AUTOMORPHIC DISTRIBUTIONS AND THE FUNCTIONAL EQUATION FOR THE STANDARD L-FUNCTION FOR G_{2}

BY BRANDON BATE

A dissertation submitted to the Graduate School-New Brunswick Rutgers, The State University of New Jersey in partial fulfillment of the requirements for the degree of Doctor of Philosophy Graduate Program in Mathematics
Written under the direction of
Stephen Miller
and approved by

\qquad
\qquad
\qquad
\qquad

New Brunswick, New Jersey
October, 2013

ABSTRACT OF THE DISSERTATION

Automorphic Distributions and the Functional Equation for the Standard L-Function for G_{2}

by Brandon Bate
Dissertation Director: Stephen Miller

In this thesis we calculate a series expansion for automorphic distributions on the Lie group for the split real form of \mathfrak{g}_{2}. We then define distributional analogues of the θ function and the metaplectic Eisenstein series, which have many of the desirable properties of their smooth counterparts. In conclusion, we prove a functional equation for metaplectic Eisenstein distributions. It is believed that with these results, it should be possible to define a distributional version of the Rankin-Selberg integral given in [6], from which we should be able to derive the archimedean functional equation for the standard L-function of generic, cuspidal automorphic representations of the Lie group for the split real form of \mathfrak{g}_{2}.

Acknowledgements

At times I am tempted to think this thesis was a result of my intellect, determination, and overall character, but the truth is that I am not particularly strong in any of these traits. Instead, this thesis resulted from the commitment and patience of my teachers, the support of my family and friends, and the comfort I find in God. In particular, I wish to give heartfelt thanks to my wife Juliet who through her support, both emotional and practical, spurred me on towards completing this thesis. I would also like to thank my little "research assistant" Elijah, who constantly reminds me that there many things other than mathematics for us humans to investigate. In addition, I would like to thank my mother for her support and wisdom, and my sisters for providing a fun-filled, nonmathematical time whenever we come to visit. There are many other friends who have encouraged me throughout this thesis, and although I cannot list all their names, I would like to issue a general "thank you" to all of them nonetheless. Special thanks is also owed to my many mathematics teachers who played a pivotal role in encouraging me to pursue mathematics. In particular, I would like to thank Avner Ash, Benjamin Howard, Robert Gross, Wei Hu, Henryk Iwaniec, Jake Jacobson, Stephen Miller, and Jerrold Tunnell for their encouragement and instruction. In addition, I would like to thank Lisa Carbone and Brooke Feigon for their work in reviewing this thesis. I am grateful to all of you for your help in completing this thesis.

Dedication

To Juliet and Elijah.

Table of Contents

Abstract ii
Acknowledgements iii
Dedication iv

1. A Review of Representation Theory 3
1.1. Smooth Vectors and Distributions 3
1.2. Sections of Vector Bundles 5
1.3. Automorphic Distributions 8
2. Automorphic Distributions on G_{2} 9
2.1. G_{2} Preliminaries 9
2.2. Basic Lemmas from Fourier Analysis 12
2.3. Preliminary Applications of Lemmas 20
2.4. Some Inequalities 24
2.5. $N_{\mathbb{Z}}$-Invariant Functions 33
2.6. Subspaces of $L^{2}\left(N_{\mathbb{Z}} \backslash N\right)$ 39
2.6.1. Analysis of $W_{[[\gamma]], m_{5}, m_{4}, m_{3}}$ 43
2.6.2. Analysis of $W_{0, k_{5}, k_{4}, k_{3}, k_{1}}$ 49
2.6.3. Analysis of $W_{0,0,0,0, k_{1}, k_{2}}$ 54
2.7. A Fourier Series for $N_{\mathbb{Z}}$-invariant Distributions on N 55
2.8. Automorphic Distributions on G_{2} 61
3. Distributions on Other Groups 66
3.1. A Double Cover of $\mathrm{SL}_{2}^{ \pm}$ 66
3.2. A Double Cover of J 73
3.3. The Theta Distribution 78
4. Metaplectic Eisenstein Distributions 85
4.1. The Metaplectic Eisenstein Distribution at ∞ 85
4.2. Fourier Coefficients of $\widetilde{E}_{\nu}^{(\infty)}$ 93
4.3. The Meromorphic Continuation of Fourier Coefficients 103
4.4. The Metaplectic Eisenstein Distribution at 0 119
4.5. The Eisenstein Distribution Functional Equation 124
Vita 134

Introduction

In this thesis we present results for automorphic distributions on the split real form of the group G_{2}, as well as results for automorphic distributions on certain metaplectic groups. In chapter 1 we define the notion of an automorphic distribution associated to an automorphic representation, and reference a result of Casselman-Wallach which allows us to realize such distributions as elements of a distributional principal series representation space, or equivalently, as distributional sections of a vector bundle over G / B, where B is a Borel subgroup. If N is the unipotent radical of the global Cartan involution of B then N gives a dense open set in G / B. The restriction of automorphic distributions to N is well-defined, and hence motivates the study of $L^{2}\left(N_{\mathbb{Z}} \backslash N\right)$ where $N_{\mathbb{Z}}=G_{\mathbb{Z}} \cap N$ and $G_{\mathbb{Z}}$ is a discrete subgroup of G. Indeed, a series expansion of automorphic distributions can be deduced from a series expansion of elements belonging to $L^{2}\left(N_{\mathbb{Z}} \backslash N\right)$; we carry out this computation in chapter 2 .

Two methods are available for computing Fourier series expansions for elements of $L^{2}\left(N_{\mathbb{Z}} \backslash N\right)$. One approach is to use the Kirillov orbit method [11] to compute irreducible $N_{\mathbb{Z}}$-invariant representations and then explicitly compute a certain class of $N_{\mathbb{Z}}$-invariant automorphic distributions on N in order to deduce the series expansion for elements of $L^{2}\left(N_{\mathbb{Z}} \backslash N\right)$ (see [15] for an explanation of how the latter step can be performed). The other method is more ad-hoc in nature, but uses only basic Fourier analysis results. We computed the series expansions using both methods and found (as one would hope) that both series expansions agree. In this thesis, we shall forgo presenting the Kirillov orbit method approach, and instead give a detailed account of the latter method in chapter 2.

In chapter 3, we calculate the "unbounded model" for distributional principal series representation spaces on $\widetilde{S L}_{2}$ and $\widetilde{\mathrm{SL}_{2}^{ \pm}}$. Such results will be needed for our work in
chapter 4 with metaplectic Eisenstein distributions. In addition to this, we calculate the "unbounded model" for distributional principal series representation spaces on \widetilde{J} and $\widetilde{J^{ \pm}}$, which are groups that are closely related to a particular subgroup of G_{2}. We then conclude chapter 3 with defining a θ distribution on \widetilde{J}, and prove that that this distribution has many of the nice properties shared by its smooth counterparts.

In chapter 4 we define the metaplectic Eisenstein distribution, and prove the analytic continuation and functional equation of these distributions. In the context of principal series representations, the functional equation of metaplectic Eisenstein distributions is expressed in terms of other intertwined metaplectic Eisenstein distributions. Although the existence of such a functional equation is well-known, to the best of our knowledge, this is the first time its exact formulation has been recorded in the literature.

It is hoped that by using these various results, it will be possible to obtain the functional equation for the standard L-function for generic, cuspidal automorphic representations of G_{2}. Indeed, by utilizing the trilinear pairing of automorphic distributions defined in [16], it appears likely that a distributional analogue of the Rankin-Selberg integral in [6] should yield the functional equation for such L-functions.

Chapter 1

A Review of Representation Theory

1.1 Smooth Vectors and Distributions

Let G be a reductive Lie group and \mathfrak{g} its corresponding Lie algebra. ${ }^{1}$ Let V be a separable Hilbert space, $\operatorname{End}(V)$ the space of continuous (i.e., bounded) linear maps of V into V, and $\operatorname{GL}(V)$ the invertible elements of $\operatorname{End}(V)$. Let $\pi: G \rightarrow \mathrm{GL}(V)$ be a group homomorphism such that $(g, v) \mapsto \pi(g) v$ is a continuous map from $G \times V$ to V. In this case, the pair (π, V) is called a representation of G. If the image of π consists of unitary operators, then we say that (π, V) is a unitary representation.

In what follows, we shall assume that (π, V) is a (possibly non-unitary) representation of G. We shall wish to study a special subspace of V, and will need the following definitions in order to define this space. Let S be an open subset of \mathbb{R}^{n} and $f: S \rightarrow V$. We say that f is differentiable at $x_{0} \in S$ if there exists a linear map $L: \mathbb{R}^{n} \rightarrow V$ such that

$$
\lim _{x \rightarrow x_{0}} \frac{\left\|f(x)-f\left(x_{0}\right)-L\left(x-x_{0}\right)\right\|}{\left|x-x_{0}\right|}=0
$$

where $\|\cdot\|$ is the norm on V and $|\cdot|$ is the norm on \mathbb{R}^{n}. One can show that if such an L exists then L is unique [19, Theorem 2-1]. Furthermore, L is a continuous linear map since \mathbb{R}^{n} is finite dimensional (i.e., $L \in \operatorname{End}\left(\mathbb{R}^{n}, V\right)$). We shall denote L by $f^{\prime}\left(x_{0}\right)$.

If f is differentiable for all $x \in S$, then we define $f^{\prime}: S \rightarrow \operatorname{End}\left(\mathbb{R}^{n}, V\right)$ in the aforementioned way. We call f^{\prime} the derivative of f. If f^{\prime} is continuous then we say that f is of class C^{1}. Under the operator norm, $\operatorname{End}\left(\mathbb{R}^{n}, V\right)$ is a Banach space [5, Proposition 5.4], and thus it makes sense to ask if f^{\prime} is differentiable at points in S. Continuing in this manner, it is possible to define $f^{(k)}$ for all $k \in \mathbb{Z}_{>0}$. We say that f is of class C^{k}

[^0]if $f^{(k)}$ is continuous. If f is of class C^{k} for all positive integers k, then we say that f is smooth, or equivalently, that f is of C^{∞} class. We extend these definitions to functions defined over smooth manifolds in the usual way by use of coordinate charts. A smooth vector is a vector $v \in V$ such that $g \mapsto \pi(g) v$ is smooth. Let V^{∞} denote the space of smooth vectors of V.

For $v \in V$ and $X \in \mathfrak{g}$, define

$$
\begin{equation*}
\pi(X) v=\lim _{t \rightarrow 0} \frac{\pi(\exp (t X)) v-v}{t} \tag{1.1}
\end{equation*}
$$

For general v, this limit may not exist for every $X \in \mathfrak{g}$, but if $v \in V^{\infty}$, then one can prove that $\pi(X) v$ exists for every $X \in \mathfrak{g}$ and that $\pi(X) v \in V^{\infty}$. Furthermore, one can show that π is a Lie algebra homomorphism, and hence extends to an algebra homomorphism of the universal enveloping algebra $U\left(\mathfrak{g}^{\mathbb{C}}\right)$ [13, Proposition 3.9]. For finite dimensional V, one can show that $V^{\infty}=V$, but this is not the case for V infinite dimensional. Nevertheless, one can show that V^{∞} is dense in V [13, Theorem 3.15].

The space V^{∞} can inherit a topology from the norm of V, but for many applications it is more useful to give a possibly finer topology defined by the following seminorms:

$$
p_{D}(v)=\|\pi(D) v\|
$$

where $D \in U(\mathfrak{g})$. One can restrict to a countable number of such D by forming a vector space basis for $U\left(\mathfrak{g}^{\mathbb{C}}\right)$. Notice that the seminorm for $D=I$ implies that this topology is indeed no coarser than that of V. One can show that V^{∞} is a complete space under these seminorms, and hence V^{∞} is a Fréchet space [23, Lemma 1.6.4].

Let V^{\prime} denote the dual vector space of V, and let $\left(\pi^{\prime}, V^{\prime}\right)$ denote the dual representation for (π, V). Recall that by definition,

$$
\left(\pi^{\prime}(g) f\right)(v)=f\left(\pi\left(g^{-1}\right) v\right)
$$

for $f \in V^{\prime}$. Let $V^{-\infty}$ denote the space of continuous linear functionals on $\left(V^{\prime}\right)^{\infty}$. We say that $V^{-\infty}$ is the space of distributions for V. By fixing an inner-product on V^{\prime} one can identify elements of V with elements of $\left(V^{\prime}\right)^{\prime}$. Thus, as linear functionals on $\left(V^{\prime}\right)^{\infty}$, we have

$$
V^{\infty} \subset V \subset V^{-\infty}
$$

In this way we are able to think of distributions as generalized functions in the sense of Gelfand et al.

We say that $\phi: G \rightarrow \operatorname{End}(W)$, where W is a Fréchet space, is a smooth representation if
(1) ϕ is a group homomorphism,
(2) $(g, w) \mapsto \phi(g) w$ is a continuous map from $G \times W$ to W, and
(3) $g \mapsto \phi(g) w$ is smooth for all $g \in G$.

Obviously (1) and (3) hold for π restricted to V^{∞}. One can show that (2) holds as well [23, Lemma 1.6.4]. Thus π restricted to V^{∞} is a smooth representation. Likewise, the restriction of π^{\prime} to $\left(V^{\prime}\right)^{\infty}$ is a smooth representation. The dual action of $\left(\pi^{\prime},\left(V^{\prime}\right)^{\infty}\right)$ defines an action of G on $V^{-\infty}$, which we denote by π.

When working with the space of distributions $V^{-\infty}$, one typically gives $V^{-\infty}$ the weak* topology. However, we shall have need of a finer topology known as the strong distribution topology $[21, \S 19]$. Suppose we are given a Fréchet space W defined by semi-norms $\|\cdot\|_{j}$ for $j \in J$, where J is a countable set. We say that $B \subset W$ is bounded if there exists $\left(M_{j}\right)_{j \in J} \in \mathbb{R}_{>0}^{J}$ such that $\|v\|_{j} \leq M_{j}$ for all $v \in B$ and $j \in J$. We say that a sequence of distributions τ_{n} on W converges to a distribution τ on W in the strong distribution topology if for any $\epsilon>0$ and bounded set $B \subset W$, there exists $N>0$ such that

$$
\left|\tau_{n}(\psi)-\tau(\psi)\right|<\epsilon
$$

for all $n>N$ and $\psi \in B$. One can check that the action π on $V^{-\infty}$ is continuous with respect to the strong distribution topology.

1.2 Sections of Vector Bundles

Let B be a subgroup of G, and let (ω, V) be a finite-dimensional representation of B. We define an equivalence relation \sim on $G \times V$:

$$
\begin{equation*}
\left(g_{1}, v_{1}\right) \sim\left(g_{2}, v_{2}\right) \text { if there exists } b \in B \text { such that }\left(g_{1} b, \omega\left(b^{-1}\right) v_{1}\right)=\left(g_{2}, v_{2}\right) \tag{1.2}
\end{equation*}
$$

where $g_{1}, g_{2} \in G$ and $v_{1}, v_{2} \in V$. Let $E_{V}=(G \times V) / \sim$. Observe that the map $(g, v) \mapsto g$ on $G \times V$ induces a well-defined map from E_{V} to G / B. Let $p: E_{V} \rightarrow G / B$ denote this map, and let $\mathcal{E}_{\omega}=\mathcal{E}(G, B, \omega)$ denote the fiber bundle with total space E_{V}, base space G / B, and projection map $p: E_{V} \rightarrow G / B$. For $g B \in G / B$, one can show that $p^{-1}(g B)$ is naturally isomorphic to V, and hence \mathcal{E}_{ω} is in fact a vector bundle. Furthermore, left inverse multiplication by G on $G \times V$ and G induces a well-defined action of G on E_{V} and G / B. With respect to this action, one can show that p is an equivariant map. Such vector bundles are commonly referred to as equivariant vector bundles.

Let $\Gamma^{\infty}\left(\mathcal{E}_{\omega}\right)$ denote the space of smooth sections of \mathcal{E}_{ω}. We let π_{ω} denote the action of inverse left translation on elements of $\Gamma^{\infty}\left(\mathcal{E}_{\omega}\right)$. This action is well-defined since \mathcal{E}_{ω} is an equivariant vector bundle under this action. Since distributions can be defined in terms of local data, it follows that there also exists a space of vector-valued distribution sections of \mathcal{E}_{ω}, which we shall denote by $\Gamma^{-\infty}\left(\mathcal{E}_{\omega}\right)$. As before, we let π_{ω} denote the action of inverse left translation on elements of $\Gamma^{-\infty}\left(\mathcal{E}_{\omega}\right)$.

Often times it will be helpful to view elements of $\Gamma^{\infty}\left(\mathcal{E}_{\omega}\right)$ as functions on G into \mathbb{C}^{m} where m is the dimension of V over \mathbb{C}. To see how this is done, fix $s \in \Gamma^{\infty}\left(\mathcal{E}_{\omega}\right)$. For $g \in G$ there exists a unique $v_{g} \in V$ such that

$$
s(g B)=\left\{\left(g b, \omega\left(b^{-1}\right) v_{g}\right): b \in B\right\} \in E_{V} .
$$

From s we then define $f: G \rightarrow V$ by $f(g)=v_{g}$. Since $v_{g b}=\omega\left(b^{-1}\right) v_{g}$ it follows that

$$
\begin{equation*}
f(g b)=\omega\left(b^{-1}\right) f(g) . \tag{1.3}
\end{equation*}
$$

Conversely, for smooth $f: G \rightarrow V$ which satisfies (1.3), one can show that

$$
s(g B)=\left\{\left(g b, \omega\left(b^{-1}\right) f(g)\right): b \in B\right\}
$$

defines an element $\Gamma^{\infty}\left(\mathcal{E}_{\omega}\right)$. Consequently,

$$
\Gamma^{\infty}\left(\mathcal{E}_{\omega}\right) \cong V_{\omega}^{\infty}(G)=\left\{f \in C^{\infty}\left(G, \mathbb{C}^{m}\right): f(g b)=\omega\left(b^{-1}\right) f(g) \text { for all } g \in G, b \in B\right\}
$$

where $C^{\infty}\left(G, \mathbb{C}^{m}\right)$ is the space of smooth functions from G to \mathbb{C}^{m}. Likewise, since
$\Gamma^{\infty}\left(\mathcal{E}_{\omega}\right)$ is a dense space in $\Gamma^{-\infty}\left(E_{\omega}\right)$, we see that

$$
\begin{equation*}
\Gamma^{-\infty}\left(E_{\omega}\right) \cong V_{\omega}^{-\infty}(G)=\left\{f \in C^{-\infty}\left(G, \mathbb{C}^{m}\right): f(g b)=\omega\left(b^{-1}\right) f(g) \text { for all } g \in G, b \in B\right\}, \tag{1.4}
\end{equation*}
$$

where $C^{-\infty}\left(G, \mathbb{C}^{m}\right)$ is the space of distribution vectors from G to \mathbb{C}^{m}, and where the equality in (1.4) is interpreted an equality between distributions on G. When given $f \in V_{\omega}^{-\infty}(G)$, we will let s_{f} denote the corresponding element of $\Gamma^{-\infty}\left(\mathcal{E}_{\omega}\right)$ given by the isomorphism in (1.4).

Let $h \in G$, and let N denote the unipotent radical of the Cartan involution of B, where B is a minimal parabolic subgroup of G. Observe that the map

$$
h n B \mapsto\left(h n B, v_{h n}\right)
$$

is a local trivialization of the vector bundle \mathcal{E}_{ω} on $h N B \subset G / B$. We can restrict $s \in$ $\Gamma^{\infty}\left(\mathcal{E}_{\omega}\right)$ to $h N B$, or more precisely, restrict s via the aforementioned local trivialization of the vector bundle. When we do, we obtain the function

$$
h n B \mapsto v_{h n}
$$

on $h N B$. We can likewise restrict distributional sections $s \in V_{\omega}^{-\infty}$ and shall do so often throughout this thesis.

In our applications, we will usually take B to be a minimal parabolic subgroup of G satisfying $G=B K$, where K is a maximal compact subgroup of G. Supposing that this is the case, for $f \in V_{\omega}^{\infty}$ define

$$
\|f\|=\left(\int_{K}|f(k)|^{2}\right)^{1 / 2} d k
$$

where $d k$ is a Haar measure for K and $|\cdot|$ is the usual norm on \mathbb{C}^{m}. Under this norm, one show that V_{ω}^{∞} is a pre-Hilbert space. Upon completion, we obtain a Hilbert space we denote by $V_{\omega}(G)$, with π_{ω} denoting the left regular representation as usual. One can show that V_{ω}^{∞} is the space of smooth vectors for $\left(\pi_{\omega}, V_{\omega}\right)$.

Consider the pairing

$$
\left(f_{1}, f_{2}\right)=\int_{K}\left\langle f_{1}(k), f_{2}(k)\right\rangle d k
$$

where $f_{1} \in V_{\omega}, f_{2} \in V_{\omega^{\prime}}, \omega^{\prime}$ is the dual representation of ω, and $\langle\cdot, \cdot\rangle$ is the usual bilinear form on $\mathbb{C}^{m} \times \mathbb{C}^{m}$. One can show from the non-degeneracy of this pairing that the dual of V_{ω} can be identified with $V_{\omega^{\prime}}$. Furthermore, one can show that if $V \cong V_{\omega}$ then $V^{-\infty} \cong V_{\omega}^{-\infty}$.

1.3 Automorphic Distributions

Let Γ be a discrete subgroup of G. The group G acts on $L^{2}\left(\Gamma \backslash G / Z_{G}\right)$ by the right regular representation, which we shall denote by r. One can prove that $\left(r, L^{2}\left(\Gamma \backslash G / Z_{G}\right)\right.$) is in fact a unitary representation of G and that the space of smooth vectors for $\left(r, L^{2}\left(\Gamma \backslash G / Z_{G}\right)\right)$ is contained in $C^{\infty}\left(\Gamma \backslash G / Z_{G}\right)$. Let (π, V) be an irreducible unitary representation of G which embeds as a direct summand of $L^{2}\left(\Gamma \backslash G / Z_{G}\right)$ and let

$$
i: V \hookrightarrow L^{2}\left(\Gamma \backslash G / Z_{G}\right)
$$

denote this embedding. If $v \in V^{\infty}$ then the function

$$
\tau(v)=i(v)(e)
$$

is well-defined; in fact, it can be shown that $\tau \in\left(V^{\prime}\right)^{-\infty}$. Furthermore, since $i(v) \in$ $C^{\infty}\left(\Gamma \backslash G / Z_{G}\right)$, we have that τ is Γ-invariant. We signify this by writing $\tau \in\left(\left(V^{\prime}\right)^{-\infty}\right)^{\Gamma}$. Elements of $\left(\left(V^{\prime}\right)^{-\infty}\right)^{\Gamma}$ which arise from such embeddings are called automorphic distributions. Since V^{∞} is dense in V it follows that one can reconstruct i from τ.

A result of Casselman and Wallach ([3] and [22, Theorem 5.8]) states that there exists a (possibly non-unitary) representation ω of B such that:

$$
V^{\infty} \hookrightarrow V_{\omega}^{\infty}, \quad V \hookrightarrow V_{\omega}, \quad \text { and } V^{-\infty} \hookrightarrow V_{\omega}^{-\infty}
$$

Therefore we can identify τ as an element of $V_{\omega}^{-\infty}$ for some (possibly non-unitary) representation ω of B.

Chapter 2

Automorphic Distributions on G_{2}

2.1 G_{2} Preliminaries

Let \mathfrak{g} denote the split real form of the Lie algebra \mathfrak{g}_{2}. We shall let $G=G_{2}$ denote the corresponding split real Lie group for \mathfrak{g}. We identify \mathfrak{g} concretely as a Lie subalgebra of $\mathfrak{s o}(4,3)$. This in turn allows us to identify G as a Lie subgroup of $\mathrm{SO}(4,3)$, the split real form of the Lie group $\mathrm{SO}(7)$. Ross Lawther has shown that the following root vectors of \mathfrak{g} correspond to the positive roots (under the Bourbaki labeling) $\beta, \alpha, \alpha+\beta, 2 \alpha+\beta$, $3 \alpha+\beta, 3 \alpha+2 \beta$ (respectively):

$$
\begin{aligned}
& \mathcal{P}_{1}=\left(\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \mathcal{P}_{2}=\left(\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 \\
0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right), \\
& \mathcal{P}_{3}=\left(\begin{array}{ccccccc}
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \mathcal{P}_{4}=\left(\begin{array}{ccccccc}
0 & 0 & 0 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right),
\end{aligned}
$$

$$
\mathcal{P}_{5}=\left(\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \mathcal{P}_{6}=\left(\begin{array}{lllllll}
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right),
$$

and that the following root vectors of \mathfrak{g} correspond to the negative roots $-\beta,-\alpha$, $-\alpha-\beta,-2 \alpha-\beta,-3 \alpha-\beta,-3 \alpha-2 \beta$ (respectively):

$$
\begin{array}{ll}
\mathcal{N}_{1}=\left(\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \mathcal{N}_{2}=\left(\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right), \\
\mathcal{N}_{3}=\left(\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & 0
\end{array}\right), & \mathcal{N}_{4}=\left(\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -2 & 0 & 0 & 0
\end{array}\right),
\end{array}
$$

$$
\mathcal{N}_{5}=\left(\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0
\end{array}\right), \quad \mathcal{N}_{6}=\left(\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

By basic Lie theory we know that \mathfrak{g} is generated by $\left\{\mathcal{P}_{i}\right\}$ and $\left\{\mathcal{N}_{i}\right\}$ as a Lie algebra and that G is generated by $\exp \left(x_{i} \mathcal{P}_{i}\right)$ and $\exp \left(y_{i} \mathcal{N}_{i}\right)$ where $x_{i}, y_{i} \in \mathbb{R}$. Let \mathfrak{n} denote the Lie subalgebra generated by the $\left\{\mathcal{P}_{i}\right\}$ and let N denote its corresponding subgroup. Once again, by Lie theory we see that N is generated by $\exp \left(x_{i} \mathcal{P}_{i}\right)$ where $x_{i} \in \mathbb{R}$. The elements $\mathcal{P}_{i}, \mathcal{N}_{i}$, and $\left[\mathcal{P}_{i}, \mathcal{N}_{i}\right]$ for $i=1,2$ can be shown to form a Chevalley basis for \mathfrak{g}_{2} over \mathbb{Z}. Let $\mathfrak{g}_{\mathbb{Z}}$ denote the \mathbb{Z}-span of this basis and let $G_{\mathbb{Z}}$ denote the subgroup of G which fixes the lattice $\mathfrak{g}_{\mathbb{Z}}$ under the adjoint action. One can show that $G_{\mathbb{Z}}$ is generated by $\exp \left(x_{i} \mathcal{P}_{i}\right)$ and $\exp \left(y_{i} \mathcal{N}_{i}\right)$ where $x_{i}, y_{i} \in \mathbb{Z}[2]$. Let $N_{\mathbb{Z}}=G_{\mathbb{Z}} \cap N$. Notice that $N_{\mathbb{Z}}$ is generated by $\exp \left(x_{i} \mathcal{P}_{i}\right)$ where $x_{i} \in \mathbb{Z}$.

The groups N and $N_{\mathbb{Z}}$ will be primary objects of study throughout this thesis. Below we define the one parameter subgroups for N corresponding to the positive roots:

$$
\begin{array}{lll}
R_{1}(x)=\exp \left(x \mathcal{P}_{1}\right), & R_{2}(x)=\exp \left(x \mathcal{P}_{2}\right), & R_{3}(x)=\exp \left(x \mathcal{P}_{3}\right), \\
R_{4}(x)=\exp \left(x \mathcal{P}_{4}\right), & R_{5}(x)=\exp \left(x \mathcal{P}_{5}\right), & R_{6}(x)=\exp \left(x \mathcal{P}_{6}\right), \tag{2.1}
\end{array}
$$

where $x \in \mathbb{R}$. To streamline notation, we write $P_{i}=R_{i}\left(p_{i}\right), Q_{i}=R_{i}\left(q_{i}\right), T_{i}=R_{i}\left(t_{i}\right)$, $X_{i}=R_{i}\left(x_{i}\right), Y_{i}=R_{i}\left(y_{i}\right)$ where $p_{i}, q_{i}, t_{i}, x_{i}, y_{i} \in \mathbb{R}$. Let $N_{i}=R_{i}(1)$, which we have essentially already shown to be generators of $N_{\mathbb{Z}}$.

Let G_{β} denote an embedded SL_{2} of the Levi subgroup for the root β; specifically,
we shall let G_{β} denote the group consisting of elements of the form

$$
h=\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \tag{2.2}\\
0 & a & -b & 0 & 0 & 0 & 0 \\
0 & -c & d & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & a & -b & 0 \\
0 & 0 & 0 & 0 & -c & d & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right),
$$

where $a, b, c, d \in \mathbb{R}$ and $a d-b c=1$. Let Γ_{β} denote the $\mathrm{SL}_{2}(\mathbb{Z})$ subgroup of G_{β}; that is to say, let Γ_{β} consists of elements h where $a, b, c, d \in \mathbb{Z}$ and $a d-b c=1$. Observe that for $h \in G_{\beta}$ we have

$$
\begin{align*}
& h X_{6} h^{-1}=R_{6}\left(a x_{6}\right) R_{5}\left(c x_{6}\right), \quad h X_{5} h^{-1}=R_{6}\left(b x_{5}\right) R_{5}\left(d x_{5}\right), \quad h X_{4} h^{-1}=X_{4}, \\
& h X_{3} h^{-1}=R_{6}\left(-2 a^{2} c x_{3}^{3}\right) R_{5}\left(-a c^{2} x_{3}^{3}\right) R_{4}\left(-a c x_{3}^{2}\right) R_{3}\left(a x_{3}\right) R_{2}\left(c x_{3}\right), \\
& h X_{2} h^{-1}=R_{6}\left(-2 b^{2} d x_{2}^{3}\right) R_{5}\left(-b d^{2} x_{2}^{3}\right) R_{4}\left(-b d x_{2}^{2}\right) R_{3}\left(b x_{2}\right) R_{2}\left(d x_{2}\right), \tag{2.3}
\end{align*}
$$

and

$$
\begin{align*}
& X_{6}=h R_{6}\left(d x_{6}\right) R_{5}\left(-c x_{6}\right) h^{-1}, \quad X_{5}=h R_{6}\left(-b x_{5}\right) R_{5}\left(a x_{5}\right) h^{-1}, \quad X_{4}=h X_{4} h^{-1}, \\
& X_{3}=h R_{6}\left(2 c d^{2} x_{3}^{3}\right) R_{5}\left(-c^{2} d x_{3}^{3}\right) R_{4}\left(c d x_{3}^{2}\right) R_{3}\left(d x_{3}\right) R_{2}\left(-c x_{3}\right) h^{-1}, \\
& X_{2}=h R_{6}\left(-2 a b^{2} x_{2}^{3}\right) R_{5}\left(a^{2} b x_{2}^{3}\right) R_{4}\left(a b x_{2}^{2}\right) R_{3}\left(-b x_{2}\right) R_{2}\left(a x_{2}\right) h^{-1} . \tag{2.4}
\end{align*}
$$

For fixed $h \in G_{\beta}$, it follows from (2.3) and (2.4) that N is generated by $X_{1}, h X_{2} h^{-1}$, $h X_{3} h^{-1}, h X_{4} h^{-1}, h X_{5} h^{-1}$, and $h X_{6} h^{-1}$ where $x_{i} \in \mathbb{R}$. Likewise, for fixed $\gamma \in \Gamma_{\beta}$, it follows from (2.3) and (2.4) that $N_{\mathbb{Z}}$ is generated by $X_{1}, \gamma X_{2} \gamma^{-1}, \gamma X_{3} \gamma^{-1}, \gamma X_{4} \gamma^{-1}$, $\gamma X_{5} \gamma^{-1}$, and $\gamma X_{6} \gamma^{-1}$ where $x_{i} \in \mathbb{Z}$; or more simply, we see that $N_{\mathbb{Z}}$ is generated by $N_{1}, \gamma N_{2} \gamma^{-1}, \gamma N_{3} \gamma^{-1}, \gamma N_{4} \gamma^{-1}=N_{4}, \gamma N_{5} \gamma^{-1}, \gamma N_{6} \gamma^{-1}$.

2.2 Basic Lemmas from Fourier Analysis

A principal aim of this chapter is to give a full description of functions $f: N \rightarrow \mathbb{C}$ which are $N_{\mathbb{Z}}$-invariant; that is to say, we wish to express such functions in terms of
a general series expansion. We will accomplish this by using the lemmas given in this section.

Let $h: \mathbb{R} \times N \rightarrow \mathbb{C}$ be a continuous function. If K is a compact subset of N and K^{\prime} is a compact subset of \mathbb{R} then we define

$$
\|h\|_{K^{\prime} \times K}=\sup _{(x, n) \in K^{\prime} \times K}|h(x, n)| .
$$

Likewise, if $f: N \rightarrow \mathbb{C}$ is a continuous function then we define

$$
\|f\|_{K}=\sup _{n \in K}|f(n)| .
$$

If we have that $h(x+1, n)=h(x, n)$ for all $x \in \mathbb{R}$ and $n \in N$, then we define $h_{m}: N \rightarrow \mathbb{C}$ by

$$
h_{m}(n)=\int_{0}^{1} h(t, n) e(-m t) d t
$$

where $m \in \mathbb{Z}, n \in N$, and $e(z)=e^{2 \pi i z}$.
Lemma 2.1. Let $h: \mathbb{R} \times N \rightarrow \mathbb{C}$ be a smooth function such that $h(x+1, n)=h(x, n)$ for all $x \in \mathbb{R}$ and $n \in N$. For $m \in \mathbb{Z}_{\neq 0}$ and $j \in \mathbb{Z}_{>0}$,

$$
\left\|h_{m}\right\|_{K} \leq(2 \pi|m|)^{-j}\left\|\partial_{x}^{j} h\right\|_{[0,1] \times K} .
$$

Furthermore,

$$
\sum_{m \in \mathbb{Z}}\left\|h_{m}\right\|_{K} \leq\|h\|_{[0,1] \times K}+\sum_{m \in \mathbb{Z}_{\neq 0}}\left\|h_{m}\right\|_{K} \leq\|h\|_{[0,1] \times K}+\left\|\partial_{x}^{2} h\right\|_{[0,1] \times K},
$$

and for $j>2$,

$$
\sum_{m \in \mathbb{Z}}|m|^{j-2}\left\|h_{m}\right\|_{K} \leq\left\|\partial_{x}^{j} h\right\|_{[0,1] \times K}
$$

Proof. For $j \in \mathbb{Z}_{\geq 0}$ it follows that $\left(\partial_{x}^{j} h\right)(x+1, n)=\left(\partial_{x}^{j} h\right)(x, n)$. Thus for $m \neq 0$, when we apply integration by parts we find that

$$
\begin{aligned}
& \int_{0}^{1}\left(\partial_{x}^{j} h\right)(t, n) e(-m t) d t=\left[\left(\partial_{x}^{j} h\right)(t, n) \frac{e(-m t)}{-2 \pi i m}\right]_{0}^{1}-\int_{0}^{1}\left(\partial_{x}^{j+1} h\right)(t, n) \frac{e(-m t)}{-2 \pi i m} d t \\
& =\frac{1}{2 \pi i m} \int_{0}^{1}\left(\partial_{x}^{j+1} h\right)(t, n) e(-m t) d t
\end{aligned}
$$

By induction,

$$
\left\|h_{m}\right\|_{K} \leq(2 \pi|m|)^{-j}\left\|\int_{0}^{1}\left(\partial_{x}^{j} h\right)(t, n) e(-m t) d t\right\|_{K} \leq(2 \pi|m|)^{-j}\left\|\partial_{x}^{j} h\right\|_{[0,1] \times K} .
$$

Since $\sum_{m \in \mathbb{Z}_{\neq 0}} m^{-2}=\frac{\pi^{2}}{3}$ it follows that

$$
\sum_{m \in \mathbb{Z}}\left\|h_{m}\right\|_{K}=\left\|h_{0}\right\|_{K}+\sum_{m \in \mathbb{Z}_{\neq 0}}\left\|h_{m}\right\|_{K} \leq\|h\|_{[0,1] \times K}+\left\|\partial_{x}^{2} h\right\|_{[0,1] \times K},
$$

and for $j>2$,

$$
\sum_{m \in \mathbb{Z}}|m|^{j-2}\left\|h_{m}\right\|_{K} \leq\left\|\partial_{x}^{j} h\right\|_{K} .
$$

Lemma 2.2. Let $h: \mathbb{R} \times N \rightarrow \mathbb{C}$ be a smooth function such that $h(x+1, n)=h(x, n)$ for all $x \in \mathbb{R}$ and $n \in N$. For any compact subset $K \subset N$, the sum $\sum_{|m| \leq M} h_{m}(n) e(m x)$ converges uniformly to $h(x, n)$ on $\mathbb{R} \times K$ as $M \rightarrow \infty$. In particular, $\sum_{|m| \leq M} h_{m}(n)$ converges uniformly to $h(0, n)$ on K as $M \rightarrow \infty$.

Proof. Observe that both h and $\partial_{x}^{2} h$ are uniformly continuous on $\mathbb{R} \times K$. Thus for $\epsilon>0$, there exists $\delta>0$ and U an open subset of the identity element $e \in N$ such that

$$
\begin{equation*}
\left|h(x, n)-h\left(x_{0}, n_{0}\right)\right|<\epsilon \quad \text { and } \quad\left|\partial_{x}^{2} h(x, n)-\partial_{x}^{2} h\left(x_{0}, n_{0}\right)\right|<\epsilon \tag{2.5}
\end{equation*}
$$

for $(x, n),\left(x_{0}, n_{0}\right) \in \mathbb{R} \times K,\left|x-x_{0}\right|<\delta$, and $n n_{0}^{-1} \in U$. Since K is compact, there exists a finite number of translates of U which cover K. Let $\left\{\gamma_{1}, \ldots, \gamma_{\ell}\right\}$ denote elements of N such that $\left\{U \gamma_{1}, \ldots, U \gamma_{\ell}\right\}$ covers K. It follows that for any point $n \in K$, there will exist a $\gamma_{i} \in\left\{\gamma_{1}, \ldots, \gamma_{\ell}\right\}$ such that $n \gamma_{i}^{-1} \in U$.

For each γ_{i} there exists $M_{i} \in \mathbb{Z}_{>0}$ such that

$$
\sup _{x \in \mathbb{R}}\left|h\left(x, \gamma_{i}\right)-\sum_{|m| \leq M} h_{m}\left(\gamma_{i}\right) e(m x)\right|<\epsilon
$$

for all $M>M_{i}$; this is simply the convergence of Fourier series on compacta for smooth functions in one variable. Let M_{0} denote the maximum of these M_{i}. Fix $(x, n) \in \mathbb{R} \times K$
and let $\gamma_{i} \in\left\{\gamma_{1}, \ldots, \gamma_{\ell}\right\}$ such that $n \gamma_{i}^{-1} \in U$. Thus for $M>M_{0}$, we have

$$
\begin{align*}
& \left|h(x, n)-\sum_{|m| \leq M} h_{m}(n) e(m x)\right| \\
& \leq\left|h(x, n)-h\left(x, \gamma_{i}\right)\right|+\left|h\left(x, \gamma_{i}\right)-\sum_{|m| \leq M} h_{m}\left(\gamma_{i}\right) e(m x)\right| \\
& \quad+\left|\sum_{m \leq M}\left(h_{m}\left(\gamma_{i}\right)-h_{m}(n)\right) e(m x)\right| \\
& \leq 2 \epsilon+\left|\sum_{|m| \leq M}\left(h_{m}\left(\gamma_{i}\right)-h_{m}(n)\right) e(m x)\right| . \tag{2.6}
\end{align*}
$$

Let $p_{n}(x)=h\left(x, \gamma_{i}\right)-h(x, n)$. By Lemma 2.1 and (2.5) we have

$$
\sum_{|m| \leq M}\left|\widehat{p}_{n}(m)\right| \leq\left\|p_{n}\right\|_{[0,1]}+\left\|p_{n}^{\prime \prime}\right\|_{[0,1]}<\epsilon+\left\|p_{n}^{\prime \prime}\right\|_{[0,1]}
$$

Since $p_{n}^{\prime \prime}(x)=\partial_{x}^{2} h\left(x, \gamma_{i}\right)-\partial_{x}^{2} h(x, n)$, it follows once more from (2.5) that

$$
\sum_{|m| \geq M}\left|\widehat{p}_{n}(m)\right| \leq 2 \epsilon .
$$

Since $\widehat{p}_{n}(m)=h_{m}\left(\gamma_{i}\right)-h_{m}(n)$ it follows from (2.6) that

$$
\left|h(x, n)-\sum_{|m| \leq M} h_{m}(n) e(n x)\right| \leq 5 \epsilon
$$

for $M>M_{0}$. Since this inequality holds for any $(x, n) \in \mathbb{R} \times K$, our lemma then follows.

Let $f: N \rightarrow \mathbb{C}$ be a locally integrable function. For $k_{i}, m_{i} \in \mathbb{Z}$, and $\gamma \in \Gamma_{\beta}$ we define the following functions:

$$
\begin{align*}
& f_{k_{6}}(n)=\int_{0}^{1} f\left(T_{6} n\right) e\left(-k_{6} t_{6}\right) d t_{6} \tag{2.7a}\\
& f_{k_{6}, k_{5}}(n)=\int_{0}^{1} \int_{0}^{1} f\left(T_{6} T_{5} n\right) e\left(-k_{6} t_{6}-k_{5} t_{5}\right) d t_{6} d t_{5} \tag{2.7b}\\
& f_{\gamma, m_{5}}(n)=\int_{0}^{1} \int_{0}^{1} f\left(\gamma T_{6} T_{5} \gamma^{-1} n\right) e\left(-m_{5} t_{5}\right) d t_{6} d t_{5} \tag{2.7c}\\
& f_{k_{6}, k_{5}, k_{4}}(n)=\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} f\left(T_{6} T_{5} T_{4} n\right) e\left(-k_{6} t_{6}-k_{5} t_{5}-k_{4} t_{4}\right) d t_{6} d t_{5} d t_{4} \tag{2.7d}
\end{align*}
$$

$$
\begin{gather*}
f_{\gamma, m_{5}, m_{4}}(n)=\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} f\left(\gamma T_{6} T_{5} T_{4} \gamma^{-1} n\right) e\left(-m_{5} t_{5}-m_{4} t_{4}\right) d t_{6} d t_{5} d t_{4} \tag{2.7e}\\
f_{k_{6}, k_{5}, k_{4}, k_{3}}(n)=\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} f\left(T_{6} T_{5} T_{4} T_{3} n\right) e\left(-k_{6} t_{6}-k_{5} t_{5}-k_{4} t_{4}-k_{3} t_{3}\right) \\
d t_{6} d t_{5} d t_{4} d t_{3} \tag{2.7f}\\
f_{\gamma, m_{5}, m_{4}, m_{3}}(n)=\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} f\left(\gamma T_{6} T_{5} T_{4} T_{3} \gamma^{-1} n\right) e\left(-m_{5} t_{5}-m_{4} t_{4}-m_{3} t_{3}\right) \\
d t_{6} d t_{5} d t_{4} d t_{3} \tag{2.7~g}\\
f_{k_{6}, k_{5}, k_{4}, k_{3}, k_{1}}(n)=\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} f\left(T_{6} T_{5} T_{4} T_{3} T_{1} n\right) e\left(-k_{6} t_{6}-k_{5} t_{5}-k_{4} t_{4}\right) \\
e\left(-k_{3} t_{3}-k_{1} t_{1}\right) d t_{6} d t_{5} d t_{4} d t_{3} d t_{1}, \tag{2.7h}\\
f_{0,0,0,0, k_{1}, k_{2}}(n)=\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} f\left(T_{6} T_{5} T_{4} T_{3} T_{1} T_{2} n\right) e\left(-k_{1} t_{1}-k_{2} t_{2}\right) \\
d t_{6} d t_{5} d t_{4} d t_{3} d t_{1} d t_{2}, \tag{2.7i}
\end{gather*}
$$

where $n \in N$. We caution the reader about one aspect of our notation in (2.7). Notice that our notation for (2.7b) and (2.7c) are very similar in form; the only distinction between the two being that first index in (2.7b) is an integer and the first index in (2.7c) is an element of Γ_{β}. We hope that the reader will not be too confused by this similar notation; context will make clear which function we are referring to in our arguments. This same warning also applies to (2.7d), (2.7e), (2.7f), and (2.7g).

In section 2.3 and section 2.4, we will apply Lemmas 2.1 and 2.2 to obtain a series expansion for smooth, $N_{\mathbb{Z}}$-invariant $f: N \rightarrow \mathbb{C}$ in terms of the functions in (2.7) (see Theorem 2.10 for the end result). In order to apply Lemmas 2.1 and 2.2 , we will need the following lemma.

Lemma 2.3. If $f: N \rightarrow \mathbb{C}$ is an $N_{\mathbb{Z}}$-invariant, locally integrable function, then for all $k_{i}, m_{i} \in \mathbb{Z}$ and $\gamma \in \Gamma_{\beta}$, we have
(a) $x_{6} \mapsto f\left(\gamma X_{6} \gamma^{-1} n\right)$ is periodic with period 1,
(b) $x_{5} \mapsto \int_{0}^{1} f\left(\gamma T_{6} X_{5} \gamma^{-1} n\right) e\left(-k_{6} t_{6}\right) d t_{6}$ is periodic with period 1,
(c) $x_{4} \mapsto \int_{0}^{1} \int_{0}^{1} f\left(\gamma T_{6} T_{5} X_{4} \gamma^{-1} n\right) e\left(-m_{5} t_{5}\right) d t_{6} d t_{5}$ is periodic with period 1,
(d) $x_{3} \mapsto \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} f\left(\gamma T_{6} T_{5} T_{4} X_{3} \gamma^{-1} n\right) e\left(-m_{5} t_{5}-m_{4} t_{4}\right) d t_{6} d t_{5} d t_{4}$ is periodic with period 1,
(e) $x_{1} \mapsto \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} f\left(T_{6} T_{5} T_{4} T_{3} X_{1} n\right) e\left(-k_{5} t_{5}-k_{4} t_{4}-k_{3} t_{3}\right) d t_{6} d t_{5} d t_{4} d t_{3}$ is periodic with period 1,
(f) $x_{2} \mapsto \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} f\left(T_{6} T_{5} T_{4} T_{3} T_{1} X_{2} n\right) e\left(-k_{1} t_{1}\right) d t_{6} d t_{5} d t_{4} d t_{3} d t_{1}$ is periodic with period 1 .

Proof. Part (a) follows immediately from the $N_{\mathbb{Z}}$-invariance of f. Parts (b) and (c) follows from the $N_{\mathbb{Z}}$-invariance of f and the equalities

$$
\gamma T_{6} N_{5} \gamma^{-1}=\left(\gamma N_{5} \gamma^{-1}\right)\left(\gamma T_{6} \gamma^{-1}\right) \text { and } \gamma T_{6} T_{5} N_{4} \gamma^{-1}=\left(\gamma N_{4} \gamma^{-1}\right)\left(\gamma T_{6} T_{5} \gamma^{-1}\right),
$$

which are seen to be true by either direct computation or by observing that X_{4}, X_{5}, and X_{6} commute with each other for all $x_{i} \in \mathbb{R}$.

For part (d), observe that

$$
\gamma T_{6} T_{5} T_{4} N_{3} \gamma^{-1}=\left(\gamma N_{3} \gamma^{-1}\right)\left(\gamma R_{6}\left(-3 t_{4}+t_{6}\right) T_{5} T_{4} \gamma^{-1}\right)
$$

Thus

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} f\left(\gamma T_{6} T_{5} T_{4} N_{3} X_{3} \gamma^{-1} n\right) e\left(-m_{5} t_{5}-m_{4} t_{4}\right) d t_{6} d t_{5} d t_{4} \\
& =\int_{0}^{1} \int_{0}^{1}\left(\int_{0}^{1} f\left(\gamma R_{6}\left(-3 t_{4}+t_{6}\right) T_{5} T_{4} X_{3} \gamma^{-1} n\right) d t_{6}\right) e\left(-m_{5} t_{5}-m_{4} t_{4}\right) d t_{5} d t_{4}
\end{aligned}
$$

Part (d) then follows by performing the change of variables $t_{6} \mapsto t_{6}+3 t_{4}$ and applying part (a) to return the domain of integration in the t_{6} variable to the interval $[0,1]$.

For part (e), observe that $T_{6} T_{5} T_{4} T_{3} N_{1}=N_{1} R_{6}\left(-t_{5}+t_{6}\right) T_{5} T_{4} T_{3}$. Thus

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} f\left(T_{6} T_{5} T_{4} T_{3} N_{1} n\right) e\left(-k_{5} t_{5}-k_{4} t_{4}-k_{3} t_{3}\right) d t_{6} d t_{5} d t_{4} d t_{3} \\
& =\int_{0}^{1} \int_{0}^{1} \int_{0}^{1}\left(\int_{0}^{1} f\left(\gamma R_{6}\left(-t_{5}+t_{6}\right) T_{5} T_{4} X_{3} \gamma^{-1} n\right) d t_{6}\right) e\left(-k_{5} t_{5}-k_{4} t_{4}-k_{3} t_{3}\right) \\
& \quad d t_{5} d t_{4} d t_{3}
\end{aligned}
$$

Part (e) then follows by performing the change of variables $t_{6} \mapsto t_{6}+t_{5}$ and applying part (a) to return the domain of integration in the t_{6} variable to the interval $[0,1]$.

For part (f), observe that

$$
\begin{aligned}
& T_{6} T_{5} T_{4} T_{3} T_{1} N_{2} \\
& =N_{2} R_{6}\left(t_{1}^{2}+3 t_{1} t_{3}+3 t_{3}^{2}+t_{6}\right) R_{5}\left(-t_{1}-3 t_{3}-3 t_{4}+t_{5}\right) R_{4}\left(t_{1}+2 t_{3}+t_{4}\right) R_{3}\left(t_{1}+t_{3}\right) T_{1} .
\end{aligned}
$$

By utilizing the $N_{\mathbb{Z}}$-invariance of f, performing the change of variables (in order)

$$
\begin{aligned}
& t_{6} \mapsto t_{6}-\left(t_{1}^{2}+3 t_{1} t_{3}+3 t_{3}^{2}\right) \\
& t_{5} \mapsto t_{5}-\left(-t_{1}-3 t_{3}-3 t_{4}\right) \\
& t_{4} \mapsto t_{4}-\left(t_{1}+2 t_{3}\right) \\
& t_{3} \mapsto t_{3}-t_{1},
\end{aligned}
$$

and apply parts (a)-(d), we are able to see that part (f) holds.
For some results in section 2.4 we will need to be able to write $f_{\gamma, m_{5}}$ in terms of $f_{k_{6}, k_{5}}$. Since $\gamma T_{6} T_{5} \gamma^{-1}=R_{6}\left(b t_{5}+a t_{6}\right) R_{5}\left(d t_{5}+c_{6}\right)$ then

$$
f_{\gamma, m_{5}}(n)=\int_{0}^{1} \int_{0}^{1} f\left(R_{6}\left(b t_{5}+a t_{6}\right) R_{5}\left(d t_{5}+c t_{6}\right) n\right) e\left(-m_{5} t_{5}\right) d t_{6} d t_{5}
$$

We perform the following simultaneous change of variables:

$$
\left\{\begin{array}{l}
t_{5} \mapsto a t_{5}-c t_{6} \tag{2.8}\\
t_{6} \mapsto-b t_{5}+d t_{6}
\end{array}\right.
$$

which we can denote by the following map from \mathbb{R}^{2} to \mathbb{R}^{2} :

$$
\gamma_{0}:\left(t_{5}, t_{6}\right) \mapsto\left(a t_{5}-c t_{6},-b t_{5}+d t_{6}\right)
$$

If $\mathcal{G}=[0,1)^{2}$ then when we apply (2.8) we find that

$$
f_{\gamma, m_{5}}(n)=\int_{\gamma_{0}^{-1}(\mathcal{G})} f\left(T_{6} T_{5} n\right) e\left(-a m_{5} t_{5}+c m_{5} t_{6}\right) d t_{6} d t_{5} .
$$

If we fix $n \in N$, then our integrand

$$
\left(t_{5}, t_{6}\right) \mapsto f\left(T_{6} T_{5} n\right) e\left(-a m_{5} t_{5}+c m_{5} t_{6}\right),
$$

is a function on $N^{\prime}=\left\langle T_{6}, T_{5}\right\rangle$ and is $N_{\mathbb{Z}}^{\prime}=\left\langle N_{6}, m_{5}\right\rangle$ invariant.

Observe that the map $\left(t_{5}, t_{6}\right) \mapsto T_{6} T_{5}$ is a group isomorphism from \mathbb{R}^{2} onto N^{\prime}. When restricted to \mathbb{Z}^{2} we obtain a group isomorphism onto $N_{\mathbb{Z}}^{\prime}$. In light of this, we shall often identify $N_{\mathbb{Z}}^{\prime} \backslash N^{\prime}$ implicitly with $\mathbb{Z}^{2} \backslash \mathbb{R}^{2}$. From this, we see that \mathcal{G} is a fundamental domain for $N_{\mathbb{Z}}^{\prime} \backslash N^{\prime}$. If we prove that $\gamma_{0}^{-1}(\mathcal{G})$ is also a fundamental domain for $N_{\mathbb{Z}}^{\prime} \backslash N^{\prime}$ then it would follow that

$$
\begin{equation*}
f_{\gamma, m_{5}}(n)=\int_{0}^{1} \int_{0}^{1} f\left(T_{6} T_{5} n\right) e\left(-a m_{5} t_{5}+c m_{5} t_{6}\right) d t_{6} d t_{5}=f_{-c m_{5}, a m_{5}}(n) \tag{2.9}
\end{equation*}
$$

The following lemma shows that this is indeed the case.

Lemma 2.4. $\gamma_{0}(\mathcal{G})$ is a fundamental domain for $N_{\mathbb{Z}}^{\prime} \backslash N^{\prime}$, from which it follows that $\gamma_{0}^{-1}(\mathcal{G})$ is also a fundamental domain for $N_{\mathbb{Z}}^{\prime} \backslash N^{\prime}$.

Proof. Observe that the union of all $\gamma_{0}\left(\left[m_{5}, m_{5}+1\right) \times\left[m_{6}, m_{6}+1\right)\right)$ where $m_{5}, m_{6} \in \mathbb{Z}$, partition \mathbb{R}^{2}. Hence for $\left(t_{5}, t_{6}\right) \in \mathbb{R}^{2}$, we have that $\left(t_{5}, t_{6}\right) \in \gamma_{0}\left(\left[m_{5}, m_{5}+1\right) \times\left[m_{6}, m_{6}+\right.\right.$ 1)) for some $m_{5}, m_{6} \in \mathbb{Z}$. Thus for some $\left(e_{5}, e_{6}\right) \in[0,1)^{2}$, we have

$$
\left(t_{5}, t_{6}\right)=\gamma_{0}\left(m_{5}+e_{5}, m_{6}+e_{6}\right)=\left(a m_{5}-c m_{6}+a e_{5}-c e_{6},-b m_{5}+d m_{6}-b e_{5}+d e_{6}\right) .
$$

Hence

$$
\left(t_{5}-a m_{5}+c m_{6}, t_{6}+b m_{5}-d m_{6}\right)=\left(a e_{5}-c e_{6},-b e_{5}+d e_{6}\right) \in \gamma_{0}(\mathcal{G}) .
$$

Therefore the coset of $\mathbb{Z}^{2} \backslash \mathbb{R}^{2}$ containing $\left(t_{5}, t_{6}\right)$ has a representative in $\gamma_{0}(\mathcal{G})$.
Now suppose that there exists distinct $\left(x_{5}, x_{6}\right),\left(y_{5}, y_{6}\right) \in \gamma_{0}(\mathcal{G})$ such that

$$
\left(x_{5}, x_{6}\right)=\left(y_{5}+m_{5}, y_{6}+m_{6}\right) \text { where } m_{5}, m_{6} \in \mathbb{Z}
$$

(i.e. they represent the same coset of $\left.\mathbb{Z}^{2} \backslash \mathbb{R}^{2}\right)$. Since $\left(x_{5}, x_{6}\right),\left(y_{5}, y_{6}\right) \in \gamma_{0}(\mathcal{G})$, it follows that there exists $\left(u_{5}, u_{6}\right),\left(v_{5}, v_{6}\right) \in \mathcal{G}$ such that

$$
\begin{aligned}
& \gamma_{0}\left(u_{5}, u_{6}\right)=\left(a u_{5}-c u_{6},-b u_{5}+d u_{6}\right)=\left(x_{5}, x_{6}\right) \\
& \gamma_{0}\left(v_{5}, v_{6}\right)=\left(a v_{5}-c v_{6},-b v_{5}+d v_{6}\right)=\left(y_{5}, y_{6}\right) .
\end{aligned}
$$

Thus

$$
\gamma_{0}\left(u_{5}, u_{6}\right)=\left(y_{5}, y_{6}\right)+\left(m_{5}, m_{6}\right)=\gamma_{0}\left(v_{5}, v_{6}\right)+\left(m_{5}, m_{6}\right)
$$

which implies

$$
\gamma_{0}\left(u_{5}-v_{5}, u_{6}-v_{6}\right)=\left(m_{5}, m_{6}\right) .
$$

Hence $u_{5}-v_{5}, u_{6}-v_{6} \in \mathbb{Z}$. Since $\left(u_{5}, u_{6}\right),\left(v_{5}, v_{6}\right) \in \mathcal{G}$ it follows that $u_{5}=v_{5}$ and $u_{6}=v_{6}$. Therefore each element of $\gamma_{0}(\mathcal{G})$ represents a distinct cosets of $\mathbb{Z}^{2} \backslash \mathbb{R}^{2}$. Thus $\gamma_{0}(\mathcal{G})$ is a fundamental domain as claimed.

Let $\left(\Gamma_{\beta}\right)_{\infty}$ denote the space of unipotent upper-triangular matrices of Γ_{β} and let $[\gamma]$ denote the coset of $\Gamma_{\beta} /\left(\Gamma_{\beta}\right)_{\infty}$ which contains $\gamma \in \Gamma_{\beta}$. Observe

$$
\left(\begin{array}{ll}
a & b \tag{2.10}\\
c & d
\end{array}\right) \cdot\left(\begin{array}{ll}
1 & q \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
a & b+a q \\
c & d+c q
\end{array}\right)
$$

It follows from this computation and the theory of linear Diophantine equations that

$$
\begin{equation*}
\text { each }[\gamma] \text { can be uniquely identified by }(a, c) \in \mathbb{Z}^{2} \text { such that } \operatorname{gcd}(a, c)=1 \tag{2.11}
\end{equation*}
$$

Therefore by (2.9), $f_{\gamma, m_{5}}=f_{\gamma^{\prime}, m_{5}}$ if $[\gamma]=\left[\gamma^{\prime}\right]$. As one might expect, we also have that

$$
\begin{equation*}
f_{\gamma, m_{5}, m_{4}, m_{3}}=f_{\gamma^{\prime}, m_{5}, m_{4}, m_{3}} \text { if }[\gamma]=\left[\gamma^{\prime}\right] . \tag{2.12}
\end{equation*}
$$

To see that this is indeed the case we apply the simultaneous change of variables (2.8) to $f_{\gamma, m_{5}, m_{4}, m_{3}}$ and apply Lemma 2.4 to conclude that

$$
\begin{aligned}
& f_{\gamma, m_{5}, m_{4}, m_{3}}(n)= \int_{0}^{1} \\
& \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} f\left(R_{6}\left(t_{6}-2 a^{2} c x_{3}^{3}\right) R_{5}\left(t_{5}-a c^{2} x_{3}^{3}\right) R_{4}\left(t_{4}-a c t_{3}^{2}\right)\right. \\
&\left.R_{3}\left(a t_{3}\right) R_{2}\left(c t_{3}\right)\right) e\left(c m_{5} t_{6}-a m_{5} t_{5}-m_{4} t_{4}-m_{3} t_{3}\right) d t_{6} d t_{5} d t_{4} d t_{3} .
\end{aligned}
$$

Therefore, by this equality and (2.11) we have that (2.12) holds.

2.3 Preliminary Applications of Lemmas

In this section we will show that smooth, $N_{\mathbb{Z}}$-invariant $f: N \rightarrow \mathbb{C}$ can be closely approximated by finite sums with terms of the form (2.7). We repeatedly apply Lemmas 2.3 and 2.2 to accomplish this. To begin, let $\epsilon>0$ and K a compact subset of N. By Lemma 2.3(a), Lemma 2.2, and Proposition 2.6 (a result we will prove in the next section) we have that there exists $M_{0} \in \mathbb{Z}_{>0}$ such that

$$
\begin{equation*}
\left\|\sum_{\left|k_{6}\right| \leq M_{6}} f_{k_{6}}-f\right\|_{K}<\epsilon \tag{2.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{\substack{k_{6} \in \mathbb{Z} \\ \mid>M_{6} \text { or }\left|k_{5}\right|>M_{6}}}\left\|f_{k_{6}, k_{5}}\right\|_{K}<\epsilon \tag{2.14}
\end{equation*}
$$

for all $M_{6}>M_{0}$ where $M_{6} \in \mathbb{Z}_{>0}$. We shall fix such a choice of M_{6} in what follows. By Lemma 2.3(b) and Lemma 2.2 there exists $M_{5} \in \mathbb{Z}_{>0}$ such that $M_{5} \geq M_{6}$ and

$$
\begin{equation*}
\left\|\sum_{\left|k_{5}\right| \leq M_{5}} f_{k_{6}, k_{5}}-f_{k_{6}}\right\|_{K}<\frac{\epsilon}{2 M_{6}+1} . \tag{2.15}
\end{equation*}
$$

for $\left|k_{6}\right| \leq M_{6}$. By the triangle inequality, it follows from (2.14) and (2.15) that

$$
\begin{equation*}
\left\|\sum_{\left|k_{6}\right| \leq M_{6}} \sum_{\left|k_{5}\right| \leq M_{5}} f_{k_{6}, k_{5}}-f\right\|_{K}<2 \epsilon \tag{2.16}
\end{equation*}
$$

Observe

each $\left(k_{6}, k_{5}\right) \in \mathbb{Z}_{\neq(0,0)}^{2}$ can be written uniquely as $\left(-c m_{5}, a m_{5}\right)$
where $m_{5}=\operatorname{gcd}\left(k_{6}, k_{5}\right), c=-\frac{k_{6}}{m_{5}}, a=\frac{k_{5}}{m_{5}}$, and $\operatorname{gcd}(a, c)=1$.
If $\left|k_{6}\right| \leq M_{6},\left|k_{5}\right| \leq M_{5}$ then $m_{5}=\operatorname{gcd}\left(k_{6}, k_{5}\right) \leq M_{5},|a|=\left|\frac{k_{5}}{m_{5}}\right| \leq M_{5}$, and $|c|=$ $\left|\frac{k_{6}}{m_{5}}\right| \leq M_{6}$. Therefore

$$
\begin{aligned}
& \left\{\left(k_{6}, k_{5}\right) \in \mathbb{Z}_{\neq(0,0)}^{2}:\left|k_{6}\right| \leq M_{6},\left|k_{5}\right| \leq M_{5}\right\} \\
& \quad \subset\left\{\left(-c m_{5}, a m_{5}\right): 0<m_{5} \leq M_{5},|a| \leq M_{5},|c| \leq M_{6}, \operatorname{gcd}(a, c)=1\right\}
\end{aligned}
$$

and so by (2.9) and (2.14),

$$
\begin{equation*}
\left\|\sum_{\substack{0<m_{5} \leq M_{5}}} \sum_{\substack{\left.\mid \gamma] \in \Gamma_{\beta} /\left(\Gamma_{\beta}\right)\right)_{\infty} \\|a| \leq M_{5},|c| \leq M_{6}}} f_{\gamma, m_{5}}+f_{0,0}-\sum_{\substack{\left|k_{6}\right| \leq M_{6} \\\left|k_{5}\right| \leq M_{5}}} f_{k_{6}, k_{5}}\right\|_{K} \leq \sum_{\substack{k_{6} \in \mathbb{Z} \\\left|k_{6}\right|>M_{6} \text { or }\left|k_{5}\right|>M_{6}}}\left\|f_{k_{6}, k_{5}}\right\|_{K}<\epsilon . \tag{2.18}
\end{equation*}
$$

Thus by (2.16), (2.18), and the triangle inequality,

$$
\begin{equation*}
\left\|\sum_{\substack{0<m_{5} \leq M_{5}\\}} \sum_{\substack{[\gamma] \in \Gamma_{\beta} /\left(\Gamma_{\beta}\right)_{\infty} \\|a| \leq M_{5},|c| \leq M_{6}}} f_{\gamma, m_{5}}+f_{0,0}-f\right\|_{K}<3 \epsilon \tag{2.19}
\end{equation*}
$$

By Lemma 2.3(c) and Lemma 2.2 there exists $M_{4} \in \mathbb{Z}_{>0}$ such that $M_{4} \geq M_{5}$,

$$
\begin{aligned}
& \left\|\sum_{\left|m_{4}\right| \leq M_{4}} f_{\gamma, m_{5}, m_{4}}-f_{\gamma, m_{5}}\right\|_{K}<\frac{\epsilon}{\left(2 M_{6}+1\right) M_{5}\left(2 M_{5}+1\right)}, \text { and } \\
& \left\|\sum_{\left|k_{4}\right| \leq M_{4}} f_{0,0, k_{4}}-f_{0,0}\right\|_{K}<\epsilon
\end{aligned}
$$

for $[\gamma] \in \Gamma_{\beta} /\left(\Gamma_{\beta}\right)_{\infty},|a| \leq M_{5},|c| \leq M_{6}, 0<m_{5} \leq M_{5}$. By these inequalities, (2.19), and the triangle inequality,

$$
\begin{equation*}
\left\|\sum_{0<m_{5} \leq M_{5}} \sum_{\substack{[\gamma]\left|\in \Gamma_{\beta} /\left(\Gamma_{\beta}\right) \infty_{\infty}\\\right| a\left|\leq M_{5},|c| \leq M_{6}\right.}} \sum_{\left|m_{4}\right| \leq M_{4}} f_{\gamma, m_{5}, m_{4}}+\sum_{\left|k_{4}\right| \leq M_{4}} f_{0,0, k_{4}}-f\right\|_{K}<5 \epsilon . \tag{2.20}
\end{equation*}
$$

By Lemma 2.3(d) and Lemma 2.2 there exists $M_{3} \in \mathbb{Z}_{>0}$ such that $M_{3} \geq M_{4}$,

$$
\begin{aligned}
& \left\|\sum_{\left|m_{3}\right| \leq M_{3}} f_{\gamma, m_{5}, m_{4}, m_{3}}-f_{\gamma, m_{5}, m_{4}}\right\|_{K}<\frac{\epsilon}{\left(2 M_{6}+1\right) M_{5}\left(2 M_{5}+1\right)\left(2 M_{4}+1\right)}, \text { and } \\
& \left\|\sum_{\left|k_{3}\right| \leq M_{3}} f_{0,0, k_{4}, k_{3}}-f_{0,0, k_{4}}\right\|_{K}<\frac{\epsilon}{2 M_{4}+1}
\end{aligned}
$$

for $[\gamma] \in \Gamma_{\beta} /\left(\Gamma_{\beta}\right)_{\infty},|a| \leq M_{5},|c| \leq M_{6}, 0<m_{5} \leq M_{5},\left|m_{4}\right| \leq M_{4},\left|k_{4}\right| \leq M_{4}$. By these inequalities, (2.20), and the triangle inequality,

$$
\begin{equation*}
\left\|\sum_{\| 0<m_{5} \leq M_{5}} \sum_{\substack{[\gamma]\left|\Gamma \Gamma_{\beta} /\left(\Gamma_{\beta}\right)\\\right| a\left|\leq M_{5},|c| \leq M_{6}\right.}} \sum_{\left|m_{4}\right| \leq M_{4}} \sum_{\left|m_{3}\right| \leq M_{3}} f_{\gamma, m_{5}, m_{4}, m_{3}}+\sum_{\left|k_{4}\right| \leq M_{4}\left|k_{3}\right| \leq M_{3}} f_{0,0, k_{4}, k_{3}}-f\right\|_{K}<7 \epsilon . \tag{2.21}
\end{equation*}
$$

Let id denote the element h in (2.2) with $a=d=1$ and $b=c=0$. Likewise, let -id denote the element h in (2.2) with $a=d=-1$ and $b=c=0$. Observe

$$
(-\mathrm{id}) T_{6} T_{5} T_{4} T_{3}(-\mathrm{id})=R_{6}\left(-t_{6}\right) R_{5}\left(-t_{5}\right) T_{4} R_{3}\left(-t_{3}\right)
$$

By performing the change of variables

$$
t_{6} \mapsto-t_{6}, \quad t_{5} \mapsto-t_{5}, \quad t_{3} \mapsto-t_{3},
$$

we find that

$$
\begin{aligned}
& f_{-\mathrm{id}, m_{5}, m_{4}, m_{3}}(n) \\
& =\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} f\left(R_{6}\left(-t_{6}\right) R_{5}\left(-t_{5}\right) T_{4} R_{3}\left(-t_{3}\right) n\right) e\left(-m_{5} t_{5}-m_{4} t_{4}-m_{3} t_{3}\right) \\
& =-\int_{0}^{-1} \int_{0}^{1} \int_{0}^{-1} \int_{0}^{-1} f\left(T_{6} T_{5} T_{4} T_{3} n\right) e\left(m_{5} t_{5}-m_{4} t_{4}+m_{3} t_{3}\right) d t_{6} d t_{5} d t_{4} d t_{3} \\
& =\int_{-1}^{0} \int_{0}^{1} \int_{-1}^{0} \int_{-1}^{0} f\left(T_{6} T_{5} T_{4} T_{3} n\right) e\left(m_{5} t_{5}-m_{4} t_{4}+m_{3} t_{3}\right) d t_{6} d t_{5} d t_{4} d t_{3}
\end{aligned}
$$

By Lemma 2.3 we are able to change the interval of integration from $[-1,0]$ to $[0,1]$ in the t_{6}, t_{5}, and t_{3} variable. Thus $f_{-\mathrm{id}, m_{5}, m_{4}, m_{3}}=f_{0,-m_{5}, m_{4},-m_{3}}$. Likewise, one can see that $f_{\mathrm{id}, m_{5}, m_{4}, m_{3}}=$ $f_{0, m_{5}, m_{4}, m_{3}}$. Since [id] and [-id] are distinct elements in $\Gamma_{\beta} /\left(\Gamma_{\beta}\right)_{\infty}$ it follows that

$$
\begin{align*}
& \sum_{0<m_{5} \leq M_{5}} \sum_{\substack{[\gamma] \in \Gamma_{\beta} /\left(\Gamma_{\beta}\right)_{\infty} \\
|a| \leq M_{5},|c| \leq M_{6}}} \sum_{\left|m_{4}\right| \leq M_{4}} \sum_{\substack{ \\
\left|m_{3}\right| \leq M_{3}}} f_{\gamma, m_{5}, m_{4}, m_{3}}+\sum_{\substack{\left|k_{4}\right| \leq M_{4}}} \sum_{\substack{\left|k_{3}\right| \leq M_{3}}} f_{0,0, k_{4}, k_{3}} \tag{2.22}\\
&=\sum_{\substack{ }} \sum_{\substack{\left.[\gamma] \in M_{\beta} /\left(\Gamma_{\beta}\right)_{\infty} \\
|a| \leq M_{5}, \mid \text { id }\right] \\
|a| \leq m_{4} \mid \leq M_{4}}} \sum_{\left|m_{3}\right| \leq M_{3}} f_{\gamma, m_{5}, m_{4}, m_{3}}+\sum_{\left|k_{5}\right| \leq M_{5}\left|k_{4}\right| \leq M_{4}} \sum_{\left|k_{3}\right| \leq M_{3}} f_{0, k_{5}, k_{4}, k_{3}} .
\end{align*}
$$

By Lemma 2.3(e) and Lemma 2.2 there exists $M_{1} \in \mathbb{Z}_{>0}$ such that $M_{1} \geq M_{3}$,

$$
\left\|\sum_{\left|k_{1}\right| \leq M_{1}} f_{0, k_{5}, k_{4}, k_{3}, k_{1}}-f_{0, k_{5}, k_{4}, k_{3}}\right\|_{K}<\frac{\epsilon}{\left(2 M_{5}+1\right)\left(2 M_{4}+1\right)\left(2 M_{3}+1\right)}
$$

for $k_{5} \leq M_{5},\left|k_{4}\right| \leq M_{4},\left|k_{3}\right| \leq M_{3}$. By this inequality, (2.21), and (2.22), we find that

$$
\begin{align*}
& \| \sum_{\substack{0<m_{5} \leq M_{5}}} \sum_{\substack{\text { (q] }] \in \Gamma_{\beta} /\left(\Gamma_{\beta}\right)_{\infty} \\
[\gamma] \neq[\pm i d] \\
|a| \leq M_{5},|c| \leq M_{6}}} \sum_{\left|m_{4}\right| \leq M_{4}} \sum_{\left|m_{3}\right| \leq M_{3}} f_{\gamma, m_{5}, m_{4}, m_{3}} \\
& \quad+\sum_{\left|k_{5}\right| \leq M_{5}} \sum_{\left|k_{4}\right| \leq M_{4}} \sum_{\left|k_{3}\right| \leq M_{3}} \sum_{\left|k_{1}\right| \leq M_{1}} f_{0, k_{5}, k_{4}, k_{3}, k_{1}}-f \|_{K}<8 \epsilon \tag{2.23}
\end{align*}
$$

By Lemma 2.3(f) and Lemma 2.2 there exists $M_{2} \in \mathbb{Z}_{>0}$ such that $M_{2} \geq M_{1}$,

$$
\left\|\sum_{\left|k_{2}\right| \leq M_{2}} f_{0,0,0,0, k_{1}, k_{2}}-f_{0,0,0,0, k_{1}}\right\|_{K}<\frac{\epsilon}{\left(2 M_{1}+1\right)},
$$

for $\left|k_{1}\right| \leq M_{1}$. By this inequality and (2.23) we obtain the following proposition.
Proposition 2.5. If $f: N \rightarrow \mathbb{C}$ is smooth, $N_{\mathbb{Z}}$-invariant, and $\epsilon>0$ then there exists $M_{0} \in \mathbb{Z}_{>0}$ such that for any $M_{6}>M_{0}$, where $M_{6} \in \mathbb{Z}_{>0}$, there exists $M_{5}, M_{4}, M_{3}, M_{1}$,

$$
\begin{aligned}
& M_{2} \in \mathbb{Z}_{>0} \text { such that } M_{6} \leq M_{5} \leq M_{4} \leq M_{3} \leq M_{1} \leq M_{2} \text { and }
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{\left|k_{5}\right| \leq M_{5}} \sum_{\substack{\left|k_{4}\right| \leq M_{4} \\
k_{5} \neq 0}} \sum_{0<k_{4} \neq 0} \sum_{\substack{ \\
k_{4} \\
\text { or } \\
\text { or } \\
k_{3} \neq 0}} f_{0, k_{5}, k_{4}, k_{3}, k_{1}}+\sum_{\left|k_{1}\right| \leq M_{1}} \sum_{\left|k_{2}\right| \leq M_{2}} f_{0,0,0,0, k_{1}, k_{2}}-f \|_{K}<\epsilon,
\end{aligned}
$$

where the terms in these sums are defined in (2.7).

2.4 Some Inequalities

Although Proposition 2.5 shows that smooth, $N_{\mathbb{Z}}$-invariant $f: N \rightarrow \mathbb{C}$ can be approximated by a finite sum of terms of the form (2.7), what we really desire is a series expansion for such f. In Theorem 2.10 we give an absolutely convergent series expansion for such f within the Banach space $C(K)$, the space of continuous functions on K equipped with the norm $\|\cdot\|_{K}$. In order to prove the absolute convergence of this series, we will need to prove various propositions in this section, but before we do, we prove a result we used in the previous section. Throughout this section we will let $I=[0,1]$.

Proposition 2.6. If $f: N \rightarrow \mathbb{C}$ is smooth, $N_{\mathbb{Z}}$-invariant, then $\sum_{k_{6} \in \mathbb{Z}} \sum_{k_{5} \in \mathbb{Z}}\left\|f_{k_{6}, k_{5}}\right\|_{K}<\infty$.
Proof. Let

$$
\begin{aligned}
& q_{k_{6}}\left(x_{5}, n\right)=\int_{0}^{1} f\left(T_{6} X_{5} n\right) e\left(-k_{6} t_{6}\right) d t_{6}, \\
& q\left(x_{6}, x_{5}, n\right)=f\left(X_{6} X_{5} n\right) .
\end{aligned}
$$

By Lemma 2.3(b) we see that $q_{k_{6}}$ is periodic in x_{5}. Observe that $f_{k_{6}, k_{5}}$ is the k_{5}-th Fourier coefficient in the x_{5} variable of $q_{k_{6}}\left(x_{5}, n\right)$. Therefore by Lemma 2.1 we have

$$
\begin{equation*}
\sum_{k_{6} \in \mathbb{Z}} \sum_{k_{5} \in \mathbb{Z}}\left\|f_{k_{6}, k_{5}}\right\|_{K} \leq \sum_{k_{6} \in \mathbb{Z}}\left(\left\|q_{k_{6}}\right\|_{I \times K}+\left\|\partial_{x_{5}}^{2}\left[q_{k_{6}}\right]\right\|_{I \times K}\right) . \tag{2.24}
\end{equation*}
$$

By Lemma 2.3(a) we see that q is periodic in x_{6}. Observe that $q_{k_{6}}$ is the k_{6}-th Fourier coefficient in the x_{6} variable of q and that $\partial_{x_{5}}^{2}\left[q_{k_{6}}\right]$ is the k_{6}-th Fourier coefficient in the x_{6} variable of $\partial_{x_{5}}^{2}[q]$. Therefore by Lemma 2.1 we have

$$
\begin{align*}
& \sum_{k_{6} \in \mathbb{Z}}\left\|q q_{k_{6}}\right\|_{I \times K} \leq\|q\|_{I^{2} \times K}+\left\|\partial_{x_{6}}^{2}[q]\right\|_{I^{2} \times K} \tag{2.25a}\\
& \sum_{k_{6} \in \mathbb{Z}}\left\|\partial_{x_{5}}^{2}\left[q_{k_{6}}\right]\right\|_{I \times K} \leq\left\|\partial_{x_{5}}^{2}[q]\right\|_{I^{2} \times K}+\left\|\partial_{x_{6}}^{2} \partial_{x_{5}}^{2}[q]\right\|_{I^{2} \times K} \tag{2.25b}
\end{align*}
$$

Our proposition then follows from (2.24) and (2.25).
The following propositions will be used the prove the absolute convergence stated in Theorem 2.10.

Proposition 2.7. If $f: N \rightarrow \mathbb{C}$ is smooth, $N_{\mathbb{Z}}$-invariant, then

$$
\sum_{k_{1} \in \mathbb{Z}} \sum_{k_{2} \in \mathbb{Z}}\left\|f_{0,0,0,0, k_{1}, k_{2}}\right\|_{K}<\infty .
$$

Proof. Let

$$
\begin{aligned}
& q_{k_{1}}\left(x_{2}, n\right)=\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} f\left(T_{6} T_{5} T_{4} T_{3} T_{1} X_{2} n\right) e\left(-k_{1} t_{1}\right) d t_{6} d t_{5} d t_{4} d t_{3} d t_{1} \\
& q\left(x_{2}, x_{1}, n\right)=\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} f\left(T_{6} T_{5} T_{4} T_{3} X_{1} X_{2} n\right) d t_{6} d t_{5} d t_{4} d t_{3}
\end{aligned}
$$

By Lemma 2.3(f) we see that $q_{k_{1}}$ is periodic in the x_{2} variable. Observe that $f_{0,0,0,0, k_{1}, k_{2}}$ is the k_{2}-th Fourier coefficient in the x_{2} variable of $q_{k_{1}}$. Therefore by Lemma 2.1 we have

$$
\sum_{k_{1} \in \mathbb{Z}} \sum_{k_{2} \in \mathbb{Z}}\left\|f_{0,0,0,0, k_{1}, k_{2}}\right\|_{K} \leq \sum_{k_{1} \in \mathbb{Z}}\left\|q_{k_{1}}\right\|_{I \times K}+\sum_{k_{1} \in \mathbb{Z}}\left\|\partial_{x_{2}}^{2}\left[q_{k_{1}}\right]\right\|_{I \times K} .
$$

Next, observe that q is periodic in the x_{1} variable by Lemma 2.3(e). Observe that $q_{k_{1}}$ is the k_{1}-th Fourier coefficient in the x_{1} variable of q. Likewise, $\partial_{x_{2}}^{2}\left[q_{k_{1}}\right]$ is the k_{1}-th Fourier coefficient in the x_{1} variable of $\partial_{x_{2}}^{2}[q]$. Therefore by Lemma 2.1 we have

$$
\begin{aligned}
& \sum_{k_{1} \in \mathbb{Z}}\left\|q_{k_{1}}\right\|_{I \times K}+\sum_{k_{1} \in \mathbb{Z}}\left\|\partial_{x_{2}}^{2}\left[q_{k_{1}}\right]\right\|_{I \times K} \\
& \leq\|q\|_{I^{2} \times K}+\left\|\partial_{x_{1}}^{2}[q]\right\|_{I^{2} \times K}+\left\|\partial_{x_{2}}^{2}[q]\right\|_{I^{2} \times K}+\left\|\partial_{x_{1}}^{2} \partial_{x_{2}}^{2}[q]\right\|_{I^{2} \times K},
\end{aligned}
$$

and from this our proposition follows.
Proposition 2.8. If $f: N \rightarrow \mathbb{C}$ is smooth, $N_{\mathbb{Z}}$-invariant, then

$$
\sum_{k_{5} \in \mathbb{Z}} \sum_{k_{4} \in \mathbb{Z}} \sum_{k_{3} \in \mathbb{Z}} \sum_{k_{1} \in \mathbb{Z}}\left\|f_{0, k_{5}, k_{4}, k_{3}, k_{1}}\right\|_{K}<\infty .
$$

Proof. Let

$$
\begin{aligned}
& q\left(x_{5}, x_{4}, x_{3}, x_{1}, n\right)=\int_{0}^{1} f\left(T_{6} X_{5} X_{4} X_{3} X_{1} n\right) d t_{6}, \\
& q_{k_{5}}\left(x_{4}, x_{3}, x_{1}, n\right)=\int_{0}^{1} \int_{0}^{1} f\left(T_{6} T_{5} X_{4} X_{3} X_{1} n\right) e\left(-k_{5} t_{5}\right) d t_{6} d t_{5}, \\
& q_{k_{5}, k_{4}}\left(x_{3}, x_{1}, n\right)=\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} f\left(T_{6} T_{5} T_{4} X_{3} X_{1} n\right) e\left(-k_{5} t_{5}-k_{4} t_{4}\right) d t_{6} d t_{5} d t_{4}, \\
& q_{k_{5}, k_{4}, k_{3}}\left(x_{1}, n\right)=\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} f\left(T_{6} T_{5} T_{4} T_{3} X_{1} n\right) e\left(-k_{5} t_{5}-k_{4} t_{4}-k_{3} t_{3}\right) d t_{6} d t_{5} d t_{4} d t_{3} .
\end{aligned}
$$

Observe that $q_{k_{5}, k_{4}, k_{3}}$ is periodic in x_{1} by Lemma 2.3(e) and that $f_{0, k_{5}, k_{4}, k_{3}, k_{1}}$ is the k_{1}-th Fourier coefficient of $q_{k_{5}, k_{4}, k_{3}}$ in the x_{1} variable. Therefore, by Lemma 2.1, we have that

$$
\sum_{k_{5} \in \mathbb{Z}} \sum_{k_{4} \in \mathbb{Z}} \sum_{k_{3} \in \mathbb{Z}} \sum_{k_{1} \in \mathbb{Z}}\left\|f_{0, k_{5}, k_{4}, k_{3}, k_{1}}\right\|_{K}
$$

is bounded by a finite linear combination of series of the form

$$
\begin{equation*}
\sum_{k_{5} \in \mathbb{Z}} \sum_{k_{4} \in \mathbb{Z}} \sum_{k_{3} \in \mathbb{Z}}\left\|D\left[q_{k_{5}, k_{4}, k_{3}}\right]\right\|_{K} \tag{2.26}
\end{equation*}
$$

where $D=\mathrm{id}, \partial_{x_{1}}^{2}$.
Next observe that $D\left[q_{k_{5}, k_{4}}\right]$ is periodic in the x_{3} variable by Lemma $2.3(\mathrm{~d})$ and that $D\left[q_{k_{5}, k_{4}, k_{3}}\right]$ is the k_{3}-th Fourier coefficient of $D\left[q_{k_{5}, k_{4}}\right]$ in the x_{3} variable where $D=\mathrm{id}, \partial_{x_{1}}^{2}$. By Lemma 2.1 we have that series of the form (2.26) are bounded by a finite linear combination of series of the form

$$
\begin{equation*}
\sum_{k_{5} \in \mathbb{Z}} \sum_{k_{4} \in \mathbb{Z}}\left\|D\left[q_{k_{5}, k_{4}}\right]\right\|_{K} \tag{2.27}
\end{equation*}
$$

where $D=\left(\partial_{x_{3}}\right)^{\ell_{3}}\left(\partial_{x_{1}}\right)^{\ell_{1}}$ and $\ell_{3}, \ell_{1} \in \mathbb{Z}_{\geq 0} .{ }^{1}$
Next observe that $D\left[q_{k_{5}}\right]$ is periodic in the x_{4} variable by Lemma 2.3(c) and that $D\left[q_{k_{5}, k_{4}}\right]$ is the k_{4}-th Fourier coefficient of $D\left[q_{k_{5}}\right]$ in the x_{4} variable where $D=\left(\partial_{x_{3}}\right)^{\ell_{3}}\left(\partial_{x_{1}}\right)^{\ell_{1}}$ and $\ell_{3}, \ell_{1} \in$ $\mathbb{Z}_{\geq 0}$. By Lemma 2.1 we have that series of the form (2.27) are bounded by a finite linear combination of series of the form

$$
\begin{equation*}
\sum_{k_{5} \in \mathbb{Z}}\left\|D\left[q_{k_{5}}\right]\right\|_{K} \tag{2.28}
\end{equation*}
$$

where $D=\left(\partial_{x_{4}}\right)^{\ell_{4}}\left(\partial_{x_{3}}\right)^{\ell_{3}}\left(\partial_{x_{1}}\right)^{\ell_{1}}$ and $\ell_{4}, \ell_{3}, \ell_{1} \in \mathbb{Z}_{\geq 0}$.
Next observe that $D[q]$ is periodic in the x_{5} variable by Lemma $2.3(\mathrm{~b})$ and that $D\left[q_{k_{5}}\right]$ is the k_{5}-th Fourier coefficient in the x_{5} variable of $D[q]$ where $D=\left(\partial_{x_{4}}\right)^{\ell_{4}}\left(\partial_{x_{3}}\right)^{\ell_{3}}\left(\partial_{x_{1}}\right)^{\ell_{1}}$ and $\ell_{4}, \ell_{3}, \ell_{1} \in \mathbb{Z}_{\geq 0}$. By Lemma 2.1 we have that series of the form (2.28) are bounded by a finite linear combination of terms of the form $D[q]$ where $D=\left(\partial_{x_{5}}\right)^{\ell_{5}}\left(\partial_{x_{4}}\right)^{\ell_{4}}\left(\partial_{x_{3}}\right)^{\ell_{3}}\left(\partial_{x_{1}}\right)^{\ell_{1}}$ and $\ell_{5}, \ell_{4}, \ell_{3}, \ell_{1} \in \mathbb{Z}_{\geq 0}$. This in combination with the bounds given in (2.26), (2.27), and (2.28) prove our proposition.

Proposition 2.9. If $f: N \rightarrow \mathbb{C}$ is smooth, $N_{\mathbb{Z}}$-invariant, then

$$
\sum_{m_{5} \in \mathbb{Z}} \sum_{[\gamma] \in \Gamma_{\beta} /\left(\Gamma_{\beta}\right)_{\infty}} \sum_{m_{4} \in \mathbb{Z}} \sum_{m_{3} \in \mathbb{Z}}\left\|f_{\gamma, m_{5}, m_{4}, m_{3}}\right\|_{K}<\infty
$$

[^1]Proof. Observe that $f_{\gamma, m_{5}, m_{4}, m_{3}}$ is the m_{3}-th Fourier coefficient in the x_{3} variable of the function

$$
f_{\gamma, m_{5}, m_{4}}\left(x_{3}, n\right)=\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} f\left(\gamma T_{6} T_{5} T_{4} X_{3} \gamma^{-1} n\right) e\left(-m_{5} t_{5}-m_{4} t_{4}\right) d t_{4} d t_{5} d t_{6}
$$

recall that Lemma 2.3(d) shows that $f_{\gamma, m_{5}, m_{4}}$ is indeed periodic in the x_{3} variable. Therefore by Lemma 2.1, we have

$$
\begin{align*}
& \quad \sum_{m_{5} \in \mathbb{Z}_{>0}} \sum_{[\gamma] \in \Gamma_{\beta} /\left(\Gamma_{\beta}\right)_{\infty}} \sum_{m_{4} \in \mathbb{Z}} \sum_{m_{3} \in \mathbb{Z}}\left\|f_{\gamma, m_{5}, m_{4}, m_{3}}\right\|_{K} \\
& \leq \sum_{m_{5} \in \mathbb{Z}_{>0}} \sum_{[\gamma] \in \Gamma_{\beta} /\left(\Gamma_{\beta}\right)_{\infty}} \sum_{m_{4} \in \mathbb{Z}}\left\|f_{\gamma, m_{5}, m_{4}}\right\|_{I \times K} \\
& \quad+\sum_{m_{5} \in \mathbb{Z}_{>0}} \sum_{[\gamma] \in \Gamma_{\beta} /\left(\Gamma_{\beta}\right)_{\infty}} \sum_{m_{4} \in \mathbb{Z}} \| \partial_{x_{3}}^{2}\left[\xi_{\left.\gamma, m_{5}, m_{4}\right]} \|_{I \times K} .\right. \tag{2.29}
\end{align*}
$$

Let

$$
f_{\gamma, m_{5}}\left(x_{4}, x_{3}, n\right)=\int_{0}^{1} \int_{0}^{1} f\left(\gamma T_{6} T_{5} X_{4} X_{3} \gamma^{-1} n\right) e\left(-m_{5} t_{5}\right) d t_{6} d t_{5}
$$

Observe that $D\left[f_{\gamma, m_{5}, m_{4}}\right]$ is the m_{4}-th Fourier coefficient in the x_{4} variable of the function $D\left[\hbar_{\gamma, m_{5}}\right]$ where $D=\mathrm{id}, \partial_{x_{3}}^{2}$; recall that Lemma 2.3(c) shows that $D\left[\hbar_{\gamma, m_{5}}\right]$ is indeed periodic in the x_{4} variable. Therefore, by Lemma 2.1, we have

$$
\begin{align*}
& \sum_{m_{5} \in \mathbb{Z}_{>0}} \sum_{[\gamma] \in \Gamma_{\beta} /\left(\Gamma_{\beta}\right)_{\infty}} \sum_{m_{4} \in \mathbb{Z}}\left\|D\left[h_{\left.\gamma, m_{5}, m_{4}\right]}\right]\right\|_{I \times K} \\
& \leq \sum_{m_{5} \in \mathbb{Z}_{>0}} \sum_{[\gamma] \in \Gamma_{\beta} /\left(\Gamma_{\beta}\right)_{\infty}}\left\|D\left[h_{\gamma, m_{5}}\right]\right\|_{I^{2} \times K}+\sum_{m_{5} \in \mathbb{Z}_{>0}} \sum_{[\gamma] \in \Gamma_{\beta} /\left(\Gamma_{\beta}\right)_{\infty}}\left\|\partial_{x_{4}}^{2} D\left[h_{\gamma, m_{5}}\right]\right\|_{I^{2} \times K} \tag{2.30}
\end{align*}
$$

where $D=\mathrm{id}, \partial_{x_{3}}^{2}$. Thus by (2.29) and (2.30), we have that

$$
\begin{equation*}
\sum_{m_{5} \in \mathbb{Z}_{>0}} \sum_{[\gamma] \in \Gamma_{\beta} /\left(\Gamma_{\beta}\right)_{\infty}} \sum_{m_{4} \in \mathbb{Z}} \sum_{m_{3} \in \mathbb{Z}}\left\|f_{\gamma, m_{5}, m_{4}, m_{3}}\right\|_{K} \tag{2.31}
\end{equation*}
$$

is bounded by a finite linear combination with terms of the form

$$
\begin{equation*}
\sum_{m_{5} \in \mathbb{Z}_{>0}} \sum_{[\gamma] \in \Gamma_{\beta} /\left(\Gamma_{\beta}\right)_{\infty}}\left\|D\left[h_{\gamma, m_{5}}\right]\right\|_{I^{2} \times K} \tag{2.32}
\end{equation*}
$$

where $D=\mathrm{id}, \partial_{x_{3}}^{2}, \partial_{x_{4}}^{2}, \partial_{x_{4}}^{2} \partial_{x_{3}}^{2}$.
By applying the change of variables (2.8) and Lemma 2.4 we find that

$$
\begin{aligned}
& f_{\gamma, m_{5}}\left(x_{4}, x_{3}, n\right)=\int_{0}^{1} \int_{0}^{1} f\left(\gamma T_{6} T_{5} X_{4} X_{3} \gamma^{-1} n\right) e\left(-m_{5} t_{5}\right) d t_{6} d t_{5} \\
& =\int_{0}^{1} \int_{0}^{1} f\left(R_{6}\left(-2 a^{2} c x_{3}^{3}+t_{6}\right) R_{5}\left(-a c^{2} x_{3}^{3}+t_{5}\right) R_{4}\left(-a c x_{3}^{2}+x_{4}\right) R_{3}\left(a x_{3}\right) R_{2}\left(c x_{3}\right) n\right) \\
& \quad e\left(-a m_{5} t_{5}+c m_{5} t_{6}\right) d t_{6} d t_{5} \\
& =p_{-c m_{5}, a m_{5}}\left(-2 a^{2} c x_{3}^{3},-a c^{2} x_{3}^{3},-a c x_{3}^{2}+x_{4}, a x_{3}, c x_{3}, n\right)
\end{aligned}
$$

where

$$
p_{k_{6}, k_{5}}\left(x_{6}, x_{5}, x_{4}, x_{3}, x_{2}, n\right)=\int_{0}^{1} \int_{0}^{1} f\left(T_{6} X_{6} T_{5} X_{5} X_{4} X_{3} X_{2} n\right) e\left(-k_{6} t_{6}-k_{5} t_{5}\right) d t_{6} d t_{5}
$$

Let $\rho_{\gamma}: \mathbb{R}^{2} \times N \rightarrow \mathbb{R}^{5} \times N$ where

$$
\rho_{\gamma}\left(x_{4}, x_{3}, n\right)=\left(-2 a^{2} c x_{3}^{3},-a c^{2} x_{3}^{3},-a c x_{3}^{2}+x_{4}, a x_{3}, c x_{3}, n\right)
$$

Observe that

$$
\begin{equation*}
f_{\gamma, m_{5}}\left(x_{4}, x_{3}, n\right)=p_{-c m_{5}, a m_{5}} \circ \rho_{\gamma}\left(x_{4}, x_{3}, n\right) \tag{2.33}
\end{equation*}
$$

We will use this equality to compute useful bounds for $D\left[f_{\gamma, m_{5}}\right]$ where $D=\mathrm{id}, \partial_{x_{3}}^{2}, \partial_{x_{4}}^{2}, \partial_{x_{3}}^{2} \partial_{x_{4}}^{2}$.
By (2.33) and the chain rule, observe

$$
\begin{aligned}
& \partial_{x_{3}}\left[f_{\gamma, m_{5}}\right]\left(x_{4}, x_{3}, n\right) \\
& =\partial_{x_{6}}\left[p_{-c m_{5}, a m_{5}}\right] \circ \rho_{\gamma}\left(x_{4}, x_{3}, n\right) \cdot\left(-6 a^{2} c x_{3}^{2}\right)+\partial_{x_{5}}\left[p_{-c m_{5}, a m_{5}}\right] \circ \rho_{\gamma}\left(x_{4}, x_{3}, n\right) \cdot\left(-3 a c^{2} x_{3}^{2}\right) \\
& \quad+\partial_{x_{4}}\left[p_{-c m_{5}, a m_{5}}\right] \circ \rho_{\gamma}\left(x_{4}, x_{3}, n\right) \cdot\left(-2 a c x_{3}\right)+\partial_{x_{3}}\left[p_{-c m_{5}, a m_{5}}\right] \circ \rho_{\gamma}\left(x_{4}, x_{3}, n\right) \cdot a \\
& \quad+\partial_{x_{2}}\left[p_{-c m_{5}, a m_{5}}\right] \circ \rho_{\gamma}\left(x_{4}, x_{3}, n\right) \cdot c .
\end{aligned}
$$

Thus $\partial_{x_{3}}\left[f_{\gamma, m_{5}}\right]\left(x_{4}, x_{3}, n\right)$ can be written as a finite linear combination with terms of the form

$$
\begin{equation*}
\left(a^{\ell_{1}} c^{\ell_{2}} x_{3}^{\ell_{3}}\right) \partial_{x_{i}}\left[p_{-c m_{5}, a m_{5}}\right] \circ \rho_{\gamma}\left(x_{4}, x_{3}, n\right) \tag{2.34}
\end{equation*}
$$

where $\ell_{j} \in \mathbb{Z}_{\geq 0}$, and $i \in\{2, \ldots, 6\} .^{2}$ When we apply $\partial_{x_{3}}$ to (2.34), we find by the chain rule that (2.34) can be written as a finite linear combination with terms of the form

$$
\begin{equation*}
\left(a^{\ell_{1}} c^{\ell_{2}} x_{3}^{\ell_{3}}\right) \partial_{x_{i_{1}}} \partial_{x_{i_{2}}}\left[p_{-c m_{5}, a m_{5}}\right] \circ \rho_{\gamma}\left(x_{4}, x_{3}, n\right) \tag{2.35}
\end{equation*}
$$

where $\ell_{j} \in \mathbb{Z}_{\geq 0}$, and $i_{1}, i_{2} \in\{2, \ldots 6\}$ (the ℓ_{j} in (2.34) will not necessarily be equal to the ℓ_{j} as in (2.35)). Therefore
$\partial_{x_{3}}^{2}\left[h_{\gamma, m_{5}}\right]\left(x_{4}, x_{3}, n\right)$ can be written as a finite linear combination
with terms of the form: $\quad\left(a^{\ell_{1}} c^{\ell_{2}} x_{3}^{\ell_{3}}\right) \partial_{x_{i_{1}}} \partial_{x_{i_{2}}}\left[p_{-c m_{5}, a m_{5}}\right] \circ \rho_{\gamma}\left(x_{4}, x_{3}, n\right)$
where $\ell_{j} \in \mathbb{Z}_{\geq 0}$, and $i_{1}, i_{2} \in\{2, \ldots, 6\}$.
Observe by the chain rule, that

$$
\begin{align*}
& \partial_{x_{4}}\left[\left(a^{\ell_{1}} c^{\ell_{2}} x_{3}^{\ell_{3}}\right) D\left[p_{-c m_{5}, a m_{5}}\right] \circ \rho_{\gamma}\left(x_{4}, x_{3}, n\right)\right] \\
& =\left(a^{\ell_{1}} c^{\ell_{2}} x_{3}^{\ell_{3}}\right) \partial_{x_{4}} D\left[p_{-c m_{5}, a m_{5}}\right] \circ \rho_{\gamma}\left(x_{4}, x_{3}, n\right) \tag{2.37}
\end{align*}
$$

[^2]where $\ell_{j} \in \mathbb{Z}_{\geq 0}, D=\mathrm{id}, \partial_{x_{i_{1}}}, \partial_{x_{i_{1}}} \partial_{x_{i_{2}}}$, and $i_{1}, i_{2} \in\{2, \ldots 6\}$. From (2.33) and (2.37) we see that
\[

$$
\begin{equation*}
\partial_{x_{4}}^{2}\left[\hbar_{\gamma, m_{5}}\right]\left(x_{4}, x_{3}, n\right)=\partial_{x_{4}}^{2}\left[p_{-c m_{5}, a m_{5}}\right] \circ \rho_{\gamma}\left(x_{4}, x_{3}, n\right) \tag{2.38}
\end{equation*}
$$

\]

and by (2.36) and (2.37),
$\partial_{x_{4}}^{2} \partial_{x_{3}}^{2}\left[h_{\gamma, m_{5}}\right]\left(x_{4}, x_{3}, n\right)$ can be written as a finite linear combination with terms of the form: $\quad\left(a^{\ell_{1}} c^{\ell_{2}} x_{3}^{\ell_{3}}\right) \partial_{x_{4}}^{2} \partial_{x_{i_{1}}} \partial_{x_{i_{2}}}\left[p_{-c m_{5}, a m_{5}}\right] \circ \rho_{\gamma}\left(x_{4}, x_{3}, n\right)$
where $\ell_{j} \in \mathbb{Z}_{\geq 0}$, and $i_{1}, i_{2} \in\{2, \ldots, 6\}$.
Therefore, by (2.36), (2.38), and (2.39), we have that $D^{\prime}\left[f_{\gamma, m_{5}}\right]\left(x_{4}, x_{3}, n\right)$ for $D^{\prime}=\mathrm{id}, \partial_{x_{3}}^{2}, \partial_{x_{4}}^{2}$, $\partial_{x_{4}}^{2} \partial_{x_{3}}^{2}$ can be written as a finite linear combination with terms of the form

$$
\begin{equation*}
\left(a^{\ell_{1}} c^{\ell_{2}} x_{3}^{\ell_{3}}\right) D\left[p_{-c m_{5}, a m_{5}}\right] \circ \rho_{\gamma}\left(x_{4}, x_{3}, n\right) \tag{2.40}
\end{equation*}
$$

where $D=\partial_{x_{4}}^{j_{1}} \partial_{x_{i_{1}}}^{j_{2}} \partial_{x_{i_{2}}}^{j_{3}}, j_{1} \in\{0,2\}, j_{2}, j_{3} \in\{0,1\}, i_{1}, i_{2} \in\{2, \ldots 6\}$, and $\ell_{1}, \ell_{2}, \ell_{3} \in \mathbb{Z}_{\geq 0}$. Thus we have that (2.31) is bounded by a finite linear combination of series of the form

$$
\begin{equation*}
\sum_{m_{5} \in \mathbb{Z}_{>0}} \sum_{[\gamma] \in \Gamma_{\beta} /\left(\Gamma_{\beta}\right)_{\infty}}\left\|\left(a^{\ell_{1}} c^{\ell_{2}} x_{3}^{\ell_{3}}\right) D\left[p_{-c m_{5}, a m_{5}}\right] \circ \rho_{\gamma}\left(x_{4}, x_{3}, n\right)\right\|_{I^{2} \times K} \tag{2.41}
\end{equation*}
$$

where $D=\partial_{x_{4}}^{j_{1}} \partial_{x_{i_{1}}}^{j_{2}} \partial_{x_{i_{2}}}^{j_{3}}, j_{1} \in\{0,2\}, j_{2}, j_{3} \in\{0,1\}, i_{1}, i_{2} \in\{2, \ldots 6\}$, and $\ell_{1}, \ell_{2}, \ell_{3} \in \mathbb{Z}_{\geq 0}$.
In what follows, we shall assume $D=\partial_{x_{4}}^{j_{1}} \partial_{x_{i_{1}}}^{j_{2}} \partial_{x_{i_{2}}}^{j_{3}}$ for some $j_{1} \in\{0,2\}, j_{2}, j_{3} \in\{0,1\}$, $i_{1}, i_{2} \in\{2, \ldots 6\}$. Observe

$$
\begin{align*}
& \sum_{m_{5} \in \mathbb{Z}_{>0}} \sum_{[\gamma] \in \Gamma_{\beta} /\left(\Gamma_{\beta}\right)_{\infty}}\left\|\left(a^{\ell_{1}} c^{\ell_{2}} x_{3}^{\ell_{3}}\right) D\left[p_{-c m_{5}, a m_{5}}\right] \circ \rho_{\gamma}\left(x_{4}, x_{3}, n\right)\right\|_{I^{2} \times K} \\
\leq & \sum_{m_{5} \in \mathbb{Z}_{>0}} \sum_{[\gamma] \in \Gamma_{\beta} /\left(\Gamma_{\beta}\right)_{\infty}}\left\|\left(a^{\ell_{1}} c^{\ell_{2}} x_{3}^{\ell_{3}}\right)\right\|_{I^{2} \times K}\left\|D\left[p_{-c m_{5}, a m_{5}}\right] \circ \rho_{\gamma}\left(x_{4}, x_{3}, n\right)\right\|_{I^{2} \times K} \\
\leq & \sum_{\left(k_{6}, k_{5}\right) \in \mathbb{Z}_{\neq(0,0)}^{2}} \mid k_{5}^{\ell_{1}} k_{6}^{\ell_{2}}\left\|D\left[p_{k_{6}, k_{5}}\right]\left(x_{6}, x_{5}, x_{4}, x_{3}, x_{2}\right)\right\|_{\mathbb{R}^{3} \times\left[-k_{5}, k_{5}\right] \times\left[-k_{6}, k_{6}\right] \times K} . \tag{2.42}
\end{align*}
$$

If $k_{i}=0$ then by $\left[-k_{i}, k_{i}\right]$ we mean the set $\{0\}$. In the last inequality we used that $|a| \leq\left|k_{5}\right|$, $|c| \leq\left|k_{6}\right|$ under the correspondence in (2.17). We also employed the inequality

$$
\left\|D\left[p_{k_{6}, k_{5}}\right] \circ \rho_{\gamma}\left(x_{4}, x_{3}, n\right)\right\|_{I^{2} \times K} \leq\left\|D\left[p_{k_{6}, k_{5}}\right]\left(x_{6}, x_{5}, x_{4}, x_{3}, x_{2}\right)\right\|_{\mathbb{R}^{3} \times\left[-k_{5}, k_{5}\right] \times\left[-k_{6}, k_{6}\right] \times K},
$$

which is also justified by the inequalities $|a| \leq\left|k_{5}\right|,|c| \leq\left|k_{6}\right|$ and the definition of ρ_{γ}. Since X_{6}, X_{5}, X_{4} all commute with each other, it follows that $p_{k_{6}, k_{5}}\left(x_{6}, x_{5}, x_{4}, x_{3}, x_{2}\right)$ is periodic with period 1 in x_{6}, x_{5}, and x_{4}. Since $D\left[p_{k_{6}, k_{5}}\right]\left(x_{6}, x_{5}, x_{4}, x_{3}, x_{2}\right)$ inherits this periodicity in x_{6}, x_{5}, x_{4}, it follows that

$$
\begin{equation*}
\left\|D\left[p_{k_{6}, k_{5}}\right]\right\|_{\mathbb{R}^{3} \times\left[-k_{5}, k_{5}\right] \times\left[-k_{6}, k_{6}\right] \times K}=\| D\left[p_{\left.k_{6}, k_{5}\right]} \|_{I^{3} \times\left[-k_{5}, k_{5}\right] \times\left[-k_{6}, k_{6}\right] \times K}\right. \tag{2.43}
\end{equation*}
$$

Suppose $x_{3} \in\left[-k_{5}, k_{5}\right]$. Then $x_{3}=e_{3}+r_{3}$ where $r_{3} \in \mathbb{Z}, e_{3} \in[0,1]$, which implies $\left|r_{3}\right| \leq\left|k_{5}\right|$. Since

$$
T_{6} X_{6} T_{5} X_{5} X_{4} X_{3} X_{2}=R_{3}\left(r_{3}\right) R_{6}\left(t_{6}-3 r_{3} x_{4}\right) X_{6} T_{5} X_{5} X_{4} R_{3}\left(e_{3}\right) X_{2}
$$

it follows that when we change variables in t_{6}, apply Lemma 2.3(a), and invoke the $N_{\mathbb{Z}}$-invariance of f, we find that

$$
p_{k_{6}, k_{5}}\left(x_{6}, x_{5}, x_{4}, x_{3}, x_{2}, n\right)=e\left(3 k_{6} r_{3} x_{4}\right) p_{k_{6}, k_{5}}\left(x_{6}, x_{5}, x_{4}, e_{3}, x_{2}, n\right) .
$$

Thus

$$
\begin{align*}
& D\left[p_{0, k_{5}}\right]\left(x_{6}, x_{5}, x_{4}, x_{3}, x_{2}, n\right)=D\left[p_{0, k_{5}}\right]\left(x_{6}, x_{5}, x_{4}, e_{3}, x_{2}, n\right) \tag{2.44a}\\
& D\left[p_{k_{6}, 0}\right]\left(x_{6}, x_{5}, x_{4}, x_{3}, x_{2}, n\right)=D\left[p_{k_{6}, 0}\right]\left(x_{6}, x_{5}, x_{4}, e_{3}, x_{2}, n\right) \tag{2.44b}
\end{align*}
$$

(if $k_{5}=0$ then $r_{3}=0$), and if $k_{6} k_{5} \neq 0$ then $D\left[p_{k_{6}, k_{5}}\right]\left(x_{6}, x_{5}, x_{4}, x_{3}, x_{2}, n\right)$ can be written as a finite linear combination of terms of the form

$$
\begin{equation*}
\left(k_{6} r_{3}\right)^{\ell^{\prime}} e\left(3 k_{6} r_{3} x_{4}\right) D^{\prime}\left[p_{k_{6}, k_{5}}\right]\left(x_{6}, x_{5}, x_{4}, e_{3}, x_{2}\right) \tag{2.45}
\end{equation*}
$$

where $\ell^{\prime} \in \mathbb{Z}_{\geq 0}$ and $D^{\prime}=\partial_{x_{4}}^{j_{1}^{\prime}} \partial_{x_{1}^{\prime}}^{j_{2}^{\prime}} \partial_{x_{i_{2}^{\prime}}}^{j_{3}^{\prime}}, j_{1}^{\prime} \in\{0,1,2\}, j_{2}^{\prime}, j_{3}^{\prime} \in\{0,1\}, i_{1}^{\prime}, i_{2}^{\prime} \in\{2, \ldots 6\}$. Since $\left[-k_{5}, k_{5}\right]$ contains no more than $2\left|k_{5}\right|+1 \leq 3\left|k_{5}\right|$ integers and $\left[-k_{6}, k_{6}\right]$ contains no more than $2\left|k_{6}\right|+1 \leq 3\left|k_{6}\right|$ integers, then by (2.44),

$$
\begin{align*}
& \left\|D\left[p_{\left.0, k_{5}\right]}\right]\left(x_{6}, x_{5}, x_{4}, x_{3}, x_{2}\right)\right\|_{I^{3} \times\left[-k_{5}, k_{5}\right] \times\{0\} \times K} \\
& \quad \leq 3\left|k_{5}\right| \cdot\left\|D\left[p_{0, k_{5}}\right]\left(x_{6}, x_{5}, x_{4}, x_{3}, x_{2}\right)\right\|_{I^{4} \times\{0\} \times K} \text { for } k_{5} \neq 0, \tag{2.46a}\\
& \left\|D\left[p_{k_{6}, 0}\right]\left(x_{6}, x_{5}, x_{4}, x_{3}, x_{2}\right)\right\|_{I^{3} \times\{0\} \times\left[-k_{6}, k_{6}\right] \times K} \\
& \quad \leq 3\left|k_{6}\right| \cdot\left\|D\left[p_{k_{6}, 0}\right]\left(x_{6}, x_{5}, x_{4}, x_{3}, x_{2}\right)\right\|_{I^{3} \times\{0\} \times I \times K} \text { for } k_{6} \neq 0 . \tag{2.46b}
\end{align*}
$$

If $k_{5} k_{6} \neq 0$ then since $\left|r_{3}\right| \leq\left|k_{5}\right|$ and since $\left[-k_{5}, k_{5}\right]$ contains no more than $2\left|k_{5}\right|+1 \leq 3\left|k_{5}\right|$ integers, it follows from (2.45) that

$$
\begin{equation*}
\left\|D\left[p_{k_{6}, k_{5}}\right]\left(x_{6}, x_{5}, x_{4}, x_{3}, x_{2}\right)\right\|_{I^{3} \times\left[-k_{5}, k_{5}\right] \times\left[-k_{6}, k_{6}\right] \times K} \tag{2.47}
\end{equation*}
$$

is bounded by a finite linear combination with terms of the form

$$
\begin{equation*}
\left|k_{5}^{\ell^{\prime}+1} k_{6}^{\ell^{\prime}}\right| \cdot\left\|D^{\prime}\left[p_{\left.k_{6}, k_{5}\right]}\right]\left(x_{6}, x_{5}, x_{4}, x_{3}, x_{2}\right)\right\|_{I^{4} \times\left[-k_{6}, k_{6}\right] \times K} \tag{2.48}
\end{equation*}
$$

Suppose $k_{5} k_{6} \neq 0$ and $x_{2} \in\left[-k_{6}, k_{6}\right]$. Thus $x_{2}=r_{2}+e_{2}$ where $r_{2} \in \mathbb{Z}$ and $e_{2} \in[0,1)$, which implies $\left|r_{2}\right| \leq\left|k_{6}\right|$. Since

$$
\begin{aligned}
& T_{6} X_{6} T_{5} X_{5} X_{4} X_{3} X_{2} \\
& =R_{2}\left(r_{2}\right) R_{6}\left(t_{6}+3 r_{2} x_{3}^{2}\right) X_{6} R_{5}\left(t_{5}-3 r_{2}^{2} x_{3}-3 r_{2} x_{4}\right) X_{5} R_{4}\left(2 r_{2} x_{3}+x_{4}\right) X_{3} R_{2}\left(e_{2}\right)
\end{aligned}
$$

it follows that when we change variables in t_{6} and t_{5}, apply Lemma 2.3 , and invoke the $N_{\mathbb{Z}^{-}}$ invariance of f, we find that

$$
\begin{aligned}
& p_{k_{6}, k_{5}}\left(x_{6}, x_{5}, x_{4}, x_{3}, x_{2}, n\right) \\
& =e\left(3 k_{6} r_{2} x_{3}^{2}+3 k_{5} r_{2} x_{3}+3 k_{5} r_{2} x_{4}\right) p_{k_{6}, k_{5}}\left(x_{6}, x_{5}, 2 r_{2} x_{2}+x_{4}, x_{3}, e_{2}, n\right)
\end{aligned}
$$

Since $\left|r_{2}\right| \leq\left|k_{6}\right|,\left[-k_{6}, k_{6}\right]$ contains no more than $2\left|k_{6}\right|+1 \leq 3\left|k_{6}\right|$ integers, and $p_{k_{6}, k_{5}}$ is periodic in the x_{4} variable, then (2.48) will be bounded by a finite linear combination with terms of the form

$$
\begin{equation*}
\left|k_{6}^{\ell_{2}^{\prime}} k_{5}^{\ell_{1}^{\prime}}\right| \cdot\left\|D^{\prime \prime}\left[p_{k_{6}, k_{5}}\right]\left(x_{6}, x_{5}, x_{4}, x_{3}, x_{2}\right)\right\|_{I^{5} \times K} \tag{2.49}
\end{equation*}
$$

where $\ell_{1}^{\prime}, \ell_{2}^{\prime} \in \mathbb{Z}_{>0}$ and $D^{\prime \prime}=\partial_{x_{4}}^{j_{1}^{\prime \prime}} \partial_{x_{i_{1}^{\prime \prime}}}^{j_{2}^{\prime \prime}} \partial_{x_{i_{2}^{\prime \prime}}}^{j_{3}^{\prime \prime}}, j_{1}^{\prime \prime} \in\{0,1,2\}, j_{2}^{\prime \prime}, j_{3}^{\prime \prime} \in\{0,1\}, i_{1}^{\prime \prime}, i_{2}^{\prime \prime} \in\{2, \ldots 6\}$. Consequently, (2.47) is bounded by a finite linear combination of terms of the form (2.49). By $(2.41),(2.42),(2.43),(2.46),(2.47)$, and (2.49) it follows that (2.31) is bounded by a finite linear combination of series of the form

$$
\begin{align*}
& \sum_{k_{5} \in \mathbb{Z}}\left|k_{5}\right|^{\ell_{1}} \cdot\left\|D\left[p_{0, k_{5}}\right]\left(x_{6}, x_{5}, x_{4}, x_{3}, x_{2}\right)\right\|_{I^{4} \times\{0\} \times K}, \tag{2.50a}\\
& \sum_{k_{6} \in \mathbb{Z}}\left|k_{6}\right|^{\ell_{2}} \cdot\left\|D\left[p_{k_{6}, 0}\right]\left(x_{6}, x_{5}, x_{4}, x_{3}, x_{2}\right)\right\|_{I^{3} \times\{0\} \times I \times K}, \tag{2.50b}\\
& \sum_{k_{6} \in \mathbb{Z}_{\neq 0}} \sum_{k_{5} \in \mathbb{Z}_{\neq 0}}\left|k_{5}^{\ell_{1}} k_{6}^{\ell_{2}}\right| \cdot\left\|D\left[p_{\left.k_{6}, k_{5}\right]}\right]\left(x_{6}, x_{5}, x_{4}, x_{3}, x_{2}\right)\right\|_{I^{5} \times K}, \tag{2.50c}
\end{align*}
$$

where $D=\partial_{x_{4}}^{j_{1}} \partial_{x_{i_{1}}}^{j_{2}} \partial_{x_{i_{2}}}^{j_{3}}, j_{1} \in\{0,1,2\}, j_{2}, j_{3} \in\{0,1\}, i_{1}, i_{2} \in\{2, \ldots 6\}$, and $\ell_{1}, \ell_{2} \in \mathbb{Z}_{>0}$ (we allow for ℓ_{1}, ℓ_{2}, and D to vary between (2.50a), (2.50b), (2.50c)).

Let

$$
q_{k_{6}}\left(x_{6}, t_{5}, x_{5}, x_{4}, x_{3}, x_{2}, n\right)=\int_{0}^{1} f\left(T_{6} X_{6} T_{5} X_{5} X_{4} X_{3} X_{2} n\right) e\left(-k_{6} t_{6}\right) d t_{6}
$$

Observe that $D\left[p_{k_{6}, k_{5}}\right]$ is the k_{5}-th Fourier coefficient for $q_{k_{6}}$ in the t_{5} variable; recall that $q_{k_{6}}$ is indeed periodic in t_{5} by Lemma 2.3(b). Therefore by Lemma 2.1, we have that

$$
\begin{align*}
& \sum_{k_{5} \in \mathbb{Z}}\left|k_{5}\right|^{\ell_{1}}\left\|D\left[p_{0, k_{5}}\right]\left(x_{6}, x_{5}, x_{4}, x_{3}, x_{2}, n\right)\right\|_{I^{4} \times\{0\} \times K} \\
& \quad \leq\left\|\partial_{x_{5}}^{\ell_{1}+2} D\left[q_{0}\right]\left(x_{6}, t_{5}, x_{5}, x_{4}, x_{3}, x_{2}, n\right)\right\|_{I^{5} \times\{0\} \times K} \tag{2.51}\\
& \sum_{k_{6} \in \mathbb{Z}_{\neq 0}} \sum_{k_{5} \in \mathbb{Z}_{\neq 0}}\left|k_{5}^{\ell_{1}} k_{6}^{\ell_{2}}\right|\left\|D\left[p_{k_{6}, k_{5}}\right]\left(x_{6}, x_{5}, x_{4}, x_{3}, x_{2}, n\right)\right\|_{I^{5} \times K} \\
& \quad \leq \sum_{k_{6} \in \mathbb{Z}_{\neq 0}}\left|k_{6}^{\ell_{2}}\right|\left\|\partial_{x_{5}}^{\ell_{1}+2} D\left[q_{k_{6}}\right]\left(x_{6}, t_{5}, x_{5}, x_{4}, x_{3}, x_{2}, n\right)\right\|_{I^{6} \times K} \tag{2.52}
\end{align*}
$$

Next, let

$$
q\left(t_{6}, x_{6}, t_{5}, x_{5}, x_{4}, x_{3}, x_{2}, n\right)=f\left(T_{6} X_{6} T_{5} X_{5} X_{4} X_{3} X_{2} n\right)
$$

Observe that $D\left[q_{k_{6}}\right]$ is the k_{6}-th Fourier coefficient of q in the t_{6} variable; recall that q is indeed periodic in t_{6} by Lemma 2.3(a). Therefore by Lemma 2.1, we have that

$$
\begin{aligned}
& \quad \sum_{k_{6} \in \mathbb{Z}_{\neq 0}}\left|k_{6}^{\ell_{2}}\right|\left\|\partial_{x_{5}}^{\ell_{1}+2} D\left[q_{k_{6}}\right]\left(x_{6}, t_{5}, x_{5}, x_{4}, x_{3}, x_{2}, n\right)\right\|_{I^{6} \times K} \\
& \quad \leq\left\|\partial_{x_{6}}^{\ell_{2}+2} \partial_{x_{5}}^{\ell_{1}+2} D[q]\left(t_{6}, x_{6}, t_{5}, x_{5}, x_{4}, x_{3}, x_{2}, n\right)\right\|_{I^{7} \times K}<\infty .
\end{aligned}
$$

Therefore, by (2.52) we have that

$$
\begin{align*}
& \sum_{k_{6} \in \mathbb{Z}_{\neq 0}} \sum_{k_{5} \in \mathbb{Z}_{\neq 0}}\left|k_{5}^{\ell_{1}} k_{6}^{\ell_{2}}\right|\left\|D\left[p_{k_{6}, k_{5}}\right]\left(x_{6}, t_{5}, x_{5}, x_{4}, x_{3}, x_{2}, n\right)\right\|_{I^{5} \times K} \\
& \leq\left\|\partial_{x_{6}}^{\ell_{2}+2} \partial_{x_{5}}^{\ell_{1}+2} D[q]\left(t_{6}, x_{6}, t_{5}, x_{5}, x_{4}, x_{3}, x_{2}, n\right)\right\|_{I^{7} \times K}<\infty \tag{2.53}
\end{align*}
$$

Lastly, consider

$$
p\left(t_{6}, x_{6}, x_{5}, x_{4}, x_{3}, x_{2}, n\right)=\int_{0}^{1} f\left(T_{6} X_{6} T_{5} X_{5} X_{4} X_{3} X_{2} n\right) d t_{5}
$$

Observe that $D\left[p_{k_{6}, 0}\right]$ is the k_{6}-th Fourier coefficient of $D[p]$ in the t_{6} variable; recall that p is indeed periodic in t_{6} by Lemma 2.3(a). Therefore by Lemma 2.1, we have that

$$
\begin{align*}
& \sum_{k_{6} \in \mathbb{Z}}\left|k_{6}\right|^{\ell_{2}} \cdot\left\|D\left[p_{k_{6}, 0}\right]\left(x_{6}, x_{5}, x_{4}, x_{3}, x_{2}, n\right)\right\|_{I^{3} \times\{0\} \times I \times K} \\
& \leq\left\|\partial_{x_{6}}^{\ell_{2}+2} D[p]\left(t_{6}, x_{6}, x_{5}, x_{4}, x_{3}, x_{2}, n\right)\right\|_{I^{4} \times\{0\} \times I \times K}<\infty . \tag{2.54}
\end{align*}
$$

By (2.51), (2.53), (2.54) it follows that the terms of the form (2.50) are finite, and this proves our proposition.

Recall that $C(K)$, the space of continuous functions on a compact set K, is a Banach spaces under the norm $\|\cdot\|_{K}$. Therefore, Propositions 2.7, 2.8, and 2.9 assert that

$$
\begin{align*}
& \sum_{m_{5} \in \mathbb{Z}>0} \sum_{\substack{[\gamma] \in \Gamma / \Gamma_{\infty} \\
[\gamma] \neq[\pm \mathrm{id}]}} \sum_{m_{4} \in \mathbb{Z}} \sum_{m_{3} \in \mathbb{Z}} f_{\gamma, m_{5}, m_{4}, m_{3}}+\sum_{\substack{k_{5} \in \mathbb{Z} \\
k_{5} \neq 0 \text { or } \\
k_{4} \neq \mathbb{Z} \\
k_{3} \text { or } k_{3} \neq 0}} \sum_{k_{3} \in \mathbb{R}} \sum_{k_{1} \in \mathbb{Z}} f_{0, k_{5}, k_{4}, k_{3}, k_{1}} \\
& +\sum_{k_{1} \in \mathbb{Z}} \sum_{k_{2} \in \mathbb{Z}} f_{0,0,0,0, k_{1}, k_{2}} \tag{2.55}
\end{align*}
$$

converges absolutely in $C(K)$. Consequently, for any enumeration of the terms in (2.55), we have that the resulting sequence of partial sums converges in $C(K)$ and that the limit point of said sequence does not depend upon choice of enumeration (i.e. the series (2.55) converges unconditionally). Proposition 2.5 shows that there exists an enumeration of (2.55) whose sequence of partial sums contains a subsequence which converges to f. Therefore, by basic analysis, we are able to conclude that for any enumeration of (2.55), the sequence of partial sums converges to f. Thus the following proposition follows.

Theorem 2.10. If $f: N \rightarrow \mathbb{C}$ is a smooth, $N_{\mathbb{Z}}$-invariant function and K is a compact subset of N then

$$
\begin{aligned}
f= & \sum_{m_{5} \in \mathbb{Z}_{>0}} \sum_{\substack{\gamma \gamma] \in \Gamma / \Gamma \infty \\
[\gamma] \neq[\pm \mathrm{id}]}} \sum_{m_{4} \in \mathbb{Z}} \sum_{m_{3} \in \mathbb{Z}} f_{\gamma, m_{5}, m_{4}, m_{3}}+\sum_{\substack{k_{5} \in \mathbb{Z} \\
k_{5} \neq 0}} \sum_{k_{4} \in \mathbb{Z}} \sum_{\substack{k_{3} \in \mathbb{Z} \\
k_{4} \neq 0}} \sum_{k_{1} \in \mathbb{Z}} f_{0, k_{5}, k_{4}, k_{3}, k_{1}} \\
& +\sum_{k_{1} \neq 0} \sum_{k_{2} \in \mathbb{Z}} f_{0,0,0,0, k_{1}, k_{2}}
\end{aligned}
$$

where convergence of the series is absolute (and therefore unconditional) in the Banach space $C(K)$. The terms of this series are defined in (2.7).

$2.5 \quad N_{\mathbb{Z}}$-Invariant Functions

If $\ell \in \mathbb{Z}_{\neq 0}$ then let $[x]_{\ell}=[x]$ denote the coset of $\mathbb{Z} / \ell \mathbb{Z}$ which contains $x \in \mathbb{Z}$. As indicated in our definition, we will drop the subscript ℓ from $[x]_{\ell}$ when the value of ℓ is clear from context. Similarly, let $[[\gamma]]$ denote the double coset of $\left(\Gamma_{\beta}\right)_{\infty} \backslash \Gamma_{\beta} /\left(\Gamma_{\beta}\right)_{\infty}$ which contains $\gamma \in \Gamma_{\beta}$. Since

$$
\left(\begin{array}{ll}
1 & q \tag{2.56}\\
0 & 1
\end{array}\right) \cdot\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
a+c q & b+d q \\
c & d
\end{array}\right)
$$

it follows from (2.11) that

$$
\begin{equation*}
\text { each }[[\gamma]] \text {, other than }[[\mathrm{id}]] \text { or }[[-\mathrm{id}]] \text {, is uniquely identified by } c \text { and } a(\bmod c) ; \tag{2.57}
\end{equation*}
$$

notice that [[id]] and [[-id]] are distinct in $\left(\Gamma_{\beta}\right)_{\infty} \backslash \Gamma_{\beta} /\left(\Gamma_{\beta}\right)_{\infty}$.
For $q_{i} \in \mathbb{Z}$ and $\gamma \in \Gamma_{\beta}$ such that $[[\gamma]] \neq[[\pm \mathrm{id}]]$, we have

$$
\begin{aligned}
& f_{\gamma, m_{5}, m_{4}, m_{3}}\left(Q_{6} Q_{5} Q_{4} Q_{3} Q_{2} Q_{1} n\right) \\
& =\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} f\left(\gamma T_{6} T_{5} T_{4} T_{3} \gamma^{-1} Q_{6} Q_{5} Q_{4} Q_{3} Q_{2} Q_{1} n\right) e\left(-m_{5} t_{5}-m_{4} t_{4}-m_{3} t_{3}\right) \\
& \quad d t_{6} d t_{5} d t_{4} d t_{3} \\
& =\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} f\left(Q _ { 6 } Q _ { 5 } Q _ { 4 } Q _ { 3 } Q _ { 2 } Q _ { 1 } (Q _ { 1 } ^ { - 1 } \gamma) R _ { 6 } \left(3 a b q_{2}^{2} t_{3}+6 q_{2} q_{3} t_{3}-6 a d q_{2} q_{3} t_{3}\right.\right. \\
& \left.\quad+3 c d q_{3}^{2} t_{3}+3 q_{4} t_{3}+3 a q_{2} t_{3}^{2}-3 c q_{3} t_{3}^{2}+3 b q_{2} t_{4}-3 d q_{3} t_{4}+t_{6}\right) R_{5}\left(-3 a^{2} q_{2}^{2} t_{3}\right. \\
& \left.\quad+6 a c q_{2} q_{3} t_{3}-3 c^{2} q_{3}^{2} t_{3}-3 a q_{2} t_{4}+3 c q_{3} t_{4}+t_{5}\right) R_{4}\left(2 a q_{2} t_{3}-2 c q_{3} t_{3}+t_{4}\right) \\
& \left.\quad T_{3}\left(Q_{1}^{-1} \gamma\right)^{-1} n\right) e\left(-m_{5} t_{5}-m_{4} t_{4}-m_{3} t_{3}\right) d t_{6} d t_{5} d t_{4} d t_{3}
\end{aligned}
$$

By Lemma 2.3, we can perform the following change of variables (in order):

$$
\begin{aligned}
& t_{6} \mapsto t_{6}-\left(3 a b q_{2}^{2} t_{3}+6 q_{2} q_{3} t_{3}-6 a d q_{2} q_{3} t_{3}+3 c d q_{3}^{2} t_{3}+3 q_{4} t_{3}+3 a q_{2} t_{3}^{2}\right. \\
&\left.\quad-3 c q_{3} t_{3}^{2}+3 b q_{2} t_{4}-3 d q_{3} t_{4}\right) \\
& t_{5} \mapsto t_{5}-\left(-3 a^{2} q_{2}^{2} t_{3}+6 a c q_{2} q_{3} t_{3}-3 c^{2} q_{3}^{2} t_{3}-3 a q_{2} t_{4}+3 c q_{3} t_{4}\right) \\
& t_{4} \mapsto t_{4}-\left(2 a q_{2} t_{3}-2 c q_{3} t_{3}\right)
\end{aligned}
$$

and utilize the $N_{\mathbb{Z}}$-invariance of f to conclude that

$$
\begin{align*}
& f_{\gamma, m_{5}, m_{4}, m_{3}}\left(Q_{6} Q_{5} Q_{4} Q_{3} Q_{2} Q_{1} n\right) \\
& =\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} f\left(\left(Q_{1}^{-1} \gamma\right) T_{6} T_{5} T_{4} T_{3}\left(Q_{1}^{-1} \gamma\right)^{-1} n\right) e\left(-\left(m_{3}-2\left(a q_{2}-c q_{3}\right) m_{4}\right.\right. \\
& \left.\left.\quad-3\left(a q_{2}-c q_{3}\right)^{2} m_{5}\right) t_{3}-\left(m_{4}+3\left(a q_{2}-c q_{3}\right) m_{5}\right) t_{4}-m_{5} t_{5}\right) d t_{6} d t_{5} d t_{4} d t_{3} \\
& =f_{Q_{1}^{-1} \gamma, m_{5}, m_{4}+3\left(a q_{2}-c q_{3}\right) m_{5}, m_{3}-2\left(a q_{2}-c q_{3}\right) m_{4}-3\left(a q_{2}-c q_{3}\right)^{2} m_{5}}(n) \tag{2.58}
\end{align*}
$$

We formally define

$$
\begin{align*}
& f_{\gamma, m_{5}, m_{4}, m_{3}}^{\Sigma}(n) \\
& =\sum_{q_{1} \in \mathbb{Z}} \sum_{\left[q_{2}\right] \in \mathbb{Z} / c \mathbb{Z}} \sum_{q_{3} \in \mathbb{Z}} f_{\gamma, m_{5}, m_{4}, m_{3}}\left(Q_{3} Q_{2} Q_{1} n\right) \\
& =\sum_{q_{1} \in \mathbb{Z}} \sum_{\left[q_{2}\right] \in \mathbb{Z} / c \mathbb{Z}} \sum_{q_{3} \in \mathbb{Z}} f_{Q_{1}^{-1} \gamma, m_{5}, m_{4}+3\left(a q_{2}-c q_{3}\right) m_{5}, m_{3}-2\left(a q_{2}-c q_{3}\right) m_{4}-3\left(a q_{2}-c q_{3}\right)^{2} m_{5}}(n) \\
& =\sum_{q_{1} \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} f_{Q_{1}^{-1} \gamma, m_{5}, m_{4}+3 j m_{5}, m_{3}-2 j m_{4}-3 j^{2} m_{5}}(n) . \tag{2.59}
\end{align*}
$$

In the above equality we have used the fact that for $c \neq \pm 1$, each element of \mathbb{Z} can be written uniquely as $a q_{2}-c q_{3}$ where $q_{3} \in \mathbb{Z}$ and $\left[q_{2}\right] \in \mathbb{Z} / c \mathbb{Z}$ (recall $c \neq 0$ since we have assumed $[[\gamma]] \neq[[\pm \mathrm{id}]])$, and for the case of $c= \pm 1$, we then have $q_{2}=0$ and obviously each element of \mathbb{Z} can be written uniquely as $a q_{2}-c q_{3}=\mp q_{3}$ where $q_{3} \in \mathbb{Z}$. One can see from (2.12) that the definition of $f_{\gamma, m_{5}, m_{4}, m_{3}}^{\Sigma}$ does not depend upon the choice of representative for [[$\left.\left.\gamma\right]\right]$. Lastly, observe that by $(2.58), f_{\gamma, m_{5}, m_{4}, m_{3}}^{\Sigma}$ is formally $N_{\mathbb{Z}}$-invariant.

The absolute convergence of (2.55) in $C(K)$ implies the absolute convergence of the series defining $f_{\gamma, m_{5}, m_{4}, m_{3}}^{\Sigma}$ in $C(K)$. Thus $f_{\gamma, m_{5}, m_{4}, m_{3}}^{\Sigma}$ is a well-defined element of $C(K)$. Of course, since our choice of K was arbitrary it follows that $f_{\gamma, m_{5}, m_{4}, m_{3}}^{\Sigma}$ is also defined as a continuous function on all of N. Furthermore, since the series defining $f_{\gamma, m_{5}, m_{4}, m_{3}}^{\Sigma}$ is formally $N_{\mathbb{Z}}$-invariant, it follows that $f_{\gamma, m_{5}, m_{4}, m_{3}}^{\Sigma}$ can be thought of as an $N_{\mathbb{Z}}$-invariant function on N.

Observe that formally,

$$
\begin{align*}
& \sum_{\substack{[[\gamma]] \in\left(\Gamma_{\beta}\right) \propto \backslash \Gamma_{\beta} /\left(\Gamma_{\beta}\right)_{\infty} \\
[[\gamma]] \neq[\mid[i d d]]}} \sum_{m_{5} \in \mathbb{Z}_{>0}} \sum_{\left[m_{4}\right] \in \mathbb{Z} / 3 m_{5} \mathbb{Z}} \sum_{m_{3} \in \mathbb{Z}} f_{\gamma, m_{5}, m_{4}, m_{3}}^{\Sigma} \\
& =\sum_{[\gamma] \in \Gamma_{\beta} /\left(\Gamma_{\beta}\right) \infty} \sum_{m_{5} \in \mathbb{Z}_{>0}} \sum_{m_{4} \in \mathbb{Z}} \sum_{m_{3} \in \mathbb{Z}} f_{\gamma, m_{5}, m_{4}, m_{3}} ; \tag{2.60}
\end{align*}
$$

indeed, this follows from the fact that $[[\pm \mathrm{id}]]=[\pm \mathrm{id}]$ by (2.56) and the fact that $q_{1} \mapsto\left[Q_{1}^{-1} \gamma\right]$ is an injective map from \mathbb{Z} into $\Gamma_{\beta} /\left(\Gamma_{\beta}\right)_{\infty}$ for $[[\gamma]] \neq[[\pm \mathrm{id}]]$ by (2.56) and (2.11). Both the right and left-hand sides of (2.60) can be seen to converge absolutely in $C(K)$ by noting that

$$
\begin{align*}
& \sum_{\substack{\left.[\gamma \gamma] \in \in\left(\Gamma_{\beta}\right) \infty \backslash \Gamma_{\beta} /\left(\Gamma_{\beta}\right)_{\infty} \\
[[\gamma]] \neq \|[\lfloor\mathrm{id}]]\right]}} \sum_{m_{5} \in \mathbb{Z}_{>0}} \sum_{\left[m_{4}\right] \in \mathbb{Z} / 3 m_{5} \mathbb{Z}} \sum_{m_{3} \in \mathbb{Z}}\left\|f_{\gamma, m_{5}, m_{4}, m_{3}}^{\Sigma}\right\|_{K} \\
& \leq \sum_{\substack{\left.\left.[\gamma] \in \Gamma_{\beta} / / \Gamma_{\beta}\right) \infty \\
[\gamma] \neq \mid \pm i d\right]}} \sum_{\substack{ \\
m_{5} \in \mathbb{Z}_{>0}}} \sum_{m_{4} \in \mathbb{Z}} \sum_{m_{3} \in \mathbb{Z}}\left\|f_{\gamma, m_{5}, m_{4}, m_{3}}\right\|_{K}<\infty, \tag{2.61}
\end{align*}
$$

where finiteness follows from the absolute convergence of (2.55). One can then use basic analysis to show the left-hand side of (2.60) must converge (absolutely) in $C(K)$ to the right-hand side of $(2.60){ }^{3}$ Thus (2.60) is a well-defined identity in $C(K)$.

Let $L^{2}\left(N_{\mathbb{Z}} \backslash N\right)$ denote the space of $N_{\mathbb{Z}}$-invariant, square integrable, measurable functions on N modulo the space of functions which vanish almost everywhere. If \mathcal{Q} is a fundamental domain for $N_{\mathbb{Z}} \backslash N$ then we can define an inner-product on $L^{2}\left(N_{\mathbb{Z}} \backslash N\right)$ by defining

$$
\begin{equation*}
\left\langle h_{1}, h_{2}\right\rangle=\int_{\mathcal{Q}} h_{1}(n) \overline{h_{2}(n)} d n \tag{2.62}
\end{equation*}
$$

where $h_{1}, h_{2} \in L^{2}\left(N_{\mathbb{Z}} \backslash N\right)$ and $d n$ is a fixed Haar measure for N. It is well-known that $L^{2}\left(N_{\mathbb{Z}} \backslash N\right)$ is a Hilbert space when equipped with the inner-product (2.62). From this inner-product we define a norm $\|\cdot\|_{2}$ for $L^{2}\left(N_{\mathbb{Z}} \backslash N\right)$ by

$$
\begin{equation*}
\|h\|_{2}=\langle h, h\rangle^{1 / 2}=\left(\int_{\mathcal{Q}}|h(n)|^{2} d n\right)^{1 / 2} \tag{2.63}
\end{equation*}
$$

where $h \in L^{2}\left(N_{\mathbb{Z}} \backslash N\right)$. If $h: N \rightarrow \mathbb{C}$ is a continuous, $N_{\mathbb{Z}}$-invariant function then it follows that $h \in L^{2}\left(N_{\mathbb{Z}} \backslash N\right)$; in particular, $f_{\gamma, m_{5}, m_{4}, m_{3}}^{\Sigma} \in L^{2}\left(N_{\mathbb{Z}} \backslash N\right)$ for smooth, $N_{\mathbb{Z}}$-invariant functions $f: N \rightarrow \mathbb{C}$. If K is the closure of \mathcal{Q} then it is easy to see that $\|h\|_{2} \leq\|h\|_{K}$. Therefore by (2.61), the series

$$
\sum_{\substack{[[\gamma]] \in \Gamma \infty \backslash \Gamma / \Gamma \infty \\[\mid \gamma]] \neq[\pm i d]]}} \sum_{m_{5} \in \mathbb{Z}_{>0}} \sum_{\left[m_{4}\right] \in \mathbb{Z} / 3 m_{5} \mathbb{Z}} \sum_{m_{3} \in \mathbb{Z}} f_{\gamma, m_{5}, m_{4}, m_{3}}^{\Sigma}
$$

[^3]converges absolutely in $L^{2}\left(N_{\mathbb{Z}} \backslash N\right)$.
For $q_{i} \in \mathbb{Z}$, we have
\[

$$
\begin{aligned}
& f_{0, k_{5}, k_{4}, k_{3}, k_{1}}\left(Q_{6} Q_{5} Q_{4} Q_{3} Q_{2} Q_{1} n\right) \\
& =\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} f\left(T_{6} T_{5} T_{4} T_{3} T_{1} Q_{6} Q_{5} Q_{4} Q_{3} Q_{2} Q_{1} n\right) \\
& \quad e\left(-k_{5} t_{5}-k_{4} t_{4}-k_{3} t_{3}-k_{1} t_{1}\right) d t_{6} d t_{5} d t_{4} d t_{3} d t_{1} \\
& =\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} f\left(Q _ { 6 } Q _ { 5 } Q _ { 4 } Q _ { 3 } Q _ { 2 } Q _ { 1 } R _ { 6 } \left(q_{1} q_{2}^{3} t_{1}+q_{5} t_{1}+q_{2}^{3} t_{1}^{2}+3 q_{1} q_{2}^{2} t_{3}+3 q_{4} t_{3}\right.\right. \\
& \left.\quad+3 q_{2}^{2} t_{1} t_{3}+3 q_{2} t_{3}^{2}+3 q_{1} q_{2} t_{4}-3 q_{3} t_{4}-q_{1} t_{5}+t_{6}\right) R_{5}\left(-q_{2}^{3} t_{1}-3 q_{2}^{2} t_{3}-3 q_{2} t_{4}+t_{5}\right) \\
& \left.\quad R_{4}\left(q_{2}^{2} t_{1}+2 q_{2} t_{3}+t_{4}\right) R_{3}\left(q_{2} t_{1}+t_{3}\right) T_{1} n\right) e\left(-k_{5} t_{5}-k_{4} t_{4}-k_{3} t_{3}-k_{1} t_{1}\right) \\
& \quad d t_{6} d t_{5} d t_{4} d t_{3} d t_{1} .
\end{aligned}
$$
\]

By Lemma 2.3, we can perform the following change of variables (in order):

$$
\begin{aligned}
t_{6} \mapsto t_{6}- & \left(q_{1} q_{2}^{3} t_{1}+q_{5} t_{1}+q_{2}^{3} t_{1}^{2}+3 q_{1} q_{2}^{2} t_{3}+3 q_{4} t_{3}+3 q_{2}^{2} t_{1} t_{3}\right. \\
& \left.\quad+3 q_{2} t_{3}^{2}+3 q_{1} q_{2} t_{4}-3 q_{3} t_{4}-q_{1} t_{5}\right) \\
& \\
t_{5} \mapsto t_{5}- & \left(-q_{2}^{3} t_{1}-3 q_{2}^{2} t_{3}-3 q_{2} t_{4}\right) \\
t_{4} \mapsto t_{4}- & \left(q_{2}^{2} t_{1}+2 q_{2} t_{3}\right) \\
t_{3} \mapsto t_{3}- & q_{2} t_{1}
\end{aligned}
$$

and utilize the $N_{\mathbb{Z}}$-invariance of f to conclude that

$$
\begin{align*}
& f_{0, k_{5}, k_{4}, k_{3}, k_{1}}\left(Q_{6} Q_{5} Q_{4} Q_{3} Q_{2} Q_{1} n\right) \\
& =\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} f\left(T_{6} T_{5} T_{4} T_{3} T_{1} n\right) e\left(-\left(k_{1}-k_{3} q_{2}+k_{4} q_{2}^{2}+k_{5} q_{2}^{3}\right) t_{1}\right. \\
& \left.\quad-\left(k_{3}-2 k_{4} q_{2}-3 k_{5} q_{2}^{2}\right) t_{3}-\left(k_{4}+3 k_{5} q_{2}\right) t_{4}-k_{5} t_{5}\right) d t_{6} d t_{5} d t_{4} d t_{3} d t_{1} \\
& =f_{k_{5}, k_{4}+3 k_{5} q_{2}, k_{3}-2 k_{4} q_{2}-3 k_{5} q_{2}^{2}, k_{1}-k_{3} q_{2}+k_{4} q_{2}^{2}+k_{5} q_{2}^{3}}(n) . \tag{2.64}
\end{align*}
$$

Formally, we define

$$
\begin{align*}
& f_{0, k_{5}, k_{4}, k_{3}, k_{1}}^{\Sigma}(n)=\sum_{q_{2} \in \mathbb{Z}} f_{0, k_{5}, k_{4}, k_{3}, k_{1}}\left(Q_{2} n\right) \\
& =\sum_{q_{2} \in \mathbb{Z}} f_{k_{5}, k_{4}+3 k_{5} q_{2}, k_{3}-2 k_{4} q_{2}-3 k_{5} q_{2}^{2}, k_{1}-k_{3} q_{2}+k_{4} q_{2}^{2}+k_{5} q_{2}^{3}}(n) \tag{2.65}
\end{align*}
$$

Observe that $f_{0, k_{5}, k_{4}, k_{3}, k_{1}}^{\Sigma}$ is formally $N_{\mathbb{Z}}$-invariant. The absolute convergence of (2.55) in $C(K)$ implies the absolute convergence of the series defining $f_{0, k_{5}, k_{4}, k_{3}, k_{1}}^{\Sigma}$ in $C(K)$. Thus $f_{0, k_{5}, k_{4}, k_{3}, k_{1}}^{\Sigma}$ is a well-defined element of $C(K)$. Since our choice of K was arbitrary it follows that $f_{0, k_{5}, k_{4}, k_{3}, k_{1}}^{\Sigma}$ is
also defined as a continuous function on all of N. Furthermore, since the series defining $f_{0, k_{5}, k_{4}, k_{3}, k_{1}}^{\Sigma}$ is formally $N_{\mathbb{Z}}$-invariant it follows that $f_{0, k_{5}, k_{4}, k_{3}, k_{1}}^{\Sigma}$ is $N_{\mathbb{Z}}$-invariant when thought of as a function on N, and thus can be identified as an element of $L^{2}\left(N_{\mathbb{Z}} \backslash N\right)$.

For $q_{i} \in \mathbb{Z}$, we have

$$
\begin{aligned}
& f_{0,0,0,0, k_{1}, k_{2}}\left(Q_{6} Q_{5} Q_{4} Q_{3} Q_{2} Q_{1} n\right) \\
&= \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} f\left(T_{6} T_{5} T_{4} T_{3} T_{1} T_{2} Q_{6} Q_{5} Q_{4} Q_{3} Q_{2} Q_{1} n\right) e\left(-k_{1} t_{1}-k_{2} t_{2}\right) \\
& d t_{6} d t_{5} d t_{4} d t_{3} d t_{1} d t_{2} \\
&= \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} f\left(Q _ { 6 } Q _ { 5 } Q _ { 4 } Q _ { 3 } Q _ { 2 } Q _ { 1 } R _ { 6 } \left(q_{1} q_{2}^{3} t_{1}+q_{5} t_{1}+q_{2}^{3} t_{1}^{2}-6 q_{1} q_{2} q_{3} t_{2}\right.\right. \\
&+3 q_{3}^{2} t_{2}-3 q_{1} q_{4} t_{2}+3 q_{4} t_{1} t_{2}+3 q_{1} q_{3} t_{2}^{2}+3 q_{1} q_{2} t_{1} t_{2}^{2}-3 q_{3} t_{1} t_{2}^{2}-2 q_{1}^{2} t_{2}^{3}+q_{1} t_{1} t_{2}^{3} \\
&+3 q_{1} q_{2}^{2} t_{3}+3 q_{4} t_{3}+3 q_{2}^{2} t_{1} t_{3}-6 q_{3} t_{2} t_{3}+3 q_{1} t_{2}^{2} t_{3}+3 q_{2} t_{3}^{2}+3 q_{1} q_{2} t_{4}-3 q_{3} t_{4} \\
&\left.-q_{1} t_{5}+t_{6}\right) R_{5}\left(-q_{2}^{3} t_{1}+6 q_{2} q_{3} t_{2}+3 q_{4} t_{2}-3 q_{3} t_{2}^{2}+q_{1} t_{2}^{3}-3 q_{2}^{2} t_{3}-3 q_{2} t_{4}+t_{5}\right) \\
&\left.R_{4}\left(q_{2}^{2} t_{1}-2 q_{3} t_{2}+q_{1} t_{2}^{2}+2 q_{2} t_{3}+t_{4}\right) R_{3}\left(q_{2} t_{1}-q_{1} t_{2}+t_{3}\right) T_{1} T_{2} n\right) \\
& e\left(-k_{1} t_{1}-k_{2} t_{2}\right) d t_{6} d t_{5} d t_{4} d t_{3} d t_{1} d t_{2} .
\end{aligned}
$$

By Lemma 2.3, we can perform the following change of variables (in order):

$$
\begin{aligned}
t_{6} \mapsto & t_{6}-\left(q_{1} q_{2}^{3} t_{1}+q_{5} t_{1}+q_{2}^{3} t_{1}^{2}-6 q_{1} q_{2} q_{3} t_{2}+3 q_{3}^{2} t_{2}-3 q_{1} q_{4} t_{2}+3 q_{4} t_{1} t_{2}+3 q_{1} q_{3} t_{2}^{2}\right. \\
& \quad+3 q_{1} q_{2} t_{1} t_{2}^{2}-3 q_{3} t_{1} t_{2}^{2}-2 q_{1}^{2} t_{2}^{3}+q_{1} t_{1} t_{2}^{3}+3 q_{1} q_{2}^{2} t_{3}+3 q_{4} t_{3}+3 q_{2}^{2} t_{1} t_{3}-6 q_{3} t_{2} t_{3} \\
& \left.\quad+3 q_{1} t_{2}^{2} t_{3}+3 q_{2} t_{3}^{2}+3 q_{1} q_{2} t_{4}-3 q_{3} t_{4}-q_{1} t_{5}\right) \\
& \\
t_{5} \mapsto & t_{5}-\left(-q_{2}^{3} t_{1}+6 q_{2} q_{3} t_{2}+3 q_{4} t_{2}-3 q_{3} t_{2}^{2}+q_{1} t_{2}^{3}-3 q_{2}^{2} t_{3}-3 q_{2} t_{4}\right) \\
t_{4} \mapsto & t_{4}-\left(q_{2}^{2} t_{1}-2 q_{3} t_{2}+q_{1} t_{2}^{2}+2 q_{2} t_{3}\right) \\
t_{3} \mapsto & t_{3}-\left(q_{2} t_{1}-q_{1} t_{2}\right)
\end{aligned}
$$

and utilize the $N_{\mathbb{Z}}$-invariance of f to conclude that

$$
f_{0,0,0,0, k_{1}, k_{2}}\left(Q_{6} Q_{5} Q_{4} Q_{3} Q_{2} Q_{1} n\right)=f_{0,0,0,0, k_{1}, k_{2}}(n)
$$

Thus $f_{0,0,0,0, k_{1}, k_{2}}$ is a continuous, $N_{\mathbb{Z}}$-invariant function and can therefore be identified as an element of $L^{2}\left(N_{\mathbb{Z}} \backslash N\right)$.

Observe that formally,

$$
\begin{align*}
& \sum_{k_{5} \in \mathbb{Z}_{\neq 0}} \sum_{\left[k_{4}\right] \in \mathbb{Z} / 3 k_{5} \mathbb{Z}} \sum_{k_{3} \in \mathbb{Z}} \sum_{k_{1} \in \mathbb{Z}} f_{0, k_{5}, k_{4}, k_{3}, k_{1}}^{\Sigma}+\sum_{k_{4} \in \mathbb{Z}_{\neq 0}} \sum_{\left[k_{3}\right] \in \mathbb{Z} / 2 k_{4} \mathbb{Z}} \sum_{k_{1} \in \mathbb{Z}} f_{0,0, k_{4}, k_{3}, k_{1}}^{\perp} \\
& \quad+\sum_{k_{3} \in \mathbb{Z} \neq 0} \sum_{\substack{\left.k_{1}\right] \in \mathbb{Z} / k_{3} \mathbb{Z}}} f_{0,0,0, k_{3}, k_{1}}^{\Sigma}+\sum_{k_{1} \in \mathbb{Z}} \sum_{k_{2} \in \mathbb{Z}} f_{0,0,0,0, k_{1}, k_{2}} \\
& =\sum_{\substack{k_{5} \in \mathbb{Z} \\
k_{5} \neq 0}} \sum_{k_{4} \in \mathbb{Z}} \sum_{k_{3} \in \mathbb{Z}} \sum_{k_{4} \neq 0} \sum_{k_{1} \in \mathbb{Z}} f_{0, k_{5}, k_{4}, k_{3}, k_{1}}+\sum_{k_{3} \in \mathbb{Z}} \sum_{k_{2} \in \mathbb{Z}} f_{0,0,0,0, k_{1}, k_{2}} \tag{2.66}
\end{align*}
$$

The left-hand side of (2.66) can be seen to converge absolutely in $C(K)$ by noting that

$$
\begin{align*}
& \sum_{k_{5} \in \mathbb{Z} \neq 0} \sum_{\left[k_{4}\right] \in \mathbb{Z} / 3 k_{5} \mathbb{Z}} \sum_{k_{3} \in \mathbb{Z}} \sum_{k_{1} \in \mathbb{Z}}\left\|f_{0, k_{5}, k_{4}, k_{3}, k_{1}}^{\Sigma}\right\|_{K}+\sum_{k_{4} \in \mathbb{Z}_{\neq 0}} \sum_{\left[k_{3}\right] \in \mathbb{Z} / 2 k_{4} \mathbb{Z}} \sum_{k_{1} \in \mathbb{Z}}\left\|f_{0,0, k_{4}, k_{3}, k_{1}}^{\perp}\right\|_{K} \\
& \quad+\sum_{k_{3} \in \mathbb{Z}_{\neq 0}} \sum_{\substack{\left.k_{1}\right] \in \mathbb{Z} / k_{3} \mathbb{Z}}}\left\|f_{0,0,0, k_{3}, k_{1}}^{\Sigma}\right\|_{K}+\sum_{k_{1} \in \mathbb{Z}} \sum_{k_{2} \in \mathbb{Z}}\left\|f_{0,0,0,0, k_{1}, k_{2}}\right\|_{K} \\
& \leq \sum_{\substack{k_{5} \in \mathbb{Z} \\
k_{5} \neq 0}} \sum_{k_{4} \in \mathbb{Z}} \sum_{k_{3} \in \mathbb{Z} \in \mathbb{Z}} \sum_{k_{1} \in \mathbb{Z}}\left\|f_{0, k_{5}, k_{4}, k_{3}, k_{1}}\right\|_{K}+\sum_{k_{1} \in \mathbb{Z}} \sum_{k_{2} \in \mathbb{Z}}\left\|f_{0,0,0,0, k_{1}, k_{2}}\right\|_{K}<\infty, 0 \tag{2.67}
\end{align*}
$$

where finiteness follows from the absolute convergence of (2.55) in $C(K)$. One can then use basic analysis to show the left-hand side of (2.66) must converge (absolutely) in $C(K)$ to the right-hand side of (2.66). Thus (2.66) is a well-defined identity in $C(K)$.

Since $f_{0, k_{5}, k_{4}, k_{3}, k_{1}}^{\Sigma}, f_{0,0, k_{4}, k_{3}, k_{1}}^{\Sigma}, f_{0,0,0, k_{3}, k_{1}}^{\Sigma}, f_{0,0,0,0, k_{1}, k_{2}} \in L^{2}\left(N_{\mathbb{Z}} \backslash N\right)$ and since $\|h\|_{2} \leq\|h\|_{K}$ for K the closure of a fundamental domain for $N_{\mathbb{Z}} \backslash N$, then it follows from (2.67) that

$$
\begin{aligned}
& \sum_{k_{5} \in \mathbb{Z}_{\neq 0}} \sum_{\left[k_{4}\right] \in \mathbb{Z} / 3 k_{5} \mathbb{Z}} \sum_{k_{3} \in \mathbb{Z}} \sum_{k_{1} \in \mathbb{Z}} f_{0, k_{5}, k_{4}, k_{3}, k_{1}}^{\Sigma}+\sum_{k_{4} \in \mathbb{Z}_{\neq 0}} \sum_{\left[k_{3}\right] \in \mathbb{Z} / 2 k_{4} \mathbb{Z}} \sum_{k_{1} \in \mathbb{Z}} f_{0,0, k_{4}, k_{3}, k_{1}}^{\Sigma} \\
& +\sum_{k_{3} \in \mathbb{Z}_{\neq 0}} \sum_{\left[k_{1}\right] \in \mathbb{Z} / k_{3} \mathbb{Z}} f_{0,0,0, k_{3}, k_{1}}^{\Sigma}+\sum_{k_{1} \in \mathbb{Z}} \sum_{k_{2} \in \mathbb{Z}} f_{0,0,0,0, k_{1}, k_{2}}
\end{aligned}
$$

converges to an element of $L^{2}\left(N_{\mathbb{Z}} \backslash N\right)$. Combining (2.60) and (2.66) with Theorem 2.10 and the inequality $\|h\|_{2} \leq\|h\|_{K}$ yields the following theorem for smooth $f \in L^{2}\left(N_{\mathbb{Z}} \backslash N\right)$.

Theorem 2.11. If $f \in L^{2}\left(N_{\mathbb{Z}} \backslash N\right)$ then

$$
\begin{aligned}
& f=\sum_{m_{5} \in \mathbb{Z}_{>0}} \sum_{\substack{[\gamma \gamma]] \in\left(\Gamma_{\beta}\right) \infty \backslash \backslash \Gamma_{\beta} /\left(\Gamma_{\beta}\right)_{\infty} \\
[[\gamma]] \neq[[\pm \mathrm{i} d]]}} \sum_{\infty} \sum_{\left[m_{4}\right] \in \mathbb{Z} / 3 m_{5} \mathbb{Z}} \sum_{m_{3} \in \mathbb{Z}} f_{\gamma, m_{5}, m_{4}, m_{3}}^{\Sigma} \\
& +\sum_{k_{5} \in \mathbb{Z}_{\neq 0}} \sum_{\left[k_{4}\right] \in \mathbb{Z} / 3 k_{5} \mathbb{Z}} \sum_{k_{3} \in \mathbb{Z}} \sum_{k_{1} \in \mathbb{Z}} f_{0, k_{5}, k_{4}, k_{3}, k_{1}}^{\square}+\sum_{k_{4} \in \mathbb{Z}_{\neq 0}} \sum_{\left[k_{3}\right] \in \mathbb{Z} / 2 k_{4} \mathbb{Z}} \sum_{k_{1} \in \mathbb{Z}} f_{0,0, k_{4}, k_{3}, k_{1}}^{\square} \\
& +\sum_{k_{3} \in \mathbb{Z}_{\neq 0}} \sum_{\left[k_{1}\right] \in \mathbb{Z} / k_{3} \mathbb{Z}} f_{0,0,0, k_{3}, k_{1}}^{\Sigma}+\sum_{k_{1} \in \mathbb{Z}} \sum_{k_{2} \in \mathbb{Z}} f_{0,0,0,0, k_{1}, k_{2}}
\end{aligned}
$$

where the sum converges absolutely in $L^{2}\left(N_{\mathbb{Z}} \backslash N\right)$.

In order to prove Theorem 2.11 for general $f \in L^{2}\left(N_{\mathbb{Z}} \backslash N\right)$ it will be necessary to define the terms $f_{\gamma, m_{5}, m_{4}, m_{3}}^{\Sigma}, f_{0, k_{5}, k_{4}, k_{3}, k_{1}}^{\Sigma}$ for general $f \in L^{2}\left(N_{\mathbb{Z}} \backslash N\right)$. To do this, we observe that $f_{\gamma, m_{5}, m_{4}, m_{3}}, f_{0, k_{5}, k_{4}, k_{3}, k_{1}}$ are well-defined for general $f \in L^{2}\left(N_{\mathbb{Z}} \backslash N\right)$, and can therefore be thought of as elements of $L^{2}(\mathcal{Q})$ where \mathcal{Q} is a fundamental domain for $N_{\mathbb{Z}} \backslash N$. We can formally define $f_{\gamma, m_{5}, m_{4}, m_{3}}^{\Sigma}$ and $f_{0, k_{5}, k_{4}, k_{3}, k_{1}}^{\Sigma}$ according to the series definitions we gave earlier in (2.59) and (2.65). In section 2.7 we will use results from section 2.6 to show that the series defining $f_{\gamma, m_{5}, m_{4}, m_{3}}^{\Sigma}$ and $f_{0, k_{5}, k_{4}, k_{3}, k_{1}}^{\Sigma}$ converge absolutely in $L^{2}(\mathcal{Q})$. Since the series defining $f_{\gamma, m_{5}, m_{4}, m_{3}}^{\square}$ and $f_{0, k_{5}, k_{4}, k_{3}, k_{1}}^{\Sigma}$ are formally $N_{\mathbb{Z}}$-invariant, it would then follow that $f_{\gamma, m_{5}, m_{4}, m_{3}}^{\Sigma}$ and $f_{0, k_{5}, k_{4}, k_{3}, k_{1}}^{\searrow}$ can be identified as elements of $L^{2}\left(N_{\mathbb{Z}} \backslash N\right)$. Once we have established that are $f_{\gamma, m_{5}, m_{4}, m_{3}}^{\Sigma}$ and $f_{0, k_{5}, k_{4}, k_{3}, k_{1}}^{\Sigma}$ are well-defined elements of $L^{2}\left(N_{\mathbb{Z}} \backslash N\right)$, we will then complete our proof of Theorem 2.11 for general $f \in L^{2}\left(N_{\mathbb{Z}} \backslash N\right)$.

2.6 Subspaces of $L^{2}\left(N_{\mathbb{Z}} \backslash N\right)$

By [12, Corollary 1.126], we see that the maps

$$
\begin{array}{ll}
\sigma_{\mathrm{id}}: \mathbb{R}^{6} \rightarrow N, & \sigma_{\mathrm{id}}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)=X_{6} X_{5} X_{4} X_{3} X_{2} X_{1}, \\
\sigma_{\mathrm{alt}}: \mathbb{R}^{6} \rightarrow N, & \sigma_{\mathrm{alt}}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)=X_{1} X_{4} X_{3} X_{2} X_{5} X_{6}, \tag{2.69}
\end{array}
$$

are diffeomorphisms. Consequently, for any $n \in N$ there exists unique $x_{i} \in \mathbb{R}$ such that

$$
n=X_{6} X_{5} X_{4} X_{3} X_{2} X_{1} ;
$$

a similar statement also for (2.69).
It will be important to integrate smooth functions $f: N \rightarrow \mathbb{C}$, and in order to do so, we will make reference to certain ideas in differential geometry [14]. We begin by selecting $\sigma_{\mathrm{id}}^{-1}$ to serve as a global coordinate chart for N. We then select an orientation for N, which in our case, will be given by an ordered global frame of the tangent bundle. We select the following smooth sections of the tangent bundle to form our global frame:

$$
p \mapsto \partial_{x_{i}}^{N}[f]_{p}:=\partial_{x_{i}}\left[f \circ \sigma_{\mathrm{id}}\right]_{\sigma_{\mathrm{id}}^{-1}(p)}
$$

ordered from $i=1, \ldots, 6$. Let $d x_{i}^{N}$ denote the global frame of the cotangent bundle dual to this global frame. When we wish to integrate smooth $f: N \rightarrow \mathbb{C}$ of compact support, we shall do so by computing

$$
\int_{N} f \cdot\left(d x_{1}^{N} \wedge d x_{2}^{N} \wedge d x_{3}^{N} \wedge d x_{4}^{N} \wedge d x_{5}^{N} \wedge d x_{6}^{N}\right)
$$

For $g \in N$, let $(\ell(g) f)(n)=f\left(g^{-1} n\right)$. When we solve for p_{i} in the equation

$$
\begin{equation*}
P_{6} P_{5} P_{4} P_{3} P_{2} P_{1}=Q_{6} Q_{5} Q_{4} Q_{3} Q_{2} Q_{1} X_{6} X_{5} X_{4} X_{3} X_{2} X_{1} \tag{2.70}
\end{equation*}
$$

we find that

$$
\begin{array}{lll}
p_{6}=u_{6}+x_{6}, & p_{5}=u_{5}+x_{5}, & p_{4}=u_{4}+x_{4}, \\
p_{3}=u_{3}+x_{3}, & p_{2}=q_{2}+x_{2}, & p_{1}=q_{1}+x_{1},
\end{array}
$$

where

$$
\begin{aligned}
u_{6}= & q_{6}-6 q_{1} q_{2} q_{3} x_{2}-3 q_{1}^{2} q_{2} x_{2}^{2}-3 q_{1} q_{3} x_{2}^{2}-2 q_{1}^{2} x_{2}^{3}-6 q_{2} q_{3} x_{3}-6 q_{1} q_{2} x_{2} x_{3}-3 q_{1} x_{2}^{2} x_{3} \\
& -3 q_{2} x_{3}^{2}+3 q_{3} x_{4}+q_{1} x_{5}, \\
u_{5}= & q_{5}-3 q_{1} q_{2}^{2} x_{2}-3 q_{1} q_{2} x_{2}^{2}-q_{1} x_{2}^{3}-3 q_{2}^{2} x_{3}+3 q_{2} x_{4}, \\
u_{4}= & q_{4}-2 q_{1} q_{2} x_{2}-q_{1} x_{2}^{2}-2 q_{2} x_{3}, \\
u_{3}= & q_{3}+q_{1} x_{2} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \int_{N}\left(\ell\left(\left(Q_{6} Q_{5} Q_{4} Q_{3} Q_{2} Q_{1}\right)^{-1}\right) f\right) \cdot\left(d x_{1}^{N} \wedge d x_{2}^{N} \wedge d x_{3}^{N} \wedge d x_{4}^{N} \wedge d x_{5}^{N} \wedge d x_{6}^{N}\right) \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f \circ \sigma_{\mathrm{id}}\left(q_{1}+x_{1}, q_{2}+x_{2}, u_{3}+x_{3}, u_{4}+x_{4}, u_{5}+x_{5},\right. \\
& \left.\quad u_{6}+x_{6}\right) d x_{6} d x_{5} d x_{4} d x_{3} d x_{2} d x_{1} .
\end{aligned}
$$

Since $d x_{i}$ are Haar measures for \mathbb{R}, we can perform the following change of variables (in order)

$$
x_{6} \mapsto x_{6}-u_{6}, \quad x_{5} \mapsto x_{5}-u_{5}, \quad x_{4} \mapsto x_{4}-u_{4}, \quad x_{3} \mapsto x_{3}-u_{3},
$$

to conclude that

$$
\begin{aligned}
& \int_{N}\left(\ell\left(\left(Q_{6} Q_{5} Q_{4} Q_{3} Q_{2} Q_{1}\right)^{-1}\right) f\right) \cdot\left(d x_{1}^{N} \wedge d x_{2}^{N} \wedge d x_{3}^{N} \wedge d x_{4}^{N} \wedge d x_{5}^{N} \wedge d x_{6}^{N}\right) \\
& \quad=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f \circ \sigma_{\mathrm{id}}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) d x_{6} d x_{5} d x_{4} d x_{3} d x_{2} d x_{1} \\
& \quad=\int_{N} f\left(d x_{1}^{N} \wedge d x_{2}^{N} \wedge d x_{3}^{N} \wedge d x_{4}^{N} \wedge d x_{5}^{N} \wedge d x_{6}^{N}\right)
\end{aligned}
$$

Thus the differential form $d x_{1}^{N} \wedge d x_{2}^{N} \wedge d x_{3}^{N} \wedge d x_{4}^{N} \wedge d x_{5}^{N} \wedge d x_{6}^{N}$ induces a Haar measure for N. Furthermore, this induced Haar measure is already normalized to give fundamental domains of $N_{\mathbb{Z}} \backslash N$ a volume equal to 1 , as can be seen from the following lemma.

Lemma 2.12.

(a) $N_{\mathbb{Z}}=\sigma_{\text {id }}\left(\mathbb{Z}^{6}\right)=\sigma_{\text {alt }}\left(\mathbb{Z}^{6}\right)$, and
(b) $\sigma_{\mathrm{id}}\left([0,1)^{6}\right)$ and $\sigma_{\mathrm{alt}}\left([0,1)^{6}\right)$ are fundamental domains for $N_{\mathbb{Z}} \backslash N$.

Proof. Clearly $\sigma_{\mathrm{id}}\left(\mathbb{Z}^{6}\right) \subset N_{\mathbb{Z}}$. Since $N_{\mathbb{Z}}$ is generated by $N_{i}=R_{i}(1)$ it follows from (2.70) that every element of $N_{\mathbb{Z}}$ can be written as $\sigma_{\mathrm{id}}(x)$ where $x \in \mathbb{Z}^{6}$, and thus $N_{\mathbb{Z}}=\sigma_{\mathrm{id}}\left(\mathbb{Z}^{6}\right)$. Observe

$$
\begin{align*}
X_{1} X_{4} X_{3} X_{2} X_{5} X_{6}= & R_{6}\left(-2 x_{1}^{2} x_{2}^{3}-3 x_{1} x_{2}^{2} x_{3}+x_{1} x_{5}+x_{6}\right) R_{5}\left(-x_{1} x_{2}^{3}+x_{5}\right) \\
& R_{4}\left(-x_{1} x_{2}^{2}+x_{4}\right) R_{3}\left(x_{1} x_{2}+x_{3}\right) X_{2} X_{1} \tag{2.71}
\end{align*}
$$

implies that $\sigma_{\text {alt }}\left(\mathbb{Z}^{6}\right) \subset N_{\mathbb{Z}}$. Conversely, observe

$$
\begin{gathered}
X_{6} X_{5} X_{4} X_{3} X_{2} X_{1}=X_{1} R_{4}\left(x_{1} x_{2}^{2}+x_{4}\right) R_{3}\left(-x_{1} x_{2}+x_{3}\right) X_{2} R_{5}\left(x_{1} x_{2}^{3}+x_{5}\right) \\
R_{6}\left(-2 x_{1}^{2} x_{2}^{3}+3 x_{1} x_{2}^{2} x_{3}-x_{1} x_{5}+x_{6}\right)
\end{gathered}
$$

implies that $N_{\mathbb{Z}} \subset \sigma_{\text {alt }}\left(\mathbb{Z}^{6}\right)$, and hence $N_{\mathbb{Z}}=\sigma_{\text {alt }}\left(\mathbb{Z}^{6}\right)$.
Next we prove that $\sigma_{\text {id }}\left([0,1)^{6}\right)$ is a fundamental domain for $N_{\mathbb{Z}} \backslash N$. The proof for $\sigma_{\text {alt }}\left([0,1)^{6}\right)$ is nearly identical. For $n \in N$, there exists $x_{i} \in \mathbb{R}$ such that $n=X_{6} X_{5} X_{4} X_{3} X_{2} X_{1}$. In (2.70) we can select integers q_{1} and q_{2} such that $0 \leq q_{1}+x_{1}, q_{2}+x_{2}<1$. Proceeding, we can then select integers q_{3}, q_{4}, and q_{5} such that

$$
\begin{aligned}
& 0 \leq q_{3}+q_{1} x_{2}+x_{3}<1 \\
& 0 \leq q_{4}-2 q_{1} q_{2} x_{2}-q_{1} x_{2}^{2}-2 q_{2} x_{3}+x_{4}<1 \\
& 0 \leq q_{5}-3 q_{1} q_{2}^{2} x_{2}-3 q_{1} q_{2} x_{2}^{2}-q_{1} x_{2}^{3}-3 q_{2}^{2} x_{3}+3 q_{2} x_{4}+x_{5}<1
\end{aligned}
$$

Lastly, we can select an integer q_{6} such that

$$
\begin{aligned}
0 \leq & q_{6}-6 q_{1} q_{2} q_{3} x_{2}-3 q_{1}^{2} q_{2} x_{2}^{2}-3 q_{1} q_{3} x_{2}^{2}-2 q_{1}^{2} x_{2}^{3}-6 q_{2} q_{3} x_{3} \\
& -6 q_{1} q_{2} x_{2} x_{3}-3 q_{1} x_{2}^{2} x_{3}-3 q_{2} x_{3}^{2}+3 q_{3} x_{4}+q_{1} x_{5}+x_{6}<1
\end{aligned}
$$

This shows that each coset of $N_{\mathbb{Z}} \backslash N$ has a representative in $\sigma_{\mathrm{id}}\left([0,1)^{6}\right)$.
It remains to show that no two elements of $\sigma_{\mathrm{id}}\left([0,1)^{6}\right)$ are contained in the same coset of $N_{\mathbb{Z}} \backslash N$. To prove this, suppose that in (2.70) we have $q_{i} \in \mathbb{Z}$ and $x_{i}, p_{i} \in[0,1)$. By (2.70) it follows immediately that $q_{1}=q_{2}=0$. Substituting $q_{1}=q_{2}=0$ into (2.70) shows that we must have $q_{3}=q_{4}=q_{5}=0$. When we substitute $q_{1}=\ldots=q_{5}=0$ into (2.70) we find that $q_{6}=0$ and hence it follows that $x_{i}=p_{i}$ for all i.

For $\sigma: \mathbb{R}^{6} \rightarrow N$ a diffeomorphism, define

$$
f^{\sigma}: \mathbb{R}^{6} \rightarrow \mathbb{C} \text { where } f^{\sigma}\left(x_{1}, \ldots, x_{6}\right)=f\left(\sigma\left(x_{1}, \ldots, x_{6}\right)\right)
$$

For K a compact subset of N, define

$$
K_{\mathrm{id}}=\sigma_{\mathrm{id}}^{-1}(K) \text { and } K_{\mathrm{alt}}=\sigma_{\text {alt }}^{-1}(K)
$$

Lemma 2.13. For K a compact set of N and $f: N \rightarrow \mathbb{C}$ a smooth function, we have

$$
\int_{K} f(n) d n=\int_{K_{\mathrm{id}}} f^{\sigma_{\mathrm{id}}}\left(x_{1}, \ldots, x_{6}\right) d x_{6} \ldots d x_{1}=\int_{K_{\mathrm{alt}}} f^{\sigma_{\mathrm{alt}}}\left(x_{1}, \ldots, x_{6}\right) d x_{6} \ldots d x_{1}
$$

where $n \in N$ and dn is the Haar measure on N which gives fundamental domains of $N_{\mathbb{Z}} \backslash N a$ volume equal to 1 .

Proof. Our discussion prior to Lemma 2.12 shows that

$$
\int_{K} f(n) d n=\int_{K_{\mathrm{id}}} f^{\sigma_{\mathrm{id}}}\left(x_{1}, \ldots, x_{6}\right) d x_{6} \ldots d x_{1}
$$

When we solve for p_{i} in the equation $X_{1} X_{4} X_{3} X_{2} X_{5} X_{6}=P_{6} P_{5} P_{4} P_{3} P_{2} P_{1}$, it follows from (2.71) that p_{i} can be written in terms of x_{i}. It is then a straightforward matter to compute that $\operatorname{det}\left(\frac{d}{d x_{i}}\left(p_{j}\right)\right)=1$. By [14, Corollary 14.3] we can then conclude the remaining equation in our lemma.

Let $W=L^{2}\left(N_{\mathbb{Z}} \backslash N\right)$ and let r denote right-regular representation of N on W. Let
$W_{[[\gamma]], m_{5}, m_{4}, m_{3}}$ denote the closure of $\left\{f_{\gamma, m_{5}, m_{4}, m_{3}}^{\Sigma}: f \in L^{2}\left(N_{\mathbb{Z}} \backslash N\right), f\right.$ smooth $\}$,
$W_{0, k_{5}, k_{4}, k_{3}, k_{1}}$ denote the closure of $\left\{f_{0, k_{5}, k_{4}, k_{3}, k_{1}}^{\Sigma}: f \in L^{2}\left(N_{\mathbb{Z}} \backslash N\right), f\right.$ smooth $\}$,
$W_{0,0,0,0, k_{1}, k_{2}}$ denote the closure of $\left\{f_{0,0,0,0, k_{1}, k_{2}}: f \in L^{2}\left(N_{\mathbb{Z}} \backslash N\right), f\right.$ smooth $\}$,
where all these closures are taken in W. One can check that these spaces are closed under r by referencing the definitions of $f_{\gamma, m_{5}, m_{4}, m_{3}}^{\Sigma}(2.59), f_{0, k_{5}, k_{4}, k_{3}, k_{1}}^{\Sigma}(2.65)$, and $f_{0,0,0,0, k_{1}, k_{2}}(2.7 \mathrm{i})$, all of which are defined by conditions and actions on the left.

For $f, h \in L^{2}(\mathcal{F})$ where $\mathcal{F}=[0,1)^{6}$, let

$$
\begin{equation*}
\langle f, h\rangle_{\mathcal{F}}=\int_{0}^{1} \ldots \int_{0}^{1} f\left(x_{1}, \ldots, x_{6}\right) \overline{h\left(x_{1}, \ldots, x_{6}\right)} d x_{6} \ldots d x_{1} \text { and }\|f\|_{2, \mathcal{F}}=\langle f, f\rangle_{\mathcal{F}}^{1 / 2} \tag{2.73}
\end{equation*}
$$

By Lemma 2.13 it follows that if $f, h \in W=L^{2}\left(N_{\mathbb{Z}} \backslash N\right)$ then

$$
\langle f, h\rangle=\left\langle f^{\sigma_{\mathrm{id}}}, h^{\sigma_{\mathrm{id}}}\right\rangle_{\mathcal{F}}=\left\langle f^{\sigma_{\mathrm{alt}}}, h^{\sigma_{\mathrm{alt}}}\right\rangle_{\mathcal{F}} \text { and }\|f\|_{2}=\left\|f^{\sigma_{\mathrm{id}}}\right\|_{2, \mathcal{F}}=\left\|f^{\sigma_{\mathrm{alt}}}\right\|_{2, \mathcal{F}} ;
$$

recall that we defined $\langle\cdot, \cdot\rangle$ in (2.62) and $\|\cdot\|_{2}$ in (2.63). We shall use these equalities often throughout this section.

For the rest of this section we will suppose that $f \in W=L^{2}\left(N_{\mathbb{Z}} \backslash N\right)$ is a smooth function, unless indicated otherwise. We will also assume that $q_{i} \in \mathbb{Z}$.

2.6.1 Analysis of $W_{\left[\{\gamma], m_{5}, m_{4}, m_{3}\right.}$

Suppose $[[\gamma]] \neq[[\pm \mathrm{id}]]$. In this subsection we will show that $W_{[[\gamma]], m_{5}, m_{4}, m_{3}}$ is isometric to $L^{2}\left(\mathbb{R}^{2}\right)$. Via this isometry we will construct a representation of N on $L^{2}\left(\mathbb{R}^{2}\right)$. We will then analyze the smooth vectors of $L^{2}\left(\mathbb{R}^{2}\right)$ under this representation, which will allow us to give an explicit description in section 2.7 of the $N_{\mathbb{Z}}$-invariant distributions on N. To begin this analysis, observe

$$
\begin{aligned}
& \gamma T_{6} T_{5} T_{4} T_{3} \gamma^{-1} Q_{3} Q_{2} Q_{1} X_{6} X_{5} X_{4} X_{3} X_{2} X_{1} \\
& =R_{6}\left(b t_{5}+a t_{6}+u_{6}\right) R_{5}\left(d t_{5}+c t_{6}+u_{5}\right) R_{4}\left(t_{4}+u_{4}\right) R_{3}\left(q_{3}+a t_{3}+q_{1} x_{2}+x_{3}\right) \\
& \quad R_{2}\left(q_{2}+c t_{3}+x_{2}\right) R_{1}\left(q_{1}+x_{1}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
u_{6}= & -3 c q_{3}^{2} t_{3}-6 a c q_{3} t_{3}^{2}-2 a^{2} c t_{3}^{3}-6 q_{1} q_{2} q_{3} x_{2}-6 a q_{1} q_{2} t_{3} x_{2}-6 c q_{1} q_{3} t_{3} x_{2} \\
& -6 a c q_{1} t_{3}^{2} x_{2}-3 q_{1}^{2} q_{2} x_{2}^{2}-3 q_{1} q_{3} x_{2}^{2}-3 a q_{1} t_{3} x_{2}^{2}-3 c q_{1}^{2} t_{3} x_{2}^{2}-2 q_{1}^{2} x_{2}^{3}-6 q_{2} q_{3} x_{3} \\
& -6 a q_{2} t_{3} x_{3}-6 c q_{3} t_{3} x_{3}-6 a c t_{3}^{2} x_{3}-6 q_{1} q_{2} x_{2} x_{3}-6 c q_{1} t_{3} x_{2} x_{3}-3 q_{1} x_{2}^{2} x_{3} \\
& -3 q_{2} x_{3}^{2}-3 c t_{3} x_{3}^{2}+3 q_{3} x_{4}+3 a t_{3} x_{4}+q_{1} x_{5}+x_{6} \\
u_{5}= & -3 c^{2} q_{3} t_{3}^{2}-a c^{2} t_{3}^{3}-3 q_{1} q_{2}^{2} x_{2}-6 c q_{1} q_{2} t_{3} x_{2}-3 c^{2} q_{1} t_{3}^{2} x_{2}-3 q_{1} q_{2} x_{2}^{2}-3 c q_{1} t_{3} x_{2}^{2} \\
& -q_{1} x_{2}^{3}-3 q_{2}^{2} x_{3}-6 c q_{2} t_{3} x_{3}-3 c^{2} t_{3}^{2} x_{3}+3 q_{2} x_{4}+3 c t_{3} x_{4}+x_{5}, \\
u_{4}= & -2 c q_{3} t_{3}-a c t_{3}^{2}-2 q_{1} q_{2} x_{2}-2 c q_{1} t_{3} x_{2}-q_{1} x_{2}^{2}-2 q_{2} x_{3}-2 c t_{3} x_{3}+x_{4} .
\end{aligned}
$$

Recall that (2.58) and (2.7 g) shows that

$$
\begin{aligned}
& f_{Q_{1}^{-1} \gamma, m_{5}, m_{4}+3\left(a q_{2}-c q_{3}\right) m_{5}, m_{3}-2\left(a q_{2}-c q_{3}\right) m_{4}-3\left(a q_{2}-c q_{3}\right)^{2} m_{5}}(n) \\
& =f_{\gamma, m_{5}, m_{4}, m_{3}}\left(Q_{3} Q_{2} Q_{1} n\right) \\
& =\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} f\left(\gamma T_{6} T_{5} T_{4} T_{3} \gamma^{-1} Q_{3} Q_{2} Q_{1} n\right)\left(-m_{5} t_{5}-m_{4} t_{4}-m_{3} t_{3}\right) d t_{6} d t_{5} d t_{4} d t_{3} .
\end{aligned}
$$

Therefore, when we perform the simultaneous change of variables (2.8) and then perform the following change of variables (in order)

$$
t_{6} \mapsto t_{6}-u_{6}, \quad t_{5} \mapsto t_{5}-u_{5}, \quad t_{4} \mapsto t_{4}-u_{4}, \quad t_{3} \mapsto t_{3}-\frac{q_{2}+x_{2}}{c}
$$

it follows from Lemmas 2.3 and 2.4 that

$$
\begin{align*}
& \left(f_{Q_{1}^{-1} \gamma, m_{5}, m_{4}+3\left(a q_{2}-c q_{3}\right) m_{5}, m_{3}-2\left(a q_{2}-c q_{3}\right) m_{4}-3\left(a q_{2}-c q_{3}\right)^{2} m_{5}}\right)^{\sigma_{\mathrm{id}}}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \\
& =f_{\gamma, m_{5}, m_{4}, m_{3}}\left(Q_{3} Q_{2} Q_{1} X_{6} X_{5} X_{4} X_{3} X_{2} X_{1}\right) \\
& =e\left(\frac{m_{3} q_{2}}{c}-\frac{a m_{4} q_{2}^{2}}{c}-\frac{a^{2} m_{5} q_{2}^{3}}{c}+\frac{m_{3}-2 m_{4}\left(a q_{2}-c q_{3}\right)-3 m_{5}\left(a q_{2}-c q_{3}\right)^{2}}{c} x_{2}\right. \\
& \quad-\frac{\left(a-c q_{1}\right)\left(m_{4}+3 m_{5}\left(a q_{2}-c q_{3}\right)\right)}{c} x_{2}^{2}-\frac{\left(a-c q_{1}\right)^{2} m_{5}}{c} x_{2}^{3} \\
& \quad+2\left(m_{4}+3 m_{5}\left(a q_{2}-c q_{3}\right)\right) x_{2} x_{3}+3 m_{5}\left(a-c q_{1}\right) x_{2}^{2} x_{3}-3 c m_{5} x_{2} x_{3}^{2} \\
& \left.\quad+\left(m_{4}+3 m_{5}\left(a q_{2}-c q_{3}\right)\right) x_{4}+\left(a m_{5}-c m_{5} q_{1}\right) x_{5}-c m_{5} x_{6}\right) \\
& \quad \psi_{\gamma, m_{5}, m_{4}, m_{3}}\left(q_{1}+x_{1},-c q_{3}+a q_{2}+a x_{2}-c q_{1} x_{2}-c x_{3}\right) \tag{2.74}
\end{align*}
$$

where

$$
\begin{align*}
& \psi_{\gamma, m_{5}, m_{4}, m_{3}}\left(s_{1}, s_{3}\right)=\psi_{f ; \gamma, m_{5}, m_{4}, m_{3}}\left(s_{1}, s_{3}\right) \\
& =\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} f^{\sigma_{\mathrm{id}}}\left(s_{1}, c t_{3}, a t_{3}-\frac{s_{3}}{c}, t_{4}, t_{5}, t_{6}\right) e\left(-m_{3} t_{3}-a c m_{4} t_{3}^{2}+a^{2} c^{2} m_{5} t_{3}^{3}\right. \\
& \left.\quad-m_{4} t_{4}-a m_{5} t_{5}+c m_{5} t_{6}+2 m_{4} t_{3} s_{3}-3 a c m_{5} t_{3}^{2} s_{3}+3 m_{5} t_{3} s_{3}^{2}\right) d t_{6} d t_{5} d t_{4} d t_{3} \tag{2.75}
\end{align*}
$$

As indicated in the above definition, we will at times suppress writing f in the subscript of $\psi_{f ; \gamma, m_{5}, m_{4}, m_{3}}$ when context is clear. Observe that by (2.59),

$$
\begin{align*}
& \left(f_{\gamma, m_{5}, m_{4}, m_{3}}^{\Sigma}\right)^{\sigma_{\mathrm{id}}}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \\
& =\sum_{q_{1} \in \mathbb{Z}} \sum_{q_{3} \in \mathbb{Z}} \sum_{\left[q_{2}\right] \in \mathbb{Z} / c \mathbb{Z}}\left(f_{Q_{1}^{-1} \gamma, m_{5}, m_{4}+3\left(a q_{2}-c q_{3}\right) m_{5}, m_{3}-2\left(a q_{2}-c q_{3}\right) m_{4}-3\left(a q_{2}-c q_{3}\right)^{2} m_{5}}\right)^{\sigma_{\mathrm{id}}}\left(x_{1}, \ldots, x_{6}\right) \\
& =\sum_{q_{1} \in \mathbb{Z}} \sum_{q_{3} \in \mathbb{Z}} \sum_{\left[q_{2}\right] \in \mathbb{Z} / c \mathbb{Z}} e\left(\frac{m_{3} q_{2}}{c}-\frac{a m_{4} q_{2}^{2}}{c}-\frac{a^{2} m_{5} q_{2}^{3}}{c}\right. \\
& \quad+\frac{m_{3}-2 m_{4}\left(a q_{2}-c q_{3}\right)-3 m_{5}\left(a q_{2}-c q_{3}\right)^{2}}{c} x_{2}-\frac{\left(a-c q_{1}\right)\left(m_{4}+3 m_{5}\left(a q_{2}-c q_{3}\right)\right)}{c} x_{2}^{2} \\
& \quad-\frac{\left(a-c q_{1}\right)^{2} m_{5}}{c} x_{2}^{3}+2\left(m_{4}+3 m_{5}\left(a q_{2}-c q_{3}\right)\right) x_{2} x_{3}+3 m_{5}\left(a-c q_{1}\right) x_{2}^{2} x_{3}-3 c m_{5} x_{2} x_{3}^{2} \\
& \left.\quad+\left(m_{4}+3 m_{5}\left(a q_{2}-c q_{3}\right)\right) x_{4}+\left(a m_{5}-c m_{5} q_{1}\right) x_{5}-c m_{5} x_{6}\right) \\
& \quad \psi_{\gamma, m_{5}, m_{4}, m_{3}}\left(q_{1}+x_{1},-c q_{3}+a q_{2}+a x_{2}-c q_{1} x_{2}-c x_{3}\right) . \tag{2.76}
\end{align*}
$$

From (2.74) we see that

$$
\begin{aligned}
& \left\langle\left(f_{Q_{1}^{-1} \gamma, m_{5}, m_{4}+3\left(a q_{2}-c q_{3}\right) m_{5}, m_{3}-2\left(a q_{2}-c q_{3}\right) m_{4}-3\left(a q_{2}-c q_{3}\right)^{2} m_{5}}\right)^{\sigma_{\mathrm{id}}}\right. \\
& \left.\quad\left(f_{R_{1}\left(\ell_{1}\right)^{-1} \gamma, m_{5}, m_{4}+3\left(a \ell_{2}-c \ell_{3}\right) m_{5}, m_{3}-2\left(a \ell_{2}-c \ell_{3}\right) m_{4}-3\left(a \ell_{2}-c \ell_{3}\right)^{2} m_{5}}\right)^{\sigma_{\mathrm{id}}}\right\rangle_{\mathcal{F}}=0
\end{aligned}
$$

if $q_{1} \neq \ell_{1}$ or $a q_{2}-c q_{3} \neq a \ell_{2}-c \ell_{3}$ (or equivalently, if $q_{1} \neq \ell_{1}, q_{2} \neq \ell_{2}$, or $q_{3} \neq \ell_{3}$); simply perform integration is the x_{5} and x_{4} variables in (2.73) to see why this is the case. Thus by
(2.76), the Pythagorean theorem, and changing variables, we find that

$$
\begin{align*}
& \left(\left\|f_{\gamma, m_{5}, m_{4}, m_{3}}^{\Sigma}\right\|_{2}\right)^{2}=\left(\left\|\left(f_{\gamma, m_{5}, m_{4}, m_{3}}^{\Sigma}\right)^{\sigma_{\mathrm{id}}}\right\|_{2, \mathcal{F}}\right)^{2} \\
& =\sum_{q_{1} \in \mathbb{Z}} \sum_{q_{3} \in \mathbb{Z}} \sum_{\left[q_{2}\right] \in \mathbb{Z} / c \mathbb{Z}}\left(\left\|\left(f_{Q_{1}^{-1}} \gamma_{\gamma, m_{5}, m_{4}+3\left(a q_{2}-c q_{3}\right) m_{5}, m_{3}-2 m_{4}\left(a q_{2}-c q_{3}\right)-3 m_{5}\left(a q_{2}-c q_{3}\right)^{2}}\right)^{\sigma_{\text {Id }}}\right\|_{2, \mathcal{F}}\right)^{2} \\
& =\sum_{q_{1} \in \mathbb{Z}} \sum_{q_{3} \in \mathbb{Z}} \sum_{\left[q_{2}\right] \in \mathbb{Z} / c \mathbb{Z}} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1}\left|\psi_{\gamma, m_{5}, m_{4}, m_{3}}\left(q_{1}+x_{1}, a q_{2}+a x_{2}-c q_{1} x_{2}-c\left(x_{3}+q_{3}\right)\right)\right|^{2} \\
& d x_{3} d x_{2} d x_{1} \\
& =\sum_{q_{1} \in \mathbb{Z}} \sum_{\left[q_{2}\right] \in \mathbb{Z} / c \mathbb{Z}} \int_{0}^{1} \int_{0}^{1} \int_{-\infty}^{\infty}\left|\psi_{\gamma, m_{5}, m_{4}, m_{3}}\left(q_{1}+x_{1}, a q_{2}+a x_{2}-c q_{1} x_{2}-c x_{3}\right)\right|^{2} d x_{3} d x_{2} d x_{1} \\
& =\sum_{q_{1} \in \mathbb{Z}} \sum_{\left[q_{2}\right] \in \mathbb{Z} / c \mathbb{Z}} \int_{0}^{1} \int_{0}^{1} \int_{-\infty}^{\infty}\left|\psi_{\gamma, m_{5}, m_{4}, m_{3}}\left(q_{1}+x_{1},-c x_{3}\right)\right|^{2} d x_{3} d x_{2} d x_{1} \\
& =\sum_{\left[q_{2}\right] \in \mathbb{Z} / c \mathbb{Z}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left|\psi_{\gamma, m_{5}, m_{4}, m_{3}}^{\infty}\left(x_{1},-c x_{3}\right)\right|^{2} d x_{3} d x_{1} \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left|\psi_{\gamma, m_{5}, m_{4}, m_{3}}\left(x_{1}, x_{3}\right)\right|^{2} d x_{3} d x_{1} . \tag{2.77}
\end{align*}
$$

This implies that $\psi_{\gamma, m_{5}, m_{4}, m_{3}} \in L^{2}\left(\mathbb{R}^{2}\right)$. Conversely, given $\psi \in L^{2}\left(\mathbb{R}^{2}\right)$, we can define

$$
\begin{equation*}
h_{\psi ;[[\gamma]], m_{5}, m_{4}, m_{3}}\left(x_{1}, \ldots, x_{6}\right)=\sum_{\ell_{1} \in \mathbb{Z}} \sum_{\ell_{3} \in \mathbb{Z}} \sum_{\left[\ell_{2}\right] \in \mathbb{Z} / c \mathbb{Z}} r_{\ell_{1}, \ell_{2}, \ell_{3}}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right), \tag{2.78}
\end{equation*}
$$

where

$$
\begin{aligned}
& r_{\ell_{1}, \ell_{2}, \ell_{3}}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \\
&= e\left(\frac{m_{3} \ell_{2}}{c}-\frac{a m_{4} \ell_{2}^{2}}{c}-\frac{a^{2} m_{5} \ell_{2}^{3}}{c}+\frac{m_{3}-2 m_{4}\left(a \ell_{2}-c \ell_{3}\right)-3 m_{5}\left(a \ell_{2}-c \ell_{3}\right)^{2}}{c} x_{2}\right. \\
&-\frac{\left(a-c \ell_{1}\right)\left(m_{4}+3 m_{5}\left(a \ell_{2}-c \ell_{3}\right)\right)}{c} x_{2}^{2}-\frac{\left(a-c \ell_{1}\right)^{2} m_{5}}{c} x_{2}^{3} \\
&+2\left(m_{4}+3 m_{5}\left(a \ell_{2}-c \ell_{3}\right)\right) x_{2} x_{3}+3 m_{5}\left(a-c \ell_{1}\right) x_{2}^{2} x_{3}-3 c m_{5} x_{2} x_{3}^{2} \\
&\left.+\left(m_{4}+3 m_{5}\left(a \ell_{2}-c \ell_{3}\right)\right) x_{4}+\left(a m_{5}-c m_{5} \ell_{1}\right) x_{5}-c m_{5} x_{6}\right) \\
& \psi\left(\ell_{1}+x_{1},-c \ell_{3}+a \ell_{2}+a x_{2}-c \ell_{1} x_{2}-c x_{3}\right) .
\end{aligned}
$$

One can check that $h_{\psi ;[[\gamma]], m_{5}, m_{4}, m_{3}}$ is a well-defined element of $L^{2}(\mathcal{F})$ by repeating the argument in (2.77) with $f_{\gamma, m_{5}, m_{4}, m_{3}}^{\Sigma}$ replaced by $h_{\psi ;\left[[\gamma], m_{5}, m_{4}, m_{3}\right.}$. Furthermore, it can be shown that $h_{\psi ;[\gamma \gamma], m_{5}, m_{4}, m_{3}}$ is $\sigma_{\text {id }}^{-1}\left(N_{\mathbb{Z}}\right)$-invariant. To see that this is the case, one solves for p_{i} in (2.70) and observes that

$$
r_{\ell_{1}, \ell_{2}, \ell_{3}}\left(p_{1}, p_{2}, p_{3}, p_{4}, p_{5}, p_{6}\right)=r_{\ell_{1}+q_{1}, \ell_{2}+q_{2}, \ell_{3}+\ell_{1} q_{2}+q_{3}}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)
$$

Thus $h_{\psi ;\left[[\gamma], m_{5}, m_{4}, m_{3}\right.} \circ \sigma_{\text {id }}^{-1}$ is a well-defined element of $L^{2}\left(N_{\mathbb{Z}} \backslash N\right)$.

Let $\Phi_{\left[[\gamma], m_{5}, m_{4}, m_{3}\right.}: L^{2}\left(\mathbb{R}^{2}\right) \rightarrow W_{[[\gamma]], m_{5}, m_{4}, m_{3}}$ where

$$
\Phi_{[[\gamma]], m_{5}, m_{4}, m_{3}}(\psi)=h_{\psi ;[[\gamma]], m_{5}, m_{4}, m_{3}} \circ \sigma_{\mathrm{id}}^{-1},
$$

and $\psi \in L^{2}\left(\mathbb{R}^{2}\right)$. Technically, we should prove that

$$
h_{\psi ;\left[[\gamma], m_{5}, m_{4}, m_{3}\right.} \circ \sigma_{\mathrm{id}}^{-1}=\left(h_{\psi ;\left[[\gamma], m_{5}, m_{4}, m_{3}\right.} \circ \sigma_{\mathrm{id}}^{-1}\right)_{\llbracket[\gamma], m_{5}, m_{4}, m_{3}}^{\Sigma}
$$

to justify that $W_{\left[[\gamma], m_{5}, m_{4}, m_{3}\right.}$ truly is the co-domain of $\Phi_{[[\gamma]], m_{5}, m_{4}, m_{3}}$. To see that this is the case, it suffices by (2.59) to show that

$$
\begin{align*}
& \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} r_{\ell_{1}, \ell_{2}, \ell_{3}} \circ \sigma_{\text {id }}^{-1}\left(\left(Q_{1}^{-1} \gamma\right) T_{6} T_{5} T_{4} T_{3}\left(Q_{1}^{-1} \gamma\right)^{-1} X_{6} X_{5} X_{4} X_{3} X_{2} X_{1}\right) \\
& \quad e\left(-m_{5} t_{5}-\left(m_{4}+3 m_{5}\left(a q_{2}-c q_{3}\right)\right) t_{4}-\left(m_{3}-2 m_{4}\left(a q_{2}-c q_{3}\right)-3 m_{5}\left(a q_{2}-c q_{3}\right)^{2}\right) t_{3}\right) \\
& = \begin{cases}0 & \text { if } \ell_{1} \neq q_{1}, \ell_{2} \neq q_{2}, \text { or } \ell_{3} \neq q_{3} \\
r_{q_{1}, q_{2}, q_{3}}\left(x_{1}, \ldots, x_{6}\right) & \text { if } \ell_{1}=q_{1}, \ell_{2}=q_{2}, \text { and } \ell_{3}=q_{3}\end{cases}
\end{align*}
$$

To show that (2.79) holds, one solves for p_{i} in the equation

$$
P_{6} P_{5} P_{4} P_{3} P_{2} P_{1}=\left(Q_{1}^{-1} \gamma\right) T_{6} T_{5} T_{4} T_{3}\left(Q_{1}^{-1} \gamma\right)^{-1} X_{6} X_{5} X_{4} X_{3} X_{2} X_{1}
$$

and substitutes $\boldsymbol{r}_{\ell_{1}, \ell_{2}, \ell_{3}}\left(p_{1}, p_{2}, p_{3}, p_{4}, p_{5}, p_{6}\right)$ in for

$$
r_{\ell_{1}, \ell_{2}, \ell_{3}} \circ \sigma_{\text {id }}^{-1}\left(\left(Q_{1}^{-1} \gamma\right) T_{6} T_{5} T_{4} T_{3}\left(Q_{1}^{-1} \gamma\right)^{-1} X_{6} X_{5} X_{4} X_{3} X_{2} X_{1}\right)
$$

on the left-hand side of (2.79). One then sees that the first case of (2.79) follows when we integrate in the t_{6}, t_{5}, and t_{4} variables, and that the second case of (2.79) follows from a straightforward calculation. By (2.77), we see that $\Phi_{[[\gamma]], m_{5}, m_{4}, m_{3}}$ is an isometry; indeed, $\Phi_{[[\gamma]], m_{5}, m_{4}, m_{3}}$ is a surjection since $\Phi_{\left[[\gamma], m_{5}, m_{4}, m_{3}\right.}$ maps smooth functions in $L^{2}\left(\mathbb{R}^{2}\right)$ to a dense set in $W_{\left[[\gamma], m_{5}, m_{4}, m_{3}\right.}$.

We define a representation $\pi_{\left[[\gamma], m_{5}, m_{4}, m_{3}\right.}$ of N on $L^{2}\left(\mathbb{R}^{2}\right)$ by the equation

$$
\pi_{[[\gamma]], m_{5}, m_{4}, m_{3}}(n)(\psi)=\Phi_{\left.[[\gamma]], m_{5}, m_{4}, m\right) 3}^{-1}\left(r(n) \Phi_{[[\gamma]], m_{5}, m_{4}, m_{3}}(\psi)\right),
$$

where $\psi \in L^{2}\left(\mathbb{R}^{2}\right)$. We wish to give an explicit formula for $\pi_{[[\gamma]], m_{5}, m_{4}, m_{3}}$. To accomplish this, let

$$
\begin{aligned}
& p_{\ell_{1}, \ell_{2}, \ell_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)}^{=} \quad\left(\frac{m_{3} \ell_{2}}{c}-\frac{a m_{4} \ell_{2}^{2}}{c}-\frac{a^{2} m_{5} \ell_{2}^{3}}{c}+\frac{m_{3}-2 m_{4}\left(a \ell_{2}-c \ell_{3}\right)-3 m_{5}\left(a \ell_{2}-c \ell_{3}\right)^{2}}{c} x_{2}\right. \\
& \quad-\frac{\left(a-c \ell_{1}\right)\left(m_{4}+3 m_{5}\left(a \ell_{2}-c \ell_{3}\right)\right)}{c} x_{2}^{2}-\frac{\left(a-c \ell_{1}\right)^{2} m_{5}}{c} x_{2}^{3} \\
& \quad+2\left(m_{4}+3 m_{5}\left(a \ell_{2}-c \ell_{3}\right)\right) x_{2} x_{3}+3 m_{5}\left(a-c \ell_{1}\right) x_{2}^{2} x_{3}-3 c m_{5} x_{2} x_{3}^{2} \\
& \left.\quad+\left(m_{4}+3 m_{5}\left(a \ell_{2}-c \ell_{3}\right)\right) x_{4}+\left(a m_{5}-c m_{5} \ell_{1}\right) x_{5}-c m_{5} x_{6}\right),
\end{aligned}
$$

and let

$$
\begin{aligned}
& q\left(x_{1}, x_{3}, y_{1}, \ldots, y_{6}\right) \\
& =e\left(\frac{m_{3} y_{2}}{c}-\frac{2 m_{4} x_{3} y_{2}}{c}-\frac{3 m_{5} x_{3}^{2} y_{2}}{c}-\frac{a m_{4} y_{2}^{2}}{c}+m_{4} x_{1} y_{2}^{2}-\frac{3 a m_{5} x_{3} y_{2}^{2}}{c}+3 m_{5} x_{1} x_{3} y_{2}^{2}\right. \\
& \quad-\frac{a^{2} m_{5} y_{2}^{3}}{c}+2 a m_{5} x_{1} y_{2}^{3}-c m_{5} x_{1}^{2} y_{2}^{3}+2 m_{4} y_{2} y_{3}+6 m_{5} x_{3} y_{2} y_{3}+3 a m_{5} y_{2}^{2} y_{3} \\
& \left.\quad-3 c m_{5} x_{1} y_{2}^{2} y_{3}-3 c m_{5} y_{2} y_{3}^{2}+m_{4} y_{4}+3 m_{5} x_{3} y_{4}+a m_{5} y_{5}-c m_{5} x_{1} y_{5}-c m_{5} y_{6}\right)
\end{aligned}
$$

When we solve for p_{i} in

$$
\begin{equation*}
P_{6} P_{5} P_{4} P_{3} P_{2} P_{1}=X_{6} X_{5} X_{4} X_{3} X_{2} X_{1} Y_{6} Y_{5} Y_{4} Y_{3} Y_{2} Y_{1} \tag{2.80}
\end{equation*}
$$

we find that

$$
\begin{aligned}
& p_{\ell_{1}, \ell_{2}, \ell_{3}}\left(p_{1}, p_{2}, p_{3}, p_{4}, p_{5}, p_{6}\right) \\
& =p_{\ell_{1}, \ell_{2}, \ell_{3}}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) q\left(x_{1}+\ell_{1},-c \ell_{3}+a \ell_{2}+a x_{2}-c \ell_{1} x_{2}-c x_{3}, y_{1}, \ldots, y_{6}\right)
\end{aligned}
$$

Since

$$
\begin{aligned}
& r_{\ell_{1}, \ell_{2}, \ell_{3}}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \\
& =p_{\ell_{1}, \ell_{2}, \ell_{3}}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \psi\left(\ell_{1}+x_{1},-c \ell_{3}+a \ell_{2}+a x_{2}-c \ell_{1} x_{2}+c x_{3}\right)
\end{aligned}
$$

it follows that

$$
\begin{align*}
& r_{\ell_{1}, \ell_{2}, \ell_{3}}\left(p_{1}, p_{2}, p_{3}, p_{4}, p_{5}, p_{6}\right) \tag{2.81}\\
& =p_{\ell_{1}, \ell_{2}, \ell_{3}}\left(p_{1}, p_{2}, p_{3}, p_{4}, p_{5}, p_{6}\right) \psi\left(\ell_{1}+p_{1},-c \ell_{3}+a \ell_{2}+a p_{2}-c \ell_{1} p_{2}+c p_{3}\right) \\
& =p_{\ell_{1}, \ell_{2}, \ell_{3}}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) q\left(\ell_{1}+x_{1},-c \ell_{3}+a \ell_{2}+a x_{2}-c \ell_{1} x_{2}-c x_{3}, y_{1}, \ldots, y_{6}\right) \\
& \quad \psi\left(\left(\ell_{1}+x_{1}\right)+y_{1},\left(-c \ell_{3}+a \ell_{2}+a x_{2}-c \ell_{1} x_{2}-c x_{3}\right)+\left(a y_{2}-c\left(\ell_{1}+x_{1}\right) y_{2}-c y_{3}\right)\right)
\end{align*}
$$

Observe $\left(r\left(Y_{6} Y_{5} Y_{4} Y_{3} Y_{2} Y_{1}\right) \Phi_{[[\gamma]], m_{5}, m_{4}, m_{3}}(\psi)\right)\left(X_{6} X_{5} X_{4} X_{3} X_{2} X_{1}\right)$ is simply a sum of $r_{\ell_{1}, \ell_{2}, \ell_{3}}\left(p_{1}, p_{2}, p_{3}, p_{4}, p_{5}, p_{6}\right)$. Thus by (2.81) we see that

$$
\left(r\left(Y_{6} Y_{5} Y_{4} Y_{3} Y_{2} Y_{1}\right) \Phi_{[[\gamma]], m_{5}, m_{4}, m_{3}}(\psi)\right)\left(X_{6} X_{5} X_{4} X_{3} X_{2} X_{1}\right)
$$

is of the form $h_{\widetilde{\psi} ;[[\gamma]], m_{5}, m_{4}, m_{3}}$, where $\widetilde{\psi} \in L^{2}\left(\mathbb{R}^{2}\right)$. When we solve for $\widetilde{\psi}$, we are then able to deduce that

$$
\begin{aligned}
& \left(\pi_{[[\gamma]], m_{5}, m_{4}, m_{3}}\left(Y_{6} Y_{5} Y_{4} Y_{3} Y_{2} Y_{1}\right) \psi\right)\left(s_{1}, s_{3}\right) \\
& =q\left(s_{1}, s_{3}, y_{1}, \ldots, y_{6}\right) \psi\left(s_{1}+y_{1}, s_{3}+a y_{2}-c s_{1} y_{2}-c y_{3}\right)
\end{aligned}
$$

$$
\begin{align*}
= & e\left(\frac{m_{3} y_{2}}{c}-\frac{2 m_{4} s_{3} y_{2}}{c}-\frac{3 m_{5} s_{3}^{2} y_{2}}{c}-\frac{a m_{4} y_{2}^{2}}{c}+m_{4} s_{1} y_{2}^{2}-\frac{3 a m_{5} s_{3} y_{2}^{2}}{c}+3 m_{5} s_{1} s_{3} y_{2}^{2}\right. \\
& -\frac{a^{2} m_{5} y_{2}^{3}}{c}+2 a m_{5} s_{1} y_{2}^{3}-c m_{5} s_{1}^{2} y_{2}^{3}+2 m_{4} y_{2} y_{3}+6 m_{5} s_{3} y_{2} y_{3}+3 a m_{5} y_{2}^{2} y_{3} \\
& \left.-3 c m_{5} s_{1} y_{2}^{2} y_{3}-3 c m_{5} y_{2} y_{3}^{2}+m_{4} y_{4}+3 m_{5} s_{3} y_{4}+a m_{5} y_{5}-c m_{5} s_{1} y_{5}-c m_{5} y_{6}\right) \\
& \psi\left(s_{1}+y_{1}, s_{3}+a y_{2}-c s_{1} y_{2}-c y_{3}\right) \tag{2.82}
\end{align*}
$$

Let $f \in W_{[[\gamma]], m_{5}, m_{4}, m_{3}}^{\infty}$; that is to say, let f be a smooth vector under the action of r. By definition, \mathfrak{n} acts upon such f according to (1.1). Since $\Phi_{[[\gamma]], m_{5}, m_{4}, m_{3}}$ is an isometry it follows that $\psi=\psi_{f ;[[\gamma]], m_{5},\left[m_{4}\right], m_{3}}$ is also a smooth vector and that \mathfrak{n} acts upon ψ via $\pi_{[[\gamma]], m_{5}, m_{4}, m_{3}}$ and (1.1). In particular, observe

$$
\begin{aligned}
& \left(\pi_{[[\gamma]], m_{5}, m_{4}, m_{3}}\left(\mathcal{P}_{1}\right) \psi\right)\left(s_{1}, s_{3}\right)=\lim _{t_{1} \rightarrow 0} \frac{\left(\pi_{[\gamma \gamma]], m_{5}, m_{4}, m_{3}}\left(T_{1}\right) \psi\right)\left(s_{1}, s_{3}\right)-\psi\left(s_{1}, s_{3}\right)}{t_{1}} \\
& =\lim _{t_{1} \rightarrow 0} \frac{\psi\left(s_{1}+t_{1}, s_{3}\right)-\psi\left(s_{1}, s_{3}\right)}{t_{1}}=\left(\partial_{s_{1}} \psi\right)\left(s_{1}, s_{3}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(\pi_{[[\gamma]], m_{5}, m_{4}, m_{3}}\left(\mathcal{P}_{3}\right) \psi\right)\left(s_{1}, s_{3}\right)=\lim _{t_{3} \rightarrow 0} \frac{\left(\pi_{[[\gamma]], m_{5}, m_{4}, m_{3}}\left(T_{3}\right) \psi\right)\left(s_{1}, s_{3}\right)-\psi\left(s_{1}, s_{3}\right)}{t_{3}} \\
& =\lim _{t_{3} \rightarrow 0} \frac{\psi\left(s_{1}, s_{3}-c t_{3}\right)-\psi\left(s_{1}, s_{3}\right)}{t_{3}}=-c\left(\partial_{s_{3}} \psi\right)\left(s_{1}, s_{3}\right)
\end{aligned}
$$

The above limits are in $L^{2}\left(\mathbb{R}^{2}\right)$ under the usual L^{2} norm, and thus technically, $\partial_{s_{1}} \psi$ and $\partial_{s_{3}} \psi$ are weak L^{2} derivative of ψ. By repeated application of the above argument we have that ψ has weak derivatives of all orders. By the Sobolev embedding theorem it follows that $\psi=\psi_{f ; \gamma, m_{5}, m_{4}, m_{3}}$ is a smooth function on \mathbb{R}^{2} which vanishes at infinity [5, Theorem 9.17].

Also observe that

$$
\begin{aligned}
& \left(\pi_{[[\gamma]], m_{5}, m_{4}, m_{3}}\left(\mathcal{P}_{4}\right) \psi\right)\left(s_{1}, s_{3}\right)=\lim _{t_{4} \rightarrow 0} \frac{\left(\pi_{[[\gamma]], m_{5}, m_{4}, m_{3}}\left(T_{4}\right) \psi\right)\left(s_{1}, s_{3}\right)-\psi\left(s_{1}, s_{3}\right)}{t_{4}} \\
& =\psi\left(s_{1}, s_{3}\right) \lim _{t_{4} \rightarrow 0} \frac{e\left(m_{4} t_{4}+3 m_{5} t_{4} s_{3}\right)-1}{t_{4}}=\psi\left(s_{1}, s_{3}\right) \frac{d}{d t_{4}}\left[e\left(m_{4} t_{4}+3 m_{5} t_{4} s_{3}\right)\right]_{t_{4}=0} \\
& =2 \pi i\left(m_{4}+3 m_{5} s_{3}\right) \psi\left(s_{1}, s_{3}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(\pi_{[[\gamma]], m_{5}, m_{4}, m_{3}}\left(\mathcal{P}_{5}\right) \psi\right)\left(s_{1}, s_{3}\right)=\lim _{t_{5} \rightarrow 0} \frac{\left(\pi_{[[\gamma]], m_{5}, m_{4}, m_{3}}\left(T_{5}\right) \psi\right)\left(s_{1}, s_{3}\right)-\psi\left(s_{1}, s_{3}\right)}{t_{5}} \\
& =\psi\left(s_{1}, s_{3}\right) \lim _{t_{5} \rightarrow 0} \frac{e\left(a m_{5} t_{5}-c m_{5} s_{1} t_{5}\right)-1}{t_{5}}=\psi\left(s_{1}, s_{3}\right) \frac{d}{d t_{5}}\left[e\left(a m_{5} t_{5}-c m_{5} s_{1} t_{5}\right)\right]_{t_{5}=0} \\
& =2 \pi i\left(a m_{5}-c m_{5} s_{1}\right) \psi\left(s_{1}, s_{3}\right)
\end{aligned}
$$

By repeated application of these arguments it follows that $\left|s_{1}\right|{ }^{\mid j_{1}}\left|s_{3}\right|{ }^{j_{3}} \partial_{s_{1}}^{k_{1}} \partial_{s_{3}}^{k_{3}}[\psi] \in L^{2}\left(\mathbb{R}^{2}\right)$ for all $k_{i}, j_{i} \in \mathbb{Z}_{\geq 0}$. Once again, by the Sobolev Embedding Theorem it follows that $\left|s_{1}\right|{ }^{j_{1}}\left|s_{3}\right|{ }^{\mid j_{3}} \partial_{s_{1}}^{k_{1}} \partial_{s_{3}}^{k_{3}}[\psi]$
is a smooth functions on \mathbb{R}^{2} which vanish at infinity. Thus

$$
\begin{equation*}
\psi=\psi_{f ; \gamma, m_{5}, m_{4}, m_{3}} \in \mathcal{S}\left(\mathbb{R}^{2}\right) \tag{2.83}
\end{equation*}
$$

where $\mathcal{S}\left(\mathbb{R}^{2}\right)$ is the space of Schwartz functions on \mathbb{R}^{2}.

2.6.2 Analysis of $W_{0, k_{5}, k_{4}, k_{3}, k_{1}}$

Suppose $k_{5} \neq 0, k_{4} \neq 0$, or $k_{3} \neq 0$. In this subsection we will show that $W_{0, k_{5}, k_{4}, k_{3}, k_{1}}$ is isometric to $L^{2}(\mathbb{R})$. Via this isometry we will construct a representation of N on $L^{2}(\mathbb{R})$. We will then analyze the smooth vectors of $L^{2}(\mathbb{R})$ under this representation, which will allow us to give an explicit description in section 2.7 of the $N_{\mathbb{Z}}$-invariant distributions on N. To begin this analysis, observe

$$
\begin{aligned}
& T_{6} T_{5} T_{4} T_{3} T_{1} Q_{2} X_{6} X_{5} X_{4} X_{3} X_{2} X_{1} \\
& =R_{6}\left(t_{6}+u_{6}\right) R_{5}\left(t_{5}+u_{5}\right) R_{4}\left(t_{4}+u_{4}\right) R_{3}\left(t_{3}+u_{3}\right) R_{2}\left(q_{2}+x_{2}\right) R_{1}\left(t_{1}+x_{1}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
u_{6}= & -2 q_{2}^{3} t_{1}^{2}-3 q_{2}^{2} t_{1} t_{3}-6 q_{2}^{2} t_{1}^{2} x_{2}-6 q_{2} t_{1} t_{3} x_{2}-6 q_{2} t_{1}^{2} x_{2}^{2}-3 t_{1} t_{3} x_{2}^{2}-2 t_{1}^{2} x_{2}^{3} \\
& -6 q_{2}^{2} t_{1} x_{3}-6 q_{2} t_{3} x_{3}-6 q_{2} t_{1} x_{2} x_{3}-3 t_{1} x_{2}^{2} x_{3}-3 q_{2} x_{3}^{2}+3 q_{2} t_{1} x_{4}+3 t_{3} x_{4} \\
& +t_{1} x_{5}+x_{6} \\
u_{5}= & -q_{2}^{3} t_{1}-3 q_{2}^{2} t_{1} x_{2}-3 q_{2} t_{1} x_{2}^{2}-t_{1} x_{2}^{3}-3 q_{2}^{2} x_{3}+3 q_{2} x_{4}+x_{5}, \\
u_{4}= & -q_{2}^{2} t_{1}-2 q_{2} t_{1} x_{2}-t_{1} x_{2}^{2}-2 q_{2} x_{3}+x_{4}, \\
u_{3}= & q_{2} t_{1}+t_{1} x_{2}+x_{3} .
\end{aligned}
$$

Recall that (2.64) and (2.7h) show that

$$
\begin{aligned}
& f_{0, k_{5}, k_{4}+3 k_{5} q_{2}, k_{3}-2 k_{4} q_{2}-3 k_{5} q_{2}^{2}, k_{1}-k_{3} q_{2}+k_{4} q_{2}^{2}+k_{5} q_{2}^{3}}(n) \\
& =f_{0, k_{5}, k_{4}, k_{3}, k_{1}}\left(Q_{2} n\right) \\
& =\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} f\left(T_{6} T_{5} T_{4} T_{3} T_{1} Q_{2} n\right) e\left(-k_{5} t_{5}-k_{4} t_{4}-k_{3} t_{3}-k_{1} t_{1}\right) \\
& \quad d t_{6} d t_{5} d t_{4} d t_{3} d t_{1}
\end{aligned}
$$

Therefore, when we perform the following change of variables (in order)

$$
t_{6} \mapsto t_{6}-u_{6}, \quad t_{5} \mapsto t_{5}-u_{5}, \quad t_{4} \mapsto t_{4}-u_{4}, \quad t_{3} \mapsto t_{3}-u_{3}, \quad t_{1} \mapsto t_{1}-x_{1}
$$

it follows from Lemma 2.3 that

$$
\begin{align*}
& \left(f_{0, k_{5}, k_{4}+3 k_{5} q_{2}, k_{3}-2 k_{4} q_{2}-3 k_{5} q_{2}^{2}, k_{1}-k_{3} q_{2}+k_{4} q_{2}^{2}+k_{5} q_{2}^{3}}\right)^{\sigma_{\mathrm{id}}}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \\
& =f_{0, k_{5}, k_{4}, k_{3}, k_{1}}\left(Q_{2} X_{6} X_{5} X_{4} X_{3} X_{2} X_{1}\right) \\
& =e\left(\left(k_{1}-k_{3} q_{2}+k_{4} q_{2}^{2}+k_{5} q_{2}^{3}\right) x_{1}+\left(k_{3}-2 k_{4} q_{2}-3 k_{5} q_{2}^{2}\right)\left(x_{3}-x_{1} x_{2}\right)\right. \\
& \left.\quad \quad \quad\left(k_{4}+3 k_{5} q_{2}\right)\left(x_{4}+x_{1} x_{2}^{2}\right)+k_{5}\left(x_{5}+x_{1} x_{2}^{3}\right)\right) \psi_{0, k_{5}, k_{4}, k_{3}, k_{1}}\left(x_{2}+q_{2}\right), \tag{2.84}
\end{align*}
$$

where

$$
\begin{align*}
& \psi_{0, k_{5}, k_{4}, k_{3}, k_{1}}\left(s_{2}\right)=\psi_{f ; 0, k_{5}, k_{4}, k_{3}, k_{1}}\left(s_{2}\right) \\
& =\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} f^{\sigma_{\mathrm{id}}}\left(t_{6}, t_{5}, t_{4}, t_{3}, s_{2}, t_{1}\right) e\left(-k_{1} t_{1}-k_{3} t_{3}-k_{4} t_{4}-k_{5} t_{5}\right. \\
& \left.\quad+k_{3} t_{1} s_{2}-k_{4} t_{1} s_{2}^{2}-k_{5} t_{1} s_{2}^{3}\right) d t_{6} d t_{5} d t_{4} d t_{3} d t_{1} . \tag{2.85}
\end{align*}
$$

As indicated in the above equality, we will at times suppress writing f in the subscript of $\psi_{f ; 0, k_{5}, k_{4}, k_{3}, k_{1}}$ when context is clear. Observe that by (2.65),

$$
\begin{align*}
& \left(f_{0, k_{5}, k_{4}, k_{3}, k_{1}}^{\Sigma}\right)^{\sigma_{\mathrm{id}}}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \\
& =\sum_{q_{2} \in \mathbb{Z}}\left(f_{0, k_{5}, k_{4}+3 k_{5} q_{2}, k_{3}-2 k_{4} q_{2}-3 k_{5} q_{2}^{2}, k_{1}-k_{3} q_{2}+k_{4} q_{2}^{2}+k_{5} q_{2}^{3}}^{\sigma^{\sigma_{\mathrm{id}}}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)}\right. \\
& =\sum_{q_{2} \in \mathbb{Z}} e\left(\left(k_{1}-k_{3} q_{2}+k_{4} q_{2}^{2}+k_{5} q_{2}^{3}\right) x_{1}+\left(k_{3}-2 k_{4} q_{2}-3 k_{5} q_{2}^{2}\right)\left(x_{3}-x_{1} x_{2}\right)\right. \\
& \left.\quad+\left(k_{4}+3 k_{5} q_{2}\right)\left(x_{4}+x_{1} x_{2}^{2}\right)+k_{5}\left(x_{5}+x_{1} x_{2}^{3}\right)\right) \psi_{0, k_{5}, k_{4}, k_{3}, k_{1}}\left(x_{2}+q_{2}\right) . \tag{2.86}
\end{align*}
$$

From (2.84) we see that

$$
\begin{aligned}
& \left(f_{\left.\left.0, k_{5}, k_{4}+3 k_{5} \ell_{2}, k_{3}-2 k_{4} \ell_{2}-3 k_{5} \ell_{2}^{2}, k_{1}-k_{3} \ell_{2}+k_{4} \ell_{2}^{2}+k_{5} \ell_{2}^{\ell}\right)^{\sigma_{\mathrm{id}}}\right\rangle_{\mathcal{F}}=0}\right.
\end{aligned}
$$

if $q_{2} \neq \ell_{2}$; simply perform integration is the x_{4}, x_{3}, and x_{1} variables in (2.73) to see why this is the case. Thus by (2.86), the Pythagorean theorem, and changing variables, we find that

$$
\begin{aligned}
& \left(\left\|f_{0, k_{5}, k_{4}, k_{3}, k_{1}}^{\Sigma}\right\|_{2}\right)^{2}=\left(\left\|\left(f_{0, k_{5}, k_{4}, k_{3}, k_{1}}^{\Sigma}\right)^{\sigma_{\mathrm{id}}}\right\|_{2, \mathcal{F}}\right)^{2}
\end{aligned}
$$

$$
\begin{align*}
& =\sum_{q_{2} \in \mathbb{Z}} \int_{0}^{1}\left|\psi_{0, k_{5}, k_{4}, k_{3}, k_{1}}\left(x_{2}+q_{2}\right)\right|^{2} d x_{2}=\int_{-\infty}^{\infty}\left|\psi_{0, k_{5}, k_{4}, k_{3}, k_{1}}\left(x_{2}\right)\right|^{2} d x_{2} . \tag{2.87}
\end{align*}
$$

This implies that $\psi_{0, k_{5}, k_{4}, k_{3}, k_{1}} \in L^{2}(\mathbb{R})$. Conversely, given $\psi \in L^{2}(\mathbb{R})$, we can define

$$
\begin{equation*}
h_{\psi ; 0, k_{5}, k_{4}, k_{3}, k_{1}}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)=\sum_{\ell_{2} \in \mathbb{Z}} \tau_{\ell_{2}}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right), \tag{2.88}
\end{equation*}
$$

where

$$
\begin{aligned}
& r_{\ell_{2}}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \\
& =e\left(\left(k_{1}-k_{3} \ell_{2}+k_{4} \ell_{2}^{2}+k_{5} \ell_{2}^{3}\right) x_{1}+\left(k_{3}-2 k_{4} \ell_{2}-3 k_{5} \ell_{2}^{2}\right)\left(x_{3}-x_{1} x_{2}\right)\right. \\
& \left.\quad+\left(k_{4}+3 k_{5} \ell_{2}\right)\left(x_{4}+x_{1} x_{2}^{2}\right)+k_{5}\left(x_{5}+x_{1} x_{2}^{3}\right)\right) \psi\left(x_{2}+\ell_{2}\right)
\end{aligned}
$$

One can check that $h_{\psi ; 0, k_{5}, k_{4}, k_{3}, k_{1}}$ is a well-defined element of $L^{2}(\mathcal{F})$ by repeating the argument in (2.87) with $f_{0, k_{5}, k_{4}, k_{3}, k_{1}}^{\Sigma}$ replaced by $h_{\psi ; 0, k_{5}, k_{4}, k_{3}, k_{1}}$. Furthermore, it can be shown that $h_{\psi ; 0, k_{5}, k_{4}, k_{3}, k_{1}}$ is $\sigma_{\mathrm{id}}^{-1}\left(N_{\mathbb{Z}}\right)$-invariant. To see that this is the case, one solves for p_{i} in (2.70) and observes that

$$
r_{\ell_{2}}\left(p_{1}, p_{2}, p_{3}, p_{4}, p_{5}, p_{6}\right)=r_{\ell_{2}+q_{2}}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)
$$

Thus $h_{\psi ; 0, k_{5}, k_{4}, k_{3}, k_{1}} \circ \sigma_{\mathrm{id}}^{-1}$ is a well-defined element of $L^{2}\left(N_{\mathbb{Z}} \backslash N\right)$.
Let $\Phi_{0, k_{5}, k_{4}, k_{3}, k_{1}}: L^{2}(\mathbb{R}) \rightarrow W_{0, k_{5}, k_{4}, k_{3}, k_{1}}$ where

$$
\Phi_{0, k_{5}, k_{4}, k_{3}, k_{1}}(\psi)=h_{\psi ; 0, k_{5}, k_{4}, k_{3}, k_{1}} \circ \sigma_{\mathrm{id}}^{-1}
$$

Technically, we should prove that

$$
h_{\psi ; 0, k_{5}, k_{4}, k_{3}, k_{1}} \circ \sigma_{\mathrm{id}}^{-1}=\left(h_{\psi ; 0, k_{5}, k_{4}, k_{3}, k_{1}} \circ \sigma_{\mathrm{id}}^{-1}\right)_{0, k_{5}, k_{4}, k_{3}, k_{1}}^{\Sigma}
$$

to justify that $W_{0, k_{5}, k_{4}, k_{3}, k_{1}}$ truly is the co-domain of $\Phi_{0, k_{5}, k_{4}, k_{3}, k_{1}}$. To see that this is the case, it suffices by (2.65) to show that

$$
\begin{align*}
& \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} r_{\ell_{2}} \circ \sigma_{\mathrm{id}}^{-1}\left(T_{6} T_{5} T_{4} T_{3} T_{1} X_{6} X_{5} X_{4} X_{3} X_{2} X_{1}\right) e\left(-k_{5} t_{5}-\left(k_{4}+3 k_{5} q_{2}\right) t_{4}\right. \\
& = \begin{cases}0 & \text { if } \ell_{2} \neq q_{2} \\
r_{q_{2}}\left(x_{1}, \ldots, x_{6}\right) & \text { if } \ell_{2}=q_{2}\end{cases}
\end{align*}
$$

To show that (2.89) holds, one solves for p_{i} in the equation

$$
\begin{equation*}
P_{6} P_{5} P_{4} P_{3} P_{2} P_{1}=T_{6} T_{5} T_{4} T_{3} T_{1} X_{6} X_{5} X_{4} X_{3} X_{2} X_{1} \tag{2.90}
\end{equation*}
$$

and substitutes $r_{\ell_{2}}\left(p_{1}, p_{2}, p_{3}, p_{4}, p_{5}, p_{6}\right)$ in for $r_{\ell_{2}} \circ \sigma_{\mathrm{id}}^{-1}\left(T_{6} T_{5} T_{4} T_{3} T_{1} X_{6} X_{5} X_{4} X_{3} X_{2} X_{1}\right)$ on the lefthand side of (2.89). One then see that the first case in (2.89) follows when we integrate in the t_{4}, t_{3}, t_{1} variables, and that the second case in (2.89) follows from a straightforward calculation. By (2.87), we see that $\Phi_{0, k_{5}, k_{4}, k_{3}, k_{1}}$ is an isometry; indeed, $\Phi_{0, k_{5}, k_{4}, k_{3}, k_{1}}$ is a surjection since $\Phi_{0, k_{5}, k_{4}, k_{3}, k_{1}}$ maps smooth functions in $L^{2}(\mathbb{R})$ to a dense set in $W_{0, k_{5}, k_{4}, k_{3}, k_{1}}$.

We define a representation $\pi_{0, k_{5}, k_{4}, k_{3}, k_{1}}$ of N on $L^{2}(\mathbb{R})$ by the equation

$$
\pi_{0, k_{5}, k_{4}, k_{3}, k_{1}}(n)(\psi)=\Phi_{0, k_{5}, k_{4}, k_{3}, k_{1}}^{-1}\left(r(n) \Phi_{0, k_{5}, k_{4}, k_{3}, k_{1}}(\psi)\right)
$$

where $\psi \in L^{2}(\mathbb{R})$. We wish to give an explicit formula for $\pi_{0, k_{5}, k_{4}, k_{3}, k_{1}}$. To accomplish this, let

$$
\begin{aligned}
& p_{\ell_{2}}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \\
& =e\left(\left(k_{1}-k_{3} \ell_{2}+k_{4} \ell_{2}^{2}+k_{5} \ell_{2}^{3}\right) x_{1}+\left(k_{3}-2 k_{4} \ell_{2}-3 k_{5} \ell_{2}^{2}\right)\left(x_{3}-x_{1} x_{2}\right)\right. \\
& \left.\quad+\left(k_{4}+3 k_{5} \ell_{2}\right)\left(x_{4}+x_{1} x_{2}^{2}\right)+k_{5} x_{5}\right)
\end{aligned}
$$

and let

$$
\begin{aligned}
& q\left(x_{2}, y_{1}, \ldots, y_{6}\right) \\
& =e\left(k_{1} y_{1}-k_{3} x_{2} y_{1}+k_{4} x_{2}^{2} y_{1}+k_{5} x_{2}^{3} y_{1}-k_{3} y_{1} y_{2}+2 k_{4} x_{2} y_{1} y_{2}+3 k_{5} x_{2}^{2} y_{1} y_{2}+k_{4} y_{1} y_{2}^{2}\right. \\
& \left.\quad+3 k_{5} x_{2} y_{1} y_{2}^{2}+k_{5} y_{1} y_{2}^{3}+k_{3} y_{3}-2 k_{4} x_{2} y_{3}-3 k_{5} x_{2}^{2} y_{3}+k_{4} y_{4}+3 k_{5} x_{2} y_{4}+k_{5} y_{5}\right)
\end{aligned}
$$

When we solve for p_{i} in (2.80) we find that

$$
p_{\ell_{2}}\left(p_{1}, p_{2}, p_{3}, p_{4}, p_{5}, p_{6}\right)=p_{\ell_{2}}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) q\left(x_{2}+q_{2}\right)
$$

Since

$$
r_{\ell_{2}}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)=p_{\ell_{2}}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \psi\left(\ell_{2}+x_{2}\right)
$$

it follows that

$$
\begin{align*}
& r_{\ell_{2}}\left(p_{1}, p_{2}, p_{3}, p_{4}, p_{5}, p_{6}\right) \\
& =p_{\ell_{2}}\left(p_{1}, p_{2}, p_{3}, p_{4}, p_{5}, p_{6}\right) \psi\left(\ell_{2}+p_{2}\right) \\
& =p_{\ell_{2}}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) q\left(\ell_{2}+x_{2}, y_{1}, \ldots, y_{6}\right) \psi\left(\left(\ell_{2}+x_{2}\right)+y_{2}\right) \tag{2.91}
\end{align*}
$$

Observe $\left(r\left(Y_{6} Y_{5} Y_{4} Y_{3} Y_{2} Y_{1}\right) \Phi_{0, k_{5}, k_{4}, k_{3}, k_{1}}(\psi)\right)\left(X_{6} X_{5} X_{4} X_{3} X_{2} X_{1}\right)$ is simply a sum of $r_{\ell_{2}}\left(p_{1}, p_{2}, p_{3}, p_{4}, p_{5}, p_{6}\right)$. Thus by (2.91) we see that

$$
\left(r\left(Y_{6} Y_{5} Y_{4} Y_{3} Y_{2} Y_{1}\right) \Phi_{0, k_{5}, k_{4}, k_{3}, k_{1}}(\psi)\right)\left(X_{6} X_{5} X_{4} X_{3} X_{2} X_{1}\right)
$$

is of the form $h_{\widetilde{\psi} ; 0, k_{5}, k_{4}, k_{3}, k_{1}}$, where $\widetilde{\psi} \in L^{2}(\mathbb{R})$. When we solve for $\widetilde{\psi}$, we are then able to deduce that

$$
\begin{align*}
& \left(\pi_{0, k_{5}, k_{4}, k_{3}, k_{1}}\left(Y_{6} Y_{5} Y_{4} Y_{3} Y_{2} Y_{1}\right) \psi\right)\left(s_{2}\right) \\
& =q\left(s_{2}, y_{1}, \ldots, y_{6}\right) \psi\left(s_{2}+y_{2}\right) \\
& =e\left(k_{1} y_{1}-k_{3} s_{2} y_{1}+k_{4} s_{2}^{2} y_{1}+k_{5} s_{2}^{3} y_{1}-k_{3} y_{1} y_{2}+2 k_{4} s_{2} y_{1} y_{2}+3 k_{5} s_{2}^{2} y_{1} y_{2}\right. \\
& \quad+k_{4} y_{1} y_{2}^{2}+3 k_{5} s_{2} y_{1} y_{2}^{2}+k_{5} y_{1} y_{2}^{3}+k_{3} y_{3}-2 k_{4} s_{2} y_{3}-3 k_{5} s_{2}^{2} y_{3}+k_{4} y_{4} \\
& \left.\quad+3 k_{5} s_{2} y_{4}+k_{5} y_{5}\right) \psi\left(s_{2}+y_{2}\right) \tag{2.92}
\end{align*}
$$

Let $f \in W_{0, k_{5}, k_{4}, k_{3}, k_{1}}^{\infty}$. Since $\Phi_{0, k_{5}, k_{4}, k_{3}, k_{1}}$ is an isometry it follows that $\psi=\psi_{f ; 0, k_{5}, k_{4}, k_{3}, k_{1}}$ is also a smooth vector and that \mathfrak{n} acts upon ψ via $\pi_{0, k_{5}, k_{4}, k_{3}, k_{1}}$ and (1.1). In particular, observe

$$
\begin{align*}
& \left(\pi_{0, k_{5}, k_{4}, k_{3}, k_{1}}\left(\mathcal{P}_{2}\right) \psi\right)\left(s_{2}\right)=\lim _{t_{2} \rightarrow 0} \frac{\left(\pi_{0, k_{5}, k_{4}, k_{3}, k_{1}}\left(T_{2}\right) \psi\right)\left(s_{2}\right)-\psi\left(s_{2}\right)}{t_{2}} \\
& =\lim _{t_{2} \rightarrow 0} \frac{\psi\left(t_{2}+s_{2}\right)-\psi\left(s_{2}\right)}{t_{2}}=\psi^{\prime}\left(s_{2}\right) \tag{2.93}
\end{align*}
$$

The above limit is in $L^{2}(\mathbb{R})$ under the usual L^{2} norm, and thus technically, ψ^{\prime} is the weak L^{2} derivative of ψ. By repeated application of the above argument we have that ψ has weak derivatives of all orders. By the Sobolev embedding theorem it follows that $\psi=\psi_{f ; 0, k_{5}, k_{4}, k_{3}, k_{1}}$ is a smooth function on \mathbb{R} which vanishes at infinity.

Also observe that

$$
\begin{align*}
& \left(\pi_{0, k_{5}, k_{4}, k_{3}, k_{1}}\left(\mathcal{P}_{1}\right) \psi\right)\left(s_{2}\right)=\lim _{t_{1} \rightarrow 0} \frac{\left(\pi_{\left.0, k_{5}, k_{4}, k_{3}, k_{1}\left(T_{1}\right) \psi\right)\left(s_{2}\right)-\psi\left(s_{2}\right)}^{t_{1}}\right.}{\quad=\psi\left(s_{2}\right) \lim _{t_{1} \rightarrow 0} \frac{e\left(k_{1} t_{1}-k_{3} t_{1} s_{2}+k_{4} t_{1} s_{2}^{2}+k_{5} t_{1} s_{2}^{3}\right)-1}{t_{1}}} \\
& \quad=\psi\left(s_{2}\right) \frac{d}{d t_{1}}\left[e\left(k_{1} t_{1}-k_{3} t_{1} s_{2}+k_{4} t_{1} s_{2}^{2}+k_{5} t_{1} s_{2}^{3}\right)\right]_{t_{1}=0} \\
& \quad=2 \pi i\left(k_{1}-k_{3} s_{2}+k_{4} s_{2}^{2}+k_{5} s_{2}^{3}\right) \psi\left(s_{2}\right), \\
& \begin{aligned}
\left(\pi_{0, k_{5}, k_{4}, k_{3}, k_{1}}\left(\mathcal{P}_{3}\right) \psi\right)\left(s_{2}\right)=\lim _{t_{3} \rightarrow 0} \frac{\left(\pi_{\left.0, k_{5}, k_{4}, k_{3}, k_{1}\left(T_{3}\right) \psi\right)\left(s_{2}\right)-\psi\left(s_{2}\right)}^{t_{3}}\right.}{t_{4}} \\
\quad=\psi\left(s_{2}\right) \lim _{t_{3} \rightarrow 0} \frac{e\left(k_{3} t_{3}-2 k_{4} t_{3} s_{2}-3 k_{5} t_{3} s_{2}^{2}\right)-1}{t_{3}} \\
\quad=\psi\left(s_{2}\right) \frac{d}{d t_{3}}\left[e\left(k_{3} t_{3}-2 k_{4} t_{3} s_{2}-3 k_{5} t_{3} s_{2}^{2}\right)\right]_{t_{3}=0} \\
\quad=2 \pi i\left(k_{3}-2 k_{4} s_{2}-3 k_{5} s_{2}^{2}\right) \psi\left(s_{2}\right), \\
\left(\pi_{0, k_{5}, k_{4}, k_{3}, k_{1}}\left(\mathcal{P}_{4}\right) \psi\right)\left(s_{2}\right)=\lim _{t_{4} \rightarrow 0} \frac{\left(\pi_{\left.0, k_{5}, k_{4}, k_{3}, k_{1}\left(T_{4}\right) \psi\right)\left(s_{2}\right)-\psi\left(s_{2}\right)}^{t_{4}}\right.}{\quad=\psi\left(s_{2}\right) \lim _{t_{4} \rightarrow 0} \frac{e\left(k_{4} t_{4}+3 k_{5} t_{4} s_{2}\right)-1}{t_{4}}} \\
\quad=\psi\left(s_{2}\right) \frac{d}{d t_{4}}\left[e\left(k_{4} t_{4}+3 k_{5} t_{4} s_{2}\right)\right]_{t_{4}=0}=2 \pi i\left(k_{4}+3 k_{5} s_{2}\right) \psi\left(s_{2}\right)
\end{aligned} \tag{2.94}
\end{align*}
$$

By repeated application of these arguments it follows that $\left|s_{2}\right|^{j} \psi^{(k)} \in L^{2}(\mathbb{R})$ for all $k, j \in \mathbb{Z}_{\geq 0}$. Once again, by the Sobolev Embedding Theorem it follows that $\left|s_{2}\right|^{j} \psi^{(k)}$ are smooth functions on \mathbb{R} which vanish at infinity. Thus

$$
\begin{equation*}
\psi=\psi_{f ; 0, k_{5}, k_{4}, k_{3}, k_{1}} \in \mathcal{S}(\mathbb{R}) \tag{2.97}
\end{equation*}
$$

where $\mathcal{S}(\mathbb{R})$ is the space of Schwartz functions on \mathbb{R}.

2.6.3 Analysis of $W_{0,0,0,0, k_{1}, k_{2}}$

In this subsection we will show that $W_{0,0,0,0, k_{1}, k_{2}}$ is isometric to \mathbb{C}. To begin this analysis, observe

$$
\begin{aligned}
& T_{6} T_{5} T_{4} T_{3} T_{1} T_{2} X_{6} X_{5} X_{4} X_{3} X_{2} X_{1} \\
& =R_{6}\left(t_{6}+u_{6}\right) R_{5}\left(t_{5}+u_{5}\right) R_{4}\left(t_{4}+u_{4}\right) R_{3}\left(t_{3}+u_{3}\right) R_{2}\left(q_{2}+x_{2}\right) R_{1}\left(t_{1}+x_{1}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
u_{6}= & -2 t_{1}^{2} t_{2}^{3}-3 t_{1} t_{2}^{2} t_{3}-6 t_{1}^{2} t_{2}^{2} x_{2}-6 t_{1} t_{2} t_{3} x_{2}-6 t_{1}^{2} t_{2} x_{2}^{2}-3 t_{1} t_{3} x_{2}^{2}-2 t_{1}^{2} x_{2}^{3}-6 t_{1} t_{2}^{2} x_{3} \\
& -6 t_{2} t_{3} x_{3}-6 t_{1} t_{2} x_{2} x_{3}-3 t_{1} x_{2}^{2} x_{3}-3 t_{2} x_{3}^{2}+3 t_{1} t_{2} x_{4}+3 t_{3} x_{4}+t_{1} x_{5}+x_{6}, \\
u_{5}= & -t_{1} t_{2}^{3}-3 t_{1} t_{2}^{2} x_{2}-3 t_{1} t_{2} x_{2}^{2}-t_{1} x_{2}^{3}-3 t_{2}^{2} x_{3}+3 t_{2} x_{4}+x_{5}, \\
u_{4}= & -t_{1} t_{2}^{2}-2 t_{1} t_{2} x_{2}-t_{1} x_{2}^{2}-2 t_{2} x_{3}+x_{4}, \\
u_{3}= & t_{1} t_{2}+t_{1} x_{2}+x_{3} .
\end{aligned}
$$

Therefore, when we perform the change of variables (in order)

$$
\begin{array}{lll}
t_{6} \mapsto t_{6}-u_{6}, & t_{5} \mapsto t_{5}-u_{5}, & t_{4} \mapsto t_{4}-u_{4}, \\
t_{3} \mapsto t_{3}-u_{3}, & t_{1} \mapsto t_{1}-x_{1}, & t_{2} \mapsto t_{2}-x_{2}
\end{array}
$$

it follows from Lemma 2.3 that

$$
f_{0,0,0,0, k_{1}, k_{2}}^{\sigma_{\mathrm{id}}}=c_{k_{1}, k_{2}} e\left(k_{1} x_{1}+k_{2} x_{2}\right)
$$

where

$$
\begin{equation*}
c_{k_{1}, k_{2}}=c_{f ; k_{1}, k_{2}}=\int_{0}^{1} \ldots \int_{0}^{1} f^{\sigma_{\mathrm{id}}}\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right) e\left(-k_{1} t_{1}-k_{2} t_{2}\right) d t_{6} \ldots d t_{1} \tag{2.98}
\end{equation*}
$$

As indicated in the above equality, we will at times suppress writing f in the subscript of $c_{f ; k_{1}, k_{2}}$ when context is clear.

Observe

$$
\left\|f_{0,0,0,0, k_{1}, k_{2}}\right\|_{2}=\left(\int_{0}^{1} \int_{0}^{1}\left|c_{k_{1}, k_{2}} e\left(k_{1} x_{1}+k_{2} x_{2}\right)\right|^{2} d x_{2} d x_{1}\right)^{1 / 2}=\left|c_{k_{1}, k_{2}}\right|
$$

Thus the map

$$
\begin{equation*}
f_{0,0,0,0, k_{1}, k_{2}} \mapsto c_{k_{1}, k_{2}} \tag{2.99}
\end{equation*}
$$

is an isometric injection from $W_{0,0,0,0, k_{1}, k_{2}}$ into \mathbb{C}. For $c \in \mathbb{C}$, let

$$
h_{c ; k_{1}, k_{2}}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)=c e\left(k_{1} x_{1}+k_{2} x_{2}\right)
$$

One can easily show that $h_{c ; k_{1}, k_{2}} \circ \sigma_{\text {id }}^{-1}$ is $N_{\mathbb{Z}}$-invariant, and thus it follows that the map (2.99) is in fact a surjection onto \mathbb{C}. Thus $W_{0,0,0,0, k_{1}, k_{2}}$ is isometric to \mathbb{C} via (2.99).

2.7 A Fourier Series for $N_{\mathbb{Z}}$-invariant Distributions on N

We will use the following lemma to prove Theorem 2.15, and from Theorem 2.15 we will deduce Theorem 2.11 for general $f \in W=L^{2}\left(N_{\mathbb{Z}} \backslash N\right)$.

Lemma 2.14.

$$
\begin{align*}
& W=\left(\bigoplus_{\substack{ \\
m_{5} \in \mathbb{Z}_{>0}}} \bigoplus_{\substack{[[\gamma]] \in\left(\Gamma_{\beta}\right) \propto\left\lceil\Gamma_{\beta} /\left(\Gamma_{\beta}\right) \infty \\
[[\gamma]] \neq[[\pm i d]]\right]}} \bigoplus_{\left[m_{4}\right] \in \mathbb{Z} / 3 m_{5} \mathbb{Z}} \bigoplus_{m_{3} \in \mathbb{Z}} W_{[\gamma \gamma]], m_{5}, m_{4}, m_{3}}\right) \\
& \oplus\left(\bigoplus_{k_{5} \in \mathbb{Z} \neq 0} \bigoplus_{\left[k_{4}\right] \in \mathbb{Z} / 3 k_{5} \mathbb{Z}} \bigoplus_{k_{3} \in \mathbb{Z}} \bigoplus_{k_{1} \in \mathbb{Z}} W_{0, k_{5}, k_{4}, k_{3}, k_{1}}\right) \\
& \oplus\left(\bigoplus_{k_{4} \in \mathbb{Z}_{\neq 0}} \bigoplus_{\left[k_{3}\right] \in \mathbb{Z} / 2 k_{4} \mathbb{Z}} \bigoplus_{k_{1} \in \mathbb{Z}} W_{0,0, k_{4}, k_{3}, k_{1}}\right) \oplus\left(\bigoplus_{k_{3} \in \mathbb{Z} \neq 0} \bigoplus_{\left[k_{1}\right] \in \mathbb{Z} / k_{3} \mathbb{Z}} W_{0,0,0, k_{3}, k_{1}}\right) \\
& \oplus\left(\bigoplus_{k_{1} \in \mathbb{Z}} \bigoplus_{k_{2} \in \mathbb{Z}} W_{0,0,0,0, k_{1}, k_{2}}\right) \tag{2.100}
\end{align*}
$$

where the subspaces on the right-hand side of (2.100) are defined in (2.72).
Proof. In the previous section we showed that:

- if $u \in W_{[[\gamma]], m_{5}, m_{4}, m_{3}}$ then $u^{\sigma_{\mathrm{id}}}$ is of the form (2.78),
- if $u \in W_{0, k_{5}, k_{4}, k_{3}, k_{1}}$ then $u^{\sigma_{\mathrm{id}}}$ is of the form (2.88).

From these observations and the fact that $\left\langle u_{1}, u_{2}\right\rangle=\left\langle u_{1}^{\sigma_{\mathrm{id}}}, u_{2}^{\sigma_{\mathrm{id}}}\right\rangle_{\mathcal{F}}$ for $u_{1}, u_{2} \in W$, one can easily check that the subspaces listed on the right-hand side of (2.100) are pairwise orthogonal. Thus it follows that the right-hand side of (2.100) is indeed contained in W in a natural way.

Recall that we have proved Theorem 2.11 for smooth $f \in W=L^{2}\left(N_{\mathbb{Z}} \backslash N\right)$. This shows that smooth $f \in W$ are contained in the right-hand side of (2.100). Since both the left and right-hand sides of (2.100) are closed and since both the left and right-hand sides of (2.100) contain smooth f as a dense set, it follows by density that (2.100) holds.

Theorem 2.15. For $f \in W=L^{2}\left(N_{\mathbb{Z}} \backslash N\right)$ we have

$$
\begin{align*}
& f^{\sigma_{\mathrm{id}}}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)=\sum_{k_{1} \in \mathbb{Z}} \sum_{k_{2} \in \mathbb{Z}} c_{k_{1}, k_{2}} e\left(k_{1} x_{1}+k_{2} x_{2}\right) \tag{2.101a}\\
& +\sum_{k_{3} \in \mathbb{Z}_{\neq 0}} \sum_{\left[k_{1}\right] \in \mathbb{Z} / k_{3} \mathbb{Z}} \sum_{q_{2} \in \mathbb{Z}} e\left(\left(k_{1}-k_{3} q_{2}\right) x_{1}+k_{3}\left(-x_{1} x_{2}+x_{3}\right)\right) \psi_{0,0,0, k_{3}, k_{1}\left(x_{2}+q_{2}\right)}^{+} \sum_{k_{4} \in \mathbb{Z}_{\neq 0}} \sum_{\left[k_{3}\right] \in \mathbb{Z} / 2 k_{4} \mathbb{Z}} \sum_{k_{1} \in \mathbb{Z}} \sum_{q_{2} \in \mathbb{Z}} e\left(\left(k_{1}-k_{3} q_{2}+k_{4} q_{2}^{2}\right) x_{1}+\left(k_{3}-2 k_{4} q_{2}\right)\left(-x_{1} x_{2}+x_{3}\right)\right. \tag{2.101b}\\
& \left.\quad+k_{4}\left(x_{1} x_{2}^{2}+x_{4}\right)\right) \psi_{0,0, k_{4}, k_{3}, k_{1}}\left(x_{2}+q_{2}\right) \tag{2.101c}\\
& +\sum_{k_{5} \in \mathbb{Z}_{\neq 0}} \sum_{\left[k_{4}\right] \in \mathbb{Z} / 3 k_{5} \mathbb{Z}} \sum_{k_{3} \in \mathbb{Z}} \sum_{k_{1} \in \mathbb{Z}} \sum_{q_{2} \in \mathbb{Z}} e\left(\left(k_{1}-k_{3} q_{2}+k_{4} q_{2}^{2}+k_{5} q_{2}^{3}\right) x_{1}\right. \\
& \left.\quad+\left(k_{3}-2 k_{4} q_{2}-3 k_{5} q_{2}^{2}\right)\left(x_{3}-x_{1} x_{2}\right)+\left(k_{4}+3 k_{5} q_{2}\right)\left(x_{4}+x_{1} x_{2}^{2}\right)+k_{5}\left(x_{5}+x_{1} x_{2}^{3}\right)\right) \\
& \quad \psi_{0, k_{5}, k_{4}, k_{3}, k_{1}}\left(x_{2}+q_{2}\right) \\
& +\sum_{\left.m_{5} \in \mathbb{Z}_{>0}\right)} \sum_{\left.[[\gamma]] \in\left(\Gamma_{\beta}\right)\right)_{\infty} \backslash \Gamma_{\beta} /\left(\Gamma_{\beta}\right)_{\infty}\left[m_{4}\right] \in \mathbb{Z} / 3 m_{5} \mathbb{Z} m_{3} \in \mathbb{Z} q_{1} \in \mathbb{Z}} \sum_{q_{3} \in \mathbb{Z}} \sum_{\left[q_{2}\right] \in \mathbb{Z} / c \mathbb{Z}} e\left(\frac{m_{3} q_{2}}{c}-\frac{a m_{4} q_{2}^{2}}{c}-\frac{a^{2} m_{5} q_{2}^{3}}{c}\right. \tag{2.101d}\\
& \quad+\frac{m_{3}-2 m_{4}\left(a q_{2}-c q_{3}\right)-3 m_{5}\left(a q_{2}-c q_{3}\right)^{2}}{c} x_{2}-\frac{\left(a-c q_{1}\right)\left(m_{4}+3 m_{5}\left(a q_{2}-c q_{3}\right)\right)}{c} x_{2}^{2} \\
& \quad-\frac{\left(a-c q_{1}\right)^{2} m_{5}}{c} x_{2}^{3}+\left(m_{4}+3 m_{5}\left(a q_{2}-c q_{3}\right)\right)\left(2 x_{2} x_{3}+x_{4}\right)+\left(a-c q_{1}\right) m_{5}\left(x_{2}^{2} x_{3}+x_{5}\right) \\
& \left.\quad-c m_{5}\left(3 x_{2} x_{3}^{2}+x_{6}\right)\right) \psi_{\gamma, m_{5}, m_{4}, m_{3}\left(q_{1}+x_{1},-c q_{3}+a q_{2}+a x_{2}-c q_{1} x_{2}-c x_{3}\right)}
\end{align*}
$$

where the above series converges absolutely in $L^{2}(\mathcal{F})\left(\right.$ recall $\left.\mathcal{F}=[0,1)^{6}\right)$ and where $\psi_{\gamma, m_{5}, m_{4}, m_{3}}$, $\psi_{0, k_{5}, k_{4}, k_{3}, k_{1}}$, and $c_{k_{1}, k_{2}}$ are defined according to (2.75), (2.85), and (2.98) (respectively). Furthermore, it follows that $\psi_{\gamma, m_{5}, m_{4}, m_{3}} \in L^{2}\left(\mathbb{R}^{2}\right)$ and $\psi_{0, k_{5}, k_{4}, k_{3}, k_{1}} \in L^{2}(\mathbb{R})$. In particular, if $f \in$ W^{∞} (a smooth vector of W under the right regular representation) then $\psi_{\gamma, m_{5}, m_{4}, m_{3}} \in \mathcal{S}\left(\mathbb{R}^{2}\right)$ and $\psi_{0, k_{5}, k_{4}, k_{3}, k_{1}} \in \mathcal{S}(\mathbb{R})$.

Proof. Observe that Lemma 2.14 shows that $f \in W$ must be equal to an absolutely convergent series of the form (2.101), except that it is not immediately obvious that the $\psi_{\gamma, m_{5}, m_{4}, m_{3}}$, $\psi_{0, k_{5}, k_{4}, k_{3}, k_{1}}, c_{k_{1}, k_{2}}$ in such a series expansion must be defined by (2.75), (2.85), and (2.98) (respectively); a priori, they are only known to be elements of $L^{2}\left(\mathbb{R}^{2}\right), L^{2}(\mathbb{R})$, or \mathbb{C}. However, if in the definitions of $\psi_{f ; \gamma, m_{5}, m_{4}, m_{3}}, \psi_{f ; 0, k_{5}, k_{4}, k_{3}, k_{1}}$, and $c_{f ; k_{1}, k_{2}}$ given in (2.75), (2.85), and (2.98) (respectively), one replaces $f^{\sigma_{\mathrm{id}}}$ with the aforementioned series expansion and computes the resulting integrals, it becomes apparent that the $\psi_{\gamma, m_{5}, m_{4}, m_{3}}, \psi_{0, k_{5}, k_{4}, k_{3}, k_{1}}$, and $c_{k_{1}, k_{2}}$ given by Lemma 2.14 agree with those defined in (2.75), (2.85), and (2.98) (respectively).

The statement regarding $f \in W^{\infty}$ follows immediately from (2.83) and (2.97).

Recall that the principal obstruction to stating Theorem 2.11 for general $f \in L^{2}\left(N_{\mathbb{Z}} \backslash N\right)$ was
our inability to define $f_{\gamma, m_{5}, m_{4}, m_{3}}^{\searrow}$ and $f_{0, k_{5}, k_{4}, k_{3}, k_{1}}^{\Sigma}$ for general $f \in L^{2}\left(N_{\mathbb{Z}} \backslash N\right)$. Indeed, although we could define $f_{\gamma, m_{5}, m_{4}, m_{3}}^{\Sigma}$ and $f_{0, k_{5}, k_{4}, k_{3}, k_{1}}^{\Sigma}$ formally using series, it was not immediately obvious that such series should converge in $L^{2}(\mathcal{Q})$ where \mathcal{Q} is a fundamental domain for $N_{\mathbb{Z}} \backslash N$. By Theorem 2.15 we see that the series defining $\left(f_{\gamma, m_{5}, m_{4}, m_{3}}^{\Sigma}\right)^{\sigma_{\mathrm{id}}}$ and $\left(f_{0, k_{5}, k_{4}, k_{3}, k_{1}}^{\Sigma}\right)^{\sigma_{\mathrm{id}}}$ converge absolutely in $L^{2}(\mathcal{F})$ (recall (2.76) and (2.86)). Since $\sigma_{\text {id }}$ is a homeomorphism, it follows that the series defining $f_{\gamma, m_{5}, m_{4}, m_{3}}^{\Sigma}$ and $f_{0, k_{5}, k_{4}, k_{3}, k_{1}}^{\Sigma}$ must also converge absolutely in $L^{2}(\mathcal{Q})$ where $\mathcal{Q}=$ $\sigma_{\mathrm{id}}(\mathcal{F})$. Since \mathcal{Q} is a fundamental domain for $N_{\mathbb{Z}} \backslash N$ and since the series defining $f_{\gamma, m_{5}, m_{4}, m_{3}}^{\Sigma}$ and $f_{0, k_{5}, k_{4}, k_{3}, k_{1}}^{\square}$ are formally $N_{\mathbb{Z}}$-invariant, it follows that $f_{\gamma, m_{5}, m_{4}, m_{3}}^{\Sigma}$ and $f_{0, k_{5}, k_{4}, k_{3}, k_{1}}^{\square}$ are well-defined elements of $L^{2}\left(N_{\mathbb{Z}} \backslash N\right)$. Furthermore, Theorem 2.15 essentially shows that

$$
\begin{aligned}
& f^{\sigma_{\mathrm{id}}}=\sum_{m_{5} \in \mathbb{Z}_{>0}} \sum_{\substack{\left.[[\gamma]] \in\left(\Gamma_{\beta}\right) \times \Gamma_{\beta} /\left(\Gamma_{\beta}\right)_{\infty} \\
[[\gamma]] \neq[\pm \dot{1} d]\right]}} \sum_{\infty} \sum_{\left[m_{4}\right] \in \mathbb{Z} / 3 m_{5} \mathbb{Z}}\left(f_{m_{3} \in \mathbb{Z}}^{\Sigma} f_{\gamma, m_{5}, m_{4}, m_{3}}\right)^{\sigma_{\mathrm{id}}} \\
& +\sum_{k_{5} \in \mathbb{Z}_{\neq 0}} \sum_{\left[k_{4}\right] \in \mathbb{Z} / 3 k_{5} \mathbb{Z}} \sum_{k_{3} \in \mathbb{Z}} \sum_{k_{1} \in \mathbb{Z}}\left(f_{0, k_{5}, k_{4}, k_{3}, k_{1}}^{\Sigma}\right)^{\sigma_{\mathrm{id}}}+\sum_{k_{4} \in \mathbb{Z}_{\neq 0}} \sum_{\left[k_{3}\right] \in \mathbb{Z} / 2 k_{4} \mathbb{Z}} \sum_{k_{1} \in \mathbb{Z}}\left(f_{0,0, k_{4}, k_{3}, k_{1}}^{\Sigma}\right)^{\sigma_{\mathrm{id}}} \\
& +\sum_{k_{3} \in \mathbb{Z} \neq 0} \sum_{\left[k_{1}\right] \in \mathbb{Z} / k_{3} \mathbb{Z}}\left(f_{0,0,0, k_{3}, k_{1}}^{\Sigma}\right)^{\sigma_{\mathrm{id}}}+\sum_{k_{1} \in \mathbb{Z}} \sum_{k_{2} \in \mathbb{Z}}\left(f_{0,0,0,0, k_{1}, k_{2}}\right)^{\sigma_{\mathrm{id}}},
\end{aligned}
$$

from which it follows that Theorem 2.11 holds for general $f \in L^{2}\left(N_{\mathbb{Z}} \backslash N\right)$, since $\sigma_{\text {id }}$ is a homeomorphism.

It should be noted that our choice of coordinate chart $\sigma_{\text {id }}$ for this Fourier series is in some sense arbitrary, and has some drawbacks with regards to certain computations we will need to perform. As we will see later, such computations are easily performed by using a Fourier series for $f^{\sigma_{\text {alt }}}$ instead. Deducing a Fourier series for $f^{\sigma_{\text {alt }}}$ is a simple matter now that we have established a Fourier series $f^{\sigma_{\mathrm{id}}}$. Indeed, by (2.71) and (2.101), we see that for $f \in W$,

$$
\begin{align*}
& f^{\sigma_{\text {alt }}}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)=\sum_{k_{1} \in \mathbb{Z}} \sum_{k_{2} \in \mathbb{Z}} c_{k_{1}, k_{2}} e\left(k_{1} x_{1}+k_{2} x_{2}\right) \tag{2.102a}\\
& +\sum_{k_{3} \in \mathbb{Z}_{\neq 0}} \sum_{\left[k_{1}\right] \in \mathbb{Z} / k_{3} \mathbb{Z}} \sum_{q_{2} \in \mathbb{Z}} e\left(\left(k_{1}-k_{3} q_{2}\right) x_{1}+k_{3} x_{3}\right) \psi_{0,0,0, k_{3}, k_{1}}\left(x_{2}+q_{2}\right) \tag{2.102b}\\
& +\sum_{k_{4} \in \mathbb{Z}_{\neq 0}} \sum_{\left[k_{3}\right] \in \mathbb{Z} / 2 k_{4} \mathbb{Z}} \sum_{k_{1} \in \mathbb{Z}} \sum_{q_{2} \in \mathbb{Z}} e\left(\left(k_{1}-k_{3} q_{2}+k_{4} q_{2}^{2}\right) x_{1}+\left(k_{3}-2 k_{4} q_{2}\right) x_{3}+k_{4} x_{4}\right) \\
& \psi_{0,0, k_{4}, k_{3}, k_{1}}\left(x_{2}+q_{2}\right) \tag{2.102c}\\
& +\sum_{k_{5} \in \mathbb{Z}_{\neq 0}} \sum_{\left[k_{4}\right] \in \mathbb{Z} / 3 k_{5} \mathbb{Z}} \sum_{k_{3} \in \mathbb{Z}} \sum_{k_{1} \in \mathbb{Z}} \sum_{q_{2} \in \mathbb{Z}} e\left(\left(k_{1}-k_{3} q_{2}+k_{4} q_{2}^{2}+k_{5} q_{2}^{3}\right) x_{1}\right. \\
& \left.\quad+\left(k_{3}-2 k_{4} q_{2}-3 k_{5} q_{2}^{2}\right) x_{3}+\left(k_{4}+3 k_{5} q_{2}\right) x_{4}+k_{5} x_{5}\right) \psi_{0, k_{5}, k_{4}, k_{3}, k_{1}}\left(x_{2}+q_{2}\right) \tag{2.102d}
\end{align*}
$$

$$
\begin{align*}
& +\sum_{m_{5} \in \mathbb{Z}_{>0}} \sum_{\substack{\left.\left.[[\gamma]] \in \in\left(\Gamma_{\beta}\right) \backslash \Gamma_{\beta} /\left(\Gamma_{\beta}\right)_{\infty} \\
[[\gamma]] \neq[\mid \pm i d]\right]\right]}} \sum_{\left[m_{4}\right] \in \mathbb{Z} / 3 m_{5} \mathbb{Z}} \sum_{m_{3} \in \mathbb{Z}} \sum_{q_{1} \in \mathbb{Z}} \sum_{q_{3} \in \mathbb{Z}} e\left(\frac{m_{3} q_{2}}{c}-\frac{a m_{4} q_{2}^{2}}{c}\right. \\
& \quad-\frac{a^{2} m_{5} q_{2}^{3}}{c}+\frac{m_{3}-2 m_{4}\left(a q_{2}-c q_{3}\right)-3 m_{5}\left(a q_{2}-c q_{3}\right)^{2}}{c} x_{2} \\
& \quad-\frac{\left(a-c q_{1}\right)\left(m_{4}+3 m_{5}\left(a q_{2}-c q_{3}\right)\right)}{c} x_{2}^{2}-\frac{\left(a-c q_{1}\right)^{2} m_{5}}{c} x_{2}^{3} \\
& \quad+\left(m_{4}+3 m_{5}\left(a q_{2}-c q_{3}\right)\right)\left(x_{1} x_{2}^{2}+2 x_{2} x_{3}+x_{4}\right)+\left(a-c q_{1}\right) m_{5}\left(2 x_{1} x_{2}^{3}+3 x_{2}^{2} x_{3}+x_{5}\right) \\
& \left.\quad-c m_{5}\left(x_{1}^{2} x_{2}^{3}+3 x_{1} x_{2}^{2} x_{3}+3 x_{2} x_{3}^{2}+x_{1} x_{5}+x_{6}\right)\right) \\
& \tag{2.102e}\\
& \psi_{\gamma, m_{5}, m_{4}, m_{3}}\left(q_{1}+x_{1}, a q_{2}-c q_{3}+a x_{2}-c\left(x_{1} x_{2}+x_{3}\right)-c q_{1}\left(x_{1} x_{2}+x_{3}\right)\right),
\end{align*}
$$

where the above series converges absolutely in $L^{2}(\mathcal{F})$.
Since $N_{\mathbb{Z}} \backslash N$ is a compact set it follows that $W^{\infty}=C^{\infty}\left(N_{\mathbb{Z}} \backslash N\right)$ as sets. Furthermore, one can show via an application of Taylor's theorem that the usual Fréchet topology typically assigned to $C^{\infty}\left(N_{\mathbb{Z}} \backslash N\right)$ via the sup-norm agrees with the topology defined on W^{∞}. Consequently, we have that $W^{-\infty}=D^{\prime}\left(N_{\mathbb{Z}} \backslash N\right)$ both as sets and as topological vector spaces.

In our applications we will need a Fourier series expansion for distributions $\tau \in D^{\prime}\left(N_{\mathbb{Z}} \backslash N\right)=$ $W^{-\infty}$. To do this, we will define some Sobolev spaces. Let $D \in U_{\mathbb{C}}(\mathfrak{g})$ be of order m. We say that $f \in W$ is weakly D-differentiable if there exists $h \in W$ such that

$$
\int_{N_{Z} \backslash N} f(n)(r(D) \phi)(n) d n=(-1)^{m} \int_{N_{Z} \backslash N} h(n) \phi(n) d n
$$

for all $\phi \in W^{\infty}$. We say that such $h \in W$ is the weak D-derivative of f. Let H^{m} denote the elements of W which have weak D-derivatives for all D of order $\leq m$. We equip H^{m} with the inner-product

$$
\langle f, h\rangle_{m}=\sum_{D_{i}} \int_{N_{Z} \backslash N}\left(r\left(D_{i}\right) f\right)(n) \overline{\left(r\left(D_{i}\right) h\right)(n)} d n
$$

where $\left\{D_{i}\right\}$ is a basis for the subspace of elements of $U_{\mathbb{C}}(\mathfrak{g})$ of order $\leq m$. It is not too difficult to show that one obtains equivalent inner-products when different choices of basis are made. One can also show that H^{m} is a Hilbert space and that H_{0}^{m}, the closure of W^{∞} in H^{m}, is also a Hilbert space. As usual, the topology of H^{m} (and H_{0}^{m}) is defined by the norm

$$
\|f\|_{m}=\langle f, f\rangle_{m}^{1 / 2}=\left(\sum_{D_{i}}\left\|r\left(D_{i}\right) f\right\|_{2}\right)^{1 / 2}
$$

where $f \in H^{m}$.
By [5, Proposition 5.15], it follows that if $\tau \in D^{\prime}\left(N_{\mathbb{Z}} \backslash N\right)$, then τ is bounded with respect to finitely many of the semi-norms that define the topology on W^{∞}. As can be seen from the definition of these seminorms, it follows that there exists $m \in \mathbb{Z}_{>0}$ such that τ is bounded with
respect to the Sobolev norm $\|\cdot\|_{m}$ on H_{0}^{m}. By the Riesz representation theorem, the map

$$
\begin{equation*}
v \mapsto\langle\cdot, v\rangle_{m} \tag{2.103}
\end{equation*}
$$

from H_{0}^{m} onto $\left(H_{0}^{m}\right)^{\prime}$ (the space of continuous linear functionals on H_{0}^{m}) is an isomorphism of topological vector spaces. The topology on H_{0}^{m} to which we refer to is the usual norm topology and the topology of $\left(H_{0}^{m}\right)^{\prime}$ to which we refer to is the strong topology, which coincides with the usual operator norm topology. Since τ can be realized as an element of $\left(H_{0}^{m}\right)^{\prime}$, there exists $v_{\tau} \in H_{0}^{m}$ which gives τ under the map (2.103); in particular,

$$
\tau(\phi)=\left\langle\phi, v_{\tau}\right\rangle_{m}
$$

for $\phi \in W^{\infty}$.
Observe that the series expansion given in Theorem 2.11 also holds in H_{0}^{m} since

$$
\begin{align*}
& \left(r(D) f_{\gamma, m_{5}, m_{4}, m_{3}}^{\Sigma}\right)=(r(D) f)_{\left[\lfloor\gamma], m_{5}, m_{4}, m_{3}\right.}^{\Sigma}, \\
& \left(r(D) f_{0, k_{5}, k_{4}, k_{3}, k_{1}}^{\Sigma}\right)=(r(D) f)_{0, k_{5}, k_{4}, k_{3}, k_{1}}^{\Sigma}, \tag{2.104}
\end{align*}
$$

for $D \in U_{\mathbb{C}}(\mathfrak{g})$ and $f \in H^{m}$. Thus we obtain the series expansion given in Theorem 2.11 for v_{τ} as an element of H_{0}^{m}. Since the injection of W^{∞} into H_{0}^{m} is continuous and has dense image, when we pull back the resulting series expansion of v_{τ} to $W^{-\infty}$ we have that the corresponding series for τ converges unconditionally in $W^{-\infty}$ (which is equipped with the strong distribution topology) [21, §23]. In particular, we have the following theorem.

Theorem 2.16. For $\tau \in W^{-\infty}$ we have

$$
\begin{aligned}
& +\sum_{k_{5} \in \mathbb{Z}} \sum_{\left[k_{4}\right] \in \mathbb{Z} / 3 m_{5} \mathbb{Z}} \sum_{k_{3} \in \mathbb{Z}} \sum_{k_{1} \in \mathbb{Z}} \tau_{0, k_{5}, k_{4}, k_{3}, k_{1}}^{\Sigma}+\sum_{k_{4} \in \mathbb{Z}_{\neq 0}} \sum_{\left[k_{3}\right] \in \mathbb{Z} / 2 k_{4} \mathbb{Z}} \sum_{k_{1} \in \mathbb{Z}} \tau_{0,0, k_{4}, k_{3}, k_{1}}^{\Sigma} \\
& +\sum_{k_{3} \in \mathbb{Z} \neq 0} \sum_{\left[k_{1}\right] \in \mathbb{Z} / k_{3} \mathbb{Z}} \tau_{0,0,0, k_{3}, k_{1}}^{\Sigma}+\sum_{k_{1} \in \mathbb{Z}} \sum_{k_{2} \in \mathbb{Z}} \tau_{0,0,0,0, k_{1}, k_{2}},
\end{aligned}
$$

where the series converges unconditionally in the strong distribution topology, and where

$$
\begin{align*}
& \tau_{\llbracket[\gamma], m_{5}, m_{4}, m_{3}}^{\Sigma}(\phi)=\left\langle\phi,\left(v_{\tau}\right)_{\llbracket \gamma \gamma], m_{5}, m_{4}, m_{3}}^{\Sigma}\right\rangle_{m}, \\
& \tau_{0, k_{5}, k_{4}, k_{3}, k_{1}}^{\Sigma}(\phi)=\left\langle\phi,\left(v_{\tau}\right)_{0, k_{5}, k_{4}, k_{3}, k_{1}}^{\Sigma}\right\rangle_{m}, \\
& \tau_{0,0,0,0, k_{1}, k_{2}}(\phi)=\left\langle\phi,\left(v_{\tau}\right)_{0,0,0,0, k_{1}, k_{2}}\right\rangle_{m}, \tag{2.105}
\end{align*}
$$

for $\phi \in W^{\infty}$.

Corollary 2.17. Let $\phi \in W^{\infty}$. If $\phi^{\sigma_{\mathrm{id}}}$ has the series expansion (2.101) then there exists tempered distributions $\rho_{\gamma, m_{4}, m_{4}, m_{3}}: \mathbb{R}^{2} \rightarrow \mathbb{C}, \rho_{0, k_{5}, k_{4}, k_{3}, k_{1}}: \mathbb{R} \rightarrow \mathbb{C}$ and constants $d_{k_{1}, k_{2}} \in \mathbb{C}$ such that

$$
\begin{align*}
& \tau_{\llbracket \|], m_{5}, m_{4}, m_{3}}^{\Sigma}(\phi)=\rho_{\gamma, m_{5}, m_{4}, m_{3}}\left(\psi_{\gamma, m_{5}, m_{4}, m_{3}}\right), \\
& \tau_{0, k_{5}, k_{4}, k_{3}, k_{1}}^{\Sigma}(\phi)=\rho_{0, k_{5}, k_{4}, k_{3}, k_{1}}\left(\psi_{0, k_{5}, k_{4}, k_{3}, k_{1}}\right), \\
& \tau_{0,0,0,0, k_{1}, k_{2}}(\phi)=d_{k_{1}, k_{2}} c_{k_{1}, k_{2}} \tag{2.106}
\end{align*}
$$

Proof. We shall prove our corollary for the case of $\tau_{0, k_{5}, k_{4}, k_{3}, k_{1}}^{\Sigma}$. The other cases follow similarly. Observe

$$
\begin{aligned}
& \tau_{0, k_{5}, k_{4}, k_{3}, k_{1}}^{\Sigma}(\phi)=\left\langle\phi,\left(v_{\tau}\right)_{0, k_{5}, k_{4}, k_{3}, k_{1}}^{\Sigma}\right\rangle_{m} \\
& =\sum_{D_{i}} \int_{0}^{1} \cdots \int_{0}^{1}\left(r\left(D_{i}\right) \phi\right)^{\sigma_{\mathrm{id}}}\left(x_{1}, \ldots, x_{6}\right) \overline{\left(\left(r\left(D_{i}\right) v_{\tau}\right)_{0, k_{5}, k_{4}, k_{3}, k_{1}}^{\Sigma}\right)^{\sigma_{\mathrm{id}}}\left(x_{1}, \ldots, x_{6}\right)} \\
& \quad d x_{6} \ldots d x_{1}
\end{aligned}
$$

We replace $\left(r\left(D_{i}\right) \phi\right)^{\sigma_{\mathrm{id}}}$ and $\left(\left(r\left(D_{i}\right) v_{\tau}\right)_{0, k_{5}, k_{4}, k_{3}, k_{1}}^{\Sigma}\right)^{\sigma_{\mathrm{id}}}$ with their corresponding Fourier series of the form (2.101). Upon simplifying, we find that

$$
\begin{aligned}
& \tau_{0, k_{5}, k_{4}, k_{3}, k_{1}}^{\Sigma}(\phi)=\left\langle\left(v_{\tau}\right)_{0, k_{5}, k_{4}, k_{3}, k_{1}}^{\Sigma}, \phi\right\rangle_{m} \\
& =\sum_{D_{i}} \int_{-\infty}^{\infty} \psi_{r\left(D_{i}\right) \phi ; 0, k_{5}, k_{4}, k_{3}, k_{1}}\left(x_{2}\right) \overline{\psi_{r\left(D_{i}\right) v_{\tau} ; 0, k_{5}, k_{4}, k_{3}, k_{1}}\left(x_{2}\right)} d x_{2} .
\end{aligned}
$$

From the definition of $\pi_{0, k_{5}, k_{4}, k_{3}, k_{1}}$ (2.92), it follows that

$$
\psi_{r(D) \phi ; 0, k_{5}, k_{4}, k_{3}, k_{1}}=\pi_{0, k_{5}, k_{4}, k_{3}, k_{1}}(D)\left(\psi_{\phi ; 0, k_{5}, k_{4}, k_{3}, k_{1}}\right) .
$$

Observe that by (2.92), it follows that

$$
\begin{aligned}
& \pi_{0, k_{5}, k_{4}, k_{3}, k_{1}}\left(\mathcal{P}_{5}\right) \psi_{\phi ; 0, k_{5}, k_{4}, k_{3}, k_{1}}=(2 \pi i) k_{5} \psi_{\phi ; 0, k_{5}, k_{4}, k_{3}, k_{1}}, \\
& \pi_{0, k_{5}, k_{4}, k_{3}, k_{1}}\left(\mathcal{P}_{6}\right) \psi_{\phi ; 0, k_{5}, k_{4}, k_{3}, k_{1}}=0 .
\end{aligned}
$$

From this and (2.93), (2.94), (2.95), (2.96), it follows that $\psi_{r(D) \phi ; 0, k_{5}, k_{4}, k_{3}, k_{1}}$ is a linear combination of terms of the form $|x|^{j} \psi^{(k)}$ where $j, k \in \mathbb{Z}_{\geq 0}$. Thus we are left with an expression for $\tau_{0, k_{5}, k_{4}, k_{3}, k_{1}}(\phi)$ that is evidently a tempered distribution. We denote this distribution by $\rho_{0, k_{5}, k_{4}, k_{3}, k_{1}}$.

In later arguments it will be helpful to prove statements for $\tau \in W^{-\infty}$ by supposing $\tau \in$ W^{∞} and then applying a density argument. In such instances we will replace $\psi_{\gamma, m_{5}, m_{4}, m_{3}}$, $\psi_{0, k_{5}, k_{4}, k_{3}, k_{1}}$, and $c_{k_{1}, k_{2}}$ by $\rho_{\gamma, m_{5}, m_{4}, m_{3}}, \rho_{0, k_{5}, k_{4}, k_{3}, k_{1}}$, and $d_{k_{1}, k_{2}}$, respectively. This is justified since Corollary 2.17 shows that the aforementioned tempered distributions are induced by the Fourier components in (2.101).

2.8 Automorphic Distributions on G_{2}

Recall that in section 2.1, we concretely identified $G=G_{2}$ as a subgroup of $\mathrm{SO}(4,3)$. With regards to this concrete realization, let $B(G)$ denote the space of lower triangular matrices of G. Likewise, let

$$
a_{u_{1}, u_{2}}=\left(\begin{array}{ccccccc}
u_{2} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & u_{1} u_{2}^{-1} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & u_{1}^{-1} u_{2}^{2} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & u_{1} u_{2}^{-2} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & u_{1}^{-1} u_{2} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & u_{2}^{-1}
\end{array}\right)
$$

where $u_{1}, u_{2} \in \mathbb{R}_{>0}$, and

$$
m_{\epsilon_{1}, \epsilon_{2}}=\left(\begin{array}{ccccccc}
\epsilon_{2} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \epsilon_{1} \epsilon_{2} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \epsilon_{1} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \epsilon_{1} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \epsilon_{1} \epsilon_{2} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \epsilon_{2}
\end{array}\right)
$$

where $\epsilon_{1}, \epsilon_{2} \in\{ \pm 1\}$. Let

$$
\begin{aligned}
& A(G)=\left\{a_{u_{1}, u_{2}}: u_{1}, u_{2} \in \mathbb{R}_{>0}\right\} \\
& M(G)=\left\{m_{\epsilon_{1}, \epsilon_{2}}: \epsilon_{1}, \epsilon_{2} \in\{ \pm 1\}\right\}
\end{aligned}
$$

Let $N_{-}(G)$ be the space of unipotent lower triangular matrices of G. Observe that $B(G)=$ $M(G) A(G) N_{-}(G)$. We shall often times write $b \in B(G)$ as $b=$ man $_{-}$where $m \in M(G)$, $a \in A(G)$, and $n_{-} \in N_{-}(G)$.

Observe that every (possibly non-unitary) representation of $B(G)$ is of the form

$$
\omega_{\left(\lambda_{1}, \lambda_{2}\right),\left(\delta_{1}, \delta_{2}\right)}(b)=\omega_{\left(\lambda_{1}, \lambda_{2}\right),\left(\delta_{1}, \delta_{2}\right)}\left(\operatorname{man}_{-}\right)=u_{1}^{\lambda_{1}-1} \epsilon_{1}^{\delta_{1}} u_{2}^{\lambda_{2}-1} \epsilon_{2}^{\delta_{2}}
$$

where $\lambda_{1}, \lambda_{2} \in \mathbb{C}$ and $\delta_{1}, \delta_{2} \in\{0,1\}$. In our definition of $\omega_{\left(\lambda_{1}, \lambda_{2}\right),\left(\delta_{1}, \delta_{2}\right)}$, we have subtracted 1 in the exponents of u_{i} so as to maintain certain conventions in representation theory. With this convention, we have that the dual of $\omega_{\left(\lambda_{1}, \lambda_{2}\right),\left(\delta_{1}, \delta_{2}\right)}$ is $\omega_{\left(-\lambda_{1},-\lambda_{2}\right),\left(\delta_{1}, \delta_{2}\right)}$.

Let (π, V) be a generic, irreducible, cuspidal representation of G and let i denote an embedding of (π, V) into $L^{2}\left(G_{\mathbb{Z}} \backslash G\right)$. Associated to (π, V) is the dual representation $\left(\pi^{\prime}, V^{\prime}\right)$, which we defined in section 1.1. For $v \in V^{\infty}$, define $\tau \in\left(V^{\prime}\right)^{-\infty}$ by $\tau(v)=i(v)(e)$, where $e \in G$ is the identity element. Since i is an embedding into $L^{2}\left(G_{\mathbb{Z}} \backslash G\right)$ it follows that τ is $G_{\mathbb{Z}}$-invariant. By a result of Casselman and Wallach ([3] and [22, Theorem 5.8]), we have that there exists $\lambda_{1}, \lambda_{2} \in \mathbb{C}, \delta_{1}, \delta_{2} \in \mathbb{Z} / 2 \mathbb{Z}$, and G-equivariant, topological vector space injections:

$$
V^{\infty} \hookrightarrow V_{\left(-\lambda_{1},-\lambda_{2}\right),\left(\delta_{1}, \delta_{2}\right)}^{\infty}(G) \quad \text { and } \quad\left(V^{\prime}\right)^{-\infty} \hookrightarrow V_{\left(\lambda_{1}, \lambda_{2}\right),\left(\delta_{1}, \delta_{2}\right)}^{-\infty}(G),
$$

where we write $V_{\left(\lambda_{1}, \lambda_{2}\right),\left(\delta_{1}, \delta_{2}\right)}^{ \pm \infty}(G)$ for $V_{\omega_{\left(\lambda_{1}, \lambda_{2}\right),\left(\delta_{1}, \delta_{2}\right)}^{ \pm \infty}}(G)$ (which we defined in section 1.2). We shall abuse notation by identifying $\tau \in\left(V^{\prime}\right)^{-\infty}(G)$ as an element of $V_{\left(\lambda_{1}, \lambda_{2}\right),\left(\delta_{1}, \delta_{2}\right)}^{-\infty}(G)$ rather than making explicit reference to the above injection.

By section 1.2, we can also identify τ with a distributional section of a line bundle over $G / B(G)$. Hence we can restrict τ to $N=N(G)$ since N gives a dense open set in $G / B(G)$. We shall occasionally abuse notation further by writing τ for this restriction to $N(G)$ when the context is clear, otherwise, we will write $\left.\tau\right|_{N}$. Since τ is $G_{\mathbb{Z}}$-invariant, it follows that $\left.\tau\right|_{N}$ is then $N_{\mathbb{Z}}$-invariant since $N_{\mathbb{Z}}=N \cap G_{\mathbb{Z}}$. Therefore we can identify $\left.\tau\right|_{N}$ with an element of $D^{\prime}\left(N_{\mathbb{Z}} \backslash N\right)$. By our comments following (2.102), we are able to identify τ with an element of $W^{-\infty}$ where $W=L^{2}\left(N_{\mathbb{Z}} \backslash N\right)$ is equipped with the right regular representation. Consequently, τ inherits the Fourier series given in Theorem 2.16. When $\tau \in V_{\left(\lambda_{1}, \lambda_{2}\right),\left(\delta_{1}, \delta_{2}\right)}^{\infty}$ one can show that $\left.\tau\right|_{N} \in C^{\infty}\left(N_{\mathbb{Z}} \backslash N\right)$. In this case, $\left(\left.\tau\right|_{N}\right)^{\sigma_{\text {id }}}$ has the series expansion (2.101). Likewise, $\left(\left.\tau\right|_{N}\right)^{\sigma_{\text {alt }}}$ has the series expansion (2.102).

For U the unipotent radical of a parabolic subgroup of G, we let $d u$ denote a Haar measure for U. Recall that by the definition of cuspidality, we have

$$
\int_{G_{\mathbb{Z}} \cap U \backslash U} i(v)(u) d u=0
$$

for all U the unipotent radicals of proper parabolic subgroups of G and for all $v \in V^{\infty}$. Since $\left\langle\pi^{\prime}(u) \tau, i(v)\right\rangle=\left\langle\tau, \pi\left(u^{-1}\right) i(v)\right\rangle=i(v)(n)$, it follows that this cuspidality condition is equivalent to

$$
\begin{equation*}
\tau_{U}=\int_{G_{\mathbb{Z}} \cap U \backslash U} \pi^{\prime}(u) \tau d u=0 \tag{2.107}
\end{equation*}
$$

for all U that are unipotent radicals of a proper parabolic subgroup of G. The prior integral is well-defined since it takes values in $V^{-\infty}$ which is a complete, locally convex, Hausdorff topological vector space in which G acts continuously.

Lemma 2.18. Let $\tau \in V_{\left(\lambda_{1}, \lambda_{2}\right),\left(\delta_{1}, \delta_{2}\right)}^{-\infty}(G)$, cuspidal, and $G_{\mathbb{Z}}$-invariant. Then
(a) $d_{k_{1}, 0}=d_{0, k_{2}}=0$ for all $k_{1}, k_{2} \in \mathbb{Z}$,
(b) $d_{k_{1}, k_{2}}=\operatorname{sgn}\left(\epsilon_{1}\right)^{\delta_{1}} \operatorname{sgn}\left(\epsilon_{2}\right)^{\delta_{2}} d_{\epsilon_{2} k_{1}, \epsilon_{1} k_{2}}$ for all $k_{1}, k_{2} \in \mathbb{Z}$.

Proof. Let U_{α} denote the unipotent radical of the maximal parabolic subgroup of G which has trivial intersection with the one parameter subgroup for the α root. We can parametrize U_{α} by $n^{-1}=Y_{6} Y_{5} Y_{4} Y_{3} Y_{2}$, where $y_{i} \in \mathbb{R}$. By solving for p_{i} in

$$
P_{6} P_{5} P_{4} P_{3} P_{2} P_{1}=Y_{6} Y_{5} Y_{4} Y_{3} Y_{2} X_{6} X_{5} X_{4} X_{3} X_{2} X_{1}
$$

and utilizing (2.101) to evaluate $\tau^{\sigma_{\mathrm{id}}}\left(p_{1}, \ldots, p_{6}\right)$, we find that

$$
\tau_{U_{\alpha}}=\int_{0}^{1} \int_{0}^{1} \sum_{k_{1}, k_{2} \in \mathbb{Z}} d_{k_{1}, k_{2}} e\left(k_{1} x_{1}+k_{2}\left(x_{2}+y_{2}\right)\right) d y_{2} d y_{1}=\sum_{k_{1} \in \mathbb{Z}} d_{k_{1}, 0} e\left(k_{1} x_{1}\right) .
$$

Since we have assumed that $\tau_{U_{\alpha}}=0$, it follows that $d_{k_{1}, 0}=0$ for all $k_{1} \in \mathbb{Z}$. By a similar argument for U_{β}, the unipotent radical of the maximal parabolic subgroup of G which has trivial intersection with the one parameter subgroup for the β root, we obtain that $d_{0, k_{2}}=0$ for all $k_{2} \in \mathbb{Z}$. This proves part (a).

For part (b), it suffices by a density argument to suppose $\tau \in V_{\left(\lambda_{1}, \lambda_{2}\right),\left(\delta_{1}, \delta_{2}\right)}^{\infty}$. Observe

$$
\begin{aligned}
& m_{\epsilon_{1}, \epsilon_{2}}^{-1} X_{6} X_{5} X_{4} X_{3} X_{2} X_{1} m_{\epsilon_{1}, \epsilon_{2}} \\
& \quad=R_{6}\left(\epsilon_{1} x_{6}\right) R_{5}\left(\epsilon_{1} \epsilon_{2} x_{5}\right) R_{4}\left(\epsilon_{2} x_{4}\right) R_{3}\left(\epsilon_{1} \epsilon_{2} x_{3}\right) R_{2}\left(\epsilon_{1} x_{2}\right) R_{1}\left(\epsilon_{2} x_{1}\right)
\end{aligned}
$$

and $\tau\left(g m_{\epsilon_{1}, \epsilon_{2}}^{-1}\right)=\operatorname{sgn}\left(\epsilon_{1}\right)^{\delta_{1}} \operatorname{sgn}\left(\epsilon_{2}\right)^{\delta_{2}} \tau(g)$. Since $M\left(G_{2}\right)$ is a subgroup of $G_{\mathbb{Z}}$ it follows that

$$
\tau(g)=\pi^{\prime}\left(m_{\epsilon_{1}, \epsilon_{2}}\right) \tau(g)=\tau\left(m_{\epsilon_{1}, \epsilon_{2}}^{-1} g m_{\epsilon_{1}, \epsilon_{2}} m_{\epsilon_{1}, \epsilon_{2}}^{-1}\right)=\operatorname{sgn}\left(\epsilon_{1}\right)^{\delta_{1}} \operatorname{sgn}\left(\epsilon_{2}\right)^{\delta_{2}} \tau\left(m_{\epsilon_{1}, \epsilon_{2}}^{-1} g m_{\epsilon_{1}, \epsilon_{2}}\right) .
$$

Thus

$$
\begin{align*}
& \tau^{\sigma_{\mathrm{id}}}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \\
& =\operatorname{sgn}\left(\epsilon_{1}\right)^{\delta_{1}} \operatorname{sgn}\left(\epsilon_{2}\right)^{\delta_{2}} \tau^{\sigma_{\mathrm{id}}}\left(\epsilon_{2} x_{1}, \epsilon_{1} x_{2}, \epsilon_{1} \epsilon_{2} x_{3}, \epsilon_{2} x_{4}, \epsilon_{1} \epsilon_{2} x_{5}, \epsilon_{1} x_{6}\right) . \tag{2.108}
\end{align*}
$$

When we replace $\tau^{\sigma_{\mathrm{id}}}$ with its series representation (2.101), and integrate against the character

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \mapsto e\left(-k_{1} x_{1}-k_{2} x_{2}\right)
$$

we obtain part (b).
Let G_{α} denote an embedded $S L_{2}$ of the Levi subgroup for the root α; in particular, let G_{α}
be the group consisting of elements of the following form:

$$
h=\left(\begin{array}{ccccccc}
a & b & 0 & 0 & 0 & 0 & 0 \tag{2.109}\\
c & d & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & a^{2} & 2 a b & -b^{2} & 0 & 0 \\
0 & 0 & a c & 1+2 b c & -b d & 0 & 0 \\
0 & 0 & -c^{2} & -2 c d & d^{2} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & a & b \\
0 & 0 & 0 & 0 & 0 & c & d
\end{array}\right),
$$

where $a, b, c, d \in \mathbb{R}$ and $a d-b c=1$. Let w_{α} denote the Weyl group reflection for the α root which comes from setting $a=d=0,-b=c=1$ for h in (2.109). Let w_{β} denote the Weyl group reflection for the β root which comes from setting $a=d=0,-b=c=1$ for h in (2.2).

In what follows, we will use the following normalization for the Fourier transform:

$$
\widehat{f}(\xi)=\int_{-\infty}^{\infty} f(x) e(-x \xi) d x
$$

where $f: \mathbb{R} \rightarrow \mathbb{C}$ in the above integral converges. Recall that $\rho_{0,0,1,0,0}, \rho_{0,0,0,1,0}$ are the distributional analogue of $\psi_{0,0,1,0,0}, \psi_{0,0,0,1,0}$ that occurs in (2.101c), (2.101b) and (2.102c), (2.102b). The following lemma gives us important equalities relating these terms to the distributional constant terms.

Lemma 2.19. For $\tau \in V_{\left(\lambda_{1}, \lambda_{2}\right),\left(\delta_{1}, \delta_{2}\right)}^{-\infty}(G)$, we have
(a) $\rho_{0,0,1,0,0}\left(x_{2}\right)=\operatorname{sgn}\left(-x_{2}\right)^{\delta_{2}}\left|x_{2}\right|^{\lambda_{2}-1} \rho_{0,0,0,1,0}\left(-x_{2}^{-1}\right)$,
(b) $\widehat{\rho}_{0,0,0,1,0}\left(x_{1}\right)=\operatorname{sgn}\left(-x_{1}\right)^{\delta_{1}}\left|x_{1}\right|^{\lambda_{1}-1} \sum_{k_{1} \in \mathbb{Z}} c_{k_{1}, 1} e\left(\frac{-k_{1}}{x_{1}}\right)$
as equalities between distributions on $\mathbb{R}_{\neq 0}$.

Proof. By a density argument it suffices to suppose $\tau \in V_{\left(\lambda_{1}, \lambda_{2}\right),\left(\delta_{1}, \delta_{2}\right)}^{\infty}$. Observe

$$
\begin{aligned}
w_{\alpha}^{-1} X_{1} X_{4} X_{3} X_{2} X_{5} X_{6}= & R_{1}\left(-x_{5}\right) R_{4}\left(x_{3}\right) R_{3}\left(-x_{4}\right) R_{2}\left(-x_{2}^{-1}\right) R_{5}\left(x_{1}\right) \\
& R_{6}\left(-3 x_{3} x_{4}+x_{1} x_{5}+x_{6}\right) a_{1,\left|x_{2}\right|^{-1}} m_{1, \operatorname{sgn}\left(-x_{2}\right)} n_{-}
\end{aligned}
$$

where $n_{-} \in N_{-}$. By this and the $G_{\mathbb{Z}}$-invariance of f, we have that

$$
\begin{aligned}
& \tau_{\mathrm{alt}}^{\sigma_{\mathrm{alt}}}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \\
& =\operatorname{sgn}\left(-x_{2}\right)^{\delta_{2}}\left|x_{2}\right|^{\lambda_{2}-1} \tau^{\sigma_{\mathrm{alt}}}\left(-x_{5},-x_{2}^{-1},-x_{4}, x_{3}, x_{1},-3 x_{3} x_{4}+x_{1} x_{5}+x_{6}\right)
\end{aligned}
$$

as an equality between distributions on $\mathbb{R} \times \mathbb{R}_{\neq 0} \times \mathbb{R}^{4}$. By replacing both instances of $\tau^{\sigma_{\text {alt }}}$ in the above equation with (2.102) and integrating against $\left(x_{1}, x_{3}, x_{4}, x_{5}, x_{6}\right) \mapsto e\left(-x_{4}\right)$, we obtain part (a).

Next, observe

$$
\begin{aligned}
w_{\beta}^{-1} X_{6} X_{5} X_{4} X_{3} X_{2} X_{1}= & R_{6}\left(3 x_{2}^{2} x_{3}+x_{5}\right) R_{5}\left(-3 x_{2} x_{3}^{2}-x_{6}\right) R_{4}\left(2 x_{2} x_{3}+x_{4}\right) R_{3}\left(x_{2}\right) \\
& R_{2}\left(-x_{3}\right) R_{1}\left(-x_{1}^{-1}\right) a_{\left|x_{1}\right|^{-1}, 1} m_{\operatorname{sgn}\left(-x_{1}\right), 1} n_{-}
\end{aligned}
$$

where $n_{-} \in N_{-}$. By this, and the $G_{\mathbb{Z}}$-invariance of f, we have that

$$
\begin{aligned}
& \tau^{\sigma_{\mathrm{id}}}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \\
& =\operatorname{sgn}\left(-x_{1}\right)^{\delta_{1}}\left|x_{1}\right|^{\lambda_{1}-1} \tau^{\sigma_{\mathrm{id}}}\left(-x_{1}^{-1},-x_{3}, x_{2}, 2 x_{2} x_{3}+x_{4},-3 x_{2} x_{3}^{2}-x_{6}, 3 x_{2}^{2} x_{3}+x_{5}\right)
\end{aligned}
$$

as an equality between distributions on $\mathbb{R}_{\neq 0} \times \mathbb{R}^{5}$. By replacing both instances of $\tau^{\sigma_{\mathrm{id}}}$ in the above equation with (2.101) and then integrating against $\left(x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \mapsto e\left(-x_{3}\right)$, we find that

$$
\begin{equation*}
\int_{0}^{1} \sum_{q_{2} \in \mathbb{Z}} e\left(-x_{1}\left(x_{2}+q_{2}\right)\right) \rho_{0,0,0,1,0}\left(x_{2}+q_{2}\right) d x_{2}=\operatorname{sgn}\left(-x_{1}\right)^{\delta_{1}}\left|x_{1}\right|^{\lambda_{1}-1} \sum_{k_{1} \in \mathbb{Z}} c_{k_{1}, 1} e\left(\frac{-k_{1}}{x_{1}}\right) \tag{2.110}
\end{equation*}
$$

If we let $\widehat{\rho}_{0,0,0,1,0}$ denote the Fourier transform of $\rho_{0,0,0,1,0}$ then upon simplifying the left-hand side of (2.110), we obtain part (b).

Chapter 3

Distributions on Other Groups

All Lie groups are assumed to be over \mathbb{R} in this chapter, unless stated otherwise.

3.1 A Double Cover of $\mathrm{SL}_{2}^{ \pm}$

In this section we will analyze the distributional principal series representations for double cover groups of $\mathrm{SL}_{2}^{ \pm}$and SL_{2}. We begin by reviewing the multiplication laws for such groups and then proceed to analyze the unbounded realizations of these distributional principal series representation spaces. By studying these unbounded realizations, we can determine when certain distributional principal series representation spaces lie naturally within other distributional principal series representation spaces for larger groups.

Let $\mathrm{SL}_{2}^{ \pm}=\left\{g \in \mathrm{GL}_{2}: \operatorname{det}(g)= \pm 1\right\}$. As a set, let $\widetilde{\mathrm{SL}_{2}^{ \pm}}=\mathrm{SL}_{2}^{ \pm} \times\{ \pm 1\}$. Recall that the Hilbert symbol for \mathbb{R} is given by the following formula:

$$
(x, y)_{H}= \begin{cases}-1 & \text { if } x<0 \text { and } y<0 \\ 1 & \text { otherwise }\end{cases}
$$

where $x, y \in \mathbb{R}_{\neq 0}$. For $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}^{ \pm}$, define

$$
X\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)= \begin{cases}c & \text { if } c \neq 0 \\
d & \text { if } c=0\end{cases}
$$

For $g_{1}, g_{2} \in \mathrm{SL}_{2}^{ \pm}$, define

$$
\alpha\left(g_{1}, g_{2}\right)=\left(\frac{X\left(g_{1} g_{2}\right)}{X\left(g_{1}\right)}, \frac{X\left(g_{1} g_{2}\right)}{X\left(g_{2}\right)}\right)_{H}\left(\operatorname{det}\left(g_{1}\right), \frac{X\left(g_{1} g_{2}\right)}{X\left(g_{1}\right)}\right)_{H}
$$

One can show that α is a 2-cocycle [10], and thus we give $\widetilde{\mathrm{SL}_{2}^{ \pm}}$the structure of a group by defining the following multiplication law:

$$
\left(g_{1}, \epsilon_{1}\right) \cdot\left(g_{2}, \epsilon_{2}\right)=\left(g_{1} g_{2}, \alpha\left(g_{1}, g_{2}\right) \epsilon_{1} \epsilon_{2}\right)
$$

where $g_{1}, g_{2} \in \mathrm{SL}_{2}^{ \pm}$and $\epsilon_{1}, \epsilon_{2} \in\{ \pm 1\}$. In addition to identifying $\widetilde{\mathrm{SL}_{2}^{ \pm}}$as a group, one can give $\widetilde{\mathrm{SL}_{2}^{ \pm}}$the structure of a smooth manifold by requiring the map

$$
\begin{equation*}
\widetilde{g}=(g, \epsilon) \mapsto g \tag{3.1}
\end{equation*}
$$

to be a smooth covering map from $\widetilde{\mathrm{SL}_{2}^{ \pm}}$onto $\mathrm{SL}_{2}^{ \pm}$.
Let

$$
\begin{aligned}
& m=m_{\epsilon_{1}, \epsilon_{2}}=\left(\begin{array}{cc}
\epsilon_{1} & 0 \\
0 & \epsilon_{2}
\end{array}\right), \quad a=a_{u}=\left(\begin{array}{cc}
u & 0 \\
0 & u^{-1}
\end{array}\right) \\
& n=n_{x}=\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right), \text { and } n_{-}=n_{-, x}=\left(\begin{array}{ll}
1 & 0 \\
x & 1
\end{array}\right)
\end{aligned}
$$

where $\epsilon_{1}, \epsilon_{2} \in\{ \pm 1\}, u \in \mathbb{R}_{>0}$, and $x \in \mathbb{R}$. As indicated in the above definitions, sometimes we will suppress the variables $\epsilon_{1}, \epsilon_{2}, u$, and x in our notation. Let $B\left(\mathrm{SL}_{2}^{ \pm}\right)$denote the subgroup of lower triangular matrices of $\mathrm{SL}_{2}^{ \pm}$, and let

$$
N\left(\mathrm{SL}_{2}^{ \pm}\right)=\left\{n=n_{x}: x \in \mathbb{R}\right\}
$$

Under the Langlands decomposition, $B\left(\mathrm{SL}_{2}^{ \pm}\right)=M\left(\mathrm{SL}_{2}^{ \pm}\right) A\left(\mathrm{SL}_{2}^{ \pm}\right) N_{-}\left(\mathrm{SL}_{2}^{ \pm}\right)$where

$$
\begin{aligned}
& M\left(\mathrm{SL}_{2}^{ \pm}\right)=\left\{m_{\epsilon_{1}, \epsilon_{2}}: \epsilon_{1}, \epsilon_{2} \in\{ \pm 1\}\right\} \\
& A\left(\mathrm{SL}_{2}^{ \pm}\right)=\left\{a_{u}: u \in \mathbb{R}_{>0}\right\} \\
& N_{-}\left(\mathrm{SL}_{2}^{ \pm}\right)=\left\{n_{-, x}: x \in \mathbb{R}\right\}
\end{aligned}
$$

Next we define various subgroups of $\widetilde{\mathrm{SL}_{2}^{ \pm}}$analogous to the ones defined for $\mathrm{SL}_{2}^{ \pm}$. Let

$$
\begin{align*}
& \widetilde{m}=\widetilde{m}_{\epsilon_{1}, \epsilon_{2}, \epsilon_{3}}=\left(m_{\epsilon_{1}, \epsilon_{2}}, \epsilon_{3}\right), \quad \widetilde{a}=\widetilde{a}_{u}=\left(a_{u}, 1\right), \\
& \widetilde{n}=\widetilde{n}_{x}=\left(n_{x}, 1\right), \text { and } \widetilde{n}_{-}=\widetilde{n}_{-, x}=\left(n_{-, x}, 1\right), \tag{3.2}
\end{align*}
$$

where $\epsilon_{1}, \epsilon_{2}, \epsilon_{3} \in\{ \pm 1\}, u \in \mathbb{R}_{>0}$, and $x \in \mathbb{R}$. Let

$$
\begin{aligned}
& M\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right)=\left\{\widetilde{m}_{\epsilon_{1}, \epsilon_{2}, \epsilon_{3}}: \epsilon_{1}, \epsilon_{2}, \epsilon_{3} \in\{ \pm 1\}\right\}, \quad A\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right)=\left\{\widetilde{a}_{u}: u \in \mathbb{R}_{>0}\right\} \\
& N_{-}\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right)=\left\{\widetilde{n}_{-, x}: x \in \mathbb{R}\right\}, \quad N\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right)=\left\{\widetilde{n}_{x}: x \in \mathbb{R}\right\}
\end{aligned}
$$

One can check that $M\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right), A\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right), N_{-}\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right)$, and $N\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right)$are subgroups of $\widetilde{\mathrm{SL}_{2}^{ \pm}}$. Let $B\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right)=M\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right) A\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right) N_{-}\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right)$.

For $\epsilon \in\{ \pm 1\}$, let $\sigma_{\epsilon, 1}: M\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right) \rightarrow \mathrm{GL}_{2}(\mathbb{C})$ denote the representation of $M\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right)$defined
by the following equations:

$$
\begin{array}{ll}
\sigma_{\epsilon, 1}\left(\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \pm 1\right)=\left(\begin{array}{cc}
\pm 1 & 0 \\
0 & \pm 1
\end{array}\right), & \sigma_{\epsilon, 1}\left(\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right), \pm 1\right)=\left(\begin{array}{cc}
0 & \pm \epsilon \\
\mp \epsilon & 0
\end{array}\right), \\
\sigma_{\epsilon, 1}\left(\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right), \pm 1\right)=\left(\begin{array}{cc}
\pm \epsilon & 0 \\
0 & \mp \epsilon
\end{array}\right), & \sigma_{\epsilon, 1}\left(\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \pm 1\right)=\left(\begin{array}{cc}
0 & \mp 1 \\
\mp 1 & 0
\end{array}\right) . \tag{3.3}
\end{array}
$$

Likewise, let $\sigma_{\epsilon,-1}: M\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right) \rightarrow \mathrm{GL}_{2}(\mathbb{C})$ denote the representation of $M\left(\widetilde{\left(\mathrm{SL}_{2}^{ \pm}\right)}\right)$defined by the following equations:

$$
\begin{array}{ll}
\sigma_{\epsilon,-1}\left(\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \pm 1\right)=\left(\begin{array}{cc}
\pm 1 & 0 \\
0 & \pm 1
\end{array}\right), & \sigma_{\epsilon,-1}\left(\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right), \pm 1\right)=\left(\begin{array}{cc}
0 & \pm \epsilon \\
\mp \epsilon & 0
\end{array}\right), \\
\sigma_{\epsilon,-1}\left(\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right), \pm 1\right)=\left(\begin{array}{cc}
0 & \mp 1 \\
\mp 1 & 0
\end{array}\right), & \sigma_{\epsilon,-1}\left(\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \pm 1\right)=\left(\begin{array}{cc}
\mp \epsilon & 0 \\
0 & \pm \epsilon
\end{array}\right) \tag{3.4}
\end{array}
$$

and for $\delta \in \mathbb{Z} / 2 \mathbb{Z}$, let $\varsigma_{\delta}: M\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right) \rightarrow \mathrm{GL}_{1}(\mathbb{C})=\mathbb{C}^{*}$ denote the representation of $M\left(\widetilde{\left(\mathrm{SL}_{2}^{ \pm}\right)}\right.$ defined by the following equations:

$$
\begin{array}{ll}
\varsigma_{\delta}\left(\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \pm 1\right)=1, & \varsigma_{\delta}\left(\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right), \pm 1\right)=(-1)^{\delta}, \\
\varsigma_{\delta}\left(\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right), \pm 1\right)=(-1)^{\delta}, & \varsigma_{\delta}\left(\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \pm 1\right)=1 . \tag{3.5}
\end{array}
$$

For $\nu \in \mathbb{C}$, let

$$
\begin{equation*}
\mu_{\nu}\left(\widetilde{a}_{u}\right)=u^{\nu-1} . \tag{3.6}
\end{equation*}
$$

Notice that μ_{ν} is a quasi-character of $A\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right)$. For $\widetilde{b}=\widetilde{m} \widetilde{a} \widetilde{n}_{-} \in B\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right), \epsilon_{i} \in\{ \pm 1\}, \delta \in\{0,1\}$, we define

$$
\begin{aligned}
& \omega_{\left(\epsilon_{1}, \epsilon_{2}\right), \nu}(\widetilde{b})=\sigma_{\epsilon_{1}, \epsilon_{2}}(\widetilde{m}) \mu_{\nu}(\widetilde{a}), \\
& \omega_{\delta, \nu}(\widetilde{b})=\varsigma_{\delta}(\widetilde{m}) \mu_{\nu}(\widetilde{a}),
\end{aligned}
$$

both of which are representations of $B\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right)$. In order to simplify notation, we will write $V_{\left(\epsilon_{1}, \epsilon_{2}\right), \nu}^{-\infty}\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right)$for $V_{\omega_{\left(\epsilon_{1}, \epsilon_{2}\right), \nu}^{-\infty}}^{-\infty}\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right)$and write $V_{\delta, \nu}^{-\infty}\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right)$for $V_{\omega_{\delta, \nu}}^{-\infty}\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right)$(see section 1.2 for the definition of these spaces). By using the standard basis for \mathbb{C}^{2}, we can write $f \in V_{\left(\epsilon_{1}, \epsilon_{2}\right), \nu}^{-\infty}\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right)$ as $f=\left(f_{1}, f_{2}\right)=\binom{f_{1}}{f_{2}}$ where $f_{i} \in C^{-\infty}\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}, \mathbb{C}\right)$.

As discussed in section 1.2, each $f=\left(f_{1}, f_{2}\right) \in V_{\left(\epsilon_{1}, \epsilon_{2}\right), \nu}^{-\infty}\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right)$can be identified with a distributional section s_{f} of a vector bundle over $\widetilde{\mathrm{SL}_{2}^{ \pm}} / B\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right)$. Since the group $N\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right)$maps
injectively into $\widetilde{\mathrm{SL}_{2}^{ \pm}} / B\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right)$, we shall abuse notation by writing this subset of $\widetilde{\mathrm{SL}_{2}^{ \pm}} / B\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right)$ as $N\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right)$. Since as a subset of $\widetilde{\mathrm{SL}_{2}^{ \pm}} / B\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right), N\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right)$is an open set, it follows that we can consider the restriction of s_{f} to $N\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right)$. We denote this restriction by $f_{0}=\left(\left(f_{1}\right)_{0},\left(f_{2}\right)_{0}\right) .{ }^{1}$ Since we can parameterize $N\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right)$by $x \mapsto \widetilde{n}_{x}$, we can also identify f_{0} as a distribution on \mathbb{R}. Similarly, we let $f_{\infty}=\left(\left(f_{1}\right)_{\infty},\left(f_{2}\right)_{\infty}\right)$ denote the restriction of s_{f} to $\widetilde{s}^{-1} N\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right)$, where

$$
\widetilde{s}=\left(\left(\begin{array}{cc}
0 & -1 \tag{3.7}\\
1 & 0
\end{array}\right), 1\right),
$$

and where $\widetilde{s}^{-1} N\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right)$is identified as a subset of $\widetilde{\mathrm{SL}_{2}^{ \pm}} / B\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right)$. Since we can parameterize $\widetilde{s}^{-1} N\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right)$by $x \mapsto \widetilde{s}^{-1} \widetilde{n}_{x}$, we can also identify f_{∞} as a distribution \mathbb{R}. Since $N\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right)$and $\widetilde{s}^{-1} N\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right)$cover $\widetilde{\mathrm{SL}_{2}^{ \pm}} / B\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right)$, it follows that f is completely determined by f_{0} and f_{∞}.

Since for $x \neq 0$,

$$
\begin{align*}
& \widetilde{s}^{-1} \cdot\left(\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right), 1\right) \\
& =\left(\left(\begin{array}{cc}
1 & -x^{-1} \\
0 & 1
\end{array}\right), 1\right) \cdot\left(\left(\begin{array}{cc}
|x|^{-1} & 0 \\
\operatorname{sgn}(x) & |x|
\end{array}\right), 1\right) \cdot\left(\left(\begin{array}{cc}
\operatorname{sgn}(-x) & 0 \\
0 & \operatorname{sgn}(-x)
\end{array}\right), 1\right), \tag{3.8}
\end{align*}
$$

then for $f \in V_{\left(\epsilon_{1}, \epsilon_{2}\right), \nu}^{-\infty}\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right)$we have

$$
f_{\infty}(x)=\binom{\left(f_{1}\right)_{\infty}(x)}{\left(f_{2}\right)_{\infty}(x)}= \begin{cases}|x|^{\nu-1}\binom{-\epsilon_{1}\left(f_{2}\right)_{0}\left(-x^{-1}\right)}{\epsilon_{1}\left(f_{1}\right)_{0}\left(-x^{-1}\right)} & \text { if } x>0 \tag{3.9}\\ |x|^{\nu-1}\binom{\left(f_{1}\right)_{0}\left(-x^{-1}\right)}{\left(f_{2}\right)_{0}\left(-x^{-1}\right)} & \text { if } x<0,\end{cases}
$$

as distributions on $\mathbb{R}_{\neq 0}$. Conversely, when given distributions $\left(f_{1}\right)_{0},\left(f_{2}\right)_{0},\left(f_{1}\right)_{\infty},\left(f_{2}\right)_{\infty} \in$ $C^{-\infty}(\mathbb{R})$ which satisfy (3.9), one can define a unique element $f \in V_{\left(\epsilon_{1}, \epsilon_{2}\right), \nu}^{-\infty}\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right)$. Thus

$$
\begin{align*}
& \left.V_{\left(\epsilon_{1}, \epsilon_{2}\right), \nu}^{-\infty} \widetilde{\mathrm{SL}_{2}^{ \pm}}\right) \cong\left\{\left(\left(f_{1}\right)_{0},\left(f_{2}\right)_{0},\left(f_{1}\right)_{\infty},\left(f_{2}\right)_{\infty}\right) \in C^{-\infty}(\mathbb{R})^{4}:\right. \\
& \left.\quad\left(f_{1}\right)_{0},\left(f_{2}\right)_{0},\left(f_{1}\right)_{\infty}, \text { and }\left(f_{2}\right)_{\infty} \text { satisfy }(3.9) \text { as distributions on } \mathbb{R}_{\neq 0}\right\} . \tag{3.10}
\end{align*}
$$

This space on the right-hand side of (3.10) is known as the unbounded model for $V_{\left(\epsilon_{1}, \epsilon_{2}\right), \nu}^{-\infty}\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right)$.

[^4]Statements analogous to (3.9) and (3.10) also hold for $V_{\delta, \nu}^{-\infty}\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right)$. In particular, if we let f_{0} denote the restriction of s_{f} to $N\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right)$, and let f_{∞} denote the restriction of s_{f} to $\widetilde{s}^{-1} N\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right)$, then by (3.8),

$$
\begin{equation*}
f_{\infty}(x)=\operatorname{sgn}(-x)^{\delta}|x|^{\nu-1} f_{0}\left(-x^{-1}\right) \tag{3.11}
\end{equation*}
$$

as distributions on $\mathbb{R}_{\neq 0}$. Hence

$$
\begin{align*}
& V_{\delta, \nu}^{-\infty}\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right) \\
& \cong\left\{\left(f_{0}, f_{\infty}\right) \in C^{-\infty}(\mathbb{R})^{2}: f_{0} \text { and } f_{\infty} \text { satisfy }(3.11) \text { as distributions on } \mathbb{R}_{\neq 0}\right\} \tag{3.12}
\end{align*}
$$

Define $\widetilde{\mathrm{SL}}_{2}$ to be the inverse image of SL_{2} under (3.1). We write the intersection of $M\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right)$, $A\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right)$, and $N\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right)$with $\widetilde{\mathrm{SL}}_{2}$ as $M\left(\widetilde{\mathrm{SL}}_{2}\right), A\left(\widetilde{\mathrm{SL}}_{2}\right)$, and $N\left(\widetilde{\mathrm{SL}}_{2}\right)$, respectively. ${ }^{2}$ For $\epsilon \in\{ \pm 1\}$, let $\sigma_{\epsilon}: M\left(\widetilde{\mathrm{SL}}_{2}\right) \rightarrow \mathbb{C}^{*}$ denote the representation of $M\left(\widetilde{\mathrm{SL}}_{2}\right)$ defined by the following equations:

$$
\sigma_{\epsilon}\left(\left(\begin{array}{ll}
1 & 0 \tag{3.13}\\
0 & 1
\end{array}\right), \pm 1\right)= \pm 1, \quad \sigma_{\epsilon}\left(\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right), \pm 1\right)=\mp \epsilon i
$$

We define

$$
\begin{equation*}
\omega_{(\epsilon), \nu}(\widetilde{b})=\sigma_{\epsilon}(\widetilde{m}) \mu_{\nu}(\widetilde{a}),{ }^{3} \tag{3.14}
\end{equation*}
$$

which is a representation of $B\left(\widetilde{\mathrm{SL}}_{2}\right)$; recall that μ_{ν} is defined in (3.6). In order to simplify notation, we will write $V_{(\epsilon), \nu}^{-\infty}\left(\widetilde{\mathrm{SL}}_{2}\right)$ for $V_{\omega_{(\epsilon), \nu}}^{-\infty}\left(\widetilde{\mathrm{SL}}_{2}\right)$. Let

$$
\begin{align*}
& \log (z) \text { denote the branch cut of the logarithm whose imaginary } \\
& \text { part lies in }(-\pi, \pi] \text {, and let } z^{t}=\exp (\log (z) t) \text { where } t \in \mathbb{C}, z \in \mathbb{C}^{*} \text {. } \tag{3.15}
\end{align*}
$$

For $f \in V_{(\epsilon), \nu}^{-\infty}\left(\widetilde{\mathrm{SL}_{2}}\right)$, let f_{0} denote the restriction of s_{f} to $N\left(\widetilde{\mathrm{SL}}_{2}\right) \cong \mathbb{R}$, and let f_{∞} denote the restriction of s_{f} to $\widetilde{s}^{-1} N\left(\widetilde{\mathrm{SL}}_{2}\right) \cong \mathbb{R}$. Since $N\left(\widetilde{\mathrm{SL}}_{2}\right)$ and $\widetilde{s}^{-1} N\left(\widetilde{\mathrm{SL}}_{2}\right)$ cover $\widetilde{\mathrm{SL}}_{2} / B\left(\widetilde{\mathrm{SL}}_{2}\right)$, it follows that f is completely determined by f_{0} and f_{∞}. By (3.8), we find that for $f \in V_{(\epsilon), \nu}^{-\infty}\left(\widetilde{\mathrm{SL}_{2}}\right)$,

$$
\begin{equation*}
f_{\infty}(x)=\operatorname{sgn}(-x)^{\epsilon / 2}|x|^{\nu-1} f_{0}\left(-x^{-1}\right) \tag{3.16}
\end{equation*}
$$

as distributions on $\mathbb{R}_{\neq 0}$. Conversely, when given distributions f_{0}, $f_{\infty} \in C^{-\infty}(\mathbb{R})$ which satisfy (3.16), one can define a unique element $f \in V_{(\epsilon), \nu}^{-\infty}\left(\widetilde{\mathrm{SL}_{2}}\right)$. Thus

$$
\begin{align*}
& V_{(\epsilon), \nu}^{-\infty}\left(\widetilde{\mathrm{SL}_{2}}\right) \tag{3.17}\\
& \cong\left\{\left(f_{0}, f_{\infty}\right) \in C^{-\infty}(\mathbb{R})^{2}: f_{0} \text { and } f_{\infty} \text { satisfy }(3.16) \text { as distributions on } \mathbb{R}_{\neq 0}\right\}
\end{align*}
$$

[^5]Let $\mathcal{L}: V_{\left(\epsilon_{1}\right), \nu}^{-\infty}\left(\widetilde{\mathrm{SL}_{2}}\right) \rightarrow V_{\left(\epsilon_{1}, \epsilon_{2}\right), \nu}^{-\infty}\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right)$denote the map given by

$$
\mathcal{L}\left(\binom{f_{0}}{f_{\infty}}\right)=\left(\begin{array}{c}
f_{0} \tag{3.18}\\
-i f_{0} \\
f_{\infty} \\
-i f_{\infty}
\end{array}\right)
$$

where $f \in V_{\left(\epsilon_{1}\right), \nu}^{-\infty}\left(\widetilde{\mathrm{SL}}_{2}\right)$. Notice that we have used the isomorphisms in (3.10) and (3.17) in order to define this map. We see from (3.16) and (3.9) that \mathcal{L} maps into $V_{\left(\epsilon_{1}, \epsilon_{2}\right), \nu}^{-\infty}\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right)$as claimed. Furthermore, it follows that \mathcal{L} is equivariant under the left regular representation of $\widetilde{\mathrm{SL}}_{2}$. Thus by (3.18), we are able to identify

$$
\begin{equation*}
\left.V_{\left(\epsilon_{1}\right), \nu}^{-\infty}\left(\widetilde{\mathrm{SL}_{2}}\right) \subset V_{\left(\epsilon_{1}, \epsilon_{2}\right), \nu}^{-\infty} \widetilde{\mathrm{SL}_{2}^{ \pm}}\right) . \tag{3.19}
\end{equation*}
$$

Let

$$
\widetilde{m}_{*}=\left(\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right), 1\right) .
$$

The following lemma allows us to describe \mathcal{L} in terms of distributions on $\widetilde{\mathrm{SL}_{2}}$ and $\widetilde{\mathrm{SL}_{2}^{ \pm}}$, as opposed to describing \mathcal{L} in terms of restrictions of distributional sections of vector bundles.

Lemma 3.1. Let $f \in V_{\left(\epsilon_{1}\right), \nu}^{-\infty}\left(\widetilde{S L}_{2}\right)$, and let $\binom{f_{1}}{f_{2}} \in V_{\left(\epsilon_{1}, \epsilon_{2}\right), \nu}^{-\infty}\left(\widetilde{S L}_{2}\right)$ be the image of f under \mathcal{L}. If $\epsilon_{2}=1$, then

$$
\left.\left(f_{1}\right)\right|_{\widetilde{S L}_{2}}=f,\left.\quad\left(f_{1}\right)\right|_{\widetilde{S L}_{2} \widetilde{m}_{*}}=\epsilon_{1} f,\left.\quad\left(f_{2}\right)\right|_{\widetilde{S L}_{2}}=-i f, \quad \text { and }\left.\quad\left(f_{2}\right)\right|_{\widetilde{S L}_{2} \widetilde{m}_{*}}=\epsilon_{1} i f ;
$$

and if $\epsilon_{2}=-1$, then

$$
\left.\left(f_{1}\right)\right|_{\widetilde{S L}_{2}}=f,\left.\quad\left(f_{1}\right)\right|_{\widetilde{S L}_{2} \widetilde{m}_{*}}=i f,\left.\quad\left(f_{2}\right)\right|_{\widetilde{S L}_{2}}=-i f, \quad \text { and }\left.\quad\left(f_{2}\right)\right|_{\widetilde{S L}_{2} \widetilde{m}_{*}}=-f .
$$

Proof. It suffices by a density argument to suppose that $f \in V_{\left(\epsilon_{1}, \epsilon_{2}\right), \nu}^{\infty}\left(\widetilde{\mathrm{SL}_{2}}\right)$. As described in section 1.2, for $\left(f_{1}, f_{2}\right) \in V_{\left(\epsilon_{1}, \epsilon_{2}\right), \nu}^{\infty}\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right)$there exists a corresponding section of a vector bundle $\left.s_{\left(f_{1}, f_{2}\right)}: \widetilde{\mathrm{SL}_{2}^{ \pm}} / B\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right) \rightarrow\left(\widetilde{\left(\mathrm{SL}_{2}^{ \pm}\right.} / B\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right)\right) \times \mathbb{C}^{2}\right) / \sim$, where

$$
\begin{equation*}
s_{\left(f_{1}, f_{2}\right)}\left(\widetilde{g} B\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right)\right)=\left\{\left(\widetilde{g} \widetilde{b}, \omega_{\left(\epsilon_{1}, \epsilon_{2}\right), \nu} \widetilde{b}^{-1}\right)\binom{f_{1}(\widetilde{g})}{f_{2}(\widetilde{g})}\right): \widetilde{b} \in B\left(\widetilde{\left.\mathrm{SL}_{2}^{ \pm}\right)}\right\}, \tag{3.20}
\end{equation*}
$$

and where \sim is an equivalence relation on $\left(\widetilde{\mathrm{SL}_{2}^{ \pm}} / B\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right)\right) \times \mathbb{C}^{2}$ defined in (1.2). If $\left(f_{1}, f_{2}\right)$ is the image of f under \mathcal{L}, then it follows that

$$
\begin{equation*}
s_{\left(f_{1}, f_{2}\right)}\left(\widetilde{g} B\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right)\right)=\left\{\left(\widetilde{g} \widetilde{b}, \omega_{\left(\epsilon_{1}, \epsilon_{2}\right), \nu}\left(\widetilde{b}^{-1}\right)\binom{f(\widetilde{g})}{-i f(\widetilde{g})}\right): \widetilde{b} \in B\left(\widetilde{\left.\mathrm{SL}_{2}^{ \pm}\right)}\right\},\right. \tag{3.21}
\end{equation*}
$$

for $\widetilde{g} \in{\widetilde{\mathrm{SL}_{2}}}_{2}$; recall that every coset of $\widetilde{\mathrm{SL}_{2}^{ \pm}} / B\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right)$has a representative of the form $\widetilde{g} B\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right)$ where $\widetilde{g} \in \widetilde{\mathrm{SL}}_{2}$. By comparing (3.20) and (3.21), we see that

$$
\binom{f_{1}(\widetilde{g})}{f_{2}(\widetilde{g})}=\binom{f(\widetilde{g})}{-i f(\widetilde{g})},
$$

for $\widetilde{g} \in \widetilde{\mathrm{SL}}_{2}$. This proves half of our lemma. To prove the other half, one uses the transformation law for $V_{\left(\epsilon_{1}, \epsilon_{2}\right), \nu}^{-\infty}\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right)$to see that

$$
\binom{f_{1}\left(\widetilde{g} \widetilde{m}_{*}\right)}{f_{2}\left(\widetilde{g} \widetilde{m}_{*}\right)}= \begin{cases}\binom{\epsilon_{1} f(\widetilde{g})}{\epsilon_{1} i f(\widetilde{g})} & \text { if } \epsilon_{2}=1 \\ \binom{i f(\widetilde{g})}{-f(\widetilde{g})} & \text { if } \epsilon_{2}=-1 .\end{cases}
$$

We conclude this section with an analysis of unbounded realizations of distributional principal series for SL_{2}. We write the intersection of $M\left(\mathrm{SL}_{2}^{ \pm}\right), A\left(\mathrm{SL}_{2}^{ \pm}\right)$, and $N\left(\mathrm{SL}_{2}^{ \pm}\right)$with SL_{2} as $M\left(\mathrm{SL}_{2}\right), A\left(\mathrm{SL}_{2}\right)$, and $N\left(\mathrm{SL}_{2}\right)$, respectively. Let $B\left(\mathrm{SL}_{2}\right)=M\left(\mathrm{SL}_{2}\right) A\left(\mathrm{SL}_{2}\right) N\left(\mathrm{SL}_{2}\right)$. For $\nu \in \mathbb{C}$, let $\mu_{\nu}\left(a_{u}\right)=u^{\nu-1}$, which is a quasi-character of $A\left(\mathrm{SL}_{2}\right)$. For $b=$ man- $\in B\left(\mathrm{SL}_{2}\right)$ we define,

$$
\omega_{\delta, \nu}(b)=\varsigma_{\delta}(m) \mu_{\nu}(a),
$$

which is a representation of $B\left(\mathrm{SL}_{2}\right)$. To simplify our notation, we will write $V_{\delta, \nu}^{-\infty}\left(\mathrm{SL}_{2}\right)$ for $V_{\omega_{\delta, \nu}}^{-\infty}\left(\mathrm{SL}_{2}\right)$. For $f \in V_{\delta, \nu}^{-\infty}\left(\mathrm{SL}_{2}\right)$, let f_{0} denote the restriction of s_{f} to $N\left(\mathrm{SL}_{2}\right) \cong \mathbb{R}$, and let f_{∞} denote the restriction of s_{f} to $s^{-1} N\left(\mathrm{SL}_{2}\right) \cong \mathbb{R}$ where

$$
s=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

Since $N\left(\mathrm{SL}_{2}\right)$ and $s^{-1} N\left(\mathrm{SL}_{2}\right)$ cover $\mathrm{SL}_{2} / B\left(\mathrm{SL}_{2}\right)$, it follows that f is completely determined by f_{0} and f_{∞}. Since for $x \neq 0$,

$$
s^{-1} \cdot\left(\begin{array}{ll}
1 & x \tag{3.22}\\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & -x^{-1} \\
0 & 1
\end{array}\right) \cdot\left(\begin{array}{cc}
|x|^{-1} & 0 \\
\operatorname{sgn}(x) & |x|
\end{array}\right) \cdot\left(\begin{array}{cc}
\operatorname{sgn}(-x) & 0 \\
0 & \operatorname{sgn}(-x)
\end{array}\right),
$$

it follows for $f \in V_{\delta, \nu}^{-\infty}\left(\mathrm{SL}_{2}\right)$, we have that

$$
\begin{equation*}
f_{\infty}(x)=\operatorname{sgn}(-x)^{\delta}|x|^{\nu-1} f_{0}\left(-x^{-1}\right), \tag{3.23}
\end{equation*}
$$

as distributions on $\mathbb{R}_{\neq 0}$. Conversely, when given distributions $f_{0}, f_{\infty} \in C^{-\infty}(\mathbb{R})$ which satisfy (3.23), one can define a unique element $f \in V_{\delta, \nu}^{-\infty}\left(\mathrm{SL}_{2}\right)$. Thus

$$
\begin{align*}
& V_{\delta, \nu}^{-\infty}\left(\mathrm{SL}_{2}\right) \\
& \cong\left\{\left(f_{0}, f_{\infty}\right) \in C^{-\infty}(\mathbb{R})^{2}: f_{0} \text { and } f_{\infty} \text { satisfy }(3.23) \text { as distributions on } \mathbb{R}_{\neq 0}\right\} \tag{3.24}
\end{align*}
$$

We overload notation by defining $\mathcal{L}: V_{\delta, \nu}^{-\infty}\left(\mathrm{SL}_{2}\right) \rightarrow V_{\delta, \nu}^{-\infty}\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right)$to be the equivariant map (with respect to SL_{2}) given by

$$
\begin{equation*}
\left(f_{0}, f_{\infty}\right) \mapsto\left(f_{0}, f_{\infty}\right) \tag{3.25}
\end{equation*}
$$

where $f \in V_{\delta, \nu}^{-\infty}\left(\mathrm{SL}_{2}\right)$. Notice that we used the isomorphisms (3.12) and (3.24) in our definition of \mathcal{L}. Since (3.11) and (3.23) agree it follows that \mathcal{L} is indeed well defined. Thus we are able to identify

$$
\begin{equation*}
V_{\delta, \nu}^{-\infty}\left(\mathrm{SL}_{2}\right) \subset V_{\delta, \nu}^{-\infty}\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right) \tag{3.26}
\end{equation*}
$$

3.2 A Double Cover of J

In this section we will analyze the distributional principal series representations for double cover groups of J and $J^{ \pm}$, where J and $J^{ \pm}$are certain subgroups of G_{2} we will define shortly. As in section 3.1, we will define the multiplication laws for such double cover groups, and then study the unbounded realizations of distributional principal series representation spaces for such groups. By studying these unbounded realizations, we can determine when certain distributional principal series representation spaces lie naturally within other distributional principal series representation spaces for larger groups.

One can show that

$$
L_{\beta}=\left\{\left(\begin{array}{ccccccc}
a d-b c & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & a & -b & 0 & 0 & 0 & 0 \\
0 & -c & d & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{a}{a d-b c} & \frac{-b}{a d-b c} & 0 \\
0 & 0 & 0 & 0 & \frac{-c}{a d-b c} & \frac{d}{a d-b c} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{a d-b c}
\end{array}\right): \begin{array}{c}
\text { where } a, b, c, d \in \mathbb{R} \\
\text { such that } a d-b c= \pm 1 \\
\end{array}\right\}
$$

is a subgroup of G_{2} which is isomorphic to $\mathrm{SL}_{2}^{ \pm}$. In fact, L_{β} is a subgroup of the Levi component for the β root, and hence L_{β} acts by conjugation on the subgroup $U_{\beta}=\left\{X_{6} X_{5} X_{4} X_{3} X_{2}: x_{i} \in\right.$ $\mathbb{R}\}$. Let $J^{ \pm}=U_{\beta} \cdot L_{\beta}$, which is a subgroup of G_{2}. Abstractly speaking, we see that $J^{ \pm}$is isomorphic to the semidirect product of L_{β} and U_{β}.

Via the covering map of $\widetilde{\mathrm{SL}_{2}^{ \pm}}$onto $\mathrm{SL}_{2}^{ \pm} \cong L_{\beta}$, we are able to give the set $U_{\beta} \times \widetilde{\mathrm{SL}_{2}^{ \pm}}$the structure of a group. Specifically, the multiplication law is given by

$$
\left(u_{1} \widetilde{g}_{1}\right) \cdot\left(u_{2} \widetilde{g}_{2}\right)=\left(u_{1} g_{1} u_{2} g_{1}^{-1}\right) \widetilde{g}_{1} \widetilde{g}_{2}
$$

where $\widetilde{g}_{1}, \widetilde{g}_{2} \in \widetilde{\mathrm{SL}_{2}^{ \pm}}, u_{1}, u_{2} \in U_{\beta}$, and g_{1}, g_{2} are the respective images of \widetilde{g}_{1} and \widetilde{g}_{2} under the covering map of $\widetilde{\mathrm{SL}_{2}^{ \pm}}$onto $\mathrm{SL}_{2}^{ \pm} \cong L_{\beta}$. We denote this group by $\widetilde{J^{ \pm}}$and we write elements of $\widetilde{J^{ \pm}}$as $u \widetilde{g}$ where $u \in U_{\beta}$ and $\widetilde{g} \in \widetilde{\mathrm{SL}_{2}^{ \pm}}$. Let $\iota: \widetilde{\mathrm{SL}_{2}^{ \pm}} \rightarrow \widetilde{J^{ \pm}}$denote the natural embedding of $\widetilde{\mathrm{SL}_{2}^{ \pm}}$ into $\widetilde{J^{ \pm}}$.

Let $B\left(J^{ \pm}\right)$denote the space of lower triangular matrices of $J^{ \pm}$. Under the Langlands decomposition, $B\left(J^{ \pm}\right)=M\left(J^{ \pm}\right) A\left(J^{ \pm}\right) N_{-}\left(J^{ \pm}\right)$where

$$
M\left(J^{ \pm}\right)=\iota\left(M\left(\mathrm{SL}_{2}^{ \pm}\right)\right), \quad A\left(J^{ \pm}\right)=\iota\left(A\left(\mathrm{SL}_{2}^{ \pm}\right)\right), \text {and } N_{-}\left(J^{ \pm}\right)=\iota\left(N_{-}\left(\mathrm{SL}_{2}^{ \pm}\right)\right)
$$

Likewise, let

$$
M\left(\widetilde{J^{ \pm}}\right)=\iota\left(M\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right)\right), \quad A\left(\widetilde{J^{ \pm}}\right)=\iota\left(A\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right)\right), \quad N_{-}\left(\widetilde{J^{ \pm}}\right)=\iota\left(N_{-}\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right)\right)
$$

and $B\left(\widetilde{J^{ \pm}}\right)=M\left(\widetilde{J^{ \pm}}\right) A\left(\widetilde{J^{ \pm}}\right) N_{-}\left(\widetilde{J^{ \pm}}\right)$. We let $N\left(J^{ \pm}\right)$denote the group of unipotent uppertriangular matrices of $J^{ \pm}$. Since $N\left(J^{ \pm}\right)=U_{\beta} \cdot \iota\left(N\left(\mathrm{SL}_{2}^{ \pm}\right)\right)$, we define $N\left(\widetilde{J^{ \pm}}\right)=U_{\beta} \cdot \iota\left(N\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right)\right)$. To simplify notation, we will write $\widetilde{m}, \widetilde{a}, \widetilde{n}, \widetilde{n}_{-}$, and \widetilde{b} for the elements $\iota(\widetilde{m}), \iota(\widetilde{a}), \iota(\widetilde{n}), \iota\left(\widetilde{n}_{-}\right)$, and $\iota(\widetilde{b})$, respectively.

Observe that $\sigma_{\epsilon_{1}, \epsilon_{2}} \circ \iota^{-1}$ and $\varsigma_{\delta} \circ \iota^{-1}$ are representations of $M\left(\widetilde{J^{ \pm}}\right)$, and that $\mu_{\nu} \circ \iota^{-1}$ is a quasi-character of $A\left(\widetilde{J^{ \pm}}\right)$. For $\widetilde{b}=\widetilde{m} \widetilde{a} \widetilde{n}_{-} \in B\left(\widetilde{J^{ \pm}}\right)$we define

$$
\begin{aligned}
& \omega_{\left(\epsilon_{1}, \epsilon_{2}\right), \nu}(\widetilde{b})=\left(\sigma_{\epsilon_{1}, \epsilon_{2}} \circ \iota^{-1}\right)(\widetilde{m}) \cdot\left(\mu_{\nu} \circ \iota^{-1}\right)(\widetilde{a}), \text { and } \\
& \omega_{\delta, \nu}(\widetilde{b})=\left(\varsigma_{\delta} \circ \iota^{-1}\right)(\widetilde{m}) \cdot\left(\mu_{\nu} \circ \iota^{-1}\right)(\widetilde{a}),
\end{aligned}
$$

both of which are representations of $B\left(\widetilde{J^{ \pm}}\right)$. In short, we are taking the representations we defined in section 3.1 and identifying them as representations on $\widetilde{J^{ \pm}}$via ι^{-1}. As usual, we shall
 basis for \mathbb{C}^{2}, we shall write $f \in V_{\left(\epsilon_{1}, \epsilon_{2}\right), \nu}^{-\infty}\left(\widetilde{J^{ \pm}}\right)$as $f=\left(f_{1}, f_{2}\right)=\binom{f_{1}}{f_{2}}$ where $f_{i} \in C^{-\infty}\left(\widetilde{J^{ \pm}}, \mathbb{C}\right)$.

As discussed in section 1.2, $f=\left(f_{1}, f_{2}\right) \in V_{\left(\epsilon_{1}, \epsilon_{2}\right), \nu}^{-\infty}\left(\widetilde{J^{ \pm}}\right)$can be identified with a distributional section s_{f} of a vector bundle over $\widetilde{J^{ \pm}} / B\left(\widetilde{J^{ \pm}}\right)$. Since the group $N\left(\widetilde{J^{ \pm}}\right)$maps injectively into $\widetilde{J^{ \pm}} / B\left(\widetilde{J^{ \pm}}\right)$, we shall abuse notation by writing this subset of $\widetilde{J^{ \pm}} / B\left(\widetilde{J^{ \pm}}\right)$as $N\left(\widetilde{J^{ \pm}}\right)$. Since as a subset of $\widetilde{J^{ \pm}} / B\left(\widetilde{J^{ \pm}}\right), N\left(\widetilde{J^{ \pm}}\right)$is an open set, it follows that we can consider the restriction of s_{f} to $N\left(\widetilde{J^{ \pm}}\right)$. We denote this restriction by $f_{0}=\left(\left(f_{1}\right)_{0},\left(f_{2}\right)_{0}\right)$. Since we can parameterize
$N\left(\widetilde{J^{ \pm}}\right)$by

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \mapsto X_{6} X_{5} X_{4} X_{3} X_{2} X_{1}
$$

we can also identify f_{0} as a distribution vector on $\mathbb{R}^{6} .{ }^{4}$ Likewise, we let $f_{\infty}=\left(\left(f_{1}\right)_{\infty},\left(f_{2}\right)_{\infty}\right)$ denote the restriction of s_{f} to $\widetilde{s}^{-1} N\left(\widetilde{J^{ \pm}}\right)$, where $\widetilde{s}^{-1} N\left(\widetilde{J^{ \pm}}\right)$is thought of as a subset of $\widetilde{\mathrm{SL}_{2}^{ \pm}} / B\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right)$. Here we abuse notation by writing \widetilde{s} for $\iota(\widetilde{s})$; similarly, we write s for $\iota(s)$. Since we can parameterize $\widetilde{s}^{-1} N\left(\widetilde{J^{ \pm}}\right)$by

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \mapsto \widetilde{s}^{-1} X_{6} X_{5} X_{4} X_{3} X_{2} X_{1}
$$

we can also identify f_{∞} as a distribution vector on \mathbb{R}^{6}. Since $N\left(\widetilde{J^{ \pm}}\right)$and $\widetilde{s}^{-1} N\left(\widetilde{J^{ \pm}}\right)$cover $\widetilde{J^{ \pm}} / B\left(\widetilde{J^{ \pm}}\right)$, it follows that f is completely determined by f_{0} and f_{∞}.

Since

$$
s^{-1} X_{6} X_{5} X_{4} X_{3} X_{2} s=R_{6}\left(3 x_{2}^{2} x_{3}+x_{5}\right) R_{5}\left(-3 x_{2} x_{3}^{2}-x_{6}\right) R_{4}\left(2 x_{2} x_{3}+x_{4}\right) R_{3}\left(x_{2}\right) R_{2}\left(-x_{3}\right),
$$

it follows that

$$
\begin{aligned}
& \widetilde{s}^{-1} \cdot X_{6} X_{5} X_{4} X_{3} X_{2} X_{1} \\
& =R_{6}\left(3 x_{2}^{2} x_{3}+x_{5}\right) R_{5}\left(-3 x_{2} x_{3}^{2}-x_{6}\right) R_{4}\left(2 x_{2} x_{3}+x_{4}\right) R_{3}\left(x_{2}\right) R_{2}\left(-x_{3}\right) \widetilde{s}^{-1}\left(\left(\begin{array}{cc}
1 & x_{1} \\
0 & 1
\end{array}\right), 1\right)
\end{aligned}
$$

Applying (3.8) then shows that that

$$
\begin{align*}
& \widetilde{s}^{-1} \cdot X_{6} X_{5} X_{4} X_{3} X_{2} X_{1} \\
& =R_{6}\left(3 x_{3} x_{2}^{2}+x_{5}\right) R_{5}\left(-3 x_{2} x_{3}^{2}-x_{6}\right) R_{4}\left(2 x_{2} x_{3}+x_{4}\right) R_{3}\left(x_{2}\right) R_{2}\left(-x_{3}\right) R_{1}\left(-x_{1}^{-1}\right) \\
& \quad \cdot\left(\left(\begin{array}{cc}
\left|x_{1}\right|^{-1} & 0 \\
\operatorname{sgn}\left(x_{1}\right)\left|x_{1}\right|
\end{array}\right), 1\right) \cdot\left(\left(\begin{array}{cc}
\operatorname{sgn}\left(-x_{1}\right) & 0 \\
0 & \operatorname{sgn}\left(-x_{1}\right)
\end{array}\right), 1\right) . \tag{3.27}
\end{align*}
$$

Thus for $f \in V_{\left(\epsilon_{1}, \epsilon_{2}\right), \nu}^{-\infty}\left(\widetilde{J^{ \pm}}\right)$we have that

$$
f_{\infty}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)=\binom{\left(f_{1}\right)_{\infty}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)}{\left(f_{2}\right)_{\infty}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)}
$$

[^6]\[

= $$
\begin{cases}\left|x_{1}\right|^{\nu-1}\binom{-\epsilon_{1}\left(f_{2}\right)_{0}\left(-x_{1}^{-1},-x_{3}, x_{2}, 2 x_{2} x_{3}+x_{4},-3 x_{2} x_{3}^{2}-x_{6}, 3 x_{2}^{2} x_{3}+x_{5}\right)}{\epsilon_{1}\left(f_{1}\right)_{0}\left(-x_{1}^{-1},-x_{3}, x_{2}, 2 x_{2} x_{3}+x_{4},-3 x_{2} x_{3}^{2}-x_{6}, 3 x_{2}^{2} x_{3}+x_{5}\right)} & \text { if } x_{1}>0 \tag{3.28}\\ \left|x_{1}\right|^{\nu-1}\binom{\left(f_{1}\right)_{0}\left(-x_{1}^{-1},-x_{3}, x_{2}, 2 x_{2} x_{3}+x_{4},-3 x_{2} x_{3}^{2}-x_{6}, 3 x_{2}^{2} x_{3}+x_{5}\right)}{\left(f_{2}\right)_{0}\left(-x_{1}^{-1},-x_{3}, x_{2}, 2 x_{2} x_{3}+x_{4},-3 x_{2} x_{3}^{2}-x_{6}, 3 x_{2}^{2} x_{3}+x_{5}\right)} & \text { if } x_{1}<0\end{cases}
$$
\]

as distributions on $\mathbb{R}_{\neq 0} \times \mathbb{R}^{5}$. Conversely, when given distribution vectors $\left(f_{1}\right)_{0},\left(f_{2}\right)_{0},\left(f_{1}\right)_{\infty}$, $\left(f_{2}\right)_{\infty} \in C^{-\infty}\left(\mathbb{R}^{6}\right)$ which satisfy (3.28), one can define a unique element $f=\left(f_{1}, f_{2}\right) \in$ $V_{\left(\epsilon_{1}, \epsilon_{2}\right), \nu}^{-\infty}\left(\widetilde{J^{ \pm}}\right)$. Thus

$$
\begin{equation*}
V_{\left(\epsilon_{1}, \epsilon_{2}\right), \nu}^{-\infty}\left(\widetilde{J^{ \pm}}\right) \cong\left\{\left(\left(f_{1}\right)_{0},\left(f_{2}\right)_{0},\left(f_{1}\right)_{\infty},\left(f_{2}\right)_{\infty}\right) \in C^{-\infty}\left(\mathbb{R}^{6}\right)^{4}:\right. \tag{3.29}
\end{equation*}
$$

$$
\left.\left(f_{1}\right)_{0},\left(f_{2}\right)_{0},\left(f_{1}\right)_{\infty}, \text { and }\left(f_{2}\right)_{\infty} \text { satisfy }(3.28) \text { as distributions on } \mathbb{R}_{\neq 0} \times \mathbb{R}^{5}\right\}
$$

Statements analogous to (3.28) and (3.29) also hold for $f \in V_{\delta, \nu}^{-\infty}\left(\widetilde{J^{ \pm}}\right)$. In particular, if we let f_{0} denote the restriction of s_{f} to $N\left(\widetilde{J^{ \pm}}\right) \cong \mathbb{R}^{6}$, and let f_{∞} denote the restriction of s_{f} to $\widetilde{s}^{-1} N\left(\widetilde{J^{ \pm}}\right) \cong \mathbb{R}^{6}$, then

$$
\begin{align*}
& f_{\infty}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \\
& =\operatorname{sgn}\left(-x_{1}\right)^{\delta}\left|x_{1}\right|^{\nu-1} f_{0}\left(-x_{1}^{-1},-x_{3}, x_{2}, 2 x_{2} x_{3}+x_{4},-3 x_{2} x_{3}^{2}-x_{6}, 3 x_{2}^{2} x_{3}+x_{5}\right) \tag{3.30}
\end{align*}
$$

as distributions on $\mathbb{R}_{\neq 0} \times \mathbb{R}^{5}$. Consequently,

$$
\begin{align*}
& V_{\delta, \nu}^{-\infty}\left(\widetilde{J^{ \pm}}\right) \tag{3.31}\\
& \cong\left\{\left(f_{0}, f_{\infty}\right) \in C^{-\infty}\left(\mathbb{R}^{6}\right)^{2}: f_{0} \text { and } f_{\infty} \text { satisfy }(3.30) \text { as distributions on } \mathbb{R}_{\neq 0} \times \mathbb{R}^{5}\right\}
\end{align*}
$$

Let $J=\left\{g \in J^{ \pm}: \operatorname{det}(g)=1\right\}$. We define \widetilde{J} to be the inverse image of J under the covering map $\widetilde{J^{ \pm}} \rightarrow J^{ \pm}$. We write the intersection of $M\left(\widetilde{J^{ \pm}}\right), A\left(\widetilde{J^{ \pm}}\right), N_{-}\left(\widetilde{J^{ \pm}}\right)$, and $N\left(\widetilde{J^{ \pm}}\right)$ with \widetilde{J} as $M(\widetilde{J}), A(\widetilde{J}), N_{-}(\widetilde{J})$, and $N(\widetilde{J})$, respectively. Let $B(\widetilde{J})=M(\widetilde{J}) A(\widetilde{J}) N_{-}(\widetilde{J})$. Observe that $\sigma_{\epsilon} \circ \iota^{-1}$ is a representation of $M(\widetilde{J})$ and that $\mu_{\nu} \circ \iota^{-1}$ is a quasi-character of $A(\widetilde{J})$. For $\widetilde{b}=\widetilde{m} \widetilde{a} \widetilde{n}_{-} \in B(\widetilde{J})$ we define

$$
\omega_{(\epsilon), \nu}(\widetilde{b})=\left(\sigma_{\epsilon} \circ \iota^{-1}\right)(\widetilde{m}) \cdot\left(\mu_{\nu} \circ \iota^{-1}\right)(\widetilde{a})
$$

which is a representation of $B(\widetilde{J})$. In order to simplify notation, we will write $V_{(\epsilon), \nu}^{-\infty}(\widetilde{J})$ for $V_{\omega_{(\epsilon), \nu}}^{-\infty}(\widetilde{J})$.

For $f \in V_{(\epsilon), \nu}^{-\infty}(\widetilde{J})$, let f_{0} denote the restriction of s_{f} to $N(\widetilde{J}) \cong \mathbb{R}^{6}$, and let f_{∞} denote the restriction of s_{f} to $\widetilde{s}^{-1} N(\widetilde{J}) \cong \mathbb{R}^{6}$. As earlier, we will also identify f_{0} and f_{∞} with the
distributions $f_{0} \circ \sigma_{\text {id }}$ and $f_{\infty} \circ \sigma_{\text {id }}$ on \mathbb{R}^{6}. Since $N(\widetilde{J})$ and $\widetilde{s}^{-1} N(\widetilde{J})$ cover $\widetilde{J} / B(\widetilde{J})$, it follows that f is completely determined by f_{0} and f_{∞}. By (3.27), we find that for $f \in V_{(\epsilon), \nu}^{-\infty}(\widetilde{J})$ that

$$
\begin{align*}
& f_{\infty}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \tag{3.32}\\
& =\operatorname{sgn}\left(-x_{1}\right)^{\epsilon / 2}\left|x_{1}\right|^{\nu-1} f_{0}\left(-x_{1}^{-1},-x_{3}, x_{2}, 2 x_{2} x_{3}+x_{4},-3 x_{2} x_{3}^{2}-x_{6}, 3 x_{2}^{2} x_{3}+x_{5}\right)
\end{align*}
$$

as distributions on $\mathbb{R}_{\neq 0} \times \mathbb{R}^{5}$. Conversely, when given distributions $f_{0}, f_{\infty} \in C^{-\infty}\left(\mathbb{R}^{6}\right)$ which satisfy (3.32), one can define a unique element $f \in V_{(\epsilon), \nu}^{-\infty}(\widetilde{J})$. Thus

$$
\begin{align*}
& V_{(\epsilon), \nu}^{-\infty}\left(\widetilde{J^{ \pm}}\right) \tag{3.33}\\
& \cong\left\{\left(f_{0}, f_{\infty}\right) \in C^{-\infty}\left(\mathbb{R}^{6}\right)^{2}: f_{0} \text { and } f_{\infty} \text { satisfy }(3.32) \text { as distributions on } \mathbb{R}_{\neq 0} \times \mathbb{R}^{5}\right\} .
\end{align*}
$$

We define an equivariant map (with respect to $\widetilde{J})$ from $f \in V_{\left(\epsilon_{1}\right), \nu}^{-\infty}(\widetilde{J})$ into $V_{\left(\epsilon_{1}, \epsilon_{2}\right), \nu}^{-\infty}\left(\widetilde{J^{ \pm}}\right)$by (3.18). Indeed, we see from (3.28), (3.29), (3.32), and (3.33), that (3.18) maps into $V_{\left(\epsilon_{1}, \epsilon_{2}\right), \nu}^{-\infty}\left(\widetilde{J^{ \pm}}\right)$ as claimed. Thus by (3.18), we are able to identify

$$
\begin{equation*}
V_{\left(\epsilon_{1}\right), \nu}^{-\infty}(\widetilde{J}) \subset V_{\left(\epsilon_{1}, \epsilon_{2}\right), \nu}^{-\infty}\left(\widetilde{J^{ \pm}}\right) . \tag{3.34}
\end{equation*}
$$

We write the intersection of $M\left(J^{ \pm}\right), A\left(J^{ \pm}\right)$, and $N\left(J^{ \pm}\right)$with J as $M(J), A(J)$, and $N(J)$, respectively. Observe that $\varsigma_{\delta} \circ \iota^{-1}$ is a representation of $M(J)$ and that $\mu_{\nu} \circ \iota^{-1}$ is a quasicharacter of $A(J)$. For $b=$ man_ $_{-} \in B(J)$ we define

$$
\omega_{\delta, \nu}(b)=\left(\varsigma_{\delta} \circ \iota^{-1}\right)(m) \cdot\left(\mu_{\nu} \circ \iota^{-1}\right)(a),
$$

which is a representation of $B(J)$. In order to simplify notation, we will write $V_{\delta, \nu}^{-\infty}(J)$ for $V_{\omega_{\delta, \nu}}^{-\infty}(J)$. For $f \in V_{\delta, \nu}^{-\infty}(J)$, let f_{0} denote the restriction of s_{f} to $N(J) \cong \mathbb{R}^{6}$, and let f_{∞} denote the restriction of s_{f} to $s^{-1} N(J) \cong \mathbb{R}^{6}$. We shall also let f_{0} and f_{∞} denote the distributions $f_{0} \circ \sigma_{\text {id }}$ and $f_{\infty} \circ \sigma_{\infty}$, respectively. Since $N(J)$ and $s^{-1} N(J)$ cover $J / B(J)$, it follows that f is completely determined by f_{0} and f_{∞}. By (3.27), we have that

$$
\begin{align*}
& s^{-1} \cdot X_{6} X_{5} X_{4} X_{3} X_{2} X_{1} \\
& =R_{6}\left(3 x_{2}^{2} x_{3}+x_{5}\right) R_{5}\left(-3 x_{2} x_{3}^{2}-x_{6}\right) R_{4}\left(2 x_{2} x_{3}+x_{4}\right) R_{3}\left(x_{2}\right) R_{2}\left(-x_{3}\right) R_{1}\left(-x_{1}^{-1}\right) \\
& \quad \cdot\left(\begin{array}{cc}
\left|x_{1}\right|^{-1} & 0 \\
\operatorname{sgn}\left(x_{1}\right) & \left|x_{1}\right|
\end{array}\right) \cdot\left(\begin{array}{cc}
\operatorname{sgn}\left(-x_{1}\right) & 0 \\
0 & \operatorname{sgn}\left(-x_{1}\right)
\end{array}\right) . \tag{3.35}
\end{align*}
$$

Thus it follows that for $f \in V_{\delta, \nu}^{-\infty}(J)$,

$$
\begin{align*}
& f_{\infty}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \\
& =\operatorname{sgn}\left(-x_{1}\right)^{\delta}\left|x_{1}\right|^{\nu-1} f_{0}\left(-x_{1}^{-1},-x_{3}, x_{2}, 2 x_{2} x_{3}+x_{4},-3 x_{2} x_{3}^{2}-x_{6}, 3 x_{2}^{2} x_{3}+x_{5}\right) \tag{3.36}
\end{align*}
$$

as distributions on $\mathbb{R}_{\neq 0} \times \mathbb{R}^{5}$. Conversely, when given distributions $f_{0}, f_{\infty} \in C^{-\infty}\left(\mathbb{R}^{6}\right)$ which satisfy (3.36), one can define a unique element $f \in V_{\delta, \nu}^{-\infty}(J)$. Thus

$$
\begin{align*}
& V_{\delta, \nu}^{-\infty}(J) \tag{3.37}\\
& \cong\left\{\left(f_{0}, f_{\infty}\right) \in C^{-\infty}\left(\mathbb{R}^{6}\right)^{2}: f_{0} \text { and } f_{\infty} \text { satisfy }(3.36) \text { as distributions on } \mathbb{R}_{\neq 0}\right\} .
\end{align*}
$$

For $f \in V_{\delta, \nu}^{-\infty}(J)$ we define an equivariant map into $V_{\delta, \nu}^{-\infty}\left(\widetilde{J^{ \pm}}\right)$by $\left(f_{0}, f_{\infty}\right) \mapsto\left(f_{0}, f_{\infty}\right)$. Indeed, since (3.30) and (3.36) agree, it follows that this map is well-defined. Thus we are able to identify

$$
\begin{equation*}
V_{\delta, \nu}^{-\infty}(J) \subset V_{\delta, \nu}^{-\infty}\left(\widetilde{J^{ \pm}}\right) . \tag{3.38}
\end{equation*}
$$

3.3 The Theta Distribution

In this section we will define a distribution $\theta \in V_{(-1), \frac{1}{2}}^{-\infty}(\widetilde{J})$, which has many of the properties of the more familiar automorphic theta functions. To deduce these properties for θ, we begin by considering the function

$$
\Theta\left(z_{1}, x_{2}, x_{3}, x_{4}\right)=\sum_{m \in \mathbb{Z}} e\left(-m^{2} z_{1}+2 m\left(-z_{1} x_{2}+x_{3}\right)-\left(z_{1} x_{2}^{2}+x_{4}\right)\right),
$$

where $z_{1}=x_{1}-i y_{1}, x_{1}, x_{2}, x_{3}, x_{4} \in \mathbb{R}$, and $y_{1} \in \mathbb{R}_{>0}$. Observe that Θ is a holomorphic function in the z_{1} variable.

Proposition 3.2. If $z_{1}=x_{1}-i y_{1} \in \mathbb{C}$ and $y_{1}>0$ then
(a) $\Theta\left(z_{1}, x_{2}, x_{3}, x_{4}\right)=\Theta\left(z_{1}+1, x_{2}, x_{2}+x_{3},-x_{2}^{2}+x_{4}\right)$,
(b) $\Theta\left(z_{1}, x_{2}, x_{3}, x_{4}\right)=\left(2 i z_{1}\right)^{-1 / 2} \Theta\left(\frac{-1}{4 z_{1}},-2 x_{3}, \frac{x_{2}}{2}, 2 x_{2} x_{3}+x_{4}\right)$,
(c) $\Theta\left(z_{1}, x_{2}, x_{3}, x_{4}\right)=\left(1-4 z_{1}\right)^{-1 / 2} \Theta\left(\frac{z_{1}}{-4 z_{1}+1},-x_{2}+4 x_{3},-x_{3}, 4 x_{3}^{2}+x_{4}\right)$.

Proof. Observe

$$
\begin{aligned}
& \Theta\left(z_{1}+1, x_{2}, x_{3}, x_{4}\right) \\
& =\sum_{m \in \mathbb{Z}} e\left(-m^{2}\left(z_{1}+1\right)+2 m\left(-\left(z_{1}+1\right) x_{2}+x_{3}\right)-\left(\left(z_{1}+1\right) x_{2}^{2}+x_{4}\right)\right) \\
& =\sum_{m \in \mathbb{Z}} e\left(-m^{2} z_{1}+2 m\left(-z_{1} x_{2}+\left(x_{3}-x_{2}\right)\right)-\left(z_{1} x_{2}^{2}+\left(x_{2}^{2}+x_{4}\right)\right)\right) \\
& =\Theta\left(z_{1}, x_{2}, x_{3}-x_{2}, x_{2}^{2}+x_{4}\right) .
\end{aligned}
$$

This proves part (a).

If we set $z_{1}=-i y_{1}$ we find that

$$
\begin{aligned}
& \Theta\left(-i y_{1}, x_{2}, x_{3}, x_{4}\right) \\
& =\sum_{m \in \mathbb{Z}} e\left(m^{2} i y_{1}+2 m\left(i y_{1} x_{2}+x_{3}\right)-\left(-i y_{1} x_{2}^{2}+x_{4}\right)\right) \\
& =\exp \left(-2 \pi x_{2}^{2} y_{1}\right) e\left(-x_{4}\right) \sum_{m \in \mathbb{Z}} \exp \left(2 \pi\left(-m^{2} y_{1}-2 m x_{2} y_{1}\right)\right) e\left(2 m x_{3}\right) .
\end{aligned}
$$

Let $f(t)=\exp \left(2 \pi\left(-t^{2} y_{1}-2 t x_{2} y_{1}\right)\right) e\left(2 t x_{3}\right)$. By changing variables in t and utilizing the fact that the Gaussian function is its own Fourier transform, we find that

$$
\begin{aligned}
& \widehat{f}(\xi)=\int_{-\infty}^{\infty} \exp \left(2 \pi\left(-t^{2} y_{1}-2 t x_{2} y_{1}\right)\right) e\left(2 t x_{3}-t \xi\right) d t \\
& =\int_{-\infty}^{\infty} \exp \left(2 \pi\left(-t^{2} y_{1}+x_{2}^{2} y_{1}\right)\right) e\left(2 t x_{3}-2 x_{2} x_{3}-t \xi+x_{2} \xi\right) d t \\
& =e\left(-2 x_{2} x_{3}+x_{2} \xi\right) \exp \left(2 \pi x_{2}^{2} y_{1}\right) \int_{-\infty}^{\infty} \exp \left(-2 \pi y_{1} t^{2}\right) e\left(-\left(\xi-2 x_{3}\right) t\right) d t \\
& =e\left(-2 x_{2} x_{3}+x_{2} \xi\right) \exp \left(2 \pi x_{2}^{2} y_{1}\right)\left(2 y_{1}\right)^{-1 / 2} \exp \left(\frac{-\pi\left(\xi-2 x_{3}\right)^{2}}{2 y_{1}}\right) .
\end{aligned}
$$

By the Poisson summation formula, we obtain the following equality

$$
\begin{aligned}
& \Theta\left(-i y_{1}, x_{2}, x_{3}, x_{4}\right)=\exp \left(-2 \pi x_{2}^{2} y_{1}\right) e\left(-x_{4}\right) \sum_{m \in \mathbb{Z}} f(m)=\exp \left(-2 \pi x_{2}^{2} y_{1}\right) e\left(-x_{4}\right) \sum_{m \in \mathbb{Z}} \widehat{f}(m) \\
& =\exp \left(-2 \pi x_{2}^{2} y_{1}\right) e\left(-x_{4}\right) \sum_{m \in \mathbb{Z}} e\left(-2 x_{2} x_{3}+m x_{2}\right) \exp \left(2 \pi x_{2}^{2} y_{1}\right)\left(2 y_{1}\right)^{-1 / 2} \exp \left(\frac{-\pi\left(m-2 x_{3}\right)^{2}}{2 y_{1}}\right) \\
& =\left(2 y_{1}\right)^{-1 / 2} \sum_{m \in \mathbb{Z}} e\left(m x_{2}-\left(2 x_{2} x_{3}+x_{4}\right)\right) \exp \left(-\frac{\pi m^{2}}{2 y_{1}}+\frac{2 \pi m x_{3}}{y_{1}}-\frac{2 \pi x_{3}^{2}}{y_{1}}\right) \\
& =\left(2 y_{1}\right)^{-1 / 2} \sum_{m \in \mathbb{Z}} e\left(-m^{2} \frac{1}{4 i y_{1}}+2 m\left(-\frac{1}{4 i y_{1}}\left(-2 x_{3}\right)+\left(\frac{x_{2}}{2}\right)\right)\right) \\
& \quad \cdot e\left(-\left(\frac{1}{4 i y_{1}}\left(-2 x_{3}\right)^{2}+\left(2 x_{2} x_{3}+x_{4}\right)\right)\right) \\
& =\left(2 y_{1}\right)^{-1 / 2} \Theta\left(\frac{1}{4 i y_{1}},-2 x_{3}, \frac{x_{2}}{2}, 2 x_{2} x_{3}+x_{4}\right) .
\end{aligned}
$$

Part (b) follows by analytic continuation since we have proven part (b) for $z_{1}=-i y_{1}$ where $y_{1}>0$.

By applying parts (b), (a), and then (b) once more, we see that

$$
\begin{aligned}
\Theta & \Theta\left(z_{1}, x_{2}, x_{3}, x_{4}\right) \\
= & \left(2 i z_{1}\right)^{-1 / 2} \Theta\left(\frac{-1}{4 z_{1}},-2 x_{3}, \frac{x_{2}}{2}, 2 x_{2} x_{3}+x_{4}\right) \\
= & \left(2 i z_{1}\right)^{-1 / 2} \Theta\left(\frac{-1}{4 z_{1}}+1,-2 x_{3}, \frac{x_{2}}{2}-2 x_{3},-\left(-2 x_{3}\right)^{2}+2 x_{2} x_{3}+x_{4}\right) \\
= & \left(2 i z_{1}\right)^{-1 / 2}\left(2\left(\frac{-1}{4 z_{1}}+1\right) i\right)^{-1 / 2} \\
& \Theta\left(\frac{-1}{4\left(\frac{-1}{4 z_{1}}+1\right)},-2\left(\frac{x_{2}}{2}-2 x_{3}\right), \frac{-2 x_{3}}{2}, 2\left(-2 x_{3}\right)\left(\frac{x_{2}}{2}-2 x_{3}\right)+2 x_{2} x_{3}-\left(-2 x_{3}\right)^{2}+x_{4}\right) \\
= & \left(2 i z_{1}\right)^{-1 / 2}\left(2\left(\frac{-1}{4 z_{1}}+1\right) i\right)^{-1 / 2} \Theta\left(\frac{z_{1}}{-4 z_{1}+1},-x_{2}+4 x_{3},-x_{3}, 4 x_{3}^{2}+x_{4}\right) .
\end{aligned}
$$

If we set $z_{1}=-i y_{1}$ in the above equality, we find that

$$
\begin{aligned}
& \Theta\left(-i y_{1}, x_{2}, x_{3}, x_{4}\right) \\
& =\left(2 y_{1}\right)^{-1 / 2}\left(2\left(\frac{1}{4 i y_{1}}+1\right) i\right)^{-1 / 2} \Theta\left(\frac{-i y_{1}}{-4\left(-i y_{1}\right)+1},-x_{2}+4 x_{3},-x_{3}, 4 x_{3}^{2}+x_{4}\right) \\
& =\left(4 y_{1}\left(\frac{1}{4 i y_{1}}+1\right) i\right)^{-1 / 2} \Theta\left(\frac{-i y_{1}}{-4\left(-i y_{1}\right)+1},-x_{2}+4 x_{3},-x_{3}, 4 x_{3}^{2}+x_{4}\right) \\
& =\left(1+4 i y_{1}\right)^{-1 / 2} \Theta\left(\frac{-i y_{1}}{-4\left(-i y_{1}\right)+1},-x_{2}+4 x_{3},-x_{3}, 4 x_{3}^{2}+x_{4}\right) .
\end{aligned}
$$

Since this proves part (c) for $z_{1}=-i y_{1}$ where $y_{1}>0$, it follows by analytic continuation that part (c) holds for all z_{1}.

To define our θ distribution as an element of $V_{(-1), \frac{1}{2}}^{-\infty}(\widetilde{J})$, it will be helpful to consider an alternative unbounded realization for $V_{(-1), \frac{1}{2}}^{-\infty}(\widetilde{J})$. Let

$$
\Omega=\widetilde{a}_{2}^{-1} \widetilde{s}=\widetilde{s a}_{2}=\left(\left(\begin{array}{cc}
0 & -2^{-1} \tag{3.39}\\
2 & 0
\end{array}\right), 1\right),
$$

and let $f \in V_{(-1), \frac{1}{2}}^{-\infty}(\widetilde{J})$. Recall that associated to $f \in V_{(-1), \frac{1}{2}}^{-\infty}(\widetilde{J})$ is a distributional section s_{f} of a vector bundle over $\widetilde{J} / B(\widetilde{J})$. Let f_{0} denote the restriction of s_{f} to $N(\widetilde{J})$, and let $f_{2 \infty}$ denote the restriction of s_{f} to $\Omega^{-1} N(\widetilde{J})$. Since $N(\widetilde{J})$ and $\Omega^{-1} N(\widetilde{J})$ cover $\widetilde{J} / B(\widetilde{J})$, it follows that f is completely determined by f_{0} and $f_{2 \infty}$. Since for $x_{1} \neq 0$, we have

$$
\begin{aligned}
& \Omega^{-1} X_{6} X_{5} X_{4} X_{3} X_{2} X_{1} \\
& =R_{6}\left(\frac{1}{2}\left(3 x_{2}^{2} x_{3}+x_{5}\right)\right) R_{5}\left(-2\left(3 x_{2} x_{3}^{2}+x_{6}\right)\right) R_{4}\left(2 x_{2} x_{3}+x_{4}\right) R_{3}\left(\frac{x_{2}}{2}\right) R_{3}\left(-2 x_{3}\right) \\
& \quad R_{1}\left(\frac{-1}{4 x_{1}}\right) \widetilde{a}_{2 x_{1}}^{-1} \widetilde{m}_{\operatorname{sgn}\left(-x_{1}\right), \operatorname{sgn}\left(-x_{1}\right), 1} \widetilde{n}_{-},
\end{aligned}
$$

where $\widetilde{n}_{-} \in N_{-}(\widetilde{J})$, it follows that

$$
\begin{align*}
& f_{2 \infty}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \tag{3.40}\\
& =\operatorname{sgn}\left(-x_{1}\right)^{-1 / 2}\left|2 x_{1}\right|^{-1 / 2} f_{0}\left(\frac{-1}{4 x_{1}},-2 x_{3}, \frac{x_{2}}{2}, 2 x_{2} x_{3}+x_{4},-2\left(3 x_{2} x_{3}^{2}+x_{6}\right), \frac{1}{2}\left(3 x_{2}^{2} x_{3}+x_{5}\right)\right)
\end{align*}
$$

as an equality between distributions on $\mathbb{R}_{\neq 0} \times \mathbb{R}^{5}$. Conversely, when given distributions $f_{0}, f_{2 \infty} \in$ $C^{-\infty}(\mathbb{R})$ which satisfy (3.40), one can define a unique element $f \in V_{(-1), \nu}^{-\infty}(\widetilde{J})$. Thus

$$
\begin{align*}
& V_{(-1), \nu}^{-\infty}(\widetilde{J}) \tag{3.41}\\
& \cong\left\{\left(f_{0}, f_{2 \infty}\right) \in C^{-\infty}(\mathbb{R})^{2}: f_{0} \text { and } f_{2 \infty} \text { satsify }(3.40) \text { as distributions on } \mathbb{R}_{\neq 0}\right\}
\end{align*}
$$

Let $\theta_{0} \in C^{-\infty}\left(\mathbb{R}^{6}\right)$ denote the distribution

$$
\begin{equation*}
\theta_{0}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)=\sum_{m \in \mathbb{Z}} e\left(-m^{2} x_{1}+2 m\left(-x_{1} x_{2}+x_{3}\right)-\left(x_{1} x_{2}^{2}+x_{4}\right)\right) \tag{3.42}
\end{equation*}
$$

Notice that θ_{0} has no x_{5} or x_{6} variables in its definitions; we include these variables in our notation to make it clear that we can also identify θ_{0} as a distribution on $N(\widetilde{J}) \cong \mathbb{R}^{6}$. Let $\theta_{2 \infty} \in C^{-\infty}(\mathbb{R})$ denote the distribution

$$
\begin{equation*}
\theta_{2 \infty}=e(-1 / 8) \theta_{0} \tag{3.43}
\end{equation*}
$$

We wish to show that the pair $\left(\theta_{0}, \theta_{2 \infty}\right)$ defines an element of $V_{(-1), \frac{1}{2}}^{-\infty}(\widetilde{J})$ via the isomorphism (3.41). To do this, observe that as $y_{1} \rightarrow 0$ we have that $\Theta\left(z_{1}, x_{2}, x_{3}, x_{4}\right) \rightarrow \theta_{0}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ for $z_{1}=x_{1}-i y_{1}$. Therefore by Proposition $3.2(\mathrm{~b})$, when we let $y_{1} \rightarrow 0$, we find that

$$
\begin{aligned}
& \theta_{0}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \\
& =\left(\lim _{y_{1} \rightarrow 0}\left(2 z_{1} i\right)^{-1 / 2}\right) \theta_{0}\left(\frac{-1}{4 x_{1}},-2 x_{3}, \frac{x_{2}}{2}, x_{4}+2 x_{2} x_{3},-2\left(3 x_{2} x_{3}^{2}+x_{6}\right), \frac{1}{2}\left(3 x_{2}^{2} x_{3}+x_{5}\right)\right) .
\end{aligned}
$$

Observe that for $x_{1} \neq 0$,

$$
\lim _{y_{1} \rightarrow 0}\left(2 z_{1} i\right)^{-1 / 2}= \begin{cases}\left|2 x_{1}\right|^{-1 / 2} e(-1 / 8) & \text { if } x_{1}>0 \\ \left|2 x_{1}\right|^{-1 / 2} e(1 / 8) & \text { if } x_{1}<0\end{cases}
$$

Thus for $x_{1} \neq 0$,

$$
\begin{aligned}
& \theta_{2 \infty}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)=e(-1 / 8) \theta_{0}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \\
& =\operatorname{sgn}\left(-x_{1}\right)^{-1 / 2}\left|2 x_{1}\right|^{-1 / 2} \theta_{0}\left(\frac{-1}{4 x_{1}},-2 x_{3}, \frac{x_{2}}{2}, x_{4}+2 x_{2} x_{3},-2\left(3 x_{2} x_{3}^{2}+x_{6}\right), \frac{1}{2}\left(3 x_{2}^{2} x_{3}+x_{5}\right)\right) .
\end{aligned}
$$

Therefore by (3.41), it follows that $\left(\theta_{0}, \theta_{2 \infty}\right)$ defines a unique element $\theta \in V_{(-1), \nu}^{-\infty}(\widetilde{J})$. Let s_{θ} denote the distributional section corresponding to θ. As our notation suggests, it follows that
if we restrict s_{θ} to $N(\widetilde{J}) \cong \mathbb{R}^{6}$, we obtain our originally defined θ_{0} given in (3.42). Likewise, if we restrict s_{θ} to $\Omega^{-1} N(\widetilde{J}) \cong \mathbb{R}^{6}$, we obtain our originally defined $\theta_{2 \infty}$ given in (3.43). Also note that by (3.34), it follows that θ can also be thought of as an element of $V_{(-1,1), \frac{1}{2}}^{-\infty}\left(\widetilde{J^{ \pm}}\right)$.

Let

$$
\widetilde{\Gamma}_{1}(4)=\left\{\left(\left(\begin{array}{ll}
a & b \tag{3.44}\\
c & d
\end{array}\right),\left(\frac{c}{d}\right)\right) \in \widetilde{\mathrm{SL}_{2}^{ \pm}}: a, b, c, d \in \mathbb{Z}, a \equiv d \equiv 1(\bmod 4), c \equiv 0(\bmod 4)\right\}
$$

where (\vdots) is the Kronecker symbol; see Proposition 4.2 for some properties of the Kronecker symbol. One can show that $\widetilde{\Gamma}_{1}(4)$ is a well-defined subgroup of $\widetilde{\mathrm{SL}}_{2}$. We also let $\widetilde{\Gamma}_{1}(4)$ denote $\iota\left(\widetilde{\Gamma}_{1}(4)\right) \subset \widetilde{J}$. Let

$$
\begin{equation*}
\widetilde{J}_{\mathbb{Z}}=U_{\mathbb{Z}}(4) \cdot \widetilde{\Gamma}_{1}(4), \text { where } U_{\mathbb{Z}}(4)=\left\langle N_{2}^{2}, N_{3}, N_{4}, N_{5}^{2}, N_{6}\right\rangle \tag{3.45}
\end{equation*}
$$

(recall that $\left.N_{i}=R_{i}(1)\right)$.
Theorem 3.3. θ is $\widetilde{J}_{\mathbb{Z}}$-invariant

Proof. Recall that $h_{\psi ; 0,0,-1,0,0}$ is defined in (2.88). Observe that θ_{0} is of the form $h_{\psi ; 0,0,-1,0,0}$ with $\psi=1$. In subsection 2.6 .2 we showed that such $h_{\psi ; 0,0,-1,0,0}$ is $N_{\mathbb{Z}}$-invariant. ${ }^{5}$ Therefore θ_{0} is $N_{\mathbb{Z}}$-invariant, and hence θ_{0} is N_{1} and $U_{\mathbb{Z}}(4)$-invariant.

Next, observe that for $x_{1} \neq \frac{1}{4}$,

$$
\begin{aligned}
& \Omega N_{1} \Omega^{-1} X_{6} X_{5} X_{4} X_{3} X_{2} X_{1} \\
& =R_{6}\left(8 x_{3}^{3}+x_{6}\right) R_{5}\left(-16 x_{3}^{3}+x_{5}-4 x_{6}\right) R_{4}\left(4 x_{3}^{2}+x_{4}\right) X_{3} R_{2}\left(x_{2}-4 x_{3}\right) \\
& \quad R_{1}\left(\frac{x_{1}}{-4 x_{1}+1}\right) \widetilde{a}_{\left|1-4 x_{1}\right|}^{-1} \widetilde{m}_{\operatorname{sgn}\left(1-4 x_{1}\right), \operatorname{sgn}\left(1-4 x_{1}\right), 1} \tilde{n}_{-},
\end{aligned}
$$

where $\widetilde{n}_{-} \in N_{-}(\widetilde{J})$. Therefore by the transformation law for $V_{(-1), \frac{1}{2}}^{-\infty}(\widetilde{J})$, we find that for $x_{1} \neq \frac{1}{4}$,

$$
\begin{aligned}
& \left(\pi\left(\Omega N_{1} \Omega^{-1}\right)^{-1} \theta\right)_{0}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \\
& =\left|1-4 x_{1}\right|^{-1 / 2} \operatorname{sgn}\left(1-4 x_{1}\right)^{-1 / 2} \\
& \quad \theta_{0}\left(\frac{x_{1}}{-4 x_{1}+1}, x_{2}-4 x_{3}, x_{3}, 4 x_{3}^{2}+x_{4},-16 x_{3}^{3}+x_{5}-4 x_{6}, 8 x_{3}^{3}+x_{6}\right)
\end{aligned}
$$

Since $\Theta\left(z_{1}, x_{2}, x_{3}, x_{4}\right)=\Theta\left(z_{1},-x_{2},-x_{3}, x_{4}\right)$ (this can be seen directly from the definition of Θ by applying the change of index $m \mapsto-m$), it follows from part (c) of Proposition 3.2 that

$$
\Theta\left(z_{1}, x_{2}, x_{3}, x_{4}\right)=\left(1-4 z_{1}\right)^{-1 / 2} \Theta\left(\frac{z_{1}}{-4 z_{1}+1}, x_{2}-4 x_{3}, x_{3}, 4 x_{3}^{2}+x_{4}\right)
$$

[^7]Since

$$
\lim _{y_{1} \rightarrow 0}\left(1-4 z_{1}\right)^{-1 / 2}= \begin{cases}\left|1-4 x_{1}\right|^{-1 / 2} & \text { if } 1-4 x_{1}>0 \\ (-i)\left|1-4 x_{1}\right|^{-1 / 2} & \text { if } 1-4 x_{1}<0\end{cases}
$$

then for $x_{1} \neq \frac{1}{4}$,

$$
\begin{aligned}
& \theta_{0}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \\
& =\left|1-4 x_{1}\right|^{-1 / 2} \operatorname{sgn}\left(1-4 x_{1}\right)^{-1 / 2} \\
& \quad \theta_{0}\left(\frac{x_{1}}{1-4 x_{1}}, x_{2}-4 x_{3}, x_{3}, 4 x_{3}^{2}+x_{4},-16 x_{3}^{3}+x_{5}-4 x_{6}, 8 x_{3}^{3}+x_{6}\right) .
\end{aligned}
$$

Thus for $x_{1} \neq \frac{1}{4}$,

$$
\left(\pi\left(\Omega N_{1} \Omega^{-1}\right)^{-1} \theta\right)_{0}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)=\theta_{0}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) .
$$

Since $\widetilde{\Gamma}_{1}(4)$ is generated by N_{1} and $\Omega N_{1} \Omega^{-1}$, it follows that θ_{0} is $\widetilde{J}_{\mathbb{Z}}$ invariant for $x_{1} \neq \frac{1}{4}$.
In what follows we will let π denote the left regular representation on $V_{(-1), \frac{1}{2}}^{-\infty}(\widetilde{J})$. Suppose $Q_{6} Q_{5} Q_{4} Q_{3} Q_{2} \in U_{\mathbb{Z}}(4)$. Since $\pi\left(Q_{6} Q_{5} Q_{4} Q_{3} Q_{2}\right)^{-1} \theta \in V_{(-1), \frac{1}{2}}^{-\infty}$ then there exists a distributional section $s_{\pi\left(Q_{6} Q_{5} Q_{4} Q_{3} Q_{2}\right)^{-1} \theta}$ of a line bundle over $\widetilde{J} / B(\widetilde{J})$ corresponding to $\pi\left(Q_{6} Q_{5} Q_{4} Q_{3} Q_{2}\right)^{-1} \theta$. Recall from section 1.2 that

$$
s_{\pi\left(Q_{6} Q_{5} Q_{4} Q_{3} Q_{2}\right)^{-1} \theta}(\widetilde{j} B(\widetilde{J}))=s_{\theta}\left(Q_{6} Q_{5} Q_{4} Q_{3} Q_{2} \widetilde{j} B(\widetilde{J})\right), \text { where } \widetilde{j} B(\widetilde{J}) \in \widetilde{J} / B(\widetilde{J}) \text {, }
$$

and s_{θ} is the distributional section corresponding to θ. Recall that $\left(\pi\left(Q_{6} Q_{5} Q_{4} Q_{3} Q_{2}\right)^{-1} \theta\right)_{2 \infty}$ is simply the restriction of $s_{\pi\left(Q_{6} Q_{5} Q_{4} Q_{3} Q_{2}\right)^{-1} \theta}$ to $\Omega^{-1} N(\widetilde{J})$, where we identify $\Omega^{-1} N(\widetilde{J})$ as a subset of $\widetilde{J} / B(\widetilde{J})$. Therefore, since

$$
\begin{aligned}
& Q_{6} Q_{5} Q_{4} Q_{3} Q_{2} \Omega^{-1} \\
& =\Omega^{-1} R_{6}\left(\frac{1}{2}\left(-3 q_{2}^{2} q_{3}-q_{5}\right)\right) R_{5}\left(2\left(3 q_{2} q_{3}^{2}+q_{6}\right)\right) R_{4}\left(2 q_{2} q_{3}+q_{4}\right) R_{3}\left(-\frac{q_{2}}{2}\right) R_{2}\left(2 q_{3}\right)
\end{aligned}
$$

it follows that

$$
\begin{aligned}
& \left(\pi\left(Q_{6} Q_{5} Q_{4} Q_{3} Q_{2}\right)^{-1} \theta\right)_{2 \infty}\left(X_{6} X_{5} X_{4} X_{3} X_{2} X_{1}\right) \\
& =s_{\pi\left(Q_{6} Q_{5} Q_{4} Q_{3} Q_{2}\right)^{-1} \theta\left(\Omega^{-1} X_{6} X_{5} X_{4} X_{3} X_{2} X_{1}\right)}^{=} \begin{array}{l}
\theta \\
= \\
\left.=Q_{6} Q_{5} Q_{4} Q_{3} Q_{2} \Omega^{-1} X_{6} X_{5} X_{4} X_{3} X_{2} X_{1}\right) \\
\quad R_{6}\left(\frac{1}{2}\left(-3 q_{2}^{2} q_{3}-q_{5}\right)\right) R_{5}\left(2\left(3 q_{2} q_{3}^{2}+q_{6}\right)\right) R_{4}\left(2 q_{2} q_{3}+q_{4}\right) R_{3}\left(-\frac{q_{2}}{2}\right) R_{2}\left(2 q_{3}\right) \\
=\theta_{2 \infty}\left(R_{6}\left(\frac{1}{2}\left(-3 q_{2}^{2} q_{3}-q_{5}\right)\right) R_{5}\left(2\left(3 q_{2} q_{3}^{2}+q_{6}\right)\right) R_{4}\left(2 q_{2} q_{3}+q_{4}\right) R_{3}\left(-\frac{q_{2}}{2}\right) R_{2}\left(2 q_{3}\right)\right. \\
\left.\quad X_{6} X_{5} X_{4} X_{3} X_{2} X_{1}\right) .
\end{array} .
\end{aligned}
$$

Since $Q_{6} Q_{5} Q_{4} Q_{3} Q_{1} \in U_{\mathbb{Z}}(4)$ then

$$
R_{6}\left(\frac{1}{2}\left(-3 q_{2}^{2} q_{3}-q_{5}\right)\right) R_{5}\left(2\left(3 q_{2} q_{3}^{2}+q_{6}\right)\right) R_{4}\left(2 q_{2} q_{3}+q_{4}\right) R_{3}\left(-\frac{q_{2}}{2}\right) R_{2}\left(2 q_{3}\right) \in N_{\mathbb{Z}} .
$$

Therefore, by (3.43) and the $N_{\mathbb{Z}}$-invariance of θ_{0} it follows that

$$
\begin{aligned}
& \left(\pi\left(Q_{6} Q_{5} Q_{4} Q_{3} Q_{2}\right)^{-1} \theta\right)_{2 \infty}\left(X_{6} X_{5} X_{4} X_{3} X_{2} X_{1}\right) \\
& =e(-1 / 8) \theta_{0}\left(R_{6}\left(\frac{1}{2}\left(-3 q_{2}^{2} q_{3}-q_{5}\right)\right) R_{5}\left(2\left(3 q_{2} q_{3}^{2}+q_{6}\right)\right) R_{4}\left(2 q_{2} q_{3}+q_{4}\right) R_{3}\left(-\frac{q_{2}}{2}\right)\right. \\
& \left.\quad R_{2}\left(2 q_{3}\right) X_{6} X_{5} X_{4} X_{3} X_{2} X_{1}\right) \\
& =e(-1 / 8) \theta_{0}\left(X_{6} X_{5} X_{4} X_{3} X_{2} X_{1}\right)=\theta_{2 \infty}\left(X_{6} X_{5} X_{4} X_{3} X_{2} X_{1}\right) .
\end{aligned}
$$

Thus $\theta_{2 \infty}$ is $U_{Z}(4)$-invariant.
Likewise, since

$$
N_{1} \Omega^{-1}=\Omega^{-1}\left(\Omega N_{1} \Omega^{-1}\right) \text { and }\left(\Omega N_{1} \Omega^{-1}\right) \Omega^{-1}=\Omega^{-1} N_{1}
$$

it follows from (3.43) and the N_{1} and $\Omega N_{1} \Omega^{-1}$-invariance of $\theta_{0}\left(\right.$ for $\left.x_{1} \neq \frac{1}{4}\right)$, that

$$
\begin{aligned}
& \left(\pi\left(N_{1}\right)^{-1} \theta\right)_{2 \infty}\left(X_{6} X_{5} X_{4} X_{3} X_{2} X_{1}\right)=s_{\pi\left(N_{1}\right)^{-1} \theta}\left(\Omega^{-1} X_{6} X_{5} X_{4} X_{3} X_{2} X_{1}\right) \\
& =s_{\theta}\left(N_{1} \Omega^{-1} X_{6} X_{5} X_{4} X_{3} X_{2} X_{1}\right)=s_{\theta}\left(\Omega^{-1}\left(\Omega N_{1} \Omega^{-1}\right) X_{6} X_{5} X_{4} X_{3} X_{2} X_{1}\right) \\
& =\theta_{2 \infty}\left(\left(\Omega N_{1} \Omega^{-1}\right) X_{6} X_{5} X_{4} X_{3} X_{2} X_{1}\right)=e(-1 / 8) \theta_{0}\left(\left(\Omega N_{1} \Omega^{-1}\right) X_{6} X_{5} X_{4} X_{3} X_{2} X_{1}\right) \\
& =e(-1 / 8) \theta_{0}\left(X_{6} X_{5} X_{4} X_{3} X_{2} X_{1}\right)=\theta_{2 \infty}\left(X_{6} X_{5} X_{4} X_{3} X_{2} X_{1}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(\pi\left(\Omega N_{1} \Omega^{-1}\right)^{-1} \theta\right)_{2 \infty}\left(X_{6} X_{5} X_{4} X_{3} X_{2} X_{1}\right)=s_{\pi\left(\Omega N_{1} \Omega^{-1}\right)^{-1} \theta}\left(\Omega^{-1} X_{6} X_{5} X_{4} X_{3} X_{2} X_{1}\right) \\
& =s_{\theta}\left(\Omega N_{1} \Omega^{-1} \Omega^{-1} X_{6} X_{5} X_{4} X_{3} X_{2} X_{1}\right)=s_{\theta}\left(\Omega^{-1} N_{1} X_{6} X_{5} X_{4} X_{3} X_{2} X_{1}\right) \\
& =\theta_{2 \infty}\left(N_{1} X_{6} X_{5} X_{4} X_{3} X_{2} X_{1}\right)=e(-1 / 8) \theta_{0}\left(N_{1} X_{6} X_{5} X_{4} X_{3} X_{2} X_{1}\right) \\
& =e(-1 / 8) \theta_{0}\left(X_{6} X_{5} X_{4} X_{3} X_{2} X_{1}\right)=\theta_{2 \infty}\left(X_{6} X_{5} X_{4} X_{3} X_{2} X_{1}\right),
\end{aligned}
$$

for $x_{1} \neq \frac{1}{4}$. Thus $\theta_{2 \infty}$ is N_{1} and $\Omega N_{1} \Omega^{-1}$-invariant for $x_{1} \neq \frac{1}{4}$. Since

$$
\begin{aligned}
& \left\{\Omega^{-1} X_{6} X_{5} X_{4} X_{3} X_{2} X_{1}:\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \in \mathbb{R}_{\neq \frac{1}{4}} \times \mathbb{R}^{5}\right\} \\
& \bigcup\left\{X_{6} X_{5} X_{4} X_{3} X_{2} X_{1}:\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \in \mathbb{R}_{\neq \frac{1}{4}} \times \mathbb{R}^{5}\right\}
\end{aligned}
$$

covers $\widetilde{J} / B(\widetilde{J})$, it follows that θ is $\widetilde{J}_{\mathbb{Z}}$-invariant.

Chapter 4

Metaplectic Eisenstein Distributions

4.1 The Metaplectic Eisenstein Distribution at ∞

In this chapter we will define distributional analogues of the metaplectic Eisenstein series, which we shall refer to as metaplectic Eisenstein distributions. Additionally, we will prove that such distributions have meromorphic continuation to \mathbb{C}, and prove that there exists a functional equation between these metaplectic Eisenstein distributions.

We will define our metaplectic Eisenstein distributions to be elements of the space $V_{(\epsilon), \nu}^{-\infty}\left(\widetilde{\mathrm{SL}_{2}}\right)$, where $\epsilon= \pm 1$. Recall that by definition,

$$
\begin{align*}
& V_{(\epsilon), \nu}^{-\infty}\left(\widetilde{\mathrm{SL}}_{2}\right) \\
& =\left\{f \in C^{-\infty}\left(\widetilde{\mathrm{SL}}_{2}, \mathbb{C}\right): f(\widetilde{g} \widetilde{b})=\omega_{(\epsilon), \nu}\left(\widetilde{b}^{-1}\right) f(\widetilde{g}) \text { for all } \widetilde{g} \in \widetilde{\mathrm{SL}}_{2}, \widetilde{b} \in B\left(\widetilde{\mathrm{SL}}_{2}\right)\right\}, \tag{4.1}
\end{align*}
$$

where $\omega_{(\epsilon), \nu}$ is defined in (3.14). Also recall that $V_{(\epsilon), \nu}^{-\infty}\left(\widetilde{\mathrm{SL}_{2}}\right)$ comes equipped with the left regular representation, which we shall denote by π. In the following lemma we give explicit formulas for $(\pi(\widetilde{g}) f)_{0}$ and $(\pi(\widetilde{g}) f)_{\infty}$ in terms of f_{0} and f_{∞}, where $f \in V_{(\epsilon), \nu}^{-\infty}\left(\widetilde{\mathrm{SL}_{2}}\right)$; see section 3.1 for the definitions of these terms. In the statement of the following lemma, we will use the following simple fact: if $a, b, c, d \in \mathbb{R}, \kappa \in\{ \pm 1\}$ then there exists $\kappa^{\prime} \in\{ \pm 1\}$ such that

$$
\left(\left(\begin{array}{ll}
a & b \tag{4.2}\\
c & d
\end{array}\right), \kappa\right) \widetilde{s}^{-1}=\widetilde{s}^{-1}\left(\left(\begin{array}{cc}
d & -c \\
-b & a
\end{array}\right), \kappa^{\prime}\right)
$$

where $\widetilde{s}=\left(\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right), 1\right)$ as defined in (3.7).
Lemma 4.1. Let $f \in V_{(\epsilon), \nu}^{-\infty}\left(\widetilde{S L}_{2}\right)$ and $\widetilde{g}^{-1}=\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), \kappa\right) \in \widetilde{S L}_{2}$.
(a) If $c \neq 0$ then

$$
(\pi(\widetilde{g}) f)_{0}(x)=\kappa(-c, c x+d)_{H}|c x+d|^{\nu-1} \operatorname{sgn}(c x+d)^{\epsilon / 2} f_{0}\left(\frac{a x+b}{c x+d}\right)
$$

as an equality between distributions on $\mathbb{R}_{\neq \frac{-d}{c}}$.
(b) If $c=0$ then

$$
(\pi(\widetilde{g}) f)_{0}(x)=\kappa|d|^{\nu-1} \operatorname{sgn}(d)^{\epsilon / 2} f_{0}\left(\frac{x}{d^{2}}+\frac{b}{d}\right),
$$

as an equality between distributions on \mathbb{R}.
(c) If $b \neq 0$ then

$$
(\pi(\widetilde{g}) f)_{\infty}(x)=\kappa^{\prime}(b,-b x+a)_{H}|-b x+a|^{\nu-1} \operatorname{sgn}(-b x+a)^{\epsilon / 2} f_{\infty}\left(\frac{d x-c}{-b x+a}\right)
$$ as an equality between distributions on $\mathbb{R}_{\neq \frac{a}{b}}$.

(d) If $b=0$ then

$$
(\pi(\widetilde{g}) f)_{\infty}(x)=\kappa^{\prime}|a|^{\nu-1} \operatorname{sgn}(a)^{\epsilon / 2} f_{\infty}\left(\frac{x}{a^{2}}-\frac{c}{a}\right),
$$

as an equality between distributions on \mathbb{R}.
Recall that κ^{\prime} is defined according to (4.2).
Proof. Observe that for $c \neq 0$ and $x \neq \frac{-d}{c}$, we have

$$
\begin{aligned}
\widetilde{g}^{-1} & \left(\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right), 1\right)=\left(\left(\begin{array}{ll}
a & a x+b \\
c & c x+d
\end{array}\right), 1\right) \cdot\left(\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \kappa\right) \\
= & \left(\left(\begin{array}{ll}
1 & \frac{a x+b}{c x+d} \\
0 & 1
\end{array}\right), 1\right) \cdot\left(\left(\begin{array}{cc}
\operatorname{sgn}(c x+d) & 0 \\
0 & \operatorname{sgn}(c x+d)
\end{array}\right),(-c, c x+d)_{H}\right) \\
& \cdot\left(\left(\begin{array}{cc}
|c x+d|^{-1} & 0 \\
0 & |c x+d|
\end{array}\right), 1\right) \cdot\left(\left(\begin{array}{cc}
1 & 0 \\
\frac{c}{c x+d} & 1
\end{array}\right), 1\right) \cdot\left(\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \kappa\right) .
\end{aligned}
$$

Notice that

$$
\left(\left(\begin{array}{cc}
\operatorname{sgn}(c x+d) & 0 \\
0 & \operatorname{sgn}(c x+d)
\end{array}\right),(-c, c x+d)_{H}\right)
$$

is an element of $M\left(\widetilde{\mathrm{SL}}_{2}\right)$. By utilizing the transformation law for $V_{(\epsilon), \nu}^{-\infty}\left(\widetilde{\mathrm{SL}}_{2}\right)$ (given in (4.1)), we find that

$$
(\pi(\widetilde{g}) f)_{0}(x)=\kappa(-c, c x+d)_{H}|c x+d|^{\nu-1} \operatorname{sgn}(c x+d)^{\epsilon / 2} f_{0}\left(\frac{a x+b}{c x+d}\right)
$$

as an equality between distributions on $\mathbb{R}_{\neq \frac{-d}{c}}$. Similarly, when $c=0$ (which implies that $a=d^{-1} \neq 0$) we see that

$$
\begin{aligned}
& \tilde{g}^{-1} \cdot\left(\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right), 1\right)=\left(\left(\begin{array}{cc}
d^{-1} & \frac{x}{d}+b \\
0 & d
\end{array}\right), 1\right) \cdot\left(\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \kappa\right) \\
& =\left(\left(\begin{array}{ll}
1 & \frac{x}{d^{2}}+\frac{b}{d} \\
0 & 1
\end{array}\right), 1\right) \cdot\left(\left(\begin{array}{cc}
\operatorname{sgn}(d) & 0 \\
0 & \operatorname{sgn}(d)
\end{array}\right), 1\right) \cdot\left(\left(\begin{array}{cc}
|d|^{-1} & 0 \\
0 & |d|
\end{array}\right), 1\right) \cdot\left(\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \kappa\right) .
\end{aligned}
$$

Thus

$$
(\pi(\widetilde{g}) f)_{0}(x)=\kappa|d|^{\nu-1} \operatorname{sgn}(d)^{\epsilon / 2} f_{0}\left(\frac{x}{d^{2}}+\frac{b}{d}\right)
$$

as an equality between distributions on \mathbb{R}. This proves parts (a) and (b).
Recall that by (4.2) we have

$$
\begin{aligned}
& \left(\pi\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), \kappa\right)^{-1} f\right)_{\infty}(x)=s_{f}\left(\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), \kappa\right) \widetilde{s}^{-1} \widetilde{n}_{x} B\left(\widetilde{\mathrm{SL}}_{2}\right)\right) \\
& =s_{f}\left(\widetilde{s}^{-1}\left(\left(\begin{array}{cc}
d & -c \\
-b & a
\end{array}\right), \kappa^{\prime}\right) \widetilde{n}_{x} B\left(\widetilde{\mathrm{SL}_{2}}\right)\right),
\end{aligned}
$$

where s_{f} is the distributional section of a vector bundle over $\widetilde{\mathrm{SL}}_{2} / B\left(\widetilde{\mathrm{SL}}_{2}\right)$ which corresponds to f; see section 1.2 for more details on this correspondence. Thus we can repeat the argument in the prior paragraph with $\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), \kappa\right)$ replaced by $\left(\left(\begin{array}{cc}d & -c \\ -b & a\end{array}\right), \kappa^{\prime}\right)$ to prove the remainder of our lemma.

Recall that in (3.44) we defined

$$
\widetilde{\Gamma}_{1}(4)=\left\{\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right),\left(\frac{c}{d}\right)\right) \in \widetilde{\mathrm{SL}_{2}^{ \pm}}: a, b, c, d \in \mathbb{Z}, a \equiv d \equiv 1(\bmod 4), c \equiv 0(\bmod 4)\right\}
$$

where (\vdots) is the Kronecker symbol. One can show that $\widetilde{\Gamma}_{1}(4)$ is a well-defined subgroup of $\widetilde{S L}_{2}$. Since we will be performing several computations involving the Kronecker symbol, we state (without proof) some of its important properties. More information about the Kronecker symbol can be found in $[1, \S 3.4 .3],[4, \S 5]$.

Proposition 4.2 (Properties of the Kronecker Symbol). Let $a, b, m, n \in \mathbb{Z}$.

- If p is an odd prime then

$$
\left(\frac{a}{p}\right)= \begin{cases}0 & \text { if } a \equiv 0(\bmod p), \\ 1 & \text { if there exists } x \in \mathbb{Z} \text { such that } x^{2} \equiv a(\bmod p), \\ -1 & \text { if there are no solutions to } x^{2} \equiv a(\bmod p)\end{cases}
$$

- $\left(\frac{a}{2}\right)= \begin{cases}0 & \text { if } a \equiv 0(\bmod 2), \\ 1 & \text { if } a \equiv 1,7(\bmod 8) . \\ -1 & \text { if } a \equiv 3,5(\bmod 8)\end{cases}$
- $\left(\frac{a}{1}\right)=1, \quad\left(\frac{a}{-1}\right)=\left\{\begin{array}{ll}-1 & \text { if } a<0, \\ 1 & \text { if } a \geq 0,\end{array} \quad\right.$ and $\left(\frac{a}{0}\right)= \begin{cases}1 & \text { if } a= \pm 1 \\ 0 & \text { otherwise } .\end{cases}$
- If $n= \pm p_{1}^{e_{1}} \cdots p_{k}^{e_{k}}$ is the prime factorization of n then

$$
\left(\frac{a}{n}\right)=\left(\frac{a}{ \pm 1}\right)\left(\frac{a}{p_{1}}\right)^{e_{1}} \cdots\left(\frac{a}{p_{k}}\right)^{e_{k}}
$$

- If $a b \neq 0$ and $n \neq-1$ then $\left(\frac{a}{n}\right)\left(\frac{b}{n}\right)=\left(\frac{a b}{n}\right)$.
- If $m n \neq 0$ and $a \neq-1$ then $\left(\frac{a}{m}\right)\left(\frac{a}{n}\right)=\left(\frac{a}{m n}\right)$.
- If $n>0$ then $\left(\frac{a}{n}\right)=\left(\frac{b}{n}\right)$ if $a \equiv b(\bmod m)$ where $m= \begin{cases}4 n & \text { if } n \equiv 2(\bmod 4), \\ n & \text { otherwise. }\end{cases}$
- If $a \not \equiv 3(\bmod 4)$ and $a \neq 0$ then $\left(\frac{a}{m}\right)=\left(\frac{a}{n}\right)$ if $m \equiv n(\bmod c)$ where
$c= \begin{cases}4 a & \text { if } a \equiv 2(\bmod 4), \\ a & \text { otherwise } .\end{cases}$
- If p, q are positive odd integers then $\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\frac{(p-1)(q-1)}{4}}$.

Let δ_{0} denote the Dirac distribution on \mathbb{R} centered at zero. By (3.16), the pair $\left(\delta_{0}, 0\right)$ defines an element of $V_{(\epsilon), \nu}^{-\infty}\left(\widetilde{\mathrm{SL}_{2}}\right)$. We abuse notation by writing this element of $V_{(\epsilon), \nu}^{-\infty}\left(\widetilde{\mathrm{SL}_{2}}\right)$ as δ_{0}. Let $\delta_{\infty}=\pi(\widetilde{s}) \delta_{0}$, where

$$
\widetilde{s}=\left(\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), 1\right)
$$

Observe that

$$
\begin{equation*}
\left(\delta_{\infty}\right)_{0}=0 \text { and }\left(\delta_{\infty}\right)_{\infty}=-\epsilon i \delta_{0} \tag{4.3}
\end{equation*}
$$

Lemma 4.3. Let $\widetilde{\gamma}^{-1}=\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right),\left(\frac{c}{d}\right)\right) \in \widetilde{\Gamma}_{1}(4)$.
(a) We have

$$
\left(\pi(\widetilde{\gamma}) \delta_{\infty}\right)_{0}= \begin{cases}\left(\frac{c}{d}\right)|c|^{-\nu-1} \operatorname{sgn}(c)^{\epsilon / 2} \delta_{-d / c} & \text { if } c \neq 0 \\ 0 & \text { if } c=0\end{cases}
$$

as an equality between distributions on \mathbb{R}.
(b) We have

$$
\left(\pi(\widetilde{\gamma}) \delta_{\infty}\right)_{\infty}= \begin{cases}-\epsilon i(-c, d)_{H}\left(\frac{c}{d}\right)|d|^{-\nu-1} \operatorname{sgn}(d)^{\epsilon / 2} \delta_{\frac{c}{d}} & \text { if } b c \neq 0 \\ -\epsilon i \delta_{0} & \text { if } b \neq 0, c=0 \\ -\epsilon i \delta_{c} & \text { if } b=0,\end{cases}
$$

as an equality between distributions on \mathbb{R}.
Proof. By Lemma 4.1(a,b) we have that

$$
\begin{equation*}
\left(\pi(\widetilde{\gamma}) \delta_{\infty}\right)_{0}(x)=0, \tag{4.4}
\end{equation*}
$$

as an equality between distributions on $\mathbb{R}_{\neq \frac{-d}{c}}$ when $c \neq 0$, and as an equality between distributions on \mathbb{R} when $c=0$. Thus it remains to describe $\left(\pi(\widetilde{\gamma}) \delta_{\infty}\right)_{0}$ about the point $\frac{-d}{c}$ when $c \neq 0$. To do this, first observe that $a, d \neq 0$ since $\widetilde{\gamma} \in \widetilde{\Gamma}_{1}(4)$. Next observe that

$$
\widetilde{\gamma} \widetilde{s}=\left(\left(\begin{array}{cc}
-b & -d \tag{4.5}\\
a & c
\end{array}\right),\left(\frac{c}{d}\right)(c, a)_{H}\right)=\left(\left(\begin{array}{cc}
c & d \\
-a & -b
\end{array}\right),\left(\frac{c}{d}\right)(c, a)_{H}\right)^{-1} .
$$

Thus by Lemma 4.1(a), we have that

$$
\begin{align*}
& \left(\pi(\widetilde{\gamma}) \delta_{\infty}\right)_{0}(x)=\left(\pi(\widetilde{\gamma} \widetilde{s}) \delta_{0}\right)_{0}(x) \\
& =\left(\frac{c}{d}\right)(c, a)_{H}(a,-a x-b)_{H}|a x+b|^{\nu-1} \operatorname{sgn}(-a x-b)^{\epsilon / 2} \delta_{0}\left(\frac{c x+d}{-a x-b}\right), \tag{4.6}
\end{align*}
$$

as an equality between distributions on $\mathbb{R}_{\neq \frac{-b}{a}}$.
We can simplify our expression in (4.6). To do so, consider ϕ a test function on $\mathbb{R}_{\neq \frac{-b}{a}}$. By performing various changes of variables, we have that

$$
\begin{aligned}
& \int_{\mathbb{R}_{\neq \frac{-b}{a}}^{a}}\left(\pi(\widetilde{\gamma}) \delta_{\infty}\right)_{0}(x) \phi(x) d x \\
& =\int_{\mathbb{R}_{\neq-b}^{a}}\left(\frac{c}{d}\right)(c, a)_{H}(a,-a x-b)_{H}|a x+b|^{\nu-1} \operatorname{sgn}(-a x-b)^{\epsilon / 2} \delta_{0}\left(\frac{c x+d}{-a x-b}\right) \phi(x) d x \\
& =\int_{\mathbb{R}_{\neq 0}}\left(\frac{c}{d}\right)(c, a)_{H}(a,-a x)_{H}|a x|^{\nu-1} \operatorname{sgn}(-a x)^{\epsilon / 2} \delta_{0}\left(\frac{c x-\frac{b c}{a}+d}{-a x}\right) \phi\left(x-\frac{b}{a}\right) d x \\
& =\int_{\mathbb{R}_{\neq 0}}\left(\frac{c}{d}\right)(c, a)_{H}(a,-a x)_{H}|a x|^{\nu-1} \operatorname{sgn}(-a x)^{\epsilon / 2} \delta_{0}\left(\frac{-c}{a}-\frac{1}{a^{2} x}\right) \phi\left(x-\frac{b}{a}\right) d x \\
& =\int_{\mathbb{R}_{\neq 0}} x^{-2}\left(\frac{c}{d}\right)(c, a)_{H}\left(a, a x^{-1}\right)_{H}\left|a x^{-1}\right|^{\nu-1} \operatorname{sgn}\left(a x^{-1}\right)^{\epsilon / 2} \delta_{0}\left(\frac{-c}{a}+\frac{x}{a^{2}}\right) \\
& \quad \cdot \phi\left(-x^{-1}-\frac{b}{a}\right) d x \\
& =\int_{\mathbb{R}_{\neq 0}}(a x)^{-2}\left(\frac{c}{d}\right)(c, a)_{H}\left(a,(a x)^{-1}\right)_{H}\left|(a x)^{-1}\right|^{\nu-1} \operatorname{sgn}\left((a x)^{-1}\right)^{\epsilon / 2} \delta_{0}\left(\frac{-c}{a}+x\right) \\
& \quad \cdot \phi\left(-\left(a^{2} x\right)^{-1}-\frac{b}{a}\right) d x \\
& =c^{-2}\left(\frac{c}{d}\right)(c, a)_{H}\left(a, c^{-1}\right)_{H}\left|c^{-1}\right|^{\nu-1} \operatorname{sgn}\left(c^{-1}\right)^{\epsilon / 2} \phi\left(-\frac{1}{a c}-\frac{b}{a}\right) \\
& =\left(\frac{c}{d}\right)|c|^{-\nu-1} \operatorname{sgn}(c)^{\epsilon / 2} \phi\left(-\frac{d}{c}\right) \\
& =\left(\frac{c}{d}\right)|c|^{-\nu-1} \operatorname{sgn}(c)^{\epsilon / 2} \int_{\mathbb{R}_{\neq \frac{-b}{a}}^{a}} \delta_{-d / c}(x) \phi(x) d x .
\end{aligned}
$$

In this last equality we have used the fact that $\frac{-b}{a} \neq \frac{-d}{c}$. Thus for $c \neq 0$, we have

$$
\begin{equation*}
\left(\pi(\widetilde{\gamma}) \delta_{\infty}\right)_{0}=\left(\frac{c}{d}\right)|c|^{-\nu-1} \operatorname{sgn}(c)^{\epsilon / 2} \delta_{-d / c}, \tag{4.7}
\end{equation*}
$$

as an equality between distributions on $\mathbb{R}_{\neq \frac{-b}{a}}$. Since $\frac{-b}{a} \neq \frac{-d}{c}$ then it follows from (4.4) that $\left(\pi(\widetilde{\gamma}) \delta_{\infty}\right)_{0}$ vanishes about the point $\frac{-b}{a}$. Thus we conclude that (4.7) holds as an equality between distributions on \mathbb{R}. This proves part (a) of our lemma.

To prove part (b) of our lemma, recall that if $c=0$ then we must have $a=d=1$ since $\widetilde{\gamma} \in \widetilde{\Gamma}_{1}(4)$. Thus if $c=0$, then

$$
\widetilde{\gamma} \widetilde{s}=\left(\left(\begin{array}{cc}
-b & -1 \\
1 & 0
\end{array}\right), 1\right)=\left(\left(\begin{array}{cc}
0 & 1 \\
-1 & -b
\end{array}\right), 1\right)^{-1} .
$$

Therefore when $c=0$, it follows from this equality and Lemma 4.1(c) that

$$
\begin{equation*}
\left(\pi(\widetilde{\gamma}) \delta_{\infty}\right)_{\infty}=\left(\pi(\widetilde{\gamma} \widetilde{s}) \delta_{0}\right)_{\infty}=0, \tag{4.8}
\end{equation*}
$$

as an equality between distributions on $\mathbb{R}_{\neq 0}$. If on the other hand we have $c \neq 0$, then it follows from (4.5) and Lemma 4.1(c) that

$$
\begin{equation*}
\left(\pi(\widetilde{\gamma}) \delta_{\infty}\right)_{\infty}=\left(\pi(\widetilde{\gamma} \widetilde{s}) \delta_{0}\right)_{\infty}=0, \tag{4.9}
\end{equation*}
$$

as an equality between distributions on $\mathbb{R}_{\neq \frac{c}{d}}$. Thus it remains to describe $\left(\pi(\widetilde{\gamma}) \delta_{\infty}\right)_{\infty}$ about the point $\frac{c}{d}$, both for the case of $c=0$ and the case of $c \neq 0$. To do this, we observe that for $b c \neq 0$ we have

$$
\widetilde{\gamma}^{-1} \widetilde{s}^{-1}=\widetilde{s}^{-1}\left(\left(\begin{array}{cc}
d & -c \tag{4.10}\\
-b & a
\end{array}\right),(a, d)_{H}\left(\frac{c}{d}\right)\right),{ }^{1}
$$

and for $b c=0$ (which implies $a=d=1$ since $\widetilde{\gamma} \in \widetilde{\Gamma}_{1}(4)$) we have

$$
\begin{align*}
& \widetilde{\gamma}^{-1} \widetilde{s}^{-1}=\widetilde{s}^{-1}\left(\left(\begin{array}{cc}
1 & 0 \\
-b & 1
\end{array}\right), 1\right) \quad \text { if } b \neq 0, c=0, \tag{4.11}\\
& \widetilde{\gamma}^{-1} \widetilde{s}^{-1}=\widetilde{s}^{-1}\left(\left(\begin{array}{cc}
1 & -c \\
0 & 1
\end{array}\right), 1\right) \quad \text { if } b=0 . \tag{4.12}
\end{align*}
$$

Notice that (4.10), (4.11), and (4.12) are equalities of the form (4.2). Thus by (4.10), (4.11),

[^8]and Lemma 4.1(c), it follows that for $b \neq 0$ we have
\[

$$
\begin{align*}
& \left(\pi(\widetilde{\gamma}) \delta_{\infty}\right)_{\infty}(x) \\
& =(a, d)_{H}\left(\frac{c}{d}\right)(b,-b x+a)_{H}|-b x+a|^{\nu-1} \operatorname{sgn}(-b x+a)^{\epsilon / 2}\left(\delta_{\infty}\right)_{\infty}\left(\frac{d x-c}{-b x+a}\right), \\
& =-\epsilon i(a, d)_{H}\left(\frac{c}{d}\right)(b,-b x+a)_{H}|-b x+a|^{\nu-1} \operatorname{sgn}(-b x+a)^{\epsilon / 2} \delta_{0}\left(\frac{d x-c}{-b x+a}\right), \tag{4.13}
\end{align*}
$$
\]

as an equality between distributions on $\mathbb{R}_{\neq \frac{a}{b}} . .^{2}$ In the case where $b=0$ (which implies $a=d=1$ since $\left.\widetilde{\gamma} \in \widetilde{\Gamma}_{1}(4)\right)$, it follows from (4.12) and Lemma 4.1(d) that

$$
\left(\pi(\widetilde{\gamma}) \delta_{\infty}\right)_{\infty}(x)=-\epsilon i \delta_{c}(x)
$$

as an equality between distributions on \mathbb{R}.
We can simplify our expression in (4.13). To do so, consider ϕ a test function on $\mathbb{R}_{\neq \frac{a}{b}}$. Upon performing various changes of variables, we find that

$$
\begin{aligned}
& \int_{\mathbb{R}_{\neq \frac{a}{b}}}\left(\pi(\widetilde{\gamma}) \delta_{\infty}\right)_{\infty}(x) \phi(x) d x \\
& =-\epsilon i \int_{\mathbb{R}_{\neq \frac{a}{b}}}(a, d)_{H}\left(\frac{c}{d}\right)(b,-b x+a)_{H}|-b x+a|^{\nu-1} \operatorname{sgn}(-b x+a)^{\epsilon / 2} \delta_{0}\left(\frac{d x-c}{-b x+a}\right) \phi(x) d x \\
& =-\epsilon i \int_{\mathbb{R}_{\neq 0}}(a, d)_{H}\left(\frac{c}{d}\right)(b,-b x)_{H}|-b x|^{\nu-1} \operatorname{sgn}(-b x)^{\epsilon / 2} \delta_{0}\left(\frac{d x+\frac{a d}{b}-c}{-b x}\right) \phi\left(x+\frac{a}{b}\right) d x \\
& =-\epsilon i \int_{\mathbb{R}_{\neq 0}}(a, d)_{H}\left(\frac{c}{d}\right)(b,-b x)_{H}|b x|^{\nu-1} \operatorname{sgn}(-b x)^{\epsilon / 2} \delta_{0}\left(\frac{-d}{b}-\frac{1}{b^{2} x}\right) \phi\left(x+\frac{a}{b}\right) d x \\
& =-\epsilon i \int_{\mathbb{R}_{\neq 0}}(a, d)_{H}\left(\frac{c}{d}\right)\left(b, \frac{-x}{b}\right)_{H}|b|^{-\nu-1}|x|^{\nu-1} \operatorname{sgn}\left(\frac{-x}{b}\right)^{\epsilon / 2} \delta_{0}\left(\frac{-d}{b}-\frac{1}{x}\right) \phi\left(\frac{x}{b^{2}}+\frac{a}{b}\right) d x \\
& =-\epsilon i \int_{\mathbb{R}_{\neq 0}}(a, d)_{H}\left(\frac{c}{d}\right)\left(b, \frac{1}{b x}\right)_{H}|b|^{-\nu-1}|x|^{-\nu-1} \operatorname{sgn}\left(\frac{1}{b x}\right)^{\epsilon / 2} \delta_{0}\left(\frac{-d}{b}+x\right) \phi\left(\frac{-1}{b^{2} x}+\frac{a}{b}\right) d x \\
& =-\epsilon i(a, d)_{H}\left(\frac{c}{d}\right)\left(b, \frac{1}{d}\right)_{H}^{|d|^{-\nu-1} \operatorname{sgn}\left(\frac{1}{d}\right)^{\epsilon / 2} \phi\left(\frac{-1}{b d}+\frac{a}{b}\right)^{\prime}} \\
& =-\epsilon i(a, d)_{H}(b, d)_{H}\left(\frac{c}{d}\right)|d|^{-\nu-1} \operatorname{sgn}(d)^{\epsilon / 2} \int_{\mathbb{R}_{\neq \frac{a}{b}}} \delta_{\frac{c}{d}}(x) \phi(x) d x .
\end{aligned}
$$

In this last inequality we have used the fact that $\frac{a}{b} \neq \frac{c}{d}$. Thus for $b \neq 0$ we have

$$
\begin{equation*}
\left(\pi(\widetilde{\gamma}) \delta_{\infty}\right)_{\infty}=-\epsilon i(a, d)_{H}(b, d)_{H}\left(\frac{c}{d}\right)|d|^{-\nu-1} \operatorname{sgn}(d)^{\epsilon / 2} \delta_{\frac{c}{d}} \tag{4.14}
\end{equation*}
$$

as an equality between distributions on $\mathbb{R}_{\neq \frac{a}{b}}$. Since $\frac{a}{b} \neq \frac{c}{d}$ it follows from (4.9) that $\left(\pi(\widetilde{\gamma}) \delta_{\infty}\right)_{\infty}$ vanishes about the point $\frac{a}{b}$, and thus we can conclude that (4.14) holds as an equality between

[^9]distributions on \mathbb{R}. Notice that the $b \neq 0, c=0$ case in part (b) follows immediately from (4.14) since if $c=0$ we have $a=d=1$.

We can simplify our formula in (4.14) when $b c \neq 0$; in particular, $(a, d)_{H}(b, d)_{H}$ can be written more concisely. Observe that if $d>0$ then it follows that $(a, d)_{H}(b, d)_{H}=(-c, d)_{H}$ since $(x, d)_{H}=1$ whenever $d>0$. We wish to prove that this is also the case for $d<0$. To do so, recall that $(x, z)_{H}(y, z)_{H}=(x y, z)_{H}$ for $x, y, z \in \mathbb{R}_{\neq 0}$. Therefore $(a, d)(b, d)(-c, d)=(a, d)(-b c, d)$. If $d<0$ and $a>0$ then it follows that $a d<0$, which implies that $-b c>1$; thus $(a, d)(-b c, d)=1$. If $a, d<0$ then it follows that $a d>0$, which implies that $-b c<1$. Since we have assumed that $b c \neq 0$ we can conclude that $-b c<0$ and thus $(a, d)(-b c, d)=1$. Thus, we have that $(a, d)(b, d)(-c, d)=1$, which implies that $(a, d)(b, d)=(-c, d)$. Therefore, when $b c \neq 0$ we have

$$
\begin{equation*}
\left(\pi(\widetilde{\gamma}) \delta_{\infty}\right)_{\infty}=-\epsilon i(-c, d)_{H}\left(\frac{c}{d}\right)|d|^{-\nu-1} \operatorname{sgn}(d)^{\epsilon / 2} \delta_{\frac{c}{d}} \tag{4.15}
\end{equation*}
$$

as an equality between distributions on \mathbb{R}. This proves part (b) of our lemma.

Let

$$
\widetilde{\Gamma}_{\infty}=\left\{\left(\left(\begin{array}{ll}
1 & n \\
0 & 1
\end{array}\right), 1\right): n \in \mathbb{Z}\right\}
$$

For $\Re(\nu)>1$, we define the metaplectic Eisenstein distribution at ∞ to be the following distribution in $V_{(\epsilon), \nu}^{-\infty}\left(\widetilde{\mathrm{SL}}_{2}\right)$:

$$
\begin{equation*}
\widetilde{E}_{\nu}^{(\infty)}(\widetilde{g})=\zeta_{2}(2 \nu+1) \sum_{\widetilde{\gamma} \in \widetilde{\Gamma}_{1}(4) / \widetilde{\Gamma}_{\infty}} \pi(\widetilde{\gamma}) \delta_{\infty}(\widetilde{g}) \tag{4.16}
\end{equation*}
$$

where

$$
\zeta_{2}(s)=\prod_{p \text { odd prime }}\left(1-p^{-s}\right)^{-1}
$$

The summation over $\widetilde{\Gamma}_{1}(4) / \widetilde{\Gamma}_{\infty}$ is justified since by Lemma 4.3, we have that δ_{∞} is $\widetilde{\Gamma}_{\infty}$-invariant under the left regular representation. Thus \widetilde{E}_{ν} is at least formally $\widetilde{\Gamma}_{1}(4)$-invariant. We shall justify the convergence of this series momentarily.

$$
\begin{aligned}
& \text { Observe that for } \widetilde{\gamma}^{-1}=\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right),\left(\frac{c}{d}\right)\right) \text { we have that } \\
& \widetilde{\gamma} \cdot\left(\left(\begin{array}{ll}
1 & n \\
0 & 1
\end{array}\right), 1\right)=\left(\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right),\left(\frac{c}{d}\right)\right) \cdot\left(\left(\begin{array}{ll}
1 & n \\
0 & 1
\end{array}\right), 1\right)=\left(\left(\begin{array}{cc}
d & d n-b \\
-c & -c n+a
\end{array}\right),\left(\frac{c}{d}\right)\right) .
\end{aligned}
$$

Thus, for each coset of $\widetilde{\Gamma}_{1}(4) / \widetilde{\Gamma}_{\infty}$ there corresponds unique $(c, d) \in \mathbb{Z}^{2}$ such that $\operatorname{gcd}(c, d)=1$, $c \equiv 0(\bmod 4)$, and $d \equiv 1(\bmod 4)$; indeed, such (c, d) is unique since the above equality shows
that if $\widetilde{\gamma} \widetilde{\Gamma}_{\infty}=\widetilde{\gamma}^{\prime} \widetilde{\Gamma}_{\infty}$ for some $\widetilde{\gamma}^{\prime} \in \widetilde{\Gamma}_{1}(4)$, then

$$
\left(\widetilde{\gamma}^{\prime}\right)^{-1}=\left(\left(\begin{array}{ll}
* & * \\
c & d
\end{array}\right),\left(\frac{c}{d}\right)\right)
$$

Conversely, when given $(c, d) \in \mathbb{Z}^{2}$ such that $\operatorname{gcd}(c, d)=1, c \equiv 0(\bmod 4)$, and $d \equiv 1(\bmod 4)$, it follows that there exists $a, b \in \mathbb{Z}$ such that $a d-b c=1$. Since $c \equiv 0(\bmod 4)$ and $d \equiv 1(\bmod 4)$ it follows that $a \equiv 1(\bmod 4)$. Thus we are able to construct $\widetilde{\gamma}$ which corresponds to such (c, d). Therefore

$$
\widetilde{\Gamma}_{1}(4) / \widetilde{\Gamma}_{\infty} \cong\left\{(c, d) \in \mathbb{Z}^{2}: \operatorname{gcd}(c, d)=1, c \equiv 0(\bmod 4), d \equiv 1(\bmod 4)\right\}
$$

Thus by Lemma 4.3, we have

$$
\begin{equation*}
\left(\widetilde{E}_{\nu}^{(\infty)}\right)_{0}(x)=\zeta_{2}(2 \nu+1) \sum_{\substack{(c, d) \in \mathbb{Z} \neq \neq \mathbb{Z} \\ \operatorname{gcc}(c, d)=1 \\ d \equiv 1(\bmod 4) \\ c \equiv 0(\bmod 4)}}\left(\frac{c}{d}\right)|c|^{-\nu-1} \operatorname{sgn}(c)^{\epsilon / 2} \delta_{-\frac{d}{c}}(x), \tag{4.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\widetilde{E}_{\nu}^{(\infty)}\right)_{\infty}(x)=-\epsilon i \zeta_{2}(2 \nu+1)\left(\delta_{0}(x)+\sum_{\substack{(c, d) \in \mathbb{Z}_{\neq 0} \times \mathbb{Z} \\ \text { gcd }(c, d)=1 \\ d \equiv 1(\bmod 4) \\ c \equiv 0(\bmod 4)}}(-c, d)_{H}\left(\frac{c}{d}\right)|d|^{-\nu-1} \operatorname{sgn}(d)^{\epsilon / 2} \delta_{\frac{c}{d}}(x)\right) \tag{4.18}
\end{equation*}
$$

Notice that for $\Re(\nu)>1$, the integrals of (4.17) and (4.18) converge uniformly and absolutely against compactly supported test functions on \mathbb{R}. Therefore, since $\widetilde{E}_{\nu}^{(\infty)}$ is determined completely by $\left(\widetilde{E}_{\nu}^{(\infty)}\right)_{0}$ and $\left(\widetilde{E}_{\nu}^{(\infty)}\right)_{\infty}$, it follows that $\widetilde{E}_{\nu}^{(\infty)}$ depends holomorphically on ν for $\Re(\nu)>1$. Furthermore, it follows that our series expansion for $\widetilde{E}_{\nu}^{(\infty)}$ converges in the strong distribution topology.

4.2 Fourier Coefficients of $\widetilde{E}_{\nu}^{(\infty)}$

Since $\left(\widetilde{E}_{\nu}^{(\infty)}\right)_{0}$ is periodic, it has a Fourier series expansion. In particular,

$$
\left(\widetilde{E}_{\nu}^{(\infty)}\right)_{0}(x)=\sum_{n \in \mathbb{Z}} a_{n} e(n x)
$$

where

$$
a_{n}=\int_{0}^{1}\left(\widetilde{E}_{\nu}^{(\infty)}\right)_{0}(x) e(-n x) d x
$$

By carefully calculating a_{n} we will be able to show in section 4.3 that $\widetilde{E}^{(\infty)}$ has meromorphic continuation to all of \mathbb{C}. By (4.17), observe

$$
\begin{aligned}
& \frac{a_{n}}{\zeta_{2}(2 \nu+1)}=\sum_{\begin{array}{c}
(c, d) \in \mathbb{Z}_{\neq 0} \times \mathbb{Z} \\
\operatorname{gcc}(c, d)=1 \\
d \equiv 1(\bmod 4) \\
c \equiv 0(\bmod 4)
\end{array}} \int_{0}^{1}\left(\frac{c}{d}\right)|c|^{-\nu-1} \operatorname{sgn}(c)^{\epsilon / 2} \delta_{-\frac{d}{c}}(x) e(-n x) d x \\
& =\sum_{\substack{(c, d) \in \mathbb{Z} \\
0 \leq-\infty \times \mathbb{Z} \\
d \equiv 1<c \mid(\bmod 4) \\
c \equiv 0(\bmod 4)}}\left(\frac{c}{d}\right)|c|^{-\nu-1} e\left(\frac{n d}{c}\right)+\epsilon i \sum_{\substack{(c, d) \in \mathbb{Z}_{<0 \times} \times \mathbb{Z} \\
0 \geq-d>c \\
d \equiv 1(\bmod 4) \\
c \equiv 0(\bmod 4)}}\left(\frac{c}{d}\right)|c|^{-\nu-1} e\left(\frac{n d}{c}\right) \\
& =\sum_{\substack{(c, d) \in \mathbb{Z}_{>0} \times \mathbb{Z} \\
0 \leq 1(d<c \\
d \equiv 1(\bmod 4) \\
c \equiv 0(\bmod 4)}}\left(\frac{c}{d}\right)|c|^{-\nu-1} e\left(\frac{n d}{c}\right)+\epsilon i \sum_{\substack{\left.(c, d) \in \mathbb{Z}_{>0 \times} \times \mathbb{Z} \\
0 \geq-d>-c \\
d \equiv 1 \bmod 4\right) \\
c \equiv 0(\bmod 4)}}\left(\frac{-c}{d}\right)|c|^{-\nu-1} e\left(\frac{n d}{-c}\right) \\
& =\sum_{\substack{(c, d) \in \mathbb{Z}>0 \times \mathbb{Z} \\
0 \leq \leq d<c \\
d \equiv 3(\bmod 4) \\
c \equiv 0(\bmod 4)}}\left(\frac{c}{-d}\right)|c|^{-\nu-1} e\left(\frac{-n d}{c}\right)+\epsilon i \sum_{\substack{(c, d) \in \mathbb{Z}>0 \times \mathbb{Z} \\
0 \leq d<c \\
d \equiv 1 \bmod 4) \\
c \equiv 0(\bmod 4)}}\left(\frac{-c}{d}\right)|c|^{-\nu-1} e\left(\frac{n d}{-c}\right)
\end{aligned}
$$

For $c>0$ we have $\left(\frac{c}{d}\right)=\left(\frac{c}{-d}\right)$, and for $d \equiv 1(\bmod 4)$ we have $\left(\frac{-c}{d}\right)=\left(\frac{c}{d}\right)$. Thus

$$
\begin{aligned}
& a_{n}=\epsilon i \zeta_{2}(2 \nu+1) \sum_{\substack{(c, d) \in \mathbb{Z}>0 \times \mathbb{Z} \\
0 \leq d<c \\
c \equiv 0(\bmod 4)}} \Delta_{d}^{-\epsilon}\left(\frac{c}{d}\right) c^{-\nu-1} e\left(-\frac{n d}{c}\right) \\
& =\epsilon i \zeta_{2}(2 \nu+1) \sum_{\substack{(c, d) \in \mathbb{Z}>0 \times \mathbb{Z} \\
0 \leq d<4 c}} \Delta_{d}^{-\epsilon}\left(\frac{4 c}{d}\right)(4 c)^{-\nu-1} e\left(-\frac{n d}{4 c}\right),
\end{aligned}
$$

where

$$
\Delta_{d}= \begin{cases}1 & \text { if } d \equiv 1(\bmod 4) \\ i & \text { if } d \equiv 3(\bmod 4) \\ 0 & \text { otherwise }\end{cases}
$$

Let

$$
\begin{align*}
& K_{\kappa}(n ; 4 c)=\sum_{d \in \mathbb{Z} /(4 c) \mathbb{Z}} \Delta_{d}^{-\kappa}\left(\frac{4 c}{d}\right) e\left(\frac{n d}{4 c}\right), \tag{4.19}\\
& G(n ; c)=\sum_{x \in \mathbb{Z} / c \mathbb{Z}}\left(\frac{x}{c}\right) e\left(\frac{n x}{c}\right), \tag{4.20}
\end{align*}
$$

where $\kappa \equiv 1(\bmod 2)$. Thus

$$
a_{n}=\epsilon i 4^{-\nu-1} \zeta_{2}(2 \nu+1) \sum_{c \in \mathbb{Z}>0} c^{-\nu-1} K_{\epsilon}(-n ; 4 c)
$$

Since $\overline{K_{\kappa}(n ; c)}=K_{-\kappa}(-n ; c)$ it follows that

$$
a_{n}=\epsilon i 4^{-\nu-1} \zeta_{2}(2 \nu+1) \sum_{c \in \mathbb{Z}_{>0}} c^{-\nu-1} \mathcal{C}_{-\epsilon}\left(K_{-1}(\epsilon n ; 4 c)\right),
$$

where

$$
\mathcal{C}_{\epsilon}(z)= \begin{cases}z & \text { if } \epsilon=1, \tag{4.21}\\ \bar{z} & \text { if } \epsilon=-1 .\end{cases}
$$

For $c=2^{k} c^{\prime}$ where $\operatorname{gcd}\left(2, c^{\prime}\right)=1$ and $k \in \mathbb{Z}_{\geq 0}$, it follows from [8, Lemma 2] that

$$
K_{-1}(n ; 4 c)=K_{-1}\left(n ; 2^{k+2} c^{\prime}\right)=K_{-c^{\prime}}\left(n \overline{c^{\prime}} ; 2^{k+2}\right) G\left(n \overline{2^{k+2}} ; c^{\prime}\right),
$$

where $\overline{c^{\prime}}$ and $\overline{2^{k+2}}$ are integers such that $c^{\prime} \overline{c^{\prime}} \equiv 1\left(\bmod 2^{k+2}\right)$ and $2^{k+2} \overline{2^{k+2}} \equiv 1\left(\bmod c^{\prime}\right)$. Thus

$$
\begin{align*}
& a_{n}=\epsilon i 4^{-\nu-1} \zeta_{2}(2 \nu+1) \sum_{c \in \mathbb{Z}_{>0}} c^{-\nu-1} \mathcal{C}_{-\epsilon}\left(K_{-1}(\epsilon n ; 4 c)\right) \\
& =\epsilon i 4^{-\nu-1} \zeta_{2}(2 \nu+1) \sum_{\substack{c^{\prime} \in \mathbb{Z}>0 \\
c^{\prime} \text { odd }}} \sum_{k \in \mathbb{Z}_{\geq 0}}\left(2^{k} c^{\prime}\right)^{-\nu-1} \mathcal{C}_{-\epsilon}\left(K_{-c^{\prime}}\left(\epsilon n \overline{c^{\prime}} ; 2^{k+2}\right) G\left(\epsilon n \overline{2^{k+2}} ; c^{\prime}\right)\right) . \tag{4.22}
\end{align*}
$$

For the remainder of this section, we will prove two lemmas which we will use in section 4.3 to see that the Fourier coefficients a_{n} can be expressed in terms of Dirichlet L-functions.

Lemma 4.4. Let $c>0$ and odd.
(a) If $\operatorname{gcd}(n, c)=1$ and c is prime then $G(n ; c)=\left(\frac{n}{c}\right) \Delta_{c} c^{1 / 2}$
(b) If $c=p q$ and $\operatorname{gcd}(p, q)=1$ then $G(n ; c)=(-1)^{\frac{(p-1)(q-1)}{4}} G(n ; p) G(n ; q)$. Consequently, $\Delta_{c} G(n ; c)$ is multiplicative since $\Delta_{p} \Delta_{q}=(-1)^{\frac{(p-1)(q-1)}{4}} \Delta_{p q}$.
(c) If c is square-free and $\operatorname{gcd}(n, c)=1$ then $G(n ; c)=\left(\frac{n}{c}\right) \Delta_{c} c^{1 / 2}$.
(d) If $k \geq 2, p$ is prime, and $n=p^{\ell} n^{\prime}$ where $\operatorname{gcd}\left(n^{\prime}, p\right)=1$ and $\ell \in \mathbb{Z}_{\geq 0}$, then

$$
G\left(n ; p^{k}\right)= \begin{cases}0 & \text { if } \ell<k-1, \\ -p^{k-1} & \text { if } \ell=k-1, k \text { even, } \\ \left(\frac{n^{\prime}}{p}\right) \Delta_{p} p^{k-1 / 2} & \text { if } \ell=k-1, k \text { odd }, \\ p^{k}-p^{k-1} & \text { if } \ell \geq k, k \text { even, } \\ 0 & \text { if } \ell \geq k, k \text { odd. }\end{cases}
$$

(e) If c is not square-free then $G(1 ; c)=0$.

Proof. Part (a) is a classical result due to Gauss [7]. For part (b), observe that since c is odd then we must have p and q be odd. Therefore, the law of quadratic reciprocity for the Jacobi symbol shows that

$$
1=(-1)^{\frac{(p-1)(q-1)}{4}}\left(\frac{q}{p}\right)\left(\frac{p}{q}\right)
$$

By this equality and the multiplicativity of the Jacobi symbol, it follows that

$$
\begin{aligned}
& G(n ; p) G(n ; q)=\sum_{x(\bmod p)}\left(\frac{x}{p}\right) e\left(\frac{n x}{p}\right) \sum_{y(\bmod q)}\left(\frac{y}{q}\right) e\left(\frac{n y}{q}\right) \\
& =(-1)^{\frac{(p-1)(q-1)}{4}}\left(\frac{q}{p}\right)\left(\frac{p}{q}\right) \sum_{x(\bmod p)} \sum_{y(\bmod q)}\left(\frac{x}{p}\right)\left(\frac{y}{q}\right) e\left(\frac{n x q+n y p}{p q}\right) \\
& =(-1)^{\frac{(p-1)(q-1)}{4}} \sum_{x(\bmod p)} \sum_{y(\bmod q)}\left(\frac{x q}{p}\right)\left(\frac{y p}{q}\right) e\left(\frac{n(x q+y p)}{p q}\right) \\
& =(-1)^{\frac{(p-1)(q-1)}{4}} \sum_{x(\bmod p)} \sum_{y(\bmod q)}\left(\frac{x q+y p}{p}\right)\left(\frac{x q+y p}{q}\right) e\left(\frac{n(x q+y p)}{p q}\right) \\
& =(-1)^{\frac{(p-1)(q-1)}{4}} \sum_{x(\bmod p)} \sum_{y(\bmod q)}\left(\frac{x q+y p}{p q}\right) e\left(\frac{n(x q+y p)}{p q}\right) \\
& =(-1)^{\frac{(p-1)(q-1)}{4}} G(n ; p q) .
\end{aligned}
$$

To prove part (c), suppose $c=q_{1} \ldots q_{k}$ where the q_{i} are distinct odd primes. We will prove part (c) by performing induction on k. If $k=1$ then part (c) follows immediately from part (a). Suppose that we know part (c) holds when $k=\ell-1$. Thus if $k=\ell$, it follows from part (b) and part (a) that

$$
\begin{aligned}
& \Delta_{c} G(n ; c)=\Delta_{q_{1} \cdots q_{\ell-1}} G\left(n ; q_{1} \cdots q_{\ell-1}\right) \Delta_{q_{\ell}} G\left(n ; q_{\ell}\right) \\
& =\left(\frac{n}{q_{1} \cdots q_{\ell-1}}\right) \Delta_{q_{1} \cdots q_{\ell-1}}^{2}\left(q_{1} \cdots q_{\ell-1}\right)^{1 / 2}\left(\frac{n}{q_{\ell}}\right) \Delta_{q_{\ell}}^{2}\left(q_{\ell}\right)^{1 / 2}=\Delta_{q_{1} \cdots q_{\ell-1}}^{2} \Delta_{q_{\ell}}^{2}\left(\frac{n}{c}\right) c^{1 / 2}
\end{aligned}
$$

Since Δ_{q}^{2} is a character, it follows that $\Delta_{q_{1} \cdots q_{\ell-1}}^{2} \Delta_{q_{\ell}}^{2}=\Delta_{c}^{2}$. Thus part (c) holds for $k=\ell$. Therefore by induction, part (c) holds in general.

To prove part (d), observe that since $\operatorname{gcd}\left(n^{\prime}, p\right)=1$, it follows that observe that

$$
G\left(n ; p^{k}\right)=\sum_{x\left(\bmod p^{k}\right)}\left(\frac{x}{p^{k}}\right) e\left(\frac{n^{\prime} x}{p^{k-\ell}}\right)=\left(\frac{n^{\prime}}{p^{k}}\right) \sum_{x\left(\bmod p^{k}\right)}\left(\frac{x}{p^{k}}\right) e\left(\frac{x}{p^{k-\ell}}\right)
$$

Since $\ell<k$, we have then that

$$
\begin{align*}
& G\left(n ; p^{k}\right)=\left(\frac{n^{\prime}}{p^{k}}\right) \sum_{y\left(\bmod p^{\ell}\right)} \sum_{x\left(\bmod p^{k-\ell}\right)}\left(\frac{x+p^{k-\ell} y}{p^{k}}\right) e\left(\frac{x+p^{k-\ell} y}{p^{k-\ell}}\right) \\
& =\left(\frac{n^{\prime}}{p^{k}}\right) \sum_{y\left(\bmod p^{\ell}\right)} \sum_{x\left(\bmod p^{k-\ell}\right)}\left(\frac{x+p^{k-\ell} y}{p}\right)^{k} e\left(\frac{x+p^{k-\ell} y}{p^{k-\ell}}\right) \\
& =\left(\frac{n^{\prime}}{p^{k}}\right) \sum_{y\left(\bmod p^{\ell}\right)} \sum_{x\left(\bmod p^{k-\ell)}\right.}\left(\frac{x}{p^{k}}\right) e\left(\frac{x}{p^{k-\ell}}\right) \\
& =\left(\frac{n^{\prime}}{p^{k}}\right) p^{\ell} \sum_{x\left(\bmod p^{k-\ell}\right)}\left(\frac{x}{p^{k}}\right) e\left(\frac{x}{p^{k-\ell}}\right) . \tag{4.23}
\end{align*}
$$

Now that we have established (4.23), we can proceed to prove part (d) on a case by case.

- If $\ell<k-1$ then by (4.23) it follows that

$$
\begin{aligned}
& G\left(n ; p^{k}\right)=\left(\frac{n^{\prime}}{p^{k}}\right) p^{\ell} \sum_{x\left(\bmod p^{k-\ell}\right)}\left(\frac{x}{p}\right)^{k} e\left(\frac{x}{p^{k-\ell}}\right) \\
& =\left(\frac{n^{\prime}}{p^{k}}\right) p^{\ell} \sum_{x(\bmod p)} \sum_{y\left(\bmod p^{k-\ell-1}\right)}\left(\frac{x+y p}{p}\right)^{k} e\left(\frac{x+y p}{p^{k-\ell}}\right) \\
& =\left(\frac{n^{\prime}}{p^{k}}\right) p^{\ell} \sum_{x(\bmod p)} \sum_{y\left(\bmod p^{k-\ell-1}\right)}\left(\frac{x}{p^{k}}\right) e\left(\frac{x}{p^{k-\ell}}\right) e\left(\frac{y}{p^{k-\ell-1}}\right) \\
& =\left(\frac{n^{\prime}}{p^{k}}\right) p^{\ell} \sum_{x(\bmod p)}\left(\frac{x}{p^{k}}\right) e\left(\frac{x}{p^{k-\ell}}\right) \sum_{y\left(\bmod p^{k-\ell-1}\right)} e\left(\frac{y}{p^{k-\ell-1}}\right) \\
& =0
\end{aligned}
$$

- If $\ell=k-1$ then by (4.23) it follows that

$$
G\left(n ; p^{k}\right)=\left(\frac{n^{\prime}}{p^{k}}\right) p^{\ell} \sum_{x(\bmod p)}\left(\frac{x}{p^{k}}\right) e\left(\frac{x}{p}\right)
$$

If k is even then $\left(\frac{x}{p^{k}}\right)=1$ for $x \not \equiv 0(\bmod p)$, and since $\sum_{\substack{x(\bmod p) \\ x \neq 0(\bmod p)}} e\left(\frac{x}{p}\right)=-1$, we have in this case that

$$
G\left(n ; p^{k}\right)=-\left(\frac{n^{\prime}}{p^{k}}\right) p^{\ell}
$$

If k is odd then $\sum_{x(\bmod p)}\left(\frac{x}{p^{k}}\right) e\left(\frac{x}{p}\right)=G(1 ; p)$, and so in this case we have that

$$
G\left(n ; p^{k}\right)=\left(\frac{n^{\prime}}{p^{k}}\right) \Delta_{p} p^{\ell+1 / 2}
$$

- If $\ell \geq k$ then

$$
G\left(n ; p^{k}\right)=\sum_{x\left(\bmod p^{k}\right)}\left(\frac{x}{p^{k}}\right) e\left(\frac{n x}{p^{k}}\right)=\sum_{x\left(\bmod p^{k}\right)}\left(\frac{x}{p^{k}}\right)
$$

If k is even then $G\left(n ; p^{k}\right)=p^{k}-p^{k-1}$. If k is odd then

$$
\begin{aligned}
& G\left(n ; p^{k}\right)=\sum_{x\left(\bmod p^{k}\right)}\left(\frac{x}{p}\right)=\sum_{x(\bmod p)} \sum_{y\left(\bmod p^{k-1}\right)}\left(\frac{x+p y}{p}\right) \\
& =\sum_{x(\bmod p)} \sum_{y\left(\bmod p^{k-1}\right)}\left(\frac{x}{p}\right)=0 .
\end{aligned}
$$

To prove part (e), observe that $c=q_{1}^{e_{1}} q_{2}^{e_{1}} \ldots q_{j}^{e_{m}}$ where $e_{j} \in \mathbb{Z}_{>0}$ and the q_{j} are distinct primes. Since c is not square-free, we can arrange to have $e_{1} \geq 2$. By part (b) it follows that

$$
G(1 ; c)=(-1)^{\frac{\left(q_{1}^{e_{1}}-1\right)\left(q_{2}^{e_{2}} \ldots q_{j}^{e_{j}}-1\right)}{4}} G\left(1 ; q_{1}^{e_{1}}\right) G\left(1 ; q_{2}^{e_{2}} \ldots q_{j}^{e_{j}}\right)
$$

By part (d), we have that $G\left(1, q_{1}^{e_{1}}\right)=0$. Thus part (e) follows.

Let

$$
\chi_{4}(c)=\left\{\begin{array}{ll}
1 & \text { if } c \equiv 1(\bmod 4), \\
-1 & \text { if } c \equiv 3(\bmod 4), \\
0 & \text { otherwise },
\end{array} \quad \text { and } \quad \chi_{8}(c)= \begin{cases}1 & \text { if } c \equiv 1(\bmod 8) \\
1 & \text { if } c \equiv 3(\bmod 8) \\
-1 & \text { if } c \equiv 5(\bmod 8) \\
-1 & \text { if } c \equiv 7(\bmod 8) \\
0 & \text { otherwise }\end{cases}\right.
$$

Lemma 4.5. Let $c>0$ and odd.
(a) If $n \equiv 1(\bmod 4)$ then

$$
\begin{aligned}
& \Delta_{c}^{-1} K_{-c}(n \bar{c} ; 4)=(1+i) \chi_{4}(c), \quad \text { where } \bar{c} \in \mathbb{Z} \text { such that } c \bar{c} \equiv 1(\bmod 4) \\
& \Delta_{c}^{-1} K_{-c}(n \bar{c} ; 8)=2^{3 / 2}(1+i) \chi_{8}(c), \quad \text { where } \bar{c} \in \mathbb{Z} \text { such that } c \bar{c} \equiv 1(\bmod 8) \\
& \Delta_{c}^{-1} K_{-c}\left(n \bar{c} ; 2^{k+2}\right)=0, \quad \text { where } \bar{c} \in \mathbb{Z} \text { such that } c \bar{c} \equiv 1\left(\bmod 2^{k+2}\right)
\end{aligned}
$$

for $k \geq 2$.
(b) If $n \equiv 3(\bmod 4)$ then

$$
\begin{aligned}
& \Delta_{c}^{-1} K_{-c}(n \bar{c} ; 4)=-(1+i) \chi_{4}(c), \quad \text { where } \bar{c} \in \mathbb{Z} \text { such that } c \bar{c} \equiv 1(\bmod 4) \\
& \Delta_{c}^{-1} K_{-c}(n \bar{c} ; 8)=0, \quad \text { where } \bar{c} \in \mathbb{Z} \text { such that } c \bar{c} \equiv 1(\bmod 8) \\
& \Delta_{c}^{-1} K_{-c}\left(n \bar{c} ; 2^{k+2}\right)=0, \quad \text { where } \bar{c} \in \mathbb{Z} \text { such that } c \bar{c} \equiv 1\left(\bmod 2^{k+2}\right)
\end{aligned}
$$

for $k \geq 2$.
(c) If $n=2^{\ell} n^{\prime}, \ell>0$, and $\operatorname{gcd}\left(n^{\prime}, 2\right)=1$, then

$$
\begin{aligned}
& \Delta_{c}^{-1} K_{-c}(n \bar{c} ; 4)=\left\{\begin{array}{ll}
(1+i) \chi_{4}(c) & \text { if } \ell>1, \\
-(1+i) \chi_{4}(c) & \text { if } \ell=1,
\end{array}, \quad \text { where } \bar{c} \in \mathbb{Z} \text { such that } c \bar{c} \equiv 1(\bmod 4)\right. \\
& \Delta_{c}^{-1} K_{-c}(n \bar{c} ; 8)=0, \quad \text { where } \bar{c} \in \mathbb{Z} \text { such that } c \bar{c} \equiv 1(\bmod 8),
\end{aligned}
$$

and for $k \geq 2$ and $\bar{c} \in \mathbb{Z}$ such that $c \bar{c} \equiv 1\left(\bmod 2^{k+2}\right)$, we have that:
(1) if $\ell \geq k+2$ then

$$
\Delta_{c}^{-1} K_{-c}\left(n \bar{c} ; 2^{k+2}\right)= \begin{cases}(1+i) 2^{k} \chi_{4}(c) & \text { if } k \text { even }, \\ 0 & \text { if } k \text { odd }\end{cases}
$$

(2) if $\ell=k+1$ then

$$
\Delta_{c}^{-1} K_{-c}\left(n \bar{c} ; 2^{k+2}\right)= \begin{cases}-(1+i) 2^{k} \chi_{4}(c) & \text { if } k \text { even } \\ 0 & \text { if } k \text { odd }\end{cases}
$$

(3) if $\ell=k$ then

$$
\Delta_{c}^{-1} K_{-c}\left(n \bar{c} ; 2^{k+2}\right)= \begin{cases}(1+i) 2^{k} \chi_{4}\left(n^{\prime} c\right) & \text { if } k \text { even }, \\ 0 & \text { if } k \text { odd },\end{cases}
$$

(4) if $\ell=k-1$ then

$$
\Delta_{c}^{-1} K_{-c}\left(n \bar{c} ; 2^{k+2}\right)= \begin{cases}0 & \text { if } k \text { even }, \\ \frac{1+i}{\sqrt{2}} 2^{k+1} \chi_{8}\left(n^{\prime} c^{\prime}\right) & \text { if } k \text { odd },\end{cases}
$$

(5) if $\ell \leq k-2$ then

$$
\Delta_{c}^{-1} K_{-c}\left(n \bar{c} ; 2^{k+2}\right)=0 .
$$

Proof. Observe that for $k \geq 2$ we have that

$$
\Delta_{c}^{-1} K_{-c}\left(n \bar{c} ; 2^{k}\right)=\Delta_{b}^{-1} K_{-b}\left(m \bar{b} ; 2^{k}\right)
$$

if $c \equiv b\left(\bmod 2^{k}\right)$ and $n \equiv m\left(\bmod 2^{k}\right)$. Thus the evaluation of $\Delta_{c}^{-1} K_{-c}(n \bar{c} ; 4)$ and $\Delta_{c}^{-1} K_{-c}(n \bar{c} ; 8)$ in parts (a), (b), and (c) follows from a finite number of computations which are easy to perform. The evaluation of $\Delta_{c}^{-1} K_{-c}\left(n \bar{c} ; 2^{k+2}\right)$ for $k \geq 2$ in parts (a) and (b) are a consequence of part (c.5).

If $k \geq 1$ then

$$
\begin{aligned}
& K_{-c}\left(n \bar{c} ; 2^{k+2}\right) \\
& =\sum_{d\left(\bmod 2^{k+2}\right)} \Delta_{d}^{c}\left(\frac{2^{k+2}}{d}\right) e\left(\frac{n \bar{c} d}{2^{k+2}}\right)=\sum_{\substack{d\left(\bmod 2^{k+2}\right) \\
d \text { odd }}} \Delta_{d}^{c}\left(\frac{2^{k+2}}{d}\right) e\left(\frac{n \bar{c} d}{2^{k+2}}\right) \\
& =\sum_{\substack{d\left(\bmod 2^{k+2}\right) \\
d \equiv 1(\bmod 8)}} e\left(\frac{n \bar{c} d}{2^{k+2}}\right)+(-1)^{k} i^{c} \sum_{\substack{d\left(\bmod 2^{k+2}\right) \\
d \equiv 3(\bmod 8)}} e\left(\frac{n \bar{c} d}{2^{k+2}}\right) \\
& +(-1)^{k} \sum_{\substack{d\left(\bmod 2^{k+2}\right) \\
d \equiv 5(\bmod 8)}} e\left(\frac{n \bar{c} d}{2^{k+2}}\right)+i^{c} \sum_{\substack{d\left(\bmod 2^{k+2}\right) \\
d \equiv 7(\bmod 8)}} e\left(\frac{n \bar{c} d}{2^{k+2}}\right) \\
& =\sum_{\substack{d\left(\bmod 2^{k+2}\right) \\
d \equiv 1(\bmod 8)}} e\left(\frac{n \bar{c} d}{2^{k+2}}\right)+(-1)^{k} i^{c} \sum_{\substack{d\left(\bmod 2^{k+2}\right) \\
d \equiv 1(\bmod 8)}} e\left(\frac{n \bar{c}(d+2)}{2^{k+2}}\right) \\
& +(-1)^{k} \sum_{\substack{d\left(\bmod 2^{k+2}\right) \\
d \equiv 1(\bmod 8)}} e\left(\frac{n \bar{c}(d+4)}{2^{k+2}}\right)+i^{c} \sum_{\substack{d\left(\bmod 2^{k+2}\right) \\
d \equiv 1(\bmod 8)}} e\left(\frac{n \bar{c}(d+6)}{2^{k+2}}\right) \\
& =\left(1+(-1)^{k} i^{c} e\left(\frac{2 n \bar{c}}{2^{k+2}}\right)+(-1)^{k} e\left(\frac{4 n \bar{c}}{2^{k+2}}\right)+i^{c} e\left(\frac{6 n \bar{c}}{2^{k+2}}\right)\right) \sum_{\substack{d\left(\bmod 2^{k+2}\right) \\
d \equiv 1(\bmod 8)}} e\left(\frac{n \bar{c} d}{2^{k+2}}\right) .
\end{aligned}
$$

Since we can write $n=2^{\ell} n^{\prime}$ where $\operatorname{gcd}\left(2, n^{\prime}\right)=1$, this equation can also be written as

$$
\begin{align*}
& K_{-c}\left(n \bar{c} ; 2^{k+2}\right) \\
& =\left(1+(-1)^{k} i^{c} e\left(\frac{2^{\ell+1} n^{\prime} \bar{c}}{2^{k+2}}\right)+(-1)^{k} e\left(\frac{2^{\ell+2} n^{\prime} \bar{c}}{2^{k+2}}\right)+i^{c} e\left(\frac{2^{\ell+1} \cdot 3 n^{\prime} \bar{c}}{2^{k+2}}\right)\right) \\
& \quad \cdot \sum_{\substack{d\left(\bmod 2^{k+2}\right) \\
d \equiv 1(\bmod 8)}} e\left(\frac{2^{\ell} n^{\prime} \bar{c} d}{2^{k+2}}\right) \tag{4.24}
\end{align*}
$$

Along with this equation, we shall often use the identity $\Delta_{c}^{-1}\left(1+i^{c}\right)=(1+i) \chi_{4}(c)$ in evaluating $K_{-c}\left(n \bar{c} ; 2^{k+2}\right)$.

Suppose that $k \geq 2$.

- If $\ell \geq k+2$ then by (4.24) we have that

$$
\begin{aligned}
& \Delta_{c}^{-1} K_{-c}\left(n \bar{c} ; 2^{k+2}\right)=\Delta_{c}^{-1}\left(1+(-1)^{k} i^{c}+(-1)^{k}+i^{c}\right) 2^{k-1} \\
& =\left\{\begin{array}{ll}
\Delta_{c}^{-1}\left(1+i^{c}\right) 2^{k} & \text { if } k \text { even, } \\
0 & \text { if } k \text { odd }
\end{array}= \begin{cases}(1+i) 2^{k} \chi_{4}(c) & \text { if } k \text { even } \\
0 & \text { if } k \text { odd }\end{cases} \right.
\end{aligned}
$$

This proves part (c.1).

- If $\ell=k+1$ then by (4.24) we have that

$$
\begin{aligned}
& \Delta_{c}^{-1} K_{-c}\left(n \bar{c} ; 2^{k+2}\right)=\Delta_{c}^{-1}\left(1+(-1)^{k} i^{c}+(-1)^{k}+i^{c}\right) \sum_{\substack{d\left(\bmod 2^{k+2}\right) \\
d \equiv 1(\bmod 8)}} e\left(\frac{n^{\prime} \bar{c} d}{2}\right) \\
& =\left\{\begin{array}{ll}
-\Delta_{c}^{-1}\left(1+i^{c}\right) 2^{k} & \text { if } k \text { even, } \\
0 & \text { if } k \text { odd, }
\end{array}= \begin{cases}-(1+i) 2^{k} \chi_{4}(c) & \text { if } k \text { even, } \\
0 & \text { if } k \text { odd. }\end{cases} \right.
\end{aligned}
$$

This proves part (c.2).

- If $\ell=k$ then by (4.24) we have that

$$
\Delta_{c}^{-1} K_{-c}\left(n \bar{c} ; 2^{k+2}\right)=\Delta_{c}^{-1}\left(1-(-1)^{k} i^{c}+(-1)^{k}-i^{c}\right) \sum_{\substack{d\left(\bmod 2^{k+2}\right) \\ d \equiv 1(\bmod 8)}} e\left(\frac{n^{\prime} \bar{c} d}{4}\right) .
$$

Observe

$$
\Delta_{c}^{-1}\left(1-(-1)^{k} i^{c}+(-1)^{k}-i^{c}\right)= \begin{cases}2(1-i) & \text { if } k \text { even } \\ 0 & \text { if } k \text { odd }\end{cases}
$$

since $\Delta_{c}^{-1}\left(1-i^{c}\right)=1-i$ regardless of the value of c. Also observe that

$$
\sum_{\substack{d\left(\bmod 2^{k+2}\right) \\
d \equiv 1(\bmod 8)}} e\left(\frac{n^{\prime} \bar{c} d}{4}\right)=\left\{\begin{array}{ll}
2^{k-1} i & \text { if } c \equiv n^{\prime} \equiv 1(\bmod 4), \\
-2^{k-1} i & \text { if }-c \equiv n^{\prime} \equiv 1(\bmod 4), \\
-2^{k-1} i & \text { if } c \equiv-n^{\prime} \equiv 1(\bmod 4), \\
2^{k-1} i & \text { if } c \equiv n^{\prime} \equiv 3(\bmod 4),
\end{array} \quad=i 2^{k-1} \chi_{4}\left(n^{\prime} c\right)\right.
$$

Thus for k even,

$$
\Delta_{c}^{-1} K_{-c}\left(n \bar{c} ; 2^{k+2}\right)=(1+i) 2^{k} \chi_{4}\left(n^{\prime} c\right)
$$

This proves part (c.3)

- If $\ell=k-1$ then by (4.24) we have that

$$
\begin{aligned}
& K_{-c}\left(n \bar{c} ; 2^{k+2}\right) \\
& =\left(1+(-1)^{k} i^{c} e\left(\frac{n^{\prime} \bar{c}}{4}\right)+(-1)^{k} e\left(\frac{n^{\prime} \bar{c}}{2}\right)+i^{c} e\left(\frac{3 n^{\prime} \bar{c}}{4}\right)\right) \sum_{\substack{\left(\bmod 2^{k+2}\right) \\
d=1(\bmod 8)}} e\left(\frac{n^{\prime} \bar{c} d}{8}\right) \\
& =\left(1+(-1)^{k} i^{c} e\left(\frac{n^{\prime} \bar{c}}{4}\right)+(-1)^{k} e\left(\frac{n^{\prime} \bar{c}}{2}\right)+i^{c} e\left(\frac{3 n^{\prime} \bar{c}}{4}\right)\right) \sum_{\substack{d\left(\bmod 2^{k+2}\right) \\
d=1(\bmod 8)}} e\left(\frac{n^{\prime} \bar{c}}{8}\right)^{d} \\
& =2^{k-1}\left(1+(-1)^{k} i^{c} e\left(\frac{n^{\prime} \bar{c}}{4}\right)+(-1)^{k} e\left(\frac{n^{\prime} \bar{c}}{2}\right)+i^{c} e\left(\frac{3 n^{\prime} \bar{c}}{4}\right)\right) e\left(\frac{n^{\prime} \bar{c}}{8}\right) .
\end{aligned}
$$

If $n^{\prime} \bar{c} \equiv 1(\bmod 4)$ then

$$
i^{c+3 n^{\prime} \bar{c}}=i^{c+3}=i^{c}(-i)=-i^{c+1}=-i^{c+n^{\prime} \bar{c}} .
$$

If $n^{\prime} \bar{c} \equiv 3(\bmod 4)$ then

$$
i^{c+3 n^{\prime} \bar{c}}=i^{c+1}=-i^{c+3}=-i^{c+n^{\prime} \bar{c}}
$$

Therefore, regardless of the values of n^{\prime} and c, we have that

$$
\begin{aligned}
& 1+(-1)^{k} i^{c+n^{\prime} \bar{c}}-(-1)^{k}+i^{c+3 n^{\prime} \bar{c}}=1+(-1)^{k} i^{c+n^{\prime} \bar{c}}-(-1)^{k}-i^{c+n^{\prime} \bar{c}} \\
& = \begin{cases}0 & \text { if } k \text { even } \\
2\left(1-i^{c+n^{\prime} \bar{c}}\right), & \text { if } k \text { odd. }\end{cases}
\end{aligned}
$$

Thus $K_{-c}\left(n \bar{c} ; 2^{k+2}\right)=0$ if k is even, and if k is odd then

$$
K_{-c}\left(n \bar{c} ; 2^{k+2}\right)=2^{k}\left(1-i^{c+n^{\prime} \bar{c}}\right) e\left(\frac{n^{\prime} \bar{c}}{8}\right) .
$$

If $n^{\prime} \equiv 3(\bmod 4)$ then $1-i^{c+n^{\prime} \bar{c}}=0$ and hence $K_{-c}\left(n \bar{c} ; 2^{k+2}\right)=0$. Thus it remains to evaluate $K_{-c}\left(n \bar{c} ; 2^{k+2}\right)$ for $n \equiv 1(\bmod 4)$. Towards this end, observe that

$$
\left(1-i^{c+n^{\prime} \bar{c}}\right) e\left(\frac{n^{\prime} \bar{c}}{8}\right)=\left(1-i^{c^{\prime}+n^{\prime \prime} \bar{c}^{\prime}}\right) e\left(\frac{n^{\prime \prime} \bar{c}^{\prime}}{8}\right)
$$

if $c \equiv c^{\prime}(\bmod 8)$ and $n^{\prime} \equiv n^{\prime \prime}(\bmod 8)$. In light of this, we give the following table for values of $\Delta_{c}^{-1} K_{-c}\left(n \bar{c} ; 2^{k+2}\right)=\Delta_{c}^{-1} 2^{k}\left(1-i^{c+n^{\prime} \bar{c}}\right) e\left(\frac{n^{\prime} \bar{c}}{8}\right)$:

$n^{\prime} \backslash c$	1	3	5	7
1	$\frac{1+i}{\sqrt{2}} 2^{k+1}$	$\frac{1+i}{\sqrt{2}} 2^{k+1}$	$-\frac{1+i}{\sqrt{2}} 2^{k+1}$	$-\frac{1+i}{\sqrt{2}} 2^{k+1}$
5	$-\frac{1+i}{\sqrt{2}} 2^{k+1}$	$-\frac{1+i}{\sqrt{2}} 2^{k+1}$	$\frac{1+\sqrt{2}}{\sqrt{2}} 2^{k+1}$	$\frac{1+i}{\sqrt{2}} 2^{k+1}$

From this we see that

$$
\Delta_{c}^{-1} K_{-c}\left(n \bar{c} ; 2^{k+2}\right)=\frac{1+i}{\sqrt{2}} 2^{k+1} \chi_{8}\left(n^{\prime} c\right) .
$$

This proves part (c.4).

- If $\ell \leq k-2$ then

$$
\sum_{\substack{d\left(\bmod 2^{k+2}\right) \\ d \equiv 1(\bmod 8)}} e\left(\frac{2^{\ell} n^{\prime} \bar{c} d}{2^{k+2}}\right)=\sum_{\substack{d\left(\bmod 2^{k+2}\right) \\ d \equiv 1(\bmod 8)}} e\left(\frac{n^{\prime} \bar{c}}{2^{k-\ell+2}}\right)^{d} .
$$

If $\xi=e\left(\frac{1}{2^{k-\ell+2}}\right)$ and m is an odd integer, then since $\xi^{8 m} \neq 1$ and since

$$
\xi^{8 m}\left(\sum_{\substack{d\left(2^{k+2}\right) \\ d \equiv 1(\bmod 8)}} \xi^{m d}\right)=\sum_{\substack{d\left(\bmod 2^{k+2}\right) \\ d \equiv 1(\bmod 8)}} \xi^{m(d+8)}=\sum_{\substack{d\left(\bmod 2^{k+2}\right) \\ d \equiv 1(\bmod 8)}} \xi^{m d},
$$

it follows that

$$
\sum_{\substack{d\left(\bmod 2^{k+2}\right) \\ d \equiv 1(\bmod 8)}} e\left(\frac{2^{\ell} n^{\prime} \bar{c} d}{2^{k+2}}\right)=0 .
$$

Hence by (4.24), we have that $\Delta_{c}^{-1} K_{-c}\left(n^{\prime} \overline{c^{\prime}} ; 2^{k+2}\right)=0$. This proves part (c.5).

4.3 The Meromorphic Continuation of Fourier Coefficients

To prove that $\widetilde{E}_{\nu}^{(\infty)}$ has a meromorphic continuation, we need to further simplify our Fourier coefficient calculations from the previous section. Let

$$
\begin{aligned}
& \mathcal{G}_{4}\left(\epsilon, n, 2^{k} ; \nu\right) \\
& =\left(1-\left(\frac{\epsilon n}{2}\right) 2^{-\nu-\frac{1}{2}}\right) \prod_{\substack{p \text { odd prime } \\
p \mid n}}\left(1-p^{-2 \nu-1}\right)^{-1} \sum_{j \in \mathbb{Z}_{\geq 0}} \chi_{4}\left(p^{j}\right) \mathcal{C}_{-\epsilon}\left(\Delta_{p^{j}} G\left(\epsilon n \overline{2^{k}} ; p^{j}\right)\right)\left(p^{j}\right)^{-\nu-1}, \\
& \mathcal{G}_{8}\left(\epsilon, n, 2^{k} ; \nu\right) \\
& =\left(1-\left(\frac{\epsilon n}{2}\right) 2^{-\nu-\frac{1}{2}}\right) \prod_{\substack{p \text { odd prime } \\
p \mid n}}\left(1-p^{-2 \nu-1}\right)^{-1} \sum_{j \in \mathbb{Z}_{\geq 0}} \chi_{8}\left(p^{j}\right) \mathcal{C}_{-\epsilon}\left(\Delta_{p^{j}} G\left(\epsilon n \overline{2^{k}} ; p^{j}\right)\right)\left(p^{j}\right)^{-\nu-1},
\end{aligned}
$$

and

$$
L\left(\nu,\left(\frac{n}{.}\right)\right)=\sum_{d \in \mathbb{Z}_{>0}}\left(\frac{n}{d}\right) d^{-\nu},
$$

where $\left(\frac{n}{d}\right)$ is the Kronecker symbol. We will use the following lemma to expedite our simplification of a_{n}.

Lemma 4.6.

(a) For k even,

$$
\zeta_{2}(2 \nu+1) \sum_{\substack{c^{\prime} \in \mathbb{Z}_{>0} \\ c^{\prime} o d d}} \chi_{4}\left(c^{\prime}\right) \mathcal{C}_{-\epsilon}\left(\Delta_{c^{\prime}} G\left(\epsilon n \overline{2^{k}} ; c^{\prime}\right)\right)\left(c^{\prime}\right)^{-\nu-1}=L\left(\nu+\frac{1}{2},\left(\frac{\epsilon n}{.}\right)\right) \mathcal{G}_{4}\left(\epsilon, n, 2^{k} ; \nu\right)
$$

(b) For k odd,

$$
\zeta_{2}(2 \nu+1) \sum_{\substack{c^{\prime} \in \mathbb{Z}_{>0} \\ c^{\prime} o d d}} \chi_{8}\left(c^{\prime}\right) \mathcal{C}_{-\epsilon}\left(\Delta_{c^{\prime}} G\left(\epsilon n \overline{2^{k}} ; c^{\prime}\right)\right)\left(c^{\prime}\right)^{-\nu-1}=L\left(\nu+\frac{1}{2},\left(\frac{\epsilon n}{.}\right)\right) \mathcal{G}_{8}\left(\epsilon, n, 2^{k} ; \nu\right)
$$

Proof. By Lemma 4.4(b) it follows that $\chi_{4}\left(c^{\prime}\right) \mathcal{C}_{-\epsilon}\left(\Delta_{c^{\prime}} G\left(\epsilon n \overline{2^{k}} ; c^{\prime}\right)\right)$ is multiplicative. Therefore,
by Lemma $4.4(\mathrm{a}, \mathrm{d})$ we have that

$$
\begin{aligned}
& \zeta_{2}(2 \nu+1) \sum_{\substack{c^{\prime} \in \mathbb{Z}_{>0} \\
c^{\prime} \text { odd }}} \chi_{4}\left(c^{\prime}\right) \mathcal{C}_{-\epsilon}\left(\Delta_{c^{\prime}} G\left(\epsilon n \overline{2^{k}} ; c^{\prime}\right)\right)\left(c^{\prime}\right)^{-\nu-1} \\
& =\zeta_{2}(2 \nu+1) \prod_{p \text { odd prime }} \sum_{j \in \mathbb{Z}_{\geq 0}} \chi_{4}\left(p^{j}\right) \mathcal{C}_{-\epsilon}\left(\Delta_{p^{j}} G\left(\epsilon n \overline{2^{k}} ; p^{j}\right)\right)\left(p^{j}\right)^{-\nu-1} \\
& =\zeta_{2}(2 \nu+1) \prod_{\substack{p \text { odd prime } \\
p \nmid n}}\left(1+\chi_{4}(p) \mathcal{C}_{-\epsilon}\left(\Delta_{p}^{2}\left(\frac{\epsilon n 2^{k}}{p}\right)\right) p^{-\nu-\frac{1}{2}}\right) \\
& \quad \cdot \prod_{p \text { odd prime }}^{p \mid n} \sum_{j \in \mathbb{Z}_{\geq 0}} \chi_{4}\left(p^{j}\right) \mathcal{C}_{-\epsilon}\left(\Delta_{p^{j}} G\left(\epsilon n \overline{2^{k}} ; p^{j}\right)\right)\left(p^{j}\right)^{-\nu-1} \\
& =\zeta_{2}(2 \nu+1) \prod_{p \text { odd prime }}^{p \nmid n} \\
& \quad . \prod_{p \text { odd prime }}^{p \mid n} \sum_{j \in \mathbb{Z}_{\geq 0}} \chi_{4}\left(p^{j}\right) \mathcal{C}_{-\epsilon}\left(\Delta_{p^{j}} G\left(\epsilon n \overline{2^{k}} ; p^{j}\right)\right)\left(p^{j}\right)^{-\nu-1} .
\end{aligned}
$$

In the last we line we used the fact that $\chi_{4}(p) \Delta_{p}^{2}=1$ for all odd primes, and we used that $\left(\frac{2^{k}}{p}\right)=1$ since k is even. Since

$$
\begin{equation*}
\left(1+\left(\frac{\epsilon n}{p}\right) p^{-\nu-\frac{1}{2}}\right)=\left(1-p^{-2 \nu-1}\right) \cdot\left(1-\left(\frac{\epsilon n}{p}\right) p^{-\nu-\frac{1}{2}}\right)^{-1} \tag{4.25}
\end{equation*}
$$

it follows that

$$
\begin{aligned}
& \zeta_{2}(2 \nu+1) \sum_{\substack{c^{\prime} \in \mathbb{Z}_{>0} \\
c^{\prime} \text { odd }}} \chi_{4}\left(c^{\prime}\right) \mathcal{C}_{-\epsilon}\left(\Delta_{c^{\prime}} G\left(\epsilon n \overline{2^{k}} ; c^{\prime}\right)\right)\left(c^{\prime}\right)^{-\nu-1} \\
& =\prod_{\substack{p \text { odd prime } \\
p \mid n}}\left(1-p^{-2 \nu-1}\right)^{-1} \prod_{\substack{p \text { odd prime } \\
p \nmid n}}\left(1-\left(\frac{\epsilon n}{p}\right) p^{-\nu-\frac{1}{2}}\right)^{-1} \\
& \quad \cdot \prod_{p \text { odd prime }}^{p \mid n} \sum_{j \in \mathbb{Z}_{\geq 0}} \chi_{4}\left(p^{j}\right) \mathcal{C}_{-\epsilon}\left(\Delta_{p^{j}} G\left(\epsilon n \overline{2^{k}} ; p^{j}\right)\right)\left(p^{j}\right)^{-\nu-1} \\
& \left.=L\left(\nu+\frac{1}{2},\left(\frac{\epsilon n}{\cdot}\right)\right)\left(1-\left(\frac{\epsilon n}{2}\right) 2^{-\nu-\frac{1}{2}}\right) \prod_{p \text { odd prime }}^{p \mid n} \right\rvert\, \\
& \quad . \prod_{p \text { odd prime }}^{p \mid n} \sum_{j \in \mathbb{Z}_{\geq 0}} \chi_{4}\left(p^{j}\right) \mathcal{C}_{-\epsilon}\left(\Delta_{p^{j}} G\left(\epsilon n \overline{2^{k}} ; p^{j}\right)\right)\left(p^{j}\right)^{-\nu-1} .
\end{aligned}
$$

This proves part (a).
The proof for part (b) is very similar to the proof for part (a). By Lemma 4.4(b) we have
that $\chi_{8}\left(c^{\prime}\right) \mathcal{C}_{-\epsilon}\left(\Delta_{c^{\prime}} G\left(\epsilon n \overline{2^{k}} ; c^{\prime}\right)\right)$ is multiplicative. Therefore, by Lemma $4.4(\mathrm{a}, \mathrm{d})$ we have that

$$
\begin{aligned}
& \zeta_{2}(2 \nu+1) \sum_{\substack{c^{\prime} \in \mathbb{Z}>0 \\
c^{\prime} \text { odd }}} \chi_{8}\left(c^{\prime}\right) \mathcal{C}_{-\epsilon}\left(\Delta_{c^{\prime}} G\left(\epsilon n \overline{2^{k}} ; c^{\prime}\right)\right)\left(c^{\prime}\right)^{-\nu-1} \\
& =\zeta_{2}(2 \nu+1) \prod_{p \text { odd prime }} \sum_{j \in \mathbb{Z}_{\geq 0}} \chi_{8}\left(p^{j}\right) \mathcal{C}_{-\epsilon}\left(\Delta_{p^{j}} G\left(\epsilon n \overline{2^{k}} ; p^{j}\right)\right)\left(p^{j}\right)^{-\nu-1} \\
& =\zeta_{2}(2 \nu+1) \prod_{\substack{\text { odd prime } \\
\text { płn }}}\left(1+\chi_{8}(p) \mathcal{C}_{-\epsilon}\left(\Delta_{p} \Delta_{p}\left(\frac{\epsilon 2^{k}}{p}\right)\right) p^{-\nu-\frac{1}{2}}\right) \\
& \cdot \prod_{\substack{p \text { odd prime } \\
p \mid n \in \mathbb{Z}_{\geq 0}}}^{\sum_{8}\left(p^{j}\right) \mathcal{C}_{-\epsilon}\left(\Delta_{p^{j}} G\left(\epsilon n \overline{2^{k}} ; p^{j}\right)\right)\left(p^{j}\right)^{-\nu-1}} \\
& =\zeta_{2}(2 \nu+1) \prod_{\substack{\text { odd prime } \\
p \nmid n}}\left(1+\left(\frac{\epsilon n}{p}\right) p^{-\nu-\frac{1}{2}}\right) \\
& \quad \prod_{\substack{p \text { odd prime } \\
p \mid n}}^{\sum_{j \in \mathbb{Z}_{\geq 0}} \chi_{8}\left(p^{j}\right) \mathcal{C}_{-\epsilon}\left(\Delta_{p^{j}} G\left(\epsilon n \overline{2^{k}} ; p^{j}\right)\right)\left(p^{j}\right)^{-\nu-1} .}
\end{aligned}
$$

In the last we line we used the fact that $\chi_{8}(p) \Delta_{p}^{2}\left(\frac{2^{k}}{p}\right)=\chi_{8}(p) \Delta_{p}^{2}\left(\frac{2}{p}\right)=1$ for all odd primes; this follows from the fact that $\left(\frac{2^{k}}{p}\right)=\left(\frac{2}{p}\right)$ since k is odd, and the fact that

$$
\left(\frac{2}{p}\right)= \begin{cases}1 & \text { if } p \equiv 1,7(\bmod 8) \\ -1 & \text { if } p \equiv 3,5(\bmod 8)\end{cases}
$$

By (4.25) it follows that

$$
\begin{aligned}
& \zeta_{2}(2 \nu+1) \sum_{\substack{c^{\prime} \in \mathbb{Z}_{\geq 0} \\
c^{\prime} \text { odd }}} \chi_{8}\left(c^{\prime}\right) \mathcal{C}_{-\epsilon}\left(\Delta_{c^{\prime}} G\left(\epsilon n^{k} ; c^{\prime}\right)\right)\left(c^{\prime}\right)^{-\nu-1} \\
& =\prod_{\substack{p \text { odd prime } \\
p \mid n}}\left(1-p^{-2 \nu-1}\right)^{-1} \prod_{\substack{p \text { odd prime } \\
p \nmid n}}\left(1-\left(\frac{\epsilon n}{p}\right) p^{-\nu-\frac{1}{2}}\right)^{-1} \\
& \quad \prod_{\substack{p \text { odd prime } \\
p \mid n}} \sum_{j \in \mathbb{Z}_{\geq 0}} \chi_{8}\left(p^{j}\right) \mathcal{C}_{-\epsilon}\left(\Delta_{p^{j}} G\left(\epsilon n \overline{2^{k}} ; p^{j}\right)\right)\left(p^{j}\right)^{-\nu-1} \\
& =L\left(\nu+\frac{1}{2},\left(\frac{\epsilon n}{\cdot}\right)\right)\left(1-\left(\frac{\epsilon n}{2}\right) 2^{-\nu-\frac{1}{2}}\right) \prod_{\substack{p \text { odd prime } \\
p \mid n}}\left(1-p^{-2 \nu-1}\right)^{-1} \\
& \quad \prod_{\substack{p \text { odd prime } \\
p \mid n}} \sum_{j \in \mathbb{Z}_{\geq 0}} \chi_{8}\left(p^{j}\right) \mathcal{C}_{-\epsilon}\left(\Delta_{p^{j}} G\left(\epsilon n \overline{2^{k}} ; p^{j}\right)\right)\left(p^{j}\right)^{-\nu-1} .
\end{aligned}
$$

This proves part (b).

Proposition 4.7. Let $\widetilde{E}_{\nu}^{(\infty)} \in V_{(\epsilon), \nu}^{-\infty}\left(\widetilde{S L}_{2}\right)$ where $\Re(\nu)>1$, with a_{n} the Fourier coefficients of $\left(\widetilde{E}_{\nu}^{(\infty)}\right)_{0}$. Recall that in (4.22) we showed that

$$
a_{n}=\epsilon i 4^{-\nu-1} \zeta_{2}(2 \nu+1) \sum_{\substack{c^{\prime} \in \mathbb{Z}_{>0} \\ c^{\prime} \text { odd }}} \sum_{k \in \mathbb{Z}_{\geq 0}}\left(2^{k} c^{\prime}\right)^{-\nu-1} \mathcal{C}_{-\epsilon}\left(K_{-c^{\prime}}\left(\epsilon n \overline{c^{\prime}} ; 2^{k+2}\right) G\left(\epsilon n \overline{2^{k+2}} ; c^{\prime}\right)\right)
$$

(a) If $\epsilon n \equiv 3(\bmod 4)$ then

$$
a_{n}=-(1+\epsilon i) 4^{-\nu-1} L\left(\nu+\frac{1}{2},\left(\frac{\epsilon n}{\cdot}\right)\right) \mathcal{G}_{4}(\epsilon, n, 4 ; \nu)
$$

(b) If $\epsilon n \equiv 1(\bmod 4)$ then

$$
\begin{aligned}
a_{n}= & (1+\epsilon i) 4^{-\nu-1} L\left(\nu+\frac{1}{2},\left(\frac{\epsilon n}{\cdot}\right)\right) \mathcal{G}_{4}(\epsilon, n, 4 ; \nu) \\
& +(1+\epsilon i) 2^{3 / 2}(1-i) 8^{-\nu-1} L\left(\nu+\frac{1}{2},\left(\frac{\epsilon n}{\cdot}\right)\right) \mathcal{G}_{8}(\epsilon, n, 8 ; \nu)
\end{aligned}
$$

(c) If $n=2 n^{\prime}$ where $\operatorname{gcd}\left(n^{\prime}, 2\right)=1$ then

$$
a_{n}=-(1+\epsilon i) 4^{-\nu-1} L\left(\nu+\frac{1}{2},\left(\frac{\epsilon n}{\cdot}\right)\right) \mathcal{G}_{4}(\epsilon, n, 4 ; \nu)
$$

(d) If $n=2^{\ell} n^{\prime}$ where $\ell>1$ and $\operatorname{gcd}\left(n^{\prime}, 2\right)=1$, then

$$
\begin{aligned}
a_{n} & =(1+\epsilon i) 4^{-\nu-1} L\left(\nu+\frac{1}{2},\left(\frac{\epsilon n}{\cdot}\right)\right) \mathcal{G}_{4}(\epsilon, n, 4 ; \nu) \\
& +(1+\epsilon i) \sum_{\substack{k=2 \\
k \text { even }}}^{\ell-2} 2^{k}\left(2^{k+2}\right)^{-\nu-1} L\left(\nu+\frac{1}{2},\left(\frac{\epsilon n}{\cdot}\right)\right) \mathcal{G}_{4}\left(\epsilon, n, 2^{k+2} ; \nu\right) \\
& -\delta_{\ell \equiv 1(2)}(1+\epsilon i) 2^{\ell-1}\left(2^{\ell+1}\right)^{-\nu-1} L\left(\nu+\frac{1}{2},\left(\frac{\epsilon n}{.}\right)\right) \mathcal{G}_{4}\left(\epsilon, n, 2^{\ell+1} ; \nu\right) \\
& +\delta_{\ell \equiv 0(2)}(1+\epsilon i) 2^{\ell}\left(2^{\ell+2}\right)^{-\nu-1} \chi_{4}\left(\epsilon n^{\prime}\right) L\left(\nu+\frac{1}{2},\left(\frac{\epsilon n}{\cdot}\right)\right) \mathcal{G}_{4}\left(\epsilon, n, 2^{\ell+2} ; \nu\right) \\
& +\delta_{\ell \equiv 0(2)} \frac{(1+\epsilon i)}{\sqrt{2}} 2^{\ell+2}\left(2^{\ell+3}\right)^{-\nu-1} \chi_{8}\left(\epsilon n^{\prime}\right) L\left(\nu+\frac{1}{2},\left(\frac{\epsilon n}{\cdot}\right)\right) \mathcal{G}_{8}\left(\epsilon, n, 2^{\ell+3} ; \nu\right)
\end{aligned}
$$

where $\delta_{\ell \equiv j(2)}=\left\{\begin{array}{ll}1 & \text { if } \ell \equiv j(\bmod 2), \\ 0 & \text { otherwise },\end{array} \quad\right.$ for $j \in\{0,1\}$.

Proof. Suppose $\epsilon n \equiv 3(\bmod 4)$. By (4.22) and Lemma 4.5(b), we have that

$$
\begin{aligned}
& a_{n}=\epsilon i 4^{-\nu-1} \zeta_{2}(2 \nu+1) \sum_{\substack{c^{\prime} \in \mathbb{Z}_{>0} \\
c^{\prime} \text { odd }}} \sum_{k \in \mathbb{Z}_{\geq 0}}\left(2^{k} c^{\prime}\right)^{-\nu-1} \mathcal{C}_{-\epsilon}\left(\Delta_{c^{\prime}}^{-1} K_{-c^{\prime}}\left(\epsilon n \overline{c^{\prime}} ; 2^{k+2}\right) \Delta_{c^{\prime}} G\left(\epsilon n \overline{2^{k+2}} ; c^{\prime}\right)\right) \\
& =\epsilon i 4^{-\nu-1} \zeta_{2}(2 \nu+1) \sum_{\substack{c^{\prime} \in \mathbb{Z}_{>0} \\
c^{\prime} \text { odd }}}\left(c^{\prime}\right)^{-\nu-1} \mathcal{C}_{-\epsilon}\left(\Delta_{c^{\prime}}^{-1} K_{-c^{\prime}}\left(\epsilon n \overline{c^{\prime}} ; 4\right) \Delta_{c^{\prime}} G\left(\epsilon n \overline{4} ; c^{\prime}\right)\right) \\
& =\epsilon i 4^{-\nu-1} \zeta_{2}(2 \nu+1) \sum_{\substack{c^{\prime} \in \mathbb{Z}_{>0} \\
c^{\prime} o d d}}\left(c^{\prime}\right)^{-\nu-1} \mathcal{C}_{-\epsilon}\left((-1-i) \chi_{4}\left(c^{\prime}\right)\right) \mathcal{C}_{-\epsilon}\left(\Delta_{c^{\prime}} G\left(\epsilon n \overline{4} ; c^{\prime}\right)\right) \\
& =\epsilon i 4^{-\nu-1} \zeta_{2}(2 \nu+1) \sum_{\substack{c^{\prime} \in \mathbb{Z}_{>0} \\
c^{\prime} \text { odd }}}\left(c^{\prime}\right)^{-\nu-1}(-1+\epsilon i) \chi_{4}\left(c^{\prime}\right) \mathcal{C}_{-\epsilon}\left(\Delta_{c^{\prime}} G\left(\epsilon n \overline{4} ; c^{\prime}\right)\right) \\
& =-(1+\epsilon i) 4^{-\nu-1} \zeta_{2}(2 \nu+1) \sum_{\substack{c^{\prime} \in \mathbb{Z}_{>0} \\
c^{\prime} \text { odd }}} \chi_{4}\left(c^{\prime}\right) \mathcal{C}_{-\epsilon}\left(\Delta_{c^{\prime}} G\left(\epsilon n \overline{4} ; c^{\prime}\right)\right)\left(c^{\prime}\right)^{-\nu-1} .
\end{aligned}
$$

Part (a) then follows from Lemma 4.6(a).
Suppose $\epsilon n \equiv 1(\bmod 4)$. By (4.22) and Lemma 4.5(a) we have that

$$
\begin{aligned}
& a_{n}=\epsilon i 4^{-\nu-1} \zeta_{2}(2 \nu+1) \sum_{\substack{c^{\prime} \in \mathbb{Z}_{>0} \\
c^{\prime} \text { odd }}}\left(c^{\prime}\right)^{-\nu-1} \mathcal{C}_{-\epsilon}\left(\Delta_{c^{\prime}}^{-1} K_{-c^{\prime}}\left(\epsilon n \overline{c^{\prime}} ; 4\right) \Delta_{c^{\prime}} G\left(\epsilon n \overline{4} ; c^{\prime}\right)\right) \\
& +\epsilon i 4^{-\nu-1} \zeta_{2}(2 \nu+1) \sum_{\substack{c^{\prime} \in \mathbb{Z}_{>0} \\
c^{\prime} \text { odd }}}\left(2 c^{\prime}\right)^{-\nu-1} \mathcal{C}_{-\epsilon}\left(\Delta_{c^{\prime}}^{-1} K_{-c^{\prime}}\left(\epsilon n \overline{c^{\prime}} ; 8\right) \Delta_{c^{\prime}} G\left(\epsilon n \overline{8} ; c^{\prime}\right)\right) \\
& =\epsilon i 4^{-\nu-1} \zeta_{2}(2 \nu+1) \sum_{\substack{c^{\prime} \in \mathbb{Z}_{>0} \\
c^{\prime} \text { odd }}}\left(c^{\prime}\right)^{-\nu-1} \mathcal{C}_{-\epsilon}\left((1+i) \chi_{4}\left(c^{\prime}\right)\right) \mathcal{C}_{-\epsilon}\left(\Delta_{c^{\prime}} G\left(\epsilon n \overline{4} ; c^{\prime}\right)\right) \\
& +\epsilon i 4^{-\nu-1} \zeta_{2}(2 \nu+1) \sum_{\substack{c^{\prime} \in \mathbb{Z}_{>0} \\
c^{\prime} \text { odd }}}\left(2 c^{\prime}\right)^{-\nu-1} \mathcal{C}_{-\epsilon}\left(2^{3 / 2}(1+i) \chi_{8}\left(c^{\prime}\right)\right) \mathcal{C}_{-\epsilon}\left(\Delta_{c^{\prime}} G\left(\epsilon n \overline{8} ; c^{\prime}\right)\right) \\
& =\epsilon i 4^{-\nu-1} \zeta_{2}(2 \nu+1) \sum_{\substack{c^{\prime} \in \mathbb{Z}_{>0} \\
c^{\prime} \text { odd }}}\left(c^{\prime}\right)^{-\nu-1}(1-\epsilon i) \chi_{4}\left(c^{\prime}\right) \mathcal{C}_{-\epsilon}\left(\Delta_{c^{\prime}} G\left(\epsilon n \overline{4} ; c^{\prime}\right)\right) \\
& +\epsilon i 4^{-\nu-1} \zeta_{2}(2 \nu+1) \sum_{\substack{c^{\prime} \in \mathbb{Z}_{>0} \\
c^{\prime} \text { odd }}}\left(2 c^{\prime}\right)^{-\nu-1} 2^{3 / 2}(1-\epsilon i) \chi_{8}\left(c^{\prime}\right) \mathcal{C}_{-\epsilon}\left(\Delta_{c^{\prime}} G\left(\epsilon n \overline{8} ; c^{\prime}\right)\right) \\
& =(1+\epsilon i) 4^{-\nu-1} \zeta_{2}(2 \nu+1) \sum_{\substack{c^{\prime} \in \mathbb{Z}>0 \\
c^{\prime} \text { odd }}} \chi_{4}\left(c^{\prime}\right) \mathcal{C}_{-\epsilon}\left(\Delta_{c^{\prime}} G\left(\epsilon n \overline{4} ; c^{\prime}\right)\right)\left(c^{\prime}\right)^{-\nu-1} \\
& +(1+\epsilon i) 2^{3 / 2} 8^{-\nu-1} \zeta_{2}(2 \nu+1) \sum_{\substack{c^{\prime} \in \mathbb{Z}_{>0} \\
c^{\prime} \text { odd }}} \chi_{8}\left(c^{\prime}\right) \mathcal{C}_{-\epsilon}\left(\Delta_{c^{\prime}} G\left(\epsilon n \overline{8} ; c^{\prime}\right)\right)\left(c^{\prime}\right)^{-\nu-1} .
\end{aligned}
$$

Part (b) then follows from Lemma 4.6(a,b).

Suppose $n=2 n^{\prime}$ with $\operatorname{gcd}\left(n^{\prime}, 2\right)=1$. By (4.22) and Lemma 4.5(c), we have that

$$
\begin{aligned}
& a_{n}=\epsilon i 4^{-\nu-1} \zeta_{2}(2 \nu+1) \sum_{\substack{c^{\prime} \in \mathbb{Z}_{>0} \\
c^{\prime} \text { odd }}}\left(c^{\prime}\right)^{-\nu-1} \mathcal{C}_{-\epsilon}\left(\Delta_{c^{\prime}}^{-1} K_{-c^{\prime}}\left(\epsilon n \bar{c}^{\prime} ; 4\right) \Delta_{c^{\prime}} G\left(\epsilon n \overline{4} ; c^{\prime}\right)\right) \\
& =\epsilon i 4^{-\nu-1} \zeta_{2}(2 \nu+1) \sum_{\substack{c^{\prime} \in \mathbb{Z}_{>0} \\
c^{\prime} \text { odd }}}\left(c^{\prime}\right)^{-\nu-1} \mathcal{C}_{-\epsilon}\left((-1-i) \chi_{4}\left(c^{\prime}\right)\right) \mathcal{C}_{-\epsilon}\left(\Delta_{c^{\prime}} G\left(\epsilon n \overline{4} ; c^{\prime}\right)\right) \\
& =-(1+\epsilon i) 4^{-\nu-1} \zeta_{2}(2 \nu+1) \sum_{\substack{c^{\prime} \in \mathbb{Z}_{>0} \\
c^{\prime} \text { odd }}} \chi_{4}\left(c^{\prime}\right) \mathcal{C}_{-\epsilon}\left(\Delta_{c^{\prime}} G\left(\epsilon n \overline{4} ; c^{\prime}\right)\right)\left(c^{\prime}\right)^{-\nu-1} .
\end{aligned}
$$

Part (c) then follows from Lemma 4.6(a).
Suppose $n=2^{\ell} n^{\prime}$ with $\operatorname{gcd}\left(n^{\prime}, 2\right)=1$ and $\ell>1$. By (4.22) and Lemma 4.5(c), we have that

$$
\begin{aligned}
& a_{n}=\epsilon i 4^{-\nu-1} \zeta_{2}(2 \nu+1) \sum_{\substack{c^{\prime} \in \mathbb{Z}_{>0} \\
c^{\prime} \text { odd }}} \sum_{k \in \mathbb{Z}_{\geq 0}}\left(2^{k} c^{\prime}\right)^{-\nu-1} \mathcal{C}_{-\epsilon}\left(\Delta_{c^{\prime}}^{-1} K_{-c^{\prime}}\left(\epsilon n \overline{c^{\prime}} ; 2^{k+2}\right) \Delta_{c^{\prime}} G\left(\epsilon n \overline{2^{k+2}} ; c^{\prime}\right)\right) \\
& =\epsilon i 4^{-\nu-1} \zeta_{2}(2 \nu+1) \sum_{\substack{c^{\prime} \in Z_{>0} \\
c^{\prime} \text { odd }}}\left(c^{\prime}\right)^{-\nu-1} \mathcal{C}_{-\epsilon}\left((1+i) \chi_{4}\left(c^{\prime}\right)\right) \mathcal{C}_{-\epsilon}\left(\Delta_{c^{\prime}} G\left(\epsilon n \overline{4} ; c^{\prime}\right)\right) \\
& +\epsilon i 4^{-\nu-1} \zeta_{2}(2 \nu+1) \sum_{\substack{c^{\prime} \in \mathbb{Z}_{\checkmark} \mathbf{o l} \\
c^{\prime} \text { odd }}} \sum_{\substack{k=2 \\
k \text { even }}}^{\ell-2}\left(2^{k} c^{\prime}\right)^{-\nu-1} \mathcal{C}_{-\epsilon}\left((1+i) \chi_{4}\left(c^{\prime}\right) 2^{k}\right) \mathcal{C}_{-\epsilon}\left(\Delta_{c^{\prime}} G\left(\epsilon n \overline{2^{k+2}} ; c^{\prime}\right)\right) \\
& +\delta_{\ell \equiv 1(2)} \epsilon i 4^{-\nu-1} \zeta_{2}(2 \nu+1) \sum_{\substack{c^{\prime} \in \mathbb{Z}_{>} \\
c^{\prime} \text { odd }}}\left(2^{\ell-1} c^{\prime}\right)^{-\nu-1} \mathcal{C}_{-\epsilon}\left((-1-i) \chi_{4}\left(c^{\prime}\right) 2^{\ell-1}\right) \\
& \text { - } \mathcal{C}_{-\epsilon}\left(\Delta_{c^{\prime}} G\left(\epsilon n \overline{2^{\ell+1}} ; c^{\prime}\right)\right) \\
& +\delta_{\ell \equiv 0(2)} \epsilon i 4^{-\nu-1} \zeta_{2}(2 \nu+1) \sum_{\substack{c^{\prime} \in \mathbb{Z}_{>0} \\
c^{\prime} \text { odd }}}\left(2^{\ell} c^{\prime}\right)^{-\nu-1} \mathcal{C}_{-\epsilon}\left((1+i) \chi_{4}\left(\epsilon n^{\prime} c^{\prime}\right) 2^{\ell}\right) \mathcal{C}_{-\epsilon}\left(\Delta_{c^{\prime}} G\left(\epsilon n \overline{2^{\ell+2}} ; c^{\prime}\right)\right) \\
& +\delta_{\ell \equiv 0(2)} \epsilon i 4^{-\nu-1} \zeta_{2}(2 \nu+1) \sum_{\substack{c^{\prime} \in \mathbb{Z}_{>0} \\
c^{\prime} \text { odd }}}\left(2^{\ell+1} c^{\prime}\right)^{-\nu-1} \mathcal{C}_{-\epsilon}\left(\frac{1+i}{\sqrt{2}} 2^{\ell+2} \chi_{8}\left(\epsilon n^{\prime} c^{\prime}\right)\right) \\
& \text { - } \mathcal{C}_{-\epsilon}\left(\Delta_{c^{\prime}} G\left(\epsilon n \overline{2^{\ell+3}} ; c^{\prime}\right)\right) \\
& =(1+\epsilon i) 4^{-\nu-1} \zeta_{2}(2 \nu+1) \sum_{\substack{c^{\prime} \in \mathbb{Z}_{>0} \\
c^{\prime} \text { odd }}} \chi_{4}\left(c^{\prime}\right) \mathcal{C}_{-\epsilon}\left(\Delta_{c^{\prime}} G\left(\epsilon n \overline{4} ; c^{\prime}\right)\right)\left(c^{\prime}\right)^{-\nu-1} \\
& +(1+\epsilon i) \sum_{\substack{k=2 \\
k \text { even }}}^{\ell-2} 2^{k}\left(2^{k+2}\right)^{-\nu-1} \zeta_{2}(2 \nu+1) \sum_{\substack{c^{\prime} \in \mathbb{Z}_{>0} \\
c^{\prime} \text { odd }}} \chi_{4}\left(c^{\prime}\right) \mathcal{C}_{-\epsilon}\left(\Delta_{c^{\prime}} G\left(\epsilon n \overline{2^{k+2}} ; c^{\prime}\right)\right)\left(c^{\prime}\right)^{-\nu-1} \\
& -\delta_{\ell \equiv 1(2)}(1+\epsilon i) 2^{\ell-1}\left(2^{\ell+1}\right)^{-\nu-1} \zeta_{2}(2 \nu+1) \sum_{\substack{c^{\prime} \in \mathbb{Z}>0 \\
c^{\prime} \text { odd }}} \chi_{4}\left(c^{\prime}\right) \mathcal{C}_{-\epsilon}\left(\Delta_{c^{\prime}} G\left(\epsilon n \overline{2^{\ell+1}} ; c^{\prime}\right)\right)\left(c^{\prime}\right)^{-\nu-1} \\
& +\delta_{\ell \equiv 0(2)}(1+\epsilon i) 2^{\ell}\left(2^{\ell+2}\right)^{-\nu-1} \chi_{4}\left(\epsilon n^{\prime}\right) \zeta_{2}(2 \nu+1) \sum_{\substack{c^{\prime} \in \mathbb{Z}_{>0} \\
c^{\prime} \text { odd }}} \chi_{4}\left(c^{\prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \cdot \mathcal{C}_{-\epsilon}\left(\Delta_{c^{\prime}} G\left(\epsilon n \overline{2^{\ell+2}} ; c^{\prime}\right)\right)\left(c^{\prime}\right)^{-\nu-1} \\
+ & \delta_{\ell \equiv 0(2)} \frac{1+\epsilon i}{\sqrt{2}} 2^{\ell+2}\left(2^{\ell+3}\right)^{-\nu-1} \chi_{8}\left(\epsilon n^{\prime}\right) \zeta_{2}(2 \nu+1) \sum_{\substack{c^{\prime} \in \mathbb{Z}_{>0} \\
c^{\prime} \text { odd }}} \chi_{8}\left(c^{\prime}\right) \\
& \cdot \mathcal{C}_{-\epsilon}\left(\Delta_{c^{\prime}} G\left(\epsilon n \overline{2^{\ell+3}} ; c^{\prime}\right)\right)\left(c^{\prime}\right)^{-\nu-1} .
\end{aligned}
$$

Part (d) then follows from Lemma 4.6(a,b).

For $n \neq 0$, we wish to show that a_{n} has meromorphic continuation to all of \mathbb{C}. To do so, we write

$$
\begin{equation*}
\epsilon n=s t \text { where } s=\prod_{\substack{p^{\ell} \| n \\ \ell \text { even }}} p^{\ell} \text { and } t=\epsilon \prod_{\substack{p^{\ell} \| n \\ \ell \text { odd }}} p^{\ell} \text {. } \tag{4.26}
\end{equation*}
$$

Thus

$$
\begin{aligned}
& L\left(\nu+\frac{1}{2},\left(\frac{t}{-}\right)\right)=\prod_{p \text { prime }}\left(1-\left(\frac{t}{p}\right) p^{-\nu-\frac{1}{2}}\right)^{-1} \\
& =\prod_{\substack{p \text { prime } \\
p \mid s}}\left(1-\left(\frac{t}{p}\right) p^{-\nu-\frac{1}{2}}\right)^{-1} \prod_{\substack{\text { prime } \\
p \nmid s}}\left(1-\left(\frac{t}{p}\right) p^{-\nu-\frac{1}{2}}\right)^{-1} \\
& =\prod_{\substack{p \text { prime } \\
p \mid s}}\left(1-\left(\frac{t}{p}\right) p^{-\nu-\frac{1}{2}}\right)^{-1} L\left(\nu+\frac{1}{2},\left(\frac{\epsilon n}{r}\right)\right)
\end{aligned}
$$

which implies

$$
L\left(\nu+\frac{1}{2},\left(\frac{\epsilon n}{.}\right)\right)=\prod_{\substack{p \text { prime } \\ p \mid s}}\left(1-\left(\frac{t}{p}\right) p^{-\nu-\frac{1}{2}}\right) L\left(\nu+\frac{1}{2},\left(\frac{t}{-}\right)\right) .
$$

Therefore

$$
\begin{aligned}
& L\left(\nu+\frac{1}{2},\left(\frac{\epsilon n}{\cdot}\right)\right) \mathcal{G}_{4}\left(\epsilon, n, 2^{k} ; \nu\right) \\
& = \\
& L\left(\nu+\frac{1}{2},\left(\frac{\epsilon n}{.}\right)\right)\left(1-\left(\frac{\epsilon n}{2}\right) 2^{-\nu-\frac{1}{2}}\right) \\
& \\
& \left(\prod_{\substack{\text { odd prime } \\
p \mid n}}\left(1-p^{-2 \nu-1}\right)^{-1} \sum_{j \in \mathbb{Z}_{\geq 0}} \chi_{4}\left(p^{j}\right) \mathcal{C}_{-\epsilon}\left(\Delta_{p^{j}} G\left(\epsilon n \overline{2^{k}} ; p^{j}\right)\right)\left(p^{j}\right)^{-\nu-1}\right) \\
& = \\
& \left(1-\left(\frac{\epsilon n}{2}\right) 2^{-\nu-\frac{1}{2}}\right) L\left(\nu+\frac{1}{2},\binom{t}{\cdot}\right)\left(\prod_{\substack{\text { prime } \\
p \mid s}}\left(1-\left(\frac{t}{p}\right) p^{-\nu-\frac{1}{2}}\right)\right) \\
& \\
& \quad\left(\prod_{\substack{\text { odd prime } \\
p \mid n}}\left(1-p^{-2 \nu-1}\right)^{-1} \sum_{j \in \mathbb{Z}_{\geq 0}} \chi_{4}\left(p^{j}\right) \mathcal{C}_{-\epsilon}\left(\Delta_{p^{j}} G\left(\epsilon n \overline{2^{k}} ; p^{j}\right)\right)\left(p^{j}\right)^{-\nu-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
= & p_{2, n} \cdot\left(1-\left(\frac{\epsilon n}{2}\right) 2^{-\nu-\frac{1}{2}}\right) L\left(\nu+\frac{1}{2},\left(\frac{t}{\cdot}\right)\right)\left(\prod_{\substack{\text { odd prime } \\
p \mid s}}\left(1-\left(\frac{t}{p}\right) p^{-\nu-\frac{1}{2}}\right)\right) \\
& \left(\prod_{\substack{\text { odd prime } \\
p \mid n}}\left(1-p^{-2 \nu-1}\right)^{-1} \sum_{j \in \mathbb{Z}_{\geq 0}} \chi_{4}\left(p^{j}\right) \mathcal{C}_{-\epsilon}\left(\Delta_{p^{j}} G\left(\epsilon n \overline{2^{k}} ; p^{j}\right)\right)\left(p^{j}\right)^{-\nu-1}\right)
\end{aligned}
$$

where

$$
p_{2, n}= \begin{cases}\left(1-\left(\frac{t}{2}\right) 2^{-\nu-\frac{1}{2}}\right) & \text { if } 2 \mid s, \tag{4.27}\\ 1 & \text { otherwise }\end{cases}
$$

Since $\left(1-\left(\frac{t}{p}\right) p^{-\nu-\frac{1}{2}}\right)\left(1+\left(\frac{t}{p}\right) p^{-\nu-\frac{1}{2}}\right)=1-p^{-2 \nu-1}$ it follows that

$$
\begin{align*}
& L\left(\nu+\frac{1}{2},\left(\frac{\epsilon n}{\cdot}\right)\right) \mathcal{G}_{4}\left(\epsilon, n, 2^{k} ; \nu\right) \\
&= p_{2, n} \cdot\left(1-\left(\frac{\epsilon n}{2}\right) 2^{-\nu-\frac{1}{2}}\right) L\left(\nu+\frac{1}{2},\left(\frac{t}{\cdot}\right)\right) \\
&\left(\prod_{p \text { odd prime }}^{p \mid s} \frac{\left(1-\left(\frac{t}{p}\right) p^{-\nu-\frac{1}{2}}\right)}{\left(1-p^{-2 \nu-1}\right)} \sum_{j \in \mathbb{Z}_{\geq 0}} \chi_{4}\left(p^{j}\right) \mathcal{C}_{-\epsilon}\left(\Delta_{p^{j}} G\left(\epsilon n \overline{2^{k}} ; p^{j}\right)\right)\left(p^{j}\right)^{-\nu-1}\right) \\
&\left(\prod_{\substack{p \text { odd prime } \\
p \mid t}}\left(1-p^{-2 \nu-1}\right)^{-1} \sum_{j \in \mathbb{Z}_{\geq 0}} \chi_{4}\left(p^{j}\right) \mathcal{C}_{-\epsilon}\left(\Delta_{p^{j}} G\left(\epsilon n \overline{2^{k}} ; p^{j}\right)\right)\left(p^{j}\right)^{-\nu-1}\right) \\
&= p_{2, n} \cdot\left(1-\left(\frac{\epsilon n}{2}\right) 2^{-\nu-\frac{1}{2}}\right) L\left(\nu+\frac{1}{2},\left(\frac{t}{\cdot}\right)\right) \\
&\left(\prod_{\substack{\text { odd prime } \\
p \mid s}}\left(1+\left(\frac{t}{p}\right) p^{-\nu-\frac{1}{2}}\right)^{-1} \sum_{j \in \mathbb{Z}_{\geq 0}} \chi_{4}\left(p^{j}\right) \mathcal{C}_{-\epsilon}\left(\Delta_{p^{j}} G\left(\epsilon n \overline{2^{k}} ; p^{j}\right)\right)\left(p^{j}\right)^{-\nu-1}\right) \\
&\left(\prod_{\substack{\text { odd prime } \\
p \mid t}}\left(1-p^{-2 \nu-1}\right)^{-1} \sum_{j \in \mathbb{Z}_{\geq 0}} \chi_{4}\left(p^{j}\right) \mathcal{C}_{-\epsilon}\left(\Delta_{p^{j}} G\left(\epsilon n \overline{2^{k}} ; p^{j}\right)\right)\left(p^{j}\right)^{-\nu-1}\right) . \tag{4.28}
\end{align*}
$$

A nearly identical calculation shows that

$$
\begin{align*}
L & \left(\nu+\frac{1}{2},\left(\frac{\epsilon n}{\cdot}\right)\right) \mathcal{G}_{8}\left(\epsilon, n, 2^{k} ; \nu\right) \\
= & p_{2, n} \cdot\left(1-\left(\frac{\epsilon n}{2}\right) 2^{-\nu-\frac{1}{2}}\right) L\left(\nu+\frac{1}{2},\binom{t}{-}\right) \\
& \left(\prod_{\substack{\text { odd prime } \\
p \mid s}}\left(1+\left(\frac{t}{p}\right) p^{-\nu-\frac{1}{2}}\right)^{-1} \sum_{j \in \mathbb{Z}_{\geq 0}} \chi_{8}\left(p^{j}\right) \mathcal{C}_{-\epsilon}\left(\Delta_{p^{j}} G\left(\epsilon n \overline{2^{k}} ; p^{j}\right)\right)\left(p^{j}\right)^{-\nu-1}\right) \\
& \left(\prod_{\substack{\text { odd prime } \\
p \mid t}}\left(1-p^{-2 \nu-1}\right)^{-1} \sum_{j \in \mathbb{Z}_{\geq 0}} \chi_{8}\left(p^{j}\right) \mathcal{C}_{-\epsilon}\left(\Delta_{p^{j}} G\left(\epsilon n \overline{2^{k}} ; p^{j}\right)\right)\left(p^{j}\right)^{-\nu-1}\right) \tag{4.29}
\end{align*}
$$

The following lemma allows us to further simplify (4.28) and (4.29).

Lemma 4.8. Let $n \neq 0$ and $\epsilon= \pm 1$ with $\epsilon n=$ st as above.
(a) If p odd and $p^{\ell} \| t$ then

$$
\sum_{j \in \mathbb{Z}_{\geq 0}} \chi\left(p^{j}\right) \mathcal{C}_{-\epsilon}\left(\Delta_{p^{j}} G\left(\epsilon n \overline{2^{k}} ; p^{j}\right)\right)\left(p^{j}\right)^{-\nu-1}=\left(1-p^{-2 \nu-1}\right) \sum_{\substack{j=0 \\ j \text { even }}}^{\ell-1} p^{-j \nu},
$$

where $\chi=\chi_{4}$ or χ_{8}.
(b) If p odd and $p^{\ell} \| s$ then for even k we have

$$
\begin{aligned}
& \sum_{j \in \mathbb{Z}_{\geq 0}} \chi_{4}\left(p^{j}\right) \mathcal{C}_{-\epsilon}\left(\Delta_{p^{j}} G\left(\epsilon n \overline{2^{k}} ; p^{j}\right)\right)\left(p^{j}\right)^{-\nu-1} \\
& =\left(1+\left(\frac{t}{p}\right) p^{-\nu-\frac{1}{2}}\right)\left(\left(1-\left(\frac{t}{p}\right) p^{-\nu-\frac{1}{2}}\right) \sum_{\substack{j=0 \\
j \text { even }}}^{\ell-2} p^{-j \nu}+p^{-\ell \nu}\right),
\end{aligned}
$$

and for odd k we have

$$
\begin{aligned}
& \sum_{j \in \mathbb{Z}_{\geq 0}} \chi_{8}\left(p^{j}\right) \mathcal{C}_{-\epsilon}\left(\Delta_{p^{j}} G\left(\epsilon n \overline{2^{k}} ; p^{j}\right)\right)\left(p^{j}\right)^{-\nu-1} \\
& =\left(1+\left(\frac{t}{p}\right) p^{-\nu-\frac{1}{2}}\right)\left(\left(1-\left(\frac{t}{p}\right) p^{-\nu-\frac{1}{2}}\right) \sum_{\substack{j=0 \\
j \text { even }}}^{\ell-2} p^{-j \nu}+p^{-\ell \nu}\right) .
\end{aligned}
$$

(c) If $p=2$ then

$$
\begin{aligned}
\sum_{j \in \mathbb{Z}_{\geq 0}} \chi_{4}\left(p^{j}\right) \mathcal{C}_{-\epsilon}\left(\Delta_{p^{j}} G\left(\epsilon n \overline{2^{k}} ; p^{j}\right)\right)\left(p^{j}\right)^{-\nu-1}=0 \\
\sum_{j \in \mathbb{Z}_{\geq 0}} \chi_{8}\left(p^{j}\right) \mathcal{C}_{-\epsilon}\left(\Delta_{p^{j}} G\left(\epsilon n \overline{2^{k}} ; p^{j}\right)\right)\left(p^{j}\right)^{-\nu-1}=0
\end{aligned}
$$

Proof. If $p \mid t$ and p odd, then there exists $n^{\prime} \in \mathbb{Z}$ and $\ell \in \mathbb{Z}_{>0}$ such that $\epsilon n=p^{\ell} n^{\prime}, \operatorname{gcd}\left(p, n^{\prime}\right)=1$, and ℓ is odd. Therefore by Lemma $4.4(\mathrm{~d})$, we have that

$$
\left.\begin{array}{rl}
\sum_{j \in \mathbb{Z}_{\geq 0}} \chi_{4}\left(p^{j}\right) \mathcal{C}_{-\epsilon}\left(\Delta_{p^{j}} G\left(\epsilon n \overline{2^{k}} ; p^{j}\right)\right)\left(p^{j}\right)^{-\nu-1} \\
= & \sum_{\substack{j=0 \\
j-1}} \chi_{4}\left(p^{j}\right) \mathcal{C}_{-\epsilon}\left(\Delta_{p^{j}} G\left(\epsilon n \overline{2^{k}} ; p^{j}\right)\right)\left(p^{j}\right)^{-\nu-1} \\
& +\chi_{4}\left(p^{\ell+1}\right) \mathcal{C}_{-\epsilon}\left(\Delta_{p^{\ell+1}} G\left(\epsilon n \overline{2^{k}} ; p^{\ell+1}\right)\right)\left(p^{\ell+1}\right)^{-\nu-1} \\
= & 1+\sum_{\substack{j=2 \\
j=\text { even }}}^{\ell-1}\left(p^{j}-p^{j-1}\right)\left(p^{j}\right)^{-\nu-1}-p^{\ell}\left(p^{\ell+1}\right)^{-\nu-1} \\
= & 1+\sum_{\substack{j=2 \\
j-1}}\left(p^{-j \nu}-p^{-j \nu-1}\right)-p^{-(\ell+1) \nu-1} \\
= & 1-p^{-2 \nu-1}+\sum_{j=2}^{\ell-3}\left(p^{-j \nu}-p^{-(j+2) \nu-1}\right)+p^{-(\ell-1) \nu}-p^{-(\ell+1) \nu-1} \\
j \text { even }
\end{array}\right] \begin{aligned}
& =\left(1-p^{-2 \nu-1}\right)+\left(1-p^{-2 \nu-1}\right) \sum_{j=2}^{\ell-3} p^{-j \nu}+\left(1-p^{-2 \nu-1}\right) p^{-(\ell-1) \nu} \\
& = \\
& =\left(1-p^{-2 \nu-1}\right) \sum_{\substack{j=0}}^{\ell-1} p^{-j \nu} . \\
& j \text { even }
\end{aligned}
$$

This same argument also work when we replace χ_{4} with χ_{8}, and thus we have proven part (a).
If $p \mid s$ and p odd, then $\epsilon n=p^{\ell} n^{\prime}$ where $\operatorname{gcd}\left(p, n^{\prime}\right)=1$ and ℓ is even. Therefore by Lemma 4.4(d), we have for even k that

$$
\begin{aligned}
& \sum_{j \in \mathbb{Z}_{\geq 0}} \chi_{4}\left(p^{j}\right) \mathcal{C}_{-\epsilon}\left(\Delta_{p^{j}} G\left(\epsilon n \overline{2^{k}} ; p^{j}\right)\right)\left(p^{j}\right)^{-\nu-1} \\
& =\sum_{\substack{j=0 \\
j \text { even }}}^{\ell} \chi_{4}\left(p^{j}\right) \mathcal{C}_{-\epsilon}\left(\Delta_{p^{j}} G\left(\epsilon n \overline{2^{k}} ; p^{j}\right)\right)\left(p^{j}\right)^{-\nu-1} \\
& \quad+\chi_{4}\left(p^{\ell+1}\right) \mathcal{C}_{-\epsilon}\left(\Delta_{p^{\ell+1}} G\left(\epsilon n \overline{2^{k}} ; p^{\ell+1}\right)\right)\left(p^{\ell+1}\right)^{-\nu-1} \\
& =1+\sum_{\substack{j=2 \\
j \text { even }}}^{\ell}\left(p^{j}-p^{j-1}\right)\left(p^{j}\right)^{-\nu-1}+\chi_{4}\left(p^{\ell+1}\right) \mathcal{C}_{-\epsilon}\left(\Delta_{p^{\ell+1}}\left(\frac{2^{k} n^{\prime}}{p}\right) \Delta_{p} p^{\ell+\frac{1}{2}}\right)\left(p^{\ell+1}\right)^{-\nu-1} \\
& =1+\sum_{\substack{j=2 \\
j \text { even }}}^{\ell}\left(p^{j}-p^{j-1}\right)\left(p^{j}\right)^{-\nu-1}+\left(\frac{n^{\prime}}{p}\right) p^{\ell+\frac{1}{2}}\left(p^{\ell+1}\right)^{-\nu-1} .
\end{aligned}
$$

Notice that we used the fact that $\chi_{4}\left(p^{\ell+1}\right) \Delta_{p^{\ell+1}} \Delta_{p}=1$ for all odd primes and that $\left(\frac{2^{k}}{p}\right)=1$ since k is even. Likewise, since $\left(\frac{2^{k}}{p}\right)=\left(\frac{2}{p}\right)$ for odd k and $\chi_{8}\left(p^{\ell+1}\right) \Delta_{p^{\ell+1}}\left(\frac{2}{p}\right) \Delta_{p}=1$ for all
primes, we have by Lemma $4.4(\mathrm{~d})$ that for odd k,

$$
\begin{aligned}
& \sum_{j \in \mathbb{Z} \geq 0} \chi_{8}\left(p^{j}\right) \mathcal{C}_{-\epsilon}\left(\Delta_{p^{j}} G\left(\epsilon n \overline{2^{k}} ; p^{j}\right)\right)\left(p^{j}\right)^{-\nu-1} \\
& =\sum_{\substack{j=0 \\
j \text { even }}}^{\ell} \chi_{8}\left(p^{j}\right) \mathcal{C}_{-\epsilon}\left(\Delta_{p^{j}} G\left(\epsilon \overline{2^{k}} ; p^{j}\right)\right)\left(p^{j}\right)^{-\nu-1}+\chi_{8}\left(p^{\ell+1}\right) \mathcal{C}_{-\epsilon}\left(\Delta_{p^{\ell+1}} G\left(\epsilon n \overline{2^{k}} ; p^{\ell+1}\right)\right)\left(p^{\ell+1}\right)^{-\nu-1} \\
& =1+\sum_{\substack{j=2 \\
j \text { even }}}^{\ell}\left(p^{j}-p^{j-1}\right)\left(p^{j}\right)^{-\nu-1}+\chi_{8}\left(p^{\ell+1}\right) \mathcal{C}_{-\epsilon}\left(\Delta_{p^{\ell+1}}\left(\frac{2^{k} n^{\prime}}{p}\right) \Delta_{p} p^{\ell+\frac{1}{2}}\right)\left(p^{\ell+1}\right)^{-\nu-1} \\
& =1+\sum_{\substack{j=2 \\
j \text { even }}}^{\ell}\left(p^{j}-p^{j-1}\right)\left(p^{j}\right)^{-\nu-1}+\left(\frac{n^{\prime}}{p}\right) p^{\ell+\frac{1}{2}}\left(p^{\ell+1}\right)^{-\nu-1} .
\end{aligned}
$$

Thus for part (b), it remains to simplify

$$
1+\sum_{\substack{j=2 \\ j \text { even }}}^{\ell}\left(p^{j}-p^{j-1}\right)\left(p^{j}\right)^{-\nu-1}+\left(\frac{n^{\prime}}{p}\right) p^{\ell+\frac{1}{2}}\left(p^{\ell+1}\right)^{-\nu-1}
$$

Observe

$$
\begin{aligned}
& 1+\sum_{\substack{j=2 \\
j \text { even }}}^{\ell}\left(p^{j}-p^{j-1}\right)\left(p^{j}\right)^{-\nu-1}+\left(\frac{n^{\prime}}{p}\right) p^{\ell+\frac{1}{2}}\left(p^{\ell+1}\right)^{-\nu-1} \\
& =1+\sum_{\substack{j=2 \\
j \text { even }}}^{\ell}\left(p^{-j \nu}-p^{-j \nu-1}\right)+\left(\frac{n^{\prime}}{p}\right) p^{-(\ell+1) \nu-\frac{1}{2}} \\
& =1-p^{-2 \nu-1}+\sum_{\substack{j=2 \\
j \text { even }}}^{\ell-2}\left(p^{-j \nu}-p^{-(j+2) \nu-1}\right)+p^{-\ell \nu}+\left(\frac{n^{\prime}}{p}\right) p^{-(\ell+1) \nu-\frac{1}{2}} \\
& =\left(1-p^{-2 \nu-1}\right) \sum_{\substack{j=0 \\
j \text { even }}}^{\ell-2} p^{-j \nu}+p^{-\ell \nu}\left(1+\left(\frac{n^{\prime}}{p}\right) p^{-\nu-\frac{1}{2}}\right) \\
& =\left(1+\left(\frac{n^{\prime}}{p}\right) p^{-\nu-\frac{1}{2}}\right)\left(\left(1-\left(\frac{n^{\prime}}{p}\right) p^{-\nu-\frac{1}{2}}\right) \sum_{\substack{j=0 \\
j \text { even }}}^{\ell-2} p^{-j \nu}+p^{-\ell \nu}\right) .
\end{aligned}
$$

Part (b) now follows since $\left(\frac{n^{\prime}}{p}\right)=\left(\frac{t}{p}\right)$.
Part (c) follows directly from the fact that $\chi_{4}\left(p^{j}\right)=\chi_{8}\left(p^{j}\right)=0$ for $j>0$.

By Lemma 4.8, (4.28), and (4.29), we have for even k that

$$
\begin{align*}
& L\left(\nu+\frac{1}{2},\left(\frac{\epsilon n}{\cdot}\right)\right) \mathcal{G}_{4}\left(\epsilon, n, 2^{k} ; \nu\right) \\
& =p_{2, n} \cdot\left(1-\left(\frac{\epsilon n}{2}\right) 2^{-\nu-\frac{1}{2}}\right) L\left(\nu+\frac{1}{2},\left(\frac{t}{\cdot}\right)\right) \\
& \left.\quad\left(\prod_{\substack{\text { odd prime } \\
p^{\ell} \| s}}\left(1-\left(\frac{t}{p}\right) p^{-\nu-\frac{1}{2}}\right) \sum_{\substack{j=0 \\
j \text { even }}}^{\ell-2} p^{-j \nu}+p^{-\ell \nu}\right)\right)\left(\prod_{\substack{\text { odd prime } \\
p^{\ell} \| t}} \sum_{j=0}^{j-1} p^{-j \nu}\right), \tag{4.30}
\end{align*}
$$

and for odd k, we have that

$$
\left.\left.\begin{array}{l}
L\left(\nu+\frac{1}{2},\left(\frac{\epsilon n}{\cdot}\right)\right) \mathcal{G}_{8}\left(\epsilon, n, 2^{k} ; \nu\right) \\
=p_{2, n} \cdot\left(1-\left(\frac{\epsilon n}{2}\right) 2^{-\nu-\frac{1}{2}}\right) L\left(\nu+\frac{1}{2},\binom{t}{\cdot}\right) \\
\quad\left(\prod_{\substack{\text { odd prime } \\
p^{\ell} \| s}}\left(\left(1-\left(\frac{t}{p}\right) p^{-\nu-\frac{1}{2}}\right) \sum_{\substack{j=0 \\
j \text { even }}}^{\ell-2} p^{-j \nu}+p^{-\ell \nu}\right)\right)\left(\prod_{\substack{\text { odd prime } \\
p^{\ell} \| t}} \sum_{j=0}^{j \text { even }}\right. \tag{4.31}
\end{array}\right), ~ p^{-j \nu}\right), ~ l
$$

Observe that (4.30) and (4.31) are each the product of a Dirichlet polynomial and a Dirichlet L-function $L\left(\nu+\frac{1}{2},\left(\frac{t}{9}\right)\right)$. If $t \neq 1$ then $L\left(\nu+\frac{1}{2},\left(\frac{t}{9}\right)\right)$ has holomorphic continuation to all of \mathbb{C}. If $t=1$ then $L\left(\nu+\frac{1}{2},\left(\frac{t}{9}\right)\right)$ has holomorphic continuation to all of \mathbb{C} except for a simple pole $\nu=\frac{1}{2}$. Therefore, by Proposition 4.7, we see that for $n \neq 0, a_{n}$ has holomorphic continuation to all of \mathbb{C} except for a simple pole at $\nu=\frac{1}{2}$ if ϵn is a square.

In the following proposition we obtain a formula for a_{0} which shows that a_{0} also has holomorphic continuation to all of \mathbb{C} except for a pole at $\nu=\frac{1}{2}$.

Proposition 4.9. For $E_{\nu}^{(\infty)} \in V_{(\epsilon), \nu}^{-\infty}\left(\widetilde{S L}_{2}\right)$ with $\Re(\nu)>1$, we have that

$$
a_{0}=(1+\epsilon i) 2^{-2 \nu-2} \zeta(2 \nu)
$$

Proof. Recall that by (4.22) and (4.19), we have that

$$
\begin{aligned}
& a_{0}=\epsilon i 4^{-\nu-1} \zeta_{2}(2 \nu+1) \sum_{c \in \mathbb{Z}_{>0}} c^{-\nu-1} \mathcal{C}_{-\epsilon}\left(K_{-1}(0 ; 4 c)\right) \\
& =\epsilon i 4^{-\nu-1} \zeta_{2}(2 \nu+1) \sum_{c \in \mathbb{Z}_{>0}} c^{-\nu-1} \mathcal{C}_{-\epsilon}\left(\sum_{d \in \mathbb{Z} / 4 c \mathbb{Z}} \Delta_{d}\left(\frac{4 c}{d}\right)\right)
\end{aligned}
$$

If c is a square then

$$
\sum_{d \in \mathbb{Z} / 4 c \mathbb{Z}} \Delta_{d}\left(\frac{4 c}{d}\right)=\sum_{\substack{d \in \mathbb{Z} / 4 c \mathbb{Z} \\ d \text { odd } \\ \operatorname{gcd}(c, d)=1}} \Delta_{d}=\frac{1+i}{2} \phi(4 c)
$$

where ϕ is the Euler totient function. If c is not a square then we select $d^{\prime} \in(\mathbb{Z} / 4 c \mathbb{Z})^{*}$ such that $\left(\frac{4 c}{d^{\prime}}\right)=-1$; since $\left(\frac{4 c}{-1}\right)=1$ it follows that we can always select d^{\prime} such that $d^{\prime} \equiv 1(\bmod 4)$. Since

$$
\left(\frac{4 c}{d^{\prime}}\right) \sum_{\substack{d(\bmod 4 c) \\ d \equiv 1(4)}}\left(\frac{4 c}{d}\right)=\sum_{\substack{d(\bmod 4 c) \\ d \equiv 1(4)}}\left(\frac{4 c}{d}\right) \text { it follows that } \sum_{\substack{d(\bmod 4 c) \\ d \equiv 1(4)}}\left(\frac{4 c}{d}\right)=0
$$

By the same argument it also follows that

$$
\sum_{d(\bmod 4 c)}\left(\frac{4 c}{d}\right)=0, \text { and thus } \sum_{\substack{d(\bmod 4 c) \\ d \equiv 3(4)}}\left(\frac{4 c}{d}\right)=0
$$

Therefore if c is not a square then we have

$$
\sum_{d \in \mathbb{Z} / 4 c \mathbb{Z}} \Delta_{d}\left(\frac{4 c}{d}\right)=0
$$

Thus

$$
\begin{aligned}
& a_{0}=\epsilon i 4^{-\nu-1} \zeta_{2}(2 \nu+1) \sum_{\substack{c \in \mathbb{Z} Z_{>0} \\
c \text { a square }}} c^{-\nu-1} \frac{1-\epsilon i}{2} \phi(4 c) \\
& =\frac{1+\epsilon i}{2} 4^{-\nu-1} \zeta_{2}(2 \nu+1) \sum_{c \in \mathbb{Z}_{>0}} c^{-2 \nu-2} \phi\left(4 c^{2}\right) \\
& =\frac{1+\epsilon i}{2} 4^{-\nu-1} \zeta_{2}(2 \nu+1)\left(\sum_{\substack{c \in \mathbb{Z}_{>0} \\
c \text { odd }}} \sum_{k \in \mathbb{Z}_{\geq 0}}\left(2^{k} c\right)^{-2 \nu-2} \phi\left(2^{2 k+2} c^{2}\right)\right) \\
& =\frac{1+\epsilon i}{2} 4^{-\nu-1} \zeta_{2}(2 \nu+1)\left(\sum_{\substack{ \\
c \in \mathbb{Z}_{>0} \\
c \text { odd }}} \sum_{k \in \mathbb{Z}_{\geq 0}}\left(2^{k}\right)^{-2 \nu-2} c^{-2 \nu-2} 2^{2 k+1} \phi\left(c^{2}\right)\right) \\
& =\frac{1+\epsilon i}{2} 4^{-\nu-1} \zeta_{2}(2 \nu+1)\left(\sum_{\substack{ \\
c \in \mathbb{Z}_{>0} \\
c \text { odd }}} 2 \sum_{k \in \mathbb{Z}_{\geq 0}} 2^{-2 k \nu} c^{-2 \nu-2} \phi\left(c^{2}\right)\right) \\
& =(1+\epsilon i) 2^{-2 \nu-2}\left(1-2^{-2 \nu}\right)^{-1} \zeta_{2}(2 \nu+1)\left(\sum_{c \in \mathbb{Z}_{>0}} c^{-2 \nu-2} \phi\left(c^{2}\right)\right)
\end{aligned}
$$

Since $\phi\left(c^{2}\right)$ is multiplicative, it follows that

$$
a_{0}=(1+\epsilon i) 2^{-2 \nu-2}\left(1-2^{-2 \nu}\right)^{-1} \zeta_{2}(2 \nu+1) \prod_{p \text { odd prime }} \sum_{k \in \mathbb{Z}_{\geq 0}}\left(p^{k}\right)^{-2 \nu-2} \phi\left(p^{2 k}\right)
$$

Observe that for odd primes p we have that

$$
\begin{aligned}
& \sum_{k \in \mathbb{Z}_{\geq 0}}\left(p^{k}\right)^{-2 \nu-2} \phi\left(p^{2 k}\right)=1+\sum_{k \in \mathbb{Z}_{\geq 1}} p^{-2 k \nu-2 k}\left(p^{2 k}-p^{2 k-1}\right) \\
& =1+\sum_{k \in \mathbb{Z}_{\geq 1}}\left(p^{-2 k \nu}-p^{-2 k \nu-1}\right)=1-p^{-2 \nu-1}+\sum_{k \in \mathbb{Z}_{\geq 1}}\left(p^{-2 k \nu}-p^{-2(k+1) \nu-1}\right) \\
& =1-p^{-2 \nu-1}+\left(1-p^{-2 \nu-1}\right) \sum_{k \in \mathbb{Z}_{\geq 1}} p^{-2 k \nu}=\left(1-p^{-2 \nu-1}\right) \sum_{k \in \mathbb{Z}_{\geq 0}} p^{-2 k \nu} \\
& =\frac{1-p^{-2 \nu-1}}{1-p^{-2 \nu}}
\end{aligned}
$$

Using this expression and the Euler product expansion for $\zeta_{2}(2 \nu+1)$ gives us that

$$
\begin{aligned}
& a_{0}=(1+\epsilon i) 2^{-2 \nu-2}\left(1-2^{-2 \nu}\right)^{-1} \zeta_{2}(2 \nu+1) \prod_{p \text { odd prime }} \frac{1-p^{-2 \nu-1}}{1-p^{-2 \nu}} \\
& =(1+\epsilon i) 2^{-2 \nu-2}\left(1-2^{-2 \nu}\right)^{-1} \prod_{p \text { odd prime }}\left(1-p^{-2 \nu}\right)^{-1} \\
& =(1+\epsilon i) 2^{-2 \nu-2} \zeta(2 \nu)
\end{aligned}
$$

Now that we have established the meromorphic continuation of the Fourier coefficients a_{n}, it remains to prove that $\left(\widetilde{E}_{\nu}^{(\infty)}\right)_{0}(x)=\sum_{n \in \mathbb{Z}} a_{n} e(n x)$ also has meromorphic continuation. In particular, we wish to show that the series $\sum_{n \in \mathbb{Z}} a_{n} e(n x)$ converges for all $\nu \neq \frac{1}{2}$. We begin by establishing bounds for

$$
L\left(\nu+\frac{1}{2},\left(\frac{\epsilon n}{\cdot}\right)\right) \mathcal{G}_{4}\left(\epsilon, n, 2^{k} ; \nu\right)
$$

when k even, and for

$$
L\left(\nu+\frac{1}{2},\left(\frac{\epsilon n}{.}\right)\right) \mathcal{G}_{8}\left(\epsilon, n, 2^{k} ; \nu\right)
$$

when k odd. To do this, we will compute our bounds using the formulas given (4.30) and (4.31).
For $\Re(\nu) \geq 0$, we have the following (crude) bounds (recall that $p_{2, n}$ was defined in (4.27)):

$$
\begin{aligned}
& \left|p_{2, n} \cdot\left(1-\left(\frac{\epsilon n}{2}\right) 2^{-\nu-\frac{1}{2}}\right)\right| \leq\left(1+2^{-\Re(\nu)-\frac{1}{2}}\right)^{2} \leq\left(1+2^{-\frac{1}{2}}\right)^{2}<4, \\
& \left|\prod_{\substack{\text { odd prime } \\
p^{\ell} \| t}} \sum_{\substack{j=0 \\
j \text { even }}}^{\ell-1} p^{-j \nu}\right| \leq \prod_{\substack{p \text { odd prime } \\
p^{\ell} \| t}} \sum_{\substack{j=0 \\
j \text { even }}}^{\ell-1} 1<\prod_{\substack{p \text { odd prime } \\
p^{\ell} \| t}} p^{\ell} \leq|n|, \\
& \left.\left\lvert\, \prod_{\substack{\text { odd prime } \\
p^{\ell} \| s}}\left(1-\left(\frac{t}{p}\right) p^{-\nu-\frac{1}{2}}\right) \sum_{\substack{j=0 \\
j \text { even }}}^{\ell-2} p^{-j \nu}+p^{-\ell \nu}\right.\right) \mid
\end{aligned}
$$

$$
\begin{aligned}
& =\left|\prod_{\substack{p \text { odd prime } \\
p^{p} \| s}}\left(\sum_{\substack{j=0 \\
j \text { even }}}^{\ell} p^{-j \nu}-\left(\frac{t}{p}\right) p^{-\nu-\frac{1}{2}} \sum_{\substack{j=0 \\
j \text { even }}}^{\ell-2} p^{-j \nu}\right)\right| \\
& \leq \prod_{\substack{p \text { odd prime } \\
p^{\ell} \| s}}\left(\left|\sum_{\substack{j=0 \\
j \text { even }}}^{\ell} p^{-j \nu}\right|+\left|\left(\frac{t}{p}\right) p^{-\nu-\frac{1}{2}} \sum_{\substack{j=0 \\
j \text { even }}}^{\ell-2} p^{-j \nu}\right|\right) \\
& \leq \prod_{\substack{p \text { odd prime } \\
p^{p} \| s}}\left(\sum_{\substack{j=0 \\
j \text { even }}}^{\ell} 1+p^{-\frac{1}{2}} \sum_{\substack{j=0 \\
j \text { even }}}^{\ell-2} 1\right) \\
& <\prod_{\substack{p \text { odd prime } \\
p^{\ell} \| s}}\left(p^{\ell}+p^{\ell}\right)<\prod_{\substack{p \text { odd prime } \\
p^{\ell} \| s}} p^{\ell+1} \leq|n|^{2} .
\end{aligned}
$$

For $\Re(\nu) \leq 0$, we also have the following bounds:

$$
\begin{aligned}
& \left|p_{2, n} \cdot\left(1-\left(\frac{\epsilon n}{2}\right) 2^{-\nu-\frac{1}{2}}\right)\right| \leq\left(1+2^{-\Re(\nu)-\frac{1}{2}}\right)^{2}<\left(2 \cdot 2^{-\Re(\nu)}\right)^{2}=4^{-\Re(\nu)-1}, \\
& \left|\prod_{\substack{\text { odd prime } \\
p^{\ell} \| t}} \sum_{\substack{j=0 \\
j \text { even }}}^{\ell-1} p^{-j \nu}\right|<\prod_{\substack{\text { odd prime } \\
p^{\ell} \| t}} \ell \cdot p^{-\ell \Re(\nu)}<\prod_{\substack{p \text { odd prime } \\
p^{\ell} \| t}} p^{\ell(-\Re(\nu)+1)} \\
& \leq|n|^{-\Re(\nu)+1}, \\
& \left|\prod_{\substack{\text { odd prime } \\
p^{\ell} \| s}}\left(\left(1-\left(\frac{t}{p}\right) p^{-\nu-\frac{1}{2}}\right) \sum_{\substack{j=0 \\
j \text { even }}}^{\ell-2} p^{-j \nu}+p^{-\ell \nu}\right)\right| \\
& =\left|\prod_{\substack{p \text { odd prime } \\
p^{\ell} \| \mid s}}\left(\sum_{\substack{j=0 \\
j \text { even }}}^{\ell} p^{-j \nu}-\left(\frac{t}{p}\right) p^{-\nu-\frac{1}{2}} \sum_{\substack{j=0 \\
j \text { even }}}^{\ell-2} p^{-j \nu}\right)\right| \\
& \leq \prod_{\substack{p \text { odd prime } \\
p^{\ell} \| s}}\left(\left|\sum_{\substack{j=0 \\
j \text { even }}}^{\ell} p^{-j \nu}\right|+\left|\left(\frac{t}{p}\right) p^{-\nu-\frac{1}{2}} \sum_{\substack{j=0 \\
j \text { even }}}^{\ell-2} p^{-j \nu}\right|\right) \\
& \leq \prod_{\substack{p \text { odd prime } \\
p^{\ell} \| s}}\left(\sum_{\substack{j=0 \\
j \text { even }}}^{\ell} p^{-\ell \Re(\nu)}+p^{-\Re(\nu)-\frac{1}{2}} \sum_{\substack{j=0 \\
j \text { even }}}^{\ell-2} p^{-\ell \Re(\nu)}\right) \\
& \leq \prod_{\substack{\text { odd prime } \\
p^{\ell} \| s}}\left(2 p^{-\Re(\nu)} \sum_{\substack{j=0 \\
j \text { even }}}^{\ell} p^{-\ell \Re(\nu)}\right)<\prod_{\substack{p \text { odd prime } \\
p^{\ell} \| s}} p \cdot p^{-\Re(\nu)} \ell p^{-\ell \Re(\nu)}
\end{aligned}
$$

$$
<\prod_{\substack{p \text { odd prime } \\ p^{\ell} \| s}} p \cdot p^{-\Re(\nu)} p^{\ell} p^{-\ell \Re(\nu)}=\prod_{\substack{p \text { odd prime } \\ p^{\ell} \| s}} p^{(\ell+1)(-\Re(\nu)+1)} \leq\left|n^{2}\right|^{-\Re(\nu)+1}
$$

By these inequality, it follows from (4.30) for even k that

$$
\begin{align*}
& \left|L\left(\nu+\frac{1}{2},\left(\frac{\epsilon n}{\cdot}\right)\right) \mathcal{G}_{4}\left(\epsilon, n, 2^{k} ; \nu\right)\right| \\
& = \begin{cases}4|n|^{3}\left|L\left(\nu+\frac{1}{2},\left(\frac{t}{9}\right)\right)\right| & \text { if } \Re(\nu) \geq 0 \\
4^{-\Re(\nu)-1}|n|^{-\Re(\nu)+1}\left|n^{2}\right|^{-\Re(\nu)+1}\left|L\left(\nu+\frac{1}{2},\left(\frac{t}{!}\right)\right)\right| & \text { if } \Re(\nu)<0\end{cases} \\
& = \begin{cases}4|n|^{3}\left|L\left(\nu+\frac{1}{2},\left(\frac{t}{9}\right)\right)\right| & \text { if } \Re(\nu) \geq 0 \\
\left|4 n^{3}\right|^{\Re(\nu)+1}\left|L\left(\nu+\frac{1}{2},\left(\frac{t}{!}\right)\right)\right| & \text { if } \Re(\nu)<0 .\end{cases} \tag{4.32}
\end{align*}
$$

Similarly, it follows from (4.31) for odd k that

$$
\begin{align*}
& \left|L\left(\nu+\frac{1}{2},\left(\frac{\epsilon n}{.}\right)\right) \mathcal{G}_{8}\left(\epsilon, n, 2^{k} ; \nu\right)\right| \\
& = \begin{cases}4|n|^{3}\left|L\left(\nu+\frac{1}{2},\left(\frac{t}{.}\right)\right)\right| & \text { if } \Re(\nu) \geq 0 \\
\left|4 n^{3}\right|^{-\Re(\nu)+1}\left|L\left(\nu+\frac{1}{2},\left(\frac{t}{\div}\right)\right)\right| & \text { if } \Re(\nu)<0 .\end{cases} \tag{4.33}
\end{align*}
$$

We now show that there exists $K: \mathbb{C}_{\neq \frac{1}{2}} \rightarrow \mathbb{R}_{>0}$ such that

$$
\begin{equation*}
\left|L\left(\nu+\frac{1}{2},\binom{t}{.}\right)\right| \leq K(\nu) \tag{4.34}
\end{equation*}
$$

for all t and $\Re(\nu)>\frac{1}{2}$. First observe that for $\Re(\nu)>\frac{1}{2}$ we have that

$$
\left|L\left(\nu+\frac{1}{2},\left(\frac{t}{-}\right)\right)\right| \leq\left|\zeta\left(\Re(\nu)+\frac{1}{2}\right)\right| .
$$

Thus such $K(\nu)$ exists for $\Re(\nu)>\frac{1}{2}$. By utilizing the functional equation for $L\left(\nu+\frac{1}{2},\left(\frac{t}{)}\right)\right)$ for $t \neq 1$, we see that for $\Re(\nu)<-\frac{1}{2}$ we have

$$
\begin{aligned}
& \left|L\left(\nu+\frac{1}{2},\left(\frac{t}{\cdot}\right)\right)\right| \leq \max _{\delta \in\{0,1\}}\left(\left|\frac{\Gamma\left(\frac{1-2 \nu+2 \delta}{4}\right)}{\Gamma\left(\frac{1+2 \nu+2 \delta}{4}\right)}\right|\right)\left|\frac{t}{\pi}\right|^{-\Re(\nu)}\left|L\left(\frac{1}{2}-\nu,\left(\frac{t}{\cdot}\right)\right)\right| \\
& \leq \max _{\delta \in\{0,1\}}\left(\left|\frac{\Gamma\left(\frac{1-2 \nu+2 \delta}{4}\right)}{\Gamma\left(\frac{1+2 \nu+2 \delta}{4}\right)}\right|\right)\left|\frac{t}{\pi}\right|^{-\Re(\nu)}\left|\zeta\left(\frac{1}{2}-\Re(\nu)\right)\right| .
\end{aligned}
$$

Finding a bound for when $t=1$ is easy since $L\left(\nu+\frac{1}{2},\left(\frac{t}{9}\right)\right)=\zeta\left(\nu+\frac{1}{2}\right)$, and clearly such a function is bounded by $\left|\zeta\left(\nu+\frac{1}{2}\right)\right|$. Thus we have shown that $K(\nu)$ which satisfies (4.34) does indeed exist for $|\Re(\nu)|>\frac{1}{2}$. On $|\Re(\nu)| \leq \frac{1}{2}, \nu \neq \frac{1}{2}$ it is well-known that there exists $E(\nu)$ which bounds all $L(\nu,(\underline{t}))$ continuously in ν and polynomially in t away from $\nu \neq \frac{1}{2}$.

In Proposition 4.7 we see that a_{n} for $n \neq 0$, consist of finite sums with terms of the form

$$
2^{k}\left(2^{k+2}\right)^{-\nu-1} L\left(\nu,\binom{t}{-}\right) \mathcal{G}_{j}\left(\epsilon, n, 2^{k}, \nu\right)
$$

where $j=4,8$. The number of such summands for a given a_{n} are bounded polynomially in n. Therefore, since each factor in such summands is seen to be polynomially bounded in n, it follows that the a_{n} for $n \neq 0$ are polynomially bounded in n. This suffices to show that $\left(\widetilde{E}_{\nu}^{(\infty)}\right)_{0}(x)=\sum_{n \in \mathbb{Z}} a_{n} e(n x)$ converges on $\mathbb{C}_{\neq \frac{1}{2}}$. With some extra work one can also see that $\left(\widetilde{E}_{\nu}^{(\infty)}\right)_{0}(x)=\sum_{n \in \mathbb{Z}} a_{n} e(n x)$ has a simple pole at $\nu=\frac{1}{2}$: indeed, one can easily check that $\left(\nu-\frac{1}{2}\right) a_{n}$ are holomorphic and that $\left(\nu-\frac{1}{2}\right) \sum_{n \in \mathbb{Z}} a_{n} e(n x)$ converges on all of \mathbb{C}.

Now that we have established that $\left(\widetilde{E}_{\nu}^{(\infty)}\right)_{0}$ has meromorphic continuation to \mathbb{C} with a simple pole at $\nu=\frac{1}{2}$, it then follows that $\widetilde{E}_{\nu}^{(\infty)}$ also has meromorphic continuation to \mathbb{C}, provided that $\left(\widetilde{E}^{(\infty)}\right)_{\infty}$ has meromorphic continuation to \mathbb{C}. One means of doing this is to compute a Fourier series expansion for $\left(\widetilde{E}^{(\infty)}\right)_{\infty}$ and establish the meromorphic continuation of its Fourier coefficients just as we have done for $\left(\widetilde{E}_{\nu}^{(\infty)}\right)_{0}$. Instead, we will deduce the meromorphic continuation of $\left(\widetilde{E}_{\nu}^{(\infty)}\right)_{\infty}$ in large part from the meromorphic continuation of $\left(\widetilde{E}^{(\infty)}\right)_{0}$.

Since $\left(\widetilde{E}_{\nu}^{(\infty)}\right)_{0}$ and $\left(\widetilde{E}_{\nu}^{(\infty)}\right)_{\infty}$ are themselves the restrictions of $s_{\widetilde{E}_{\nu}^{(\infty)}}$ to $N\left(\widetilde{\mathrm{SL}}_{2}\right) B\left(\widetilde{\mathrm{SL}}_{2}\right)$ and $\widetilde{s}^{-1} N\left(\widetilde{\mathrm{SL}}_{2}\right) B\left(\widetilde{\mathrm{SL}}_{2}\right)$ respectively, and since the complement of $N\left(\widetilde{\mathrm{SL}}_{2}\right) B\left(\widetilde{\mathrm{SL}}_{2}\right) \cap \widetilde{s}^{-1} N\left(\widetilde{\mathrm{SL}_{2}}\right) B\left(\widetilde{\mathrm{SL}}_{2}\right)$ in $\widetilde{\mathrm{SL}}_{2} / B\left(\widetilde{\mathrm{SL}}_{2}\right)$ is simply $\widetilde{s}^{-1} B\left(\widetilde{\mathrm{SL}}_{2}\right)$, it follows that we have already established the meromorphic continuation of $\left.\left(\widetilde{E}_{\nu}^{(\infty)}\right)_{\infty}\right|_{\mathbb{R}_{\neq 0}}$. Since by (4.18) we have that

$$
\begin{equation*}
\left(\widetilde{E}_{\nu}^{(\infty)}\right)_{\infty}-\left.\left(\widetilde{E}_{\nu}^{(\infty)}\right)_{\infty}\right|_{\mathbb{R}_{\neq 0}}=\epsilon i \zeta_{2}(2 \nu+1) \delta_{0} \tag{4.35}
\end{equation*}
$$

it follows that $\widetilde{E}_{\nu}^{(\infty)}$ has meromorphic continuation to all of \mathbb{C}, with a simple poles at $\nu=0, \frac{1}{2}$ and $\nu=-\frac{\pi i m}{\log (2)}-\frac{1}{2}$ where $m \in \mathbb{Z}$.

4.4 The Metaplectic Eisenstein Distribution at 0

Recall that $\widetilde{E}_{\nu}^{(\infty)}$ is the distributional analogue of the usual metaplectic Eisenstein series based at the cusp ∞. Next we shall define $\widetilde{E}_{\nu}^{(0)}$, which will be a distributional analogue of the metaplectic Eisenstein series based at the cusp 0. To do this, recall that in (3.39) we defined

$$
\Omega=\widetilde{a}_{2}^{-1} \widetilde{s}={\widetilde{s} \widetilde{a}_{2}}=\left(\left(\begin{array}{cc}
0 & -2^{-1} \tag{4.36}\\
2 & 0
\end{array}\right), 1\right)
$$

where $\widetilde{s}=\left(\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right), 1\right)$ and $\widetilde{a}_{2}=\left(\left(\begin{array}{cc}2 & 0 \\ 0 & 2^{-1}\end{array}\right), 1\right)$, as defined in (3.7) and (3.2) respectively. Let $\widetilde{\Gamma}_{(0)}=\Omega \widetilde{\Gamma}_{\infty} \Omega^{-1}$. Following [9], we define the metaplectic Eisenstein distribution at 0 to be
the following distribution in $V_{(\epsilon), \nu}^{-\infty}\left(\widetilde{\mathrm{SL}}_{2}\right)$:

$$
\begin{equation*}
\widetilde{E}_{\nu}^{(0)}=\zeta_{2}(2 \nu+1) \sum_{\tilde{\gamma} \in \widetilde{\Gamma}_{1}(4) / \widetilde{\Gamma}_{(0)}} \pi(\widetilde{\gamma} \Omega) \delta_{\infty}, \tag{4.37}
\end{equation*}
$$

where $\Re(\nu)>1$. Since δ_{∞} is invariant under left translation by $\widetilde{\Gamma}_{\infty}$, it follows that $\pi(\Omega) \delta_{\infty}$ is invariant under left translation by $\widetilde{\Gamma}_{(0)}$. Thus the summation over $\widetilde{\Gamma}_{1}(4) / \widetilde{\Gamma}_{(0)}$ in the definition of $\widetilde{E}_{\nu}^{(0)}$ is justified. By construction, we see that $\widetilde{E}_{\nu}^{(0)}$ is formally $\widetilde{\Gamma}_{1}(4)$-invariant. We will justify the convergence of the series defining $\widetilde{E}_{\nu}^{(0)}$ momentarily.

Since $\widetilde{\Gamma}_{1}(4)$ is generated by $\left(\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right), 1\right)$ and $\Omega\left(\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right), 1\right) \Omega^{-1}=\left(\left(\begin{array}{cc}1 & 0 \\ -4 & 1\end{array}\right), 1\right)$, it follows that $\Omega \widetilde{\Gamma}_{1}(4) \Omega^{-1}=\widetilde{\Gamma}_{1}(4)$. Since $\Omega \widetilde{\Gamma}_{1}(4) \Omega^{-1}=\widetilde{\Gamma}_{1}(4)$ and $\Omega \widetilde{\Gamma}_{\infty} \Omega^{-1}=\widetilde{\Gamma}_{(0)}$, we have that

$$
\widetilde{E}_{\nu}^{(0)}=\zeta_{2}(2 \nu+1) \sum_{\tilde{\gamma} \in \widetilde{\Gamma}_{1}(4) / \widetilde{\Gamma}_{\infty}} \pi(\Omega \widetilde{\gamma}) \delta_{\infty}=\pi(\Omega) \widetilde{E}_{\nu}^{(\infty)} .
$$

Therefore the series defining $\widetilde{E}_{\nu}^{(0)}$ converges for $\Re(\nu)>1$, and we have that $\widetilde{E}_{\nu}^{(0)}$ has meromorphic continuation to \mathbb{C} with a simple pole at $\nu=\frac{1}{2}$. Since $\pi(\Omega) \widetilde{E}_{\nu}^{(\infty)}$ is $\widetilde{\Gamma}_{\infty}$-invariant, it follows that $\left(\widetilde{E}_{\nu}^{(0)}\right)_{0}$ is periodic. Thus $\left(\widetilde{E}_{\nu}^{(0)}\right)_{0}$ has a Fourier series expansion:

$$
\left(\widetilde{E}_{\nu}^{(0)}\right)_{0}(x)=\sum_{n \in \mathbb{Z}} b_{n} e(n x),
$$

where

$$
b_{n}=\int_{0}^{1}\left(\widetilde{E}_{\nu}^{(0)}\right)_{0}(x) e(-n x) d x .
$$

In section 4.5, we will establish a functional equation between $\widetilde{E}_{\nu}^{(\infty)}$ and $\widetilde{E}_{\nu}^{(0)}$. We will do this by computing an explicit formula for the Fourier coefficient b_{0}. The derivation of this formula will make considerable use of the Kronecker symbol. We refer the reader back to Proposition 4.2, where the relevant properties of the Kronecker symbol are stated.

Proposition 4.10. For $\widetilde{E}_{\nu}^{(0)} \in V_{(\epsilon), \nu}^{-\infty}\left(\widetilde{S L_{2}}\right)$ with $\Re(\nu)>1$, we have that

$$
b_{0}=\epsilon i 2^{-\nu-1} \zeta_{2}(2 \nu) .
$$

Proof. Suppose $\widetilde{\gamma}^{-1}=\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right),\left(\frac{c}{d}\right)\right) \in \widetilde{\Gamma}_{1}(4)$. If $c \neq 0$ then $a d \equiv 1(\bmod c)$, which implies that $\left(\frac{c}{a}\right)\left(\frac{c}{d}\right)=\left(\frac{c}{a d}\right)=\left(\frac{c}{1}\right)=1$. Thus $\left(\frac{c}{d}\right)=\left(\frac{c}{a}\right)$, both for $c \neq 0$ and $c=0$. Next we seek to evaluate $\left(\frac{-b}{a}\right)\left(\frac{c}{a}\right)=\left(\frac{-b c}{a}\right)$ in order to express $\left(\frac{c}{d}\right)=\left(\frac{c}{a}\right)$ in terms of $\left(\frac{-b}{a}\right)$. Since $a \equiv 1(\bmod 4)$ it follows that $\left(\frac{-b c}{a}\right)=\left(\frac{-1}{a}\right)\left(\frac{b c}{a}\right)=\left(\frac{b c}{a}\right)$. Therefore when $b \neq 0$, we have that the sign of b is
inconsequential when it comes to evaluating $\left(\frac{-b c}{a}\right)$. Observe that for $b>0$ we have that

$$
\begin{array}{ll}
\left(\frac{-b c}{a}\right)=\left(\frac{1}{a}\right)=1 & \text { if } a>0 \\
\left(\frac{-b c}{a}\right)=\left(\frac{-b c}{-1}\right)\left(\frac{-b c}{-a}\right)=\operatorname{sgn}(-c)\left(\frac{1}{-a}\right)=\operatorname{sgn}(-c) & \text { if } a<0
\end{array}
$$

Hence $\left(\frac{-b}{a}\right)\left(\frac{c}{a}\right)=\left(\frac{-b c}{a}\right)=(a,-c)_{H}$ for $b \neq 0$. Thus for $b \neq 0$, we have that

$$
\begin{equation*}
\left(\frac{c}{d}\right)=\left(\frac{c}{a}\right)=\left(\frac{-b}{a}\right)(a,-c)_{H}=\left(\frac{b}{a}\right)(a,-c)_{H} ; \tag{4.38}
\end{equation*}
$$

the last equality follows since $a \equiv 1(\bmod 4)$. We shall make reference to this equality later in our proof.

Observe that for $c \neq 0$, we have

$$
\widetilde{\gamma} \Omega \widetilde{s}=\left(\left(\begin{array}{cc}
-\frac{d}{2} & 2 b \\
\frac{c}{2} & -2 a
\end{array}\right), \operatorname{sgn}(c)\left(\frac{c}{d}\right)\right)=\left(\left(\begin{array}{cc}
-2 a & -2 b \\
-\frac{c}{2} & -\frac{d}{2}
\end{array}\right), \operatorname{sgn}(c)\left(\frac{c}{d}\right)\right)^{-1} .
$$

Thus by Lemma 4.1(a), we have for $c \neq 0$,

$$
\begin{aligned}
& \left(\pi(\widetilde{\gamma} \Omega) \delta_{\infty}\right)_{0}(x)=\left(\pi(\widetilde{\gamma} \Omega \widetilde{s}) \delta_{0}\right)_{0}(x) \\
& =\operatorname{sgn}(c)\left(\frac{c}{d}\right)\left(\frac{c}{2},-\frac{c}{2} x-\frac{d}{2}\right)_{H}\left|\frac{-c}{2} x+\frac{-d}{2}\right|^{\nu-1} \operatorname{sgn}\left(-\frac{c}{2} x-\frac{d}{2}\right)^{\epsilon / 2} \delta_{0}\left(\frac{-2 a x-2 b}{-\frac{c}{2} x-\frac{d}{2}}\right) \\
& =\operatorname{sgn}(c)\left(\frac{c}{d}\right)(c,-c x-d)_{H} 2^{-\nu+1}|c x+d|^{\nu-1} \operatorname{sgn}(-c x-d)^{\epsilon / 2} \delta_{0}\left(4\left(\frac{a x+b}{c x+d}\right)\right),
\end{aligned}
$$

as an equality between distributions on $\mathbb{R}_{\neq \frac{-d}{c}}$. Let ϕ a test function of compact support on $\mathbb{R}_{\neq \frac{-d}{c}}$. Observe that

$$
\begin{align*}
& \int_{\mathbb{R}_{\neq-\frac{d}{c}}} \operatorname{sgn}(c)\left(\frac{c}{d}\right)(c,-c x-d)_{H} 2^{-\nu+1}|c x+d|^{\nu-1} \operatorname{sgn}(-c x-d)^{\epsilon / 2} \delta_{0}\left(4\left(\frac{a x+b}{c x+d}\right)\right) \phi(x) d x \\
& =\int_{\mathbb{R}_{\neq 0}} \operatorname{sgn}(c)\left(\frac{c}{d}\right)(c,-c x)_{H} 2^{-\nu+1}|c x|^{\nu-1} \operatorname{sgn}(-c x)^{\epsilon / 2} \delta_{0}\left(4\left(\frac{a x-\frac{a d}{c}+b}{c x}\right)\right) \phi\left(x-\frac{d}{c}\right) d x \\
& =\int_{\mathbb{R}_{\neq 0}} \operatorname{sgn}(c)\left(\frac{c}{d}\right)(c,-c x)_{H} 2^{-\nu+1}|c x|^{\nu-1} \operatorname{sgn}(-c x)^{\epsilon / 2} \delta_{0}\left(\frac{4 a}{c}-\frac{4}{c^{2} x}\right) \phi\left(x-\frac{d}{c}\right) d x \\
& =\int_{\mathbb{R}_{\neq 0}} \operatorname{sgn}(c)\left(\frac{c}{d}\right)\left(c, \frac{-4 x}{c}\right)_{H} 2^{-\nu+1} 4^{\nu}|c|^{-\nu-1}|x|^{\nu-1} \operatorname{sgn}\left(\frac{-4 x}{c}\right)^{\epsilon / 2} \delta_{0}\left(\frac{4 a}{c}-\frac{1}{x}\right) \phi\left(\frac{4 x}{c^{2}}-\frac{d}{c}\right) d x \\
& =\int_{\mathbb{R}_{\neq 0}} \operatorname{sgn}(c)\left(\frac{c}{d}\right)\left(c, \frac{4}{c x}\right)_{H} 2^{\nu+1}|c|^{-\nu-1}|x|^{-\nu-1} \operatorname{sgn}\left(\frac{4}{c x}\right)^{\epsilon / 2} \delta_{0}\left(\frac{4 a}{c}+x\right) \phi\left(\frac{-4}{c^{2} x}-\frac{d}{c}\right) d x \\
& =\operatorname{sgn}(c)\left(\frac{c}{d}\right)\left(c, \frac{-1}{a}\right)_{H} 2^{\nu+1}|4 a|^{-\nu-1} \operatorname{sgn}\left(\frac{-1}{a}\right)^{\epsilon / 2} \phi\left(\frac{1}{a c}-\frac{d}{c}\right) \\
& =\operatorname{sgn}(c)\left(\frac{c}{d}\right)(c,-a)_{H}|2 a|^{-\nu-1} \operatorname{sgn}(-a)^{\epsilon / 2} \phi\left(\frac{-b}{a}\right) . \tag{4.39}
\end{align*}
$$

If $b \neq 0$, then it follows from (4.38) that

$$
\begin{aligned}
& \operatorname{sgn}(c)\left(\frac{c}{d}\right)(c,-a)_{H} \operatorname{sgn}(-a)^{\epsilon / 2}=\operatorname{sgn}(c)\left(\frac{b}{a}\right)(a,-c)_{H}(c,-a)_{H} \operatorname{sgn}(-a)^{\epsilon / 2} \\
& =\operatorname{sgn}(c)\left(\frac{b}{a}\right) \operatorname{sgn}(a c) \operatorname{sgn}(-a)^{\epsilon / 2}=\operatorname{sgn}(a)\left(\frac{b}{a}\right) \operatorname{sgn}(-a)^{\epsilon / 2}=-\left(\frac{b}{a}\right) \operatorname{sgn}(-a)^{-\epsilon / 2} .
\end{aligned}
$$

By this equality and (4.39), we have for $b \neq 0$, that

$$
\begin{equation*}
\left(\pi(\widetilde{\gamma} \Omega) \delta_{\infty}\right)_{0}=-\left(\frac{b}{a}\right)|2 a|^{-\nu-1} \operatorname{sgn}(-a)^{-\epsilon / 2} \delta_{\frac{-b}{a}}, \tag{4.40}
\end{equation*}
$$

as an equality between distributions on $\mathbb{R}_{\neq \frac{-d}{c}}$. Conveniently, (4.40) also holds for $b=0$ since $b=0$ implies $a=d=1$ and $\left(\frac{0}{1}\right)=1$; indeed, observe that in this case we have

$$
\operatorname{sgn}(c)\left(\frac{c}{d}\right)(c,-a)_{H} \operatorname{sgn}(-a)^{\epsilon / 2}=\operatorname{sgn}(c) \operatorname{sgn}(c) \operatorname{sgn}(-1)^{\epsilon / 2}=\epsilon i=-\left(\frac{0}{1}\right) \operatorname{sgn}(-1)^{-\epsilon / 2} .
$$

Thus it remains to describe $\left(\pi(\widetilde{\gamma} \Omega) \delta_{\infty}\right)_{0}$ about the point $\frac{-d}{c}$ for when $c \neq 0$. To do this, observe that for $c \neq 0$ we have that

$$
\widetilde{\gamma} \Omega=\left(\left(\begin{array}{cc}
-2 b & -\frac{d}{2} \\
2 a & \frac{c}{2}
\end{array}\right),\left(\frac{c}{d}\right)(a, c)_{H}\right)=\left(\left(\begin{array}{cc}
\frac{c}{2} & \frac{d}{2} \\
-2 a & -2 b
\end{array}\right),\left(\frac{c}{d}\right)(a, c)_{H}\right)^{-1} .
$$

Thus by Lemma 4.1(a) we have that

$$
\left(\pi(\widetilde{\gamma} \Omega) \delta_{\infty}\right)_{0}=0
$$

as an equality between distributions on $\mathbb{R}_{\neq \frac{-b}{a}}$. Since $\frac{-d}{c} \neq \frac{-b}{a}$, it follows that $\left(\pi(\widetilde{\gamma} \Omega) \delta_{\infty}\right)_{0}$ vanishes about the point $\frac{-d}{c}$, and thus (4.40) holds as an equality between distributions on \mathbb{R}.

With (4.40) established as equality between distributions on \mathbb{R}, it remains for us to index the cosets of $\widetilde{\Gamma}_{1}(4) / \widetilde{\Gamma}_{(0)}$ in some natural way. Observe

$$
\begin{aligned}
& \tilde{\gamma} \cdot\left(\left(\begin{array}{cc}
1 & 0 \\
-4 n & 1
\end{array}\right), 1\right)=\left(\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right),\left(\frac{c}{d}\right)\right) \cdot\left(\left(\begin{array}{cc}
1 & 0 \\
-4 n & 1
\end{array}\right), 1\right) \\
& =\left(\left(\begin{array}{cc}
d+4 b n & -b \\
-c-4 a n & a
\end{array}\right),\left(\frac{-c-4 a n}{d+4 b n}\right)\right)
\end{aligned}
$$

From this equality we see that to each coset of $\widetilde{\Gamma}_{1}(4) / \widetilde{\Gamma}_{(0)}$ there corresponds $(a, b) \in \mathbb{Z}^{2}$ such that $\operatorname{gcd}(a, b)=1$ and $a \equiv 1(\bmod 4)$. Furthermore, this correspondence is unique, for if both $\widetilde{\gamma} \widetilde{\Gamma}_{(0)}$ and $\widetilde{\gamma}^{\prime} \widetilde{\Gamma}_{(0)}$ correspond to the same $(a, b) \in \mathbb{Z}$, then it follows that $\widetilde{\gamma}^{-1} \widetilde{\gamma}^{\prime} \in \widetilde{\Gamma}_{(0)}$. Conversely, when given $(a, b) \in \mathbb{Z}^{2}$ such that $\operatorname{gcd}(a, b)=1$ and $a \equiv 1(\bmod 4)$, it follows that $\operatorname{gcd}(a, 4 b)=1$. Thus there exists $c^{\prime}, d \in \mathbb{Z}$ such that $a d-4 b c^{\prime}=a d-b\left(4 c^{\prime}\right)=1$. Since $a \equiv 1(\bmod 4)$ then
$d \equiv 1(\bmod 4)$. If we let $c=4 c^{\prime}$ then $c \equiv 0(\bmod 4)$. Thus we are able to construct $\widetilde{\gamma}$ which corresponds to such (a, b). Therefore

$$
\begin{equation*}
\widetilde{\Gamma}_{1}(4) / \widetilde{\Gamma}_{(0)} \cong\left\{(a, b) \in \mathbb{Z}^{2}: \operatorname{gcd}(a, b)=1, a \equiv 1(\bmod 4)\right\} . \tag{4.41}
\end{equation*}
$$

By (4.41), we have that

$$
\left(\widetilde{E}_{\nu}^{(0)}\right)_{0}=-\zeta_{2}(2 \nu+1) \sum_{\substack{(a, b) \in \mathbb{Z}^{2} \\ \text { god }(a, b)=1 \\ a \equiv 1(\bmod 4)}}\left(\frac{b}{a}\right)|2 a|^{-\nu-1} \operatorname{sgn}(-a)^{-\epsilon / 2} \delta_{\frac{-b}{a}}
$$

Observe

$$
\begin{aligned}
& \frac{b_{0}}{\zeta_{2}(2 \nu+1)}=-\int_{0}^{1} \sum_{\substack{(a, b) \in \mathbb{Z}^{2} \\
\operatorname{gcd}(a, b)=1 \\
a=1(\bmod 4)}}\left(\frac{b}{a}\right)|2 a|^{-\nu-1} \operatorname{sgn}(-a)^{-\epsilon / 2} \delta_{\frac{-b}{a}}(x) d x \\
& =\epsilon i \sum_{\substack{(a, b) \in \mathbb{Z}>0 \times \mathbb{Z} \\
0 \leq b<a \\
a \equiv 1(\bmod 4)}}\left(\frac{b}{a}\right)|2 a|^{-\nu-1}-\sum_{\substack{(a, b) \in \mathbb{Z}<0 \times \mathbb{Z} \\
0 \\
a \equiv b>b \\
a \equiv 1(\bmod 4)}}\left(\frac{b}{a}\right)|2 a|^{-\nu-1} \\
& =\epsilon i \sum_{\substack{(a, b) \in \mathbb{Z} \\
0 \leq 0<a \\
a \equiv 1(\bmod 4)}}\left(\frac{-b}{a}\right)|2 a|^{-\nu-1}-\sum_{\substack{(a, b) \in \mathbb{Z}>0 \times \mathbb{Z} \\
0 \leq b<a \\
a \equiv 3(\bmod 4)}}\left(\frac{b}{-a}\right)|2 a|^{-\nu-1} .
\end{aligned}
$$

Observe that if $a \equiv 1(\bmod 4)$ then $\left(\frac{-b}{a}\right)=\left(\frac{-1}{a}\right)\left(\frac{b}{a}\right)=\left(\frac{b}{a}\right)$, and if $b \geq 0$ and $a \neq 0$ then $\left(\frac{b}{-a}\right)=\left(\frac{b}{-1}\right)\left(\frac{b}{a}\right)=\left(\frac{b}{a}\right)$. Thus

$$
\frac{b_{0}}{\zeta_{2}(2 \nu+1)}=\epsilon i \sum_{a \in \mathbb{Z}_{>0}}\left(\sum_{b \in \mathbb{Z} / a \mathbb{Z}}\left(\frac{b}{a}\right)\right) \Delta_{a}^{\epsilon}|2 a|^{-\nu-1} .
$$

Observe that if a is a square then

$$
\sum_{b \in \mathbb{Z} / a \mathbb{Z}}\left(\frac{b}{a}\right)=\phi(a),
$$

but if a is not a square then

$$
\sum_{b \in \mathbb{Z} / a \mathbb{Z}}\left(\frac{b}{a}\right)=0 .
$$

The latter case follows since if a is not a square then there exists $b^{\prime} \in \mathbb{Z}$ such that $\operatorname{gcd}\left(a, b^{\prime}\right)=1$ and $\left(\frac{b^{\prime}}{a}\right)=-1$, and thus

$$
-\left(\sum_{b \in \mathbb{Z} / a \mathbb{Z}}\left(\frac{b}{a}\right)\right)=\left(\frac{b^{\prime}}{a}\right)\left(\sum_{b \in \mathbb{Z} / a \mathbb{Z}}\left(\frac{b}{a}\right)\right)=\left(\sum_{b \in \mathbb{Z} / a \mathbb{Z}}\left(\frac{b^{\prime} b}{a}\right)\right)=\left(\sum_{b \in \mathbb{Z} / a \mathbb{Z}}\left(\frac{b}{a}\right)\right) .
$$

Therefore

$$
b_{0}=\epsilon i \zeta_{2}(2 \nu+1) \sum_{a \in \mathbb{Z}_{>0}} \Delta_{a^{2}}^{\epsilon} \phi\left(a^{2}\right)\left|2 a^{2}\right|^{-\nu-1}=\epsilon i \zeta_{2}(2 \nu+1) 2^{-\nu-1} \sum_{\substack{a \in \mathbb{Z}_{\text {又 }} \\ a \text { odd }}} \phi\left(a^{2}\right)|a|^{-2 \nu-2} .
$$

Since $\phi\left(a^{2}\right)$ is multiplicative, it follows just as in the proof of Proposition 4.9 that

$$
\begin{aligned}
& b_{0}=\epsilon i \zeta_{2}(2 \nu+1) 2^{-\nu-1} \prod_{p \text { odd prime }} \sum_{k \in \mathbb{Z}_{\geq 0}} \phi\left(p^{2 k}\right)\left(p^{k}\right)^{-2 \nu-2} \\
& =\epsilon i \zeta_{2}(2 \nu+1) 2^{-\nu-1} \prod_{p \text { odd primes }} \frac{1-p^{-2 \nu-1}}{1-p^{-2 \nu}}=\epsilon i 2^{-\nu-1} \zeta_{2}(2 \nu)
\end{aligned}
$$

4.5 The Eisenstein Distribution Functional Equation

Recall that in (3.2) and (3.7) we defined the following elements of $\widetilde{\mathrm{SL}}_{2}$:

$$
\begin{aligned}
& \widetilde{m}_{\epsilon_{1}, \epsilon_{2}, \epsilon_{3}}=\left(\left(\begin{array}{cc}
\epsilon_{1} & 0 \\
0 & \epsilon_{2}
\end{array}\right), \epsilon_{3}\right), \quad \widetilde{a}_{u}=\left(\left(\begin{array}{cc}
u & 0 \\
0 & u^{-1}
\end{array}\right), 1\right) \\
& \widetilde{n}_{x}=\left(\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right), 1\right), \quad \widetilde{n}_{-, x}=\left(\left(\begin{array}{ll}
1 & 0 \\
x & 1
\end{array}\right), 1\right), \text { and } \widetilde{s}=\left(\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), 1\right)
\end{aligned}
$$

where $\epsilon_{i} \in\{ \pm 1\}, u \in \mathbb{R}_{>0}$, and $x \in \mathbb{R}$. Throughout this section, we will suppose that $f \in$ $V_{(\epsilon),-\nu}^{\infty}\left(\widetilde{\mathrm{SL}}_{2}\right)$ where $\epsilon= \pm 1$; notice that we now have $-\nu$ as our complex parameter instead of ν. Recall that by definition,

$$
\begin{align*}
& V_{(\epsilon), \nu}^{\infty}\left(\widetilde{\mathrm{SL}}_{2}\right) \\
& =\left\{f \in C^{\infty}\left(\widetilde{\mathrm{SL}_{2}}, \mathbb{C}\right): f(\widetilde{g} \widetilde{b})=\omega_{(\epsilon), \nu}\left(\widetilde{b}^{-1}\right) f(\widetilde{g}) \text { for all } \widetilde{g} \in \widetilde{\mathrm{SL}}_{2}, \widetilde{b} \in B\left({\left.\left.\widetilde{\mathrm{SL}_{2}}\right)\right\}}^{=}\right.\right. \tag{4.42}
\end{align*}
$$

where $\omega_{(\epsilon), \nu}$ is defined in (3.14).
For $\Re(\nu)>0$, let $I_{\nu}: V_{(\epsilon),-\nu}^{\infty}\left(\widetilde{\mathrm{SL}}_{2}\right) \rightarrow V_{(\epsilon), \nu}^{\infty}\left(\widetilde{\mathrm{SL}_{2}}\right)$ where

$$
\begin{equation*}
\left(I_{\nu} f\right)(\widetilde{g})=\int_{-\infty}^{\infty} f\left(\widetilde{g} \widetilde{s} \widetilde{n}_{t}\right) d t \tag{4.43}
\end{equation*}
$$

In a moment we will show that the integral defining I_{ν} does indeed converge for $\Re(\nu)>0$, and that the codomain of I_{ν} is in indeed $V_{(\epsilon), \nu}^{\infty}\left(\widetilde{\mathrm{SL}}_{2}\right)$. With regards to justifying the convergence of the integral, observe that by the transformation law given in (4.42), we have that

$$
\begin{align*}
& \left(I_{\nu} f\right)_{0}(x)=\int_{-\infty}^{\infty} f\left(\widetilde{n}_{x} \widetilde{s} \widetilde{n}_{y}\right) d y=\int_{-\infty}^{\infty} f\left(\widetilde{n}_{\left(-y^{-1}+x\right)} \widetilde{a}_{|y|^{-1}} \widetilde{m}_{\operatorname{sgn}(y), \operatorname{sgn}(y), \operatorname{sgn}(y)} \widetilde{n}_{-, y^{-1}}\right) d y \\
& =\int_{-\infty}^{\infty}|y|^{-\nu-1} \operatorname{sgn}(y)^{-\epsilon / 2} f\left(\widetilde{n}_{\left(-y^{-1}+x\right)}\right) d y=\int_{-\infty}^{\infty}|y|^{\nu-1} \operatorname{sgn}(-y)^{-\epsilon / 2} f_{0}(x+y) d y \tag{4.44}
\end{align*}
$$

with the latter integral converging absolutely for $\Re(\nu)>0$. By an almost identical argument it also follows that

$$
\begin{equation*}
\left(I_{\nu} f\right)_{\infty}(x)=\int_{-\infty}^{\infty}|y|^{\nu-1} \operatorname{sgn}(-y)^{-\epsilon / 2} f_{\infty}(x+y) d y \tag{4.45}
\end{equation*}
$$

with the integral converging absolutely for $\Re(\nu)>0$. Thus the integral defining $I_{\nu} f$ converges absolutely for $\Re(\nu)>0$. As for justifying the codomain statement, observe

$$
\begin{aligned}
& \left(I_{\nu} f\right)\left(\widetilde{g} \widetilde{a}_{u}\right)=\int_{-\infty}^{\infty} f\left(\widetilde{g} \widetilde{a}_{u} \widetilde{s n_{n}}\right) d t=\int_{-\infty}^{\infty} f\left(\widetilde{g} \widetilde{s}_{\frac{t}{u^{2}}} \widetilde{a}_{u}^{-1}\right) d t \\
& =u^{2} \int_{-\infty}^{\infty} f\left(\widetilde{g} \widetilde{s}_{t} \widetilde{a}_{u}^{-1}\right) d t=u^{-\nu+1} \int_{-\infty}^{\infty} f\left(\widetilde{g s \widetilde{n}_{t}}\right) d t=\omega_{(\epsilon), \nu}\left(\widetilde{a}_{u}^{-1}\right)\left(I_{\nu} f\right)(\widetilde{g}) .
\end{aligned}
$$

From this equality and the fact that $M\left(\widetilde{\mathrm{SL}}_{2}\right)$ is the center of $\widetilde{\mathrm{SL}}_{2}$, it follows that I_{ν} does indeed have $V_{(\epsilon), \nu}^{\infty}\left(\widetilde{\mathrm{SL}}_{2}\right)$ as its codomain.

Observe that I_{ν} is an intertwining operator between the spaces $V_{(\epsilon),-\nu}^{\infty}\left(\widetilde{\mathrm{SL}_{2}}\right)$ and $V_{(\epsilon), \nu}^{\infty}\left(\widetilde{\mathrm{SL}}_{2}\right)$. A well-known result from representation theory states that I_{ν} can be meromorphically continued to all of \mathbb{C} [13]. Our goal for this section is to describe $I_{\nu}\left(\widetilde{E}_{-\nu}^{(\infty)}\right)$ in terms of $\widetilde{E}_{\nu}^{(\infty)}$ and $\widetilde{E}_{\nu}^{(0)}$, and to thus obtain a distributional analogue of the functional equation for metaplectic Eisenstein series. To accomplish this, we need to define the following Gamma factors. For $\delta \in\{0,1\}$, let

$$
G_{\delta}(\nu)= \begin{cases}2 \cos \left(\frac{\pi \nu}{2}\right)(2 \pi)^{-\nu} \Gamma(\nu) & \text { if } \delta=0 \tag{4.46}\\ 2 i \sin \left(\frac{\pi \nu}{2}\right)(2 \pi)^{-\nu} \Gamma(\nu) & \text { if } \delta=1\end{cases}
$$

and for $\epsilon_{1}, \epsilon_{2} \in\{ \pm 1\}$, let

$$
\begin{align*}
G_{\epsilon_{1}, \epsilon_{2}}(\nu) & =\left(e\left(\frac{\epsilon_{2} \nu}{4}\right)+\epsilon_{1} i e\left(\frac{-\epsilon_{2} \nu}{4}\right)\right)(2 \pi)^{-\nu} \Gamma(\nu) \\
& =\sqrt{2}\left(1+\epsilon_{1} i\right) \cos \left(\frac{\pi}{2}\left(\nu-\frac{\epsilon_{1} \epsilon_{2}}{2}\right)\right)(2 \pi)^{-\nu} \Gamma(\nu) \tag{4.47}
\end{align*}
$$

The following lemma gives some integral representations for these gamma factors.
Lemma 4.11. For $0<\Re(\nu)<1$,
(a) $G_{\delta}(\nu)=\int_{-\infty}^{\infty} \operatorname{sgn}(x)^{\delta}|x|^{\nu-1} e(x) d x$,
(b) $G_{\epsilon_{1}, \epsilon_{2}}(\nu)=\int_{-\infty}^{\infty} \operatorname{sgn}\left(\epsilon_{2} x\right)^{\frac{\epsilon_{1}}{2}}|x|^{\nu-1} e(x) d x$,
where the above integrals converge conditionally.
Proof. For $0<\Re(\nu)<1$, one can show that

$$
\begin{equation*}
\int_{0}^{\infty}|x|^{\nu-1} e(\pm x) d x=e\left(\frac{ \pm \nu}{4}\right)(2 \pi)^{-\nu} \Gamma(\nu) . \tag{4.48}
\end{equation*}
$$

Thus for $0<\Re(\nu)<1$ we have that

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \operatorname{sgn}(x)^{\delta}|x|^{\nu-1} e(x) d x=\int_{0}^{\infty}|x|^{\nu-1} e(x) d x+(-1)^{\delta} \int_{-\infty}^{0}|x|^{\nu-1} e(x) d x \\
& =\int_{0}^{\infty}|x|^{\nu-1} e(x) d x+(-1)^{\delta} \int_{0}^{\infty}|x|^{\nu-1} e(-x) d x \\
& =e\left(\frac{\nu}{4}\right)(2 \pi)^{-\nu} \Gamma(\nu)+(-1)^{\delta} e\left(\frac{-\nu}{4}\right)(2 \pi)^{-\nu} \Gamma(\nu) \\
& =\left(\left(\cos \left(\frac{\nu}{4}\right)+i \sin \left(\frac{\nu}{4}\right)\right)+(-1)^{\delta}\left(\cos \left(\frac{\nu}{4}\right)-i \sin \left(\frac{\nu}{4}\right)\right)\right)(2 \pi)^{-\nu} \Gamma(\nu) \\
& =G_{\delta}(\nu),
\end{aligned}
$$

and

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \operatorname{sgn}\left(\epsilon_{2} x\right)^{\frac{\epsilon_{1}}{2}}|x|^{\nu-1} e(x) d x=\int_{-\infty}^{\infty} \operatorname{sgn}(x)^{\frac{\epsilon_{1}}{2}}|x|^{\nu-1} e\left(\epsilon_{2} x\right) d x \\
& =\int_{0}^{\infty} \operatorname{sgn}(x)^{\frac{\epsilon_{1}}{2}}|x|^{\nu-1} e\left(\epsilon_{2} x\right) d x+\int_{-\infty}^{0} \operatorname{sgn}(x)^{\frac{\epsilon_{1}}{2}}|x|^{\nu-1} e\left(\epsilon_{2} x\right) d x \\
& =\int_{0}^{\infty}|x|^{\nu-1} e\left(\epsilon_{2} x\right) d x+\epsilon_{1} i \int_{0}^{\infty}|x|^{\nu-1} e\left(-\epsilon_{2} x\right) d x \\
& =\left(e\left(\frac{\epsilon_{2} \nu}{4}\right)+\epsilon_{1} i e\left(\frac{-\epsilon_{2} \nu}{4}\right)\right)(2 \pi)^{-\nu} \Gamma(\nu) \\
& =G_{\epsilon_{1}, \epsilon_{2}}(\nu) .
\end{aligned}
$$

We can define the intertwining operator I_{ν} on $V_{(\epsilon),-\nu}^{-\infty}\left(\widetilde{\mathrm{SL}_{2}}\right)$ in two equivalent ways. One approach is to extend I_{ν} by continuity on the dense subset of smooth functions in $V_{(\epsilon),-\nu}^{-\infty}\left(\widetilde{\mathrm{SL}_{2}}\right)$. Alternatively, one can define I_{ν} on $V_{(\epsilon),-\nu}^{-\infty}\left(\widetilde{\mathrm{SL}_{2}}\right)$ by first observing that the pairing on $V_{(\epsilon),-\nu}^{\infty}\left(\widetilde{\mathrm{SL}_{2}}\right) \times$ $V_{(-\epsilon), \nu}^{\infty}\left(\widetilde{\mathrm{SL}}_{2}\right)$ described in section 1.2 extends continuously to $V_{(\epsilon),-\nu}^{-\infty}\left(\widetilde{\mathrm{SL}}_{2}\right) \times V_{(-\epsilon), \nu}^{\infty}\left(\widetilde{\mathrm{SL}_{2}}\right)$. Thus for $\tau \in V_{(\epsilon),-\nu}^{-\infty}\left(\widetilde{\mathrm{SL}_{2}}\right)$ and $f \in V_{(-\epsilon), \nu}^{\infty}$, we define $I_{\nu} \tau$ by the equality

$$
\left(I_{\nu} \tau, f\right)=\left(\tau, I_{-\nu} f\right)
$$

that is to say, we define I_{ν} on $V_{(\epsilon),-\nu}^{-\infty}$ to be the adjoint of $I_{-\nu}$ on $V_{(-\epsilon), \nu}^{\infty}$. We use this latter definition of I_{ν} for when working with elements of $V_{(\epsilon),-\nu}^{-\infty}$.

It is well-known that $I_{-\nu} \circ I_{\nu}$ is a scalar operator. The following lemma, which follows from [20, p. 89], gives us an exact description of this scalar operator.

Lemma 4.12. For $f \in V_{(\epsilon),-\nu}^{-\infty}\left(\widetilde{S L}_{2}\right)$,

$$
\left(I_{-\nu} I_{\nu} f\right)=\epsilon \frac{2 \pi i \cot (\pi \nu)}{\nu} f
$$

Let $\mathbb{1}_{\nu}$ denote the element of $V_{(\epsilon), \nu}^{-\infty}\left(\widetilde{\mathrm{SL}}_{2}\right)$ defined by

$$
\left(\mathbb{1}_{\nu}\right)_{0}(x)=1 \text { and }\left(\mathbb{1}_{\nu}\right)_{\infty}(0)=0
$$

Similarly, to avoid confusion, we will write $\delta_{\infty, \nu}$ for the δ_{∞} element of $V_{(\epsilon), \nu}^{-\infty}\left(\widetilde{\mathrm{SL}_{2}}\right)$.
Lemma 4.13. For $\delta_{\infty,-\nu}, \mathbb{1}_{-\nu} \in V_{(\epsilon),-\nu}^{-\infty}\left(\widetilde{S L}_{2}\right)$ we have
(a) $I_{\nu}\left(\delta_{\infty,-\nu}\right)=-\epsilon i \mathbb{1}_{\nu}$,
(b) $I_{\nu}\left(\mathbb{1}_{-\nu}\right)=-\frac{2 \pi \cot (\pi \nu)}{\nu} \delta_{\infty, \nu}$.

Proof. For $f \in V_{(-\epsilon), \nu}^{\infty}\left(\widetilde{\mathrm{SL}}_{2}\right)$, observe that $\int_{-\infty}^{\infty}\left(\delta_{\infty}\right)_{0}(x)\left(I_{-\nu} f\right)_{0}(x) d x=0$. By (4.3) and (4.43), we have for $\Re(\nu)<0$ that

$$
\begin{aligned}
& \int_{-\infty}^{\infty}\left(\delta_{\infty}\right)_{\infty}(x)\left(I_{-\nu} f\right)_{\infty}(x)=-\epsilon i\left(I_{-\nu} f\right)_{\infty}(0)=-\epsilon i \int_{-\infty}^{\infty} f\left(\widetilde{s}^{-1} \widetilde{s}_{n}\right) d t \\
& =-\epsilon i \int_{-\infty}^{\infty} f\left(\widetilde{n}_{t}\right) d t=-\epsilon i \int_{-\infty}^{\infty} \mathbb{1}_{0}(x) f_{0}(x) d x
\end{aligned}
$$

Thus $I_{\nu} \delta_{\infty,-\nu}=-\epsilon i \mathbb{1}_{\nu}$ for $\Re(\nu)<0$. To see that this equality also holds for $\Re(\nu) \geq 0$, observe that for $h \in C_{c}^{\infty}(\mathbb{R})$, we have that

$$
\nu \mapsto \int_{\mathbb{R}}\left(-\epsilon i \mathbb{1}_{\nu}\right)_{0}(x) h(x) d x
$$

is holomorphic on \mathbb{C}, and that

$$
\nu \mapsto \int_{\mathbb{R}}\left(I_{\nu} \delta_{\infty,-\nu}\right)_{0}(x) h(x) d x=\int_{\mathbb{R}}\left(\delta_{\infty,-\nu}\right)_{0}(x) I_{-\nu}(h)(x) d x
$$

is meromorphic on \mathbb{C}. The uniqueness of meromorphic continuation then asserts that

$$
\int_{\mathbb{R}}\left(I_{\nu} \delta_{\infty,-\nu}\right)_{0}(x) h(x) d x=\int_{\mathbb{R}}\left(-\epsilon i \mathbb{1}_{\nu}\right)_{0}(x) h(x) d x
$$

as meromorphic functions on \mathbb{C}. Since this equality holds for any $h \in C_{c}^{\infty}(\mathbb{R})$, it follows that $\left(I_{\nu} \delta_{\infty,-\nu}\right)_{0}=\left(-\epsilon i \mathbb{1}_{\nu}\right)_{0}$. A similar argument shows that $\left(I_{\nu} \delta_{\infty,-\nu}\right)_{\infty}=\left(-\epsilon i \mathbb{1}_{\nu}\right)_{\infty}$, and thus part (a) follows.

Lemma 4.12 applied to $\delta_{\infty,-\nu}$ shows that $I_{-\nu} I_{\nu} \delta_{\infty,-\nu}=c(\nu) \delta_{\infty,-\nu}$, where $c(\nu)=\epsilon \frac{2 \pi i \cot (\pi \nu)}{\nu}$. Therefore by part (a), $-\epsilon i I_{-\nu} \mathbb{1}_{\nu}=c(\nu) \delta_{\infty,-\nu}$, which becomes

$$
I_{\nu} \mathbb{1}_{-\nu}=\epsilon i c(-\nu) \delta_{\infty, \nu}=(\epsilon i) \epsilon \frac{2 \pi i \cot (-\pi \nu)}{-\nu} \delta_{\infty, \nu}=-\frac{2 \pi \cot (\pi \nu)}{\nu} \delta_{\infty, \nu}
$$

when we replace ν with $-\nu$ and solve for $I_{\nu} \mathbb{1}_{-\nu}$.

Recall that a_{n} denotes the Fourier coefficients of $\left(\widetilde{E}_{\nu}^{(\infty)}\right)_{0}$ and that b_{n} denotes the Fourier coefficients of $\left(\widetilde{E}_{\nu}^{(0)}\right)_{0}$. To show the dependence of these coefficients on ν, we will also write $a_{n}(\nu)$ and $b_{n}(\nu)$ for a_{n} and b_{n}, respectively. Let $a_{\infty}(\nu)$ denote the coefficient of δ_{0} in

$$
\left(\widetilde{E}_{\nu}^{(\infty)}\right)_{\infty}-\left.\left(\widetilde{E}_{\nu}^{(\infty)}\right)_{\infty}\right|_{\mathbb{R}_{\neq 0}}
$$

By (4.35) we see that

$$
a_{\infty}(\nu)=\epsilon i \zeta_{2}(2 \nu+1)
$$

Likewise, let $b_{\infty}(\nu)$ denote the coefficient of δ_{0} in

$$
\left(\widetilde{E}_{\nu}^{(0)}\right)_{\infty}-\left.\left(\widetilde{E}_{\nu}^{(0)}\right)_{\infty}\right|_{\mathbb{R} \neq 0}
$$

We shall refer to $a_{\infty}(\nu)$ and $b_{\infty}(\nu)$ as Fourier coefficients at ∞. Observe

$$
\begin{aligned}
& \left(\widetilde{E}_{\nu}^{(0)}\right)_{\infty}=\left(\pi(\Omega) \widetilde{E}_{\nu}^{(\infty)}\right)_{\infty}=\left(\pi\left(\widetilde{a}_{2}^{-1} \widetilde{s}\right) \widetilde{E}_{\nu}^{(\infty)}\right)_{\infty}=\left(\pi\left(\widetilde{a}_{2}^{-1} \widetilde{\widetilde{s} s}\right) \widetilde{E}_{\nu}^{(\infty)}\right)_{0} \\
& =\left(\pi\left(\widetilde{a}_{2}^{-1}\right) \pi((-\mathrm{id},-1)) \widetilde{E}_{\nu}^{(\infty)}\right)_{0}=-\epsilon i\left(\pi\left(\widetilde{a}_{2}^{-1}\right) \widetilde{E}_{\nu}^{(\infty)}\right)_{0}
\end{aligned}
$$

where Ω is defined in (4.36). Therefore, since $\left(\widetilde{E}_{\nu}^{(\infty)}\right)_{0}$ has no delta distribution at 0 by (4.17) it follows that $\left(\widetilde{E}_{\nu}^{(0)}\right)_{\infty}$ vanishes about 0 . Thus

$$
b_{\infty}(\nu)=0
$$

In what follows, we shall use the following identities:

$$
\begin{align*}
\frac{\pi \cot (\pi \nu)}{\nu} G_{0}(2 \nu+1) & =-G_{0}(2 \nu) \tag{4.49}\\
\zeta(1-s) & =G_{0}(s) \zeta(s) \tag{4.50}
\end{align*}
$$

Recall that by Proposition 4.9, we have that

$$
a_{0}(\nu)=(1+\epsilon i) 2^{-2 \nu-2} \zeta(2 \nu)
$$

Therefore by Lemma 4.13 , (4.49), and (4.50), we have that

$$
\begin{align*}
& I_{\nu}\left(a_{0}(-\nu) \mathbb{1}_{-\nu}\right)=-\frac{2 \pi \cot (\pi \nu)}{\nu} a_{0}(-\nu) \delta_{\infty, \nu}=-\frac{\pi \cot (\pi \nu)}{\nu}(1+\epsilon i) 2^{2 \nu-1} \zeta(-2 \nu) \delta_{\infty, \nu} \\
& =-\frac{\pi \cot (\pi \nu)}{\nu}(1+\epsilon i) 2^{2 \nu-1} G_{0}(2 \nu+1) \zeta(2 \nu+1) \delta_{\infty, \nu} \\
& =(1+\epsilon i) 2^{2 \nu-1} G_{0}(2 \nu) \zeta(2 \nu+1) \delta_{\infty, \nu} \\
& =\left(-\epsilon i(1+\epsilon i) 2^{2 \nu-1} G_{0}(2 \nu)\left(1-2^{-2 \nu-1}\right)^{-1}\right)\left(\epsilon i \zeta_{2}(2 \nu+1)\right) \delta_{\infty, \nu} \\
& =\left((1-\epsilon i) 2^{2 \nu-1}\left(1-2^{-2 \nu-1}\right)^{-1} G_{0}(2 \nu)\right) a_{\infty}(\nu) \delta_{\infty, \nu} \tag{4.51}
\end{align*}
$$

and

$$
\begin{align*}
& I_{\nu}\left(a_{\infty}(-\nu) \delta_{\infty,-\nu}\right)=-\epsilon i a_{\infty}(-\nu) \mathbb{1}_{\nu}=\left(1-2^{2 \nu-1}\right) \zeta(-2 \nu+1) \mathbb{1}_{\nu} \\
& =\left(1-2^{2 \nu-1}\right) G_{0}(2 \nu) \zeta(2 \nu) \mathbb{1}_{\nu} \\
& =\left((1-\epsilon i) 2^{2 \nu-1}\left(1-2^{-2 \nu-1}\right)^{-1} G_{0}(2 \nu)\right) \\
& \quad \cdot\left((1-\epsilon i)^{-1} 2^{-2 \nu+1}\left(1-2^{-2 \nu-1}\right)\left(1-2^{2 \nu-1}\right) \zeta(2 \nu)\right) \mathbb{1}_{\nu} . \tag{4.52}
\end{align*}
$$

We wish to write $(1-\epsilon i)^{-1} 2^{-2 \nu+1}\left(1-2^{-2 \nu-1}\right)\left(1-2^{2 \nu-1}\right) \zeta(2 \nu)$ as $a_{0}(\nu)+d(\nu) b_{0}(\nu)$ where $d: \mathbb{C} \rightarrow \mathbb{C}$. Since by Proposition 4.9 and Proposition 4.10 , we know that

$$
\begin{aligned}
& a_{0}(\nu)=(1+\epsilon i) 2^{-2 \nu-2} \zeta(2 \nu), \\
& b_{0}(\nu)=\epsilon i 2^{-\nu-1} \zeta_{2}(2 \nu)=\epsilon i 2^{-\nu-1}\left(1-2^{-2 \nu}\right) \zeta(2 \nu),
\end{aligned}
$$

it follows that when we solve for $d(\nu)$ we find that

$$
d(\nu)=(1-\epsilon i) 2^{-\nu}\left(1-2^{2 \nu}\right) .
$$

Theorem 4.14. For $\widetilde{E}_{\nu}^{(\infty)} \in V_{(\epsilon), \nu}^{-\infty}\left(\widetilde{S L}_{2}\right)$ we have

$$
I_{\nu}\left(\widetilde{E}_{-\nu}^{(\infty)}\right)=\left((1-\epsilon i) 2^{2 \nu-1}\left(1-2^{-2 \nu-1}\right)^{-1} G_{0}(2 \nu)\right)\left(\widetilde{E}_{\nu}^{(\infty)}+(1-\epsilon i) 2^{-\nu}\left(1-2^{2 \nu}\right) \widetilde{E}_{\nu}^{(0)}\right) .
$$

Proof. We have established that the 0-th Fourier coefficient of

$$
\begin{equation*}
I_{\nu}\left(\widetilde{E}_{-\nu}^{(\infty)}\right)-\left((1-\epsilon i) 2^{2 \nu-1}\left(1-2^{-2 \nu-1}\right)^{-1} G_{0}(2 \nu)\right)\left(\widetilde{E}_{\nu}^{(\infty)}+d(\nu) \widetilde{E}_{\nu}^{(0)}\right) \tag{4.53}
\end{equation*}
$$

is equal to zero, and that the Fourier coefficient at ∞ of (4.53) is also equal to zero. In light of [17, (2.17)], we have then that (4.53) is cuspidal at ∞. Indeed, in classical terms, the series $\left(\widetilde{E}_{\nu}^{(0)}\right)_{0}(x)=\sum_{n \in \mathbb{Z}} b_{n}(\nu) e(n x)$ is seen to be a series expansion of $\widetilde{E}_{\nu}^{(0)}$ based at the cusp at ∞. If one can establish that both $\widetilde{E}_{\nu}^{(\infty)}$ and $\widetilde{E}^{(0)}$ are cuspidal at the cusp $\frac{1}{2}$, then it follows from the general theory of the metaplectic Eisenstein series that we must also have that (4.53) is cuspidal at the cusp 0 . Since for almost all $\nu \in \mathbb{C}, 0$ is the only automorphic distribution which is cuspidal at all these cusps, it follows by meromorphic continuation that (4.53) holds for all ν at which $\widetilde{E}_{\nu}^{(\infty)}$ and $\widetilde{E}_{\nu}^{(0)}$ are defined.

In order to determine if $\widetilde{E}_{\nu}^{(\infty)}$ is cuspidal at $\frac{1}{2}$, we let

$$
\Theta=\left(\left(\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right), 1\right)
$$

and let $\left.\widetilde{E}^{(\infty)}\right|_{\Theta}(\widetilde{g})=\widetilde{E}^{(\infty)}(\Theta \widetilde{g})$. One can check that the minimal $n \in \mathbb{Z}_{>0}$ for which $\left(\left.\widetilde{E}_{\nu}^{(\infty)}\right|_{\Theta}\right)_{0}(x+$ $n)=\left(\left.\widetilde{E}_{\nu}^{(\infty)}\right|_{\Theta}\right)_{0}(x)$ is $n=4$. Indeed, this is the case since

$$
\begin{aligned}
& \Theta \widetilde{n}_{1}=\left(\left(\begin{array}{ll}
-1 & 1 \\
-4 & 3
\end{array}\right), 1\right) \Theta, \quad \Theta \widetilde{n}_{2}=\left(\left(\begin{array}{ll}
-3 & 2 \\
-8 & 5
\end{array}\right), 1\right) \Theta, \\
& \Theta \widetilde{n}_{3}=\left(\left(\begin{array}{ll}
-5 & 3 \\
-12 & 7
\end{array}\right), 1\right) \Theta, \quad \text { and } \Theta \widetilde{n}_{4}=\left(\left(\begin{array}{ll}
-7 & 4 \\
-16 & 9
\end{array}\right), 1\right) \Theta,
\end{aligned}
$$

and since

$$
\left(\left(\begin{array}{ll}
-1 & 1 \\
-4 & 3
\end{array}\right), 1\right), \quad\left(\left(\begin{array}{ll}
-3 & 2 \\
-8 & 5
\end{array}\right), 1\right), \quad \text { and } \quad\left(\left(\begin{array}{ll}
-5 & 3 \\
-12 & 7
\end{array}\right), 1\right)
$$

are seen to not be elements of $\widetilde{\Gamma}_{1}(4)$ (either for failing the congruence conditions, or for having a second coordinate incompatible with the corresponding Kronecker symbol associated to the matrix coordinate), while

$$
\left(\left(\begin{array}{cc}
-7 & 4 \\
-16 & 9
\end{array}\right), 1\right)=\left(\left(\begin{array}{cc}
-7 & 4 \\
-16 & 9
\end{array}\right),\left(\frac{-16}{9}\right)\right)
$$

is an element of $\widetilde{\Gamma}_{1}(4)$. Thus when we calculate Fourier coefficients of $\left(\widetilde{E}_{\nu}^{(\infty)} \mid \Theta\right)_{0}$, we do so by integrating over the interval $[0,4)$.

Since

$$
\Theta \cdot\left(\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right), 1\right)=\left(\left(\begin{array}{ll}
-3 & 2 \\
-8 & 5
\end{array}\right), 1\right) \cdot \Theta
$$

and since

$$
\left(\left(\begin{array}{ll}
-3 & 2 \\
-8 & 5
\end{array}\right), 1\right) \cdot\left(\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),-1\right)=\left(\left(\begin{array}{ll}
-3 & 2 \\
-8 & 5
\end{array}\right),-1\right)=\left(\left(\begin{array}{ll}
-3 & 2 \\
-8 & 5
\end{array}\right),\left(\frac{-8}{5}\right)\right) \in \widetilde{\Gamma}_{1}(4)
$$

it follows from our transformation law for $\widetilde{E}_{\nu}^{(\infty)}$ that

$$
\begin{aligned}
& \left(\widetilde{E}^{(\infty)} \mid \Theta\right)_{0}(x+2)=\widetilde{E}^{(\infty)}\left(\Theta \widetilde{n}_{2} \widetilde{n}_{x} B\left(\widetilde{\mathrm{SL}}_{2}\right)\right) \\
& =\widetilde{E}^{(\infty)}\left(\left(\left(\begin{array}{ll}
-3 & 2 \\
-8 & 5
\end{array}\right), 1\right) \Theta \widetilde{n}_{x} B\left(\widetilde{\mathrm{SL}}_{2}\right)\right)=-\widetilde{E}^{(\infty)}\left(\left(\left(\begin{array}{ll}
-3 & 2 \\
-8 & 5
\end{array}\right),-1\right) \Theta \widetilde{n}_{x} B\left(\widetilde{\mathrm{SL}}_{2}\right)\right) \\
& =-\widetilde{E}^{(\infty)}\left(\Theta \widetilde{n}_{x} B\left(\widetilde{\mathrm{SL}}_{2}\right)\right)=-\left(\widetilde{E}^{(\infty)} \mid \Theta\right)_{0}(x) .
\end{aligned}
$$

Therefore,

$$
\int_{0}^{4}\left(\left.\widetilde{E}_{\nu}^{(\infty)}\right|_{\Theta}\right)_{0}(x) d x=\int_{0}^{2}\left(\left.\widetilde{E}_{\nu}^{(\infty)}\right|_{\Theta}\right)_{0}(x) d x+\int_{0}^{2}\left(\left.\widetilde{E}_{\nu}^{(\infty)}\right|_{\Theta}\right)_{0}(x+2) d x=0 .
$$

By an identical argument, it also follows that

$$
\int_{0}^{4}\left(\left.\widetilde{E}_{\nu}^{(\infty)}\right|_{\Theta}\right)_{0}(x) d x=0
$$

To show that $\widetilde{E}_{\nu}^{(\infty)}$ is cuspidal at $\frac{1}{2}$, it remains to show that the Fourier coefficient at ∞ (i.e. the coefficient of δ_{0} of $\left(\left.\widetilde{E}^{(\infty)}\right|_{\Theta}\right)_{\infty}$) is equal to zero. To see that this is the case, observe that for $\widetilde{\gamma}^{-1}=\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right),\left(\frac{c}{d}\right)\right)$ we have that

$$
\Theta^{-1} \widetilde{\gamma} \widetilde{s}=\left(\left(\begin{array}{cc}
-b & -d \\
a+2 b & c+2 d
\end{array}\right), *\right)=\left(\left(\begin{array}{cc}
c+2 d & d \\
-a-2 b & -b
\end{array}\right), *\right)^{-1}
$$

Therefore by Lemma 4.1(c), we have that

$$
\left(\left.\left(\pi(\widetilde{\gamma}) \delta_{\infty}\right)\right|_{\Theta}\right)_{\infty}(x)=\left(\left.\left(\pi(\widetilde{\gamma} \widetilde{s}) \delta_{0}\right)\right|_{\Theta}\right)_{\infty}(x)=\left(\left(\pi\left(\Theta^{-1} \widetilde{\gamma} \widetilde{s}\right) \delta_{0}\right)\right)_{\infty}(x)=0
$$

as an equality between distributions on $\mathbb{R}_{\neq \frac{c+2 d}{d}}$. Since $c+2 d \neq 0($ since $c+2 d \equiv 2(\bmod 4))$, it follows from (4.16) that the Fourier coefficient at ∞ for $\left.\widetilde{E}^{\infty}\right|_{\Theta}$ is zero. Therefore, $\widetilde{E}_{\nu}^{(\infty)}$ is cuspidal at the cusp $\frac{1}{2}$.

Likewise, for the case of $\widetilde{E}_{\nu}^{(0)}$, we observe that

$$
\Theta^{-1} \widetilde{\gamma} \Omega \widetilde{s}=\left(\left(\begin{array}{cc}
-\frac{d}{2} & 2 b \\
\frac{c}{2}+d & -2 a-4 b
\end{array}\right), *\right)=\left(\left(\begin{array}{cc}
-2 a-4 b & -2 b \\
-\frac{c}{2}-d & -\frac{d}{2}
\end{array}\right), *\right)^{-1}
$$

and therefore by Lemma 4.1(c,d), we have that

$$
\left(\left.\left(\pi(\widetilde{\gamma} \Omega) \delta_{\infty}\right)\right|_{\Theta}\right)_{\infty}(x)=\left(\left.\left(\pi(\widetilde{\gamma} \Omega \widetilde{s}) \delta_{0}\right)\right|_{\Theta}\right)_{\infty}(x)=\left(\left(\pi\left(\Theta^{-1} \widetilde{\gamma} \Omega \widetilde{s}\right) \delta_{0}\right)\right)_{\infty}(x)=0
$$

as an equality between distributions on $\mathbb{R}_{\neq 2+\frac{a}{b}}$ when $b \neq 0$, and as an equality between distributions on \mathbb{R} when $b=0$. In this latter case we see immediately from (4.37) that the Fourier coefficient at ∞ is zero, and in the former case we have that the Fourier coefficient at ∞ is zero since $2+\frac{a}{b}=\frac{a+2 b}{b} \neq 0($ since $a+2 b \equiv 1,3(\bmod 4))$. Therefore, $\widetilde{E}_{\nu}^{(0)}$ is cuspidal at the cusp $\frac{1}{2}$.

Bibliography

[1] Johannes Buchmann and Ulrich Vollmer. Binary quadratic forms. Vol. 20. Algorithms and Computation in Mathematics. An algorithmic approach. Berlin: Springer, 2007, pp. xiv+318.
[2] Lisa Carbone. Simply laced Lie algebras and Chevalley groups with builtin structure constants. 2013.
[3] W. Casselman. "Jacquet modules for real reductive groups". In: Proceedings of the International Congress of Mathematicians (Helsinki, 1978). Helsinki: Acad. Sci. Fennica, 1980, pp. 557-563.
[4] Harold Davenport. Multiplicative number theory. Third. Vol. 74. Graduate Texts in Mathematics. Revised and with a preface by Hugh L. Montgomery. New York: Springer-Verlag, 2000, pp. xiv+177.
[5] Gerald B. Folland. Real analysis. Second. Pure and Applied Mathematics (New York). Modern techniques and their applications, A Wiley-Interscience Publication. New York: John Wiley \& Sons Inc., 1999, pp. xvi+386.
[6] David Ginzburg. "On the standard L-function for G_{2} ". In: Duke Math. J. 69.2 (1993), pp. 315-333.
[7] Kenneth Ireland and Michael Rosen. A classical introduction to modern number theory. Second. Vol. 84. Graduate Texts in Mathematics. New York: SpringerVerlag, 1990, pp. xiv+389.
[8] Henryk Iwaniec. "Fourier coefficients of modular forms of half-integral weight". In: Invent. Math. 87.2 (1987), pp. 385-401. URL: http://dx.doi.org/10.1007/ BF01389423.
[9] Henryk Iwaniec. Topics in classical automorphic forms. Vol. 17. Graduate Studies in Mathematics. Providence, RI: American Mathematical Society, 1997, pp. xii +259 .
[10] D. A. Kazhdan and S. J. Patterson. "Metaplectic forms". In: Inst. Hautes Études Sci. Publ. Math. 59 (1984), pp. 35-142. URL: http://www.numdam.org/item? id=PMIHES_1984__59__35_0.
[11] A. A. Kirillov. Lectures on the orbit method. Vol. 64. Graduate Studies in Mathematics. Providence, RI: American Mathematical Society, 2004, pp. xx+408.
[12] Anthony W. Knapp. Lie groups beyond an introduction. Second. Vol. 140. Progress in Mathematics. Boston, MA: Birkhäuser Boston Inc., 2002, pp. xviii+812.
[13] Anthony W. Knapp. Representation theory of semisimple groups. Princeton Landmarks in Mathematics. An overview based on examples, Reprint of the 1986 original. Princeton, NJ: Princeton University Press, 2001, pp. xx+773.
[14] John M. Lee. Introduction to smooth manifolds. Vol. 218. Graduate Texts in Mathematics. New York: Springer-Verlag, 2003, pp. xviii+628.
[15] Stephen D. Miller and Wilfried Schmid. "Automorphic distributions, L-functions, and Voronoi summation for GL(3)". In: Ann. of Math. (2) 164.2 (2006), pp. 423488.
[16] Stephen D. Miller and Wilfried Schmid. "Pairings of automorphic distributions". In: Math. Ann. 353.2 (2012), pp. 581-597. URL: http://dx.doi.org/10.1007/ s00208-011-0685-9.
[17] Stephen D. Miller and Wilfried Schmid. "The Rankin-Selberg method for automorphic distributions". In: Representation theory and automorphic forms. Vol. 255. Progr. Math. Boston, MA: Birkhäuser Boston, 2008, pp. 111-150.
[18] I. Piatetski-Shapiro, S. Rallis, and G. Schiffmann. " L functions for the group G_{2} ". In: Bull. Amer. Math. Soc. (N.S.) 23.2 (1990), pp. 389-399.
[19] Michael Spivak. Calculus on manifolds. A modern approach to classical theorems of advanced calculus. W. A. Benjamin, Inc., New York-Amsterdam, 1965, pp. xii +144 .
[20] Dani Szpruch. "The Langlands-Shahidi Method for the metaplectic group and applications". PhD thesis. Tel-Aviv University, 2009.
[21] François Trèves. Topological vector spaces, distributions and kernels. Unabridged republication of the 1967 original. Mineola, NY: Dover Publications Inc., 2006, pp. xvi +565 .
[22] Nolan R. Wallach. "Asymptotic expansions of generalized matrix entries of representations of real reductive groups". In: Lie group representations, I (College Park, Md., 1982/1983). Vol. 1024. Lecture Notes in Math. Berlin: Springer, 1983, pp. 287-369. URL: http://dx.doi.org/10.1007/BFb0071436.
[23] Nolan R. Wallach. Real reductive groups. I. Vol. 132. Pure and Applied Mathematics. Boston, MA: Academic Press Inc., 1988, pp. xx+412.

Vita

Brandon Bate

Education

Ph.D. Mathematics, Rutgers University, Dissertation: Automorphic Distributions and the Functional Equation for the Standard L-Function for G_{2}, Advisor: Stephen D. Miller, 2013.
M.A. Mathematics, Boston College, 2007.
B.S. Computer Science and Mathematics, Houghton College, 2004.

Employment

Rutgers University, Department of Mathematics

Teaching Assistant, Fall 2007-Fall 2009, Summer 2010, Spring 2011, Spring 2012, Spring 2013.
Graduate Assistant, Stephen Miller, Spring 2010, Fall 2010, Summer 2011, Fall 2011, Fall 2012.

Boston College, Department of Mathematics

Teaching Assistant, Fall 2005-Spring 2007 (courses listed below).
Research Assistant, Avner Ash, Fall 2005-Spring 2007.

Publications

Frequencies of Successive Tuples of Frobenius Classes, with Avner Ash and Robert Gross, Experimental Mathematics, 18:1, 2009, pp. 55-63.

[^0]: ${ }^{1}$ Following [23], we define real reductive groups to be finite covers of linear real reductive groups.

[^1]: ${ }^{1}$ It should be noted that ℓ_{3} and ℓ_{1} are each bounded by 2 . In this rest of this proof, it will be understood that such ℓ_{j} are always bounded by a quantity independent of the indices k_{i}. Likewise, when we state that a quantity is bounded by a linear combination of terms, it will be with the understanding that the coefficients of such a linear combination are independent of the indices k_{i}.

[^2]: ${ }^{2}$ In this rest of this proof, it will be understood that such ℓ_{j} are always bounded by a quantity independent of the indices $[[\gamma]], m_{i}$, and k_{i}. Likewise, when we state that a quantity is bounded by a linear combination of terms, it will be with the understanding that the coefficients of such a linear combination are independent of the indices $[[\gamma]], m_{i}$, and k_{i}.

[^3]: ${ }^{3}$ In a Banach space, one can show that if $\sum_{i, j \in \mathbb{Z}_{>0}} a_{i, j}$ converges absolutely then the series $b_{i}=$ $\sum_{j \in \mathbb{Z}_{>0}} a_{i, j}$ converges absolutely, the series $\sum_{i \in \mathbb{Z}_{>0}} b_{i}$ converges absolutely, and that $\sum_{i, j \in \mathbb{Z}_{>0}} a_{i, j}=$ $\sum_{i \in \mathbb{Z}_{>0}} b_{i}$.

[^4]: ${ }^{1}$ We hope that the reader will not be too confused by this notation, but we felt that using a notation such as $\left(s_{f}\right)_{0}$ would become too cumbersome.

[^5]: ${ }^{2}$ This is somewhat redundant since $N\left(\widetilde{\mathrm{SL}_{2}}\right)=N\left(\widetilde{\mathrm{SL}_{2}^{ \pm}}\right)$, but is notationally consistent.
 ${ }^{3}$ The parenthesis around ϵ allow us to distiguish $\omega_{(\epsilon), \nu}$ from $\omega_{\delta, \nu}$

[^6]: ${ }^{4}$ The parameterization of $N\left(\widetilde{J^{ \pm}}\right)$which we have used is simply $\sigma_{\text {id }}$, which we defined in (2.68).

[^7]: ${ }^{5}$ Technically, we proved the $N_{\mathbb{Z}}$-invariance of $h_{\psi ; 0,0,-1,0,0}$ for $\psi \in L^{2}(\mathbb{R})$, but a similar argument also applies for $\psi \in \mathcal{S}^{\prime}(\mathbb{R})$.

[^8]: ${ }^{1}$ Specifically, one calculates that $\widetilde{s} \widetilde{\gamma}^{-1} \widetilde{s}^{-1}$ is equal to $\left.\left(\begin{array}{cc}d & -c \\ -b & a\end{array}\right),(a, d)_{H}\left(\frac{c}{d}\right)\right)$. When performing such a computation with a computer algebra system, it is necessary to use the fact that $a d-b c=1$ to deduce this equality.

[^9]: ${ }^{2}$ This equality does indeed hold when $b \neq 0$ and $c=0$ since if $c=0$ then $a=d=1$, and thus $(a, d)_{H}\left(\frac{c}{d}\right)=1$.

