used to

define the time at which the optimization must terminate. Thus the solution obtained may

not be the optimal solution for the problem.
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Another limitation that affects external validity is the results pertaining to efficiency. The

gain in efficiency was observed on a machine with Intel core i5 processor running windows

7 operating system. This machine is based on Reduced Instruction Set Computer (RISC)

architecture and memory hierarchy with multiple levels of caches. Hence the results may

not apply to computers based on other architectures and/or computers with no memory

hierarchy.

The researcher has limited access to participants for usability testing. The participants are

not directly associated with industrial or medical biotechnology research. Additionally, the

sample size is small which includes one undergraduate student in dentistry and two compu-

tational biology students. As a result, the current results may affect external validity, i.e.

the generalizability of the results to the actual setting of industrial or medical biotechnology

research groups.
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2 Review of the Literature

The literature review will address two areas related to the genetic design tool for identifying

manipulation strategies that may lead to the overproduction of compounds of interest. The

first section will address theory behind computer aided genetic design and research related

to computational methods to identify genetic manipulation strategies. The second section

will focus on theory related to architectural features that affect software performance and

studies on effective code optimization principles.

2.1 Computational Methods for Genetic Manipulations

2.1.1 Applications of Computer-based Modeling of Biological Systems

One of the major reasons for building models of biological systems is to discover new ge-

netic manipulation strategies for producing essential chemical compounds. The models

constructed for this purpose are genome scale in silico models. Genome scale in silico mod-

els are used to drive engineering of biological systems which have applications in the fields

of medical and industrial biotechnology.

In the field of medical biotechnology, in silico metabolic models have been used to aid the

production of nutrients and dietary supplements and to improve the production of drugs.

Consider the example of Corynebacterium glutamicum. This bacterium is used industri-

ally to produce amino acids, L-lysine, L-glutamate and can produce organic acids under

oxygen deprivation conditions. A genome-scale model (GEM) of the bacterium was used

to find candidate gene deletions to increase organic acid production under oxygen-deprived

conditions [12]. The model was also used to improve lactate production by interrupting

succinate-producing reactions and by disrupting oxidative phosphorylation reactions.

Another bacterium Bacillus subtilis has the ability to produce antibiotics, high quality

enzymes and proteins, nucleosides, and vitamins which makes it an important industrial
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organism [13, 14]. Similarly, the bacterium Streptomyces coelicolor produces antibiotics,

immunosuppressants and anti-cancer agents.

An essential model that may be studied in the near future is the human metabolic GEM.

Currently, 99% of human euchromatic1 sequence has been completed [15] and if this task

is accomplished, in silico metabolic analysis methods will be useful for studying human

physiology and pathophysiology [16].

Two of the best studied microbial species to date are E. coli and S. cerevisiae. These

organisms from which much about biology has been learned serve as critically important.

E. coli metabolic GEM has been extensively used in applications including increased pro-

duction of lycopene [17, 18], succinate [3, 19, 20], lactate [3, 21], malate [22], L-valine [23],

L-threonine [24], additional amino acids [25], vanillin [26], 1,3-propanediol [3] using the

metabolic models [27–29].

To identify genetic manipulation strategies for increasing the production of lactate and

vanallin in E. coli, computational methods such as Opt-Knock [3] and OptStrain [26] were

used. Quadruple gene deletions proposed by Opt-Knock were tested experimentally and

this resulted in a strain capable of an increased lactate production of 0.87-1.75 g/L per 2

g/L of glucose [21]. OptStrain identified three reactions to be introduced into E. coli for

vanillin production [26]. Then subsequently Opt-Knock was used to systematically search

for gene deletions to enhance vanillin yield [3].

2.1.2 Computer-based Modeling of Biological Systems

Genome scale in silico models of the organisms employed for identifying genetic manipu-

lation strategies are represented as constraint-based metabolic models. The approach for

constructing these models is based on successive imposition of different physico-chemical,

topobiological and environmental constraints.

1Euchromatin is a packed form of DNA, RNA or protein that is rich in gene concentration

http://en.wikipedia.org/wiki/Euchromatin
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Physico-chemical constraints exist due to dense packing of the interior of a cell. As a result,

the viscosity of the cell is 100 to 1000 times that of water and consequently the diffusion

rate for macromolecules is probably slow. Furthermore, the confinement of a large number

of molecules within a semipermeable membrane causes high osmolarity 2, sodium-potassium

pumps generate osmotic pressure and hence the cell requires a mechanism to balance os-

molarity or the rigid cell wall (to physically withstand it). Additionally, the intracellular

reaction rates are determined by concentration inside a cell. Finally, the biochemical reac-

tions need to have negative free energy change to proceed in the forward direction.

Topobiological constraints are three dimensional constraints which arise due to crowding

of molecules inside a cell. For example, the linear dimension of bacterial genome is on the

order of 1000 times the length of a cell. Therefore the DNA must be tightly packed in the

nucleus of the cell in an accessible and functional configuration because DNA is functional

only if it is accessible. As a consequence, the physical arrangement of a bacterial genome

is constrained.

Environmental constraints occur due to nutrient availability, pH, temperature and osmo-

larity which are condition dependent. Consider the example of E. coli whose life cycle is

subject to sudden environmental changes. The environment outside the animal is ambient

and there is a presence of ample amount of oxygen. When E. coli enters an animal’s mouth

it experiences a heat shock. Subsequently when E. coli reaches the animal’s stomach it

experiences an acid shock. After that, E. coli enters the animal’s intestine and undergoes a

pH shock and nutritionally rich anaerobic environment. In this environment, E. coli grows

rapidly in the presence of other bacterial species. Finally E. coli receives a cold shock and

ample oxygen with diminishing nutrients. As a consequence of the changing environment,

E. coli must adjust its internal functional state in order to survive.

2Osmolarity is the solute concentration in a solution measured in osmoles per litre

http://en.wikipedia.org/wiki/Osmotic_concentration
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2.1.2.1 Mathematical Representation of Constraints

The physico-chemical constraints, topobiological constraints and environmental constraints

are mathematically defined as balances and bounds. Balances are equality constraints and

bounds are inequality constraints. Consider conservation of mass for instance. This physico-

chemical constraint is mathematically defined using the balance constraint. Under steady

state condition, compounds neither accumulate nor deplete and hence for each compound

xi the production rate is equal to the consumption rate. This is mathematically represented

as

dx

dt
= Sv = 0 (2.1)

where S is an m× n stoichiometric matrix as given below

S =


. . .

...

. . . Sij . . .

...
. . .


whose ijth element Sij is the coefficient of the metabolite i in a metabolic reaction j. v is

an n element flux vector whose jth element, vj is the rate of reaction j with respect to time.

An important physico-chemical constraint that needs to be taken into account is the ther-

modynamic constraint. This constraint is represented as a bound on the flux through

a metabolic reaction. The mathematical representation of the constraint for the fluxes

through all the reactions in the metabolic network is represented as,

vmin ≤ v ≤ vmax (2.2)

where, vmin and vmax are n dimensional vectors of minimum and maximum flux values

respectively. If a reaction is irreversible, then the minimum flux value is non-negative

which is mathematically represented as vmin = 0.
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A third physico-chemical constraint is the solvent capacity constraint. Assuming the bio-

logical system is in a steady state, this constraint limits the concentration of the compounds

that participate in metabolic reactions. Such a constraint can be defined by setting upper

bounds on compound concentrations. This can be mathematically represented as,

xi ≤ xi,max (2.3)

where xi is a metabolite and xi,max is the maximum concentration limit on the metabolite.

The fourth type of physico-chemical constraint is the kinetic constraint. The metabolic

reactions are shown to be constrained by maximal reaction rates. Two factors affect the

kinetic constraints. First, the kinetic constants must be numerically positive. Second,

the collision frequency of molecules defines upper bound on the kinetic constants. Taking

these factors into consideration, constraints on kinetic constants can mathematically be

represented as

0 ≤ k ≤ kmax (2.4)

Thus the physico-chemical, topobiological and environmental constraints limit the possible

functional states that can be attained by the metabolic network. This constrained network

forms a closed space whose properties can be studied.

A number of in silico methods have been developed to study the properties of genome-

scale networks [30]. One of the methods is to find solutions of interest in the constrained

metabolic network space. If the space is constrained by a set of linear equality and linear

inequality constraints, the solution space is a polytope which is a space with flat sides. The

solution to be found can be represented by an objective function. If the objective function

is linear, the optimal solution to the objective function can be obtained by applying linear

optimization (LP).
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2.1.3 Computational Methods

An objective can be used to study the capability of an organism’s metabolic network. One

of the important objectives to consider is the maximization of a metabolite production. The

problem under consideration is to study the biochemical capabilities of E. coli.

A method popularly studied to find the capabilities of metabolic networks is the Flux

Balance Analysis (FBA). In this analysis, the restricted knowledge of the parameters of a

biological system are combined with thermodynamic principles to generate predictions and

verifiable hypotheses [31].

Consider a metabolic network with M metabolites. The sum of all production and con-

sumption fluxes in steady state weighted by stoichiometric coefficients of the reactions is

zero as given in the equation (2.1). The flux vector v in the case of FBA includes ex-

change fluxes which represent the rate of metabolite transport through the cell membrane.

The reason for making the steady state approximation is that the metabolite concentration

reaches equilibrium much faster than (in seconds) the rate of genetic regulation (minutes)

[32, 33].

Additional constraints that correspond to nutrient availability and maximal fluxes are ap-

plied in the form of inequalities as follows,

αj ≤vj≤ βj (2.5)

where αj and βj are jth elements of n dimensional vectors α and β respectively which

contain either measured or imposed values.

The FBA problem can be represented mathematically by the equation given below.

max fTv

subject to

Sv = 0 (2.6)
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α ≤ v ≤ β

where f is an n dimensional vector of coefficients that represents the objective function

under consideration intended to be maximized under the given constraints (2.1) and (2.5).

FBA computes the flow of metabolites through the metabolic network. This can be used

to predict the growth rate of an organism as well as important metabolites. the method

was applied to predict the maximum growth rate of E. coli in the presence as well as in the

absence of oxygen.

In order to apply FBA, a phenotype3 must be defined as a biological objective which is

relevant to the problem under consideration. Since we are predicting growth rate, the

objective is biomass production. Biomass production can be defined as the rate of conversion

of metabolic compounds into biomass constituents such as nucleic acids (DNA, RNA),

proteins, lipids (fats, fat soluble vitamins A, D, E and K) and so on.

Biomass production can be mathematically defined by augmenting an artificial column of

coefficients in the stoichiometric matrix. This column corresponds to the consumption of

precursor metabolites. Precursor metabolites are compounds that participate in certain

chemical reactions that produce monomers such as amino acids (which polymerize to form

proteins) and nucleotides (which polymerize to form nucleic acids such as DNA and RNA).

The basis for defining the biomass reaction is the experimental measurements of biomass

components. To make one gram of E. coli biomass, the precursor requirements are given as

fprecursor = +0.205vG6P + 0.071vF6P + 0.898vR5P

+0.361vE4P + 0.129vT3P + 1.496v3PG

+0.519vPEP + 2.833vPY R + 3.748vAcCoA

+1.787vOAA + 1.079vαKG (2.7)

3Phenotype is an organism’s observable characteristic

http://en.wikipedia.org/wiki/Phenotype
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where, G6P is D-glucose 6-phosphate; F6P is D-fructose 6-phosphate; R5P is Alpha-D-

ribose 5-phosphate; E4P is D-erythrose 4-phosphate; T3P is Triose 3-phosphate; 3PG is

3-phospho-D-glycerate; PEP is Phosphoenolpyruvate; PYR is Pyruvate; AcCoA is Acetyl

coenzyme A; OAA is Oxaloacetate and αKG is Alpha ketoglutarate.

Additionally, the cofactor requirements for synthesizing monomers such as amino acids

(building blocks of proteins) and nuleotides (building blocks of DNA and RNA) from pre-

cursors and then subsequently for polymerizing the monomers to macromolecules is given

by

fcofactors = 42.703vATP − 3.547vNADH + 18.22vNADPH (2.8)

where, ATP is Adenosine triphosphate; NADH is Nicotinamide adenine dinucleotide - re-

duced and NADPH is Nicotinamide adenine dinucleotide phosphate - reduced.

Therefore the mass and cofactor requirements needed to make E. coli biomass is the sum

of the quantities of precursor requirements and the cofactor requirements as given in the

equation (2.9) [34].

f = fprecursors + fcofactors (2.9)

FBA was applied to calculate the aerobic growth rate of E. coli assuming that the uptake of

glucose, and not oxygen are the limiting constraints on growth. The calculation was carried

out using the published model of E. coli metabolic network. This model includes glucose

and oxygen uptake into the cell in addition to metabolic reaction and biomass reactions

[35].

The assumptions were mathematically represented by setting the maximum uptake rate of

glucose to a physiologically realistic level of 18.5 mmol gDW−1 h−1 (DW is Dry Weight)

and the maximum uptake rate of oxygen to an arbitrarily high level.

The problem was solved using LP to obtain maximum possible flux through the biomass

reaction. FBA under aerobic conditions (abundance of oxygen) predicted an exponential
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growth rate of 1.65 h−1 and under anaerobic conditions (absence of oxygen) it predicted a

growth rate of 0.47 h−1.

There are several limitations for FBA. First, FBA does not account for kinetic parameters.

Second FBA cannot predict metabolic concentrations but only flux distribution at steady

state. Third, FBA does not consider regulatory effects such as activation of enzymes by

protein kinases and regulation of gene expression. As a result, the predictions made by

FBA may not always be accurate.

FBA is applied to predict the effects of partial or complete gene deletions on the phenotype

of an organism. To simulate gene knockouts, constraints can be modified by limiting the

reactions that are affected by the gene knockouts to zero flux. This concept has been applied

to devise methods that are based on FBA analysis to maximize metabolite production.

This can be accomplished by exploring a trade-off between the conflicting objective of the

organism and metabolite production.

2.1.3.1 Organisms as Cell Factories

The behavior of the networks of micro-organisms is governed by internal cellular objectives

which compete with the targets of chemical overproduction. In order to deal with these

challenges, a bi-level optimization framework termed OptKnock has been developed to

suggest gene knockouts for biochemical overproduction while recognizing that the metabolic

flux distributions are governed by internal cellular objectives [3].

Two cellular objectives were considered for OptKnock. (1) Maximization of biomass yield

and (2) minimization of metabolic adjustment (MOMA) since FBA models usually invoke

optimization of specific cellular objectives such as ATP production [36, 37], biomass for-

mation [38] and MOMA [31] which are subject to network stoichiometry. These objectives

suggest a probable flux distribution.

The biomass maximization hypothesis has been shown to be successful in certain cases when

applied to the stoichiometric models of E. coli metabolism. For instance in the prediction of
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the lethality of gene knockouts [27] and in the identification of correct sequence of byproduct

secretion under increasing anaerobic conditions [39].

OptKnock framework was introduced for predicting knockout strategies resulting in over-

production of specific chemical compounds in E. coli. This is accomplished by making sure

that the chemical of interest is an obligatory by-product of growth achieved as a consequence

of re-shaping the connectivity of the metabolic network. OptKnock framework identifies

and removes the metabolic reactions which can uncouple the cellular growth from chemical

production. The model considered was an in silico abstraction of E. coli metabolic network

of Palsson and co-workers [27].

OptKnock was applied for succinate, lactate and 1,3-propanediol production in E. coli

with the cellular objective of maximizing biomass yield assuming a fixed quantity of up-

take glucose. The results of the approach that maximized biomass yield were compared

and contrasted with the results of the approach that hypothesized MOMA as the cellular

objective.

In order to identify the combinations of multiple gene deletions that optimally couple cellular

growth objectives with an imposed chemical production target, the following multilayered

optimization framework given in the figure below was developed [3].
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maximize bioengineering objective

(through gene knockouts)

subject to

maximize cellular objective

(over fluxes)

subject to

• fixed substrate uptake

• network stoichiometry

• blocked reactions identified by

outer problem

number of knockouts ≤ limit

The framework takes into account two competing optimality strategies. First the cellular

objective and second the chemical production. This multilayered optimization framework

is referred to as the bi-level optimization problem [40].

The problem of maximizing cellular objective is quantified as an aggregate reaction flux

for a steady state metabolic network consisting of N = {1, . . . , N} metabolites and M =

{1, . . . ,M} reactions. The network of reactions is fueled by glucose substrate. The mathe-

matical representation of the problem is as follows,

max vcellular objective (2.10)

subject to
M∑
j=1

Sijvj = 0, ∀i ∈ N

vpts + vglk = vglc uptakemmol/gDW.hr

vatp ≥ vatp main mmol/gDW.hr

vbiomass ≥ vtargetbiomass 1/hr

vj ≤ 0, ∀j ∈Mirrev
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vj ≤ 0, ∀j ∈Msecronly

vj ∈ <, ∀j ∈Mrev

where, vj is the flux through reaction j, vglc uptake represents basic glucose uptake, vatp main

is the non-growth related ATP maintenance requirement; vtargetbiomass is the minimum biomass

production; v is a vector comprising of internal and transport reactions, where forward

(positive) direction means uptake of particular metabolites and reverse (negative) direction

represents secretion of metabolites; vpts and vvglk are rates of uptake of glucose through

phosphotransferase system and glucokinase system respectively;Msecr only is a set of trans-

port fluxes for those metabolites which can only be secreted from the network; M is the

complete set of reactions; Mrev is a subset of M consisting of reversible reactions only;

Mirrev is a subset ofM comprising only irreversible reactions; cellular objective is assumed

to be the drain of biosynthetic precursors in the ratios required for biomass formation [41].

The fluxes are reported as 1 gDW−1 h−1 and the biomass as g biomass produced gDW−1

h−1.

Subsequently, the gene deletions were modeled using a vector y where its jth element yj is 1

if the flux through reaction j, vj is active and 0 if the flux through reaction j, vj is inactive

for all j belonging to the set M. The gene deletion was mathematically represented as

vminj .yj ≤vj≤ vmaxj .yj ∀j ∈M (2.11)

which ensures that the reaction flux vj gets set to 0 if yj is set to 0 and vj is free to assume

any value between lower limit vminj and upper limit vmaxj if yj is set to 1. The values of

vminj and vmaxj are found by minimizing and maximizing every flux which are subjected to

the constraints of the primal problem (2.10) defined previously.

In order to identify optimal gene/reaction knockouts one must solve the bi-level optimiza-

tion problem which chooses a set of reactions (by setting yj = 1) such that, the optimization

of cellular objective leads indirectly to the overproduction of the chemical of interest. As-

suming the biomass formation as the cellular objective, the mathematical representation of
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the problem is as follows,

maxyj vchemical (2.12)

subject to

maxvj vbiomass (2.13)

subject to
M∑
j=1

Sijvj = 0,

vpts + vglk = vglc uptake

vatp ≥ vatp main

vbiomass ≥ vtargetbiomass

vminj .yj ≤ vj ≤ vmaxj .yj , ∀j ∈M

yj = {0, 1}, ∀j ∈M∑
j∈M

(1− yj) ≤ K

Many Computational methods were built based on the OptKnock framework to identify

gene manipulation strategies. These methods search the space of all possible genetic ma-

nipulations to find strategies that may result in the desired metabolic network state. How-

ever, this space is vast and as a result the methods get computationally very intensive as

the number of manipulations allowed in the design increase. For large models such as E.

coli K-12 MG 1655 [42], iAF1260, runtime becomes very large for designs with more than

a few manipulations. Consequently, as the number of reactions, metabolites and genes in

the metabolic models continue to grow [43], more efficient computational techniques are

required for effective in silico design.

In order to efficiently search for the space of possible genetic manipulations, a heuristic

algorithm called GDLS was developed. This method has the capability to handle large

models and allows for larger number of genetic manipulations in the design with runtime

scaling linearly with total number of manipulations T . GDLS applies local search with

multiple search paths in order to find strategies that are locally optimal. Beginning with
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a certain strategy as a starting point, GDLS uses MILP to search for best strategies that

differ from the starting point by at most k additional manipulations. The total number of

strategies maintained by GDLS at any point in time is limited to the size M .

For the next iteration, the current M best strategies are used as the starting point and

the above process is repeated which results in at most M best strategies where each of the

strategies differs from the previous M strategies by at most k additional manipulations.

The procedure is repeated until no more strategies better than the existing ones can be

found.

Thus, GDLS can find strategies with T total number of manipulations using computationally

feasible increments (determined by k and M).

The paper limited the consideration of bi-level FBA framework to gene knockouts for sim-

plicity but any bi-level FBA framework which can be transformed to MILP can be used

such as up or down regulation of genes using OptReg [44].

GDLS implemented reductions to decrease the size of the FBA model without changing its

properties. GDLS utilized gene-protein reaction (GPR) mappings which is a many-to-many

mapping between genes and reactions. GPR mappings potentially reduces the search space

which results in the reduction of search complexity and as a consequence the runtime. Other

reductions included removing dead-end reactions and linked reactions [45, 46].

Three principle reductions were applied to the FBA model. (i) Removal of all dead-end

reactions (ii) redefining linked reactions and (iii) successively maximizing and minimizing

each flux subject to the constraints of the problem respectively.

1. Dead-end reactions are reactions in which the metabolites are associated with only

one reaction and hence they do not carry any flux.

2. Linked-reactions are reactions in which the metabolites are associated with exactly

two reactions. Since the metabolites are conserved, the fluxes of the two reactions

will always be in the same ratio and hence can be reduced to single variable. Thus all
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reactions of the form

Sij1vj1 + Sij2vj2 = 0 (2.14)

can be transformed by reducing j1 and j2 to a single reaction since

vj1 = −Sij2
Sij1

vj2 (2.15)

3. Third type of reduction is accomplished by successively maximizing and minimizing

each flux which are subject to the constraints of the problem. This problem is referred

to as the max-min problem [47–49]. As a result, we obtain tighter bounds on the fluxes.

Thus we solve,

max/min vj (2.16)

subject to

Sv = 0

a ≤ v ≤ b

In order for GDLS to function at the genetic level, GPR mappings were implemented. GPR

mappings is a mathematical definition of how certain genetic manipulations affect reactions

in the network. If L is the number of genetic manipulations, then GPR mappings is an

L×n matrix. Where, ljth element Glj of G is 1 if lth genetic manipulation maps to reaction

j and 0 if lth genetic manipulation does not map to reaction j.

A previously defined problem for identifying genetic manipulation strategies which was

based on the conversion of bi-level optimization problem to its equivalent MILP problem

[3] was used. The bi-level optimization problem was defined as follows,

max gTv (2.17)

subject to
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L∑
l=1

yj ≤ C,

yl = {0, 1},

max fTv

subject to

Sv = 0,

(1− y)TGjaj ≤ vj ≤ (1− y)TGjbj , j = 1, . . . , n

where, g is the synthetic objective vector whose jth element gj is the weight of the reaction

j in the synthetic objective; y is the knockout vector whose lth element yl is 1 if the genes

involved in the manipulation l are knocked out and 0 if the genes in the manipulation are

retained; Gj is the jth column of G and C is the maximum number of knockouts being

allowed.

The bi-level optimization problem (2.18) was converted to its equivalent MILP problem as

defined in the case of OptKnock [3]. The dual of the inner biological objective [3, 50] can

be obtained as follows

max
n∑
j=1

νjbj − µjaj (2.18)

subject to

fj −
m∑
i=1

λiSij − νj + µj − ξj = 0 j = 1, . . . , n

−DyTGj ≤ ξj ≤ DyTGj

µ,ν ≥ 0

where, λ is the dual variable for the equality constraints associated with the cellular ob-

jective (2.18); µ and ν are the dual variables for lower and upper bounds respectively; ξ

is the dual variable for the constraints vj = 0 and yj = 1; and D is a scalar selected to be

large enough to make sure that ξ is effectively not constrained when yTGj is not zero. D

was chosen to be 100.
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If the optimal solutions of the inner primal biological objective problem (2.18) and the

corresponding dual problem (2.18) are bounded, the objective function values of both the

problems should be equal to each other. Hence the objective functions can be equated

to one another and the constraints of both the problems can be collected together. As a

result, the bilevel formulation of the problem (2.18) can be transformed to a MILP problem

as given below [3].

max gTv (2.19)

subject to
L∑
l=1

yl ≤ C

yl ∈
{

0, 1
}

l = 1, . . . , L

Sv = 0

(1− y)TGjaj ≤ vj ≤ (1− y)TGjbj j = 1, . . . , n

fTv =
n∑
j=1

νjbj − µjaj

fj −
m∑
i=1

λiSij − νj + µj − ξj = 0 j = 1, . . . , n

−DyTGj ≤ ξj ≤ DyTGj

µ, ν ≥ 0

GDLS was applied for acetate and succinate overproduction problems in E. coli using

iAF1260 as the FBA model. The model was given no available oxygen and 10 mmol

gDW−1.h−1 of available glucose since succinate and acetate fermentations are usually car-

ried out under anaerobic conditions [51, 52] and the conditions are consistent with good in

silico production.

GDLS achieved an improvement in the computational time for those solutions that yielded

values comparable to the desired flux. The method searches the space of manipulations

by propagating sets of best solutions. An increase in the number of search paths corre-

spondingly increases the size of the set propagated which increases the runtime but has the
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following advantages. Increasing the number of search paths allows finding solutions with

greater synthetic fluxes. It also makes the search more robust to inaccuracies in the MILP

solver.

GDLS is based on the assumption that good strategies can be obtained by adding manipu-

lations to existing good strategies. However this assumption was observed to be untrue for

certain cases by another computational method called GDBB [4].

GDBB was developed as a solution to the problem of finding near-optimal solutions more

efficiently as compared to OptKnock and GDLS. GDBB employs a constraint-based model of

metabolism and predicts the production of desired metabolite when the organism’s network

is subject to genetic manipulations. In general, GDBB can be used to find near-optimal

genetic manipulation strategies for a setup which has a bi-level optimization framework and

which can be converted to a single level MILP problem. For example, near-optimal gene

knockout strategies as given in OptKnock [3] and near optimal up and down regulation

strategies as in OptReg [44]. The conversion of bi-level optimization problem has led to

efficient computational methods for searching the space of genetic manipulations [3, 26, 49].

GDBB employs truncated branch and bound algorithm to handle bi-level optimization

framework used in OptKnock [3], OptReg [44] and GDLS [5]. Truncated branch and bound

is an adapted version of the standard branch and bound algorithm which is used to find

solutions to optimization problems. Truncated branch and bound terminates processing

after running for a period of time defined as an input. The termination may take place at a

feasible near-optimal solution which can be considered sufficient for practical purposes [53].

GDBB was shown to perform better than the previous approaches for finding genetic ma-

nipulation strategies on bi-level optimization problems. The method finds near-optimal

solutions in seconds or minutes as opposed to days taken by other approaches. The re-

search pertaining to GDBB focused on finding knockout strategies that resulted in favorable

metabolic phenotypes.

The definition of the problem for GDBB is the same as the one previously defined for

GDLS. The MILP problem (2.19) was set up and passed to Gurobi MILP solver with the
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following configuration. The solution feasibility tolerance FeasibilityTol was set to 10−9;

integer feasibility tolerance IntFeasTol was set to 10−9 for achieving accurate solutions;

Heuristics was set to 1.0 in order to produce better feasible solutions; MIPFocus was set to

1 to give higher priority to solution feasibility over optimality; ImproveStartGap was set to

∞ for gaining focus on producing more feasible solutions; and finally the TimeLimit was

set to a finite value to specify the truncation time for the branch and bound algorithm.

The problem was solved using a truncated branch and bound implementation of Gurobi

solver (Gurobi Optimization). Gurobi is a standalone, commercial solver used for LP,

quadratic programming (QP) and mixed integer programming (MIP) which includes MILP

& mixed integer quadratic programming (MIQP) problems.

The space of possible gene knockout strategies was searched for a maximum running time

of 86400 s (24 h). The running time was an arbitrary choice. GDBB found solutions

comparable to those of GDLS and global search with an improvement in its running time

of one or two orders of magnitude. GDBB was able to find solutions within 24 h, which the

other approaches were unable to find.

GDBB found a knockout strategy that resulted in an acetate production flux of 19.232

mmol gDW−1 h−1 which was an increase of 2.62278 mmol gDW−1 h−1, a 14% over the best

solution found by GDLS in 24 h period. GDBB was able to predict the strategy in just 81

seconds.

In the case of succinate production, GDBB was observed to show a smooth increase in the

synthetic flux as the number of knockouts increased, hence it is believed that the maximum

synthetic flux that can be achieved is somewhere around 12 mmol gDW−1 h−1.

GDBB and GDLS can find similar solutions with a 14-16 knockout in 24 hour time period.

All the knockout strategies discovered by GDBB were reached within 6 minutes and no

further improvement was found in the synthetic flux by allowing the method to run for 24

hours. Additionally, GDBB found solutions which made more biological sense being more

consistent with previous experimental findings as compared to GDLS.

http://www.gurobi.com/
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The utility of GDBB could increase with more complex problems. The researchers predicted

that the complexity of a genetic manipulation problem may increase in two ways. (1) The

size of the metabolic models will increase as the biological knowledge about the organisms

being studied grows or if a more complex organism than E. coli is being considered. (2)

Modifications other than knockouts such as increasing gene expressions can be considered.

One of the limitations of GDBB is that the truncation time limits GDBB to finding near-

optimal solutions only. Since the truncation time is defined with an arbitrary value it does

not have any correlation with the rate at which GDBB discovers new strategies with higher

flux values for a given number of maximum knockouts allowed.

2.1.4 Summary

Since GDBB was shown to perform better as compared to GDLS and OptKnock, it is more

favorable as an effective computational method for an efficient software implementation to

find near optimal gene manipulation strategies.

2.2 Theory Driving Efficiency Considerations

This section will address the aspects of computer hardware and software systems that

will impact the performance of the genetic design software tool. The first subsection will

discuss memory subsystem in a typical modern computer. The second subsection will

deal with modern microprocessor architecture. The final subsection will address modern

optimizing compilers and how they exploit the hardware features to produce an optimal

software system.
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2.2.1 Memory Hierarchy

The modern computer systems are based on RISC (Reduced Instruction Set Computer)

design. Memory subsystem of RISCs are organized in a hierarchical fashion. This hierarchy

can be visualized as a pyramid consisting of different layers as shown in the figure 2.1.

 

 

More Costly 

Less Costly 

Access times 
1 ns   2 ns 

3 ns    10 ns 

25 ns  50 ns 

30 ns  90 ns 

5 ms   20 ms 

100 ms         5 s* 

10 s    3 min* 

* If volume is mounted

Figure 2.1: Memory Hierarchy

The layers of the memory hierarchy consists of registers, caches, main memory and sec-

ondary memory. The layers at the top of the pyramid are smaller in size but faster in access

because they are closer to the central processing unit (CPU). The amount of data transfered

between the bottom layers is larger as compared to the data transfered at the top layers.

The topmost memory module that is closest to the CPU is a set of registers. Registers are

the fastest to access and smallest in size. Registers are placed inside the chip that houses

the CPU. High end RISC processors have 32 floating point registers which can be accessed

with no delay (zero cycles latency4). The RISC processors also possess 32 integer registers

4Latency is the time between the start and the completion of an event. Latency in the case of a register
is the time taken to retrieve a unit of data
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which are meant for integer arithmetic including address calculations of array elements that

are loaded or stored.

Below the registers in the hierarchy are caches which are slower in access and larger in

size as compared to the registers but faster in access and smaller in size as compared to

memory. Typical machines today have multiple cache levels such as level-1 (L1) and level-2

(L2) caches. If data is available in L1 cache, then it is transfered from the cache to the

register. The latency for the transfer is 1 cycle. But if data is not present in L1 cache,

then L1 ”cache miss” occurs and data must be transfered from lower level memory to L1

cache. If the system has L2 cache, then a transfer from L2 cache to L1 cache takes a few

dozen cycles. If data is not available in L2 cache then L2 ”cache miss” occurs and the data

is transfered from memory to L2 cache which has a latency of approximately 100 cycles. If

the machine does not contain L2 cache, then data is transfered directly from memory to L1

cache.

A cache data can be divided into blocks and lines. A cache block is a unit of data that can

be transfered between cache and registers. A cache line which contains many cache blocks,

is the smallest unit that can be loaded from memory to cache. Cache line size typically

varies between 4 and 32 words. A cache is said to be p way associative if a cache line can

be placed in any one of p possible slots.

Next in the hierarchy is main memory. Main memory has a high latency and hence higher

access time as compared to cache.

After the main memory is the secondary memory. Secondary memory is very slow in access

but very large in size as compared to the main memory. This memory is a real performance

bottleneck because it is the greatest contributor to the degradation of performance. The

reason for low performance is due to very large access latency as compared to the main

memory. The typical access time of main memory is of the order of nanoseconds but hard

drive which is the fastest secondary memory in the hierarchy has an access time in the order

of milliseconds as given in the figure 2.1 which is 106 times slower as compared to main

memory.
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2.2.2 Modern Processor Architectures

Modern computers are based on superscalar architectures. A superscalar architecture is

one that can perform multiple operations in one processor clock cycle. Consider an n-

way superscalar processor. This processor can fetch n instructions simultaneously in one

clock cycle. A typical processor is capable of performing a combination of adds, multiplies,

loads/stores and branching in one clock cycle. This instruction-level parallelism is exploited

in the hardware or by using a combination of hardware and software support.

Another technique that a superscalar processor employs is pipelining. Each functional unit

in a pipelined processor executes independent instructions in such a way that the pipeline

can output every cycle. This can be achieved with those instructions whose inputs do

not depend on the outputs of the previous instructions in the program sequence. From a

programmers perspective, a pipeline having a latency of s cycles has the same effect as s

separate floating point units having the latency of one clock cycle.

2.2.3 Optimizing Compiler

A modern compiler can perform many optimizations which involves exploitation of memory

hierarchy and superscalar architecture. A few of the optimizations that a compiler is capable

of performing are enlisted in appendix A. A compiler can be set to optimize at the highest

level of optimization. This may lead to an improvement in code performance but may

also result in degradation of performance. This deterioration is because a compiler applies

transformation rules which are based on heiristics which may improve performance in most

cases but it is not guaranteed [6].
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3 Methods

The following research questions were addressed in this research & development

• How can a genetic design tool be implemented efficiently?

• What software packages and tools improve the accessibility of the genetic design tool?

• How can the usability of the genetic design tool be improved for the purpose of

metabolic engineering research?

This research employed a set of accessible software packages and tools to implement an effi-

cient computational method GDBB [4] in Java programming language and applied effective

code optimization principles and applicable user interface design principles to the software.

The effect of applying the code optimization principles were measured using code profiling

techniques and the principles that showed a significant improvement in the efficiency (i.e.

which were effective), were retained. Furthermore, proven and/or applicable user interface

design principles were employed and subsequently usability testing was conducted using

an interview & observation protocol [9] with sample users. The narrative data collected

through the observation was used to fix user interface bugs.

3.1 Design and Implementation of Computational Method

To implement the computational method, the mathematical definition of the GDBB [4]

problem (2.19) defined previously, was represented in terms of matrices and matrix opera-

tions. This enabled compact representation of multiple linear equations and inequalities as
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fewer matrix operations. The redefinition of the problem is as follows,

max γTx (3.1)

Subject to

Ex = δ

Max ≥ A

Mbx ≤ B

α ≤ x ≤ β

where,

Ma =

In×n 0n×n 0n×n 0n×n 0n×m adG
T

0n×n 0n×n 0n×n In×n 0n×m DGT

 (3.2)

Mb =


0n×n 0n×n 0n×n 0n×n 0n×m 11×L

In×n 0n×n 0n×n 0n×n 0n×m bdG
T

0n×n 0n×n 0n×n In×n 0n×m −DGT

 (3.3)

E =


S 0m×n 0m×n 0m×n 0m×m 0m×L

0n×n −In×n In×n In×n ST 0n×L

fT aT −bT 01×n 01×m 01×L

 (3.4)

γT =

[
gT 01×n 01×n 01×n 01×m 01×L

]
(3.5)

xT =

[
vT µT νT ξT λ yT

]
(3.6)

AT =

[
aT 01×n

]
(3.7)

BT =

[
C bT 01×n

]
(3.8)

αT =

[
−∞1×n 01×n 01×n −∞1×n −∞1×n 01×L

]
(3.9)

βT =

[
∞1×n ∞1×n ∞1×n ∞1×n ∞1×n 11×L

]
(3.10)

δT =

[
01×m f 01×1

]
(3.11)
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In×n is an n× n identity matrix of the form



1 0 0 . . . 0

0 1 0 . . . 0

0 0 1 . . . 0

. . .

0 0 0 . . . 1


n×n

(3.12)

0p×q, for any p, q ∈ Z+ is a p× q zero matrix of the form



0 0 0 . . . 0

0 0 0 . . . 0

. . .

0 0 0 . . . 0


p×q

(3.13)

1p×q, for any p, q ∈ Z+ is a p× q matrix whose elements are all one as given below



1 1 1 . . . 1

1 1 1 . . . 1

. . .

1 1 1 . . . 1


p×q

(3.14)

∞1×p, for any p ∈ Z+ is a 1× p vector whose elements are all infinity

[
∞ ∞ ∞ . . . ∞

]
1×p

(3.15)
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ad is an n × n matrix whose elements are all zero except the diagonal elements which

correspond to the elements of a as shown below



a1 0 0 . . . 0

0 a2 0 . . . 0

0 0 a3 . . . 0

. . .

0 0 0 . . . an


n×n

(3.16)

bd is an n× n matrix similar to ad but whose elements correspond to the elements of b

The matrix representation of the GDBB problem is implemented as a set of sparse array

lists in Java programming language. Matrices are constructed using ordinary for loops and

then passed to a function that parses the matrices and constructs parameters for Gurobi

Solver Java Application Programming Interface (API). Then an independent Java thread

is employed to run the GDBB problem as shown in the figure 3.1.

While the main GDBB thread is solving the problem, another Java thread executing a

Gurobi callback function, reports any intermediate solutions of the Gurobi solver. The

intermediate solutions are queued to a solution queue which is shared between multiple

threads. This solution queue is dequeued by another parallel thread which prepares a

new database instance to save the intermediate solution and then publishes the result to

another independent Graphical User Interface (GUI) thread. The new GUI thread displays

the result on the user interface. This mechanism ensures that all the intermediate genetic

manipulation strategies discovered by the Gurobi solver appear immediately and enables

the user to use the intermediate near optimal solutions or terminate the software at a

satisfactory result.

Furthermore, the Gurobi solver’s Java API was used to set the following parameters for

the MILP solver as previously defined for GDBB [4]. FeasibilityTol was set to 10−9

and IntFeasTol was set to 10−9; Heuristics was set to 1.0; MIPFocus was set to 1;

ImproveStartGap was set to ∞ and TimeLimit is set by the user as an input at runtime.
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Figure 3.1: Genetic design tool Design

In order to verify the correctness, test the performance gain and usability of the genetic

design tool, the researcher used the latest genome-scale model of E. coli iAF1260 [42]. This

model consists of 1260 genes, 2077 reactions and 1039 unique metabolites.

3.1.1 Measurement Instruments

The truncated branch and bound implementation of Gurobi solver (Gurobi Optimization)

was used to solve the GDBB problem. Although Gurobi needs commercial license, Gurobi

solver is freely available for academic purposes. Gurobi provides Java API for LP, QP and

MIP problems to support Java applications.

Gurobi solver also provides API for implementing callback mechanism. A callback function

is invoked asynchronously by the solver to report events such as intermediate solutions

or solver interruptions. The intermediate solutions for the truncated branch and bound

algorithm are the near optimal solutions discovered thus far. Therefore the corresponding

objective function value and variable values are reported to the user.

www.gurobi.com
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3.1.2 Data Collection

The data were collected by running the genetic design tool with truncation time set to ∞

and by running FBA respectively for various knockout configurations. The final solutions

obtained in both the cases were plotted using a bar graph. The genetic design tool was run

for k = 1, 2, 3, . . . , 6 until at most five solutions were generated and the solutions in each

case was recorded. The synthetic objective function was defined for maximization of acetate

production. For each of the solutions obtained from the genetic design tool, the knockouts

were simulated for FBA by setting the minimum flux value vmini and maximum flux value

vmaxi to zero respectively for reaction i which is a reaction that is suppressed due to the

knockout(s). Subsequently, FBA was run for each of the knockout strategies suggested by

the genetic design tool and the corresponding optimal values of the objective function (2.6)

were recorded. The problems were solved on a DELL XPS 15z machine with Intel core i5

processor with 6 GB RAM running Gurobi v5.5 and Java 7.

3.1.3 Data Analysis

The results of the Java implementation of genetic design tool were compared with the

results of FBA. For each of the chemical compounds, the respective graphs were plotted.

Each graph is a comparative plot between the results of the genetic design tool and the

results of FBA for each of the knockouts respectively.

3.2 Code Optimization for Performance

Since an optimizing compiler does not guarantee a performance optimized code, applying

hand optimization can be effective in improving the efficiency of the implementation [10].

In order to optimize matrix construction of the computational method, the following pro-

cedure was applied. A code profiler called JVM Monitor was run to identify the subroutine

that is consuming maximum CPU time. Then a code snippet for which an optimization
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technique is applicable, was selected from the implementation. Optimization was then ap-

plied to the code snippet thus selected and the relative performance between the original

code and optimized code was compared using the testing routine in appendix C. If the gain

was greater than 0.0 %, the original code snippet in the application was replaced with its

optimized version. If the gain was less than 0.0 %, then the original code was retained in

the application.

The optimization techniques were applied directly to the code snippets in the application

without extracting them to a different testing routine. To compare the performance, the

testing routine was incorporated into the main application and two instances of the code

snippet were prepared with the original version preceding the optimized version which is

the order defined in the testing routine. An example of the application of an optimization

technique is shown below.

long iterations = 100000000;

long startTime = System.nanoTime();

for ( int p = 0; p < iterations ; p++) {

}

long endTime = System.nanoTime();

long empty loop time = (endTime − startTime);

startTime = System.nanoTime();

for ( int p = 0; p < iterations ; p++) {

// Unoptimized Code snippet

for ( int i = reactions 4 sMatrix; i < reactions 4 sMatrix gprMatrix; i++)

{

varName = Integer.toString(i);

GDBB.getSolver().setVar(varName, VarType.BINARY, 0, 1);

this .varNames.add(varName);

}

}

endTime = System.nanoTime();

long execution time normal = (endTime − startTime − empty loop time)/iterations;

System.out.println(”execution time before optimization: ” + execution time normal + ” ns”);
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startTime = System.nanoTime();

for ( int p = 0; p < iterations ; p++) {

// Optimized Code Snippet

N = reactions 4 sMatrix gprMatrix − this.model.getGprMatrix().size() \% 8;

for ( int i = reactions 4 sMatrix; i < N; i += 8) {

GDBB.getSolver().setVar(Integer.toString(i), VarType.BINARY, 0, 1);

GDBB.getSolver().setVar(Integer.toString(i + 1), VarType.BINARY, 0, 1);

GDBB.getSolver().setVar(Integer.toString(i + 2), VarType.BINARY, 0, 1);

GDBB.getSolver().setVar(Integer.toString(i + 3), VarType.BINARY, 0, 1);

GDBB.getSolver().setVar(Integer.toString(i + 4), VarType.BINARY, 0, 1);

GDBB.getSolver().setVar(Integer.toString(i + 5), VarType.BINARY, 0, 1);

GDBB.getSolver().setVar(Integer.toString(i + 6), VarType.BINARY, 0, 1);

GDBB.getSolver().setVar(Integer.toString(i + 7), VarType.BINARY, 0, 1);

}

for ( int i = N; i < reactions 4 sMatrix gprMatrix; i++) {

GDBB.getSolver().setVar(Integer.toString(i), VarType.BINARY, 0, 1);

}

}

endTime = System.nanoTime();

long execution time optimal = (endTime − startTime − empty loop time)/iterations;

System.out.println(”execution time after optimization: ” + execution time optimal + ” ns”);

System.out.println(”gain: ” + ((float )execution time normal / execution time optimal − 1.0)∗100

+ ” \%”);

3.3 User Interface

User interface design was carried out in two phases. The first phase involved employing

the applicable user interface design principles [8] as given in appendix A to the design

and implementation of the genetic design tool. The second phase consisted of testing the

user interface through user observation intervention [9] to determine any difficulties in the
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usability of the software tool. These difficulties were recorded and applicable changes were

made to the user interface design to alleviate issues with usability.

3.3.1 Design and Implementation

The principles applied to design and implement the user interface are described below in

detail. Each design change was made either to satisfy one of the principles or multiple

principles simultaneously.

Principle of State Visualization: This principle states that the changes in behavior should

be reflected in the appearance of the program. In order to implement this, the important

changes from the perspective of the user were identified for the program. In the case of

GDBB, the important changes were the generation of intermediate solutions. The solutions

thus obtained consisted of, objective function value, gene knockouts and flux vector of the

optimal solution. These solutions are immediately displayed on the GUI.

Principle of Focus: This principle states that some aspects of user interface attracts atten-

tion more than others do. The principle is applicable in the cases where the user must be

informed about global state changes. In the case of GDBB, the global state change is the

background processing that takes place while the problem is being solved. This background

processing is conveyed to the user using a counter that indicates the total time elapsed since

the GDBB computation was initiated.

Principle of Safety: The principle of safety states that the user must be allowed to develop

confidence by providing a safety net. This principle was implemented by providing minimal

options while the program is processing. This was achieved through a dialog that pops

up when GDBB is selected from the main menu. The dialog does not allow the user to

have access to the main dialog of the application so that the user may not simultaneously

start other operations and lose track of the operation intended to be performed. In the

dialog, only three options are provided namely start, stop and close. The close operation

is disabled when the application starts until the user clicks stop. This avoids ambiguity
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regarding the purpose of close operation (the purpose is only to close the dialog and not to

stop the process which is the function of stop button).

Principle of Context: The principle of context states that the user activity must be limited

to one well-defined context. This principle is also taken care of when all the operations are

limited to GDBB in the pop-up dialog and all and only the outputs generated are limited

to the context of the GDBB problem.

Principle of Aesthetics: This principle states that, one must create a program of beauty.

This requirement is taken care of by representing the solutions as a tree structure with

all the intermediate solutions appearing as leaves to the model under consideration and

inserting icons where ever it is appropriate. The counter output previously discussed also

takes care of the requirement that the user’s usually do not like programs that feel sluggish

or slow and hence an animation was displayed to hide sluggishness in the program.

3.3.2 Testing

For user interface testing, the observation took place at the researcher’s school located in

Camden, New Jersey with two PhD students from the Center of Computational and Inte-

grative biology (CCIB) department and remotely with one student at a residence located in

Bangalore, Southern India. The User Observation Through Thinking out Loud [9] interven-

tion was conducted on an individual basis. The instructions described in the principle were

provided directly to the users at the researcher’s school and remotely to the user located

abroad using online video chat session.

3.3.2.1 Participants

The sampling procedure used by the researcher was purposive sampling. One set of partici-

pants were from researcher’s school site who were PhD students from the CCIB department.

The participants from the CCIB department were selected because they were representa-

tive of the group of industrial and medical biotechnology researchers. The students were
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studying and applying computational modeling of biological systems as well as metabolic

engineering techniques in-vitro on microorganisms in laboratories at the school. Another

participant remotely located at Bangalore, India was an undergraduate student in dentistry.

The selection was made because the student represents a group of users from pure medical/

biological background and no academic background in systems biology and at the same time

represents a group of users from different ethnicity and culture and whose requirements can

be addressed remotely.

3.3.2.2 Intervention

User interface testing was carried out by recruiting help in spotting unavoidable defects in

the program. To detect a user interface bug the researcher observed the sample of users

use the application. A methodology called User Observation Through Thinking Out Loud

[11, 54] was applied for conducting the observation and identifying difficulties in usage of

the application.

The researcher introduced himself to a user and described the purpose of the observation.

The researcher explained that he is looking for spots where it is difficult to use the product

and that this would aid the application developer in improving the product. The researcher

also made it clear to the participant that he/she could quit at any time if it is becoming

uncomfortable.

Next, the researcher explained the purpose of using laptop and desktop computing machines

for testing. The purpose is to enable real users to run the software comfortably on per-

sonal computers which usually have a similar configuration such as hardware and operating

system.

After that, the researcher explained how to think loud. The participant was asked to say

whatever comes to the mind as they used the software tool. The purpose behind thinking

out loud was to enable the researcher to examine the expectations of the product. If the

participant forgot to think aloud, the researcher reminded the user to continue talking.
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Then, the researcher clarified that help will not be provided. When the participant had

difficulty, the answer was not immediately provided but after three minutes. The researcher

made sure that no more information is given than a true user of the software tool would be

given. Information such as features offered by the product were explained before-hand. If

the participant had questions in between, he/she was told to ask them in any case and that

the answers would be provided at the end of the observation.

Subsequently, the tasks in the product were introduced. The participant was given a list

of tasks to be performed in the form of instructions on a pdf document. These instruc-

tions are provided in Appendix D. The general functionality of the product excluding the

functionality of the genetic design tool was demonstrated to the participant.

Next, any questions asked by the participant were clarified and the actual observation was

started. The researcher noted down the information and concluded the observation once

tasks were carried out as given in the list of instructions.

After that, the questions posed by the participant during the observation were answered

and subsequently, the researcher discussed interesting behavior that the participant liked

to see in the product.

Finally, the results of the observation were reviewed and areas where the participant faced

trouble were identified. The tool was then modified to alleviate trouble faced by the par-

ticipant.
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4 Testing and Results

Genetic design tool’s capabilities related to three areas will be discussed in detail in the

following sections. The first section deals with testing the strategies suggested by the genetic

design tool against the results of FBA and presents results of running the genetic design

tool. Figure 4.1 shows a comparative plot of the results obtained for the genetic design tool

and FBA for different knockout configurations. Figure 4.2 displays results of the genetic

design tool for one of the knockout values, k = 2. FBA analysis was performed by running

a genetically modified model of E. coli as suggested by the genetic design tool. The second

section deals with the performance gains obtained after applying optimization principles.

Table C.1 shows the running times and gains obtained for each of the sample codes. Table

4.2, displays the results of optimizing the actual code of the genetic design tool. Finally,

the last section shows the user interface of the genetic design tool obtained as a result of

applying the user interface design principles [8]. A discussion of the narrative data obtained

from user testing is also incorporated in this section.

4.1 Computational Method

To test the genetic design tool, a comparative analysis was performed with FBA. For each of

the configurations of the genetic design tool, the optimizer was configured to run by setting

the TimeLimit parameter of the MILP solver to infinity (no truncation time) to ensure

that the truncation time does not stop the solver before finding at least five solutions.

The knockouts suggested by the genetic design tool for each of the configurations were

then simulated by setting the lower bound vmini and the upper bound vmaxi to zero for the

corresponding metabolic reaction which gets suppressed as a result of the knockout(s). The

resulting constraints were then used as inputs for FBA analysis. The results obtained in

the case of genetic design tool and FBA analysis are plotted in figure 4.1.
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Figure 4.1: Genetic design tool vs FBA
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Genetic design tool and independent FBA analysis showed comparable results for knockout

values k = 1, 2, 3, . . . , 6.

Another plot in figure 4.2 shows six consecutive intermediate solutions produced by the

genetic design tool for maximum knockout limit of k = 2. For this knockout limit, the

strategies proposed by the genetic design tool are given in table 4.1.

Table 4.1: Strategies obtained for at most two knockout configuration

No Knockouts Biological

Objective

Synthetic

Objective

1 - 0.231056 8.301396

2 ( b3846 or b2341 ) 0.231056 8.301396

Continued on next page
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Table 4.1 – Continued from previous page

No Knockouts Biological

Objective

Synthetic

Objective

3 b1849 0.212228 9.320898

b2913

4 ( ( b4079 and ( b2481 and b2482 and

b2483 and b2484 and b2485 and b2486

and b2487 and b2488 and b2489 and

b2490 ) ) or ( b4079 and ( b2719 and

b2720 and b2721 and b2722 and b2723

and b2724 ) ) )

b2913 0.181828 9.418173

5 ( b0351 or b1241 ) 0.128993 13.535922

( b2551 or b0870 )

6 ( b0351 or b1241 ) 0.130347 13.791117

b1539

4.2 Code Optimization

Code optimization was performed in two stages. The first stage involved verifying whether

a particular compiler optimization principle improves the performance of the sample code.

The results of the first stage are displayed in appendix C. The second stage employed the

principles which were effective in the first stage to the actual code snippets in the genetic

design tool program. The results of applying the code optimization techniques to the genetic

design tool code are reported in table 4.2.
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Figure 4.2: Objective Values for k = 2
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Genetic Design Tool

The Java compiler is an optimizing compiler, certain optimizations are performed during

runtime and as a result of this, the optimization techniques such as loop invariant optimiza-

tion, constant propagation, dead store elimination, dead variable elimination and boolean

short circuiting are automatically handled by the compiler. Hence the principles had no

effect on the performance of the sample code snippets. However, the Java compiler was

unable to perform optimizations such as constant folding, loop unrolling and loop jamming

respectively. The final code involved a combination of optimizations in order to improve

performance but the compiler was unsuccessful in improving the performance as compared

to the hand optimized code. The hand optimized code was able to run twice as fast as the

unoptimized version.

Furthermore, the genetic design tool was run by setting the iterations parameter in the

timing template to the value of one. As a result each of the unoptimized and optimized

versions of the function ran only once. The process was repeated 10 times and the gains

were recorded for each run respectively. The maximum gain observed was 16.44 %. The

average of all 10 gains was 8.03 % (SD = 5.20). The average time taken by the unoptimized
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function was 0.9118 s and the average time taken by the optimized function was recorded

to be 0.8445 s.

Finally, a function setConstraints() that builds the matrices for the problem was optimized.

Subsequently, the function was tested for performance gain using the timing template in

appendix C. The iterations parameter of the timing template was set to 10, 100, 200 and

500 respectively and the gains for each case were recorded as shown in the table 4.2. The

gain for 10 iterations was significant but as the number of iterations increased, a drop in

the gain was observed. The probable reason for this behavior is that repeated call to the

function requires reconstruction of the same matrices which results in the accumulation of

variables in memory.

Table 4.2: Results of optimizing setConstrains() function

Iterations Execution time

of unoptimized

code, tu (s)

Execution time

of optimized

code, to (s)

Gain (%)

10 0.8311 0.6959 19.42

100 0.6028 0.5462 10.36

200 0.6236 0.5924 5.27

500 0.6128 0.5920 3.51

4.3 User Interface

The user interface has been implemented following the user interface design principles [8]

to the best extent possible. The pop-up dialog allows user to enter values for different

parameters of the MIP Solver (Gurobi in this case). The right hand side panel displays a

tree which contains intermediate solutions labeled by the synthetic objective value of the
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respective optimal solution. The console at the bottom scrolls down automatically and

displays new solutions as and when they are obtained. The counter below the start and

stop buttons keeps track of the time elapsed (in seconds) since the solver was started.

4.3.1 User Interface Testing Results

User observation intervention has enabled identification of a few trouble spots with the

user interface of the application. The two PhD students from CCIB department of Rut-

gers Camden suggested that for a new user, opening the GDBB dialog and running the

optimization directly without the need for setting the synthetic objective might be more

intuitive. The second PhD student from the CCIB department had difficulty setting the

synthetic objective because he expected to set it on the GDBB pop-up dialog. Finally a

suggestion was made by both the participants to provide an option in the GDBB pop-up

dialog for setting synthetic objective function.

The third user who is an undergraduate student of dentistry had trouble finding the ex-

change reaction that produced the compound of interest in the list of reactions. Additionally

the user also expected the convenience of a search function to locate the reaction but the

user was unable to locate the existing search function provided by the tool. The user also

indicated that the names of the parameters in the GDBB dialog do not clearly indicate

their functionality. Furthermore, the user was misled by a tree node that got created on

the right side panel as soon as GDBB started to believe that a solution has been obtained.

This led to the user terminating the optimization and faced further complications involving

searching for the objective value on the main dialog. Next, the user accomplished the task of

adding a new synthetic objective column but with the same name as the existing synthetic

objective which resulted in no column being added to the table.

Furthermore, all the three users expected default values to be set for the parameters on the

GDBB dialog which reduces the need to set them manually.
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Figure 4.3: User Interface
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5 Discussion

5.1 Limitations

Although a genetic design tool with accessible packages, improved performance and user

feedback driven user interface has been developed, several limitations exist in this research.

The first limitation is that the weaknesses that exist with the computational method GDBB

also exist with the genetic design tool. GDBB uses bi-level optimization framework [3] which

is based on the hypothesis that the organism optimizes biological growth along with the

chemical compound as a bi-product. Another limitation is that the method though compu-

tationally efficient, produces only near optimal solutions which depends on the truncation

time that limits the time for finding solutions. A third limitation is that the GDBB [4]

method considered only knockouts and hence the implementation was limited to knockouts.

Other limitations are related to the performance of the genetic design tool. The genetic

design tool was implemented in Java, a high level programming language compiled to a

bytecode unlike other high level languages such as C which is compiled to machine code.

As a result the tool needs virtual machine to run. This may limit the opportunity to apply

hardware specific optimizations.

A second limitation is that certain performance optimizations are applicable only if the

underlying hardware is based on superscalar architecture. Consider loop unrolling for in-

stance, this optimization is effective only if multiple instructions can execute parallelly in a

single clock cycle.

A third limitation is that certain optimizations assume memory hierarchy. Such a hierarchi-

cal design enables exploitation of spatial and temporal locality of access [7]. In other words,

the program is likely to access the same data again (temporal locality) and adjacent data

(spatial locality) in the near future respectively. The principle of loop fusion for instance,

exploits the principle of locality. This limitation affects the external validity because the
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optimization principles that assume memory hierarchy may not be effective if the memory

subsystem is not based on hierarchical organization.

A fourth limitation is related to the timing template (refer to Appendix A). The timing

routine which calculates the gain after applying an optimization principle, is currently not

considering the factors that affect the running time of the application. Factors such as

paging, context switch between processes, threads and system time [55] affect the execution

time of the routine and as a consequence the execution time of the code snippets being ex-

amined for performance improvement. This affects the internal validity because the timing

routine measures wall clock time i.e., the total running time of the code snippet which may

include time for paging, context switching in addition to the system time to service requests

from the application and user application running time. Since these factors that affect the

running time of the routine are unpredictable [6], the outputs of the timing template are

slightly different each time it is run.

Other limitations are related to the selection of sample group and sample size for usability

testing of the genetic design tool. The sample size was very small since there were three

students in total, two students from CCIB and one undergraduate dental student. Although

the user interface design was based on the sample group’s narrative feedback, the usability

of the application cannot be generalized to a larger group of real users.

5.2 Recommendation for Future Research

Extension of Computational Method: Based on the results of the research & development,

there are several recommendations for future research. First, some of the limitations out-

lined in this research can be minimized or eliminated in a revised implementation of the

computational method. The computational method can be extended to consider other cel-

lular objectives and up and down regulation respectively. Since the optimization principles
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are independent of the computational method, the principles which turned out to be effec-

tive can be reapplied to the implementation. Similarly, the user interface design principles

can also be re-applied to the extended implementation.

GPU based MILP Solver & GPU based Basic Linear Algebra Subprograms (BLAS) library:

Since GDBB finds near optimal solutions in a finite amount of time, in order to improve

the solution optimality a Graphics Processing Unit (GPU) implementation of MILP solver

[56] can be used instead of a CPU based solver. A GPU is a processing unit that consists of

hundreds or even thousands of cores. Each of the cores are capable of running a thread of

execution independently of other cores and as a result a GPU can run a number of threads

parallelly. This may lead to finding better optimal solutions more efficiently. Third in order

to improve the efficiency of the construction of matrices, a GPU based linear algebra library

can be used. An example of such a GPU library is CUBLAS (CUDA BLAS library) that

runs on NVIDIA CUDA GPU. GPU based implementation may also lead to finding optimal

solutions instead of near optimal solutions for higher values of k if the solver is run to its

completion.

Code Performance Improvement: Other recommendations are related to improving the code

efficiency of the genetic design tool. First limitation regarding the effectiveness of certain

hardware dependent code optimization principles may improve if the problem is defined

in a programming language that is directly compiled to machine dependent code such as

C or C++ instead of bytecode as in the case of Java. Furthermore, a hotspot can be

identified which is inefficient and a C or C++ function can be defined for it. The function

can then be called from existing Java implementation of the genetic design tool using Java

Native Interface (JNI), which is a programming framework that enables Java code to call

the C or C++ function. Additionaly, to improve the efficiency of multiple threads of the

genetic design tool, optimization principles such as data locality in shared memory and

load balancing which is the distribution of work load among different parallel threads can

be applied [6]. Finally, the accuracy of the timing routine (given in Appendix A) used for

finding effective optimization principles may be improved by incorporating the execution

time of the affecting factors into the calculation of efficiency gain.

http://www.nvidia.com/object/cuda_home_new.html
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Software Usability Enhancement: Final set of recommendations are to minimize the lim-

itations related to the administration of User Observation Through Thinking Out Loud

[9] Intervention. In order to increase the sample size of users, the intervention may be

incorporated into the software which may pose questions to the end-users and record user

experience. A random sampling of users can be taken and corresponding responses can be

studied to improve the usability of the software. This improves the external validity of the

tool since larger samples can be selected and the samples can represent real users. Another

advantage is that since the genetic design tool is more accessible, users with diverse ethnic-

ities and cultures can be considered for sampling which may further enhance the usability

of the genetic design tool.

5.3 Conclusion

Four major conclusions can be drawn from this study. The first conclusion is that a com-

putationally efficient genetic design algorithm GDBB has resulted in an interactive and

efficient genetic design tool. Second conclusion is that the code optimization principles

showed improvement in performance of the implementation compared to an unoptimized

version. The third conclusion is that the User Observation Through Thinking Out Loud [9]

intervention has been able to identify user interface bugs as well as receive user feedback for

improving usability of the application. Fourth and final conclusion is that freely accessible

tools could be used to develop an accessible software application.

The first conclusion is that the GDBB [4] has resulted in an interactive and efficient genetic

design tool which can identify near optimal solutions found to be sufficient for practical

purposes. The user can interactively define different input parameters such as maximum

number of knockouts, finite or infinite truncation time for the solver, number of threads

to take advantage of multiple cores of the CPU. Additionally, efficiency has been achieved

since GDBB can identify intermediate solutions which are displayed on the user interface.

This enables the user to utilize the intermediate knockout strategies without waiting for the

final optimal solution.
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The second conclusion is that the code optimization principles [6, 10] showed an improve-

ment in the performance of the implementation as compared to the unoptimized version.

Even though modern compilers can perform most of the optimizations, previous studies have

shown that compiler may overlook opportunities for optimization [6, 10]. As a consequence

of this, hand optimization has given improvement over unoptimized implementation. This

may imply that the resulting genetic design tool can perform better and hence be more

economical in terms of computer resource utilization.

The third conclusion is that the User Observation Through Thinking Out Loud [9] has been

able to identify user interface bugs and enabled to receive user feedback. This has resulted

in making necessary design and implementation changes which improved the usability of

the application among the sample group of users. This may imply that, the intervention

can be effective in identifying user interface problems and hence lead to improvement of

usability of the genetic design tool for larger sample group of real users.

The fourth and final conclusion is that freely accessible tools enabled the implementation of

an accessible genetic design tool. There are a few advantages in developing a freely accessible

genetic design tool. First the application becomes available to anybody without involving

any license fee and hence a larger group of users can access the application. Second since

the tool is accessible, users can contribute towards improvement or in customization of the

application. This may in turn result in the improvement of efficiency as well as usability of

the genetic design tool in addition to maintaining accessibility.

5.4 Summary

The genetic design tool identifies genetic strategies quickly and at the same time it is

interactive and accessible to a wide range of users, whether familiar or unfamiliar with the

underlying computational methods, whether conducting research in laboratories or in large

industries or using it for academic purposes, can aid in genetic engineering of organisms
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which act as alternative sources for improving the production of essential compounds used

in drug and food supplements that can contribute in meeting the needs of today.
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A Performance Optimization Techniques

Table A.1: Performance Optimization Techniques

Optimization

Technique

Example Reason For Perfor-

mance Improvement

Constant folding x = 2.0× x× 4.0 to

x = 8× x Saves a floating point oper-

ation.

pi/2 to pi by 2 = pi/2 Saves a floating point load.

Saves a floating point di-

vide.

Saving of tens of µ s

Loop invariant opti-

mization

x = 100;

while x > 0

x = x− (y + z);

to

x = 100;

t = y + z;

while (x > 0)

x = x− t; Saves multiple integer ad-

dition operations

Loop induction elim-

ination

for (i = 1; i <= 10; i+ +)

a[i+ 1] = 1;

to

for (i = 2; i <= 11; i+ +)

Continued on next page
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Table A.1 – Continued from previous page

Optimization

Technique

Example Reason For Perfor-

mance Improvement

a[i] = 1; Saves multiple integer op-

erations

Removal of dead or

unreachable code

to decrease memory utilization

remove dead code or code that is

not reachable

Saves unnecessary memory

loads and stores

Constant Propaga-

tion

If there is an opportunity, change

variable assignments to constant

assignments

It provides registerizartion op-

portunities

Example:

Consider the c code

x = 100;

y = x;

Correspoinding assembly lan-

guage is,

LOAD R1, 100

STORE R1, &x

LOAD R1, &x

STORE R1 &y

hence replace c code by,

x = 100;

y = 100;

the assembly output is

LOAD R1, 100

Continued on next page
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Table A.1 – Continued from previous page

Optimization

Technique

Example Reason For Perfor-

mance Improvement

STORE R1, &x

STORE R1, &y Saves memory loads and

stores

Dead Store Elimina-

tion

If a variable value remains the

same in a short span of code then

do the following

t = y + z;

x = func(t);

to

x = func(y + z); Saves a memory operation

Dead-Variable elimi-

nation

Definition: Live variable - A vari-

able is live if its value gets subse-

quently used

Saves a memory operation

Short-Circuiting

Boolean code

Test each sub-expression sepa-

rately in compound boolean ex-

pression

if (x > 0&&y > 0)

z = 1;

to

if (x > 0)

if (y > 0)

z = 1; Saves integer operation

Loop Unrolling Replace

for (i = 1; i <= 8; i+ +)

a[i] = a[i] ∗ 8;

Continued on next page
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Table A.1 – Continued from previous page

Optimization

Technique

Example Reason For Perfor-

mance Improvement

by

a[1] = a[1] ∗ 8;

a[2] = a[2] ∗ 8;

a[3] = a[3] ∗ 8;

a[4] = a[4] ∗ 8;

a[5] = a[5] ∗ 8;

a[6] = a[6] ∗ 8;

or by

for (i = 1; i <= 6; i+ = 3)

{

a[i] = a[i] ∗ 8;

a[i+ 1] = a[i+ 1] ∗ 8;

a[i+ 2] = a[i+ 2] ∗ 8;

} Exploits instruction level

parallelism in a dynami-

cally scheduled micropro-

cessor

Loop Jamming Combine similar loops as follows

replace

for (i = 1; i <= 100; i+ +)

x[i] = y[i] ∗ 8;

for (i = 1; i <= 100; i+ +)

z[i] = x[i] ∗ y[i];

by

Continued on next page
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Table A.1 – Continued from previous page

Optimization

Technique

Example Reason For Perfor-

mance Improvement

for (i = 1; i <= 100; i+ +)

{

x[i] = y[i] ∗ 8;

z[i] = x[i] ∗ y[i];

} Saves additional loop over-

heads
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B Testing Routine

long iterations = 100000000;

long startTime = System.nanoTime();

for ( int p = 0; p < iterations ; p++) {

}

long endTime = System.nanoTime();

long empty loop time = (endTime − startTime);

startTime = System.nanoTime();

for ( int p = 0; p < iterations ; p++) {

// paste unoptimized code here

}

endTime = System.nanoTime();

long execution time normal = (endTime − startTime − empty loop time)/iterations;

System.out.println(”execution time before optimization: ” + execution time normal + ” ns”);

startTime = System.nanoTime();

for ( int p = 0; p < iterations ; p++) {

// paste optimized code here

}

endTime = System.nanoTime();

long execution time optimal = (endTime − startTime − empty loop time)/iterations;

System.out.println(”execution time after optimization: ” + execution time optimal + ” ns”);

System.out.println(”gain: ” + ((float )execution time normal / execution time optimal − 1.0)∗100

+ ” %”);
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C Sample Code Optimization Results

Table C.1: Results of optimizing sample code

Optimization

Principle

Example Code Sample

Code

Exe-

cution

Time, ts

(ns)

Optimized

Code

Exe-

cution

Time, to

(ns)

Gain =

[ts/to −

1]100 (%)

Constant Fold-

ing // original code

x = 2.0∗x∗4.0;

// optimized code

x = 8.0∗x;

6 4 50.0

Loop Un-

rolling
// original code

for( i = 1; i <= 6; i++)

a[ i ] = a[i ]∗8;

// optimized code

a [1] = a[1]∗8;

a [2] = a[2]∗8;

a [3] = a[3]∗8;

a [4] = a[4]∗8;

a [5] = a[5]∗8;

a [6] = a[6]∗8;

4 2 100.0

Continued on next page
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Table C.1 – Continued from previous page

Optimization

Principle

Example Code Sample

Code

Exe-

cution

Time, ts

(ns)

Optimized

Code

Exe-

cution

Time, to

(ns)

Gain =

[ts/to −

1]100 (%)

Loop Jamming

// original code

for( i = 1; i <= 100; i++)

x[ i ] = y[i ]∗8;

for( i = 1; i <= 100; i++)

z[ i ] = x[i]∗y[ i ];

// optimized code

for( i = 1; i <= 100; i++)

{

x[ i ] = y[i ]∗8;

z[ i ] = x[i]∗y[ i ];

}

105 156 -32.75

175.78

(SD =

2.49)

156.22

(SD =

1.48)

12.51 (SD

= 0.63)

Continued on next page
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Table C.1 – Continued from previous page

Optimization

Principle

Example Code Sample

Code

Exe-

cution

Time, ts

(ns)

Optimized

Code

Exe-

cution

Time, to

(ns)

Gain =

[ts/to −

1]100 (%)

Combination

// original code

for( i = 1; i <= 3; i++)

{

a[ i ] = 0;

a[ i ] = a[i ] + 2∗x;

}

for(k = 1; i <= 3; i++)

b[k] = b[k] + a[k] + 2∗k∗

k;

4 - -

/∗ optimized code after pass one

(Loop Jamming,

Loop invariant removal,

removal of extraneous code)

∗/

long t = 2∗x;

for(j = 1; j <= 3; j++)

{

a[ j ] = t;

b[ j ] = b[j] + a[j ] + 2∗j∗j

;

}

4 7 -42.8571

Continued on next page
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Table C.1 – Continued from previous page

Optimization

Principle

Example Code Sample

Code

Exe-

cution

Time, ts

(ns)

Optimized

Code

Exe-

cution

Time, to

(ns)

Gain =

[ts/to −

1]100 (%)

/∗ optimized code after pass two

(Loop Unrolling)

∗/

long t = 2∗x;

a [1] = t;

b[1] = b[1] + a[1] + 2∗1∗1;

a [2] = t;

b[2] = b[2] + a[2] + 2∗2∗2;

a [3] = t;

b[3] = b[3] + a[3] + 2∗3∗3;

4 2 100.0

/∗ optimized code after pass two

(Constant Folding)

∗/

long t = 2∗x;

a [1] = t;

b[1] = b[1] + a[1] + 2;

a [2] = t;

b[2] = b[2] + a[2] + 8;

a [3] = t;

b[3] = b[3] + a[3] + 18;

4 2 100.0
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D User Interface Testing Instructions

Step 1: Load an organism’s model

Step 2: Set synthetic objective

Step 3: Open GDBB

Step 4: Set parameters for the problem

Step 5: Run the optimization

Step 6: Stop at a satisfactory solution

Step 7: Read and interpret the results

1. Obtain gene knockouts

2. Obtain maximum objective value

3. Obtain growth rate of the organism

Step 8: Save the optimal solution

Step 9: Delete a solution

Step 10: Delete all solutions

Step 11: Add a new synthetic objective column and re-run the optimization

Step 12: Set synthetic objective

Step 13: Optimize using the new synthetic objective
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