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ABSTRACT OF THE DISSERTATION

Robust Methods for Multiple Model Discovery in

Structured and Unstructured Data

by Saket Anand

Dissertation Director: Professor Peter Meer

Humans excel at identifying and locating multiple instances of objects or persons in a

scene, despite large variations in lighting conditions, pose or scale. In order to achieve

this level of robustness, humans naturally use high-level semantic information. The

notion of semantics is hierarchical in nature, for example, a house is constituted of

walls, floor and ceiling. When certain entities in this hierarchy can be modeled using

a functional form known a priori, we refer to the data as structured, while when the

functional form is unknown, the data is unstructured. In this thesis, we address the

problem of discovering multiple instances of models in structured and unstructured

data.

The first part of this thesis deals with structured data. We identify planar regions

in an indoor scene by using a single depth image from a Microsoft Kinect sensor. The

clutter in the indoor scenes, the depth dependent measurement noise and the unknown

number of planar regions pose serious challenges in model discovery. We propose a

scalable bottom-up approach that leverages from a heteroscedastic, i.e., point dependent

model of the measurement noise.

The second part of the thesis addresses multiple model discovery in unstructured

data in a semi-supervised setup. We develop a framework for using mean shift clustering
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in kernel spaces with a few user-specified pairwise constraints. A linear transformation

of the initial kernel space is learned by the constrained minimization of a Bregman di-

vergence based objective function. We automatically determine the adaptive bandwidth

parameter to be used with mean shift clustering. Finally, we compare the performance

with state-of-the-art semi-supervised clustering methods and show that kernel mean

shift clustering performs particularly well when the number of clusters is large.

We also propose a few directions for future research. Using the planar regions de-

tected from the first frame of Kinect, a sequence of RGB-D images can be rapidly pro-

cessed to dynamically generate a consistent 3D model of the scene. We also show that

for the kernel learning problem, we can use ideas from group theory and semi-definite

programming to devise a more efficient algorithm that only uses linearly independent

constraints.
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Chapter 1

Introduction

Pattern discovery is a very important problem in data analysis. Depending on the type

of data, different approaches are employed for discovering patterns of interest. When

the data follows a known constraint represented in a functional form, regression analysis

can be used, while when the functional form is unknown a priori, cluster analysis is

often the chosen technique. Traditionally, both these data analysis techniques have

been mostly applied in an unsupervised setting. However, with the advances in machine

learning, there has been a significant interest in incorporating supervision in clustering

and regression [25] methods.

Visual data like images or video usually impose serious challenges in pattern discov-

ery. There are several factors contributing to the huge variability in visual data. The

3D to 2D projective transformation in the image formation process is highly nonlinear

and severely distorts the shape of objects in the scene. The scene lighting can cause

extreme variations in the image brightness levels like specular reflections and shadows.

Moreover, being very high-dimensional, visual data typically contain a lot of spurious

information that interferes with the task of pattern discovery. In order to deal with

these problems, a feature representation of the image is used that captures the elements

relevant to a particular task.

Feature based representations have been extensively explored and are not restricted

to visual data alone. Speech and speaker recognition often involves extracting mel

cepstral (MFCC) features [92], while text document classification is often done using

bag of words. With the variability in visual data, it is imperative to tailor the design

of the feature extraction module for a specific task. For example, keypoint detectors

like the Scale Invariant Feature Transform (SIFT) [72] or Speeded-up Robust Features
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(SURF) [8] are usually employed for point matching, object detection etc. Similarly,

Histogram of Oriented Gradients (HOG) features [26] are used for human detection in

both images and video. Despite the immense body of work on feature extractors that

are designed to compactly represent relevant information in visual data, the variability

in such feature descriptors is still large. Pattern discovery methods often work with

such feature based representations as opposed to raw data.

When the data satisfies a known parametric constraint, its model is represented by

the functional form of the constraint, e.g., a line in a binary edge image. Since real data

is noisy and deviates from the model, a pattern discovery method also has to distinguish

the inlier data points that adequately satisfy the model, from the spurious outliers. For

example, pixels in the edge image that lie along the line with residuals, say, smaller

than s pixels are inliers while the others are outliers. This problem becomes harder

when there are an unknown number of instances of the model present in the data, each

corrupted with a different and unknown scale of noise.

When the parametric form of the model is unknown, clustering methods are often

employed to discover multiple patterns and the cluster centers are used to represent the

models. Clustering algorithms group together data points that are similar to each other

based on some similarity or distance measure. Clustering methods have been applied

to different kinds of data [54], in an unsupervised setting as well as with supervision

information [7, 113, 74].

In this thesis, we first describe the terminology used and briefly overview different

techniques employed for multiple pattern discovery in Chapter 2. We also present some

previous work done in indoor scene modeling and motivate the need to exploit the scene

geometry that imposes structure in the corresponding 3D visual data. Finally, we state

the problem of discovery of multiple models in unstructured data.

In Chapter 3, we present a method to characterize the sensor noise inherent to depth

sensors and use it to perform planarity preserving superpixel segmentation of a 3D

image. It is known that the noise in depth measurements is heteroscedastic [49, 57, 4],

i.e. the variance of error for each measurement is different. The noise characterization

of depth sensors involves estimating the expression of the noise variance function and
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can be analytically derived using the formulation of the depth estimation mechanism.

The analytical expression of the standard deviation of error in the depth estimates has a

quadratic dependency on the true depth being measured. We apply the heteroscedastic

noise model to oversegment the 3D images obtained from the depth data.

In Chapter 4, we describe a scalable, bottom-up approach for parametrizing the

depth images from a calibrated Microsoft Kinect sensor. The approach leverages from

the fact that depth images of indoor scenes are structured comprising largely of mul-

tiple planar surfaces. We robustly identify the planar models in a single frame from

Kinect and the pixels associated with them. Using the intrinsic parameters of Kinect,

the planar models and the heteroscedastic noise model, we can represent the depth

image in a semiparametric form. The depth of pixels associated with a planar model

are parametrized by the model parameters and the pixel location, while depth at pixels

in nonplanar regions are retained as it is. This representation of the depth image can

be useful in multiple applications like 3D model building, image compression for trans-

mission and planar segmentation for applications like object detection or recognition.

We develop a scalable system with most of the modules easily parallelizable. The

main contributions in this work are listed below –

� we propose a hierarchical framework with surface normals computed at each pixel

at the lowest level, which are agglomerated to form superpixels and then larger

planar fragments at the highest level.

� we make use of the sensor noise model to propagate the uncertainty through the

levels of this hierarchy.

� we develop a novel region growing algorithm that uses a heteroscedastic planar

distance function for superpixels to identify all significant planar regions in the

scene.

The design is motivated by developing an automatic, fast and scalable system that

can generate reliable estimates at each level in the system hierarchy. We evaluate

the system’s qualitative and quantitative performance on several images from realistic

datasets of different complexities.
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In Chapter 5, we develop a semi-supervised kernel mean shift based clustering for

pattern discovery in unstructured image data. The method uses pairwise constraints to

learn a linear transformation of the initial kernel space and determine the parameters

to be used for mean shift clustering. We compare the performance of the proposed

method with that of other state-of-the-art semi-supervised clustering methods and show

favorable performance of mean shift, despite the lack of knowledge of the number of

clusters.

We make the following contributions in this work –

� we develop a semi-supervised framework for mean shift clustering that exploits

both similarity and dissimilarity constraints.

� we show that a linear transformation of the kernel space is more desirable as

opposed to the null space projection proposed by [113], and establish the rela-

tionship between learning the linear transformation and the log det divergence

minimization.

� we reformulate the kernel learning as a log det divergence minimization problem

and solve it using the approach of [55].

� we design a technique that uses the similarity pairwise constraints to determine

a viable adaptive bandwidth parameter for the mean shift clustering.

The evaluation highlights the advantages of using mean shift clustering over other

methods, especially when the number of clusters in the data is large.

In Chapter 6, we discuss some possible future directions. We developed a method

to parametrize a single depth image from Microsoft Kinect using planar structures in

Chapter 4. We propose to use this parametrization of the first frame in a sequence to

efficiently process the following RGB-D frames to generate a 3D model of the scene. We

also propose to merge information from both the RGB and depth channels for better

estimation.

We show that the kernel learning method proposed in [55, 63] used in Chapter 5

does redundant computations by iterating over every user-specified pairwise constraint.
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We reformulate the problem to show that the linear transformation needs to be applied

only to the subspace spanned by the constraint vectors, which is usually much smaller

in dimensionality than the entire kernel space. Using ideas from group theory and semi-

definite programming, an algorithm can be devised that only uses linearly independent

constraints, thus removing the redundancy in the learning algorithm.
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Chapter 2

Multiple Model Discovery

Real world applications often present the problem of detecting multiple patterns in

data. The structures of interest can be modeled using a parametric form or can be

represented using a nonparametric model. The problem of discovering multiple models

in data is ill-posed due to the following reasons. Depending on the dataset being

used, the number of models present can vary significantly. The distribution of the

noise corrupting the ‘inliers’, i.e., data points belonging to a structure of interest, is

unknown. Additionally, real-data is usually corrupted with spurious ‘outliers’, i.e., data

points without any particular structure, which interfere with the detection of the inliers.

Along with design issues like scalability and efficiency, it is important to consider these

challenges while designing a practical system for automatic pattern discovery. When

the structure of interest can be modeled using a parametric form, we refer to the data

as structured. When the model representation is nonparametric, or if the parametric

form is unknown, we refer to the data as unstructured.

2.1 Approaches for Multiple Model Discovery

The goal of model discovery is to determine the complete set of inliers, i.e. points

that are consistent with the model, while rejecting the outliers. While working with

structured data, robust regression methods are often employed to estimate the model

parameters and the associated inliers. In case of unstructured data, usually clustered

methods are chosen for grouping similar points. In the following sections, we provide a

brief overview of these broad areas that have been studied extensively.
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2.1.1 Robust regression

There are several approaches for regression in the presence of outliers. The most popular

ones are variants of Random Sample Consensus (RANSAC) [35], which use a hypoth-

esize and test framework. A fairly extensive survey of RANSAC like methods is given

in [94]. These methods randomly generate several model hypotheses and optimize an

objective function for selecting the best one. Robust least squares estimation meth-

ods like M-estimators [79, Sec. 4.4.2, pp 163] can be employed to recover from biased

estimates due to the presence of outliers. However, both, the random sampling based

methods and the robust least-squares need a user-specified parameter for the scale of

inlier noise, which cannot always be supplied.

There exist other methods that do not explicitly detect the scale of the noise to

reject outliers, e.g., STARSAC [18] or RECON [93]. Other methods use scale estimation

techniques like [119] as a preprocessing step for RANSAC like methods. However these

methods are relatively sensitive and break down when the number of outliers grow large.

Generalized Projection Based M-estimator (gpbM)

The gpbM algorithm is a robust regression method that falls under the hypothesize

and test category. Manually specifying the scale parameter becomes hard in cases

when the noise distribution or scale changes over time [109]. In gpbM, we estimate the

scale of the noise in an inlier structure from the data itself. We also account for the

heteroscedasticity in the data during the estimation. The entire algorithm is executed

in three distinct steps, which we briefly describe below. For a detailed description of the

algorithm with comparisons with state-of-the-art robust methods like Ordered Residual

Kernel [17] and J-Linkage [111] , we refer the reader to [82].

Step 1 - Heteroscedastic Scale Estimation. Scale estimation is the first step

of the algorithm. We reformulate an equivalent problem of estimating the fraction of

points belonging to an inlier structure. For this we generate hypotheses using randomly

selected elemental subsets, i.e., the smallest set of points required to generate a model

hypothesis, e.g. three points for a plane. The data points are all projected to the null
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space of the model hypothesis. The fraction of points is varied between (0, 1] in 40

uniform steps and for each fraction a measure of volume of the smallest enclosure is

computed using the pointwise Mahalanobis distances. This volume measure is used to

estimate the density, which is computed for each hypothesis at every fraction. Using the

combination of the peak density values for each hypothesis and the consensus among

all randomly generated hypotheses, we select the estimated fraction for one structure.

The scale is computed as the smallest bounding box enclosing the estimated fraction

of points. The corresponding inlier points lying within that scale are retained for the

next step.

Step 2 - Heteroscedastic Model Estimation. In this step, we estimate

the model by optimizing a heteroscedastic objective function that is similar to kernel

density estimate [29]. We again generate random hypotheses by selecting elemental

subsets from the candidate inliers discovered in the previous step. After the projection

of the data points to the null space of the hypothesis, the optimization is performed

using the mean shift algorithm [23] and the mode of the kernel density is found. The

model that maximizes the kernel density at the mode is selected as the final model

hypothesis.

Step 3 - Inlier/Outlier Dichotomy. In this step, after projecting all the points

to the null space of the selected model hypothesis from the previous step, we start

mean shift iterations from each projection. The projected points that converge close to

the mode are classified as the inlier points for this structure. All the inlier points are

removed and the algorithm repeats the entire procedure. The algorithm stops when all

the points are assigned to inlier structures or when the kernel density estimate at the

mode drops by a factor of 20.

2.1.2 Clustering

When the data is unstructured, clustering methods are usually applied to group together

similar data points. The model is identified as the cluster center, and the members of

the clusters are the inliers associated with the model. Depending on the clustering

technique used, the strategy for grouping together data points is based on a distance
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function or a similarity measure. Usually, partitioning based methods like k-means [54]

and density based methods like DBSCAN [32] make use of the distance function. Graph

based clustering methods like spectral clustering [86, 121] and affinity propagation [37]

need a pairwise similarity function between the nodes of the graph. Clustering over

graphs is also posed as a graph labeling problem and is solved efficiently using graph

cuts [10].

Most RANSAC like algorithms pose the regression problem as a subspace estimation

problem. An interesting adaptation of graph labeling using graph cuts was proposed

in [52] for geometric model fitting. The method used random sampling for generating

label hypotheses and used a label cost term in the energy function being minimized. A

new class of robust subspace estimation methods have gathered a lot of interest recently

[30, 12]. These methods decompose a data matrix to identify a low-rank matrix and

a sparse error matrix. Using this decomposition, the method identifies the outliers

and the structures in different subspaces by optimizing an L1-norm based objective

function.

2.2 Multiple Model Discovery in Structured Data

Indoor man made environments usually comprise entities having simple geometric form

like cylindrical columns, planar walls, etc. Data acquired by sensing such environments

captures the geometry and is strongly structured. In this section, we present our initial

work in building indoor scene model using the Microsoft Kinect sensor, which captures

depth augmented RGB (RGB-D) images. We motivate the need to exploit the geometric

structure in the scene and state the problem of discovering multiple planar models in an

RGB-D image. This is a crucial step towards several applications of scene understanding

like building 3D models, planar segmentation for object recognition/detection and range

image compression.

Building a model of visual scenes, especially man-made environments, is useful for

a variety of applications. Recently, 3D models have been used to assist humans to

navigate through large man-made buildings [120]. In virtual and augmented reality
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applications, often photo-realistic models are created from real images and GPS in-

formation. There exist consumer systems like Photosynth [81] that build panoramic

views and 3D models of outdoor scenes from a large number of 2D images. While aug-

mented reality applications serves the consumer with mobile applications [110], urban

models are also widely used by government agencies for planning and development,

climate studies, public safety and emergency evacuation strategies etc. Large scale

urban models are often created by using 2D aerial images [59] or ground and aerial

LIDAR scans [91]. These models could be easily incorporated in robotic systems for

autonomous navigation and dynamic map building using technologies like Simultaneous

Localization and Mapping (SLAM) [106].

Scene modeling methods can be classified into two categories based on the type of

input they use. The first category of modeling methods use several 2D images to build

3D models of buildings. The method described in [39, 2] uses a combination of structure

from motion, multi-view stereo and a stereo algorithm to automatically generate 3D

models of indoor and outdoor architectural scenes. The algorithm makes the Manhattan

world assumption, i.e. the scene contains predominantly piece-wise planar structures

with three dominant directions. Other methods which make use of a single image to

create a 3D model also make the Manhattan world assumption. The methods in [67, 47]

detect the vanishing plane to identify three mutually orthogonal planes and hence the

walls, floor and ceiling. The algorithms were extended to locate objects like furniture

in indoor scenes by detecting bounding boxes [48, 66]. More recently, this idea was

explored further and more efficient methods were proposed in [100, 89, 101]. Based on

these methods, Gupta et. al. used the room layout to identify human action spaces in

the scene [44].

The second category of scene modeling systems uses 3D data directly in the form

of point clouds. With the availability of 3D-augmented RGB data acquisition systems:

LIDAR (light detector and ranging) [90], laser scanners, Microsoft Kinect [80], dense

stereo etc., several approaches of indoor scene modeling, specifically for 3D data have

been developed. Gallup et. al. [40] present a method that builds upon a stereo based

system to compute a disparity map that assigns probabilities to planar and non-planar
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regions. There also exist methods to create large urban environments using 3D point

clouds obtained from LIDAR (light detector and ranging) like sensors [65]. In order to

process dense 3D point clouds obtained from 3D sensors, algorithms have been proposed

for building semantically rich 3D models that make use of underlying geometry of the

structure. For e.g., Chauve et. al. [14] present a method of representing 3D structures

by making use of planar primitives. The authors build a complete 3D model by filling

holes and represent complex 3D structures by an adaptive decomposition into planar

primitives.

A method that makes use of more complex geometric primitives, i.e. planar surfaces

and conic or cylindrical structures is described in [99]. The algorithm adapts RANSAC

[35] to efficiently discover geometric structures by modifying the sampling strategy for

hypothesis generation and the hypothesis evaluation method. Schindler et. al. [98]

propose a method that uses an initial dense mesh over a point cloud to generate a

planar segmentation and uses pairwise constraints to assign semantic labels to planar

segments. Along with building geometric models of the scene, [60] captures semantic

information by using contextual relationships between objects and geometric structures

present in the scene. Plane based modeling of 3D point clouds has also been addressed

in [116], however in context of planetary robotic exploration. The authors motivate the

plane based modeling in order to reduce the complexity of the mapped environment for

efficient transmission. Using the Kinect sensor, the authors present a GPU based real-

time robust and interactive indoor modeling system named “KinectFusion” in [85, 53].

The method shows that the Kinect sensor can be used to build reliable, high-quality

indoor models.

In Section 2.2.1, we present our initial results with different approaches to creating

indoor models using 3D data captured from Microsoft Kinect and motivate the need to

use geometric primitives to develop a scalable system. In Section 2.2.2, we discuss mul-

tiple approaches for discovering multiple planar models motivate a bottom-up approach

that retains the flexibility to add top-down semantic constraints.
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2.2.1 Indoor Scene Modeling

Since the availability of the Microsoft Kinect sensor, several systems were developed

that used the RGB-D images to register 3D point clouds and build indoor scene models.

RGB-D SLAM described in [31] is a SLAM algorithm that also generates a dense

textured 3D model of indoor scenes. The RGB images are used to find point matches

between consecutive frames using features like SIFT [72] and SURF [8]. The point

correspondences are used to compute the rigid body transformation between consecutive

frames robustly using RANSAC [35]. These transformations are used to track the

camera and populate a pose graph which is further used for global optimization of the

camera trajectory. A similar approach was used in RGBDemo [76], which relied on SIFT

for matching features to compute the incremental transformation. Since both these

methods used a color based feature detection, they faced problems when the lighting

conditions varied or when there were textureless regions in the scene. KinectFusion

avoids these problems by applying a variant of the Iterative Closest Point (ICP) [96]

and thus is robust to lighting condition and texture quality in the scene. An open

source implementation of KinectFusion was released with the Point Cloud Library [97]

In our experiments, we use RGB and depth frames of indoor scenes grabbed from a

calibrated Kinect sensor. Our approach is similar to RGB-D SLAM and RGBDemo for

obtaining a registered point cloud representation of the scene. We used the RGB images

to detect and match lightweight features from the libviso library [41]. The libviso

is a C++ library with a Matlab interface and supports methods for visual odometry

based on 2D streaming video. The feature matching module from the libviso library

usually returns a large number of reliable matches and a small percentage of outliers

when the changes in camera position are small. For a smooth motion of the Kinect

sensor, consecutive frames are close, and we obtain a large number of matches for a

pair of frames. Fig. 2.1 shows the matches returned by the feature matcher.

Since there still could be wrong matches, we used RANSAC based robust estimation

of the incremental transformation over the matched features. For robust estimation,

we generated several random hypotheses using elemental subsets, i.e. the smallest set
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Figure 2.1: Example pair showing point matches found using libviso across two consec-
utive frames. The camera went through a 5 degrees rotation.

of points used to generate a 3D rigid transformation hypothesis. The RANSAC al-

gorithm is provided with an error threshold of 3mm. The points that lie within this

error threshold are called inliers and satisfy the hypothesis. RANSAC selects a hy-

pothesis that maximizes the number of inlier points. Given the set of point matches

Pi =
[
pi1, . . . ,p

i
n1i

]
and Pi−1 =

[
pi−1

1 , . . . ,pi−1
n1i

]
between the ith and the (i − 1)th

frames respectively. Once the algorithm converges, we estimate the incremental trans-

formation Ti|i−1 using all the ni inlier points. The incremental transformation satisfies

Pi−1 = Ti|i−1Pi , i = 1, . . . , ni. Using this incremental transformation, the cumulative

transformation is computed with respect to the first frame Ti|1 = T2|1T3|2 · · ·Ti|i−1.

This transformation is applied to the entire point cloud obtained from the current frame.

We stored the registered point cloud in an octree [78] based structure. An octree is a

tree data structure with eight children at each level. It is commonly used to represent

a three dimensional Euclidean space.

An example of reconstruction of an office cubicle space is shown in Fig. 2.2. It

can be seen that the planar walls of the cubicles do not form straight lines in the top

view in Fig. 2.2c. This is due to errors inherent in the Kinect sensor and the errors

in the estimation process. The gap between the walls on the left and right of cubicle

2 are a result of accumulated drift. These artifacts are very difficult to deal with in a

point cloud or mesh based model, unless geometric constraints are explicitly enforced.

Our point cloud based modeling system hit a memory bottleneck at about 10 million
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(a) (b)

(c)

Figure 2.2: Cubicle space point cloud model. (a) Cubicle 1 close up view. (b) Cubicle
2 close up view. (c) Top view of the entire model. Red box: Cubicle 1. Blue box:
Cubicle 2. Cubicle 3 in the right is not shown in the close up view.

points, which means that at full VGA resolution (640 × 480), the model could only

handle about 30 nonoverlapping frames. This raises concerns with the scalability of the

model with respect to large buildings. Moreover, the feature matching approach was

not effective in case of textureless regions, e.g. corridors where the walls have similar

colors without unambiguous feature patterns.

Note that neither of the modeling methods discussed in this section scale well.

Secondly, it is not straightforward to incorporate semantic information in the repre-

sentation presented in the methods above. In the following section, we address the

scalability issue, by detecting geometric structures, planes in particular, to represent

large regions.
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(a) (b) (c)

Figure 2.3: Input RGB-D image for plane detection. (a) RGB image (b) Depth image.
(c) Segmented image. Red, green, blue, cyan and yellow show the different planes
detected in the scene. The purple points are labeled as the nonplanar outliers.

2.2.2 Modeling using Planar Structures

A simple strategy to decrease the memory requirements for storing a model is to replace

large planar regions by the bounding polygon and planar equations of point clouds. In

case textures are to be retained for photo-realistic models, the planes could be texture

mapped by using planar homographies [46, Ch. 13]. Usually indoor environments are

cluttered with objects which may have a non-planar shape. It is important to identify

these ‘outliers’ in order to correctly detect the planar models.

2.2.3 Robust Plane Fitting

We apply the gpbM algorithm [82] to automatically detect the planar structures in a 3D

point cloud obtained using the depth images from a calibrated Kinect. In order to keep

the run time low, we downsample the point cloud by a factor of four. Fig. 2.3 shows

the RGB-D image input from Kinect and the corresponding segmented depth image.

The individual planes detected are shown in Fig. 2.4. We observe that even though we

get a good quality detection of planar segments in this example, from a model building

standpoint, the segmentation is not sufficient. For example, the outliers detected at the

intersection of the ground plane and the adjacent wall in Fig. 2.3c will not generate

clear boundaries. In the following section we discuss some limitations of these methods

and list the desirable properties of a model building system.
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Figure 2.4: The four dominant planes detected by applying gpbM to the 3D point
cloud.

2.2.4 Constrained Planar Modeling

Using robust methods for plane detection results in accurate detection of large planar

structures and the corresponding points. However, robust methods that use a hypoth-

esize and test framework are restrictive and have the following limitations. Firstly, ap-

plying iterative algorithms for plane detection has high computational cost, since each

iteration has at least linear complexity in the number of pixels. The point clouds need

to be downsampled in order to achieve feasible run times. Secondly, these algorithms

work well when the number of planes to be detected are small. In a cluttered environ-

ment, where small planar structures are present, the accuracy of detection deteriorates,

while the computational complexity does not reduce. Finally, these algorithms do not

guarantee clean boundaries at intersections of planes and could lead to disconnected

outlier points.

In order to model larger environments, the modeling system should be flexible and

scalable. We list a few desirable properties of a scene modeling system.

� Bottom-up – should start grouping at the pixel level to large planar/nonplanar

segments. The model should account for measurement errors introduced at the

lowest level and propagate this to higher levels.

� Robust – to different conditions such as lighting changes, textureless region, clut-

ter, moving entities etc.

� Flexible – in its representation to easily incorporate high level semantic constraints

to improve final segmentation.

� Scalable – to large structures without large memory requirements.
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To achieve these properties, we propose a hierarchical framework where we take a

bottom-up approach to discover all planar regions in a scene. We begin with the noise

characterization of the Kinect depth sensor. We account for this depth dependent noise

in our heteroscedastic superpixel segmentation algorithm. We apply this algorithm to

generate a segmentation comprising of planar patches. This reduces the complexity of

the point cloud from hundreds of thousands of points to a few hundreds of superpixels.

Using the oversegmented images and the heteroscedastic noise model we propose to

combine planar patches to identify the unique set of planar models that explain the en-

tire scene. The noisy depth image can then be parametrized by this set of planar models

and their corresponding regions and the nonplanar regions can be represented as the

original measurements. This parametrization provides the desired compression along

with a planar segmentation which can be employed for applications like localization,

object detection and recognition as well as model building.

2.3 Multiple Model Discovery in Unstructured Data

Unstructured data is often obtained as a result of feature extraction and is grouped

together based on some distance (similarity) measure. The change of representation

is usually performed to prune away spurious information and extract descriptors that

are relevant for a given task. However, this feature extraction is usually a nonlinear

process and does not always map the original data to a space where the default distance

(similarity) function yields meaningful clusters. Most feature descriptors capture low-

level information in the data, while the default cluster assignment is largely guided

by the distance (similarity) function and may not generate a desired clustering. This

problem of associating data samples with a model is exacerbated when the desired

clustering is based on semantic similarity between data samples that is not captured

by the low-level feature representation. This is in contrast with the case of structured

data, where the precise mathematical form of the constraint function is known a priori.

In order to deal with the nonlinearities in the feature space, kernel methods are often

employed to map the input data to a higher dimensional space, where the distance

function may be more meaningful. Moreover, semi-supervised variants of clustering
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methods have been developed, which either guide the clustering method by imposing

constraints [118] on data samples or modify the default distance function [61] to a more

meaningful measure. Graph based methods also modify the affinity values based on the

user-specified constraints [43]. We propose to use a semi-supervised mean shift based

technique applied to kernel spaces for clustering unstructured data. The proposed

method uses pairwise constraints and automatically discovers all the modes of the

underlying kernel density estimate, which represent the desired models. We plan to

evaluate the algorithm on image and scene categorization, face clustering and digit

recognition problems.

2.4 Discussion

We showed some initial results with indoor scene modeling using the Kinect sensor.

We showed that we can discover the planar structures using the 3D image of an indoor

scene. However, for planar model discovery, simply detecting a number of planes is

not enough to completely represent the scene. We proposed a hierarchical framework

that leverages from the sensor noise model to discover all planar regions in the scene

and use it to parametrize the depth image. We also discussed the importance of model

discovery in unstructured data and the challenges it imposes.



19

Chapter 3

Heteroscedastic Superpixel Segmentation

Superpixel segmentation is an important module in several computer vision applications

like image segmentation, object detection, recognition and localization. The primary

advantage of using superpixels is to reduce complexity for the subsequent modules. This

is achieved through oversegmentation of the image by grouping spatially correlated pix-

els having similar features. This grouping leads to reduction in the redundancy as well

as the number of image primitives, often by a few orders of magnitudes - from millions

of pixels to a few hundreds of superpixels. There are several existing approaches to su-

perpixel segmentation that use visual features like the RGB color space, or perceptually

more uniform color spaces like L*a*b* and L*u*v* [117, 69, 71, 1].

We are interested in oversegmenting a range image such that superpixels comprise

of pixels satisfying similar geometric constraints. Range image data is corrupted with

heteroscedastic or point dependent noise, i.e., the variance of the noise is different at each

point. Therefore, we reformulate the superpixel segmentation problem to account for

this heteroscedasticity. There exist methods that deal with heteroscedasticity [77, 82]

in the context of regression. In this chapter we address the problem of clustering

heteroscedastic data and apply it to obtain a superpixel segmentation that respects

geometric constraints in an input range image.

The desired properties of a superpixel segmentation algorithm are

� Superpixel boundaries should not cross the true object boundaries.

� A set of superpixels should be able to represent an object of interest.

� The number of superpixels should be as small as possible.

There are several recent methods that address the problem of superpixel segmentation.
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Turbopixels [69] is based on a level-set geometric flow algorithm that dilates uniformly

placed seeds to form superpixels. The segmentation algorithms mean shift [23] and

Quickshift [117] locate modes in the feature space. The superpixels are represented by

the modes and comprise of all the pixels in their basins of attraction.

By posing segmentation as a graph optimization problem, graph based methods

have also been applied to superpixel segmentation. The N-Cuts algorithm [103] re-

cursively partitions an image based on boundary and texture cues by minimizing an

objective function. Felzenswalb and Huttenlocher [34] presented another popular graph

based approach, where the image is represented as a graph with the pixels as the nodes.

The pixels are then grouped together by agglomerative clustering. A graph cut based

method is presented in [83], where the superpixels are forced to conform to a quasi-

regular grid. Graph cuts are used to find optimal horizontal and vertical paths that

follow visual boundaries. The method proposed in [71] optimizes an objective function

on the graph comprising of two terms. The first is an entropy rate term that prefers ho-

mogeneity and compactness and the second term biases the algorithm to form similarly

sized superpixels.

The Simple Linear Iterative Clustering (SLIC) [1] initializes superpixels with uni-

formly placed seeds followed by a k -means algorithm applied for pixel association. The

algorithm restricts the set of competing seed points within a spatial neighborhood of

the pixel, leading to a linear complexity of the algorithm. The distance measure used is

a weighted combination of distances in spatial and L*a*b* color space. After the pixel

association, the algorithm assigns the remaining unclaimed pixels using connected com-

ponents.

In this work, we use depth images of indoor scenes. Indoor scenes typically comprise

of strongly geometric surfaces. Our goal is to achieve a segmentation of a 3D image

into superpixels that satisfy similar geometric constraints. For example, to segment a

3D image into planar superpixels, we locally compute the surface normals at each pixel

and use these as the features. Surface normals can be represented by unit vectors in

R3 or as 2D vectors in the (θ, φ) space. We use surface normals in R3 as features for

this work.
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It is known that accuracy of depth sensors depends on the true depth of the mea-

sured point, which means the depth data is heteroscedastic. We address the problem

of superpixel segmentation of depth images contaminated with heteroscedastic noise

while preserving the underlying geometric properties of the scene, e.g. planarity. Our

formulation is generic in nature and can be applied to a variety of stereoscopic depth

sensors, however, in this work we limit ourselves to using the Kinect sensor [80]. We use

the noise model proposed in [57, 49] and estimate error covariances of surface normals

by error propagation. We employ a distance function that uses these covariances to

account for the heteroscedasticity in the data.

The remainder of this chapter is organized as follows. We discuss the noise char-

acterization in context of the Kinect sensor in Section 3.1. The planarity preserving

heteroscedastic superpixel segmentation is described in Section 3.2 and is applied to

real images using the Quickshift algorithm. We conclude in Section 3.3 with a brief

discussion and some future directions.

3.1 Sensor Noise Characterization

In this section we discuss the noise characeterization of the depth estimates obtained

using the Kinect sensor. Kinect is an active structured light depth sensor that computes

the depth estimate of a scene point by using the disparity between corresponding image

points. In a generic stereo based system, the depth estimate of a scene point can be

computed if both the cameras can observe the scene point. Let C1 and C2 be the two

cameras in a stereo system and the projection of the ith scene point on to the respective

image planes be the image points p1
i and p2

i . Without loss of generality, we can assume

that the image points p̃1
i and p̃2

i are the corresponding points in the rectified images.

The disparity at point pi is then computed as di = p̃1
i − p̃2

i . The relationship between

disparity and the depth estimate zi is given as

zi =
f · b
di

(3.1)
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where both the disparity di and the focal length f are in pixels and b is the baseline. The

Kinect sensor operates on a similar principle, with one of the cameras replaced by an

infra-red (IR) projector. For more details on the depth estimation process, calibration

and performance analysis of Kinect, see [57, 19].

3.1.1 The Noise Model

We assume a heteroscedastic noise model, where the depth estimates are corrupted by

zero mean Gaussian noise with the pointwise variance as a function of depth.

zi = zio + G (0, σz(zio)) (3.2)

where G(µ, σ) is Gaussian noise with mean µ and standard deviation σ. The depth

dependent standard deviation is denoted by σz(zio).

In the literature, the inverse relationship between depth and disparity (3.1) is often

used to compute the first order approximation of the error in depth. The error in

disparity is assumed to have a parametric distribution, e.g. Gaussian or uniform, with

a standard deviation σd. The expression for the standard deviation σz, of the error in

depth as given in [57]

σz(zio) = kz2 (3.3)

where the parameter k is the unknown coefficient of the noise variance function. It can

be estimated by analyzing residuals of fitted planar structures in the 3D data from the

sensor.

3.1.2 Estimation of Noise Model Parameter

Given a set of 3D images of scenes containing large planar structures at arbitrary depths

and orientation, our goal is to estimate the noise model parameter k. We restrict our

work to depth images captured using the Kinect sensor. For this purpose, we decided

to use the large, publicly available NYU dataset [104].

Fig. 3.1a-b shows a sample pair of RGB and depth images captured using the Kinect
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(a) (b) (c)

Figure 3.1: Kinect RGB-D image (NYU Dataset). (a) RGB image. (b) Depth image.
(c) A planar segment extracted from the depth image.

Figure 3.2: RANSAC based plane fitting. Residuals from a RANSAC fitted plane have
a small non-zero bias.

sensor. We generate 3D point cloud data from each depth image and robustly detect

one large planar region. Fig. 3.1c shows an example of the planar region extracted from

the corresponding depth image. From a subset of thirteen different image pairs from

the NYU dataset, we extracted one planar segment of arbitrary orientation and depth

using off-the-shelf RANSAC implementation [35]. We first decided to use the parame-

ter estimates provided by RANSAC and the corresponding inlier residues to estimate

the noise parameter. This approach produced biased results since the RANSAC cost

function assumes stationary noise. An example of biased residues using a RANSAC

fitted plane can be seen in Fig. 3.2.

Consequently, we take an alternate approach, where we use the depth image pixels

lying in the interior of the extracted planar segment. We take a 3 × 3 region around
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Figure 3.3: Scatter plot of error in depth estimates. The red points are the unnormalized
residuals of the depth estimates. Blue points are the residuals normalized by z2

i . The
solid lines are the ±1σ,±2σ and ±3σ curves.

each such pixel pi and compute the mean depth ẑi over this window. For zero mean

noise, the mean depth ẑi is an unbiased estimator of the true mean zio. However,

due to the depth dependent variance, the estimate may deviate from the true value in

practice. We first normalize the residuals by ẑ2
i to account for the dependence on depth.

The parameter k can then be computed as the standard deviation of the normalized

residuals

k =

√√√√ 1

n

∑
i

(
ri
ẑ2
i

)2

. (3.4)

Fig. 3.3 shows the scatter of the residuals ri = ẑi − zi computed from all the planes.

The solid lines are the ±(1, 2, 3)σ curves for reference. The blue points are the residuals

normalized by ẑ2
i .

3.2 Planarity Preserving Heteroscedastic Superpixel Segmentation

We use the noise characterization developed in the previous section and apply it to

perform planarity preserving superpixel segmentation of depth images. We operate in

the space of surface normals computed locally for each depth pixel. We represent each

surface normal as a unit vector in R3. Since the noise is heteroscedastic, we need to first
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compute the covariances of these surface normals to define a statistically meaningful

distance function for segmentation.

3.2.1 Normal Computation and Covariance Estimation

Using the intrinsic camera parameters of the depth sensor, we generate a 3D point

cloud where each point corresponds to a pixel in the depth image. For an image pixel

qi = [xi, yi]
>, its corresponding point in 3D is computed as

pi = p(xi, yi) =
zi
f

[xi − cx yi − cy 1]> (3.5)

where zi is the depth of the ith pixel and xi and yi are the image coordinates of the ith

pixel. The principal point of the camera are denoted by [cx cy].

To compute the surface normals, we take a 9 × 9 window around each pixel qi in

the depth image. This amounts to a surface patch around the corresponding 3D point

in the scene. The singular value decomposition (SVD) of this surface patch gives the

eigenvectors of the covariance matrix of the points. The singular vector corresponding

to the smallest singular value gives the surface normal of the patch. A neighborhood size

that monotonically increases with depth could also be used effecting more smoothing

at larger depths. Let P = [p1,p2, . . . ,pi, . . . ,pn] be the 3× n matrix of the 3D world

points around pi. Then the total least squares (TLS) estimate of the surface normal

n̂ is computed as n̂ = u3, where the orthogonal matrix U = [u1 u2 u3] is obtained by

factorizing the centered P into USV> using SVD.

Another approach of computing the surface normals is to compute the gradient

vector of the surface patch. We take the cross product of two linearly independent

three dimensional tangent vectors computed on the surface at the 3D world point

pi. We approximate the tangent vectors by applying the difference operator on the

image point pi along x and y, i.e., the horizontal and vertical axes of the image plane

respectively. The 3D normal vector n̂ is the unit norm cross product of the tangent

vectors, or equivalently the direction of the gradient vector at pi and can be computed
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(a) (b)

Figure 3.4: Normal Image. (a) Normals computed using SVD. (b) Normals computed
using the gradient direction.

as

Tx(xi, yi) =
∂pi
∂x
≈ p(xi+1, yi)− p(xi−1, yi)

Ty(xi, yi) =
∂p

∂y
≈ p(xi, yi+1)− p(xi, yi−1)

n̂(xi, yi) =
Ty(xi, yi)×Tx(xi, yi)

‖Ty(xi, yi)×Tx(xi, yi)‖
(3.6)

where xi and yi are the image co-ordinates of the ith scene point. In order to avoid

noisy normals and tangents, it is necessary to smooth the image prior to applying the

difference operator. This is done by smoothing the depth image using a bilateral filter

[112] with a 9× 9 window and the spatial bandwidth σs = 2 and the depth bandwidth

σd = 0.1. Fig. 3.4a shows the color coded normal image computed using the SVD

method, while Fig. 3.4b shows the color coded normal image using the differentiation

method.

From Fig. 3.1a and Fig. 3.4, we see that in thin planar regions, the SVD method

captures the surface orientation better than the cross product method. A detailed

analysis of methods for surface normal computation in [58] also indicates that the SVD

based approach is favorable when a kNN adjacency graph of the point cloud is available.

In our case, the depth image implicitly captures the adjacency in the point cloud, thus

we use the SVD based normal images as our feature representation to do the planarity



27

preserving superpixel segmentation. In order to account for the heteroscedasticity in

the data, we compute the covariances of the surface normals. In our analysis, we use

empirically computed covariances.

3.2.2 Empirical Covariances

We compute the normal covariances empirically by perturbing the depth estimates z,

using the estimated noise standard deviation function (3.3). We parametrize a given

planar surface by the orientation of its surface normal: θ, the azimuth angle and φ,

the elevation. These perturbed depth values are used to generate 3D points at different

image locations (u, v) along the plane specified by θ and φ. We populate a 5-dimensional

look up table with each dimension corresponding to each of the variables in the set

{θ, φ, u, v, z}. Given the plane parameters (θ, φ), the pixel location (u, v) on the image

plane, and the depth value z, we compute the depth values of the pixels in the 9 × 9

neighborhood of (u, v). We perturb these depth values using the standard deviation

(3.3), generate the corresponding noisy 3D points and compute the plane normal n̂

using SVD. We repeat the normal computation for a thousand perturbations of the

depth and compute the empirical covariance to populate the look up table.

For a query depth image, we compute the normal image using the SVD method

described in Section 3.2.1. To look up the covariance of the surface normal at a pixel

location, we use the 5-dimensional vector [θ, φ, u, v, z] to represent the query point. We

search for the cell containing the query point in the look up table and retrieve all the 32

nearest neighbors (25 for 5-dimensions). We compute the covariance of the query point

by multilinear interpolation of the covariances of the neighboring points. In order to

maintain the positive semi-definiteness of the interpolated covariance matrix, we find

the axis of rotation between the covariance matrices of any two neighboring points and

linearly interpolate the angle of rotation. Fig. 3.5 shows a covariance map of the normal

image shown in Fig. 3.4a, computed using the look up table. The intensity represents

the Frobenius norm and the log of the Frobenius norm of the covariance of the surface

normals in Fig. 3.5a and Fig. 3.5b respectively.
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(a) (b)

Figure 3.5: Empirical covariance map. (a) Frobenius norm of the covariances of surface
normals. (b) The log of Frobenius norm of the covariances of surface normals

3.2.3 Heteroscedastic Superpixel Segmentation

We develop a superpixel segmentation algorithm that accounts for the underlying het-

eroscedasticity in the data by modifying Quickshift [117] to use the Mahalanobis dis-

tances for density computation. The modified Quickshift algorithm is applied to the

normal images computed using the SVD method. For computing the pointwise covari-

ances, we use the look up table and interpolation as described in Section 3.2.1.

Heteroscedastic Distance Computation

In Quickshift, the kernel density estimate at each pixel is computed using the neighbor-

ing distances in the feature space. Let x be a point in the feature space corresponding

to the image point p(ui, vi). The heteroscedastic kernel density estimate at x for the

kernel function K(·) is computed as

fΣ(x) =
1

n

n∑
i

1

det Σi
K
(
dΣ(x,xi)

)
(3.7)

dΣ(x,xi) =
(

(x− xi)
>Σ+

i (x− xi)
)1/2

where the heteroscedastic distance between the point x and a neighboring point xi is

given by dΣ. The Quickshift algorithm locates the local mode by iteratively selecting a

neighboring point that yields the maximum increase in the kernel density estimate as
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an estimate of the mode. The group of pixels that converge to the same mode form a

superpixel.

Heteroscedastic vs. Euclidean Quickshift

We performed experiments to evaluate the performance of the heteroscedastic super-

pixel segmentation method to achieve a planarity preserving oversegmentation of the

images. We compare the performance with the baseline algorithm – the Euclidean

Quickshift. For the comparison, we used a subset of the NYU dataset and computed

the normal images using the SVD method. Both the superpixel segmentation algo-

rithms were evaluated on the same normal images for a fair comparison.

Qualitative Comparison Fig. 3.6 shows some qualitative results of heteroscedastic

Quickshift compared to the baseline algorithm for a subset of the NYU dataset. The

white curves in the images are the segment boundaries. The spatial σs and the range

bandwidth σr are specified. It can be seen that in case of Euclidean Quickshift generates

segments that are very small in noisier regions, while the heteroscedastic segmentation

avoids such artifacts.

Quantitative Comparison The ground truth annotation of the NYU dataset are

based on object categories and not on planar segments. Therefore, for quantitative

evaluation, we captured a few indoor images using the Kinect sensor and annotated

three images by marking the planar segments in each image. These were used to

generate Precision-Recall curves [115] for a quantitative comparison of the superpixel

segmentation algorithms. Fig. 3.8a shows the images and the annotated planar bound-

aries in the dataset. The two methods were run for different parameters—the spatial

bandwidth varying as σs ∈ {5, 10, 15} and range bandwidth varying in σr ∈ {10, 15, 20}.

The composite precision recall plots for all three images are shown in Fig.3.7, when the

two methods were run for all the nine combinations of the parameters. The green curves

in the plots correspond to F-score isocontours. Note that the red markers corresponding

to the heteroscedastic Quickshift typically have higher F-score. The sample qualitative

results and the individual precision - recall curves are shown in Fig. 3.8b.
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Original Image Euclidean(σr = 15, σs = 10) Mahalanobis(σr = 15, σs = 10)

Figure 3.6: Qualitative comparison of Euclidean vs. Heteroscedastic Quickshift. The
poor precision in the Euclidean case is clear.
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Figure 3.7: Precision - Recall curves for annotated planar dataset.

3.3 Discussion

We presented a method of estimating the noise parameters for a depth dependent noise

model for the Kinect sensor. We developed a method for estimating these parame-

ters without explicitly calibrating the sensor, but by using robustly detected planar

regions from previously collected data. The noise parameters were used to compute

covariances of surface normals. We also developed a heteroscedastic superpixel segmen-

tation algorithm based on Quickshift that uses surface normals and their covariances

to perform planarity preserving superpixel segmentation. We compared our proposed

heteroscedastic method with baseline Quickshift and show favorable qualitative and

quantitative results in terms of the F-score.
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Figure 3.8: Planar dataset. Row 1: RGB images captured from Kinect. Row 2:
Annotated ground truth planar boundaries. Row 3: Euclidean Quickshift sample result.
Row 4: Heteroscedastic Quickshift sample result. Row 5: Precision-Recall scatter plot
for 9 different settings (red) - HSC-QS (blue) - EUC-QS (green)- isocontours of F-score.
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Chapter 4

Indoor Scene Modeling Using a Single RGB-D Image

Modeling of indoor spatial environments serves as an important module in several sys-

tems, where the model could facilitate operations like assisted navigation for humans,

autonomous navigation of robots. Search and rescue operations could leverage from

pre-built models by automatically searching for alternate routes in case of emergencies.

With recent advances in vision technology for sensing 3D data, the interest and moti-

vation to develop fast, automatic and reliable indoor modeling systems has increased

manifold.

In this chapter, we present a framework for building a 3D planar model of local

environments using depth augmented RGB data. This data may be captured from

a variety of sources: off-the-shelf depth sensors; camera systems that compute depth

estimates online (e.g. stereo cameras); structure from motion etc. The system accepts

data in the form of rasterable 3D point clouds and processes it to produce a 3D model

comprising planar primitives.

Spatial modeling of indoor environments has drawn a lot of interest. Using 2D

images, the modeling of indoor scenes is done under the Manhattan assumption, where

three orthogonal planes are estimated by searching for the three vanishing points [67,

47, 48, 44, 89, 100]. This is followed by the calibration of the camera and generation

of a model by identifying the horizontal and vertical planes corresponding to the walls

of the room. Similarly indoor objects were also modeled by identifying bounding boxes

containing the objects in the scene [44, 66, 89]. The idea of using planar segments to

model outdoor scenes has also been explored [59, 40]. Due to inherent difficulties in

3D structure estimation from single 2D images, these approaches have been somewhat

restrictive in the kind of problems they tackle and are unlikely to scale to general indoor
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scenes or large models.

Some of these estimation issues can be addressed by directly working on 3D data.

Thus, recent advances in availability of sensor systems acquiring and producing 3D

data: laser scanners, Microsoft Kinect, dense stereo etc. has predictably generated a

lot of interest in solving the scene modeling problem directly using 3D data as input

[99, 64, 14, 98]. The work described in [116, 40] uses planar regions to model man-

made environments and also to perform semantic analysis of 3D point clouds [60, 108].

However, none of these approaches is fast and scalable.

In this chapter, we address the challenge of scalable 3D modeling of indoor envi-

ronments using a single frame from a calibrated depth sensor. We make the following

contributions:

1. We propose a multi-scale representation that models relevant scene information

at several levels: at the lowest level, it models 3D sensory information that is

input to the system while at the highest level, it models the geometric (planar)

structures in the 3D scene.

2. We propose a scalable system that utilizes characterization of the sensor noise

and performs a series of statistical tests to prune information at each level of the

hierarchy.

3. We show the plane discovery results on several realistic datasets with differing

level of scene complexity.

The rest of the chapter is organized as follows. We introduce the problem under

consideration and motivate the proposed approach in Section 4.1. We provide the

details of each module in Section 4.2 and evaluate our proposed approach on realistic

datasets in Section 4.3. Finally, we conclude with a discussion in Section 4.4.

4.1 System Overview

Understanding of visual environments is equivalent to faithfully describing a scene in

terms of its constituent semantic entities as opposed to a low-level representation of
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data in terms of point clouds or mesh maps. The notion of semantics is hierarchical in

nature, for example, from parts to instances to categories of objects. In a bottom-up

sense, following point clouds or mesh models, representing the topology using geomet-

ric entities takes the next level in the hierarchy of semantic representation. From a

human-centric perspective, such a representation is intuitive, since most man-made

environments comprise largely of entities like floor, wall, ceiling, tables, chairs, etc.,

which can be reliably described using a combination of simple geometric structures.

The larger context of this work is the understanding of visual environments from point

cloud data.

In this work, we take an important step towards this goal by solving a subset of the

problem of scene understanding. Given a range image of an indoor scene comprising

largely of planar regions, we create a 3D model of the scene using piecewise structural

planar units.

Building a parametrized geometric 3D model from point cloud data is a challenging

problem and can be fairly ill-posed. Indoor scenes are typically cluttered with objects of

various shapes and sizes. A representation that permits arbitrarily small planar regions

would explain the data perfectly, e.g., a mesh model. However, to achieve model parsi-

mony, we need a representation of the scene using a minimal set of parametrized planar

segments. The size of this set could vary significantly depending on the complexity of

the scene. The clutter in indoor scenes interferes with the estimation of planar seg-

ments and should be identified as nonplanar regions or outliers. Moreover, data from

depth sensors is corrupted with non-stationary, depth dependent noise and should be

accounted for in the estimation process. A combination of these issues make the design

of such a geometric model building system challenging.

For a practical system that addresses the aforementioned challenges, we propose an

approach based on the following design principles.

Scalability– The system should be able to handle large point clouds.

Modularity– The system should be modular for ease of extension to other geo-

metric entities.
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Figure 4.1: The system block diagram.

Analyzable– The behavior of each module should be quantifiable for statistical

analysis.

4.2 Planar Model Discovery

The input to the model building system is a synchronized RGB and depth image pair

from Microsoft Kinect and the noise model parameter which is estimated beforehand

as described in Section 3.1. We assume that the depth sensor is calibrated and the 3D

location corresponding to each pixel can be computed using the intrinsic parameters.

The goal of model discovery is to identify the minimal set of planar models that can

explain the scene. Here, we assume that each planar model represents a single planar

segment. If two models have the same planar parameters, they have to be disconnected.

In this section we describe our bottom-up approach for discovering multiple planar

models.

4.2.1 Normal Computation

We compute the TLS based estimate of the surface normals at each pixel using the

SVD method as described in Section 3.2.1. Since we do not know the extent of planar
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(a) (b)

(c) (d)

Figure 4.2: Color coded surface normals computed using SVD. (a) RGB image. (b)
Surface normals. (c) Normals with high planar probability with a χ2 significance level
of 0.05. Gray regions indicate pixels that fail the test, while black regions indicate
missing depth data. (d) Top: inset showing the region shown in the red box. Bottom:
Histogram of dot products of the surface normals.

surfaces a priori, the computed normals are not reliable at depth discontinuities and

in nonplanar regions. We detect such regions by applying a mask over pixels that

have a high probability of lying on a plane and satisfy the χ2 test at a significance

level of 0.05. Fig. 4.2b shows the color coded normal image computed using the SVD

method. The black labeled pixels show the missing depth data region. In Fig. 4.2c, the

masked normal image is shown, where the grey regions indicate the pixels that failed

the χ2 significance test. It can be observed that many pixels at depth discontinuities,

nonplanar regions and pixels at large depths are removed. Note that the process of

computing and validating the surface normals is performed locally and therefore is

highly parallelizable.

Since we compute the surface normals at each pixel, a large number of hypotheses

is obtained for each planar structure present in the scene. However, these surface

normals are computed over small spatial neighborhoods and are affected by the noise in

the depth data resulting in significant biases in the locally estimated surface normals.
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This can be observed in Fig. 4.2d, where the top image shows the close-up of the red

rectangular patch in Fig. 4.2c. We computed the dot products between all pairs of

surface normals corresponding to the pixels of this patch and their histogram is plotted

in Fig. 4.2d. Despite lying on the same planar surface, the histogram shows that the

cosine of the angle between the surface normals could be less than 0.5. To reduce the

number of potential hypotheses and to alleviate the effect of biased local estimates, we

leverage from the image structure and perform superpixel segmentation in the space of

surface normals.

4.2.2 Model Discovery

We solve the model discovery problem in a hierarchical framework. At the lowest level,

we have a large number of local planar hypotheses as the surface normals at each

pixel. Next, we identify superpixels as a smaller set of planar primitives that form

an overcomplete basis for the planar structures in the scene. We then robustly merge

together the superpixels in a region growing framework to identify a minimal set of

planar primitives.

Superpixels: As discussed above, a single frame contains pixels in the order of hun-

dreds of thousands and the locally estimated normals can have a significant bias. We

generate superpixel planar primitives by oversegmenting the surface normal image.

These superpixels form a set of primitives at the lowest level of our modeling hierarchy.

Additionally, they provide adjacency relationships, which is useful in representing the

planar primitives in a graphical structure and preserves the topology information of the

scene.

We assume that an inlier superpixel is homogeneous, i.e., all the pixels comprising

the superpixel uniquely belong to a single planar segement and adequately satisfy the

corresponding planar constraint. We expect a majority of superpixels to be inliers and

if there are no inlier superpixels on a planar segment, then the planar region cannot be

discovered. The size of the superpixels determines the smallest sized planar region that

can be detected. We use Simple Linear Iterative Clustering (SLIC) [1] for superpixel

segmentation of the surface normal image. This approach performs a restricted k -means
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Figure 4.3: Superpixel segmentation using SLIC [1].

clustering using the following weighted distance function

dSLIC = df + wdsp (4.1)

The distance df is computed in the space of surface normals R3 and the spatial distance

dsp is computed in the image plane R2. The scalar weighting parameter w determines

the trade-off between compactness of superpixels and adherence to feature boundaries.

SLIC also requires the approximate size of the superpixels as input. Since we use

Microsoft Kinect images which have a VGA resolution of 640×480, we fix the values of

w = 0.02 and the superpixel size as 25 in all our experiments. SLIC has a computational

complexity that is linear in the number of pixels. Due to these advantages, we chose

this method over other approaches like quickshift [117] or Turbopixels [69]. In our

experiments, we found that with SLIC, the heteroscedastic superpixel segmentation did

not yield significantly different results. Therefore, for computational reasons, we use

Euclidean SLIC for superpixel computation. Fig. 4.3 shows the superpixel boundaries

overlaid on the masked normal image.

The fraction of inlier superpixels that obey the homogeneity property is significantly

increased by considering only the pixels that pass the χ2 test (significance level 0.05)

for planarity during the normal computation step. It is important to note that we are

not assuming a perfect superpixel segmentation. We employ robust methods in the
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next step to deal with outliers, i.e., superpixels which may contain pixels from more

than one planar region.

Fragments: The oversegmentation of the surface normal image generates a reduced set

of planar primitives of the order of a few hundreds. These superpixels represent small

regions of the scene and are still an overcomplete set of planar model hypotheses. Based

on the adjacency of these superpixels, we generate an undirected graph GS = (VS , ES)

where each node is a superpixel and each of its neighbors (adjacent superpixels) are

connected through an edge. Each node Si ∈ VS , i = 1, . . . , |VS |, is characterized by the

following four parameters.

� The centroid p̂i of the ni 3D points corresponding to the constituent pixels.

� The depth dependent covariance of the centroid is computed using error propa-

gation Cp̂i

Cp̂i
= J >p̂i|zσ

2
zJp̂i|z =

1

ẑ2
i

p̂iσ
2
ẑi

p̂>i (4.2)

where Jp̂i|z is the Jacobian of p̂i with respect to the depth z, ẑi is the depth at

p̂i and σ2
ẑi

is the depth variance computed using (3.3). A more accurate estimate

of the covariance would be as described in [15], but we use this estimate as an

approximation for computational speed.

� The total least squares (TLS) estimate n̂i of the surface normal computed using

the ni 3D points.

� The covariance of the surface normals Cn̂i , which are in general different for each

superpixel

Cn̂i =
1

ni

ni∑
j=1

(n̂ij − n̂i)(n̂ij − n̂i)
> (4.3)

where n̂ij , j = 1, . . . , ni are the normals computed at each pixel as described in

Section 4.2.1.

Since these parameters are computed by centering the 3D patch corresponding to the

superpixel, the normal n̂i and the centroid p̂i are independent.
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To further reduce the set of models, we want to group together superpixels that lie

in the same planar region. Denoting the ith superpixel by Si = {p̂i,Cp̂i
, n̂i,Cn̂i}, we

define the following squared symmetric planar distance function between two superpix-

els

dij = d(Si, Sj) =
(
n̂>i ∆p̂ij

)2
+
(
n̂>j ∆p̂ij

)2
(4.4)

where we use ∆p̂ij = p̂i − p̂j for convenience. Since the centroids p̂i and p̂j are

independent, cov(∆p̂ij) = C∆p̂ij
= Cp̂i

+ Cp̂j
. This distance function (4.4) is small if

and only if both the superpixels lie on the same planar surface and they have similar

normals. Note that this distance function is not a metric as it may violate the triangular

inequality. Recall that each superpixel has a different noise covariance, both for the

surface normal and the centroid. Therefore, we derive a heteroscedastic form of this

distance function that accounts for the point dependent covariances.

Differentiating the distance function w.r.t. the independent variables, we compute

the Jacobians as

Jdij |n̂i = 2(n̂>i ∆p̂ij)∆p̂ij

Jdij |n̂j = 2(n̂>j ∆p̂ij)∆p̂ij

Jdij |∆p̂ij
= 2(n̂>i ∆p̂ij)n̂i + 2(n̂>j ∆p̂ij)n̂j (4.5)

We compute the variance of the distance function (4.4) by error propagation

σ2
dij |n̂i = J >

dij |n̂iCn̂iJdij |n̂i

σ2
dij |n̂j = J >

dij |n̂jCn̂jJdij |n̂j

σ2
dij |∆p̂ij

= J >
dij |∆p̂ij

C∆p̂ij
Jdij |∆p̂ij

σ2
dij

= σ2
dij |n̂i + σ2

dij |n̂j + σ2
dij |∆p̂ij

. (4.6)
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Substituting from (4.5), we get the expression of the variance of dij as

σ2
dij

= (2n̂>i ∆p̂ij)
2
(

∆p̂>ijCn̂i∆p̂ij + n̂iC∆p̂ij
n̂i

)
+ (2n̂>j ∆p̂ij)

2
(

∆p̂>ijCn̂j∆p̂ij + n̂jC∆p̂ij
n̂j

)
+ 8(n̂>i ∆p̂ij)(n̂

>
j ∆p̂ij)n̂

>
i C∆p̂ij

n̂j . (4.7)

We define the heteroscedastic planar distance function between superpixels Si and Sj

dH(Si, Sj) =
dij
σdij

. (4.8)

Note that σdij is the standard deviation of the squared symmetric planar distance

(4.4). The heteroscedastic distance function (4.8) accounts for the measurement noise

and makes the distance function less sensitive to the depth of the centroids and the

orientation of the surface normals of the superpixels.

For grouping the superpixels, performing clustering seems to be a plausible ap-

proach. However, most off-the-shelf clustering methods are inadequate to operate with

superpixels and the distance function we developed. Variants of algorithms like mean

shift clustering [23] and k -means [54] assume the underlying distance function to be a

metric. Additionally, these clustering algorithms operate in a feature space and there-

fore offer little control over imposing spatial contiguity between cluster members. Graph

based methods like spectral clustering [86, 103] or graph cuts [10] can impose spatial

contiguity, but need the knowledge of the number of clusters a priori. Variants of these

methods that attempt to estimate the number of clusters automatically are usually

sensitive to the selected parameters. For example, spectral clustering is sensitive to the

eigenvalue threshold in the presence of noise [75]. When a label cost term is added to

the energy function for graph cuts [27, 52], the choice of the relative weights is crucial

for acceptable performance.

We develop a region growing algorithm on the superpixel graph to identify the

unknown number of regions, R. The algorithm takes a distance threshold τ , which

we fix at 0.5 for all experiments, and the superpixel graph GS = (VS , ES) as input.
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The output is the set of planar regions comprising the scene and is represented by the

set I = {I1, . . . , IR}. Here Ir, r = 1, . . . , R represents the rth planar region as the

set of its constituent superpixels. Using the graph GS , we define the neighborhood

of a superpixel Si ∈ VS as N (Si) = {Sj ∈ VS |(Si, Sj) ∈ ES}. In the context of the

region growing algorithm, we assume that distance refers to the heteroscedastic planar

distance function dH(Si, Sj) (4.8) between superpixels.

We maintain a priority queue Qr of candidate superpixels that can be added to the

region Ir. To impose spatial contiguity, we populate Qr by only adding nodes that

are connected to Ir through the edges ES . The priority of each candidate Sj is set by

the number of superpixels in Ir that are at a distance smaller than τ . Let Dr(Sj) =

{dH(Si, Sj) | Si ∈ Ir} denote the set of distances between Sj and the constituent

superpixels of Ir. Using this set Dr(Sj), we can write the priority function as

pr(Sj) = |{dj |dj ≤ τ, dj ∈ Dr(Sj)}| . (4.9)

We assume that after each enqueue operation, Qr is a queue of unique superpixels

ordered by the priority function (4.9). We break ties in priority by picking the element

that has a lower mean distance computed as

1

pr(Sj)

∑
dj , dj ∈ {dj ≤ τ, dj ∈ Dr(Sj)}. (4.10)

In the unlikely case of a second tie, we randomly chose one of the two superpixels. The

dequeue operation removes one superpixel that has the highest priority in Qr.

To initialize the region growing, we pick a seed by selecting the superpixel with the

smallest covariance of surface normals

Ŝi = arg min
Si∈VS

||Cn̂i ||F . (4.11)

The region Ir is initialized with this seed node and its neighbors N (Ŝi) are enqueued

in Qr. If the next candidate pixel Nj from Qr satisfies med(Dr(Nj)) ≤ τ , it is absorbed

in the region Ir and its neighbors are enqueued in Qr.
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Notation:
VS – superpixel vertex set
Si = {p̂i,Cp̂i

, n̂i,Cn̂i
} – ith superpixel in set VS

N (Si) = {Sj | (Si, Sj) ∈ ES} – set of neighbors of Si
Ir – set of superpixels comprising the rth region
Dr(Sj) = {dH(Si, Sj) | Si ∈ Ir} – set of distances (4.8) between Sj and elements of Ir
Qr – priority queue of superpixels with priority pr(Sj) = |{dj |dj ≤ τ, dj ∈ Dr(Sj)}|
Input:
GS = (VS , ES) – superpixel graph
τ – threshold for region merging
Output:
I = {I1, . . . , IR} – The set of R regions given by their constituent superpixels
Algorithm:

� Initialize r ← 0, Q ← φ, I ← φ

� while VS 6= φ, do

r ← r + 1, Ir ← φ

Ŝi = arg minSj∈VS ||Cn̂j
||

Ir ← Ir ∪ Ŝi
enqueue(Qr,N (Ŝi))

while Qr 6= φ, do

Nj ← dequeue(Qr)
if med(Dr(Nj)) ≤ τ
Ir ← Ir ∪Nj
enqueue(Qr,N (Nj))

else

Qr ← φ, empty the priority queue

ES ← ES \ {(Si, Sj),∀Si ∈ Ir, Sj ∈ VS}, update the edge set

VS ← VS \ Ir, update the vertex set

� return I = {I1, . . . , IR}

Figure 4.4: Region growing algorithm.

This process of merging candidates and updating Qr is repeated until either the

queue is empty, or a candidate fails to meet the merging criterion. Since Nj is the

candidate with the highest priority, if it does not meet the criterion to merge with Ir,

none of the other candidates in Qr can be merged. Therefore we empty the queue and

update VS and ES by removing all nodes and edges corresponding to the elements of

Ir. The seed node for a new region is selected using (4.11) and the entire process is

repeated until all superpixels in VS are assigned to regions. Fig. 4.4 summarizes the
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region growing algorithm.

The goal of region growing is to identify all significant planar regions in the scene.

Even though we pick a conservative threshold τ that prefers overfragmentation to un-

derfragmentation, some regions may still contain a small number of outlier superpixels.

We need to eliminate any outliers prior to estimating the planar model parameters for

accurate estimates. We apply an M-estimator [79, Sec. 4.4.2, pp 163] with a Tukey

biweight loss function on the superpixels for each region. The weights are determined

by using (4.8) as the distance function. The scale parameter for the M-estimator is set

to one since the distance function is heteroscedastic. At convergence, the superpixels

corresponding to zero weights are eliminated as outliers. The planar model parameters

are then estimated by computing the TLS estimate over all the pixels belonging to the

inlier superpixels.

4.2.3 Model Association

The set of fragments I obtained in the previous stage, comprise of groups of inlier

superpixels. Similar to the superpixels, we generate a fragment graph GF = (VF , EF ),

where each node is given by Fi ∈ VF = {n̂i,Cn̂i ,Pi}, where n̂i and Cn̂i are the TLS

estimate of the surface normal and the empirical covariance of the normals computed

over the entire fragment (4.3) respectively. The set Pi is the index set of pixels that

belong to the fragment Fi.

Since these fragments were obtained by merging superpixels, they have coarse

boundaries. Recall that at the normal computation stage, pixels that failed the χ2

test were not used for superpixel segmentation and therefore are not assigned to any

model yet. At this stage, we perform a pixel-level model association, and also use it to

merge any potentially overfragmented regions.

We perform a maximum likelihood pixel-level assignment using two distance func-

tions. The directional planar residual [36] is the deviation of a point from the plane in

the direction of the incident ray originating from the camera center. We compute its

heteroscedastic form for the 3D point pk corresponding to the kth pixel with respect to
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the ith plane

rik =
n̂>i (p̂i − pk)

cos θik

σrik = σzk
‖pk‖
zk

ρik =
rik
σrik

(4.12)

where zk is the depth of the point pk and n̂i and p̂i are the normal and the centroid of

the plane respectively. The scalar angle θik is the angle between the normal n̂i and the

incident ray pk. The choice of this residual function is motivated by [36], where it was

shown to be more insensitive to the orientation of the plane compared to orthogonal

residuals. For identifying potential outliers, we need a threshold to distinguish between

inliers and outliers with respect to a model. Most fragments comprise of at least a few

superpixels, and therefore contain thousands of pixels. This being a sufficiently large

sample, we simply chose the inlier/outlier threshold as

%i = max
k∈Pi

ρik. (4.13)

Any pixel that satisfies ρik ≤ %i is considered as a potential inlier. However, this

residual function is inadequate to perform the model association for our purpose. The

residual function (4.12) assumes an unbounded plane and generates a distance measure

for each individual pixel. This can cause bleeding of regions into neighbors as shown

in Fig. 4.5b. The thin green strip on the ground plane shows the set of pixels that

actually belong to the red fragment but are assigned to the green fragment. This can be

avoided by taking into account the orientation of the surface normal in a local spatial

neighborhood of a candidate pixel. Since we have already computed the surface normal

at each pixel, we define a heteroscedastic cosine distance function between the plane

normal n̂i and the surface normal nk computed at the kth pixel

φik =
1− n̂>i nk√
n>k Cn̂ink

(4.14)
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(a) (b) (c)

Figure 4.5: Model association. (a) RGB image for reference. (b) Labels assigned
competitively using only the directional planar residuals (4.12). (c) Labels assigned
competitively using both (4.12) and (4.14).

where Cn̂i is the covariance of the plane normal n̂i. Similar to (4.13), we compute the

threshold ϕi for this function (4.14). Pixels that simultaneously satisfy ρik ≤ %i and

φik ≤ ϕi are considered as potential inliers. The effect of using both these distance

functions is shown in Fig. 4.5c. While maintaing a connectivity constraint, we use

these two distances as negative log-likelihoods and perform the final model association

by

Lk = argmin
i=1,...,|VF |

ρik≤%i, φik≤ϕi

ρik + φik ∀ k. (4.15)

Finally, we check for any unlikely overfragmentations, and merge them together. A

fragment Fj is permitted to merge with Fi if and only if all the following criteria are

met

(a) (b)

Figure 4.6: Pixel level model association. (a) RGB image for reference. (b) Pixel-level
labeled image.
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� The fragments should be adjacent to each other, i.e., (Fi, Fj) ∈ EF .

� Only smaller fragments can be merged with larger ones, i.e., |Pj | <= |Pi|.

� At least η percent of pixels, k ∈ Pj satisfy ρik ≤ %i and φik ≤ ϕi.

The fraction of overlap is set to a large value, η = 90%. The labeled image after the

post-processing is shown in Fig. 4.6. The boundary contours can easily be extracted

from these segments.

4.3 Experimental Evaluation

We present the experimental validation for the proposed approach in this section. First

we describe the datasets used for performance evaluation. Then we show qualitative

results from a subset of each dataset. We then show a quantitative evaluation of planar

segmentation using the Kinect Segmentation dataset [87], the only one which has ground

truth available.

4.3.1 Datasets

NYU Depth Planar: NYU depth dataset [104] is a large image dataset with RGB-D

images taken from the Kinect sensor of indoor scenes. The dataset comes with manual

segmentation and manually assigned semantic labelings for each segment. We choose a

small subset of scenes which contain a good number of planar surfaces. Two example

image sets are shown in Fig. 4.7 where column (a) shows RGB images (nyu-0031, nyu-

0070), column (b) the corresponding depth images and column (c) the corresponding

manual segmentation. Note that different wall segments have the same label.

SCT Depth Planar: We found two problems with the NYU dataset: (i) The RGB

and depth images are not exactly aligned - thus it is not possible to accuracetly transfer

the segmentation and labelings to the depth data. (ii) The manual segmentation is done

based on object categories and therefore do not necessarily follow planar boundaries.

For example, all walls in an image are often annotated by a single segment labeled

‘walls’, while for our evaluation we want each planar wall to be segmented distinctly.
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(a) (b) (c)

Figure 4.7: Real indoor images (NYU Depth Planar dataset). (a) RGB images (nyu-
0031, nyu-0070). (b) Corresponding depth images. (c) Corresponding ground truth
segmentation. Note that segments do not respect plane boundaries.

Consequently, we collected our own dataset using the Kinect sensor and manually an-

notated the images such that distinct planar segments carry a unique label.

Two example image sets (sct-1, sct-3) are shown in Fig. 4.8 where column (a)

shows the RGB images, column (b) shows the corresponding depth images and column

(c) shows the corresponding manual segmentation. Note that each planar segment is

assigned a different label represented by a unique color.

Kinect Segmentation Dataset: The Kinect Segmentation dataset [87] contains 30

RGB-D images taken from the Kinect sensor. The indoor scenes contain mostly planar

or cylindrical surfaces with a manual segmentation made available. Two example image

sets are shown in Fig. 4.9 where column (a) shows RGB images (ks-003, ks-013),

column (b) the corresponding depth images and column (c) the corresponding manual

segmentation.

4.3.2 Qualitative Evaluation

Qualitative results over sample images from these datasets are shown in Fig. 4.10 - 4.12.

Each column in the figure shows the results of our method on a different image from

the corresponding dataset. Fig. 4.10 shows results on images from the NYU dataset,
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(a) (b) (c)

Figure 4.8: Real indoor images (SCT Depth Planar dataset). (a) RGB images (sct-1,
sct-3). (b) Corresponding depth images. (c) Corresponding ground truth segmentation.

(a)

(b)

Figure 4.9: Kinect Segmentation dataset. (a) RGB images (ks-003, ks-013). (b) Cor-
responding depth images. (c) Corresponding ground truth segmentation.
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sample results from the SCT dataset are shown in Fig. 4.11, and those from the Kinect

Segmentation dataset are in Fig. 4.12.

The results are organized as follows. The depth image is shown in the first row.

The second row shows the normal image computed using the SVD method described in

Section 4.2.1. The third row shows the final segmentation with the identically colored

regions representing the planar fragments. Finally, we show the RGB image in the last

row for reference.

4.3.3 Quantitative Evaluation

We perform a quantitative evaluation of the proposed method using the Kinect Seg-

metnation data set. We use the SegComp tool [50] to evaluate the resulting planar

segmentation and briefly summarize the evaluation mechanism. The details and re-

lated proofs are provided in [50]. We denote Pi, i = 1 . . . , n as the set of pixels

corresponding to the n detected segments. The m ground truth segments in the image

are denoted by Sj , j = 1, . . . ,m. The SegComp evaluation tool uses a threshold t, as

fraction of overlapping pixels between the ground truth and the detected segments. For

a given threshold t, it counts the number of planes contributing to each of the following

categories of segmentation

� Correct Detection - When the fraction of overlap between segments Pi and Sj are

mutually greater than t, i.e., when both conditions are satisfied |Pi ∩ Sj | > t|Sj |

and |Pi ∩ Sj | > t|Pi|, then a correct detection is counted.

� Oversegmentation - When two or more detected segments {Pik}, k ≥ 2 overlap

with Sj such that for each Pik , the fraction of overlapping pixels exceeds the

threshold t, and if the fraction of overlap between Sj and ∪kPik is larger than t,

then an oversegmentation is recorded.

� Undersegmentation - When two or more ground truth segments {Sjk}, k ≥ 2

overlap with Pi such that for each Sjk , the fraction of overlapping pixels exceeds

the threshold t, and if the fraction of overlap between Pi and ∪kSjk is larger than

t, then an undersegmentation is recorded.
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(a) (b) (c)

Figure 4.10: Results on NYU depth planar dataset. (a) nyu-0001; (b) nyu-0017; and,
(c) nyu-0031 images. Rows top to bottom: depth, surface-normals, final segmentation,
RGB, ground truth segmentation. The ground truth segmentation for NYU is only
given for completeness as the segments do not follow plane boundaries.
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(a) (b) (c)

Figure 4.11: Results on the SCT depth planar dataset. (a) SCT-1; (b) SCT-2; and, (c)
SCT-3 images. Rows top to bottom: depth, surface-normals, final segmentation, RGB,
ground truth segmentation.
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(a) (b) (c)

Figure 4.12: Results on the Kinect Segmentation depth planar dataset. (a) ks-003;
(b) ks-013; and, (c) ks-021 images. Rows top to bottom: depth, surface-normals, final
segmentation, RGB, ground truth segmentation. The nonplanar regions are labeled
with black pixels in the ground truth segmentation.
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Table 4.1: Quantitative evaluation of the planar segmentation using the SegComp tool
[50]. Results are compared with [87]. The numbers are fractions of planes contributing
to each category of segmentation, averaged over 30 images of the Kinect Segmentation
Dataset.

Overlap
Correct Overseg Underseg Missed

Ours [87] Ours [87] Ours [87] Ours [87]

0.51 0.5903 0.5491 0.1256 0.1484 0.0469 0.0586 0.1839 0.2424

0.6 0.5692 0.4844 0.1132 0.1406 0.0415 0.0547 0.2281 0.3125

0.7 0.5267 0.4531 0.1132 0.1250 0.0276 0.0391 0.2985 0.4063

0.8 0.4349 0.3281 0.0989 0.1016 0.0212 0.0234 0.4186 0.5625

0.9 0.2579 0.1563 0.0735 0.0547 0.0012 0.0078 0.6637 0.7891

� Missed classification - When a region Sj is not a part of a correct detection, over-

segmentation or undersegmentation incident, it is counted as a missed detection.

Note that these categories are not unique, but it was shown in [50], that for 0.5 < t <

1.0, a segment can at most contribute to three instances, one each of correct detection,

oversegmentation and undersegmentation. Therefore the evaluation of segmentation is

done by varying the threshold t and counting the instances of these classes for each

image.

We present the evaluation in Table 4.1 and compare with the results reported in [87]

on the Kinect Segmentation dataset. The method proposed in [87] is a combination of

RANSAC and Hough transforms to detect multiple planes in a range image. Clearly,

a better segmentation is expected to achieve a high correct detection rate and low

oversegmentation, undersegmentation and missed detection rates. It can be seen that

our method almost always performs better compared to [87]. The numbers shown in

the table are the fraction of planes contributing to the four categories of segmentations

averaged over all the 30 images in the Kinect Segmentation dataset. For example, for

t = 0.51, on average, our method correctly detects about 59 percent of the planes, while

misses about 18 percent of the planes in an image.
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4.4 Discussion

We presented a bottom-up, scalable procedure for detecting planar structures in a

single RGB-D image from Microsoft Kinect. The proposed method generates a large

number of planar model hypotheses by computing surface normals at each 3D point. A

superpixel segmentation algorithm is used to prune these hypotheses to a much smaller

set. We combined superpixels to generate a unique set of planar models by employing

a region growing algorithm that exploits the underlying heteroscedasticity in the data.

The pixels were then competitively assigned to the set of planar models to generate a

parametric representation of the depth image. We showed qualitative results on different

datasets with a varying degree of scene complexity and clutter. We also compared the

quantitative performance of our algorithms with a recent planar segmentation method

[87] using the Kinect Segmentataion Dataset.

This representation of depth images can be viewed as a planar segmentation of

the scene, which could be useful for robotics applications such as object detection,

recognition, path planning etc. It can also be used to compress a depth image before

transmission, where the boundary contour and the planar parameters characterize a

segment. The depth of its constituent pixels can be recovered using the intrinsic pa-

rameters and the planar equation. Finally, this set of 3D planes can be viewed as a

3D model of the scene. Although for building a complete parametric, watertight 3D

model, it is necessary to parametrize the boundaries of the planes.

Intersecting boundaries between planes are always linear and can be easily parametrized.

Occluding boundaries, i.e., boundaries caused by a plane occluding another plane, are

more complicated as they can take an arbitrary shape. The occasional occurrences of

holes, i.e., missing depth data makes the problem of occluding boundaries harder. The

depth discontinuity at the occluding boundaries can vary significantly, reliable detection

using depth alone may be difficult. Besides, depth sensors like Microsoft Kinect also

has certain systematic errors, which were not modeled in our noise parametrization.

For example, in the third row of Fig. 4.10, the top-left corner has a small segment

detected in nyu-0017 and nyu-0031. This can be seen in the top right and left corners
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of the segmented images in Fig. 4.12 too. This is a common artifact in the Kinect

depth images, where the corners are ‘dog-eared’, possibly because of the interpolation

during the depth estimation process.

Some of these issues can be resolved by leveraging from the RGB channel of Mi-

crosoft Kinect. For example, the occluding object may have a different color or texture

than the background plane. The color channel may contain complementary information

to the detected planar regions. We plan to use this information in future.
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Chapter 5

Semi-supervised Kernel Mean Shift Clustering

Mean shift is a popular mode seeking algorithm, which iteratively locates the modes

in the data by maximizing the kernel density estimate (KDE). Although the procedure

was initially described decades ago [38], it was not popular in the vision community

until its potential uses for feature space analysis and optimization were understood

[16, 24]. The nonparametric nature of mean shift makes it a powerful tool to discover

arbitrarily shaped clusters present in the data. Additionally, the number of clusters is

automatically determined by the number of discovered modes. Due to these properties,

mean shift has been applied to solve several computer vision problems, e.g., image

smoothing and segmentation [23, 119], visual tracking [21, 45] and information fusion

[15, 22]. Mean shift clustering was also extended to nonlinear spaces, for example, to

perform clustering on analytic manifolds [107, 114] and kernel induced feature space

[102, 117] under an unsupervised setting.

In many clustering problems, in addition to the unlabeled data, often some addi-

tional information is also easily available. Depending on a particular problem, this

additional information could be available in different forms. For example, the number

of clusters or a few must-link (similarity) and cannot-link (dissimilarity) pairs could

be known a-priori. In the last decade, semi-supervised clustering methods that aim to

incorporate prior information into the clustering algorithm as a guide, have received

considerable attention in machine learning and computer vision [6, 13, 42]. Increas-

ing interest in this area has triggered the adaptation of several popular unsupervised

clustering algorithms into a semi-supervised framework, e.g., background constrained

k-means [118], constrained spectral clustering [56, 73] and kernel graph clustering [62].

It is shown that unlabeled data, when used in conjunction with a small amount of
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(a) (b)

(c) (d)

Figure 5.1: Olympic Circles. (a) Original data in the input space with five different
clusters. (b) Pairwise distance matrix (PDM) using the modes discovered by unsu-
pervised mean shift clustering performed in the kernel space. The points are ordered
according to class. (c) PDM using the modes found after supervision was added. (d)
Clustering results shown in the input space.

labeled data, can produce significant improvement in clustering accuracy. However,

despite these advances, mean shift clustering has largely been ignored under the semi-

supervised learning framework. To leverage all the useful properties of mean shift, we

adapt the original unsupervised algorithm into a semi-supervised clustering technique.

The work in [113] was the only attempt to introduce weak supervision into the ker-

nel mean shift algorithm where the additional information was provided through a few

pairwise must-link constraints. In that framework, each pair of must-link points was

collapsed to a single point through a linear projection operation, guaranteeing their

association with the same cluster. In this chapter, we extend that work by generalizing

the linear projection operation to a linear transformation of the kernel space that per-

mits us to scale the distance between the constraint points. Using this transformation,

the must-link points are moved closer to each other, while the cannot-link points are

moved farther apart. We show that this transformation can be achieved implicitly by
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modifying the kernel matrix. We also show that given one constraint pair, the corre-

sponding kernel update is equivalent to minimizing the log det divergence between the

updated and the initial kernel matrix. For multiple constraints, this result proves to

be very useful since we can learn the kernel matrix by solving a constrained log det

minimization problem similar to [55].

Fig. 5.1 illustrates the basic approach. The original data with 300 points along each

of the five circles is shown in Fig. 5.1a. The data is first mapped to a kernel space using

a Gaussian kernel (σ = 0.5). In the first case, kernel mean shift is directly applied to

the data points in the absence of any supervision. Fig. 5.1b shows the corresponding

1500×1500 pairwise distance matrix (PDM) obtained using modes recovered by mean-

shift. The lack of block diagonal structure implies the absence of meaningful clusters

discovered in the data. In the second case, we assume that only 20 points from each

cluster are labeled at random (6.7% of the data) to generate pairwise must-link and

cannot-link constraints. These constraints are then used to transform the initial kernel

space by learning an appropriate kernel matrix. Note that, although we generate pair-

wise constraints using a small fraction of labeled points, the algorithm does not require

the explicit knowledge of class labels. Fig. 5.1c shows the PDM between the modes

obtained when kernel mean shift is applied to the transformed feature points. In this

case, the five-cluster structure is clearly visible in the PDM. Finally, Fig. 5.1d shows the

corresponding results in the original space. Through this example, it becomes evident

that a small amount of supervision can improve the clustering performance significantly.

The main contributions of our work are summarized below.

� We develop the variable bandwidth kernel mean shift algorithm to perform clus-

tering in high-dimensional kernel spaces.

� We introduce supervision into the kernel mean shift algorithm by imposing pair-

wise must-link and cannot-link constraints via a linear transformation of the kernel

space.

� Given a constraint pair, we show that the corresponding kernel update is equiv-

alent to minimizing the log det divergence between the updated and the initial
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kernel matrix.

� Using the must-link constraint points, we propose a method to select the band-

width parameter for kernel mean shift.

� For the initial choice of a Gaussian kernel, we also select the scale parameter

automatically using the pairwise constraints.

The chapter is organized as follows. In Section 5.1 we present some related work. In

Section 5.2, we briefly review the Euclidean mean shift algorithm and its extension to

kernel spaces. In Section 5.3 we derive the expression for kernel updates by applying a

linear transformation to the kernel space that satisifies the specified constraints. We also

motivate the formulation of the kernel learning as a Bregman divergence minimization

problem. The constrained log det divergence minimization formulation is treated in

Section 5.4. We describe the complete algorithm in Section 5.6. In Section 5.7, we

show experimental results on synthetic and real data and conclude with a discussion in

Section 5.8.

5.1 Related Work

Semi-supervised clustering has received a lot of attention in the past few years due

to its highly improved performance over traditional unsupervised clustering methods

[7, 13]. As compared to fully-supervised learning algorithms, these methods require a

weaker form of supervision in terms of both the amount and the form of labeled data

used. In clustering, this is usually achieved by using only a few pairwise must-link

and cannot-link constraints. Since generating pairwise constraints does not require the

knowledge of class labels or the number of clusters, they can easily be generated using

supplementary data. For example, while clustering images of objects, two images with

similar text annotations could be used as a must-link pair. We discuss some of the

traditional unsupervised clustering methods and their semi-supervised variants below.

Partitioning based clustering: k-means is one of the oldest and most popular cluster-

ing algorithm. See [54] for an extensive review of all the variants of k-means algorithm.
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One of its popular semi-supervised extensions using pairwise constraints was proposed

in [118]. The method partitions the data into k non-overlapping regions such that

must-link pairs are enforced to lie in the same cluster while the cannot-link pairs are

enforced to lie in different clusters. However, since the method enforces all constraints

rigidly, it is sensitive to labeling errors in pairwise constraints. Basu et al. [6] pro-

posed a more robust, probabilistic model by explicitly allowing relaxation for a few

constraints in k-means clustering. Similarly, Bilenko et al. [9] proposed a metric learn-

ing based approach to incorporate constraints into k-means clustering framework. Since

the clustering in both these methods is performed in the input space, these methods

fail to handle non-linear cluster boundaries. More recently, Kulis et al. proposed semi-

supervised kernel k-means (SSKK) algorithm [62], that constructs a kernel matrix by

adding the input similarity matrix to the constraint penalty matrix. This kernel matrix

is then used to perform k-means clustering.

Graph based clustering: Spectral clustering [86] is another very popular technique

that can also cluster data points with non-linear cluster boundaries. In [56], this method

was extended to incorporate weak supervision by updating the computed affinity matrix

for the specified constraint points. Later, Lu et al. [73] further modified the algorithm

by propagating the specified constraints to the remaining points using a Gaussian pro-

cess. More recently, Lu and Ip [74] showed improved clustering performances by ap-

plying exhaustive constraint propagation and handling soft constraints (E2CP). One of

the fundamental problems with this method is that it can be sensitive to labeling noise

since the effect of a mislabeled data point pair could easily get propagated throughout

the affinity matrix. Moreover, in general, the spectral clustering methods suffer when

the clusters have very different scales and densities [84].

Density based clustering: Clustering methods in this category make use of the esti-

mated local density of the data to discover clusters. Gaussian Mixture Models (GMM)

are often used for soft clustering where each mixture represents a cluster distribution

[70]. Mean shift [23, 24, 113] was employed in computer vision for clustering data in

the feature space by locating the modes of the nonparametric estimate of the under-

lying density. There exist other density based clustering methods that are less known
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in the vision community, but have been applied to data mining applications. For ex-

ample, DBSCAN [32] groups together points that are connected through a chain of

high-density neighbors that are determined by the two parameters: neighborhood size

and minimum allowable density. SSDBSCAN [68] is a semi-supervised variant of DB-

SCAN that explicitly uses the labels of a few points to determine the neighborhood

parameters. C-DBSCAN [95] performs a hierarchical density based clustering while

enforcing the must-link and cannot-link constraints.

5.2 Kernel Mean Shift Clustering

First, we briefly describe the Euclidean mean shift clustering algorithm in Section 5.2.1

and then derive the kernel mean shift algorithm in Section 5.2.2.

5.2.1 Euclidean Mean Shift Clustering

Given n data points xi on a d-dimensional space Rd and the associated diagonal band-

width matrices hiId×d, i = 1, ..., n, the sample point density estimator obtained with

the kernel profile k(x) is given by

f(x) =
1

n

n∑
i=1

1

hdi
k

(∥∥∥∥x− xi
hi

∥∥∥∥2
)
. (5.1)

We utilize multivariate normal profile

k(x) = e−
1
2
x x ≥ 0. (5.2)

Taking the gradient of (5.1), we observe that the stationary points of the density

function satisfy

2

n

n∑
i=1

1

hd+2
i

(xi − x) g

(∥∥∥∥x− xi
hi

∥∥∥∥2
)

= 0 (5.3)

where g(x) = −k′(x). The solution is a local maximum of the density function which
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(a) (b) (c)

Figure 5.2: Clustering with must-link constraints. (a) Input space. Red markers are
the constraint pair (x1, x2). (b) The input space is mapped to the feature space via
quadratic mapping φ(x) = [x x2]>. The black arrow is the constraint vector (φ(x1)−
φ(x2))>, and the red dashed line is its null space. (c) The feature space is projected to
the null space of the constraint vector. Constraint points collapse to a single point and
are guaranteed to be clustered together. Two clusters can be easily identified.

can be iteratively reached using mean shift procedure

δx =

∑n
i=1

xi
hd+2
i

g

(∥∥∥x−xi
hi

∥∥∥2
)

∑n
i=1

1
hd+2
i

g

(∥∥∥x−xi
hi

∥∥∥2
) − x (5.4)

where x is the current mean and δx is the mean shift vector. To recover from saddle

points adding a small perturbation to the current mean vector is usually sufficient. Co-

maniciu and Meer [23] showed that the convergence to a local mode of the distribution

is guaranteed.

5.2.2 Mean Shift Clustering in Kernel Spaces

We extend the original mean shift algorithm from the Euclidean space to a general

inner product space. This makes it possible to apply the algorithm to a larger class of

nonlinear problems, such as clustering on manifolds [114]. We also note that a similar

derivation for fixed bandwidth mean shift algorithm was given in [117].

Let X be the input space such that the data points xi ∈ X , i = 1, ..., n. Although, in

general, X may not necessarily be a Euclidean space, for sake of simplicity, we assume

X corresponds to Rd. Every point x is then mapped to a dφ-dimensional feature space
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H by applying the mapping functions φl, l = 1, . . . , dφ, where

φ(x) = [φ1(x) φ2(x) . . . φdφ(x)]>. (5.5)

Note that in many problems, this mapping is sufficient to achieve the desired separability

between different clusters.

We first derive the mean shift procedure on the feature space H in terms of the

explicit representation of the mapping φ. The point sample density estimator at y ∈ H,

with the diagonal bandwidth matrices hiIdφ×dφ is

fH(y) =
1

n

n∑
i=1

1

h
dφ
i

k

(∥∥∥∥y − φ(xi)

hi

∥∥∥∥2
)
. (5.6)

Taking the gradient of (5.6) w.r.t. φ, like (5.4), the solution can be found iteratively

using the mean shift procedure

δy =

∑n
i=1

φ(xi)
h
dφ+2

i

g

(∥∥∥y−φ(xi)
hi

∥∥∥2
)

∑n
i=1

1

h
dφ+2

i

g

(∥∥∥y−φ(xi)
hi

∥∥∥2
) − y. (5.7)

By employing the kernel trick, we now derive the implicit formulation of the kernel

mean shift algorithm. We define K : X ×X 7→ R, a positive semidefinite, scalar kernel

function satisfying for all x,x′ ∈ X

K(x,x′) = φ(x)>φ(x′). (5.8)

K(·) defines an inner product which makes it possible to map the data implicitly to a

high-dimensional kernel space. Let

Φ = [φ(x1) φ(x2) . . . φ(xn)] (5.9)

be the dφ × n matrix of the mapped points and K = ΦTΦ be the n× n kernel (Gram)

matrix. We observe that at each iteration of the mean shift procedure (5.7), the estimate
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ȳ = y + δy always lies in the column space of Φ. Any such point ȳ can be written as

ȳ = Φαȳ (5.10)

where αȳ is an n-dimensional weighting vector. The distance between two points y and

y′ in this space can be expressed in terms of their inner product and their respective

weighting vectors

‖y − y′‖2 = ‖Φαy −Φαy′‖2 (5.11)

= α>y Φ>Φαy + α>y′Φ>Φαy′ − 2α>y Φ>Φαy′

= α>y Kαy + α>y′Kαy′ − 2α>y Kαy′ .

Let ei denote the i-th canonical basis vector for Rn. Applying (5.11) to compute

distances in (5.7) by using the equivalence φ(xi) = Φei, the mean shift algorithm

iteratively updates the weighting vector αy

αȳ =

∑n
i=1

ei

h
dφ+2

i

g
(
α>

y Kαy+e>
i Kei−2α>

y Kei
h2i

)
∑n

i=1
1

h
dφ+2

i

g
(
α>

y Kαy+e>
i Kei−2α>

y Kei
h2i

) . (5.12)

The clustering starts on the data points on H, therefore the initial weighting vectors

are given by αyi = ei, such that, yi = Φαyi = φ(xi), i = 1 . . . n. At convergence,

the mode ȳ can be recovered using (5.10) as Φᾱy. The points converging close to

the same mode are clustered together, following the original proof [23]. Since any

positive semidefinite matrix K is a kernel for some feature space [25], the derived

method implicitly applies mean shift on the feature space induced by K. Note that

under this formulation, mean shift in the input space can be implemented by simply

choosing the mapping function φ(·) to be identity, i.e. φ(x) = x.

An important point is that the dimensionality of the feature space dφ can be very

large, for example it is infinite in case of the Gaussian kernel function. In such cases it

may not be possible to explicitly compute the point sample density estimator (5.6) and

consequently the mean shift vectors (5.7). However, since the procedure is restricted to
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the subspace spanned by the feature points, the mean shift procedure can be executed

using (5.12) via the kernel matrix K. The dimensionality of the subspace can be

estimated from the rank of the kernel matrix K.

5.3 Kernel Learning Using Linear Transformations

A nonlinear mapping of the input data to a higher-dimensional kernel space often

improves cluster separability. By effectively enforcing the available constraints, it is

possible to transform the entire space and guide the clustering to discover the desired

structure in the data.

To illustrate this intuition, we present a simple two class example from [113] in

Fig. 5.2. The original data lies along the x-axis, with the blue points associated with

one class and the black points with the second class (Fig. 5.2a). This data appears to

have originated from three clusters. Let (x1, x2) be the pair of points marked in red

which are constrained to be clustered together. We map the data explicitly to a two-

dimensional feature space via a simple quadratic mapping φ(x) = [x x2]> (Fig. 5.2b).

Although the data is linearly separable, it still appears to form three clusters. Using

the must-link constraint pair, we enforce the two red points to be clustered together.

The black arrow denotes the constraint vector φ(x1) − φ(x2) and the dashed red line

is its null space. By projecting the feature points to the null space of the constraint

vector, the points φ(x1) and φ(x2) are collapsed to the same point, guaranteeing their

association with the same mode. From Fig.5.2c, we can see that in the projected space,

the data has the desired cluster structure which is consistent with its class association.

This approach, although simple, does not scale well with increasing number of con-

straints for a simple nonlinear mapping like above. Given m linearly independent

constraint vectors in a dφ-dimensional space, the dimensionality of the null space of

the constraint matrix is dφ −m. This implies that if dφ or more constraints are speci-

fied, all the points collapse to a single point and are therefore grouped together in one

cluster. This problem can be alleviated if a mapping function φ(·) is chosen such that

dφ is very large. Since explicitly designing the mapping function φ(x) is not always
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practical, we use a kernel function K(x,x′) to implicitly map the input data to a very

high-dimensional kernel space. As we show in Section 5.3.1, the subsequent projection

to the null-space of the constraint vectors can also be achieved implicitly by appropri-

ately updating the kernel matrix. In Section 5.3.2, we further generalize the projection

operation to a linear transformation that also utilizes cannot-link constraints.

5.3.1 Kernel Updates Using Orthogonal Projection

Recall the matrix Φ in (5.9), obtained by mapping the input points to H via the

nonlinear function φ. Let (j1, j2) be a must-link constraint pair such that φ(xj1)=Φej1

and φ(xj2) = Φej2 are to be clustered together. Given a set of m such must-link

constraint pairs M, for every (j1, j2) ∈ M, the dφ-dimensional constraint vector can

be written as aj = Φ (ej1 − ej2) = Φzj . We refer to the n-dimensional vector zj as the

indicator vector for the jth constraint. The dφ ×m dimensional constraint matrix A

can be obtained by column stacking all the m constraint vectors, i.e., A = ΦZ, where

Z = [z1, . . . , zm] is the n ×m matrix of indicator vectors. Similar to the example in

Fig. 5.2, we impose the constraints by projecting the matrix Φ to the null space of A

using the the projection matrix

P = Idφ −A
(
A>A

)+
A> (5.13)

where Idφ is the dφ-dimensional identity matrix and ‘+’ denotes the matrix pseudoin-

verse operation. Let S = A>A be the m × m scaling matrix. The matrix S can be

computed using the indicator vectors and the initial kernel matrix K without knowing

the mapping φ as

S = A>A = Z>Φ>ΦZ = Z>KZ. (5.14)

Given the constraint set, the new mapping function φ̂(x) is computed as φ̂(x) =

Pφ(x). Since all the constraints in M are satisfied in the projected subspace, we have

||PΦZ||2F = 0 (5.15)
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where || · ||F denotes the Frobenius norm. The initial kernel function (5.8) correspond-

ingly transforms to the projected kernel function K̂(x,x′) = φ̂(x)>φ̂(x′). Using the

projection matrix P, it can be rewritten in terms of the initial kernel function K(x,x′)

and the constraint matrix A

K̂(x,x′) = φ(x)>P>Pφ(x′) = φ(x)>Pφ(x′)

= φ(x)>(Idφ −AS+A>)φ(x′)

= K(x,x′)− φ(x)>AS+A>φ(x′). (5.16)

Note that the identity P>P = P follows from the fact that P is a symmetric projection

matrix. The m-dimensional vector A>φ(x) can also be written in terms of the initial

kernel function as

A>φ(x) = Z>Φ>φ(x)

= Z> [K(x1,x), . . . ,K(xn,x)]> . (5.17)

Let the vector kx = [K(x1,x), . . . ,K(xn,x)]>. From (5.16), the projected kernel func-

tion can be written as

K̂(x,x′) = K(x,x′)− k>x ZS+Z>kx′ (5.18)

The projected kernel matrix can be directly computed as

K̂ = K−KZS+Z>K (5.19)

where the symmetric n × n initial kernel matrix K has rank r ≤ n. The rank of the

matrix S is equal to the number of linearly independent constraints, and the rank of

the projected kernel matrix K̂ is r − rank S.
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5.3.2 Kernel Updates Using Linear Transformation

By projecting the feature points to the null space of the constraint vector a, their

components along the a are fully eliminated. This operation guarantees that the two

points belong to the same cluster. As proposed earlier, by appropriately choosing

the kernel function K(·) (such that dφ is very large), we can make the initial kernel

matrix K full-rank. However, a sufficiently large number of such linearly independent

constraints could still result in a projected space with dimensionality that is too small

for meaningful clustering.

From a clustering perspective, it might suffice to bring the two must-link constraint

points sufficiently close to each other. This can be achieved through a linear transfor-

mation of the kernel space that only scales down the component along the constraint

vector. Such a linear transformation would preserve the rank of the kernel matrix and

is potentially capable of handling a very large number of must-link constraints. A sim-

ilar transformation that increases the distance between two points also enables us to

incorporate cannot-link constraints.

Given a constraint vector a = Φz, a symmetric transformation matrix of the form

T = Idφ − s
(
aa>

)
(5.20)

allows us to control the scaling along the vector a using the scaling factor s. When s =

1
a>a the transformation becomes a projection to the null space of a. The transformation

decreases distances along a for 0 < s < 2
a>a , while it is increased for s < 0 or s > 2

a>a .

We can set a target distance d > 0 for the constraint point pair by applying an

appropriate transformation T. The constraint equation can be written as

||TΦz||2F = z>K̂z = d (5.21)

where K̂ = Φ>T>TΦ = Φ>T2Φ is the corresponding transformed kernel matrix. To

handle must-link constraints, d should be small, while it should be large for cannot-link

constraint pairs. Using the specified d, we can compute s and therefore the transformed
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kernel matrix

K̂ = Φ>
(
Idφ − saa>

)2
Φ. (5.22)

Substituting a = Φz the expression for K̂ is

K̂ = K− 2sKzz>K + s2
(
z>Kz

)
Kzz>K. (5.23)

From (5.21), we can solve for s

s =
1

p

(
1±

√
d

p

)
where p = z>Kz > 0 (5.24)

and the choice of s does not affect the following kernel update1 such that the constraint

(5.21) is satisfied

K̂ = K + βKzz>K, β =

(
d

p2
− 1

p

)
. (5.25)

The case when p = 0 implies that the constraint vector is a zero vector and T = Idφ

and a value of β = 0 should be used.

When multiple must-link and cannot-link constraints are available, the kernel matrix

can be updated iteratively for each constraint by computing the update parameter βj

using corresponding dj and pj . However, by enforcing the distance between constraint

pairs to be exactly dj , the linear transformation imposes hard constraints for learning

the kernel matrix which could potentially have two adverse consequences:

1. The hard constraints could make the algorithm difficult (or even impossible) to

converge, since previously satisfied constraints could easily get violated during

subsequent updates of the kernel matrix.

2. Even when the constraints are non-conflicting in nature, in the absence of any

relaxation, the method becomes sensitive to labeling errors. This is illustrated

through the following example.

The input data consists of points along five concentric circles as shown in Fig.5.3a. Each

1This update rule is equivalent to minimizing the log det divergence (5.29) for a single equality
constraint using Bregman projections (5.31).
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cluster comprises of 150 noisy points along a circle. Four labeled points per class (shown

by square markers) are used to generate a set of
(

4
2

)
×5 = 30 must-link constraints. The

initial kernel matrix K is computed using a Gaussian kernel with σ = 5, and updated

by imposing the provided constraints (5.19). The updated kernel matrix K̂ is used for

kernel mean shift clustering (Section 5.2.2) and the corresponding results are shown in

Fig. 5.3b. To test the performance of the method under labeling errors, we also add

one mislabeled must-link constraint (shown in black line). The clustering performance

deteriorates drastically with just one mislabeled constraint as shown in Fig. 5.3c.

In order to overcome these limitations, the learning algorithm must accommodate

for systematic relaxation of constraints. This can be achieved by observing that the

kernel update in (5.25) is equivalent to minimizing the log det divergence between K̂ and

K subject to constraint (5.21) [63, Sec. 5.1.1]. In the following section, we formulate

the kernel learning algorithm into a log det minimization problem with soft constraints.

5.4 Kernel Learning Using Bregman Divergence

Bregman divergences have been studied in the context of clustering, matrix nearness

and metric and kernel learning [55, 63, 5]. We briefly discuss the log det Bregman

divergence and its properties in Section 5.4.1. We formulate a constrained log det

divergence minimization problem similar to [55] in Section 5.4.2.

5.4.1 The LogDet Bregman Divergence

The Bregman divergence [11] between real, symmetric n × n matrices X and Y is a

scalar function given by

Dϕ(X,Y)=ϕ(X)−ϕ(Y)−tr
(
∇ϕ (Y)>(X−Y)

)
(5.26)

where ϕ is a strictly convex function and ∇ denotes the gradient operator. For ϕ(X) =

− log (det(X)), the resulting divergence is called the log det divergence

Dld (X,Y) = tr
(
XY−1

)
− log det

(
XY−1

)
− n (5.27)
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(a) (b) (c)

Figure 5.3: Five concentric circles. Kernel learning without relaxation (a) Input data.
The square markers indicate the data points used to generate pairwise constraints. The
black line shows the only mislabeled similarity constraint used. (b) Clustering results
when only the correctly labeled similarity constraints were used. (c) Clustering results
when the mislabeled constraint was also used.

and is defined when X,Y are positive definite. In [63], this definition was extended to

rank deficient (positive semidefinite) matrices by restricting the convex function to the

range spaces of the matrices. For positive semidefinite matrices X and Y, both having

rank r ≤ n and singular value decomposition X = VΛV> and Y = UΘU>, the log det

divergence is defined as

Dld (X,Y) =
∑
i,j≤r

(
v>i uj

)2
(
λi
θj
− log

λi
θj
− 1

)
. (5.28)

Moreover, the log det divergence, like any Bregman divergence, is convex with respect

to its first argument X [5]. This property is useful in formulating the kernel learning

as a convex minimization problem in the presence of multiple constraints.

5.4.2 Kernel Learning with LogDet Divergences

Let M and C denote the sets of m must-link and c cannot-link pairs respectively, such

that m + c = nc. Let dm and dc be the target squared distance thresholds for must-

link and cannot-link constraints respectively. The problem of learning a kernel matrix

using linear transformations for multiple constraints, discussed in Section 5.3.2, can be
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equivalently formulated as the following constrained log det minimization problem

min
K̂

Dld

(
K̂,K

)
(5.29)

s.t. (ej1 − ej2)> K̂ (ej1 − ej2) = dm ∀(j1, j2) ∈M

(ej1 − ej2)> K̂ (ej1 − ej2) = dc ∀(j1, j2) ∈ C.

The final kernel matrix K̂ is obtained by iteratively updating the initial kernel matrix

K.

In order to permit relaxation of constraints, we rewrite the learning problem using a

soft margin formulation similar to [55], where each constraint pair (j1, j2) is associated

with a slack variable ξ̂j , j = 1, . . . , nc

min
K̂,ξ̂

Dld

(
K̂,K

)
+ γDld

(
diag

(
ξ̂
)
, diag (ξ)

)
(5.30)

s.t. (ej1 − ej2)> K̂ (ej1 − ej2) ≤ ξ̂j ∀(j1, j2) ∈M

(ej1 − ej2)> K̂ (ej1 − ej2) ≥ ξ̂j ∀(j1, j2) ∈ C.

The nc-dimensional vector ξ̂ is the vector of slack variables and ξ is the vector of target

distance thresholds dm and dc. The regularization parameter γ controls the trade-off

between fidelity to the original kernel and the training error. Note that by changing the

equality constraints to inequality constraints, the algorithm allows must-link pairs to be

closer and cannot-link pairs to be farther than their corresponding distance thresholds.

The optimization problem in (5.30) is solved using the method of Bregman projec-

tions [11]. A Bregman projection (not necessarily orthogonal) is performed to update

the current matrix, such that the updated matrix satisfies that constraint. In each it-

eration, it is possible that the current update violates a previously satisfied constraint.

Since the problem in (5.30) is convex [63], the algorithm converges to the global mini-

mum after repeatedly updating the kernel matrix for each constraint in the setM∪C.

For the log det divergence, the Bregman projection that minimizes the objective

function in (5.30) for a given constraint (j1, j2) ∈ M∪ C, can be written as derived in
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[63]

K̂t+1 = K̂t + βt K̂t (ej1 − ej2) (ej1 − ej2)> K̂t. (5.31)

For the tth iteration the parameter βt is computed in closed form and is explained in

Section 5.5 along with the complete low-rank kernel learning algorithm. The algorithm

converges when βt approaches zero for all (j1, j2)∈M∪ C with the final learned kernel

matrix K̂ = Φ̂
>

Φ̂.

Using K̂, the kernel function that defines the inner product in the corresponding

transformed kernel space can be written as

K̂ (x,y) = K (x,y) + k>x

(
K+

(
K̂−K

)
K+
)

ky (5.32)

where K(·) is the scalar initial kernel function (5.8), and the vectors kx and ky are

[K(x,x1), . . . ,K(x,xn)]> and [K(y,x1), . . . ,K(y,xn)]> respectively [55]. The points

x,y ∈ X could be out of sample points, i.e., points that are not in the sample set

{x1, . . . ,xn} used to learn K̂. Note that (5.18) also generalizes the inner product in

the projected kernel space to out of sample points.

5.5 Low Rank Kernel Updates

The kernel update presented in Jain et al. [55] for solving (5.30) involves the full n×n

kernel matrix. Since in all our applications the kernel matrix is always low-rank, we

adapt the low-rank kernel learning algorithm in [63] to solve (5.30).

The initial kernel matrix K with rank r ≤ n, can be decomposed as K = GG>,

where G is the n × r square root matrix. If r � n, the complexity of the learning

algorithm can be significantly reduced by applying fast Cholesky updates [63, Section

5.1.3]. The update equation (5.31) can be rewritten as

K̂t+1 =Ĝt

(
Ir+βtĜ

>
t (ej1−ej2)(ej1−ej2)>Ĝt

)
Ĝ
>
t (5.33)

where Ĝt is the n× r updated square root matrix in the tth iteration. The term within
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Input:
G - n× r initial square root matrix K = GG>

M, C - similarity and dissimilarity constraint sets
dm, dc - the distance thresholds.
γ - the trade-off parameter
Output:
Ĝ - the n× r learned square root matrix.

� Initialize t = 0, B0 = Ir×r, λj = 0 j = 1, . . . , nc

� Initialize slack variables
ξ̂j = ξj = dm for (j1, j2) ∈M
ξ̂j = ξj = dc for (j1, j2) ∈ C

� Repeat until convergence

– Pick a constraint (j1, j2) ∈M or C.

– δ = 1 if (j1, j2) ∈M or −1 if (j1, j2) ∈ C.

– w = Bt [G(j1, ·)−G(j2, ·)]>

– α = min
(
λj ,

δγ
γ+1

(
1

||w||22
− 1

ξ̂j

))
.

– ξ̂j ← γξ̂j/
(
γ + δαξ̂j

)
.

– λj ← λj − α.

– β = δα/
(
1− δα||w||22

)
.

– Factorize
(
I + βww>

)
into LtL

>
t using Cholesky decomposition. Update

Bt+1 = BtLt.

– t← t+ 1.

� return Ĝ = GBtconv

Figure 5.4: Low rank kernel learning algorithm.

parentheses is a rank one perturbation of the r × r identity matrix with the Cholesky

decomposition LtL
>
t . The matrix Ĝt is initialized as Ĝ0 = G and it can be seen that

Ĝt+1 = ĜtLt = GL1 · · ·Lt. At convergence, we have Ĝ = G
∏
i Li, i= 1, . . . , tconv and

the corresponding learned kernel is K̂=ĜĜ
>

.

The algorithm for low-rank kernel learning is summarized in Fig. 5.4. The input

is the n× r square root matrix G and the sets of pairwise constraints M and C along

with their corresponding distance thresholds dm and dc.

Let G(i, ·) represent the ith row of the square root matrix G. In the feature space

induced by K̂t, the squared distance between a pair of constraint points (j1, j2) is w>w

computed using the G and the accumulator matrix Bt =
∏
i Li, i=1, . . . , t− 1.
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The parameter α is used to relax the slack variables ξ̂j and update β. The nc-

dimensional vector λ is initialized to zero and updated in each iteration such that

λj ≥ 0 for a constraint (j1, j2) ∈M∪C. The algorithm converges when ||λt −λt−1|| is

below a small threshold set to 0.01.

5.6 Semi-supervised Kernel Mean-Shift Clustering Algorithm

We present the complete algorithm for semi-supervised kernel mean shift clustering

(SKMS) in this section. Fig. 5.5 shows a block diagram for the overall algorithm. We

explain each of the modules using two examples: Olympic circles, a synthetic data set

and a 1000 sample subset of USPS digits, a real data set with images of handwritten

digits. In Section 5.6.1, we propose a method to select the scale parameter σ for the

initial Gaussian kernel function using the sets M, C and target distances dm, dc. We

show the speed-up achieved by performing the low-rank kernel matrix updates (as op-

posed to updating the full kernel matrix) in Section 5.6.2. For mean shift clustering, we

present a strategy to automatically select the bandwidth parameter using the pairwise

must-link constraints in Section 5.6.3. Finally, in Section 5.6.4, we discuss the selection

of the trade-off parameter γ.

Figure 5.5: Block diagram describing the semi-supervised kernel mean shift clustering
algorithm. The bold boxes indicate the user input to the algorithm.
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Figure 5.6: Selecting the scale parameter σ̂ that minimizes Dld(ξ, ξσ) using grid search.
Selected σ values: Olympic circles, σ̂ = 0.75; USPS digits, σ̂ = 7.

5.6.1 Initial Parameter Selection

Given two points xi,xj , the Gaussian kernel function is given by

Kσ (xi,xj) = exp

(
−‖xi − xj‖2

2σ2

)
∈ [0, 1] (5.34)

where σ is the scale parameter. From (5.34) and (5.11) it is evident that pairwise

distances between sample points in the feature space induced byKσ(·) lies in the interval

[0, 2]. This provides us with an effective way of setting up the target distances dm =

min(d1, 0.05) and dc = max(d99, 1.95), where d1 and d99 are the 1st and 99th percentile of

distances between all pairs of points in the kernel space. We select the scale parameter

σ such that, in the initial kernel space, distances between must-link points are small

while those between cannot-link points are large. This results in good regularization

and faster convergence of the learning algorithm.

Recall that ξ is the nc-dimensional vector of target squared distances between the

constraint pairs

ξj =


dm ∀(j1, j2) ∈M

dc ∀(j1, j2) ∈ C.
(5.35)

Let ξσ be the vector of distances computed for the nc constraint pairs using the kernel

matrix Kσ. The scale parameter that minimizes the log det divergence between the
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Table 5.1: Comparison of execution times of kernel learning using the low-rank updates
(5.33) vs. full matrix updates (5.31).

Data set
Size(K)

(n)
rank K

(r)

Time (s)

low-rank full matrix

Olympic
Circles

1500 58 0.92 323.32

USPS
Digits

1000 499 68.19 151.09

vectors ξ and ξσ is

σ̂ = arg min
σ

Dld (diag (ξ) , diag (ξσ)) (5.36)

and the corresponding kernel matrix is Kσ̂. The kernel learning is insensitive to small

variations in σ, so it is sufficient to do a grid search over a range of σ values. Fig. 5.6

shows the plot of the objective function in (5.36) against different values of σ for the

Olympic circles data set and the USPS digits data set.

5.6.2 Low Rank Kernel Learning

When the initial kernel matrix has rank r ≤ n, the n × n matrix updates (5.31) can

be modified to achieve a significant computational speed-up [63]. We learn a kernel

matrix for clustering the two example data sets: Olympic circles (5 classes, n = 1500)

and USPS digits (10 classes, n = 1000). The must-link constraints are generated using

15 labeled points from each class: 525 for Olympic circles and 1050 for USPS digits,

while an equal number of cannot-link constraints is used.

The n×n initial kernel matrix Kσ̂ is computed as described in the previous section.

Using singular value decomposition, we compute an n × n low-rank kernel matrix K

such that rank K = r ≤ n and ‖K‖F
‖Kσ̂‖F ≥ 0.99. Given pairwise constraints and the initial

matrix K, the kernel learning is performed using both, full matrix updates (5.31) and

low-rank kernel updates (5.33). Table 5.1 shows significant improvements in computa-

tional time when the low-rank learning algorithm is used (see Appendix for details). We
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(a) (b)

Figure 5.7: Selecting the mean shift bandwidth parameter k, given five labeled points
per class. (a) Olympic circles. Number of recovered clusters is sensitive at the median
based estimate k = 6, but not at k = 15 (see text). (b) USPS digits. Number of
recovered clusters is not sensitive at the median based estimate k = 4. The asterisk
indicates the median based estimate, while the square marker shows a good estimate
of k.

also observed that in all our experiments, clustering performance did not deteriorate

significantly when the low-rank approximation of the kernel matrix was used.

5.6.3 Setting the Mean Shift Parameters

For kernel mean shift clustering, we define the bandwidth for each point as the distance

to its kth nearest neighbor. In general, clustering is an interactive process where the

bandwidth parameter for mean shift is provided by the user, or is estimated based on the

desired number of clusters. In this section we propose an automatic recommendation

method for the bandwidth parameter k by using only the must-link constraint pairs.

We build upon the intuition that in the transformed kernel space, the neighborhood

of a must-link pair comprises of points similar to the constraint points. Given the jth

constraint pair (j1, j2) ∈ M, we compute the pairwise distances in the transformed

kernel space between the first constraint point Φ̂ej1 and all other feature points as

di = (ej1 − ei)
>K̂(ej1 − ei), i = 1, . . . , n, i 6= j1. These points are then sorted in the

increasing order of di. The bandwidth parameter kj for the jth constraint corresponds

to the index of j2 in this sorted list. Therefore, the point Φ̂ej2 is the kthj neighbor of

Φ̂ej1 . Finally, the value of k is selected as the median over the set {kj , j = 1, . . . ,m}.

For a correct choice of k, we expect the performance of mean shift to be insensitive

to small changes in the value of k. In Fig. 5.7, we plot the number of clusters recovered

by kernel mean shift as the bandwidth parameter is varied. For learning the kernel,
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Figure 5.8: Selecting the trade-off parameter γ. The AR index vs log γ for 50 cross-
validation runs. The asterisks mark the selected value of γ = 100.

we used 5 points from each class to generate must-link constraints: 50 for the Olympic

circles and 100 for USPS digits. An equal number of cannot-link constraints is used.

Fig. 5.7a shows the plot for Olympic circles (5 classes), where the median based value

(k = 6) underestimates the bandwidth parameter. A good choice is k = 15, which lies

in the range (10− 23) where the clustering output is insensitive to changes in k.

As seen in Fig. 5.7b, in case of USPS digits (10 classes), the number of clusters

recovered by mean shift is insensitive to the median based estimate (k = 4). For all

other data sets we used in our experiments, the median based estimates produced

good clustering output. Therefore, with the exception of Olympic circles, we used

the bandwidth parameter obtained using the median based approach. However, for

completeness, the choice of k should be verified, and corrected if necessary, by analyzing

the sensitivity of the clustering output to small perturbations in k.

For computational efficiency, we run the mean shift algorithm in a lower dimensional

subspace spanned by the singular vectors corresponding to the 25 largest singular values

of K̂. For all the experiments in Section 5.7, a 25-dimensional representation of the

kernel matrix was large enough to represent the data in the kernel space.

5.6.4 Selecting the Trade-off Parameter

The trade-off parameter γ is used to weight the objective function for the kernel learn-

ing. We select γ by performing a two-fold cross-validation over different values of γ
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and the clustering performance is evaluated using the scalar measure Adjusted Rand

(AR) index [51]. The kernel matrix is learned using half of the data with 15 points used

to generate the pairwise constraints, 525 must-link constraints for the Olympic circles

and 1050 for the USPS digits. An equal number of cannot-link constraint pairs is also

generated.

Each cross-validation step involves learning the kernel matrix with the specified γ

and clustering the testing subset using the kernel mean shift algorithm and the trans-

formed kernel function(5.32). Fig. 5.8 shows the average AR index plotted against

log γ for the two data sets. In both the examples an optimum value of γ = 100 was

obtained. In general, this value may not be optimum for other applications. However,

in all our experiments in Section 5.7, we use γ = 100, since we obtained similar curves

with small variations in the AR index in the vicinity of γ = 100.

5.7 Experiments

We show the performance of semi-supervised kernel mean shift algorithm (SKMS) on

two synthetic examples and four real-world examples. We also compare our method

with two state-of-the-art methods: the semi-supervised kernel k-means (SSKK) [62]

and the constrained spectral clustering (E2CP) [74]. In the past, the superior perfor-

mance of E2CP over other recent methods has been demonstrated. Please see [74] for

more details. In addition to this, we also compare SKMS with the kernelized k-means

algorithm (Kkm). By providing both SKMS and Kkm the same learned kernel matrix,

we compare the clustering performance of mean shift with that of k-means. Note that,

SSKK uses a different strategy to learn the kernel matrix using pairwise constraints.

With the exception of SKMS, all the methods require the user to provide the correct

number of clusters.

Comparison metric. The clustering performance of different algorithms is com-

pared using the Adjusted Rand (AR) index [51]. It is an adaptation of the rand index

that penalizes random cluster assignments, while measuring the agreement between the

clustering output and the ground truth labels. Using the contingency table t, the AR
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index can be computed as [20]

AR =
RI − E(RI)

max RI − E(RI)
(5.37)

=
N (a+ d)− [(a+ b) (a+ c) + (d+ b) (d+ c)]

N2 − [(a+ b) (a+ c) + (d+ b) (d+ c)]

a =
R∑
r=1

C∑
c=1

(
trc
2

)
, b =

R∑
r=1

(
tr·
2

)
− a

c =
C∑
c=1

(
t·c
2

)
− a, d =

(
n

2

)
− a− b− c

where trc = t(r, c), tr· =
∑

c t(r, c) and t·c =
∑

r t(r, c) and N is the sum of all entries in

the contingency table, and E(·) is the expectation operator. The AR index is a scalar

and takes values between zero and one, with perfect clustering yielding a value of one.

Experimental setup. To generate pairwise constraints, we randomly select b

labeled points from each class. All possible must-link constraints are generated for each

class such that m=
(
b
2

)
and a subset of all cannot-link constraint pairs is selected at

random such that c=m= nc
2 . For each experimental setting, we average the clustering

results over 50 independent runs, each with randomly selected pairwise constraints.

The initial kernel matrix is computed using a Gaussian kernel (5.34) for all the

methods. We hand-picked the scale parameter σ for SSKK and E2CP from a wide range

of values such that their final clustering performance on each data set was maximized.

For SKMS and Kkm, the values of σ and the target distances dm and dc are estimated

as described in Section 5.6.1. Finally, the bandwidth parameter for mean shift k was

estimated as described in Section 5.6.3.

For each experiment, we specify the scale parameter σ we used for SSKK and E2CP,

while for SKMS and Kkm, we report the value of σ chosen most often using (5.36). We

also list the range of k, the bandwidth parameter for mean shift for each application. For

the log det divergence based kernel learning, we set the maximum number of iterations

to 100000 and the trade-off parameter γ to 100.
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(a) (b)

(c)

Figure 5.9: Olympic circles. (a) Input data. (b) AR index as the number of pairwise
constraints is varied. (c) AR index as the fraction of mislabeled constraints is varied.

5.7.1 Synthetic Examples

Olympic Circles (σ=0.75, k=15−35)

As shown in Fig. 5.9a, the data consists of noisy points along five intersecting circles

each comprising 300 points. For SSKK and E2CP algorithms, the value of the initial

kernel parameter σ was 0.5.

We performed two sets of experiments. In the first experiment, the performance

of all the algorithms is compared by varying the total number of pairwise constraints.

The number of labeled points per class vary as {5, 7, 10, 12, 15, 17, 20, 25} and are used

to generate must-link and cannot-link constraints that vary between 100 and 3000. Fig.

5.9b demonstrates SKMS performs better than E2CP while its performance is similar

to SSKK. For 100 constraints, SKMS recovered 5−8 clusters, making a mistake 22% of

the times. For all other settings together, it recovered an incorrect number of clusters

(4−6) only 6.3% of the times.

In the second experiment, we introduced labeling errors by randomly swapping the
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(a) (b)

(c)

Figure 5.10: Ten concentric circles. (a) Input data. (b) AR index as the number of
pairwise constraints is varied. (c) AR index as the fraction of mislabeled constraints is
varied.

labels of a fraction of the pairwise constraints. We use 20 labeled sample points per class

to generate 1900 pairwise constraints and vary the fraction of mislabeled constraints

between 0 and 0.6 in steps of 0.1. Fig. 5.9c shows the clustering performance of

all the methods. The performance of SKMS degrades only slightly even when half

the constraint points are labeled wrongly, but it starts deteriorating when 60% of the

constraint pairs are mislabeled.

Concentric Circles (σ=1, k=25−45)

The data consists of ten concentric circles each comprising 100 noisy points (Fig.

5.10a). We vary the number of labeled points per class as {5, 7, 10, 12, 15, 17, 20, 25}

and generate pairwise constraints between 200 and 6000. The other two algorithms

have the value of σ = 0.2.

In the first experiment, the number of pairwise constraints are varied between 200

and 6000. For 200 constraints, SKMS incorrectly recovered nine clusters 50% of the

times, while for all the other settings it correctly detected 10 clusters every time. In
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(a) (b)

Figure 5.11: USPS digits. (a) AR index as the number of pairwise constraints is varied.
(b) The 11000 × 11000 pairwise distance matrix (PDM) after performing mean shift
clustering.

the second experiment, we use 6000 pairwise constraints and mislabeled a fraction of

randomly selected constraints. This mislabeled fraction was varied between 0 to 0.6 in

steps of 0.1 and the performance of all the algorithms is shown in Fig. 5.10b-c.

5.7.2 Real-World Applications

In this section, we demonstrate the performance of our method on two real applications

having a small number of classes; USPS digits: 10 classes and MIT scene: 8 classes; and

two real applications with a large number of clusters; PIE faces: 68 classes and Caltech-

101 subset: 50 classes. We also show the performance of SKMS while clustering out

of sample points using (5.32) on the USPS digits and the MIT scene data sets. Since

the sample size per class is much smaller for PIE faces and Caltech-101 subset, results

for generalization are not shown. We observe that the superiority of SKMS over other

competing algorithms is clearer when the number of clusters is large.

USPS Digits (σ=7, k=4−14)

The USPS digits data set is a collection of 16×16 grayscale images of natural hand-

written digits and is available from http://cs.nyu.edu/ roweis/data.html. Each

class contains 1100 images of one of the ten digits. Fig. 5.12 shows sample images from

each class. Each image is then represented with a 256-dimensional vector where the

columns of the image are concatenated. We vary the number of labeled points per class

as {5, 7, 10, 12, 15, 17, 20, 25} to generate pairwise constraints from 200 to 6000. The



87

maximum number of labeled points per class used comprises only 2.27% of the total

data.

Figure 5.12: Sample images from the USPS digits data set.

Since the whole data set has 11000 points, we select 100 points from each class at

random to generate a 1000 sample subset. The labeled points are selected at random

from this subset for learning the 1000× 1000 kernel matrix. The value of σ used was 5

for SSKK and 2 for E2CP.

In the first experiment we compare the performance of all the algorithms on this

subset of 1000 points. For each algorithm, the results were averaged over 50 independent

runs. Fig. 5.11a shows the clustering performance of all the methods. Once the number

of constraints were increased beyond 500, SKMS outperformed the other algorithms.

For 200 constraints, the SKMS discovered 9−11 clusters, making a mistake 18% of the

times, while it recovered exactly 10 clusters in all the other cases.

In the second experiment, we evaluated the performance of SKMS for the entire

data set using 25 labeled points per class. The AR index averaged over 50 runs was

0.7529 ± 0.0510. Note that from Fig. 5.11a it can be observed that there is only

a marginal decrease in clustering accuracy, showing that SKMS generalizes well over

out of sample points. The pairwise distance matrix (PDM) after performing mean shift

clustering is shown in Fig. 5.11b. For illustration purpose, the data is ordered such that

the images belonging to the same class appear together. The block diagonal structure

indicates good generalization of SKMS for out of sample points with little confusion

between classes. Neither SSKK nor E2CP could be generalized to out of sample points

because these methods need to learn a new kernel or affinity matrix (11000× 11000).

MIT Scene (σ=1.75, k=4−14)

The data set is available from MIT http://people.csail.mit.edu/torralba/code

/spatialenvelope/ and contains 2688 labeled images. Each image is 256× 256 pixels
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in size and belongs to one of the eight outdoor scene categories, four natural and four

man-made. Fig. 5.13 shows one example image from each of the eight categories. Using

the code provided with the data, we extracted the GIST descriptors [88] which were

then used to test all the algorithms. We vary the number of labeled points per class

as {5, 7, 10, 12, 15, 17, 20} to generate the pairwise constraints from 160 to 3040. The

maximum number of labeled points used comprises only 7.44% of the total data.

Figure 5.13: Sample images from each of the eight categories of the MIT scene data
set.

We select 100 points from each class at random to generate an 800 sample subset.

The labeled points are selected at random from this subset for learning the 800 × 800

kernel matrix. The value of σ used was 1 for SSKK and 0.5 for E2CP. Fig. 5.14a shows

the clustering performance of all the algorithms on the 800 sample subset as the number

of constraint points are varied. For 160 constraint pairs, SKMS incorrectly discovered

7−10 clusters about 22% of the time, while it correctly recovered eight clusters in all

other settings.

In the second experiment, the whole data set was clustered using the 800 × 800

learned kernel matrix and generalizing to the out of sample points (5.32). Both SSKK

and E2CP were used to learn the full 2688 × 2688 kernel and affinity matrix respec-

tively. Fig. 5.14b shows the performance of all the algorithms as the number of pairwise

constraints was varied. Note that in [74] for similar experiments, the superior perfor-

mance of E2CP was probably because of the use of spatial Markov kernel instead of

the Gaussian kernel.
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(a) (b)

Figure 5.14: MIT Scene data set. (a) AR index on the 800× 800 kernel matrix as the
number of pairwise constraints is varied. (b) AR index on entire data as the number
of pairwise constraints is varied.

PIE Faces (σ=25, k=4− 7)

From the CMU PIE face data set [105], we use only the frontal pose and neutral

expression of all 68 subjects under 21 different lighting conditions. We coarsely aligned

the images with respect to eye and mouth locations and resized them to be 128× 128.

In Fig.5.15, we show eight illumination conditions for three different subjects. Due to

significant illumination variation, interclass variability is very large and some of the

samples from different subjects appear to be much closer to each other than within

classes.

Figure 5.15: PIE faces data set. Sample images showing eight different illuminations
for three subjects.

We convert the images from color to gray scale and normalize the intensities between

zero and one. Each image is then represented with a 16384-dimensional vector where

the columns of the image are concatenated. We vary the number of labeled points

per class as {3, 4, 5, 6, 7} to generate pairwise constraints between 408 and 2856. The
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(a) (b)

Figure 5.16: PIE Faces data set. (a) AR index as the number of pairwise constraints is
varied. (b) Number of clusters discovered by SKMS as number of pairwise constraints
is varied.

maximum number of labeled points comprises 30% of the total data.

We generate the 1428 × 1428 initial kernel matrix using all the data. The value

of σ used was 10 for SSKK and 22 for E2CP. Fig. 5.16 shows the performance of

all the algorithms using the AR index in this experiment and it can be observed that

SKMS outperforms all the other algorithms. Note that SKMS approaches near perfect

clustering for more than 5 labeled points per class. When three labeled points per class

were used, the SKMS discovered 61−71 clusters, making a mistake about 84% of the

time. For all other settings, SKMS correctly recovered 68 clusters about 62% of the

times, while it recovered 67 clusters about 32% of the time and between 69−71 clusters

in the remaining runs. Note that the kernel k-means (Kkm) method performs poorly

inspite of explicitly using the number of clusters and the same learned kernel matrix as

SKMS.

Caltech-101 Objects (σ=0.5, k=4− 11)

The Caltech-101 data set [33] is a collection of variable sized images across 101

object categories. This is a particularly hard data set with large intraclass variability.

Fig. 5.17 shows sample images from eight different categories.

We randomly sampled a subset of 50 categories, as listed in Table 5.2, with each

class containing 31 to 40 samples. For each sample image, we extract GIST descriptors

[88] and use them for evaluation of all the competing clustering algorithms. We vary the

number of labeled points per class as {5, 7, 10, 12, 15} to generate pairwise constraints
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Figure 5.17: Sample images from eight of the 50 classes used from Caltech-101 data
set.

between 500 and 10500. The maximum number of labeled points comprises 38% of

the total data. We use a larger number of constraints in order to overcome the large

variability in the data set.

We generate the 1959× 1959 initial kernel matrix using all the data. The value of σ

used is 0.2 for E2CP and 0.3 for SSKK. Fig. 5.18 shows the comparison of SKMS with

the other competing algorithms. It can be seen that SKMS outperforms all the other

methods. For five labeled points per class, SKMS detected 50 − 52 clusters, making

mistakes 75% of the times. For all the other settings together, SKMS recovered the

incorrect number (48− 51) of clusters only 9% of the times.

Table 5.2: Object classes used from Caltech-101 data set.
elephant flamingo head emu faces gerenuk stegosaurus
accordion ferry cougar face mayfly chair scissors
menorah platypus butterfly tick metronome inline skate

bass pyramid leopards sea horse cougar body stop sign
lotus dalmatian gramophone camera trilobite dragonfly

grand piano headphone sunflower ketch wild cat crayfish
nautilus buddha yin yang dolphin minaret anchor
car side rooster wheelchair octopus joshua tree ant
umbrella crocodile
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(a) (b)

Figure 5.18: Caltech-101 data set. (a) AR index as the number of pairwise constraints
is varied. (b) Number of clusters discovered by SKMS as number of pairwise constraints
is varied.

5.8 Discussion

The performance of unsupervised clustering methods is directly impacted by the ability

of the underlying metric to find meaningful structures in data. We described a semi-

supervised kernel mean shift (SKMS) clustering algorithm using pairwise must-link

and cannot-link constraints. We showed the superior performance of our algorithm

compared to state-of-the-art using challenging synthetic and real data.

However, the clustering problem itself becomes very difficult when the data has large

intra-class variability. For example, Fig. 5.19 shows three images from the highway

category of the MIT scene data set that were misclassified. The misclassification error

rate in Caltech-101 data set was even higher. On large scale data sets with over 10000

categories [28], all classification methods will perform poorly, as an image may qualify

for multiple categories. For example, the images in Fig. 5.19 were classified in the street

category, which is semantically correct. To deal with a large number of categories,

Figure 5.19: Three images from the class highway of the MIT Scene data set that were
misclassified.
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clustering (classification) algorithms should incorporate the ability to use higher level

semantic features that connect an image to its possible categories.

We did not address the issue of clustering in presence of outliers. In many practical

scenarios, the outlying points should be detected and eliminated before the clustering

procedure begins.
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Chapter 6

Future Work

In this chapter, we briefly give an overview of possible directions for future work. In

Section 6.1, we discuss the framework in which a sequence of RGB-D images can be

processed in order to build a dynamic 3D model. We discuss the reformulation of the

kernel learning problem in Section 6.2 and propose that a more efficient algorithm can

be devised by combining ideas from group theory and semidefinite programming.

6.1 Dynamic Scene Modeling Using RGB-D Sequences

Our work on planar modeling from a single RGB-D image can be extended in three

directions. In Chapter 4, we only used the depth image to detect the planar segments in

the scene. We used surface normals and their properties to identify these planar regions.

In the future, we would like to generalize this approach to identify other common

geometric shapes, like cylinders, cones and spheres while maintaining the scalability of

the complete system.

The Microsoft Kinect can have ‘holes’ in the image, i.e. group of pixels where the

depth estimate was unavailable. Fig. 6.1 shows edges extracted from the RGB (red)

and the depth (blue) images. It is clear that the RGB image has additional information

that can be used, e.g., to fill up some of the holes in the depth image. For example,

the linear edges can provide crucial information about intersection of planes even at

points where depth data is missing. Moreover, using the 3D information in the depth

image, we can robustly identify the vanishing points and vanishing lines of the image.

Methods for scene reconstruction from a single 2D image [89, 100], usually are sensitive

to estimates of plane at infinity. By using the depth information and the detected

planes, we can accurately estimate the plane at infinity using 3D data. This additional
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(a) (b) (c)

Figure 6.1: Edge image of RGB and depth images for SCT-1 and SCT-2. RGB images
can provide information about regions of missing depth. (a) RGB image. (b) Depth
image. (c) Edge image - Red edges correspond to the RGB image, while the blue edge
correspond to the depth image.

information can be used to overcome some limitations of depth data like, range of the

depth sensor, noisy measurements at depth discontinuities etc.

Another proposed extension of this work is processing a sequence of RGB-D frames

from Kinect. Performing the planar segmentation in the first frame, we can compute

the covariances of each of the planar parameters. We can compute the direction of the

intersecting edge using the normals as l = n̂1× n̂2 and the corresponding covariance by

error propagation. Using these parameters and their uncertainties as initializations, a

particle filtering framework can be used to estimate the planar regions in the subsequent

frames. An interesting question would be how to optimally use the information from

the RGB channel in a unified framework.

6.2 Kernel Learning Using Independent Constraints

The method of learning a positive semidefinite kernel matrix described in Section 5.4.2

is equivalent to a dual coordinate descent for optimization of the log det Bregman di-

vergence. We present only the reformulation of the kernel learning problem. The devel-

opment of the algorithm involves combining ideas from group theory and semidefinite
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programming [3] and is proposed as future work.

Let Φ = [φ(x1),φ(x2), . . . ,φ(xn)] be the dφ × n matrix of data points in an input

space Rdφ. We use notation similar to Section 5.3.1 and define Z = [z1, z2, . . . , znc ] as the

n× nc matrix of constraint pair indicator vectors of the form zj = ej1 − ej2 , (j1, j2) ∈

M∪ C, where M and C are the sets of must-link and cannot-link pairs.

Let Y = ΦZ be the dφ×nc matrix of constraints, with column rank r ≤ min(dφ, nc),

then the constraint inequalities can be written as

y>j Tyj ≤ ξj ∀(j1, j2) ∈M

y>j Tyj ≥ ξj ∀(j1, j2) ∈ C (6.1)

where the elements ξj of the vector ξ are desired distance values corresponding to must-

link and cannot-link constraints. T is the desired symmetric transformation matrix

to be learned. Let UYΣYV>Y be the SVD of Y, with ΣY as the r × r diagonal

matrix and UY and VY as the dφ × r and nc × r matrices respectively such that

U>YUY = V>YVY = Ir.

To satisfy (6.1), T should be of the following form

T = Idφ + YMYY> (6.2)

where the second term of the transformation modifies only the r-dimensional column

space of Y through the nc × nc symmetric matrix MY. We can chose to write MY =

VYWV>Y, where W is an r × r symmetric and positive (semi)definite matrix. In the

kernel space, UY cannot be computed explicitly, so from (6.2) we have

T = Idφ + Y
(
VYWV>Y

)
Y>

=

(
Idφ −Y

(
Y>Y

)+
Y>
)

+ Y

((
Y>Y

)+
+ VYWV>Y

)
Y>

= PN (Y) + YVY

((
Σ>YΣY

)+
+ W

)
V>YY>. (6.3)

The final expression (6.3) represents T as the sum of a projection matrix to N (Y), the
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null space of Y and the linear transformation of the subspace spanned by the columns

of Y. Let S =
(
Σ>YΣY

)+
+ W = UΛU> be the r × r matrix corresponding to the

term within the parantheses. Therefore the transformation T becomes

T = PN (Y) + YVYSV>YY>. (6.4)

The matrix VY can be computed using the SVD of the matrix Y>Y = Z>KZ, where

K = Φ>Φ is the kernel matrix. Recalling that yj = Φzj , the distance between the jth

constraint pair of points can now be written in terms of the kernel matrix K as

y>j Tyj = y>j PN (Y)yj + y>j YVYSV>YY>yj

= z>j KZVYSV>YZ>Kzj (6.5)

In (6.5), if the only unknown matrix S satisfies all the constraints, then the learned

kernel is computed as

K̂ = X>TX = X>
(
PN (Y) + YVYSV>YY>

)
X

K̂ =

(
K−KZ

(
Z>KZ

)+
Z>K

)
+ KZVYSV>YZ>K. (6.6)

The first term of (6.6) is the kernel matrix projected to the null space of Y [113], while

the matrix S needs to be learned in order to compute the second term.

Learning the Transformation Matrix

In order to learn the transformation matrix T, we want to minimize some divergence

between T and Idφ while imposing the constraints. Since T can be written as a sum of

matrices spanning complementary subspaces (6.4), it can be shown that Dld(T, Idφ) =

Dld(S, Ir) [63]. The log det divergence Dld(·) depends only on the eigenvectors and

eigenvalues of the arguments. The intuition here is that by modifying S, we only

modify the eigenvalues and eigenvectors lying in the subspace spanned by the columns

of Y, while the null space of Y remains unchanged.

For two n×n symmetric positive definite matrices K = UΛU> and K0 = VΘV>,
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recall that the log det divergence between K and K0 is computed as

Dld(K,K0) =
n∑

i,j=1

(
u>i vj

)2
(
λi
θj
− log

λi
θj
− 1

)
. (6.7)

Therefore the log det divergence between S = UΛU> and Ir is

Dld(S, Ir) =
r∑

i,j=1

(
u>i ej

)2
(λi − log λi − 1)

=
r∑
i=1

(λi − log λi − 1)

 r∑
j=1

(
u>i ej

)2


=

r∑
i=1

(λi − log λi − 1) ||ui||22

=
r∑
i=1

(λi − log λi − 1)

where U = [u1,u2, . . .ur] is the r× r orthogonal matrix and Λ = diag([λ1, λ2, . . . , λr])

is the diagonal matrix of eigenvalues of S. Since the matrices K,Z and VY are known

and do not change, for convenience of notation, we define ỹj = V>YZ>Kzj . The

constraint inequalities in (6.1) can now be written as

ỹ>j Sỹj ≤ ξj ∀(j1, j2) ∈M

ỹ>j Sỹj ≥ ξj ∀(j1, j2) ∈ C

The minimization problem can be rewritten as

min
S

Dld(S, Ir) (6.8)

s.t. ỹ>j Sỹj ≤ ξj ∀(j1, j2) ∈M

ỹ>j Sỹj ≥ ξj ∀(j1, j2) ∈ C

Writing the optimization problem by separating the diagonal eigenvalue matrix Λ and
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the orthogonal eigenvector matrix U, we get the following

min
U,Λ

tr (Λ− log Λ− Ir) (6.9)

s.t. ỹ>j UΛU>ỹj ≤ ξj ∀(j1, j2) ∈M

ỹ>j UΛU>ỹj ≥ ξj ∀(j1, j2) ∈ C

Λ � 0

U>U = Ir

The algorithm for solving this problem can be developed by taking ideas from group

theory and semidefinite programming, e.g., the Q-method [3]. This approach will re-

move the redundancy in the kernel learning by using only the linearly independent

constraints. However, designing the complete algorithm was out of the scope of this

thesis and will be pursued in future.
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