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ABSTRACT OF THE DISSERTATION

TIME-CONSISTENT APPROXIMATIONS OF

RISK-AVERSE MULTISTAGE STOCHASTIC

OPTIMIZATION PROBLEMS

by Tsvetan Asamov

Dissertation Director: Andrzej Ruszczyński

In this work we study the concept of time consistency as it relates to multistage

risk-averse stochastic optimization problems on finite scenario trees. We use dynamic

time-consistent formulations to approximate problems having a single global coherent

risk measure applied to the aggregated costs over all time periods. The duality of

coherent risk measures is employed to create a time-consistent cutting plane algorithm

for the construction of non-parametric time-consistent approximations where every one-

step conditional risk measure is specified only by its dual representation. Moreover, we

show that the method can be extended to generate parametric approximations involving

compositions of risk measures from a specified family. Additionally, we also consider

the case when the objective function is the mean-upper semideviation measure of risk

and develop methods for the construction of universal time-consistent upper bounding

functions. We prove that such functions provide time-consistent upper bounds to the

global risk measure for an arbitrary feasible policy.

Finally, the quality of the approximations generated by the proposed methods is

analyzed in multiple computational experiments involving two-stage scenario trees with

both artificial data, as well as stock return data for the components of the Dow Jones

ii



Industrial Average stock market index. Our numerical results indicate that the dynamic

time-consistent formulations closely approximate the original problem for a wide range

of risk aversion parameters.

iii



Acknowledgements

I would like to thank my advisor Dr. Andrzej Ruszczyński for introducing me to the
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Chapter 1

Introduction and Preliminaries

1.1 Introduction

The increasing complexity and interdependence of the modern world have elevated the

importance of risk management and turned risk-averse stochastic optimization into an

active field of study in Operations Research. The mean-risk method for the optimiza-

tion of portfolios with a finite number of assets was first introduced in the seminal work

of Markowitz [30]. The mean-variance approach yields parametric formulations that

can be solved efficiently as convex quadratic programming problems. However, there

is a drawback of the method since the mean and the variance are measured in differ-

ent units. Moreover, it penalizes overperformance in addition to underperformance.

Markowitz recognized those issues and suggested that they can be fixed by the use of

mean-semideviation [31]. While such an adjustment seemed reasonable for the mean-

variance model, the more general question of what functions constitute suitable risk

measures was still left unanswered. The problem was addressed by Artzner, Delbaen,

Eber and Heath [3] who used an axiomatic approach to introduce the concept of co-

herent risk measures. They employed the term coherent to denote risk functions which

satisfy several properties that are desirable for practical optimization. The theory of

coherent risk measures has been an active area of study for over a decade and has

established itself as and an alternative to expected utility models of risk averse pref-

erences in stochastic optimization. The field was developed in numerous publications

(see, e.g., [17, 20, 50] and the references therein). The subadditivity and positive ho-

mogeniety of coherent risk measures imply their convexity. Thus, using convex duality

theory we can represent any coherent risk measure as the maximum of expected values,

where the probability measure is chosen from a convex and closed set of probability
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distributions. In addition, Kusuoka [28] showed that any coherent and law-invariant

(depending only on the underlying distribution) risk measure can also be represented

using a collection of integrals of Average Value at Risk measures. More specifically,

his result implies that any coherent law-invariant risk measure can be expressed as the

maximum expected value of Average Value at Risk functions at random level where the

maximization is over a family of probability distributions on (0, 1] for the different levels

of risk. Complementing Kusuoka’s work, Shapiro [51] demonstrated that such repre-

sentations are unique in the case of comonotonic risk mesures. However, for general

law invariant coherent risk measures uniqueness of the set of probability distributions

is not guaranteed.

In addition to single-stage models, risk-aversion can also be considered in the case

of multistage optimization problems. In the last decade, optimization models involving

dynamic measures of risk, which allow for risk-averse evaluation of streams of future

costs or rewards have gained popularity among researchers (see, e.g., [4, 10, 29, 37, 42,

49]). The application of dynamic risk measures in stochastic optimization models leads

to a new class of problems, which are significantly more complex than their risk-neutral

counterparts (see [50, 49, 1]). One reason is that multistage risk-averse optimization

problems are more difficult to solve. More importantly, they are also more difficult to

analyze because of the evolution of risk over different time periods. Still, it turns out

that a certain class of dynamic risk measures, known as time-consistent risk measures

[42, 11, 16, 53, 48, 21] remedy both of those challenges. If the risk measures are

time-consistent, specialized decomposition methods can be developed, to facilitate the

solution of the resulting optimization problems (see [32, 13]). In the case of time-

inconsistent risk measures, no such methods exist so far. However, in general it is much

easier to specify time-inconsistent risk measures. Our aim is to explore the possibility

of constructing time-consistent approximations of time-inconsistent risk measures and

using them in optimization problems.

The relations of risk measures and compositions of conditional risk measures (which

are time-consistent by construction) has been considered in several recent works. Pichler

and Pflug [39] use the dual representation of Average Value at Risk to show that for a
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given random cost, one can constuct extended conditional risk functionals which allow

for a temporal decomposition that preserves the initial risk preference accross time

periods. Their analysis is focused on spectral risk measures, which were introduced by

Artzner, et.al. in [4] and defined as a convex combination of Average Value at Risk

at different levels. Thus using the Kusuoka representation theorem, Pichler and Pflug

conclude that if we consider a given random variable as our random cost, then any

coherent risk measure can be represented as a composition of extended conditional risk

functionals without losing information or preferences.

Xin and Shapiro [54] consider upper bounds on compositions of Average Value at

Risk measures and comonotonic measures by single measures of the same form. Their

numerical results indicate that the quality of the approximations strongly depends on

the covariance of the random costs in different time periods.

In the paper [25] Iancu, Petrik and Subramanian study the problem of upper and

lower approximations of a time-inconsistent measure by a multiple of given time-

consistent measure. They show that computing the optimal scaling factors for both

upper and lower bounds is generally NP-hard even for law-invariant measures. When

the measures are given by (compositions of) Average Value at Risk, an anlytical form

of the tightest possible time-consistent upper bounds is specified. Even though the best

time-consistent lower bounds are more difficult to compute, they provide closer approx-

imations to a given time-inconsistent risk measure than the tightest time-consistent

upper bounds.

Roorda and Schumacher discuss different definitions of time consistency in [44] and

explore the relations between them. They extend a result of Artzner [5] and show that

conditional Average Value at Risk does not satisfy even the weak notion of conditional

consistency.

Despite its wide use in practice, in general the Value at Risk function is not a

coherent risk measure. The issue has been studied extensively by Acerbi and Tasche

[2], Delbaen [15], and Yamai and Yoshiba [55]. Additionally, Cheridito and Stadje [12]

show that VaR is not time-consistent either. They propose two alternatives: a time-

consistent composition of VaR functionals, and a composition of AVaR measures which
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is both time-consistent and coherent.

The class of coherent risk measures can be extended to the class of convex risk

measures that are not necessarily positively homogeneous. In that case a dual rep-

resentation is still possible as has been shown by Föllmer and Schied [18] as well as

Frittelli and Rosazza Gianin [22]. Ben-Tal and Teboulle [7, 8] employ utility functions

to develop the concept of optimized certainty equivalent and show that it can be used

to generate convex risk measures. Under their approach, a convex risk measure can be

obtained by choosing a particular utility function, e.g., the Average Value at Risk can

be derived using a piecewise linear function. One instance of convex measures that are

not coherent is the class of entropic risk measures which have been studied by Föllmer

and Schied [19, 17], Penner [35], and Rudloff, Sass and Wunderlich [45]. Detelefsen and

Scandolo [16] consider the duality structure of convex risk functions for the construction

of dynamic time-consistent risk measures and illustrate their approach for the class of

entropic measures.

Our approach is different from all of the above. Given a coherent measure of risk

for the total cost of a multistage optimization problem, we develop a time-consistent

decomposition method. If the original measure is time-consistent, the method finds

the optimal solution of the problem. If the risk measure is not time-consistent, the

method will find a time-consistent upper bound on the optimal value of the problem.

The decomposition method can be formulated and implemented in two versions: a non-

parametric version, when the analytical form of the approximation is not specified, and a

parametric form, which seeks the best approximation among a fixed family of measures.

We also propose two algorithms for computing universal time-consistent upper bounds,

when the analytical forms of the original measure and its approximations are specified.

1.1.1 Outline of the Dissertation

In the remaining sections of this chapter we introduce coherent risk measures and

use an example to demonstrate the phenomenon of time inconsistency. In Sections

2.1 and 2.2 we quickly review basic concepts associated with risk-averse multistage

optimization. Sections 2.3 and 2.4 present the main theoretical foundations of the
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decomposition methods. In Section 2.5 we describe a new nested decomposition method

for optimizing polyhedral time-consistent models, which extends to the multistage case

the method of [32]. Section 3.2 describes a time-consistent decomposition method,

which can be applied to both consistent and inconsistent problems. In Section 3.3 we

derive its properties in the time-inconsistent case, and in Section 3.4 we describe its

parametric version. In Chapter 4 we present two algorithms for calculating universal

time-consistent upper bounds, that is, upper bounds which are valid for all values of

the decision vector. Finally, in Chapter 5 we present a numerical illustration of the

operation of the methods.

1.2 Coherent Risk Measures

Consider a probability space (Ω,F , P ) consisting of a sigma algebra F induced on the

sample set Ω and a probability measure P defined on F . We consider the space of

random outcomes Z = Lp(Ω,F , P ), where p ∈ [1,∞). Every element Z ∈ Z is a

random variable with a bounded p-th moment under the probability measure P . One

can think of risk as the present value of a unknown (random) cost which would be

observed in the future. Formally, we define a risk measure to be a function ρ : Z → R.

Additionally, coherent risk measures which were originally introduced by Artzner, et

al. [3] are risk measures satisfying the following four axioms:

(A1) Subadditivity : ρ (Z + V ) ≤ ρ(Z) + ρ(V ), for all Z, V ∈ Z.

(A2) Monotonicity : If Z, V ∈ Z and Z ≤ V , then ρ(Z) ≤ ρ(V );

(A3) Translation Equivariance: If Z ∈ Z and a ∈ R, then

ρ(a+ Z) = a+ ρ(Z).

(A4) Positive Homogeneity : If γ ≥ 0 and Z ∈ Z, then ρ(γZ) = γρ(Z).

We can interpret the risk as a “fair present value”, or a deterministic equivalent amount

of cash that we would be willing to pay to avoid incurring a random cost in the future.

From this point of view the above axioms have straighforward interpretations. The
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subadditivity axiom has the well-known interpretation that “a merger does not create

extra risk” [3]. The monotonicity property implies that investments which would incur

a greater cost in every possible future scenario, must result in a greater risk in the

present. Axiom (A3) implies that if a certain cost needs to be taken into account under

all possible scenarios, then we can consider it as a constant and separate it from the

random component. Then the risk of the overall position is simply the sum of the

constant cost and the risk associated with the remaining (stochastic) amount. Finally,

the positive homogeneity property implies that the amount that we are willing to pay to

avoid the random cost should be independent of the currency (or scale) that we use to

measure risk. For example, if we scale up one hundred times the risk of an investment

measured in dollars, then the result should be the same as the risk of the investment

measured in cents.

The subadditivity and positive homogeneity properties imply that coherent risk

measures are convex functions. To emphasize this fact, reserchers often use the following

convexity axiom (A1’) in the place of the subadditivity condition (A1). The axioms

(A1’), (A2)-(A4) present an alternative definition that is equivalent to the original one

given by Artzner, et al..

(A1’) Convexity : ρ (αZ + (1− α)V ) ≤ αρ(Z) + (1− α)ρ(V ), for all Z, V ∈ Z and all

α ∈ [0, 1];

Example 1. Consider the mean–upper semideviation function ρ(Z) defined as follows:

ρ(Z) = E[Z] + κE
[(
Z −E[Z]

)
+

]
, κ ∈ [0, 1] (1.1)

We can verify that all axioms (A1)-(A4) hold for ρ(Z). For details, please see Ruszczyński

and Shapiro [49, Example 6.1], [50, Example 4.2], and Ogryczak and Ruszczyński

[33, 34].

Example 2. The Value at Risk at level α ∈ (0, 1) is given by

VaRα(Z) = F−1
Z (1− α).

where F is the cumulative distribution function of the random variable Z. Despite its

popularity in practical applications, the Value at Risk is not a coherent risk measure
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since it does not satisfy the subadditivity axiom. Pflug [38] pointed out that in the case of

comonotone random variables, the Value at Risk is additive. Furthermore, Danielsson,

et al. [14] and Ibragimov [26] show that Value at Risk would be subadditive for random

variables that do not involve heavy tails. More specifically, subadditivity would hold if the

underliying distributions were log-concave, such as the uniform, normal and exponential

distributions [26].

Another popular risk measure is the Average Value at Risk.

Example 3. The Average Value at Risk at level α ∈ (0, 1) is defined as

AV aRα(Z) =
1

α

∫ α

0
V aRβ(Z)dβ (1.2)

Furthermore, it can be computed using the following linear programming formulation:

AV aRα(Z) = min
ξ

{
ξ +

1

α
E

[(
Z − ξ

)
+

]
]}

(1.3)

We can verify that AV aRα(Z) satisfies axioms (A1)-(A4) and is therefore a coherent

risk measure. For details, the reader is refered to Ruszczyński and Shapiro [49, Example

6.2], [50, Example 4.3], Ogryczak and Ruszczyński [33, 34], Rockafellar and Uryasev

[43], and Pflug [38, 40].

Finally, we also mention that every coherent measure of risk ρ(Z) has the following

dual representation:

ρ(Z) = max
µ∈A

Eµ[Z] (1.4)

where A is a closed and convex set of probability distributions [50, Theorem 2.2].

Furthermore, one can show that A = ∂ρ(0).

In some cases analytical descriptions of the sets A can be derived. For example,

suppose there are n possible scenarios that we would like to consider for single stage

risk-averse optimization. Then for a fixed allocation, our loss would be a discrete

random variable Z which takes a value of zi under the i−th scenario, which can occur

with probability pi, for i ∈ {1, .., n}. This setup is depicted in Figure 1.1. In this case

we can arrive at the following results:
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Figure 1.1: One-stage scenario tree.

Example 4. The dual set of probability measures corresponding to the mean–upper

semideviation function with a risk coefficient γ ∈ (0, 1) is given by:

A = {µ :
µi
pi

= 1 + hi −
n∑
k=1

hkpk, 0 ≤ hi ≤ κ} (1.5)

The result follows from [50, Example 4.2], and we also present a derivation based on

linear programming in Section 1.2.1.

Example 5. For the Average Value at Risk at level α ∈ (0, 1) the dual set of probability

measures is given by:

A = {µ :
µi
pi
≤ 1

α
,

n∑
i=1

µi = 1, µ ≥ 0} (1.6)

Please see [50, Example 4.3] for more details.

1.2.1 Dual Representation of Mean-Upper Semideviation

For the setup of Figure 1.1 the mean–upper semideviation function has the form

ρ(Z) =
n∑
i=1

pizi + κ
n∑
i=1

pi

(
zi −

n∑
k=1

pkzk

)
+

(1.7)
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However, we can also compute ρ(Z) using the following linear programming formu-

lation:

min
s

n∑
i=1

pizi + κ
n∑
i=1

pisi

s.t.

n∑
k=1

pkzk + si ≥ zi, ∀i ∈ {1, . . . , n}

si ≥ 0, ∀i ∈ {1, ..., n}

(1.8)

Clearly, the optimal objective value is the value of the linear mean-semideviation, and

the corresponding dual problem is given by:

max
λ

n∑
i=1

λi(zi −
n∑
k=1

pkzk) +
n∑
i=1

pizi

s.t.

λi ≤ κpi, ∀i ∈ {1, ..., n}

λi ≥ 0, ∀i ∈ {1, ..., n}

(1.9)

Now, we explore the primal-dual relationship a bit further. Assuming that we only

consider scenarios with probabilities of occurence pi > 0, we denote

hi =
λi
pi

(1.10)

Then, we can rewrite the dual objective function as

n∑
i=1

hipi(zi −
n∑
k=1

pkzk) +

n∑
i=1

pizi =

n∑
i=1

zi(hipi + pi −
n∑
k=1

pihkpk)

=

n∑
i=1

zipi(1 + hi −
n∑
k=1

pkhk)

(1.11)

Hence we know,

ρ(Z) = max
µ∈Aκ

Eµ[Z] (1.12)

where

Aκ = ∂ρ(0)

= {µ :
µi
pi

= 1 + hi −
n∑
k=1

hkpk, 0 ≤ hi ≤ κ}
(1.13)
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Before we proceed, we show that Aκ is a family of probability measures.

Denoting h̄ =

n∑
i=1

hipi,

n∑
i=1

µi =
n∑
i=1

pi + pihi − pi
n∑
k=1

pkhk

= 1 +
n∑
i=1

pi

(
hi −

n∑
k=1

pkhk

)

= 1 + h̄−
n∑
i=1

pih̄

= 1

(1.14)

Moreover, if κ ≤ 1, then 0 ≤ hi ≤ κ ≤ 1, and

n∑
k=1

pkhk ≤ 1. Therefore,

µi = pi(1 + hi −
n∑
k=1

pkhk)

≥ 0

(1.15)

Thus we verify that Aκ is a family of probability measures and ρ(Z) can be computed

by finding µ∗ ∈ Aκ such that

Eµ∗ [Z] = max
µ∈Aκ

Eµ[Z]

What is more, we can find a closed form expression for µ∗. Notice that the optimal

solution of problem (1.8) has corresponding dual multipliers λ∗i that are given by:

λ∗i =


κpi if zi ≥

∑n
k=1 pkzk

0 otherwise

(1.16)

Thus, using equations (1.10) and (1.13), we know

µ∗i = pi(1 + h∗i −
n∑
k=1

h∗kpk)

= pi

(
1 +

λ∗i
pi
−

n∑
k=1

λ∗k
pk
pk

)

= pi + λ∗i − pi
n∑
k=1

λ∗k

(1.17)
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1.3 The Paradox of Time Inconsistency

Time inconsistency is a remarkable phenomenon that is rather non-intuitive. In order

to illustrate it, we consider a two stage decision tree with only two possible scenarios

at each stage. We can either move left with probability of 0.3 or move right with

probability of 0.7. At the end of the second stage, at time t = 3, we observe the

realization of a random variable Z which reprsents costs or losses, so smaller values of

Z are better for us. The described setup is presented in Figure 1.2.

HH
HH

H
HH

H
HH

��
��

�
��

�
��

vvvv
vv

v

@
@

@
@
@

�
�
�
�
�

@
@

@
@
@

�
�
�
�
�

t = 1

t = 2

t = 3

ρ1(Z) = 99.971 < 100

ρ1(W ) = 100

ρ22(Z) = 100.025ρ12(Z) = 100.125

ρ22(W ) = 100ρ12(W ) = 100

0.3 0.7

0.3 0.7 0.3 0.7

W 4 = 100W 3 = 100W 2 = 100W 1 = 100

Z4 = 98Z3 = 103Z2 = 105Z1 = 80

Figure 1.2: Time inconsistency when risk is measured by the mean–upper semideviation
function with κ = 0.5

Now, suppose that we would like to make a decision which would involve the random

cost Z. Then we would need a certain function to examine the possible realizations of

Z and tell us just how good or how bad Z actually is. One possible such function is

the expected value, and in this case E[Z] would represent our expected cost. However,

in practical applications it is often the case that cost over-runs are especially painful

and undesirable. Still, the expected value function does not accurately represent such

preferences. One possible approach to address this issue would be to consider the

mean–upper semideviation function of Example 1.1.

Upon inspection, we can see that ρ(Z) takes into account the expected cost, and

in addition, it also introduces a penalty of κ for realizations of Z which are above the
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mean. Further, by adjusting the value of κ we can control our risk preference, with

larger values of κ implying greater risk-aversion. Now, suppose that we choose our risk

aversion coefficient to be κ = 0.5, and we evaluate the risk of the random cost Z at

time t = 1 using the realizations shown in Figure 1.2. Then,

E1[Z] = 0.3 · 0.3 · 80 + 0.3 · 0.7 · 105 + 0.7 · 0.3 · 103 + 0.7 · 0.7 · 98

= 98.9

(1.18)

and

ρ1(Z) = E1[Z] + κE
[(
Z −E1[Z]

)
+

]
= 98.9 + 0.5 ·

(
0.3 · 0.7 · (105− 98.9) + 0.7 · 0.3 · (103− 98.9)

)
= 99.971

< 100

= ρ1(W )

(1.19)

Thus we know that at time t = 1, we would prefer the random cost Z rather than a

fixed cost W which takes a value of 100 at time t = 3 under every possible scenario.

However, as we move to a node at time period t = 2, parts of the scenario tree would

become irrelevant and our risk evaluation would only depend on a smaller set of possible

scenarios. Thus, if we consider the left node at time t = 2, we see that

E1
2 [Z] = 0.3 · 80 + 0.7 · 105

= 97.5

(1.20)

and

ρ1
2(Z) = E1

2[Z] + κE
[(
Z −E1

2[Z]
)

+

]
= 97.5 + 0.5 ·

(
0.7 · (105− 97.5)

)
= 100.125

> 100

= ρ1
2(W )

(1.21)
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Similarly, at the right node at time t = 2 we observe

E2
2 [Z] = 0.3 · 103 + 0.7 · 98

= 99.5

(1.22)

and

ρ2
2(Z) = E2

2[Z] + κE
[(
Z −E2

2[Z]
)

+

]
= 99.5 + 0.5 ·

(
0.3 · (103− 99.5)

)
= 100.025

> 100

= ρ2
2(W )

(1.23)

Hence we know that under all possible scenarios, at time t = 2 we would prefer W

over Z. But if that is the case, how could we make a decision? If we make the optimal

decision at time t = 1 and choose Z over W , then at the next step our choice would

certainly appear suboptimal. However, if at time t = 1 we take into account our future

preferences and choose W over Z, then we would be making a suboptimal decision

from the point of view of the root node. Hence, any decision that we make would

involve a contradiction. This paradox is known as time inconsistency and it is an issue

of paramount importance in practical multistage risk-averse optimization. In order to

avoid it, we need to use specially constructed risk functions known as time-consistent

risk measures.
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Chapter 2

Multistage Risk-Averse Optimization

2.1 Introduction to Multistage Risk-Averse Optimization

In a multistage risk-averse stochastic linear programming problem, on a probability

space (Ω,F , P ), with a sigma algebra F and probability measure P , we consider a

filtration {∅, Ω} = F1 ⊂ F2 ⊂ · · · ⊂ FT = F . A policy is a random vector x =

(x1, . . . , xT ), where each xt has values in Rnt , t = 1, . . . , T . If each xt is Ft-measurable,

t = 1, . . . , T , a policy x is called implementable. The set of all implementable policies

is denoted by I.

A policy x is feasible, if it satisfies the following system of linear equations and

inclusions:

A1x1 = b1,

B2x1 + A2x2 = b2,

B3x2 + A3x3 = b3,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BTxT−1 + ATxT = bT ,

x1 ∈ X1, x2 ∈ X2, x3 ∈ X3, . . . xT ∈ XT .

(2.1)

The matrices At of dimensions mt × nt, the matrices Bt of dimensions mt × nt−1, and

the vectors bt of dimensions mt are Ft-measurable data, for t = 1, . . . , T . Each set Xt

is an Ft-measurable convex and closed polyhedron (for measurability of multifunctions,

see [6]). The set of all feasible policies is denoted by F .

In the example in Section 1.3 we only considered final stage costs. However, in

general we can consider costs at every stage. Suppose ct, t = 1, . . . , T , is a sequence

of random cost vectors such that each ct is Ft-measurable. An implementable policy
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Figure 2.1: Dynamic measure of risk for a multistage scenario tree.

x ∈ I results in a random cost sequence:

Zt = 〈ct, xt〉, t = 1, . . . , T, (2.2)

with each zt ∈ Zt, where Zt is the space of Ft-measurable random variables. Our

intention is to formulate and analyze a risk-averse multistage stochastic optimization

problem:

min
x∈I∩F

%(Z1, Z2, . . . , ZT ), (2.3)

where % : Z1 ×Z2 × · · · × ZT → R is a dynamic measure of risk.

2.2 Time Consistency

As time goes on, we have to consider tail subsequences Zt, . . . , ZT of the sequence of

future costs, where 1 ≤ t ≤ T . They are elements of the spaces Zt,T = Zt × · · · ×

ZT . It is, therefore, necessary to consider the corresponding conditional risk measures

%t,T : Zt,T → Zt, where t = 1, . . . , T . The value of the conditional risk measure

ρt,T (Zt, . . . , ZT ) can be interpreted as a fair one-time Ft-measurable charge we would

be willing to incur at time t, instead of the sequence of random future costs Zt, . . . , ZT .

As smaller realizations of outcomes Z1, . . . , ZT are preferred (they are “costs” or

“losses”), it is natural to assume the following monotonicity condition: for every t =
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1, . . . , T

%t,T (Z) ≤ %t,T (W ) for all Z,W ∈ Zt,T such that Z ≤W. (2.4)

Here and elsewhere in the paper, inequalities between random vectors are understood

component-wise and in the almost sure sense. A collection of conditional measures of

risk,
{
%t,T

}T
t=1

, is a dynamic measure of risk.

The key issue associated with dynamic preferences is the question of their consis-

tency over time. It has been studied in various contexts in the past (see, e.g., [4, 10]);

here, we adapt the perspective of [48].

Definition 6. A dynamic risk measure
{
%t,T

}T
t=1

is called time-consistent if for all

1 ≤ τ < θ ≤ T and all sequences Z,W ∈ Zτ,T the conditions

Zk = Wk, k = τ, . . . , θ − 1 and %θ,T (Zθ, . . . , ZT ) ≤ %θ,T (Wθ, . . . ,WT ) (2.5)

imply that

%τ,T (Zτ , . . . , ZT ) ≤ %τ,T (Wτ , . . . ,WT ). (2.6)

For a dynamic risk measure
{
ρt,T

}T
t=1

we can define one-step conditional risk mea-

sures ρt : Zt+1 → Zt, t = 1, . . . , T − 1 as follows:

ρt(Zt+1) = %t,T (0, Zt+1, 0, . . . , 0).

We can derive the following structure of a time-consistent dynamic risk measure.

Theorem 7 (Ruszczyński [48]). Suppose a dynamic risk measure
{
%t,T

}T
t=1

satisfies

for all Z ∈ Z and all t = 1, . . . , T the conditions:

%t,T (Zt, Zt+1, . . . , ZT ) = Zt + %t,T (0, Zt+1, . . . , ZT ), (2.7)

%t,T (0, . . . , 0) = 0. (2.8)

Then it is time-consistent if and only if for all 1 ≤ t ≤ T and all Z ∈ Z1,T the following

identity is true:

%t,T (Zt, . . . , ZT )

= Zt + ρt

(
Zt+1 + ρt+1

(
Zt+2 + · · ·+ ρT−2

(
ZT−1 + ρT−1(ZT )

)
· · ·
))

.
(2.9)
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Condition (2.7) is a form of the translation property, discussed in various settings

in [4, 29, 37]. Our version is weaker, because Zt is Ft-measurable.

It follows that a time-consistent dynamic risk measure is completely defined by one-

step conditional risk measures ρt, t = 1, . . . , T − 1. For t = 1 formula (2.9) defines a

risk measure of the entire sequence Z ∈ Z1,T (with a deterministic Z1).

We shall assume the property of coherency of conditional risk measures. Let 1 ≤

t ≤ T − 1. A coherent conditional risk measure is a function %t,T : Zt,T → Zt satisfying

the following axioms:

(B1) Convexity : %t,T (αZ + (1− α)V ) ≤ α%t,T (Z)+(1−α)%t,T (V ), for all Z, V ∈ Zt,T

and all α ∈ [0, 1];

(B2) Monotonicity : If Z, V ∈ Zt,T and Z ≤ V , then %t,T (Z) ≤ %t,T (V );

(B3) Predictable Translation Equivariance: If Z ∈ Zt,T , then

%t,T (Zt, Zt+1, . . . , ZT ) = %t,T (0, Zt + Zt+1, . . . , ZT );

(B4) Positive Homogeneity : If γ ≥ 0 and Z ∈ Zt,T , then ρt,T (γZ) = γρt,T (Z).

Condition (B3) can be interpreted as follows. At time t, we know the value of the

Ft-measurable cost Zt, and therefore we can take it into account when evaluating the

risk function %t,T (Zt, Zt+1, . . . , ZT ). Another way to obtain the same risk value would

be to consider the cost at time t to be 0, while adding Zt to the random cost of one

of the future time periods. In the case of one-step conditional risk measures, we define

coherence by conditions (B1), (B2), (B4), and the following condition

(B3’) Predictable Translation Equivariance: If Zt+1 ∈ Zt+1 and Vt ∈ Zt, then

ρt(Vt + Zt+1) = Vt + ρt(Zt+1).

It combines (B3) with condition (2.7).

If the assumptions of Theorem 7 are satisfied, then all conditional risk measures are

coherent if and only if all one-step conditional risk measures are coherent.
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Example 8. For example, the conditional mean–upper semideviation model defined by

ρt(Z) = E[Z|Ft] + κtE
[(
Z −E[Z|Ft]

)
+

∣∣Ft] , (2.10)

with an Ft-measurable κt ∈ [0, 1], is a coherent one-step conditional risk measure [1,

page 277].

Example 9. Furthermore, the conditional Average Value at Risk given by

AV aRαt(Z) = min
ξ

{
ξ +

1

αt
E

[(
Z − ξ

)
+

∣∣Ft]]} (2.11)

with an Ft-measurable αt ∈ (0, 1) is also a coherent one-step conditional risk measure

[1, page 272].

Therefore, compositions of conditional mean–upper semideviation and conditional

Average Value at Risk measures are coherent.

2.2.1 Solution to The Paradox of Time Inconsistency

In this section we revisit the example of Section 1.3.

Suppose that we still use the same value of κ = 0.5 at all nodes, i.e. κ1 = κ1
2 =

κ2
2 = κ = 0.5. Then, we would still have ρ1

2(Z) = 100.125 and ρ2
2(Z) = 100.025, while

ρ1
2(W ) = ρ2

2(W ) = 100. Thus, at time t = 2, we would still prefer the fixed cost W over

Z, since W carries less risk than Z. However, rather than evaluating the risk of the

entire tree using the function ρ1(Z), now we follow the insight of Theorem 7 and use

the nested composition of risk measures ρ1(ρ2(Z)) instead. This approach is illustrated

in Figure 2.2.

Thus we have,

E1[ρ2(Z)] = 0.3 · 100.125 + 0.7 · 100.025

= 100.055

(2.12)
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Figure 2.2: Time consistency when risk is measured by aggregated one-step conditional
mean–upper semideviation measures with κ1 = κ1

2 = κ2
2 = κ = 0.5. We can see that W

is preferable to Z at both t1 and t2.

and

ρ1(ρ2(Z)) = E1[ρ2(Z)] + κ1E1

[(
ρ2(Z)−E1[ρ2(Z)]

)
+

]
= 100.055 + 0.5 ·

(
0.3 · (100.125− 100.055)

)
= 100.0655

> 100

= ρ1(ρ2(W ))

(2.13)

Now, we can see that from the point of view of the root node at time t = 1, we

would also prefer W over Z. Therefore, our decisions are consistent accross different

time periods. Furthermore, as long as we use the nested composition of Theorem 7, our

decisions would be guaranteed to be time-consistent, regardless of what the decisions

actually are! This is nice but there is a caveat. The decisions depend on the risk

measures that we use in the nested composition, which in this case are determined by

the values of the risk aversion coefficients κ. For example, if we adjust our preferences
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and choose κ1 = 0.6, κ1
2 = 0.2, and κ2

2 = 0, then we would have

ρ1
2(Z) = E1

2 [Z] + κ1
2 ·E1

2

[(
Z −E1[Z]

)
+

]
= 97.5 + 0.2 ·

(
0.7 · (105− 97.5)

)
= 98.55

< ρ1
2(W )

(2.14)

and

ρ2
2(Z) = E2

2 [Z]

= 99.5

< ρ2
2(W )

(2.15)

Further,

E1[ρ2(Z)] = 0.3 · 98.55 + 0.7 · 99.5

= 99.215

(2.16)

and

ρ1(ρ2(Z)) = E1[ρ2(Z)] + κ1E1

[(
ρ2(Z)−E1[ρ2(Z)]

)
+

]
= 99.215 + 0.6 ·

(
0.7 · (99.5− 99.215)

)
= 99.3347

< ρ1(ρ2(W ))

(2.17)

This example is illustrated in Figure 2.3. We can see that our preferences are again

time-consistent but now we make the opposite choice as we favor Z over W . Thus,

before we can use time-consistent compositions to make decisions, it is imperative that

we choose the “best” risk measure for every node in the tree. We address this question

in Chapter 3 after introducing the essential notation and terminology in the remainder

of the current chapter.

2.3 Scenario Trees and Recursive Risk Evaluation for Time-Consistent

Models

Throughout this dissertation we assume that all sigma-algebras are finite and thus

all vector spaces Zt are finite-dimensional. In this setting, the realizations of data
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Figure 2.3: Time consistency when risk is measured by aggregated one-step conditional
mean–upper semideviation measures with κ1 = 0.6, κ1

2 = 0.2, κ2
2 = 0. We can see that

Z is superior to W at both t1 and t2.

form a scenario tree. Our notation is consistent with the paper of Collado, Papp

and Ruszczynski [13]. The nodes of the tree are organized in levels associated with

stages 1, . . . , T ; they correspond to the nested partitions of Ω given by the filtration

F1 ⊂ F2 ⊂ · · · ⊂ FT .

Level t = 1 consists of only one node, called the root node. We index the nodes

by the symbol ν and assign ν = 1 to the root node. The nodes located at further

levels t = 2, . . . , T correspond to elementary events in Ft. Every node ν at level

t = 2, . . . , T is connected to its unique ancestor node a(ν) at level t− 1. The ancestor

node corresponds to the elementary event in Ft−1 containing the event associated with

ν. Every node ν at levels t = 1, . . . , T − 1 is connected to a collection C(ν) of children

nodes at level t + 1. The children nodes correspond to the elementary events in Ft+1

included in the event associated with ν. The set of all nodes at stage t is denoted by

Ωt, t = 1, . . . , T . A scenario is a path s from the root to a node at the last stage T .

We use the symbol S(ν) to denote the set of scenarios passing through node ν. In this

setting, the measure P can be specified by conditional probabilities pνη = P [η|ν], where

ν ∈ Ωt, η ∈ C(ν), and t = 1, . . . , T − 1. Every node ν at level t has a history : the

path (ν1, . . . , νt−1, ν) from the root to ν. The probability of ν is the product of the

corresponding conditional probabilities in its history: pν = pν1ν2pν2ν3 · · · pνt−1ν . When
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t = T , this formula describes the probability of a scenario s ∈ ΩT .

For every node ν ∈ Ωt, an Ft-measurable random variable Z has identical values on

all scenarios s ∈ S(ν). It can, therefore, be equivalently represented as a function of a

node in Ωt; we write this function as ZΩt .

The value of a coherent one-step conditional measure of risk ρt(·) is Ft-measurable,

and is also a function of a node ν at level t. It follows from [49, Thm. 3.2] that the value

of ρt(Zt+1) at node ν depends only on the values of Z
Ωt+1

t+1 at nodes η ∈ C(ν), which is

a feature known as the local property. We denote the vector of these values by ZC(ν),

and we write the conditional risk measure equivalently as ρν
(
Z
C(ν)
t+1

)
. We would like

to emphasize that time consistency only implies the telescoping property (2.9), while

the local property follows from positive homogeneity. If our risk measures were not

positively homogeneous, then we would need to additionally assume the local property.

It follows from the above discussion that the random variables

Vt = ρt

(
Zt+1 + ρt+1

(
Zt+2 + · · ·+ ρT−1(ZT ) . . .

))
, (2.18)

are Ft-measurable, and thus we only need to consider their values V ν
t at nodes ν ∈ Ωt,

t = 1, . . . , T .

Consequently, the value of a time-consistent measure of risk (2.9) can be written

recursively as follows:

V ν = Zν , ν ∈ ΩT ,

V ν = Zν + ρν
(
V C(ν)

)
, ν ∈ Ωt, t = T − 1, . . . , 1.

(2.19)

The recursive character of time-consistent measures of risk can be also used to derive

optimality conditions in the form of dynamic programming equations. Let us consider a

node ν ∈ Ωt and assume that the value of xa(ν) is fixed. Owing to the local property, we

can consider the subproblem of minimizing V ν with respect to xν , xC(ν), . . . , xC
T−t(ν),

subject to the corresponding subset of conditions (2.1) involving these variables. We call

the optimal value of this subproblem the value function, and denote it by the symbol

Qν
(
xa(ν)

)
. Except for the case of t = 1, it is a function of xa(ν). Similarly to (2.19), we
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use the symbol QC(ν)
(
xν
)

to represent a random variable with values Qη
(
xν
)
, η ∈ C(ν),

attained with probabilities pνη.

Proceeding exactly as in [1, sec. 6.7.3], we obtain the following result.

Theorem 10. The value functions Qνt
(
·
)

satisfy the following equations:

Qν
(
xa(ν)

)
= min

xν

{
〈cν , xν〉 : Bνxa(ν) +Aνxν = bν , xν ∈ Xν

}
, ν ∈ ΩT ,

Qν
(
xa(ν)

)
= min

xν

{
〈cν , xν〉+ ρν

(
QC(ν)

(
xν
))

:

Bνxa(ν) +Aνxν = bν , xν ∈ Xν
}
, ν ∈ Ωt, t = T − 1, . . . , 1,

(2.20)

with the convention that Q1 has no arguments. The value of Q1 is the optimal value of

the problem, and the optimal decisions in problems (2.20) constitute the optimal policy.

The optimal value functions Qν(·) are convex, because their arguments appear as

parameters in the constraints of convex optimization problems.

Theorem 10 is the theoretical foundation of an efficient computational method for

solving two-stage time-consistent risk-averse problems, proposed in [32].

2.4 Transition Multikernels and Their Composition

We denote by P(C) the set of probability distributions on a collection of nodes C ⊂ Ω.

By [49, Remark 4.3], for every t = 1, . . . , T − 1 and every node ν ∈ Ωt a convex closed

set At(ν) ⊂ P(C(ν)) exists such that

ρν
(
ZC(ν)

)
= max

µ∈At(ν)

〈
µ,ZC(ν)

〉
. (2.21)

Moreover, At(ν) = ∂ρν
(
0
)
.

We call the mappings At : Ωt ⇒ P(Ωt+1) multikernels. Their values are convex and

closed (as subdifferentials). They also satisfy the local property :

At(ν) ⊂ P(C(ν)), ∀ ν ∈ Ωt. (2.22)

If a kernel µt satisfies the relation µt(ν) ∈ At(ν) for all ν ∈ Ωt, we call it a selector of

At and write µt lAt. The value of µ(ν) at a node η ∈ C(ν) is written as µ(ν, η).
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Much of our analysis uses compositions of multikernels. For a probability measure

qt ∈ P(Ωt) and a kernel µt l At, their composition is a probability measure on Ωt+1

satisfying the following equations:

(qt ◦ µt)(η) = qt(a(η))µt(a(η), η), η ∈ Ωt+1.

The composition of a set of probability distributions Qt ⊂ P(Ωt) with a multikernel

At : Ωt ⇒ P(Ωt+1) satisfying (2.22), is the following set of probability measures on

Ωt+1:

Qt ◦ At =
{
qt ◦ µt : qt ∈ Qt, µt lAt

}
.

If Qt and At are convex and compact, then their composition Qt ◦ At is convex and

compact as well.

We can now recall a useful dual representation of a dynamic measure of risk [13].

Theorem 11 (Collado, Papp and Ruszczynski [13]). Suppose a dynamic risk measure

%(·) is given by (2.9) with conditional risk measures ρt(·) satisfying conditions (B1),

(B2), (B3’), and (B4). Then for every adapted sequence Z1, . . . , ZT we have the relation

%(Z1, . . . , ZT ) = max
q∈A1,T

〈
q, Z1 + Z2 + · · ·+ ZT

〉
, (2.23)

where

A1,T = A1 ◦ A2 · · · ◦ AT−1 (2.24)

is a convex and closed set of probability measures on Ω.

Owing to this representation, we can rewrite the problem (2.3) as follows:

min
x∈I∩F

max
q∈A1,T

〈
q, 〈c1, x1〉+ 〈c2, x2〉+ · · ·+ 〈cT , xT 〉

〉
. (2.25)

This result is the theoretical foundation of a scenario decomposition method for solving

time-consistent risk-averse optimization problems, proposed in [13].

2.4.1 Illustrative Example

Let us consider again the second example of Section 2.2.1 and adopt the notation of

Section 2.4. We label the nodes as shown in Figure 2.4.
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t = 1

t = 2

t = 3

ρ1(ρ2(Z)) = 0.174 · ρν1
(
ZC(ν1)

)
+ 0.826 · ρν2

(
ZC(ν2)

)
= 99.3347

ν0

ρν2
(
ZC(ν2)

)
= 0.3 · Zη3 + 0.7 · Zη4
= 99.5

ρν1
(
ZC(ν1)

)
= 0.258 · Zη1 + 0.742 · Zη2
= 98.55

ν2ν1

0.3 0.7

0.3 0.7 0.3 0.7

Zη4 = 98Zη3 = 103Zη2 = 105Zη1 = 80

η4η3η2η1

Figure 2.4: Dual representation of risk measures for κν0 = 0.6, κν
1

= 0.2, κν
2

= 0.

Hence, κν0 = 0.6, κν1 = 0.2, and κν2 = 0. The multikernel A2(·) has only two

possible arguments, ν1 and ν2, since those are the only nodes for time t = 2. Thus,

A2(ν1) =


µ(ν1) :

µ(ν1, η1) = 0.3(1 + h1 − 0.3h1 − 0.7h2)

µ(ν1, η2) = 0.7(1 + h2 − 0.3h1 − 0.7h2)

0 ≤ h1 ≤ κν1

0 ≤ h2 ≤ κν1



=


µ(ν1) :

µ(ν1, η1) = 0.3 + 0.21h1 − 0.21h2

µ(ν1, η2) = 0.7− 0.21h1 + 0.21h2

0 ≤ h1 ≤ 0.2

0 ≤ h2 ≤ 0.2



(2.26)

Then,

ρν1
(
ZC(ν1)

)
= max

µ∈A2(ν1)

〈
µ,ZC(ν1)

〉
= 0.258 · Zη1 + 0.742 · Zη2

= 98.55

(2.27)
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Further,

A2(ν2) =


µ(ν2) :

µ(ν2, η3) = 0.3(1 + h1 − 0.3h1 − 0.7h2)

µ(ν2, η4) = 0.7(1 + h2 − 0.3h1 − 0.7h2)

0 ≤ h1 ≤ κν2

0 ≤ h2 ≤ κν2


=

µ(ν2) :
µ(ν2, η3) = 0.3

µ(ν2, η4) = 0.7



(2.28)

and

ρν2
(
ZC(ν2)

)
= max

µ∈A2(ν2)

〈
µ,ZC(ν2)

〉
= 0.3 · Zη3 + 0.7 · Zη4

= 99.5

(2.29)

Now we can find a selector µ2 lA2. For example, if µ2 is such that

µ2(ν1, η1) = 0.258

µ2(ν1, η2) = 0.742

µ2(ν2, η3) = 0.3

µ2(ν2, η3) = 0.7

(2.30)

then µ2 would be a selector of A2 since µ2(ν1) ∈ A2(ν1) and µ2(ν2) ∈ A2(ν2).

Moreover, the multikernel A1(·) consists of a single probability distribution for the

node ν0.

A1(ν0) =


µ(ν0) :

µ(ν0, ν1) = 0.3(1 + h1 − 0.3h1 − 0.7h2)

µ(ν0, ν2) = 0.7(1 + h2 − 0.3h1 − 0.7h2)

0 ≤ h1 ≤ κν0

0 ≤ h2 ≤ κν0



=


µ(ν0) :

µ(ν0, ν1) = 0.3 + 0.21h1 − 0.21h2

µ(ν0, ν2) = 0.7− 0.21h1 + 0.21h2

0 ≤ h1 ≤ 0.6

0 ≤ h2 ≤ 0.6



(2.31)
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Therefore,

ρ1(ρ2(Z)) = max
µ∈A1

{
µ(ν0, ν1) · ρν1

(
ZC(ν1)

)
+ µ(ν0, ν2) · ρν2

(
ZC(ν2)

)}
ρ1(ρ2(Z)) = max

µ∈A1

{
µ(ν0, ν1) · 98.55 + µ(ν0, ν2) · 99.5

}
= 0.174 · 98.55 + 0.826 · 99.5

= 99.3347

(2.32)

Let us consider the probability distribution q2 ∈ A1(ν0) on the set of nodes at time

t = 2 such that q2(ν1) = 0.174 and q2(ν2) = 0.826. Then the composition

q(η) = (q2 ◦ µ2)(η) = q2(a(η))µ2(a(η), η), η ∈ Ω3.

is a probability distribution on the set of nodes η ∈ Ω3. Furthermore,

q = arg max
q∈A1◦A2

〈
q, Z

〉
, (2.33)

where the composition of the multikernel A1 (which is a single set of probability dis-

tributions A1(ν0) ⊂ P(Ω2) on the set of nodes at time t = 2) with the multikernel A2

produces the set of probability measures on Ω3 given by:

A1 ◦ A2 =
{
q2 ◦ µ2 : q2 ∈ A1(ν0), µ2 lA2

}
.

Indeed, we can verify that

max
q∈A1◦A2

〈
q, Z

〉
= 0.174 · (0.258 · Zη1 + 0.742 · Zη2) + 0.826 · (0.3 · Zη3 + 0.7 · Zη4)

= 0.044892 · 80 + 0.129108 · 105 + 0.2478 · 103 + 0.5782 · 98

= 99.3347

= ρ1(ρ2(Z))

(2.34)

2.5 Nested Decomposition of Time-Consistent Problems

We now extend the decomposition method proposed in [32] to multistage problems of

form (2.3). Similar approaches are associated with the risk-averse extensions of the

stochastic dual decomposition method of [36], proposed in [27, 41, 52].
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To avoid technical difficulties, and in view of the application in the next section, we

assume that all one-step conditional risk measures ρt(·) are polyhedral, that is, the sets

At(ν) are polyhedra, for all ν ∈ Ωt and all t = 1, . . . , T − 1.

In the nested decomposition method a subproblem is associated with every node of

the scenario tree. The subproblems communicate along the arcs of the tree. A typical

subproblem at a node ν ∈ Ωt will get the value of x
a(ν)
t−1 from the ancestor node a(ν) and

pass its current solution xνt to its children nodes η ∈ C(ν). The subproblems will also

pass the values of Lagrange multipliers associated with the constraints to their ancestor

nodes, and receive the corresponding multipliers from their children nodes.

Consider a node ν at level 1 < t < T and suppose a new value x̄a(ν) has been received

from the ancestor node. The information passed between the node subproblems depends

on the result of a feasibility test, which amounts to solving the following problem:

min
xν ,s

‖s‖1

s.t. Bν x̄a(ν) +Aνxν + s = bν ,

xν ∈ Xν .

(2.35)

If the optimal value β of this problem is positive, the point x̄a(ν) is infeasible. Then, de-

noting by π the vector of Lagrange multipliers associated with the equality constraints,

we can construct the following feasibility cut :

β +
〈
gν , xa(ν) − x̄a(ν)

〉
≤ 0. (2.36)

with

gν = − (Bν)T π. (2.37)

The feasibility cut (2.36) is passed to the ancestor node a(ν). No new information is

passed to the children nodes.
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If β = 0, we can solve the following master problem:

min
xν ,U,W

U

s.t U ≥ 〈cν , xν〉+ 〈µν` ,W 〉, ` ∈
⋂

η∈C(ν)

Lηobj,

W η ≥ Ūη` + 〈gη` , x
ν − x̄ν` 〉, ` ∈ Lηobj, η ∈ C(ν),

βη` + 〈gη` , x
ν − x̄ν` 〉 ≤ 0, ` ∈ Lηfeas, η ∈ C(ν),

Bν x̄a(ν) +Aνxν = bν ,

xν ∈ Xν , U ≥Wmin, W ≥Wmin.

(2.38)

In this problem, we use Lηobj to denote the set of previous iterations at which the

subproblem η ∈ C(ν) returned an objective cut with value Ūη` and subgradient gη` at

x̄ν` ), and Lηfeas to denote the set of previous iterations at which the subproblem η ∈ C(ν)

returned a feasibility cut with value βη` and subgradient gη` . The iterations are numbered

locally, at node ν. The constant Wmin is the uniform lower bound on the value functions

Qν(·) in (2.20).

Denote by Ūν the optimal value of problem (2.38), by x̄ν the optimal solution,

and by π the vector of Lagrange multipliers associated with the equality constraints.

The solution x̄ν , if different from previously reported, is passed to the children nodes

η ∈ C(ν). If the value Ūν is strictly larger than the value previously reported, then it

is used together with the multipliers π to construct an objective cut

V ν ≥ Ūν +
〈
gν , xa(ν) − x̄a(ν)

〉
.

The subgradient gν is defined as in (2.37). The objective cut is passed to the ancestor

problem a(ν).

If new objective or feasibility cuts are received from the children nodes η ∈ C(ν),

then the sets of indices Lηobj and Lηfeas are updated. Moreover, at any iteration ` at

which all subproblems η ∈ C(ν) return feasibility cuts, we also calculate the probability

measure

µν` = arg max
µ∈At(ν)

〈
µ,W

〉
. (2.39)

After all these updates, the master problem (2.38) is resolved and the resulting infor-

mation (if essentially new) is transmitted to the ancestor and children nodes.
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If ν = 1 (the root node of the tree), there is no ancestor node, and thus problem

(2.35) is not needed. Also, the constraint involving x̄a(ν) in (2.38) has to be omitted.

For ν ∈ ΩT problem (2.38) simplifies as follows:

min
xν

{
〈cν , xν〉 : Bν x̄a(ν) +Aνxν = bν , xν ∈ Xν

}
. (2.40)

The protocol by which the nodes are processed is not essential for convergence of the

method, although it may affect its speed. We make the following assumptions:

• The original problem (2.20) has an optimal solution;

• The procedure starts from the root node;

• For every linear problem (2.35), (2.38), and (2.39) the optimal basic solution is

found;

• If the previous solution of a problem remains optimal, it is not changed;

• Every node subproblem is resolved after it receives new information from its

ancestor or its children;

• The method stops when no changes in the optimal solutions of all subproblems

occur.

Under these conditions, the method finds an optimal solution of (2.20) after finitely

many updates in every subproblem node.

The proof of the claim is very similar to proofs of convergence of the nested de-

composition of expected-value multistage stochastic linear programming problems (see

[9, 46] and the references therein).

Let us observe at first that the subproblems (2.40) at level T can generate only

finitely many different cuts, because their dual problems have only finitely many pos-

sible basic solutions. Therefore, there can be only finitely many systems of cuts in

subproblems at level T − 1. As the sets At(ν) are convex bounded polyhedra, subprob-

lems at level T − 1 may have only finitely many different systems of constraints. This,

in turn, implies that finitely many different cuts can be generated. Arguing in this way,

we conclude that every node subproblem may have only finitely many different sets of

constraints. As constraints are never removed, after finitely many updates, all node

subproblems will have fixed sets of constraints.
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Consider the subproblem at the root node after all its constraints have stabilized.

As it has no ancestor, and its constraints are fixed, its solution will not change. This,

in turn, implies that the solutions of subproblems at level 2 will not change. Arguing in

this way, we conclude that the systems of constraints and solutions of all subproblems

will stabilize.

It remains to prove optimality of the solution at which the subproblems stabilize.

To this end, observe that all value functions Qν(·) in (2.20) are convex, and the cuts in

(2.38) provide their relaxations. Therefore, the optimal values Ūν of the subproblems

(2.38) satisfy the inequalities:

Ū1 ≤ Q1, Ūν ≤ Qν
(
xa(ν)

)
, ν ∈ Ωt, t = 2, . . . , T.

By (2.40), Ūν = Qν
(
xa(ν)

)
, for ν ∈ ΩT . Consider a node ν at level T −1. Then, among

the objective cuts in (2.38), we have the inequalities W η ≥ Ūη, η ∈ C(ν), because

the solution does not change. Then it follows from (2.39) that Ūν = Qν
(
xa(ν)

)
. In a

similar way, feasibility of the optimal solution can be established. Proceeding in this

way, we conclude that all optimal values of the subproblems are equal to the optimal

value functions at this solution. As the optimal solutions minimize a convex relaxation

of the original problem, they are optimal for the original problem.
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Chapter 3

Time-Consistent Approximations

3.1 Introduction

Let us consider now the problem (2.3) in which the dynamic measure of risk has the

following form

%(Z1, Z2, . . . , ZT ) = ρ1,T (Z1 + Z2 + · · ·+ ZT ), (3.1)

with a coherent measure of risk ρ1,T : ZT → R. We are not assuming time consistency,

and thus we cannot take advantage of the representations developed in sections 2.3 and

2.4. However, the dual representation of the measure ρ1,T (·) is still possible:

ρ1,T (Z1 + Z2 + · · ·+ ZT ) = max
q∈D1,T

〈 q, Z1 + Z2 + · · ·+ ZT 〉. (3.2)

This allows us to equivalently express (2.3) as a min-max problem:

min
x∈I∩F

max
q∈D1,T

〈
q, 〈c1, x1〉+ 〈c2, x2〉+ · · ·+ 〈cT , xT 〉

〉
. (3.3)

The only difference from (2.25) is that the set D1,T cannot be, in general, expressed as

a composition of multikernels, as in (2.24). We assume that the “original” probability

distribution p on ΩT is an element of D1,T . This condition is satisfied for all practically

relevant coherent measures of risk. It is equivalent to the requirement that

ρ1,T (Z1 + Z2 + · · ·+ ZT ) ≥ E
[
Z1 + Z2 + · · ·+ ZT

]
for all Z1, Z2, . . . , ZT . Now, we are ready to dive into the details of our algorithm for

the generation of time-consistent approximations.

3.2 A Time-Consistent Cutting Plane Method

The main idea of our approach extends the classical cutting-plane method to our setting,

by using the subgradient information about the measure ρ1,T (·) in a new way which
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exploits time-consistency. In a standard cutting plane method, the convex polyhedral

approximation of problem (3.3) would have the form:

min
x∈I∩F

max
q∈D(k)

1,T

〈 q, Z1 + Z2 + · · ·+ ZT 〉, (3.4)

where

D(k)
1,T = conv

{
µ(j), j = 0, 1 . . . , k

}
, (3.5)

and µ(j) are the elements of D1,T collected at iterations j = 0, 1, . . . , k. The initial

µ(0) = p, and at later iterations we set

µ(k) ∈ ∂ρ1,T (Zk1 + Zk2 + · · ·+ ZkT ), (3.6)

where Zkt = 〈ct, xkt 〉, t = 1, . . . , T , are costs at the optimal solution of problem (3.4).

Observe that the approximate problems (3.4) are not, in general, time-consistent, even

if the original problem was.

Our idea is to approximate the set D1,T in (3.3) by a composition of multikernels

D1,T ' A(k)
1 ◦ A

(k)
2 ◦ · · · ◦ A

(k)
T−1 (3.7)

where k is the iteration number. As a result, the measure of risk %(Z1, Z2, . . . , ZT ) is

approximated by a time-consistent measure

%̃(k)(Z1, Z2, . . . , ZT ) = max
q∈A(k)

1 ◦···◦A
(k)
T−1

〈 q, Z1 + Z2 + · · ·+ ZT 〉. (3.8)

The multikernels A(k)
1 , A(k)

2 , . . . ,A(k)
T−1 are constructed in an iterative fashion. At itera-

tion k of the method, the subgradient (3.6), instead of being used directly to construct

the convex hull (3.5), is projected on stages t = T−1, . . . , 1 to obtain the node measures

µ
(k)
t (ν), ν ∈ Ωt. The projection procedure is described in line 17 of Algorithm 1. It

calculates for each node ν at level t its probability wt(ν) implied by µ(k), and the vector

of conditional probabilities µ
(k)
t (ν) for its children in C(ν). Then the multikernels A(k)

t

are represented as a collections of convex polyhedral sets:

A(k)
t (ν) = conv

{
µ

(j)
t (ν), j = 0, 1 . . . , k

}
, ν ∈ Ωt, t = 1, . . . , T − 1. (3.9)
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In the running of the algorithm, the objects that are added to the convex hulls A(k)
t (ν)

are only conditional distributions on the set of children of node ν. The resulting ap-

proximation of problem (2.3),

min
x∈I∩F

%̃(k)
(
〈c1, x1〉, 〈c2, x2〉, . . . , 〈cT , xT 〉

)
, (3.10)

is time-consistent and can be solved by the decomposition method of section 2.4.

The method is presented in detail in Algorithm 1. We call it the time-consistent cut-

ting plane method to stress the fact that all approximate problems are time-consistent,

as opposed to the standard cutting plane method.

Algorithm 1 Time-Consistent Cutting Plane Method

1: k ← 0
2: for all t ∈ {1, . . . , T − 1} do
3: for all ν ∈ Ωt do
4: A0

t (ν)← ∅
5: end for
6: end for
7: µ(0) ← p
8: repeat
9: k ← k + 1

10: for all ν ∈ ΩT do
11: wT (ν)← µ(k−1)(ν)
12: end for
13: for t = T − 1, . . . , 1 do
14: for all ν ∈ Ωt do
15: wt(ν)←

∥∥wC(ν)
t+1

∥∥
1

16: if wt(ν) > 0 then

17: µt(ν)← 1
wt(ν)w

C(ν)
t+1

18: A(k)
t (ν)← conv

(
A(k−1)
t (ν) ∪ {µt(ν)}

)
19: else
20: A(k)

t (ν)← A(k−1)
t (ν)

21: end if
22: end for
23: end for
24: Find solution x(k) of problem (3.10)

25: %
(
〈c1, x1〉, 〈c2, x2〉, . . . , 〈cT , xT 〉

)
← maxq∈D1,T

〈
q, 〈c1, x

(k)
1 〉, 〈c2, x

(k)
2 〉, . . . , 〈cT , x

(k)
T 〉
〉

26: µ(k) ← arg maxq∈D1,T

〈
q, 〈c1, x

(k)
1 〉, 〈c2, x

(k)
2 〉, . . . , 〈cT , x

(k)
T 〉
〉

27: until %
(
〈c1, x

(k)
1 〉, 〈c2, x

(k)
2 〉, . . . , 〈cT , x

(k)
T 〉

)
≤ %̃(k)

(
〈c1, x

(k)
1 〉, 〈c2, x

(k)
2 〉, . . . , 〈cT , x

(k)
T 〉

)

Theorem 12. Suppose the measure (3.1) is time-consistent, and problem (3.3) has a
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nonempty and compact feasible set I∩F . Then every accumulation point of the sequence

{x(k)} generated by Algorithm 1 is a solution of problem (3.3).

Proof. As the measure (3.1) is time-consistent, we have

D1,T = D1 ◦ D2 ◦ · · · ◦ DT−1, (3.11)

where Dt : Ωt ⇒ P(Ωt+1), t = 1, . . . , T −1 are convex closed multikernels satisfying the

local property (2.22). Suppose µ ∈ D1,T . Then kernels µt lDt, t = 1, . . . , T − 1 exist,

such that

µ = µ1 ◦ µ2 ◦ · · · ◦ µT−1. (3.12)

Consider a node ν ∈ ΩT−1. It follows from (3.12) and the local property (2.22) for DT−1

that the vector µC(ν) with coordinates µ(η), η ∈ C(ν), can be calculated as follows:

µC(ν) =
[
µ1 ◦ µ2 ◦ · · · ◦ µT−2

]
(ν)µT−1(ν).

If µC(ν) 6= 0, then

µT−1(ν) =
µC(ν)∥∥µC(ν)

∥∥
1

∈ DT−1.

In any case, the sum

wT−1(ν) =
∥∥µC(ν)

∥∥
1

is the total mass of node ν resulting from µ. Proceeding in this way, we show that all

measures calculated in line 17 of Algorithm 1 are elements of the corresponding sets

Dt, t = 1, . . . , T − 1. Consequently,

A(k)
t ⊆ Dt, , t = 1, . . . , T − 1, k = 0, 1, 2, . . . .

Therefore, for every k = 0, 1, 2, . . . problem 3.10 is a convex relaxation of problem

(3.3). The main difference from the cutting plane relaxation (3.4) is that instead of

adding just one subgradient µ to the convex hull (3.9), we add also a large number of

implied subgradients, which can be deduced from the multikernel composition (3.11).

The remaining part of the proof is identical to the convergence proof of the classical

cutting plane method (see, e.g. [47, Thm. 7.7]).
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Further simplifications of the method can be achieved under the assumption that

the multikernels Dt in (3.11) are homogeneous, that is, Dt(ν) = Dt(ν ′) for all ν, ν ′ ∈ Ωt,

and all t = 1, . . . , T − 1. In this case, instead of constructing different approximations

A(k)
t (ν) for different nodes ν ∈ Ωt, we can share the information among the nodes

at level t, and approximate Dt(ν) with one common set Āt. Algorithm 1 simplifies

significantly by replacing line 18 with the formula:

Ā(k)
t (ν)←


conv

(
Ā(k−1)
t (ν) ∪ {µt(ν)}

)
if ν is the first node in Ωt,

conv
(
Ā(k)
t (ν) ∪ {µt(ν)}

)
for all other nodes in Ωt.

Convergence of this version of the method follows can be proved identically to Theorem

12.

3.3 Application to Time-Inconsistent Problems

Let us now consider the case when the risk measure (3.1) in problem (2.3) is not time-

consistent. Algorithm 1 can still be applied in such a situation. All subproblems (3.10)

solved in successive iterations of the method are time-consistent, and thus the method

provides a time-consistent approximation of the original problem.

Denote

Z(k) =
(
〈c1, x

(k)
1 〉, 〈c2, x

(k)
2 〉, . . . , 〈cT , x

(k)
T 〉

)
. (3.13)

By the construction of the method, A(k+1)
t (ν) ⊇ A(k)

t (ν), and thus

%̃(k+1)
(
Z(k+1)

)
≥ %̃(k)

(
Z(k)

)
, k = 1, 2, . . . .

However, the time-consistent approximations %̃(k)(·) are not, in general, lower approxi-

mations of the original risk measure %(·).

The next proposition proves that the method is still well-defined.

Theorem 13. Suppose problem (3.3) has a nonempty and compact feasible set I ∩ F .

Then Algorithm 1 either stops after finitely many steps, or generates an infinite sequence

{x(k)} such that

lim
k→∞

[
%
(
Z(k)

)
− %̃(k)

(
Z(k)

)]
= 0.
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Proof. For ε > 0 we define

Kε =
{
k : %

(
Z(k)

)
≥ %̃(k)

(
Z(k)

)
+ ε
}
.

Our assertion is equivalent to the fact that Kε is finite for every ε > 0.

Let k1, k2 ∈ Kε, k1 < k2. Since %
(
Z(k1)

)
≥ %̃(k1)

(
Z(k)

)
+ε, Algorithm 1 will not stop

and the measure µ(k1) will be used to update the sets A(k1+1)
t , t = 1, . . . , T − 1. As a

result, at all iterations j = k1 + 1, k1 + 2, . . . we shall have

µ(k1) ∈ A(j)
1 ◦ A

(j)
2 ◦ · · · ◦ A

(j)
T−1.

Therefore,

%̃(j)
(
Z(j)

)
≥
〈
µ(k1), Z(j)

〉
, j = k1 + 1, k1 + 2, . . .

As k2 ∈ Kε we obtain

%
(
Z(k2)

)
≥ %̃(k2)

(
Z(k2)

)
+ ε ≥

〈
µ(k1), Z(k2)

〉
+ ε.

Since %
(
Z(k1)

)
=
〈
µ(k1), Z(k1)

〉
we can rewrite the last inequality as follows:

%
(
Z(k2)

)
− %
(
Z(k1)

)
≥
〈
µ(k1), Z(k2) − Z(k1)

〉
+ ε. (3.14)

Owing to the translation property of %(·), we have the estimate

%
(
Z(k2)

)
− %
(
Z(k1)

)
≤
∥∥Z(k2) − Z(k1)

∥∥
∞. (3.15)

Moreover,∣∣∣〈µ(k1), Z(k2) − Z(k1)
〉∣∣∣ ≤ ∥∥µ(k1)

∥∥
1

∥∥Z(k2) − Z(k1)
∥∥
∞ =

∥∥Z(k2) − Z(k1)
∥∥
∞, (3.16)

because µ(k1) is a probability measure. Combining inequalities (3.14),(3.15), and (3.16),

we conclude that ∥∥Z(k2) − Z(k1)
∥∥
∞ ≥

ε

2
. (3.17)

As the feasible set I ∩ F is compact, the values (3.13) live in a compact set as well.

Therefore, only a finite subset of them may satisfy inequality (3.17).
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It follows that if the stopping test in line 27 of Algorithm 1 is verified with accuracy

ε > 0, the method stops after finitely many steps. The last point x(k) obtained is the

minimizer of a time-consistent dynamic measure of risk %̃(k)
(
Z(·)

)
and %̃(k)

(
Z(k)

)
≥

%
(
Z(k)

)
− ε. Therefore, the value %̃(k)

(
Z(k)

)
is a time-consistent upper bound on the

optimal value of problem (2.3).

3.3.1 Non-parametric Cutting Plane Example

In this section we demonstrate an iteration of the non-parametric cutting plane method

applied to time-inconsistent problems. We consider a two-stage decision tree with a

probability measure p as given in the original example of time inconsistency of Section

1.3. We can see from Algorithm 1 that µ(0) = p. Therefore,

µ2(ν1, η1) = 0.3, µ2(ν1, η2) = 0.7

A(1)
2 (ν2) = conv{µ2(ν1)} = conv{(0.3, 0.7)}

(3.18)

and similarly,

µ2(ν2, η3) = 0.3, µ2(ν2, η4) = 0.7

A(1)
2 (ν2) = conv{µ2(ν2)} = conv{(0.3, 0.7)}

(3.19)

Further,

µ1(ν0, ν1) = 0.3, µ1(ν0, ν2) = 0.7

A(1)
1 (ν0) = conv{µ1(ν0)} = conv{(0.3, 0.7)}

(3.20)

For the sake of simplicity, we only consider a final stage cost Z3. This is sufficient,

since first and second stage costs would be measurable at T = 3. We can measure

the risk associated with costs incurred on the entire tree using a coherent risk measure

ρ1,3 : Z3 → R. In this example we choose ρ1,3(·) to be a mean-upper semideviation

function with κ1,3 = 0.5. Thus, ρ1,3(·) is not a time-consistent risk measure, as it

cannot be represented as a composition of one step conditional risk measures. After

determining µ(1) and A(1), we solve the following problem at line 24 in Algorithm 1:

min
x∈I∩F

%̃(1)
(
〈c3, x3〉

)
(3.21)
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Since, each of the multikernels A(1)
t , t = 1, 2 contains only a single one-step probability

measure corresponding to the original measure p, we know that

%̃(1)(Z3) = max
q∈A(1)

1 ◦A
(1)
2

〈 q, Z3〉

= EP [Z3]

(3.22)

Hence, at the first iteration, we find x(1) ∈ I ∩F such that expected cost is minimized.

x(1) ← arg min
x∈I∩F

EP

[
〈c3, x3〉

]
(3.23)

Now, suppose that the policy x(1) results in random cost Z
(1)
3 that is identical

to the cost Z of the original example of time inconsistency of Section 1.3. Thus,

Z
(1)η1
3 = 80, Z

(1)η2
3 = 105, Z

(1)η3
3 = 103, and Z

(1)η4
3 = 98. This is illustrated in Figure

3.1. We know that the original probability measure p is such that pη1 = 0.09,
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1 (ν0) = conv{(0.3, 0.7), (0.342, 0.658)}

ν0

A(2)
2 (ν2) = conv{(0.3, 0.7), (0.4117, 0.5883)}A(2)

2 (ν1) = conv{(0.3, 0.7), (0.2079, 0.7921)}

ν2ν1
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0.3 0.7 0.3 0.7

µ
(1)
η4 = 0.3871µ

(1)
η3 = 0.2709µ

(1)
η2 = 0.2709µ

(1)
η1 = 0.0711

Z(1)η4 = 98Z(1)η3 = 103Z(1)η2 = 105Z(1)η1 = 80

η4η3η2η1

Figure 3.1: Non-parametric time-consistent cutting plane method.

pη2 = pη3 = 0.21, and pη4 = 0.49. Since ρ1,3(·) is a mean-upper semideviation function

with κ1,3 = 0.5, we can use equation (1.13) to find its dual set of probability measures

D1,3.
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D1,3 =

{
µ :

µη
pη

= 1 + hη −
∑
m∈Ω3

hmpm, 0 ≤ hη ≤ κ, ν ∈ Ω3

}

=



µ :

µη1 = pη1(1 + hη1 − pη1hη1 − pη2hη2 − pη3hη3 − pη4hη4)

µη2 = pη2(1 + hη2 − pη1hη1 − pη2hη2 − pη3hη3 − pη4hη4)

µη3 = pη3(1 + hη3 − pη1hη1 − pη2hη2 − pη3hη3 − pη4hη4)

µη4 = pη4(1 + hη4 − pη1hη1 − pη2hη2 − pη3hη3 − pη4hη4)

0 ≤ hη1 ≤ κ1,3

0 ≤ hη2 ≤ κ1,3

0 ≤ hη3 ≤ κ1,3

0 ≤ hη4 ≤ κ1,3



=



µ :

µη1 = 0.09 · (1 + hη1 − 0.09 · hη1 − 0.21 · hη2 − 0.21 · hη3 − 0.49 · hη4)

µη2 = 0.21 · (1 + hη2 − 0.09 · hη1 − 0.21 · hη2 − 0.21 · hη3 − 0.49 · hη4)

µη3 = 0.21 · (1 + hη3 − 0.09 · hη1 − 0.21 · hη2 − 0.21 · hη3 − 0.49 · hη4)

µη4 = 0.49 · (1 + hη4 − 0.09 · hη1 − 0.21 · hη2 − 0.21 · hη3 − 0.49 · hη4)

0 ≤ hη1 ≤ 0.5

0 ≤ hη2 ≤ 0.5

0 ≤ hη3 ≤ 0.5

0 ≤ hη4 ≤ 0.5



=



µ :

µη1 = 0.09 + 0.0819 · hη1 − 0.0189 · hη2 − 0.0189 · hη3 − 0.0441 · hη4

µη2 = 0.21− 0.0189 · hη1 + 0.1659 · hη2 − 0.0441 · hη3 − 0.1029 · hη4

µη3 = 0.21− 0.0189 · hη1 − 0.0441 · hη2 + 0.1659 · hη3 − 0.1029 · hη4

µη4 = 0.49− 0.0441 · hη1 − 0.1029 · hη2 − 0.1029 · hη3 + 0.2499 · hη4

0 ≤ hη1 ≤ 0.5

0 ≤ hη2 ≤ 0.5

0 ≤ hη3 ≤ 0.5

0 ≤ hη4 ≤ 0.5


(3.24)
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At line 26 in Algorithm 1, we compute a new probability measure µ(1) as

µ(1) = arg max
q∈D1,3

〈
q, 〈c3, x

(1)
3 〉
〉

= arg max
q∈D1,3

〈
q, Z

(1)
3

〉 (3.25)

Thus we solve the problem:

max
{

80µη1 + 105µη2 + 103µη3 + 98µη4
}

s.t.

µη1 = 0.09 + 0.0819 · hη1 − 0.0189 · hη2 − 0.0189 · hη3 − 0.0441 · hη4

µη2 = 0.21− 0.0189 · hη1 + 0.1659 · hη2 − 0.0441 · hη3 − 0.1029 · hη4

µη3 = 0.21− 0.0189 · hη1 − 0.0441 · hη2 + 0.1659 · hη3 − 0.1029 · hη4

µη4 = 0.49− 0.0441 · hη1 − 0.1029 · hη2 − 0.1029 · hη3 + 0.2499 · hη4

0 ≤ hη1 ≤ 0.5

0 ≤ hη2 ≤ 0.5

0 ≤ hη3 ≤ 0.5

0 ≤ hη4 ≤ 0.5

(3.26)

Hence, we find a solution µ(1) such that µ
(1)
η1 = 0.0711, µ

(1)
η2 = 0.2709, µ

(1)
η3 = 0.2709 and

µ
(1)
η4 = 0.3871. At the next iteration, we set k = 2, and compute

µ2(ν1, η1) =
0.0711

0.0711 + 0.2709
= 0.2079

µ2(ν1, η2) =
0.2709

0.0711 + 0.2709
= 0.7921

A(2)
2 (ν1) = conv{(0.3, 0.7), (0.2079, 0.7921)}

(3.27)

Further,

µ2(ν2, η3) =
0.2709

0.2709 + 0.3871
= 0.4117

µ2(ν2, η4) =
0.3871

0.2709 + 0.3871
= 0.5883

A(2)
2 (ν2) = conv{(0.3, 0.7), (0.4117, 0.5883)}

(3.28)

And additionally,

µ1(ν0, ν1) =
0.0711 + 0.2709

1
= 0.342

µ1(ν0, ν2) =
0.2709 + 0.3871

1
= 0.658

A(2)
1 (ν0) = conv{(0.3, 0.7), (0.342, 0.658)}

(3.29)
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Thus we can construct a new time-consistent approximation %̃(2)(·) of the original func-

tion ρ1,3(·),

%̃(2)(Z3) = max
q∈A(2)

1 ◦A
(2)
2

〈 q, Z3〉. (3.30)

Now, we solve problem (3.10) for the function %̃(2)(Z3) to find a new policy x(2). Then

we use the new policy to find a new probability measure µ(2), and repeat until the

stoping condition is satisfied.

3.4 Parametric Time-Consistent Approximations

Consider now the situation when we specify the functional form of the conditional

measures of risk ρ̃t(·) in the time-consistent approximation of the original risk measure:

ρ1,T (Z1 + Z2 + · · ·+ ZT ) ' ρ̃1

(
ρ̃2

(
· · · ρ̃T−1(Z1 + Z2 + · · ·+ ZT ) · · ·

))
.

This results in restricting the functional form of the multikernelsA(k)
t in the composition

formula (3.7). Under this restriction, we can still use Algorithm 1 in a suitable form.

The main difference is that we cannot use the convex hull formula (3.9) in line 18,

but rather compute the smallest set A(k)
t (ν) containing

{
µ

(j)
t (ν), j = 0, 1 . . . , k − 1

}
within the specified parametric family of sets.

To illustrate our approach, consider the case when all node risk measures ρ̃ν(·) are

restricted to have the mean-semideviation form:

ρ̃ν
(
ZC(ν)

)
=

∑
η∈C(ν)

pνηZ
η + κ

∑
η∈C(ν)

pνη

(
Zη −

∑
m∈C(ν)

pνmZ
m

)
+

, (3.31)

with κ(ν) ∈ [0, 1]. It is well known (see, e.g., [50, Ex. 4.2]) that the corresponding

multikernel is composed of sets

Aκ
t = ∂ρ̃ν(0) =

{
µ :

µνη
pνη

= 1 + hη −
∑

m∈C(ν)

hmpνm, 0 ≤ hη ≤ κ
}
. (3.32)

As the set Aκ
t grows when κ increases, the problem of specifying the smallest set A(k)

t (ν)

containing
{
µ

(j)
t (ν), j = 0, 1 . . . , k − 1

}
reduces to finding the smallest value κ such

that µ
(j)
t (ν) ∈ Aκ

t (ν) for all j = 0, 1, . . . , k − 1.
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This estimation is done recursively in Algorithm 1, and thus it is sufficient to solve

it for one measure: µ(j), as in line 18 of Algorithm 1. The smallest value of κ is then

the optimal value of the following linear programming problem:

min
h,κ

κ

s.t. hη −
∑

m∈C(ν)

hmpνm =
µ

(j)
νη

pνη
− 1, η ∈ C(ν),

0 ≤ hη ≤ κ, η ∈ C(ν).

(3.33)

If the optimal value of κ is larger than 1, estimation with a specified parametric family

is not possible.

These observations allow us to modify Algorithm 1 as follows. For each node ν ∈ Ωt

the sets A(k−1)
t (ν) are represented by their parameters κ(k−1)(ν). Initially, κ(0)(ν) = 0

for all ν. In line 18, instead of taking the convex hull, we solve problem (3.33) to obtain

the optimal value κ(k)
min(ν), and we set

κ(k)(ν) = max
(
κ(k−1)(ν),κ(k)

min(ν)
)
.

Similarly to Theorem 12 we can prove that if the original measure of risk is indeed a

composition of mean-semideviation conditional measures of risk, then the parametric

version of Algorithm 1 finds the optimal solution of problem (3.3). If its not a member

of the parametric family, the algorithm will have the property proved in Theorem 13.

Proofs of these observations are almost identical to the proofs for the previous (non-

parametric) versions.

3.4.1 Parametric Cutting Plane Example

We examine an iteration of the parametric time-consistent cutting plane method. We

consider the same setup as in Section 3.3.1. Given a mean-upper semideviation function

ρ1,3(Z) with κ1,3 = 0.5 we construct a time-consistent approximation ρ̃1(ρ̃2(Z)) as a

composition of to mean-upper semideviation functions. Again, for the sake of simplicity

we only consider a final stage cost Z3. We initialize µ(0) = p, and therefore

µ
(0)
2 (ν1, η1) = 0.3, µ

(0)
2 (ν1, η2) = 0.7 (3.34)
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Now, instead of using the convex hull formula of line 18 in Algorithm 1, we find κ(1)(ν1)

as the optimal value of the following linear programming problem:

min
h,κ

κ

s.t. hη1 − hη1pν1η1 − hη2pν1η2 =
µ

(0)
ν1η1

pν1η1
− 1,

hη2 − hη1pν1η1 − hη2pν1η2 =
µ

(0)
ν1η2

pν1η2
− 1,

0 ≤ hη1 ≤ κ

0 ≤ hη2 ≤ κ

(3.35)

Substituting, we get

min
h,κ

κ

s.t. hη1 − 0.3hη1 − 0.7hη2 =
0.3

0.3
− 1,

hη2 − 0.3hη1 − 0.7hη2 =
0.7

0.7
− 1,

0 ≤ hη1 ≤ κ

0 ≤ hη2 ≤ κ

(3.36)

which implies κ(1)(ν1) = 0.

Similarly,

κ(1)(ν2) = κ(1)(ν0) = 0

Now, we consider the time-consistent approximation to ρ1,3(Z)

%̃(1)(Z) = ρ̃
(1)
1 (ρ̃2

(1)(Z)) (3.37)

and we solve the approximate time-consistent problem at line 24 in Algorithm 1:

min
x∈I∩F

%̃(1)
(
〈c3, x3〉

)
(3.38)

Since, κ(1)(ν0) = κ(1)(ν1) = κ(1)(ν2) = 0, we know

%̃(1)(Z3) = EP [Z3] (3.39)

Hence, similar to the non-parametric case, we minimize the expected cost:

x(1) ← arg min
x∈I∩F

EP

[
〈c3, x3〉

]
(3.40)
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Let us again assume that the policy x(1) results in random cost Z
(1)
3 such that

Z
(1)η1
3 = 80, Z

(1)η2
3 = 105, Z

(1)η3
3 = 103, and Z

(1)η4
3 = 98. This is illustrated in Figure

3.2. We use Z(1) to compute a new probability measure µ(1) at line 26 in Algorithm 1.
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Figure 3.2: Parametric time-consistent cutting plane method.

µ(1) = arg max
q∈D1,3

〈
q, 〈c3, x

(1)
3 〉
〉

= arg max
q∈D1,3

〈
q, Z

(1)
3

〉 (3.41)

where the dual set of probability measures D1,3 is the same as in Section 3.3.1. Hence

we find the same solution µ(1) as in Section 3.3.1: µ
(1)
η1 = 0.0711, µ

(1)
η2 = 0.2709, µ

(1)
η3 =

0.2709 and µ
(1)
η4 = 0.3871. Thus,

µ
(1)
2 (ν1, η1) =

0.0711

0.0711 + 0.2709
= 0.2079

µ
(1)
2 (ν1, η2) =

0.2709

0.0711 + 0.2709
= 0.7921

(3.42)

In order to compute κ(2)
min(ν1), we consider the linear programming problem

min
h,κ

κ

s.t. hη1 − hη1pν1η1 − hη2pν1η2 =
µ

(1)
ν1η1

pν1η1
− 1,

hη2 − hη1pν1η1 − hη2pν1η2 =
µ

(1)
ν1η2

pν1η2
− 1,

0 ≤ hη1 ≤ κ

0 ≤ hη2 ≤ κ

(3.43)
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After substituting the values of p and µ(1), we get

min
h,κ

κ

s.t. hη1 − 0.3hη1 − 0.7hη2 =
0.2079

0.3
− 1,

hη2 − 0.3hη1 − 0.7hη2 =
0.7921

0.7
− 1,

0 ≤ hη1 ≤ κ

0 ≤ hη2 ≤ κ

(3.44)

and the optimal value is κ
(2)
min(ν1) = 0.4386. Hence,

κ(2)(ν1) = max
(
κ(1)(ν1),κ(2)

min(ν1)
)

= max(0, 0.4386)

= 0.4386

(3.45)

Therefore,

A(2)
2 (ν1) = A0.4386

2

Now, let us consider node ν2,

µ
(1)
2 (ν2, η3) =

0.2709

0.2709 + 0.3871
= 0.4117

µ
(1)
2 (ν2, η4) =

0.3871

0.2709 + 0.3871
= 0.5883

(3.46)

κ(2)
min(ν2) is the optimal value of the linear programming problem

min
h,κ

κ

s.t. hη3 − hη3pν2η3 − hη4pν2η4 =
µ

(1)
ν2η3

pν2η3
− 1,

hη4 − hη3pν2η3 − hη4pν2η4 =
µ

(1)
ν2η4

pν2η4
− 1,

0 ≤ hη3 ≤ κ

0 ≤ hη4 ≤ κ

(3.47)



47

which can be rewritten as

min
h,κ

κ

s.t. hη3 − 0.3hη3 − 0.7hη4 =
0.4117

0.3
− 1,

hη4 − 0.3hη3 − 0.7hη4 =
0.5883

0.7
− 1,

0 ≤ hη3 ≤ κ

0 ≤ hη4 ≤ κ

(3.48)

We can compute the optimal value to be κ
(2)
min(ν1) = 0.5319. Therefore,

κ(2)(ν2) = max
(
κ(1)(ν2),κ(2)

min(ν2)
)

= max(0, 0.5319)

= 0.5319

(3.49)

Hence,

A(2)
2 (ν2) = A0.5319

2

Finally, we also need to consider the root node ν0,

µ
(1)
2 (ν0, ν1) =

0.0711 + 0.2709

1
= 0.342

µ
(1)
2 (ν0, ν2) =

0.2709 + 0.3871

1
= 0.658

(3.50)

In order to find κ(2)
min(ν2) we consider the problem

min
h,κ

κ

s.t. hν1 − hν1pν0ν1 − hν2pν0ν2 =
µ

(1)
ν0ν1

pν0ν1
− 1,

hν2 − hν1pν0ν1 − hν2pν0ν2 =
µ

(1)
ν0ν2

pν0ν2
− 1,

0 ≤ hν1 ≤ κ

0 ≤ hν2 ≤ κ

(3.51)
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After substitution, we get

min
h,κ

κ

s.t. hν1 − 0.3hν1 − 0.7hν2 =
0.342

0.3
− 1,

hν2 − 0.3hν1 − 0.7hν2 =
0.658

0.7
− 1,

0 ≤ hν1 ≤ κ

0 ≤ hν2 ≤ κ

(3.52)

The resulting optimal value is κ
(2)
min(ν0) = 0.2. Hence,

κ(2)(ν2) = max
(
κ(1)(ν0),κ(2)

min(ν0)
)

= max(0, 0.2)

= 0.2

(3.53)

And,

A(2)
2 (ν2) = A0.2

2

Thus we can use the updated values κ(2) to construct a new time-consistent approx-

imation %̃(2)(Z) = ρ̃
(2)
1 (ρ̃

(2)
2 (Z)) of the original function ρ1,3(Z). Then we can find a

new policy x(2) which would imply a random cost Z(2). Afterwards, we can compute a

probability measure µ(2), and continue with the next iteration.
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Chapter 4

Universal Parametric Time-Consistent Dynamic Upper

Bounds

In section 3.4 we presented a method for constructing parametric time-consistent upper

bounds to ρ1,T (·) by obtaining parameters κ(k)(ν) such that

ρ1,T

(
Z

(`)
1 +Z

(`)
2 +· · ·+Z(`)

T

)
≤ ρ̃1

(
ρ̃2

(
· · · ρ̃T−1(Z

(`)
1 +Z

(`)
2 +· · ·+Z(`)

T ) · · ·
))
, ` = 1, 2, . . . , k.

As the successive policies x(`) and the resulting random outcomes Z
(`)
2 were obtained

by minimizing the current time-consistent approximations, we also had an inequality

for the optimal value of the original problem:

min
x∈I∩F

ρ1,T

(
Z1(x)+Z2(x)+· · ·+ZT (x)

)
≤ ρ̃1

(
ρ̃2

(
· · · ρ̃T−1(Z

(k)
1 +Z

(k)
2 +· · ·+Z(k)

T ) · · ·
))
,

where k is the last iteration of the method.

In this section, we show that we can generate risk prices κ̄(ν), ν ∈ Ωt such that

ρ1,T (Z(x)) ≤ ρ̃1

(
ρ̃2

(
· · · ρ̃T−1(Z(x)) · · ·

))
for any Z(x) given by

Z(x) = 〈c1, x1〉+ 〈c2, x2〉+ · · ·+ 〈cT , xT 〉, (4.1)

where

x ∈ {I ∩ F} ⊆ Rn, n =

T∑
t=1

nt.

We call the resulting upper bound a universal parametric time-consistent bound.

For an arbitrary x ∈ I ∩ F we define µx as

µx = arg max
q∈D1,T

〈
q, 〈c1, x1〉+ 〈c2, x2〉+ · · ·+ 〈cT , xT 〉

〉
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We denote with κmin(ν, µ) the optimal value of problem (3.33) when µ is used

instead of µ(k). Given ν ∈ Ωt, we would like to find the parameters κ̄(ν) that provide

the best possible upper bounds. Hence, the following should hold:

κ̄(ν) = max
x∈I∩F

κmin(ν, µxt ) (4.2)

Unfortunately, the set I ∩ F is not finite, in general, and it is not immediately obvious

how the above maximum can be computed.

4.1 Universal Parametric Time-Consistent Upper Bounds by Scenario

Enumeration

One possible approach would be to notice that if ν ∈ ΩT , then

µx(ν) = pν + λx(ν)− pν
∑
η∈ΩT

λx(η), (4.3)

where

λx(ν) =


κ1,T pν if Zν(x) ≥

∑
η∈ΩT pηZ

η(x),

0 otherwise.

(4.4)

Equations (4.3) and (4.4) imply that there are at most 2|ΩT | possible distinct vectors

µx. Hence, for very small scenario trees we could enumerate all sets of constraints of

the form:

Zν(x) ≥
∑
η∈ΩT

pηZ
η(x), ν ∈ N+,

Zν(x) + ε ≤
∑
η∈ΩT

pηZ
η(x), ν ∈ ΩT \N+,

x ∈ I ∩ F,

(4.5)

where N+ ⊆ ΩT , and ε > 0 is a given precision tolerance. Using this approach, we can

find κ̄(ν) for ν ∈ Ωt by computing finitely many values κmin(ν, µxt (ν)). We summarize

the method in Algorithm 2.

Algorithm 2 can be applied to problems involving high-dimensional policies x ∈

I ∩F . However, its computational time grows exponentially with the cardinality of ΩT

and therefore the method would be appropriate only when the tree size is small.
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Algorithm 2 Method for Time-Consistent Upper Bounds Using Scenario Enumeration

1: Fix ε > 0.
2: k ← 0
3: for all t = 1, . . . , T − 1 do
4: for all ν ∈ Ωt do
5: κ̄(0)(ν)← 0
6: end for
7: end for
8: for all N+ ⊆ ΩT do

9: X ←


x ∈ I ∩ F,
Zν(x) ≥

∑
η∈ΩT pηZ

η(x), ν ∈ N+,

Zν(x) + ε ≤
∑

η∈ΩT pηZ
η(x), ν ∈ ΩT \N+


10: if X 6= ∅ then
11: k ← k + 1
12: Select x ∈ X
13: µ(k) ← arg maxq∈D1,T

〈
q, 〈c1, x1〉+ 〈c2, x2〉+ · · ·+ 〈cT , xT 〉

〉
14: for all ν ∈ ΩT do
15: wT (ν)← µ(k)(ν)
16: end for
17: for all t = T − 1, . . . , 1 do
18: for all ν ∈ Ωt do
19: wt(ν)← ‖wC(ν)

t+1 ‖1
20: if wt(ν) > 0 then

21: µ
(k)
t (ν)← 1

wt(ν)w
C(ν)
t+1

22: κ̄(k)(ν)← max
(
κ̄(k−1)(ν),κmin(ν, µ

(k)
t )
)

23: end if
24: end for
25: end for
26: end if
27: end for
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4.1.1 An Example of Constructing Universal Time-Consistent Upper

Bounds by Scenario Enumeration

In this section we demonstrate the use of Algorithm 2 for the construction of universal

time-consistent upper bounds. Similarly to the original example of time inconsistency

in Figure 1.2, we consider an instance with two random variables observed at the final

time period T = 3. Given a mean-upper semideviation risk measure ρ(Z(x)) with

κ1,3 = 0.5, we want to construct a time-consistent function ρ1(ρ2(Z(x))) which would

provide an upper bound to ρ(Z(x)) for any policy x ∈ I ∩ F , where I ∩ F = {x3 ∈

R
2 : 〈eT , x3〉 = 1, x ≥ 0}. Thus, we are looking for the best time-consistent upper

bound that holds for any convex combination of the given random costs. Our setup is

illustrated in Figure 4.1.
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t = 2

t = 3

κ̄(ν0) = 0.2

ν0

κ̄(ν2) = 0.5319κ̄(ν1) = 0.4386

ν2ν1

0.3 0.7

0.3 0.7 0.3 0.7

Zη4 (x) = 〈cη43 , x3〉Zη3 (x) = 〈cη33 , x3〉Zη2 (x) = 〈cη23 , x3〉Zη1 (x) = 〈cη13 , x3〉
cη43 = (98, 100)cη33 = (103, 100)cη23 = (105, 100)cη13 = (80, 100)

η4η3η2η1

Figure 4.1: Universal time-consistent upper bounds.

At the beginning of Algorithm 2 we set ε = 0.001 and initialize κ̄(ν0) = κ̄(ν1) =

κ̄(ν2) = 0. Now, we need to examine all possible subsets N+ ⊆ ΩT .

Let us begin with N+ = {η1, η2, η3, η4}. We need to check for a feasible solution to

the following system of equations:
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X =


x ∈ I ∩ F,

Zν(x) ≥
∑

η∈ΩT pηZ
η(x), ν ∈ N+,

Zν(x) + ε ≤
∑

η∈ΩT pηZ
η(x), ν ∈ ΩT \N+



=



〈e, x3〉 = 1,

Zν(x) ≥
∑

η∈ΩT pηZ
η(x), ν ∈ {η1, η2, η3, η4},

x3 ≥ 0

x3 ∈ R2



=



x1
3 + x2

3 = 1,

80x1
3 + 100x2

3 ≥ 98.9x1
3 + 100x2

3,

105x1
3 + 100x2

3 ≥ 98.9x1
3 + 100x2

3,

103x1
3 + 100x2

3 ≥ 98.9x1
3 + 100x2

3,

98x1
3 + 100x2

3 ≥ 98.9x1
3 + 100x2

3,

x1
3, x

2
3 ≥ 0



(4.6)

Clearly, x1
3 = 0, x2

3 = 1 is such that x ∈ X. Since N+ = ΩT , we know

λ(1)(η1) = κ1,3pη1 = 0.045

λ(1)(η2) = κ1,3pη2 = 0.105

λ(1)(η3) = κ1,3pη3 = 0.105

λ(1)(η4) = κ1,3pη4 = 0.245

(4.7)

Therefore,

µ(1)(η1) = pη1 + λ(1)(η1)− pη1
∑
η∈ΩT

λ(1)(η)

= 0.09 + 0.045− 0.09(0.045 + 0.105 + 0.105 + 0.245)

= 0.09 + 0.045− 0.045

= 0.09

(4.8)
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Further,

µ(1)(η2) = pη2 + λ(1)(η2)− pη2
∑
η∈ΩT

λ(1)(η)

= 0.21 + 0.105− 0.21(0.045 + 0.105 + 0.105 + 0.245)

= 0.21 + 0.105− 0.105

= 0.21

(4.9)

And similarly,

µ(1)(η3) = pη3 + λ(1)(η3)− pη3
∑
η∈ΩT

λ(1)(η)

= 0.21 + 0.105− 0.21(0.045 + 0.105 + 0.105 + 0.245)

= 0.21 + 0.105− 0.105

= 0.21

(4.10)

Finally,

µ(1)(η4) = pη4 + λ(1)(η4)− pη4
∑
η∈ΩT

λ(1)(η)

= 0.49 + 0.245− 0.49(0.045 + 0.105 + 0.105 + 0.245)

= 0.49 + 0.245− 0.245

= 0.49

(4.11)

Thus, when N+ = {η1, η2, η3, η4}, the resulting probability measure µ(1) coincides with

the original probability measure p. Similarly to the first iteration of the parametric

cutting plane method example in Section 3.4.1, we infer that

µ
(1)
2 (ν1, η1) = 0.3, µ

(1)
2 (ν1, η2) = 0.7 (4.12)

Now we can find κ(1)
min(ν1) as the optimal value of the following linear programming
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problem:

min
h,κ

κ

s.t. hη1 − hη1pν1η1 − hη2pν1η2 =
µ

(1)
ν1η1

pν1η1
− 1,

hη2 − hη1pν1η1 − hη2pν1η2 =
µ

(1)
ν1η2

pν1η2
− 1,

0 ≤ hη1 ≤ κ

0 ≤ hη2 ≤ κ

(4.13)

After substitution, we get

min
h,κ

κ

s.t. hη1 − 0.3hη1 − 0.7hη2 =
0.3

0.3
− 1,

hη2 − 0.3hη1 − 0.7hη2 =
0.7

0.7
− 1,

0 ≤ hη1 ≤ κ

0 ≤ hη2 ≤ κ

(4.14)

which implies κ(1)
min(ν1, µ

(1)
2 ) = 0. Hence

κ̄(1)(ν1) = max{κ̄(1)(ν1),κ(0)
min(ν1, µ

(1)
2 )}

= max{0, 0}

= 0

(4.15)

Similarly, we can show

κ̄(1)(ν0) = κ̄(1)(ν2) = 0

Next we can choose another subset N+ = {η1, η2, η3} ⊆ ΩT . Hence, we are looking

for a feasible solution to the following system:
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X =


x ∈ I ∩ F,

Zν(x) ≥
∑

η∈ΩT pηZ
η(x), ν ∈ N+,

Zν(x) + ε ≤
∑

η∈ΩT pηZ
η(x), ν ∈ ΩT \N+



=



〈e, x3〉 = 1,

Zν(x) ≥
∑

η∈ΩT pηZ
η(x), ν ∈ {η1, η2, η3},

Zν(x) + ε ≤
∑

η∈ΩT pηZ
η(x), ν ∈ {η4},

x3 ≥ 0

x3 ∈ R2



=



x1
3 + x2

3 = 1,

80x1
3 + 100x2

3 ≥ 98.9x1
3 + 100x2

3,

105x1
3 + 100x2

3 ≥ 98.9x1
3 + 100x2

3,

103x1
3 + 100x2

3 ≥ 98.9x1
3 + 100x2

3,

98x1
3 + 100x2

3 + 0.001 ≤ 98.9x1
3 + 100x2

3,

x1
3, x

2
3 ≥ 0



(4.16)

Since the system is infeasible, we know that X = ∅.

We continue by choosing another subset N+ = {η2, η3} ⊆ ΩT . In this case we have
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X =


x ∈ I ∩ F,

Zν(x) ≥
∑

η∈ΩT pηZ
η(x), ν ∈ N+,

Zν(x) + ε ≤
∑

η∈ΩT pηZ
η(x), ν ∈ ΩT \N+



=



〈e, x3〉 = 1,

Zν(x) ≥
∑

η∈ΩT pηZ
η(x), ν ∈ {η2, η3},

Zν(x) + ε ≤
∑

η∈ΩT pηZ
η(x), ν ∈ {η1, η4},

x3 ≥ 0

x3 ∈ R2



=



x1
3 + x2

3 = 1,

80x1
3 + 100x2

3 + 0.001 ≤ 98.9x1
3 + 100x2

3,

105x1
3 + 100x2

3 ≥ 98.9x1
3 + 100x2

3,

103x1
3 + 100x2

3 ≥ 98.9x1
3 + 100x2

3,

98x1
3 + 100x2

3 + 0.001 ≤ 98.9x1
3 + 100x2

3,

x1
3, x

2
3 ≥ 0



(4.17)

We can check that x1
3 = 0.0011 and x2

3 = 0.9989 is a feasible solution. Since

N+ = {η2, η3}, we consider λ(2) such that

λ(2)(η1) = 0

λ(2)(η2) = κ1,3pη2 = 0.105

λ(2)(η3) = κ1,3pη3 = 0.105

λ(2)(η4) = 0

(4.18)

Hence,

µ(2)(η1) = pη1 + λ(2)(η1)− pη1
∑
η∈ΩT

λ(2)(η)

= 0.09 + 0− 0.09(0 + 0.105 + 0.105 + 0)

= 0.0711

(4.19)
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µ(2)(η2) = pη2 + λ(2)(η2)− pη2
∑
η∈ΩT

λ(2)(η)

= 0.21 + 0.105− 0.21(0 + 0.105 + 0.105 + 0)

= 0.2709

(4.20)

µ(2)(η3) = pη3 + λ(2)(η3)− pη3
∑
η∈ΩT

λ(2)(η)

= 0.21 + 0.105− 0.21(0 + 0.105 + 0.105 + 0)

= 0.2709

(4.21)

µ(2)(η4) = pη4 + λ(2)(η4)− pη4
∑
η∈ΩT

λ(2)(η)

= 0.49 + 0− 0.49(0 + 0.105 + 0.105 + 0)

= 0.3871

(4.22)

Notice that the probability measure µ(2) is the same as the measure µ(1) in the example

in Section 3.4.1, and therefore the resulting κ(2)
min values are also the same. Hence,

κ̄(2)(ν0) = max{κ̄(1)(ν0),κ(2)
min(ν0, µ

(2)
1 )} = max{0, 0.2} = 0.2

κ̄(2)(ν1) = max{κ̄(1)(ν1),κ(2)
min(ν1, µ

(2)
2 )} = max{0, 0.4386} = 0.4386

κ̄(2)(ν2) = max{κ̄(1)(ν2),κ(2)
min(ν2, µ

(2)
2 )} = max{0, 0.5319} = 0.5319

All remaining subsets N+ ⊆ ΩT generate infeasible linear systems and no additional

updates would be performed. Hence, if we set κ̄(νi) = κ̄(2)(νi), i = 0, 1, 2, then the

function ρ1(ρ2(Z(x))) would be an upper bound to ρ1,3(Z(x)) for any policy x ∈ I ∩F .

4.2 Universal Parametric Time-Consistent Upper Bounds by Policy

Enumeration

Algorithm 2 would be appropriate when the size of the scenario tree is relatively small.

In this section we propose an alternative method which could be applied to instances

with large ΩT . We assume that I ∩F is a bounded polyhedral set having the following

representation:

I ∩ F = {x ∈ Rn : Ax = b, x ≥ 0},
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where A ∈ Rr×n has r linearly independent rows. Moreover, we also assume that the

row space of A does not include the span of {eTj : j ∈ J} for any J ⊆ {1, . . . , n}, |J | ≥ 1,

i.e. none of the entries of x are fixed for x ∈ I ∩F . Further, we also consider the matrix

L ∈ R|ΩT |×n of mean-adjusted losses (or costs). The row Lν corresponding to ν ∈ ΩT

is defined as,

Lν =
(
cν1 −

∑
η∈ΩT

pηc
η
1, c

ν
2 −

∑
η∈ΩT

pηc
η
2, . . . , c

ν
T −

∑
η∈ΩT

pηc
η
T

)
,

where cνt is the Ft-measurable vector of random costs corresponding to ν ∈ ΩT . Before

we delve into further details, we introduce the following regularity assumption.

A1 Linear independence:

If ν1, ν2, . . . , νs ∈ ΩT and j1, j2, . . . , jt ∈ {1, 2, . . . , n} are such that s+ t = n− r,

then

rank
([
LTν1 · · · LTνs ej1 · · · ejt AT

])
= n

Notice that the regularity assumption would hold almost certainly if the entries of

A and L were generated by sampling at random from a continuous distribution.

Theorem 14. If ν ∈ Ωt and κ̄(ν) is generated by Algorithm 3 using matrices A and

L that satisfy the regularity assumption, then

κ̄(ν) = max
x∈I∩F

κmin(ν, µxt ). (4.24)

Proof. First, we show that if x ∈ I ∩ F , then µx = µ(k) for some k ∈ N.

Let x ∈ I ∩ F , and denote Nx
+ = {ν ∈ ΩT : λx(ν) = κ1,T pν}. Then, x is a feasible

solution to the following linear system

Lνx ≥ 0, ν ∈ Nx
+,

Lνx ≤ 0, ν ∈ ΩT \Nx
+,

Ax = b,

x ≥ 0.

(4.25)

By the theory of linear programming, we know that since I∩F is a polytope there must

also exist a basic feasible solution y ∈ Rn, with at least n− r of the inequalities in the
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Algorithm 3 Method for Time-Consistent Upper Bounds Using Policy Enumeration

1: for all t = 1, . . . , T − 1 do
2: for all ν ∈ Ωt do
3: κ̄(0)(ν)← 0
4: end for
5: end for
6: k ← 1
7: for all {ν1, . . . , νs} ⊆ ΩT and {j1, . . . , jt} ⊆ {1, . . . , n} such that s+ t = n− r do
8: Let y ∈ Rn be the solution to the following linear system

Lνiy = 0, i = 1, . . . , s,

eTjiy = 0, i = 1, . . . , t,

Ay = b.

(4.23)

9: if y ≥ 0 then
10: for all ν ∈ ΩT do

11: λy(ν)←

{
κ1,T pν if Zν(y) ≥

∑
η∈ΩT pηZ

η(y)

0 otherwise
12: end for
13: for all N+ ⊆ {ν1, . . . , νs} do
14: for all ν ∈ ΩT do

15: λ(k)(ν)←


κ1,T pν if ν ∈ N+

0 if ν ∈ {ν1, . . . , νs} \N+

λy(ν) otherwise
16: end for
17: if ∃x ∈ I ∩ F : λx(ν) = λ(k)(ν), ∀ν ∈ ΩT then
18: for all ν ∈ ΩT do
19: µ(k)(ν)← pν + λ(k)(ν)− pν

∑
η∈ΩT λ

(k)(η)
20: end for
21: for all t = T − 1, . . . , 1 do
22: for all ν ∈ Ωt do
23: wt(ν)← ‖wC(ν)

t+1 ‖1
24: if wt(ν) > 0 then

25: µ
(k)
t (ν)← 1

wt(ν)w
C(ν)
t+1

26: κ̄(ν)← max
(
κ̄(ν),κmin(ν, µ

(k)
t )
)

27: end if
28: end for
29: end for
30: k ← k + 1
31: end if
32: end for
33: end if
34: end for
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above system holding with equality. Let N0 = {ν : 〈Lν , y〉 = 0}. Then 〈Lν , y〉 > 0 for

ν ∈ Nx
+, ν 6∈ N0. Similarly, 〈Lν , y〉 < 0 for ν ∈ Nx

−, ν 6∈ N0. Hence, λy(ν) = λx(ν) for all

ν 6∈ N0. Further, N0 can be partitioned into sets N+ = {ν ∈ N0 : λx(ν) = κ1,T pν} and

N− = {ν ∈ N0 : λx(ν) = 0}. Since Algorithm 3 examines all basic feasible solutions,

as well as all possible subsets N+ and N−, we know that there exists k ∈ N such that

λx = λ(k), which implies µx = µ(k).

Therefore,

κ̄(ν) ≥ max
x∈I∩F

κmin(ν, µxt ).

Furthermore, the conditional statement at line 17 implies that for any µ(k), there

exists a point x ∈ I ∩ F such that µx = µ(k). Therefore,

κ̄(ν) ≤ max
x∈I∩F

κmin(ν, µxt ),

which completes the proof.

The algorithm for policy enumeration can be extended to handle the case when the

regularity assumption is not satisfied. However, such analysis would involve combinato-

rial problems that are beyond the scope of this work. In practice, one can ensure almost

certain regularity by small random perturbations of L and A. The version presented

above entails the solution of only O

((
|ΩT |+ n

n− r

))
systems of linear equations of size

n×n. When n >> m, it is preferable to the straightforward feasibility approach which

involves the solution of O(2|ΩT |) systems of linear inequalities.

Finally, for the root node ν = 1 we can show that κ̄(1) ≤ κ1,T .

Lemma 15. If κ1,T ∈ [0, 1] and κ̄(1) ∈ R is such that κ̄(1) = max
x∈I∩F

κmin(1, µx1), then

κ̄(1) ≤ κ1,T .

Proof. For any x ∈ I ∩ F , µx1 ∈ D1,T , which implies κmin(1, µx1) ≤ κ1,T . Therefore,

κ̄(1) ≤ κ1,T .
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4.2.1 An Example of Constructing Universal Time-Consistent Upper

Bounds by Policy Enumeration

In this section we demonstrate how we can construct universal time-consistent upper

bounds using Algorithm 3. We consider a mean-upper semideviation risk measure

ρ1,3(Z(x)) with κ1,3 = 0.5, and two random variables observed at the final time period

T = 3. We would like to create a time-consistent function ρ1(ρ2(Z(x))) which would

provide an upper bound to ρ1,3(Z(x)) for any policy x ∈ I∩F . In order to be consistent

with Section 4.1.1 we set I ∩ F = {x3 ∈ R2 : 〈eT , x3〉 = 1, x ≥ 0}, and

cη13 = (80, 100)

cη23 = (105, 100)

cη33 = (103, 100)

cη43 = (98, 100)

Thus we can compute the mean-adjusted costs Lν , ν ∈ ΩT to be

Lη1(x) = (−18.6, 0)

Lη2(x) = (6.4, 0)

Lη3(x) = (4.4, 0)

Lη4(x) = (−0.6, 0)

This is illustrated in Figure 4.2. Before we can apply Algorithm 3, we need to make

sure that the regularity condition is satisfied. Since

AT =

1

1


we know that

rank
([
LTν AT

])
= 2, ν ∈ Ω3

and

rank
([

ej AT
])

= 2, j ∈ {1, 2}

Hence we know that condition (A1) holds.

Therefore we can apply Algorithm 3 to the given instance. We initialize κ̄(ν0) =

κ̄(ν1) = κ̄(ν2) = 0 and set k = 1. Now, suppose that the first linear system we consider
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t = 1
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t = 3

κ̄1(ν0) = 0.2

ν0

κ̄2(ν2) = 0.5319κ̄2(ν1) = 0.4386

ν2ν1

0.3 0.7

0.3 0.7 0.3 0.7

Lη4 (x) = (−0.6, 0)Lη3 (x) = (4.4, 0)Lη2 (x) = (6.4, 0)Lη1 (x) = (−18.6, 0)

cη43 = (98, 100)cη33 = (103, 100)cη23 = (105, 100)cη13 = (80, 100)

η4η3η2η1

Figure 4.2: Universal time-consistent upper bounds with policy enumeration.

is

Lν1y = 0

Ay = b

(4.26)

After substitution we get, −18.6 0

1 1

 y =

0

1

 (4.27)

which implies

y =

0

1

 (4.28)

Since y ≥ 0, we know that y ∈ I ∩ F . Furthermore,

Zη1(y) =
[
80 100

]0

1

 = 100 (4.29)

Similarly,

Zη2(y) = Zη3(y) = Zη4(y) = 100

Finally, Zν(y) ≥
∑

η∈ΩT pηZ
η(y), ν ∈ ΩT implies that

λy(η1) = κ1,3pη1 = 0.045

λy(η2) = κ1,3pη2 = 0.105

λy(η3) = κ1,3pη3 = 0.105

λy(η4) = κ1,3pη4 = 0.245

(4.30)
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Next, let us choose N+ = {η1}. Then λ(1) = λy, and therefore λ(1) satisfies the

conditional statement at line 17. Notice that we encountered the same λ(1) in Section

4.1.1. Its corresponding µ(1) is given by

µ(1)(η1) = 0.09

µ(1)(η2) = 0.21

µ(1)(η3) = 0.21

µ(1)(η4) = 0.49

(4.31)

It implies

κ(1)
min(ν0, µ

(1)
1 ) = κ(1)

min(ν1, µ
(1)
2 ) = κ(1)

min(ν2, µ
(1)
2 ) = 0

Hence,

κ̄(1)(ν0) = κ̄(1)(ν1) = κ̄(1)(ν2) = 0

Next we try N+ = ∅. It results in the following λ(2):

λ(2)(η1) = κ1,3pη1 = 0

λ(2)(η2) = κ1,3pη2 = 0.105

λ(2)(η3) = κ1,3pη3 = 0.105

λ(2)(η4) = κ1,3pη4 = 0.245

(4.32)

However, it turns out that this choice of λ(2) is not feasible since there does not exist

x ∈ I ∩ F such that

Zη1(x) <
∑

η∈ΩT pηZ
η(x)

Zη2(x) ≥
∑

η∈ΩT pηZ
η(x)

Zη3(x) ≥
∑

η∈ΩT pηZ
η(x)

Zη4(x) ≥
∑

η∈ΩT pηZ
η(x)

(4.33)

Indeed, we can verify that the system,

80x1
3 + 100x2

3 < 98.9x1
3 + 100x2

3

105x1
3 + 100x2

3 ≥ 98.9x1
3 + 100x2

3

103x1
3 + 100x2

3 ≥ 98.9x1
3 + 100x2

3

98x1
3 + 100x2

3 ≥ 98.9x1
3 + 100x2

3

x1
3 + x2

3 = 1

x1
3, x

2
3 ≥ 0

(4.34)
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is infeasible. Thus, we need to revise our choice of λ(2). Since we have exhausted all

possible choices of the subsets N+ for the current y, we need to consider a new system

of linear equations. Let us consider

eT2 y = 0

Ay = b

(4.35)

which implies, 0 1

1 1

 y =

0

1

 (4.36)

Hence,

y =

1

0

 (4.37)

Clearly y ≥ 0 and y ∈ I ∩ F . We can compute the costs corresponding to the policy y

for each scenario as,

Zη1(y) =
[
80 100

]1

0

 = 80 (4.38)

Zη2(y) =
[
105 100

]1

0

 = 105 (4.39)

Zη3(y) =
[
103 100

]1

0

 = 103 (4.40)

Zη1(y) =
[
98 100

]1

0

 = 98 (4.41)

Thus, ∑
η∈ΩT

pηZ
η(y) = 0.09 · 80 + 0.21 · 105 + 0.21 · 103 + 0.49 · 98

= 98.6

(4.42)
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Hence,

λy(η1) = 0

λy(η2) = κ1,3pη2 = 0.105

λy(η3) = κ1,3pη3 = 0.105

λy(η4) = 0

(4.43)

In this case, our only possible choice is N+ = ∅. Thus we try λ(2) = λy, which

satisfies the conditional statement at line 17. As we have seen in previous examples,

the corresponding µ(2) is given by

µ(2)(η1) = 0.0711

µ(2)(η2) = 0.2709

µ(2)(η3) = 0.2709

µ(2)(η4) = 0.3871

(4.44)

and it leads to the following κ̄(2) values:

κ̄(2)(ν0) = max{κ̄(1)(ν0),κ(2)
min(ν0, µ

(2)
1 )} = max{0, 0.2} = 0.2

κ̄(2)(ν1) = max{κ̄(1)(ν1),κ(2)
min(ν1, µ

(2)
2 )} = max{0, 0.4386} = 0.4386

κ̄(2)(ν2) = max{κ̄(1)(ν2),κ(2)
min(ν2, µ

(2)
2 )} = max{0, 0.5319} = 0.5319

Since there are no additional sets N+ for the current policy y, we need to continue by

choosing another linear system. It turns out, that all of the remaining linear systems

result in λ(k) identical to λ(1). Thus we know that if we set κ̄(νi) = κ̄(2)(νi), i = 0, 1, 2,

then we would construct a universal upper bounding function ρ1(ρ2(Z(x))) to the overall

risk measure ρ1,3(Z(x)) for an arbitrary policy x ∈ I ∩ F .



67

Chapter 5

Numerical Illustration

In this chapter we present numerical experiments of the proposed methods for examples

with the mean-semideviation risk measure applied to the total cost. The measure is

not time-consistent. We consider the case when T = 3 and the number of children at

the root node is finite. Moreover, in our scenario trees every node ν ∈ Ω2 has the same

number of children nodes |C(ν)|.

The experiments were performed on a workstation equipped with two quadcore

Intel Xeon E5520 @ 2.27GHz processors with hyperthreading enabled. We used IBM

ILOG CPLEX 12.2 for the solution of linear programming problems. The workload

was distributed by the MATLAB Parallel Computing Toolbox over 12 workers.

5.1 An Example with Two Assets

In this section we consider the scenario tree for two assets that we studied in Section

4.1.1 and Section 4.2.1. Our setup is illustrated in Figure 5.1. We apply the methods

developed in Chapter 3 and Chapter 4 to construct time-consistent approximations to

the mean-upper semideviation function ρ1,3(Z(x)) for a range of risk-aversion param-

eters κ1,3 = {0, 0.1, 0.2, 0.3, 0.4, 0.5}. We assume that the set of implementable and

feasible policies is given by I ∩ F = {x3 ∈ R2 : 〈eT , x3〉 = 1, x ≥ 0}.
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t = 1

t = 2

t = 3

ν0

ν2ν1

0.3 0.7

0.3 0.7 0.3 0.7

Zη4 (x) = 〈cη43 , x3〉Zη3 (x) = 〈cη33 , x3〉Zη2 (x) = 〈cη23 , x3〉Zη1 (x) = 〈cη13 , x3〉
cη43 = (98, 100)cη33 = (103, 100)cη23 = (105, 100)cη13 = (80, 100)

η4η3η2η1

Figure 5.1: Two-stage scenario tree with two assets.

Both the non-parametric and the parametric time-consistent cutting plane methods

converge after just two iterations for all values of κ1,3. Initially, both methods start

with the original probability measure of the scenario tree shown in Figure 5.1 before

generating the probability measures µ(1) shown in Table 5.1.

H
HHH

HHH
HH

µ(1)

κ1,3
0 0.1 0.2 0.3 0.4 0.5

µ
(1)
η1 0.0900 0.0862 0.0824 0.0787 0.0749 0.0711

µ
(1)
η2 0.2100 0.2222 0.2344 0.2465 0.2587 0.2709

µ
(1)
η3 0.2100 0.2222 0.2344 0.2465 0.2587 0.2709

µ
(1)
η4 0.4900 0.4694 0.4488 0.4283 0.4077 0.3871

Table 5.1: Probability measures computed in the first iteration of the time-consistent

cutting plane method.

In the case of the parametric time-consistent cutting plane method, we also compute

the risk-aversion coefficients κ(2).
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HHH
HHH

HHH
κ(2)

κ1,3
0 0.1 0.2 0.3 0.4 0.5

κ(2)(ν0) 0 0.0400 0.0800 0.1200 0.1600 0.2000

κ(2)(ν1) 0 0.0973 0.1894 0.2768 0.3597 0.4386

κ(2)(ν1) 0 0.1012 0.2049 0.3112 0.4202 0.5319

Table 5.2: Risk-aversion coefficients computed by the parametric time-consistent cut-

ting plane method.

−5 · 10−2 0 5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
98.8

99

99.2

99.4
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99.8

100

κ1,3

R
is

k
V

al
u

e

minx∈I∩F ρ1,3(Zx)

{%(Zx)} in successive iterations of non-parametric Algorithm 1

{%(Zx)} in successive iterations of parametric Algorithm 1

Figure 5.2: Numerical comparison of risk measures for |x| = 2 on a 2× 2 scenario tree.

In general, the parametric time-consistent cutting plane method generates risk-

aversion coefficients that are lower bounds to the coefficients generated by the universal

upper bounding methods of Chapter 4. However, in this example the lower bound is

tight, and the parameters of Table 5.1 coincide with the coefficents that we find with

Algorithm 2 and Algorithm 3. For instances where this is not the case, please see the

next section.
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5.2 Randomly Generated Scenario Trees

Since the predictable translation equivariance axiom implies that all costs can be consid-

ered as final stage costs, we set n1 = n2 = 0, and hence n3 = n. Furthermore, each entry

of the cost vectors cν3 is generated by sampling uniformly at random on [0, 100]. In addi-

tion, the probability pν of occurence of scenario ν ∈ Ω3 is drawn from the uniform [0, 1]

distribution and normalized so that
∑

ν∈ΩT pν = 1. Finally, we assume that the set of

implementable and feasible policies is given by I∩F = {x3 ∈ R2 : 〈eT , x3〉 = 1, x ≥ 0}.

5.2.1 3× 3 Scenario Tree with Ten Assets

In this section we consider a 3× 3 scenario tree that was generated as described above.

Our setup is illustrated in Figure 5.3. We apply the methods developed in Chapter 3

and Chapter 4 to construct time-consistent approximations to the mean-upper semide-

viation function ρ1,3(Z(x)) for a range of risk-aversion parameters κ1,3.
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t = 1

t = 2

t = 3

ν0

ν3ν2ν1

0.411

0.041

0.548

0.066

0.399

0.535 0.422

0.493

0.065 0.765

0.059

0.176

〈cη93 , x3〉〈cη83 , x3〉〈cη73 , x3〉〈cη63 , x3〉〈cη53 , x3〉〈cη43 , x3〉〈cη33 , x3〉〈cη23 , x3〉〈cη13 , x3〉
η9η8η7η6η5η4η3η2η1

Figure 5.3: 3× 3 scenario tree.

The instance that we examine consists of ten assets which result in different costs

under each final stage scenario. The input data is given in Table 5.3.
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cη13 (59.415, 75.057, 80.896, 70.125, 32.670, 56.424, 64.541, 97.807, 61.303, 18.637)

cη23 (89.619, 90.638, 30.165, 90.592, 84.804, 27.235, 51.801, 48.627, 29.368, 34.447)

cη33 (27.885, 59.164, 96.904, 94.730, 12.188, 49.477, 31.332, 74.068, 88.708, 57.113)

cη43 (99.227, 96.227, 52.420, 91.846, 68.652, 82.635, 79.565, 57.115, 51.067, 41.332)

cη53 (20.801, 94.174, 23.668, 63.814, 37.475, 48.364, 53.672, 35.198, 98.098, 74.180)

cη63 (13.446, 83.016, 1.939, 24.154, 43.534, 58.147, 81.142, 81.629, 45.673, 53.794)

cη73 (16.150, 13.742, 58.555, 39.780, 88.429, 60.803, 25.508, 95.885, 37.916, 31.679)

cη83 (33.865, 68.479, 37.693, 96.237, 33.178, 18.713, 18.275, 41.719, 65.393, 28.677)

cη93 (77.712, 34.352, 18.048, 67.280, 30.746, 15.453, 48.824, 72.275, 74.429, 75.928)

Table 5.3: Cost vectors for every final stage tree node.

Initially, the non-parametric time-consistent cutting plane method starts with the

probability measure of the scenario tree of Figure 5.3. It converges in four iterations

for all values of κ1,3 after examining the probability measures shown in Table 5.4.
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HHH
HHH

HHH
µ(k)

κ1,3
0 0.1 0.2 0.3 0.4 0.5 0.6

µ
(1)
η1 0.0271 0.0288 0.0305 0.0323 0.0340 0.0357 0.0375

µ
(1)
η2 0.1640 0.1745 0.1850 0.1955 0.2060 0.2165 0.2271

µ
(1)
η3 0.2201 0.2122 0.2043 0.1964 0.1885 0.1806 0.1727

µ
(1)
η4 0.0185 0.0197 0.0209 0.0220 0.0232 0.0244 0.0256

µ
(1)
η5 0.0206 0.0219 0.0233 0.0246 0.0259 0.0272 0.0285

µ
(1)
η6 0.0027 0.0026 0.0025 0.0024 0.0023 0.0022 0.0021

µ
(1)
η7 0.4183 0.4033 0.3883 0.3733 0.3583 0.3432 0.3282

µ
(1)
η8 0.0322 0.0343 0.0364 0.0384 0.0405 0.0426 0.0446

µ
(1)
η9 0.0965 0.1027 0.1089 0.1151 0.1213 0.1275 0.1336

µ
(2)
η1 0.0271 0.0259 0.0247 0.0235 0.0224 0.0212 0.0200

µ
(2)
η2 0.1640 0.1732 0.1825 0.1918 0.2011 0.2103 0.2196

µ
(2)
η3 0.2201 0.2325 0.2449 0.2574 0.2698 0.2822 0.2947

µ
(2)
η4 0.0185 0.0195 0.0206 0.0216 0.0227 0.0237 0.0248

µ
(2)
η5 0.0206 0.0197 0.0188 0.0179 0.0170 0.0161 0.0152

µ
(2)
η6 0.0027 0.0026 0.0025 0.0024 0.0023 0.0021 0.0020

µ
(2)
η7 0.4183 0.4001 0.3819 0.3638 0.3456 0.3274 0.3092

µ
(2)
η8 0.0322 0.0341 0.0359 0.0377 0.0395 0.0414 0.0432

µ
(2)
η9 0.0965 0.0923 0.0881 0.0839 0.0797 0.0755 0.0713

µ
(3)
η1 0.0271 0.0288 0.0305 0.0323 0.0340 0.0226 0.0217

µ
(3)
η2 0.1640 0.1745 0.1850 0.1955 0.2060 0.2188 0.2297

µ
(3)
η3 0.2201 0.2122 0.2043 0.1964 0.1885 0.1835 0.1762

µ
(3)
η4 0.0185 0.0197 0.0209 0.0220 0.0232 0.0247 0.0259

µ
(3)
η5 0.0206 0.0219 0.0233 0.0246 0.0259 0.0275 0.0289

µ
(3)
η6 0.0027 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022

µ
(3)
η7 0.4183 0.4033 0.3883 0.3733 0.3583 0.3489 0.3350

µ
(3)
η8 0.0322 0.0343 0.0364 0.0384 0.0405 0.0430 0.0452

µ
(3)
η9 0.0965 0.1027 0.1089 0.1151 0.1213 0.1288 0.1352

Table 5.4: Probability measures computed by the non-parametric time-consistent cut-

ting plane method.
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HHH
HHH

HHH
µ(k)

κ1,3
0 0.1 0.2 0.3 0.4 0.5 0.6

µ
(1)
η1 0.0271 0.0288 0.0305 0.0323 0.0340 0.0357 0.0375

µ
(1)
η2 0.1640 0.1745 0.1850 0.1955 0.2060 0.2165 0.2271

µ
(1)
η3 0.2201 0.2122 0.2043 0.1964 0.1885 0.1806 0.1727

µ
(1)
η4 0.0185 0.0197 0.0209 0.0220 0.0232 0.0244 0.0256

µ
(1)
η5 0.0206 0.0219 0.0233 0.0246 0.0259 0.0272 0.0285

µ
(1)
η6 0.0027 0.0026 0.0025 0.0024 0.0023 0.0022 0.0021

µ
(1)
η7 0.4183 0.4033 0.3883 0.3733 0.3583 0.3432 0.3282

µ
(1)
η8 0.0322 0.0343 0.0364 0.0384 0.0405 0.0426 0.0446

µ
(1)
η9 0.0965 0.1027 0.1089 0.1151 0.1213 0.1275 0.1336

µ
(2)
η1 0.0271 0.0288 0.0305 0.0323 0.0340 0.0357 0.0217

µ
(2)
η2 0.1640 0.1745 0.1850 0.1955 0.2060 0.2165 0.2297

µ
(2)
η3 0.2201 0.2122 0.2043 0.1964 0.1885 0.1806 0.1762

µ
(2)
η4 0.0185 0.0197 0.0209 0.0220 0.0232 0.0244 0.0259

µ
(2)
η5 0.0206 0.0219 0.0233 0.0246 0.0259 0.0272 0.0289

µ
(2)
η6 0.0027 0.0026 0.0025 0.0024 0.0023 0.0022 0.0022

µ
(2)
η7 0.4183 0.4033 0.3883 0.3733 0.3583 0.3432 0.3350

µ
(2)
η8 0.0322 0.0343 0.0364 0.0384 0.0405 0.0426 0.0452

µ
(2)
η9 0.0965 0.1027 0.1089 0.1151 0.1213 0.1275 0.1352

µ
(3)
η1 0.0271 0.0288 0.0305 0.0323 0.0340 0.0357 0.0181

µ
(3)
η2 0.1640 0.1745 0.1850 0.1955 0.2060 0.2165 0.2081

µ
(3)
η3 0.2201 0.2122 0.2043 0.1964 0.1885 0.1806 0.2792

µ
(3)
η4 0.0185 0.0197 0.0209 0.0220 0.0232 0.0244 0.0235

µ
(3)
η5 0.0206 0.0219 0.0233 0.0246 0.0259 0.0272 0.0262

µ
(3)
η6 0.0027 0.0026 0.0025 0.0024 0.0023 0.0022 0.0018

µ
(3)
η7 0.4183 0.4033 0.3883 0.3733 0.3583 0.3432 0.2798

µ
(3)
η8 0.0322 0.0343 0.0364 0.0384 0.0405 0.0426 0.0409

µ
(3)
η9 0.0965 0.1027 0.1089 0.1151 0.1213 0.1275 0.1225

Table 5.5: Probability measures computed by the parametric time-consistent cutting

plane method.
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The parametric time-consistent cutting plane method also starts with the probabil-

ity measure shown in Figure 5.3. However, using Table 5.5 we can see that it does not

examine the same probability measures as its non-parametric counterpart. Moreover,

the parametric time-consistent cutting plane method also involves the computation of

the risk-aversion coefficients κ(2) shown in Table 5.6.

H
HHH

HHH
HH

κ(k)

κ1,3
0 0.1 0.2 0.3 0.4 0.5 0.6

κ(2)(ν0) 0 0.0699 0.1399 0.2098 0.2798 0.3497 0.4197

κ(2)(ν1) 0 0.0990 0.1959 0.2908 0.3838 0.4749 0.5642

κ(2)(ν2) 0 0.0946 0.1793 0.2558 0.3251 0.3882 0.4459

κ(2)(ν3) 0 0.1013 0.2051 0.3115 0.4208 0.5329 0.6480

κ(3)(ν0) 0 0.0699 0.1399 0.2098 0.2798 0.3497 0.4197

κ(3)(ν1) 0 0.0990 0.1959 0.2908 0.3838 0.4749 0.5768

κ(3)(ν2) 0 0.0946 0.1793 0.2558 0.3251 0.3882 0.4459

κ(3)(ν3) 0 0.1013 0.2051 0.3115 0.4208 0.5329 0.6480

κ(4)(ν0) 0 0.0699 0.1399 0.2098 0.2798 0.3497 0.4197

κ(4)(ν1) 0 0.0990 0.1959 0.2908 0.3838 0.4749 0.5768

κ(4)(ν2) 0 0.0946 0.1793 0.2558 0.3251 0.3882 0.4879

κ(4)(ν3) 0 0.1013 0.2051 0.3115 0.4208 0.5329 0.7407

Table 5.6: Risk-aversion coefficients computed by the parametric time-consistent cut-

ting plane method.
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Figure 5.4: Time-consistent cutting plane approximations for |x| = 10 on a 3×3 scenario

tree.

The risk value corresponding to the second iteration of the non-parametric cutting

plane method would always be a lower bound on the risk value encountered in the

second iteration of the parametric cutting plane method. This is due to the fact that

both methods start with the same probability measure (given by the scenario tree), and

the parametric cutting plane method imposes extra conditions on the geometry of the

dual set. However, this observation cannot be extended past the second iteration, as

can be seen in Figure 5.4.

Additionally, we can also construct universal time-consistent upper bounds. Since

the given example has nine final stage scenarios and ten assets Algorithm 2 is preferable

to Algorithm 3. The resulting values of the risk-aversion coefficients κ̄ are shown in

Table 5.7.
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H
HHH

HHH
HH

κ̄

κ1,3
0 0.1 0.2 0.3 0.4 0.5 0.6

κ̄(ν0) 0 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000

κ̄(ν1) 0 0.1056 0.2237 0.3566 0.5073 0.6798 0.8789

κ̄(ν2) 0 0.1069 0.2295 0.3718 0.5386 0.7371 0.9773

κ̄(ν3) 0 0.1045 0.2186 0.3440 0.4822 0.6354 0.8062

Table 5.7: Risk-aversion coefficients for the universal time-consistent upper bounds

computed by Algorithm 2.
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ρ1,3(Z(x∗)) with x∗ = arg minx∈I∩F ρ1(ρ2(Z(x))), κ̄1, κ̄2 of Algorithm 2

ρ1(ρ2(Zx
∗
)) with κ̄1, κ̄2 of Algorithm 2, x∗ = arg minx∈I∩F ρ1,3(Z(x))

{%(Z(x))} in successive iterations of non-parametric Algorithm 1

{%(Z(x))} in successive iterations of parametric Algorithm 1

Figure 5.5: Universal time-consistent upper bounds for |x| = 10 on a 3 × 3 scenario

tree.

We can see in Figure 5.5 that calculating the original time-inconsistent risk measure

min
x∈I∩F

ρ1,3(Z(x)) at the optimal solution of the universal time-consistent approximation

min
x∈I∩F

ρ1(ρ2(Z(x))) results in risk values that are also close to optimal.
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Finally, we point out that if we are given a policy y ∈ I ∩ F , then we can con-

sider risk aversion coefficients κt(ν) = κmin(ν, µyt ) for every ν ∈ Ωt. Those risk coef-

ficents would provide a time-consistent upper bound that holds only for the policy y.

Such an approach might be useful when y is an optimal policy of the original problem

minx∈I∩F ρ1,T (Z(x)) since it would provide a time-consistent approximation which is

also an upper bound on the optimal risk value under the policy y. Before delving into

further numerical experiments, we introduce the following notation. We use κt C x to

denote the case when κt(ν) = κmin(ν, µxt ) for every ν ∈ Ωt. We use this notation in

Figure 5.6.
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minx∈I∩F ρ1(ρ2(Z(x))) with κ1,κ2 C arg minx∈I∩F ρ1,3(Z(x))

minx∈I∩F ρ1(ρ2(Z(x))) with κ̄1, κ̄2 of Algorithm 2

ρ1,3(Z(x∗)) with x∗ = arg minx∈I∩F ρ1(ρ2(Z(x)))

and κ1,κ2 C arg minx∈I∩F ρ1,3(Z(x))

ρ1(ρ2(Zx
∗
)) with x∗ = arg minx∈X ρ1,3(Z(x)), κ1,κ2 C x∗

{%(Z(x))} in successive iterations of non-parametric Algorithm 1

{%(Z(x))} in successive iterations of parametric Algorithm 1

Figure 5.6: Numerical comparison of risk measures for |x| = 10 with a 3 × 3 scenario

tree.

We can see in Figure 5.6 that when κ1,κ2Cx∗, where x∗ = arg min
x∈X

ρ1,3(Z(x)), then

the time-consistent approximation ρ1(ρ2(Z(x∗))) is a very close upper bound to the
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optimal value of the overall risk measure min
x∈X

ρ1,3(Z(x)). Finally, we emphasize that

the small tree size of the current instance greatly affected its computability, as the total

computational time of the three experiments in Figures 5.4, 5.5, and 5.6 was only 153

seconds.

5.2.2 5× 5 Scenario Tree with Four Assets

In order to demonstrate the advatages of Algorithm 3 we briefly consider a 5×5 scenario

tree. Although we do not provide a graphical illustration of the tree, we assume that

its nodes are numbered analogously to Figure 5.3, with ν0 being the root node, while

νi, i = 1, . . . , 5 denote the nodes at time t = 2, and ηi, i = 1, . . . , 25 are the nodes at

the final time t = 3. The tree has probability and cost vectors as described in Table

5.8.

For comparison purposes, we compute the parametric and non-parametric time-

consistent cutting plane approximations.
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{%(Z(x))} in successive iterations of parametric Algorithm 1

Figure 5.7: Time-consistent cutting plane methods for |x| = 4 on a 5× 5 scenario tree.

Now, we can find the universal time-consistent upper bounds using Algorithm 3.
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pη cη3
η1 0.0621 (64.5417, 74.0680, 34.4474, 96.2274)
η2 0.0088 (1.9392, 37.4751, 79.5653, 81.6297)
η3 0.0582 (74.1806, 13.7424, 18.0484, 33.1785)
η4 0.0751 (25.5083, 72.2757, 28.6771, 66.6513)
η5 0.0657 (75.0412, 98.8503, 56.9733, 10.5219)
η6 0.0035 (51.8017, 61.3036, 57.1131, 94.1740)
η7 0.0023 (91.8465, 43.5344, 53.6729, 51.0679)
η8 0.0114 (53.7940, 68.4795, 39.7808, 30.7468)
η9 0.0088 (18.2751, 37.9167, 75.9282, 7.8974)
η10 0.0015 (17.8871, 76.7937, 49.7376, 41.1539)
η11 0.0878 (31.3321, 29.3680, 99.2278, 83.0161)
η12 0.0607 (63.8141, 82.6351, 81.1422, 98.0987)
η13 0.0605 (16.1500, 34.3523, 96.2377, 60.8032)
η14 0.0926 (48.8246, 65.3938, 24.9761, 31.9317)
η15 0.0577 (27.7866, 71.6044, 40.0331, 73.9521)
η16 0.0004 (97.8074, 88.7082, 20.8017, 52.4200)
η17 0.0057 (24.1547, 48.3643, 57.1152, 45.6739)
η18 0.0052 (33.8655, 58.5552, 67.2808, 18.7134)
η19 0.0061 (95.8852, 74.4292, 72.8453, 75.2682)
η20 0.0017 (8.7366, 55.6881, 35.6340, 13.7085)
η21 0.0676 (48.6270, 18.6371, 13.4466, 23.6688)
η22 0.0510 (68.6522, 58.1472, 35.1985, 41.3324)
η23 0.0552 (77.7125, 37.6937, 88.4294, 15.4534)
η24 0.0597 (41.7191, 31.6790, 11.6598, 32.3898)
η25 0.0905 (35.4732, 49.1377, 1.0538, 98.1735)

Table 5.8: Probabilities and cost vectors for every final stage tree node.
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minx∈I∩F ρ1(ρ2(Z(x))) with κ̄1, κ̄2 of Algorithm 3

ρ1,3(Z(x∗)) with x∗ = arg minx∈I∩F ρ1(ρ2(Z(x))), κ̄1, κ̄2 of Algorithm 3

ρ1(ρ2(Z(x∗))) with κ̄1, κ̄2 of Algorithm 3, x∗ = arg minx∈I∩F ρ1,3(Z(x))

{%(Z(x))} in successive iterations of non-parametric Algorithm 1

{%(Z(x))} in successive iterations of parametric Algorithm 1

Figure 5.8: Universal time-consistent upper bounds for |x| = 4 on a 5× 5 scenario tree.
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The use of Algorithm 2 for the experiment in Figure 5.8 would be impractical since

it would entail the solution of 225 linear programming problems for every κ1,3 value.

However, due to the small value of |x|, we were able to complete the experiment in

a matter of minutes using Algorithm 3. On all figures we repeat the the results of

the parametric version of Algorithm 1 to illustrate the difference between the universal

bounds and the bounds for the optimal value. Clearly, the universal bounds are worse

than the parametric bounds, which are in turn worse than the non-parametric bounds.

However, all methods closely approximate the original problem for a wide range of risk

aversion coefficients. We also provide for comparison the results that would have been

obtained if we knew the optimal solution x̂ of the “true” problem. Finally, we calculate

the “true” risk measure at the optimal solution x∗ of the approximate time-consistent

problem, to illustrate the accuracy of approximation. Moreover, the optimal solutions of

the dynamic problems result in near-optimal objective values for the time-inconsistent

formulation. The total computational time for the experiments in Figures 5.7, 5.8, and

5.9 was 423 seconds.
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{%(Z(x))} in successive iterations of non-parametric Algorithm 1

{%(Z(x))} in successive iterations of parametric Algorithm 1

Figure 5.9: Numerical comparison of risk measures for |x| = 4 on a 5× 5 scenario tree.

5.3 Time Consistency of the Dow Jones Industrial Average

The Dow Jones Industrial Average, or simply the Dow, is a stock market index that was

named after former Wall Street Journal editor Charles Dow and statistician Edward

Jones. The index comprises thirty large publicly owned companies and summarizes

their stock market performance during a standard trading session. Created in 1896,

the Dow is widely considered to be one of the most informative indicators of financial

markets.

In this section we consider a two stage scenario tree for the stock returns of all

companies forming the Dow. More specifically, we use a 4×4 scenario tree created with

the multivariate GARCH scenario generation method of Gulten and Ruszczyński [24].

The model training data consists of daily stock price observations for the time period
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between September 2, 2008 and November 30, 2011. The scenario trees are available

at [23]. In its original form, the method produces scenarios for stock returns, and since

we have adopted a cost interpretation we need to multiply the numerical output by −1

in order to make it useful for our purposes.

Under our setup, the time unit is one month which implies that the tree nodes of

Ω2 correspond to scenarios for one month ahead, and the nodes of Ω3 correspond to

scenarios for two months into the future. For the sake of readability, we measure the

losses using basis points rather than small fractions.

We consider the following set of feasible and implementable policies I ∩ F = {x2 ∈

R
30, x3 ∈ R30 : 〈eT , x2〉 + 〈eT , x3〉 = 1, x ≥ 0}. Now, we can apply the methods of

Chapter 3 and Chapter 4. We begin with the non-parametric and parametric cutting

plane methods.
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Figure 5.10: Time-consistent cutting plane approximations for |x| = 60 on a 4 × 4

scenario tree.

In Figure 5.10 the two versions of the time-consistent cutting plane method converge

to very close values. Moreover, the time-consistent risk functions %(Z(x)) closely ap-

proximate the original time-inconsistent mean-upper semideviation risk measure ρ1,3(Z(x)).
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Now, let us examine the universal time-consistent upper bounds.
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{%(Z(x))} in successive iterations of non-parametric Algorithm 1

{%(Z(x))} in successive iterations of parametric Algorithm 1

Figure 5.11: Universal time-consistent upper bounds for |x| = 60 on a 4 × 4 scenario

tree.

We can see in Figure 5.11 that the optimal objective values of the universal time-

consistent risk measures are very close to the optimal objective values of the time-

consistent cutting plane methods. Such behavior is desirable in practice since Algorithm

1 can be applied to large problems where Algorithm 2 and Algorithm 3 would not be

computationally feasible. Moreover, in Figure 5.12 we consider the construction of

time-consistent approximations using only the optimal solution of the time-inconsistent

problem min
x∈I∩F

ρ1,3(Z(x)).
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Figure 5.12: Numerical comparison of risk measures for |x| = 60 on a 4 × 4 scenario

tree.

Again, the resulting time-consistent risk functions ρ1(ρ2(Z(x))) where κ1,κ2 C

arg min
x∈I∩F

ρ1,3(Z(x)) have optimal objective values that are very close to the univer-

sal time-consistent upper bounds. Furthermore, we mention that the completion of the

three experiments in Figures 5.10, 5.11, and 5.12 took 997 seconds.

In conclusion, our numerical experiments indicate that the proposed algorithms

generate close time-consistent approximations when used with a two-stage scenario tree

for the monthly returns of the components of the Dow Jones Industrial Average. The

results suggest that the methods can be successfully applied to practical problems, while

maintaining the time-consistency of decisions, the interpretability of risk preferences

and the computability of solutions.
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Chapter 6

Conclusion

There is a great variety of possible methods that can be considered for the measurement

of risk associated with uncertain outcomes. In order to improve the interpretability and

usefulness of the notion of risk, researchers employ an axiomatic approach. Coherent

risk measures are defined as functions of random variables that have the properties of

subadditivity, monotonicity, translation equivariance and positive homogeneity. Fur-

thermore, one can show that coherent risk measures are also convex, and therefore they

adopt a dual representation.

In addition to making one-time decisions, practioners are often concerned with the

evolution of risk over time. Still, the analysis of risk in a multi-period setting can be a

treacherous excercise as identical risk preferences can imply vastly different decisions at

different time periods. This phenomenon, commonly referred to as time-inconsistency,

can present a significant obstacle to decision makers. Fortunately, one can avoid such

discrepancies by using specially constructed functions known as time-consistent risk

measures.

In our work we have explored the time-consistency of coherent risk measures in

the framework of multistage risk-averse stochastic optimization problems on finite sce-

nario trees. We have shown that dynamic time-consistent formulations can be used to

approximate problems that have a single global coherent risk measure applied to the

aggregated costs over all time periods.

We employed the duality of coherent risk measures to create a time-consistent cut-

ting plane algorithm. In its original form, the method constructs non-parametric time-

consistent approximations that are based on one-step conditional risk functions speci-

fied only by their dual representation. Furthermore, we showed that the result can be
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extended to construct time-consistent approximations where every one-step measure

belongs to a given parametric family. This is accomplished by restricting the func-

tional form of the multikernels in the composition of risk measures, and finding the

smallest sets of probability measures containing the convex hull of already discovered

subgradients within the specified family of sets.

In addition, we also develop two methods for the construction of universal time-

consistent upper bounding functions when the given global objective function is the

mean-upper semideviation measure of risk. Our first approach is based on scenario

enumeration which can be applied only to problems with a small number of final stage

scenarios. Its greatest virtues are the straightforward implementation and the appli-

cability to instances involving high-dimensional policies. Our second method involves

policy enumeration which is suitable for problems with low-dimensional policies. How-

ever, it can be applied to larger trees than the scenario enumeration algorithm. Using

the two methods, we are able to construct functions that provide time-consistent upper

bounds to the global risk measure for any feasible policy.

In order to analyze the quality of the approximations generated by the proposed

methods we conducted multiple computational experiments. We considered instances

involving two-stage scenario trees with artificial data, as well as trees with stock return

data for the components of the Dow Jones Industrial Average. In all cases, our time-

consistent formulations yielded close approximations to the original problem for a wide

range of risk aversion parameters.

In the future, we can consider several extensions of the current work. One possible

avenue for exploration would be the study of time-consistent approximations for risk

measures that lack coherency or convexity. In this direction, the Value at Risk function

might be particularly attractive because of its wide use in practice. Another possibility

would be the development of improvements of the current underlying model that would

enhance the interpretability or computability of the resulting approximations. Such

adjustments might be challenging as they could require fundamental changes to the

proposed methodology.
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[49] A. Ruszczyński and A. Shapiro. Conditional risk mappings. Mathematics of Op-
erations Research, 31(3):544–561, 2006.
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