AUTOMORPHIC DISTRIBUTIONS AND THE
FUNCTIONAL EQUATION FOR THE STANDARD
L-FUNCTION FOR G,

BY BRANDON BATE

A dissertation submitted to the
Graduate School—New Brunswick
Rutgers, The State University of New Jersey
in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy

Graduate Program in Mathematics

Written under the direction of
Stephen Miller

and approved by

New Brunswick, New Jersey

October, 2013



ABSTRACT OF THE DISSERTATION

Automorphic Distributions and the Functional Equation
for the Standard L-Function for G5

by Brandon Bate

Dissertation Director: Stephen Miller

In this thesis we calculate a series expansion for automorphic distributions on the Lie
group for the split real form of go. We then define distributional analogues of the
f function and the metaplectic Eisenstein series, which have many of the desirable
properties of their smooth counterparts. In conclusion, we prove a functional equation
for metaplectic Eisenstein distributions. It is believed that with these results, it should
be possible to define a distributional version of the Rankin-Selberg integral given in [6],
from which we should be able to derive the archimedean functional equation for the
standard L-function of generic, cuspidal automorphic representations of the Lie group

for the split real form of gs.
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Introduction

In this thesis we present results for automorphic distributions on the split real form of
the group Ga, as well as results for automorphic distributions on certain metaplectic
groups. In chapter 1 we define the notion of an automorphic distribution associated
to an automorphic representation, and reference a result of Casselman-Wallach which
allows us to realize such distributions as elements of a distributional principal series
representation space, or equivalently, as distributional sections of a vector bundle over
G/B, where B is a Borel subgroup. If N is the unipotent radical of the global Cartan
involution of B then N gives a dense open set in G/B. The restriction of automorphic
distributions to N is well-defined, and hence motivates the study of L?(Nz\N) where
Nz = Gz N N and Gy is a discrete subgroup of G. Indeed, a series expansion of
automorphic distributions can be deduced from a series expansion of elements belonging
to L2(Nz\N); we carry out this computation in chapter 2.

Two methods are available for computing Fourier series expansions for elements of
L?(Nz\N). One approach is to use the Kirillov orbit method [11] to compute irreducible
Ny-invariant representations and then explicitly compute a certain class of Ny-invariant
automorphic distributions on N in order to deduce the series expansion for elements of
L?(Nz\N) (see [15] for an explanation of how the latter step can be performed). The
other method is more ad-hoc in nature, but uses only basic Fourier analysis results.
We computed the series expansions using both methods and found (as one would hope)
that both series expansions agree. In this thesis, we shall forgo presenting the Kirillov
orbit method approach, and instead give a detailed account of the latter method in
chapter 2.

In chapter 3, we calculate the “unbounded model” for distributional principal series

representation spaces on Sig and SL%E. Such results will be needed for our work in



chapter 4 with metaplectic Eisenstein distributions. In addition to this, we calculate
the “unbounded model” for distributional principal series representation spaces on J
and JNi, which are groups that are closely related to a particular subgroup of Go. We
then conclude chapter 3 with defining a # distribution on J, , and prove that that this
distribution has many of the nice properties shared by its smooth counterparts.

In chapter 4 we define the metaplectic Eisenstein distribution, and prove the analytic
continuation and functional equation of these distributions. In the context of principal
series representations, the functional equation of metaplectic Eisenstein distributions is
expressed in terms of other intertwined metaplectic Eisenstein distributions. Although
the existence of such a functional equation is well-known, to the best of our knowledge,
this is the first time its exact formulation has been recorded in the literature.

It is hoped that by using these various results, it will be possible to obtain the
functional equation for the standard L-function for generic, cuspidal automorphic rep-
resentations of Go. Indeed, by utilizing the trilinear pairing of automorphic distributions
defined in [16], it appears likely that a distributional analogue of the Rankin-Selberg

integral in [6] should yield the functional equation for such L-functions.



Chapter 1

A Review of Representation Theory

1.1 Smooth Vectors and Distributions

Let G be a reductive Lie group and g its corresponding Lie algebra.! Let V be a
separable Hilbert space, End(V') the space of continuous (i.e., bounded) linear maps of
V into V, and GL(V') the invertible elements of End(V). Let 7 : G — GL(V) be a
group homomorphism such that (g,v) — 7(g)v is a continuous map from G x V to V.
In this case, the pair (m, V) is called a representation of G. If the image of 7 consists
of unitary operators, then we say that (m, V') is a unitary representation.

In what follows, we shall assume that (7, V) is a (possibly non-unitary) representa-
tion of G. We shall wish to study a special subspace of V', and will need the following
definitions in order to define this space. Let S be an open subset of R and f: 5 — V.

We say that f is differentiable at xg € S if there exists a linear map L : R” — V such

that
— — L(x —
o 150 = Jla0) = Do =20l _
T—T0 |1‘ — ,Z'0|
where || - is the norm on V and || is the norm on R"™. One can show that if such an L

exists then L is unique [19, Theorem 2-1|. Furthermore, L is a continuous linear map
since R™ is finite dimensional (i.e., L € End(R",V')). We shall denote L by f’(z0).

If f is differentiable for all x € S, then we define f' : S — End(R"™, V) in the
aforementioned way. We call f’ the derivative of f. If f’ is continuous then we say that
f is of class C''. Under the operator norm, End(R"™, V) is a Banach space [5, Proposition
5.4], and thus it makes sense to ask if f’ is differentiable at points in S. Continuing in

this manner, it is possible to define f*) for all k € Z~. We say that f is of class C*

'Following [23], we define real reductive groups to be finite covers of linear real reductive groups.



if f() is continuous. If f is of class C* for all positive integers k, then we say that f is
smooth, or equivalently, that f is of C*° class. We extend these definitions to functions
defined over smooth manifolds in the usual way by use of coordinate charts. A smooth
vector is a vector v € V' such that g — 7m(g)v is smooth. Let V> denote the space of
smooth vectors of V.

For v € V and X € g, define

7(X)o = lim m(exp(tX))v — v
t—0 t

(1.1)
For general v, this limit may not exist for every X € g, but if v € V°, then one
can prove that m(X)v exists for every X € g and that 7(X)v € V. Furthermore,
one can show that 7 is a Lie algebra homomorphism, and hence extends to an algebra
homomorphism of the universal enveloping algebra U(g®) [13, Proposition 3.9]. For
finite dimensional V', one can show that VV°° = V| but this is not the case for V infinite
dimensional. Nevertheless, one can show that V' is dense in V' [13, Theorem 3.15].

The space V' can inherit a topology from the norm of V', but for many applications

it is more useful to give a possibly finer topology defined by the following seminorms:
pp(v) = [Im(D)v],

where D € U(g). One can restrict to a countable number of such D by forming a vector
space basis for U(g®). Notice that the seminorm for D = I implies that this topology
is indeed no coarser than that of V. One can show that V°° is a complete space under
these seminorms, and hence V*° is a Fréchet space [23, Lemma 1.6.4].

Let V' denote the dual vector space of V', and let (7, V') denote the dual represen-

tation for (m,V'). Recall that by definition,

for f € V'. Let V~°° denote the space of continuous linear functionals on (V’)*>°. We
say that V= is the space of distributions for V. By fixing an inner-product on V' one
can identify elements of V with elements of (V’)’. Thus, as linear functionals on (V')>°,
we have

VecvVcv™.



In this way we are able to think of distributions as generalized functions in the sense
of Gelfand et al.
We say that ¢ : G — End(W), where W is a Fréchet space, is a smooth representa-

tion if
(1) ¢ is a group homomorphism,
(2) (g,w) — ¢(g)w is a continuous map from G x W to W, and
(3) g — ¢(g)w is smooth for all g € G.

Obviously (1) and (3) hold for 7 restricted to V*°. One can show that (2) holds as well
[23, Lemma 1.6.4]. Thus 7 restricted to V*° is a smooth representation. Likewise, the
restriction of 7’ to (V')* is a smooth representation. The dual action of (7', (V')>)
defines an action of G on V~°°, which we denote by .

When working with the space of distributions V~°°, one typically gives V~°° the
weak™ topology. However, we shall have need of a finer topology known as the strong
distribution topology [21, §19]. Suppose we are given a Fréchet space W defined by
semi-norms || - ||; for j € J, where J is a countable set. We say that B C W is bounded
if there exists (M;)jes € RZ, such that |jv[|; < M; forallv € B and j € J. We say that
a sequence of distributions 7, on W converges to a distribution 7 on W in the strong
distribution topology if for any € > 0 and bounded set B C W, there exists N > 0 such

that

7T (¢) = T(P)] <€

for all n > N and ¥ € B. One can check that the action 7 on V~°° is continuous with

respect to the strong distribution topology.

1.2 Sections of Vector Bundles

Let B be a subgroup of G, and let (w, V') be a finite-dimensional representation of B.

We define an equivalence relation ~ on G x V:

(g1,v1) ~ (g2,v2) if there exists b € B such that (gib,w(d"Hvy) = (g2,v2),  (1.2)



where ¢1,92 € G and v1,v2 € V. Let By = (G x V)/ ~. Observe that the map
(g,v) — g on G x V induces a well-defined map from Ey to G/B. Let p: Ey — G/B
denote this map, and let &, = £(G, B,w) denote the fiber bundle with total space Ey,
base space G/B, and projection map p : By — G/B. For ¢B € G/B, one can show
that p~!(¢gB) is naturally isomorphic to V, and hence &, is in fact a vector bundle.
Furthermore, left inverse multiplication by G on G x V and G induces a well-defined
action of G on Ey and G/B. With respect to this action, one can show that p is an
equivariant map. Such vector bundles are commonly referred to as equivariant vector
bundles.

Let I'*°(&,) denote the space of smooth sections of &,. We let 7, denote the action
of inverse left translation on elements of I'°°(&,,). This action is well-defined since &,
is an equivariant vector bundle under this action. Since distributions can be defined in
terms of local data, it follows that there also exists a space of vector-valued distribution
sections of &,, which we shall denote by I'"*°(&,,). As before, we let 7, denote the
action of inverse left translation on elements of I'"*°(&,).

Often times it will be helpful to view elements of I'*°(&,,) as functions on G into C™
where m is the dimension of V' over C. To see how this is done, fix s € I'*°(&,). For

g € G there exists a unique vy € V such that
s(9B) = {(gb,w(b™")vg) : b € B} € By
From s we then define f : G — V by f(g) = vg. Since vy, = w(b™1)v, it follows that
F(gb) = w(®™1)f(9)- (1.3)
Conversely, for smooth f : G — V which satisfies (1.3), one can show that
s(gB) = {(gb,w(b" ") f(9)) : b € B}

defines an element I'*°(&,,). Consequently,

I°(&,) 2 V>(G) = {f € C°(G,C™) : f(gb) =w(b 1 f(g) for all g € G,b € B}

where C*°(G,C™) is the space of smooth functions from G to C™. Likewise, since



I'*>°(&,) is a dense space in I'"°(E,,), we see that

D™°(E,) = V; (@) = {f € C°(G,C™) : f(gb) = w(b~")(g) for all g € G,b € BY,

(1.4)

where C~°(G,C™) is the space of distribution vectors from G to C™, and where the

equality in (1.4) is interpreted an equality between distributions on G. When given

f e V;>(G), we will let s denote the corresponding element of I'">°(&,,) given by the
isomorphism in (1.4).

Let h € G, and let N denote the unipotent radical of the Cartan involution of B,

where B is a minimal parabolic subgroup of G. Observe that the map
hnB — (hnB, vpy,)

is a local trivialization of the vector bundle &, on hNB C G/B. We can restrict s €
I'*°(&,,) to hN B, or more precisely, restrict s via the aforementioned local trivialization

of the vector bundle. When we do, we obtain the function
hnB — vy,

on hN B. We can likewise restrict distributional sections s € V7> and shall do so often
throughout this thesis.

In our applications, we will usually take B to be a minimal parabolic subgroup of
G satisfying G = BK, where K is a maximal compact subgroup of G. Supposing that

this is the case, for f € VJ° define

i71=( [ !f(k)|2>1/2dk

where dk is a Haar measure for K and | - | is the usual norm on C™. Under this norm,
one show that V° is a pre-Hilbert space. Upon completion, we obtain a Hilbert space
we denote by V,,(G), with 7, denoting the left regular representation as usual. One
can show that V° is the space of smooth vectors for (7, V.,).

Consider the pairing

(f17f2)Z/K<f1(k)7f2(k‘)>dk,



where f1 € V,,, fo € V,y, o' is the dual representation of w, and (-,-) is the usual
bilinear form on C" x C™. One can show from the non-degeneracy of this pairing that
the dual of V, can be identified with V. Furthermore, one can show that if V= V,,

then V7 =2 V7>,

1.3 Automorphic Distributions

Let T be a discrete subgroup of G. The group G acts on L?(I'\G/Zg) by the right reg-
ular representation, which we shall denote by 7. One can prove that (r, L2(T\G/Zg))
is in fact a unitary representation of G and that the space of smooth vectors for
(r, L*(T\G/Zg)) is contained in C*®°(I'\G/Zg). Let (m,V) be an irreducible unitary

representation of G which embeds as a direct summand of L?(T'\G/Zg) and let
i:V e L*(\G/Zg)

denote this embedding. If v € V°° then the function

is well-defined; in fact, it can be shown that 7 € (V’)~°°. Furthermore, since i(v) €
C>=(I'\G/Zg), we have that 7 is I'-invariant. We signify this by writing 7 € ((V/)=>).
Elements of ((V')~>°)!" which arise from such embeddings are called automorphic dis-
tributions. Since V*° is dense in V' it follows that one can reconstruct ¢ from 7.

A result of Casselman and Wallach ([3] and [22, Theorem 5.8]) states that there

exists a (possibly non-unitary) representation w of B such that:
Ve VX, V=V, and V7 < V>

Therefore we can identify 7 as an element of V[ °° for some (possibly non-unitary)

representation w of B.



Chapter 2

Automorphic Distributions on G,

2.1 (G5 Preliminaries

Let g denote the split real form of the Lie algebra go. We shall let G = G2 denote the
corresponding split real Lie group for g. We identify g concretely as a Lie subalgebra of
50(4,3). This in turn allows us to identify G as a Lie subgroup of SO(4, 3), the split real
form of the Lie group SO(7). Ross Lawther has shown that the following root vectors

of g correspond to the positive roots (under the Bourbaki labeling) 3, o, a+ 3, 2a+ 3,

3a+ B, 3 + 2 (respectively):

P1

Ps =

00 0 00 O
00-100 0
00 0 00 O
00 0 00 O
00 0 00 -1
00 0 00 O

o o o o o o o

00 0 00 O

001 0 0O
000-20 0

000 00

o o o o

000 0 -1

000 00 -1

000 00 O

o o o o O

000 00 O

0100 0 00
0000 0 00
0002 0 00
0000-100
0000 0 00
0000 0 01
0000 0 0O

000200 O
000010 O
000001 O
000000 -1
000000 O
000000 O
000000 O




Py =

000010 O
000000 O
000000 -1
000000
000000
000000

o o o o

000000

Po =

0000010
0000001
0000000
0000000
0000000
0000000

0000000

10

and that the following root vectors of g correspond to the negative roots —f8, —a,

—a—f, —2a — B, —3a — 3, —3a — 23 (respectively):

N =

N3 =

0 000O0O0O
0000O0O0O
0-100 0 00
00 00O0O0O0]
0000O0O0O
0000-100
00 00O0O0O
0000 OO0O
0000 O0O0O
1000 00O
0-100 0 00 |
0000 O0O0O
000-22000
000O0-100

Ny =

Ny =

000 0 00O
100 0 000
000 0 00O
001 0 00O
000-2000
000 0 00O
000 0 010
000 0 00O
000 0000
000 0 00O
100 0 000
010 0000
001 0 00O
000-2000
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0000000 0000000
0000000 0000000
0000000 0000000
Ns=10000000 |, Ne=10000000
1000000 0000000
0000000 1000000
00-10000 0100000

By basic Lie theory we know that g is generated by {P;} and {N;} as a Lie algebra
and that G is generated by exp(z;P;) and exp(y;N;) where z;,y; € R. Let n denote
the Lie subalgebra generated by the {P;} and let N denote its corresponding subgroup.
Once again, by Lie theory we see that N is generated by exp(z;P;) where x; € R. The
elements P;, N, and [P;, N;] for i = 1,2 can be shown to form a Chevalley basis for g,
over Z. Let gz denote the Z-span of this basis and let Gz denote the subgroup of G
which fixes the lattice gz under the adjoint action. One can show that Gz is generated
by exp(z;P;) and exp(y;N;) where x;,y; € Z [2]. Let Nz = Gz N N. Notice that Ny is
generated by exp(z;P;) where x; € Z.

The groups N and Nz will be primary objects of study throughout this thesis. Below

we define the one parameter subgroups for N corresponding to the positive roots:

Ri(z) = exp(xPy), Ry (x) = exp(xP3), R3(x) = exp(zP3),

Ry(x) = exp(zPy), Rs(x) = exp(zPs), Rg(x) = exp(zPs), (2.1)

where x € R. To streamline notation, we write P; = R;(p;), Qi = Ri(q:), T; = Ri(t;),
X; = Ri(z;), Yi = Ri(y;) where p;, q;, ti, zi,y; € R. Let N; = R;(1), which we have
essentially already shown to be generators of Nyz.

Let Gg denote an embedded SL3 of the Levi subgroup for the root 3; specifically,
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we shall let Gz denote the group consisting of elements of the form

10 000 00
0a —b0 0 00
0—cdO0O0 00

h=100 010 00| (2:2)
00 00a —bo
00 00—-cdO
00 000 01

where a,b,c,d € R and ad — bc = 1. Let I'g denote the SLy(Z) subgroup of Gg; that is
to say, let I'g consists of elements h where a,b,c,d € Z and ad — bc = 1. Observe that

for h € Gg we have

hXeh™! = Rg(axe)Rs(cxg), hXsh™' = Rg(brs)Rs(dzs), hXsh™' = Xy,
hX3h™! = Rg(—2a*ca3) Rs(—ac’z3) Ry(—aca?) R3(ax3) Ro(cxs),

hXyh™! = Rg(—2b%dx3) Rs(—bd?x3) Ry(—bdx3) Ry (bxs) Ra(dxs), (2.3)
and

X = hRg(dzg)Rs(—cxg)h™ ', X5 = hRg(—bxs)Rs(axs)h™', Xy =hX4h™",
X3 = hRg(2cd?x3) Rs(—c?dx3) Ry(cda?) Ry(das) Ry (—ca3)h ™,

Xy = hRe(—2ab*x3) Rs(a*bx3) Ry(aba3) R3(—bxa) Ra(axa)h ™ . (2.4)

For fixed h € G, it follows from (2.3) and (2.4) that N is generated by X1, hXoh™!,
hX3h™', hX;h™t, hX5h™!, and hXgh™! where z; € R. Likewise, for fixed v € g, it
follows from (2.3) and (2.4) that N7z is generated by X1, vXoy~ !, v X3y~ 1, v Xyy7 1,

1

vX5y7 !, and X6y~ ! where z; € Z; or more simply, we see that Nz is generated by

N1, yNoy ™, yNay ™! yNyy ™ = Ny, yNsy = vNey ™

2.2 Basic Lemmas from Fourier Analysis

A principal aim of this chapter is to give a full description of functions f : N — C

which are Nyz-invariant; that is to say, we wish to express such functions in terms of
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a general series expansion. We will accomplish this by using the lemmas given in this
section.
Let h : R x N — C be a continuous function. If K is a compact subset of N and

K’ is a compact subset of R then we define

1hllgr<x = sup  |h(z,n)|.
(z,n)eK'xXK

Likewise, if f : N — C is a continuous function then we define

I/l = sup [f(n)].
nekK

If we have that h(x+1,n) = h(z,n) for allz € R and n € N, then we define h,, : N — C
by
1
(1) = / h(t, n)e(—mt) dt,
0

where m € Z, n € N, and e(z) = €27,

Lemma 2.1. Let h: R x N — C be a smooth function such that h(z + 1,n) = h(x,n)

forallz € R andn € N. For m € Z4q and j € Z~o,
lhmllx < @7lm[) ™ 18510,

Furthermore,

Z hmlle < [IAlljo,1xx + Z [Pl < NAlljo, < + 1021110175 1

meEZ mEZxq
and for j > 2,

D ml 2l < 102 0,1)x
meZ

Proof. For j € Zsg it follows that (82h)(z +1,n) = (82h)(z,n). Thus for m # 0, when

we apply integration by parts we find that

1 e(—mi) 1! Lo e(—m
/(%mamk«wmdv:@%mumo( tq - [ @i S i
0 0

—2mim
1
2mim

1
/ (A R) (¢, m)e(—mt) dt.
0
By induction,

1
mams@ﬂmwfé<%mmmaﬂmmﬂ < @rlml)110h 011

K
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2

T
Since Z m~2 = 3 it follows that
mEZ#)

D Ml = llhollx + Y Nl < IPllp s + 192hllj0,1)x
MEZ meZo

and for j > 2,

> mP Al < 102l
meZ

O]

Lemma 2.2. Let h: R x N — C be a smooth function such that h(x +1,n) = h(x,n)

forallz € R and n € N. For any compact subset K C N, the sum Z hm(n)e(mx)
Im|<M
converges uniformly to h(x,n) on R x K as M — oo. In particular, Z B (n)
Im|<M
converges uniformly to h(0,n) on K as M — oc.

Proof. Observe that both h and 92h are uniformly continuous on R x K. Thus for

€ > 0, there exists § > 0 and U an open subset of the identity element e € N such that
|h(z,n) — h(zg,n0)| < e and  [02h(z,n) — O*h(xo,n0)| < € (2.5)

for (z,n), (xo,m0) € RX K, |z—x0| < J, and nno_l € U. Since K is compact, there exists
a finite number of translates of U which cover K. Let {v1,...,7} denote elements of
N such that {U~1,...,U~} covers K. It follows that for any point n € K, there will
exist a y; € {71,...,7} such that ny; ' € U.

For each ~; there exists M; € Z~¢ such that

sup|h(z, i) — Y hm(yi)e(ma)| < e
rzeR |m|<M

for all M > M;; this is simply the convergence of Fourier series on compacta for smooth

functions in one variable. Let My denote the maximum of these M;. Fix (z,n) € Rx K



and let v; € {71,...,7} such that n’yi_l € U. Thus for M > My, we have

Z hm(n)e(max

m| <M

< [h(,n) = bz, )| + (@) = 3 ha()e(ma)
Im|<M

+ Z (hm (i) — han(n))e(mz)

m<M
< 2+ Z (hm (Vi) — hm(n))e(mz)|.
Im|<M
Let py(x) = h(x,v;) — h(z,n). By Lemma 2.1 and (2.5) we have
> Bam)] < lIpallio ) + I llo1y < €+ lIPh 10,1
Im|<M
Since p!’ (z) = 02h(x, ;) — 02h(x,n), it follows once more from (2.5) that
S fu(m)] < 2.
|m|>M

Since pp(m) = hym(7i) — hm(n) it follows from (2.6) that

Zh (nz)| < 5e

|m|<M

15

(2.6)

for M > My. Since this inequality holds for any (z,n) € R x K, our lemma then

follows.

O]

Let f : N — C be a locally integrable function. For k;,m; € Z, and v € I'g we

define the following functions:

Jre(n /fTesn e(—kste) dts,
fre ks (1 //fT6T5n)( kets — ksts) dte dts,

Fyms () = / / F(VT6Tsy n)e( —msts) di dis,

Jre ks lea (10 / / / F(T6TsTun)e(—kets — ksts — kata) dte dts dia,

(2.7a)
(2.7b)
(2.7¢c)

(2.7d)
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1 1 1
f%m57m4 (n) = / / / f('yT6T5T47_1n)e(—m5t5 — m4t4) dt6 dt5 dt4, (2.76)
Tre ks hoa ez (T / / / / F(T6TsTyT3n)e(—kete — ksts — katy — kst3)

dte dts dty dts, (2.7)

1 1 1 1
frymsmams(n) = / / / / FOTTsTyTsy ' n)e(—msts — mats — mats)
o Jo Jo Jo

dt dts dty dts, (2.70)
Jhg ks ka ks ey (T2 /////fT6T5T4T3T1n)( kete — ksts — katy)
gty — katy) di dis dty dts diy, (2.7h)
10,0,0,0,k1,k (T2 / / / / / / J(TTs Ty T3 T Ton)e(—kit1 — kota)
dte dts dty dts dt, dbs, (2.73)

where n € N. We caution the reader about one aspect of our notation in (2.7). Notice
that our notation for (2.7b) and (2.7c) are very similar in form; the only distinction
between the two being that first index in (2.7b) is an integer and the first index in (2.7c)
is an element of I'g. We hope that the reader will not be too confused by this similar
notation; context will make clear which function we are referring to in our arguments.
This same warning also applies to (2.7d), (2.7e), (2.7f), and (2.7g).

In section 2.3 and section 2.4, we will apply Lemmas 2.1 and 2.2 to obtain a series
expansion for smooth, Nz-invariant f : N — C in terms of the functions in (2.7) (see
Theorem 2.10 for the end result). In order to apply Lemmas 2.1 and 2.2, we will need

the following lemma.

Lemma 2.3. If f : N — C is an Nz-invariant, locally integrable function, then for all

ki,m; € Z and v € I'g, we have
(a) x¢ — f(vXey 'n) is periodic with period 1,

1
(b) x5 +— / f(YTs X5y n)e(—kete) dte is periodic with period 1,
0

1,1
(c) x4+ / / f(’yT6T5X4'y_1n)e(—m5t5) dtg dts 1s periodic with period 1,
0o Jo
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1 1 1
(d) x3 — / / / F(VTsTs Ty X3y tn)e(—msts — mayty) dtg dts dty is periodic with
0o Jo Jo

period 1,

1 1 1 1
(6) Ty — / / / / f<T6T5T4T3X1n)€(—k5t5 — k4t4 — kgtg) dtﬁ dt5 dt4 dt3 18 pem’—
o JOo JO JO

odic with period 1,

1 1 1 1 1
(f) To > / / / / / f(T6T5T4T3T1X2n)6(—k1t1) dt6 dt5 dt4 dtg dtl 18 periodic
0o Jo Jo Jo Jo

with period 1.

Proof. Part (a) follows immediately from the Nz-invariance of f. Parts (b) and (c)

follows from the Nz-invariance of f and the equalities
YIsNsy ™' = (YN5v 1) (7Ter ™) and vTsTs Nay ™' = (yNay ™) (vT6T5v ),

which are seen to be true by either direct computation or by observing that X4, X5,
and Xg commute with each other for all z; € R.

For part (d), observe that
YTeTsTuN3y " = (vN3y 1) (yRe(—3ts + t6)TsTyy ).
Thus
1 1 g1
/ / / FOYT6TsTaN3 X5y~ ' n)e(—msts — mata) dtg dts dts
o Jo Jo
1 1 1
= / / (/ f(’yRﬁ(—3t4 + tﬁ)T5T4X3’y_ln)dt6>e(—m5t5 — m4t4) dts dty.
o Jo \Jo

Part (d) then follows by performing the change of variables tg — tg + 3t4 and applying
part (a) to return the domain of integration in the ¢ variable to the interval [0, 1].

For part (e), observe that TgT5TyT5N1 = N1Rg(—ts + t6)T514T3. Thus

1 1 1 1
/ / / / f(T6T5T4T3N1n)€(*k5t5 — ki4t4 — kigtg) dtﬁ dtg, dt4 dtg
0 0 0 0

1 1 1y gl
N / / / </ FvRe(—ts + tﬁ)T5T4X3'7_1”)dt6> e(—ksts — kqty — ksts3)
o Jo Jo \Jo

dts dty dts.

Part (e) then follows by performing the change of variables tg — t¢ + t5 and applying

part (a) to return the domain of integration in the tg variable to the interval [0, 1].
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For part (f), observe that

TeT5T4T31T1 Noy

= NoRe(t? + 3t1ts + 3t3 + te) Rs(—t1 — 3tz — 3ty + t5)Ra(ty + 2t3 + t4) Ra(t1 + t3)Th.
By utilizing the Nz-invariance of f, performing the change of variables (in order)

te = tg — (t1 + 3t1ts + 3t3)
ts — t5 — (—tl — 3tz — 3t4)
ty — ty — (tl + 2t3)

t3 > t3 —t1,
and apply parts (a)-(d), we are able to see that part (f) holds. O

For some results in section 2.4 we will need to be able to write f, ;,; in terms of

S ks Since VTsTsy~! = Rg(bts + atg) Rs(dts + cg) then
1 p1
f'y,m5 (TL) = / / f(Rﬁ(bt5 + at6)R5(dt5 + ctﬁ)n)e(—mg)tg,) dt6 dt5.
0o JO
We perform the following simultaneous change of variables:

ts — atls — ctg (2 8)

tg — —bt5 + dtﬁ,

which we can denote by the following map from R? to R?:
Yo : (t5, t6) — (at5 — ctg, —bts + dtﬁ).
If G = [0,1)? then when we apply (2.8) we find that
f%mf) (n) = / ) f(T6T5n)e(—am5t5 + cm5t6) dtg dts.
Yo (9)
If we fix n € N, then our integrand
(t5, t6) — f(T6T5n)e(—am5t5 + cm5t6),

is a function on N’ = (Ts,T5) and is NJ, = (Ng, ms) invariant.
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Observe that the map (t5,tg) — TgT5 is a group isomorphism from R? onto N’.
When restricted to Z? we obtain a group isomorphism onto N7. In light of this, we shall
often identify NJ\N’ implicitly with Z?\R?. From this, we see that G is a fundamental
domain for N,\N'. If we prove that 7, '(G) is also a fundamental domain for N\ N’

then it would follow that

1 1
f%m5 (n) = / / f(T6T5n)e(—am5t5 + CTTL5t6) dtG dt5 = ffcmg,,amg, (n) (29)
0 Jo
The following lemma shows that this is indeed the case.

Lemma 2.4. v,(G) is a fundamental domain for NJ\N', from which it follows that

Y5 H(G) is also a fundamental domain for N, \N'.

Proof. Observe that the union of all yo([ms, ms + 1) X [mg, mg + 1)) where ms, mg € Z,
partition R?. Hence for (t5,t5) € R?, we have that (t5,t5) € vo([ms,ms5+1) X [mg, me+

1)) for some my, mg € Z. Thus for some (e5,eg) € [0,1)%, we have
(ts,t6) = vo(ms + es5,me + eg) = (ams — cmg + aes — ceg, —bmy + dmg — bes + deg).
Hence
(ts — ams + cmg, tg + bms — dmg) = (aes — ceg, —bes + deg) € Y0(G).

Therefore the coset of Z2\R? containing (t5,s) has a representative in vo(G).

Now suppose that there exists distinct (x5, z6), (y5, ys) € Y0(G) such that
(z5,76) = (Y5 + m5,Y6 + me) Where msz, me € Z

(i.e. they represent the same coset of Z2\IR?). Since (x5, %6), (y5,%s) € Y0(G), it follows
that there exists (us, ug), (vs,v6) € G such that

Yo(us, ug) = (aus — cug, —bus + dug) = (x5, z¢)

Y0(vs, v6) = (avs — cve, —bus + dvg) = (Y5, Ys)-

Thus

Yo(us, ug) = (ys, ys) + (ms, me) = yo(vs, v6) + (M5, me)
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which implies

Yo(us — vs, ug — v6) = (ms,me).-
Hence us — vs,ug — vg € Z. Since (us,ug), (vs,v6) € G it follows that us = vs and
ug = vg. Therefore each element of vo(G) represents a distinct cosets of Z?\R2. Thus

v (G) is a fundamental domain as claimed. O
Let (I'3) denote the space of unipotent upper-triangular matrices of I'g and let [7]
denote the coset of I'g/(I'g)sc Which contains v € I'g. Observe

ab 1gq a b+ aq
. _ . (2.10)
cd 01 c d+cq

It follows from this computation and the theory of linear Diophantine equations that
each [y] can be uniquely identified by (a,c) € Z? such that ged(a,c) =1.  (2.11)
Therefore by (2.9), fyms = fv/ms if [7] = [¥/]. As one might expect, we also have that

fv,m5,m4,m3 = f’y’,m5,m4,m3 if [7] = [’7/]' (2'12)

To see that this is indeed the case we apply the simultaneous change of variables (2.8)

to fy,ms,ma,ms and apply Lemma 2.4 to conclude that
1,1 p1 gl
Frmsomens(®) = [ [ [ [ (Rotts ~ 20 cad) Rs(ts — ac?af) (e ~ act)
o Jo Jo Jo
Rg(atg)RQ(Ctg))e(Cmg)tG - am5t5 - m4t4 - m3t3) dtG dt5 dt4 dtg.

Therefore, by this equality and (2.11) we have that (2.12) holds.

2.3 Preliminary Applications of Lemmas

In this section we will show that smooth, Nz-invariant f : N — C can be closely
approximated by finite sums with terms of the form (2.7). We repeatedly apply Lemmas
2.3 and 2.2 to accomplish this. To begin, let ¢ > 0 and K a compact subset of N. By
Lemma 2.3(a), Lemma 2.2, and Proposition 2.6 (a result we will prove in the next
section) we have that there exists My € Z~( such that

Yo 1| <e (2.13)

|ke|<Ms K
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and

ST ekl <e (2.14)

ke €EZ ks EZ
|ke|>Msg or |ks|>Msg

for all Mg > My where Mg € Z~g. We shall fix such a choice of Mg in what follows.

By Lemma 2.3(b) and Lemma 2.2 there exists M5 € Z~ such that M5 > Mg and

€
— —_—. 2.1
k5| < Ms K

for |ks| < Mg. By the triangle inequality, it follows from (2.14) and (2.15) that
S s <2 210
|ke|<Ms |ks|<Ms5 K

Observe

each (kg, ks) € Zzé(o,o) can be written uniquely as (—cms, ams)

k k
where ms = ged(ke, ks), c = ~ 0 a="2 and ged(a, ) = 1. (2.17)
ms ms
If |k| < Mg, |ks| < Ms then ms = ged(ke, ks) < Ms, |a| = |25 < Ms, and || =
% < Mg. Therefore

{(Ke, ks) € Z200) : k6| < M, |ks| < M5}

C {(—cms,ams) : 0 < ms < Ms, |a| < Ms, |c| < Mg, ged(a,c) =1},

and so by (2.9) and (2.14),

Z Z f'y,ms, + f0,0 - Z fkﬁ,kg, < Z Z ||fks,k5||K < €.

0<ms<Ms [y]€D3/(Tg)oo |k |<Me k6E€Z ks €L
|a|<Ms,|c|<Ms |ks|<Ms5 K |ke|>Ms or |ks|>Mg
(2.18)
Thus by (2.16), (2.18), and the triangle inequality,
Y Bmetho- 1| <3e (2.19)

0<m5<Ms [y]€T3/(T'3)00

la|<Ms,|c|<Mg K
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By Lemma 2.3(c) and Lemma 2.2 there exists My € Z~q such that My > Ms,

€

_ d
Z Symsma = Fyms || < (2Ms + 1) M5(2M5 + 1)’ o

|mg| <My K

Z Jooks — fool| <e€

‘k‘4|§M4 K

for [v] € T'g/(I'g)oo, |a| < Ms, |c| < Mg, 0 < ms < Ms. By these inequalities, (2.19),

and the triangle inequality,

> > > Fymsmat Y Jook — | <5e. (2.20)

0<ms<Ms5 [y]€l3/(Tg)oo |ma|<My |ka| <My

la| <Ms,|c|< Mg x

By Lemma 2.3(d) and Lemma 2.2 there exists M3 € Z~¢ such that M3 > My,

€
, — Fome < , and
> Frmsmimy = Fromsns (2Mg + 1)M;(2M; + 1)(2My +1)° "
Ims|<Ms K
> fookiks — fook <o
U, R4,R3 U4 2M4 + 1’
|k3|<M3 K

for [v] € Tg/(T's)oo, la| < M5, |c| < Mg, 0 < mz < Ms, [my| < My, |ks| < My. By
these inequalities, (2.20), and the triangle inequality,

Z Z Z Z Jryms mams + Z Z fo,0ka ks — f < Te.

0<ms<M5 [y]€ls/(Tp)oo |ma|<My |m3|<Ms [ka| <My |ks|<Ms3

la|<Ms,|c|<Mg K

(2.21)
Let id denote the element h in (2.2) with a = d = 1 and b = ¢ = 0. Likewise, let —id denote
the element A in (2.2) with a =d = —1 and b = ¢ = 0. Observe
(—id)T6T5T4T3(—id) = R6(—t6)R5(—t5)T4R3(—t3)
By performing the change of variables

tg — —tg, ts — —ts, t3 — —t3,
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we find that

ffid,m5,m4,m3

(n)
1 1 1 pl
- / / / / f(Re(—t6)R5(—t5)TuR3(—t3)n)e(—msts — mats — mats)
0 0 0 0
dte dts dty dts

-1 1 p=1 ,—1
= - / / / / f(T6T5T4T3n)e(m5t5 — myty + m3t3) dtﬁ dt5 dt4 dtg
0 0 Jo 0

0 1 0 0
= / / / / f(T6T5T4T3n)e(m5t5 — myty + mat3) dtg dits dty dts
—1J0 —-1J-1

By Lemma 2.3 we are able to change the interval of integration from [—1, 0] to [0, 1] in the tg, t5,

and t3 variable. Thus f_id ms m4,ms = f0,—ms,mas,—ms- Likewise, one can see that fid mg,ms,ms =

Jo,ms.ma.ms- Since [id] and [—id] are distinct elements in I'g/(I'g)s0 it follows that

§ : E : § : § : fv,m57m4,m3 + E E f0,01k4,k3
0<ms<Ms [y]€ls/(Tg)oc |ma| <My [ms|<Ms [ka| <My |k3|<M3
la]|<Ms,|c|< Mg

= E : E : E : E : f%m5,m4,m3+ E E E : fO,k5,k4,k3-
0<ms<Ms [y]€ls/(Tp)oc |ma|<My |m3|<Ms

SelAs [ks| <Ms |ka| <My |k3|<M3
Y)#]+id
|a|<Ms,|c|< Mg

(2.22)

By Lemma 2.3(e) and Lemma 2.2 there exists M; € Z~( such that M7 > M,

€
Z Jooks kaska,kr = Joks ke ks < (

lk1 | <M, . 2Ms5 +1)(2My +1)(2M3 + 1)

for ks < Ms, |ka| < My, |ks| < Ms. By this inequality, (2.21), and (2.22), we find that

Z Z Z Z f'y,ms,m4,77L3

0<ms<M;5 [v]€T8/(Tg)oc Ima| <My |ms|<Ms
[v]#[+id]
la|<Ms,|c|<Ms

+ Z Z Z Z Joks kaksder — FIl < 8,

(2.23)
[ks|<Ms |ka| <My k3| <Ms k1| <M

K
By Lemma 2.3(f) and Lemma 2.2 there exists My € Z~¢ such that My > M,

€
E _ <
fO,O,O,O,kl,kQ f0,0,0,0,kl (2M1 n 1) )
[k2| <M> K

for |k1| < M;. By this inequality and (2.23) we obtain the following proposition.

Proposition 2.5. If f : N — C is smooth, Nyz-invariant, and € > 0 then there exists My € Z~q
such that for any Mg > My, where Mg € Z~q, there exists Mg, My, M3z, M,
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M, € Z>0 such that M6 < M5 <My < M3 < My < M5 and

Z Z Z Z f%ms7m4,m3

0<ms<M5 [y]€T/(I'g)oc |ma| <My |ms|<Ms

[v]A[+id]
la|<Ms,|c|<Mg

+ Z Z Z Z Jo,ks kea ks by T Z Z f0,000k1,k: — fI| <6

|ks| <M |ka| <My 0<|k3|<M3 |k |<M:y [k1| <My k2| < M2
ks#0 or ka#0 or k3#0 K

where the terms in these sums are defined in (2.7).

2.4 Some Inequalities

Although Proposition 2.5 shows that smooth, Nz-invariant f : N — C can be approximated by
a finite sum of terms of the form (2.7), what we really desire is a series expansion for such f. In
Theorem 2.10 we give an absolutely convergent series expansion for such f within the Banach
space C(K), the space of continuous functions on K equipped with the norm || - ||x. In order
to prove the absolute convergence of this series, we will need to prove various propositions in
this section, but before we do, we prove a result we used in the previous section. Throughout

this section we will let I = [0, 1].

Proposition 2.6. If f : N — C is smooth, Ngz-invariant, then Z Z | fro ks || ¢ < 00.
k6 EZ k5 E€Z

Proof. Let
1
Grs (25,1) :/ f(T5Xsn)e(—kets) dts,
0

q(xg, 5,n) = f(XeXs5n).

By Lemma 2.3(b) we see that gqx, is periodic in z5. Observe that fi, i, is the ks-th Fourier

coefficient in the x5 variable of gx,(z5,n). Therefore by Lemma 2.1 we have

SN M Frosllie <> (ol + 102, [l 1<) (2.24)

ke E€Z ks€Z ke €EZ

By Lemma 2.3(a) we see that g is periodic in zg. Observe that gy, is the kg-th Fourier coefficient
in the z¢ variable of ¢ and that 92 [gk,] is the kg-th Fourier coefficient in the xg variable of

92.[q]. Therefore by Lemma 2.1 we have

D Nakellrxre < Nl s + 102, g2 x (2.25a)
ke €Z
D03 grellrxre < 102, 1l xic + 1102, 02, [l 2 x ¢ (2.25b)

ke EZL
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Our proposition then follows from (2.24) and (2.25). O

The following propositions will be used the prove the absolute convergence stated in Theo-

rem 2.10.

Proposition 2.7. If f : N — C is smooth, Nz-invariant, then

D0 1£0.0.0.0k kol < 0.

k1€Z ko €Z

Proof. Let

qkl o, N / / / / / f TGTrT4T3T1X2n) ( k‘ltl) dtg dtr dt4 dt3 dt1,
IQ, T1,N / / / / f T6T5T4T3X1X2n) dtﬁ dt5 dt4 dtg

By Lemma 2.3(f) we see that gy, is periodic in the x5 variable. Observe that fo 00,0,k k. i the
ko-th Fourier coefficient in the x5 variable of gi,. Therefore by Lemma 2.1 we have

Z Z 11£0,0,0,0,k1 k5 || 6 < Z (| Gy 17 x 5 + Z 102, [kl rx xc-

k1€Z ko€Z ki1€Z ki1€Z
Next, observe that g is periodic in the z; variable by Lemma 2.3(e). Observe that gy, is the
k1-th Fourier coefficient in the z1 variable of g. Likewise, 02, [gk,] is the ki-th Fourier coefficient
in the x; variable of 92, [g]. Therefore by Lemma 2.1 we have

Z ||qk1||l><K + Z H élkl ||I><K

ki1€EZ k1EZ

< ligllrzxx + 1102, [l r2x i + 102, 4l 125 + 1103, 02, (4]l 12 ¢ ¢
and from this our proposition follows. O

Proposition 2.8. If f : N — C is smooth, Ngz-invariant, then

Z Z Z Z|\f0,k5,k4,k3,klllK < 0.

ks€Z ka€Z ks€Z k1€Z

Proof. Let
1
g(ws, 24,03, 21,n) = [ f(T6X5X4X3X1n)dt,
0
1.1
Qk5($4,$373317n)=/ / f(T6Ts Xa X3 X1n)e(—ksts) dtg dts,
o Jo

1 1 1
ks ka (3537 X1, 7’L) = / / f(T6T5T4X3X1TL)6(7k5t5 — k4t4) dtg dts dt4,
0 0

[u
(=)

1 1 1
Qk57k4,k3 ($1, ’I’L) = / / / f(T6T5T4T3X1’I’L)€(—k5t5 — k‘4t4 — k‘3t3) dtﬁ dt5 dt4 dt3.
0 0 0 0
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Observe that g, k,.k, i periodic in x; by Lemma 2.3(e) and that fo is ky ksk, 1S the ki-th

Fourier coefficient of gy, 1, r, in the x; variable. Therefore, by Lemma 2.1, we have that

Z Z Z Z\|f0,k5,k4,k3,k1||K

ks€Z k€L ks€Z k1 EL

is bounded by a finite linear combination of series of the form

Z Z Z ||D[qk5»k4,k3]||[( (2.26)

ks €Z ka€Z ky €L
where D = id, 82, .

Next observe that D|gk, ,] is periodic in the z3 variable by Lemma 2.3(d) and that
Dy ki ks] is the ks-th Fourier coefficient of D[gy, ,] in the z3 variable where D = id, 82, .

By Lemma 2.1 we have that series of the form (2.26) are bounded by a finite linear combination

of series of the form

Z Z HD[%s,M]HK (2.27)

ks€Z ki€l
where D = (9,,)% (9x,)"* and 3,01 € Z>p.!

Next observe that D[qx,] is periodic in the x4 variable by Lemma 2.3(c) and that D]g, x,]
is the ky-th Fourier coefficient of D[gy.] in the 24 variable where D = (0,,)%(0,,)" and £3,¢; €
Z>o. By Lemma 2.1 we have that series of the form (2.27) are bounded by a finite linear

combination of series of the form

> IDlgr,]

ks€Z

where D = (8354)24 (6;63)05 (3x1 )21 and 44,63,61 S Zzo.

. (2.28)

Next observe that D[g] is periodic in the x5 variable by Lemma 2.3(b) and that D[gx.]
is the ks-th Fourier coefficient in the x5 variable of D[gq] where D = (0,,)%(0z,)% (0x,)"
and {4, 03,01 € Z>o. By Lemma 2.1 we have that series of the form (2.28) are bounded by a
finite linear combination of terms of the form D[q] where D = (9, )% (9y,) (9z,)% (9, )" and
ls5,04,03,01 € Z>o. This in combination with the bounds given in (2.26), (2.27), and (2.28)

prove our proposition. O

Proposition 2.9. If f: N — C is smooth, Nz-invariant, then

Y Y S Ml < 0.

ms€Z ['y]el",;/(l",;)oo MmyaELZ m3EZL

Tt should be noted that ¢3 and ¢; are each bounded by 2. In this rest of this proof, it will be
understood that such ¢; are always bounded by a quantity independent of the indices k;. Likewise, when
we state that a quantity is bounded by a linear combination of terms, it will be with the understanding
that the coefficients of such a linear combination are independent of the indices k;.
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Proof. Observe that fy mg m4,ms is the ms-th Fourier coefficient in the x5 variable of the function

11 gl
Ay s ma (T3,1) = / / / FOTTsTy X3y~ 'n)e(—msts — myty) dity dts dig;
o Jo Jo

recall that Lemma 2.3(d) shows that Ay, m, is indeed periodic in the z3 variable. Therefore

by Lemma 2.1, we have

Z Z Z Z Hf'71m5’m4gm3”K

ms€L>0 [Y]€T /(T g)o0c MaC€L maEL

< Z Z Z ||ﬁ%m57m4”1><K

M5 €750 [Y]€Ts /(T5) o MAEZ

* Z Z Z Hais[ﬁ%ms,mAHIXK' (229)

ms€ZL>0 [Y]€Tg/(Tg)oc MaC€Z
Let
1 1
Ay s (T4, 23,m) = / / f(’yT6T5X4X37_1n)e(—m5t5) dtedts.
0o Jo
Observe that DAy ms.m,] is the my-th Fourier coefficient in the x4 variable of the function
D[hym;] where D = id, 82 ; recall that Lemma 2.3(c) shows that D[f, ] is indeed periodic in
the x4 variable. Therefore, by Lemma 2.1, we have

> ST S D sl

ms€Z>o [Y]€T 5 /(T5) oo MaEL

< S S Dyl Y. S |02, Dlhyms)

ms5€ZL>o0 [V]€T3/(T8) oo ms€Z>o [Y]€ls/(I'g) oo

g (2:30)

where D = id, 82,. Thus by (2.29) and (2.30), we have that
Yoo > > D M vmemamlix (2.31)
ms€ZL>o [V]|€T3/(I'g)oc Ma€EL M3EL
is bounded by a finite linear combination with terms of the form
> > Dyl 2 i (2.32)
m5€Z>0 [¥]1€T3/(T'g) 0
where D =id, 92,032 ,02 02..

By applying the change of variables (2.8) and Lemma 2.4 we find that
11
ﬁy7m5 (1‘4, s, TL) = / / f('yT6T5X4X37_1n)e(—m5t5) dt(; dt5
o Jo

1ol
= / / f(R(—2a%cah + t6) Rs(—ac?zh + t5) Ry(—acx? + x4) R3(axs) Ro(cx3)n)
o Jo

e(—am5t5 + cm5t6) dtﬁ dt5

_ 2.3 2,3 2
= P_cms,ams (—20°Cxy, —ac"xy, —acxs + x4, aT3, €T3, N)
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where

1 .1
Pre.ks (T6, Ts, Ty, T3, T2, N) = / / f(T6X6T5 X5 X4 X3 Xon)e(—kets — ksts) dte dts.
o Jo
Let py : R? x N = R% x N where

2.3 2.3 2
py(xa, x3,n) = (—2a°cay, —ac”wy, —acxs + x4, a3, CT3, N).

Observe that
ﬁ'y,ms (174,1'3,77,) = P—cms,ams © Pfy(l'47I3;n)~ (233)

82

T4

We will use this equality to compute useful bounds for D[A, ,,,] where D = id, 2

T3

02,02,
By (2.33) and the chain rule, observe
Oy [fry,ms) (w4, 23, 1)
= Oug[P—cms ams) © Py (T4, T3, 1) - (=60%€23) + Ouy [Py ams ] © pr (4, 73, m) - (—Bac’a3)
+ Ouy [P—cms,ams) © Py (T4, 3,1) - (—2acx3) + Oy [P—cms,ams] © Py (T4, T3, 1) - @
+ Ouy [P—cms,ams] © py (T4, T3, M) - C.
Thus Oy, [Ay,ms (24, x3,n) can be written as a finite linear combination with terms of the form

(aé1 062 xgg)awl [P—cm5,am5] O Py (.7;4, T3, n) (2'34)

where ¢; € Z>o, and i € {2,...,6}.2 When we apply 0,, to (2.34), we find by the chain rule
that (2.34) can be written as a finite linear combination with terms of the form

(a€16€2x§3)8$i1 awiQ [P—cms,ams) © py (T4, T3,10) (2.35)

where (; € Z>¢, and iy,i2 € {2,...6} (the £; in (2.34) will not necessarily be equal to the ¢; as
in (2.35)). Therefore

92 [fy,ms) (24, 23, n) can be written as a finite linear combination
with terms of the form: (aélcbx?)@mil O, [P—ems.ams) © Py (24, T3,7)

where fj € ZZO7 and 11,09 € {2, Ce 76} (236)
Observe by the chain rule, that

Oz, [(aél Cezx? )D[p—cms,ams) © py (T4, 3,1)]

= (azlcbx:{f’)8I4D[p_cm5,am5] 0 py (24,23, 1) (2.37)

2 In this rest of this proof, it will be understood that such ¢; are always bounded by a quantity
independent of the indices [[v]], ms, and k;. Likewise, when we state that a quantity is bounded by
a linear combination of terms, it will be with the understanding that the coefficients of such a linear
combination are independent of the indices [[y]], m;, and k;.
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where {; € Z>o, D = id, 0y, ,0x, Ox,,, and i1,ig € {2,...6}. From (2.33) and (2.37) we see
that

6:34 [ﬁ77m5](1’4, 3, n) = 854 [Pfcmsym%] O Py (x47 s, TL), (2'38)
and by (2.36) and (2.37),

8§4G§3 [fiy ms | (24, 23,n) can be written as a finite linear combination

with terms of the form: (aflc%f;a)aiazil Oz, [P—cms,ams) © Py (T4, 23, 1)

where Zj S Zzo, and 11,12 € {2, ey 6} (239)
Therefore, by (2.36), (2.38), and (2.39), we have that D[, ] (24,23, n) for D' =id,d2,,03 ,
92,02, can be written as a finite linear combination with terms of the form

(a2 25) Dp-cims ams] © ps (4, 23,1) (2.40)

where D = agza;glagz, g1 € {0,2}, j2,73 € {0,1}, i1,i2 € {2,...6}, and {1, {2, (3 € Z>(. Thus

we have that (2.31) is bounded by a finite linear combination of series of the form

Z Z H(afchZ’IgS)D[p_cmsﬂms] 0 py (24,23, 1) (2.41)

ms€Z>o0 (Y€ /(Ts) oo

I?xK
where D = 9J1 8j21 8%?2, J1 € {0,2}, jo2,j3 € {0, 1}, 11,12 € {2, .. .6}, and {1,05,03 € Zzo.

Ty T4

In what follows, we shall assume D = 6j18?.21 8{.3;2 for some j; € {0,2}, jo,j3 € {0,1},

Ty "Xy

i1,i2 € {2,...6}. Observe

S @) Dlp ] 0 oy s m)

ms€ZL>o [Y]€Ts/(T'g) oo

D DD DI (YD

ms€Z>0 [Y]€Ts/(T8) oo

00
S Z |k51k62|HD[pk67k5](x6”r5’x4’x?”$2)HR3><[fks,k5]><[fk6,k6]><l(' (2.42)

(k67k5)ez2¢(0,0)

I2xK

szKHD[p*Cmsvamf)] °© pﬁ(x4vx3’”)||12x1(

If k; = 0 then by [—k;, k;] we mean the set {0}. In the last inequality we used that |a| < |ks],

le| < |ks| under the correspondence in (2.17). We also employed the inequality

||D[Pk6,k5} Op’y(m4ax37n)||l2XK < |’D[pk6»k5]($67x5’x4"TS’xZ)||R3><[7k5,k5]><[7k6,k:6]><K’

which is also justified by the inequalities |a| < |ks], |¢| < |k¢| and the definition of p,. Since
X, X5, Xy all commute with each other, it follows that pg, k. (z6, Z5, T4, T3, 22) is periodic with
period 1 in xg, x5, and x4. Since D|pk, ks ](T6, T5, T4, T3, T2) inherits this periodicity in zg, x5,

x4, it follows that

D[P 1s ] R3 X [—ks k5] X [—ko ke XK | D[ o] I3 %[~ ks, ks] X [~ ke ko] X K * (2.43)
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Suppose x3 € [—ks, ks]. Then 23 = e3+r3 where r3 € Z, e3 € [0, 1], which implies |r3| < |ks].
Since

T6X6T5X5X4X3X2 = R3(T‘3)R6(t6 - 3’[”31‘4)X6T5X5X4R3(63)X2

it follows that when we change variables in tg, apply Lemma 2.3(a), and invoke the Nz-invariance

of f, we find that
Phe ks (X6, Ts, Ta, Ty, T2, 1) = €(3ker3Ta) Prg.ks (T6, Ts, T4, €3, T2, ).
Thus
Dipo.is|(z6, x5, T4, T3, x2,n) = D[po.x;|(x6, X5, T4, €3, T2,N) (2.44a)
Dipig.0)(x6, T5, T4, 3, T2, 1) = D]prs 0](x6, T5, T4, €3, T2, M) (2.44b)

(if k5 = 0 then r3 = 0), and if keks # O then D|py, is](z6, 25, T4, 23, T2, n) can be written as a

finite linear combination of terms of the form
(k@’r‘g,)e/6(3]€6’I‘31‘4)D/[pk6’k5} ($6, I5,%4,€3, LL‘Q) (245)

where £ € Zso and D' = 931002, 03, . ji € {0,1,2}, 4}, 34 € {0,1}, @, € {2,...6}. Since
- 1 2
[—ks, k5] contains no more than 2|ks| + 1 < 3|ks| integers and [—kg, kg] contains no more than

2|kg| + 1 < 3|kg| integers, then by (2.44),
HD[kausﬁa‘r@x47I37I2)||I3><[—k5,l~c5]><{0}><K
< 3lks| - HD[Po,ks](JUe,JCE),$4,$3,$2)H14X{0}XK for k5 # 0, (2.46a)

|| DIPrs 0] (6, x5’x4’x3’xQ)HIBX{O}X[ka,kG]XK

< 3|k’6| . HD[Pkﬁ’O]<x6’x5’$4’m3’x2)H13><{0}><I><K for kﬁ 7é 0. (246]3)

If kske # O then since |r3| < |ks| and since [—ks, k5] contains no more than 2|ks| + 1 < 3|ks|

integers, it follows from (2.45) that

| Dlpks ks ) (w6, 5, 24, 363,xz)Hlsx[fkmmx[ik&kde (2.47)
is bounded by a finite linear combination with terms of the form
|k'§ +1k'6 | . HD/[pko,kf’](xG’ T5,T4,T3, IEQ) ||I4><[7k6,k5]><K' (248)

Suppose kskg # 0 and zo € [—kg, kg]. Thus x2 = 13+ eg where 1o € Z and ez € [0, 1), which
implies |ra| < |kg|. Since
T X6 T5 X5 X4 X3.X5

= RQ(TQ)Rﬁ(tﬁ + 3T2$§)X6R5(t5 — 37”%1?3 — 3T2$4)X5R4(2T2$3 + $4)X3R2(62)
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it follows that when we change variables in tg and t5, apply Lemma 2.3, and invoke the Nz-

invariance of f, we find that

Pk ks ($6,x5,$47$3,$2, TL)

(3k6r2m3 + 3ksroxs + 3ksroxa) Pre ks (Te, Ts, 27222 + T4, T3, €2,1).

Since |rq| < |kg|, [—ke, k¢] contains no more than 2|kg|+1 < 3|kg| integers, and pg, k, is periodic
in the x4 variable, then (2.48) will be bounded by a finite linear combination with terms of the

form

&, 0,
|k k5| - HD"[Pke,ksKi?ﬁa$57$47$3,$2) (2.49)

ISXK
where 01,05, € Zso and D" = 85;148;2,,8;1“/” j7 € {0,1,2}, 55,54 € {0,1}, i, € {2,...6}.
Consequently, (2.47) is bounded by a finite linear combination of terms of the form (2.49). By
(2.41), (2.42), (2.43), (2.46), (2.47), and (2.49) it follows that (2.31) is bounded by a finite linear

combination of series of the form

Z |k5|l1 . HD[PO,/CS](I&x5az4ax3ax2)HI4X{0}XK7 (250&)
ks€Z

Z |]€6|Z2 : H‘D[pke,o](m67x5ax47x37x2)H13><{0}><IxK7 (250b)
ke EZ

Z Z K kG | - || Dlko,ks) (6, @5, T4, 23, 22) || 15, s (2.50¢)

ke €Z20 ks €Zxo
where D = 8%148%%1 8532, J1 € {0,1,2}, J2,J3 € {0,1}, 11,12 € {2,6}, and 61,62 € Z>0 (We
allow for ¢1, ¢2, and D to vary between (2.50a), (2.50b), (2.50c)).
Let

1
l]kﬁ(xﬁ,t5,175,m4,x3,9327n):/ F(T6X6T5 X5 X4 X3 Xon)e(—kets) dts.
0

Observe that D[py, k5] is the ks-th Fourier coefficient for gy, in the t5 variable; recall that g,

is indeed periodic in t5 by Lemma 2.3(b). Therefore by Lemma 2.1, we have that

> ks[4 [ Dlpos] (w6, 25, 24, 23,02, 0) || a0y i

ks€Z

< |85, Dlgo]) (w6, ts, w5, 24, 3, 22, ) I5x {0} x K’ (2.51)
Yo D Rk Dlpros) (w6, 5, way w3, w2, 1) 5 40
ke €Zso ks €Z1o

< Z kz2|Hazl+2D (qs] (6, t5, x5, T4, T3, T2, )HIGXK' (2.52)

keGZ#o
Next, let
q(te, z6,ts5, x5, T4, 3, x2,n) = f(TsXT5 X5 X4 X3Xom).
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Observe that D{qy,] is the kg-th Fourier coefficient of g in the t¢ variable; recall that g is indeed
periodic in t¢ by Lemma 2.3(a). Therefore by Lemma 2.1, we have that
Z |ké2 ‘ Haﬁ;+2D[%6]<$6, t57 T5,T4,T3,T2, n) HIGXK
ke €Z4o

S "3526+28£;+2D[q](t6,x6,t5,x5,$4,x3,x2,n)HI7xK < 00.

Therefore, by (2.52) we have that
Z Z ‘kél kéQ | HD[Pkrg,kg,](l‘G; t5; T5,T4,T3, T2, n) HI5><K
ke €Z40 ks €Z20

< “85;25+26£15+2D[Q}(t6, Tg,t5, Ts5, Tq, T3, T, ’I’L) HI7><K < 0. (253)
Lastly, consider
1
p(te, T6, Ts5, T4, T3, T2, 1) =/ J(TsX6T5 X5 X4 X3Xon) dts.
0

Observe that D|py,.0] is the ke-th Fourier coefficient of D[p] in the t¢ variable; recall that p is
indeed periodic in tg by Lemma 2.3(a). Therefore by Lemma 2.1, we have that

Z |k6|e2 ' HD[Pkﬁvo](x6’ L5, T4, X3, L2, n) HI3><{(]}><I><K

ke E€Z

< ||a£26+2D[P](t67$6,515,964,363,9327 < 00. (2.54)

n)||l4><{0}><1><K

By (2.51), (2.53), (2.54) it follows that the terms of the form (2.50) are finite, and this proves

our proposition. O

Recall that C(K), the space of continuous functions on a compact set K, is a Banach spaces
under the norm || - | x. Therefore, Propositions 2.7, 2.8, and 2.9 assert that

Z Z Z Z f~/7m5,m47m3 + Z Z Z Z fO,k5,/€47k37k1

Mm5€ZL>0 [y]€T /T oo Ma€ELM3EL ks€Z ko€ k3 €L k1 EZ
[y]#[£id] ks#0 or ka#0 or k3#0

+ Z Z £0,0,0,0,k1 k2 (2.55)

k1E€Z ko €7
converges absolutely in C'(K). Consequently, for any enumeration of the terms in (2.55), we
have that the resulting sequence of partial sums converges in C(K) and that the limit point of
said sequence does not depend upon choice of enumeration (i.e. the series (2.55) converges un-
conditionally). Proposition 2.5 shows that there exists an enumeration of (2.55) whose sequence
of partial sums contains a subsequence which converges to f. Therefore, by basic analysis, we
are able to conclude that for any enumeration of (2.55), the sequence of partial sums converges

to f. Thus the following proposition follows.
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Theorem 2.10. If f: N — C is a smooth, Ng-invariant function and K is a compact subset

of N then
f= Z Z § : E  fryimsmams + § E § E J0, ks ka ks k1
ms5€ZL>o [Y]€DL /T oo MaEZ M3EL ks€Z k4a€Z ks€Z k1E€EZ
[v]#[+id] k5#£0 or ka0 or k30
+ YD f0.0,00kk
k1€Z ko €Z

where convergence of the series is absolute (and therefore unconditional) in the Banach space

C(K). The terms of this series are defined in (2.7).

2.5 Nyz-Invariant Functions

If ¢ € Z4o then let [z], = [z] denote the coset of Z/¢Z which contains z € Z. As indicated in
our definition, we will drop the subscript ¢ from [z], when the value of ¢ is clear from context.

Similarly, let [[v]] denote the double coset of (I'g)e0\I'3/(I'3)00 Which contains v € T'g. Since

1gq ab a+cq b+ dg
. = (2.56)
01 cd c d
it follows from (2.11) that
each [[7]], other than [[id]] or [[—id]], is uniquely identified by ¢ and a(mod c); (2.57)

notice that [[id]] and [[—id]] are distinct in (I'g)oo\I's/(T'8)co-
For ¢; € Z and v € T'g such that [[y]] # [[£id]], we have
Jryims,ma,ms (QeQ5Q4Q3Q2Q1n)
1ol g1l
= / / / / FOTTTaT3y ' QeQ5Q4Q3Q2Q1n)e(—msts — mats — msts)
o Jo Jo Jo
dte dts dty dis
11 gl
:/0 /0 /0 /0 f(Q6Q5Q4Q3Q2Q1(Qflv)Rg(?)aqutg + 62qsts — 6adgaqsts

+ 3edgits + 3qats + 3aqats — 3cqsti + 3bgats — 3dgsty + te) Rs(—3a’qsts
—+ 6(10(]2(]3t3 — 3C2q§t3 — 3CLQQt4 —+ 36(]3t4 —+ t5)R4(2aq2t3 — 20(]3tg —+ t4)

Tg(Qflv)fln)e(fm5t5 - m4t4 — mgtg)dtﬁ dt5 dt4 dt3.
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By Lemma 2.3 , we can perform the following change of variables (in order):

t6 —> t6 — (S(qu%tg + 6(]2Q3t3 — GGdQqutg —+ 3qu§t3 —+ 3(]4t3 + 3&(]th
— 38(]31% + 3bQQt4 - 3dQ3t4)
ts > ts — (—3a’q5ts + 6acqaqats — 3cqats — 3agats + 3cqsty)

t4 — t4 — (2@(]2t3 — QCQ3t3)
and utilize the Ny-invariance of f to conclude that

f'y ms,mq,ms3 Q6Q5Q4Q3Q2Q1n)
/ / / / Q" NTTsTuT3(Q1 ') 'n)e( — (ms — 2(aga — cqs)my

— 3((1(]2 — cq3)2m5)t3 — (m4 + 3((1(]2 — cq3)m5)t4 — m5t5) dt(; dt5 df4 dt3

n). (2.58)

= le_l'y,mg,,m4+3(aq27cq3)m5,mg72(aq27cq3)m473(aqucq3)2m5(

We formally define

by
f7,7n5,m4,m3 (n)

= Z Z Z f’)’7m5,m47m3 (Q3Q2Q1n)

qQ1€Z [q2]€L/cZ g3 €L

= Z Z Z le_l’Y7m5,m4+3(a¢Z2*CQ3)m5>m3*2(atJ2*043)m4*3(a¢Z2*CQ3)2m5 (n)

q1€EZ [q2]€Z/cL q3€EZ

- Z Zfol'vas,m4+3jm57m3*2jm4*3j2m5 (n). (2.59)

a1 €EZ JEL
In the above equality we have used the fact that for ¢ # £1, each element of Z can be written
uniquely as aga — cq3 where g3 € Z and [g2] € Z/cZ (recall ¢ # 0 since we have assumed
[[¥]] # [[£id]]), and for the case of ¢ = +1, we then have ¢ga = 0 and obviously each element
of Z can be written uniquely as aga — cqg3 = Fq3 where g3 € Z. One can see from (2.12) that

the definition of £ > does not depend upon the choice of representative for [[y]]. Lastly,

»TN5,1M4, M3

observe that by (2.58), fv is formally Nz-invariant.

ms5,1M4g,M3
The absolute convergence of (2.55) in C(K) implies the absolute convergence of the series

defining f>,  in C(K). Thus f2, is a well-defined element of C'(K). Of course,

my,m3

since our choice of K was arbitrary it follows that fzm ma.mg 18 also defined as a continuous

function on all of N. Furthermore, since the series defining f>

ims,ma,ms 18 formally Nz-invariant,

it follows that f>*

"ms.ma,ms Can be thought of as an Nz-invariant function on N.
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Observe that formally,

2 POREED DI D Craan

[METB)oc\I's/(Tg)oc M5EL>0 [Ma]€L/3msZ m3EL
([V]#[[+id]]

= 2 YD D frmsmamss (2.60)

V€T /(Tg)oc M5E€L>0 Mma€L M3EL
[v]#[+id]

indeed, this follows from the fact that [[+id]] = [id] by (2.56) and the fact that q; — [Q] 4] is
an injective map from Z into I'g/(I'g)so for [[v]] # [[£id]] by (2.56) and (2.11). Both the right
and left-hand sides of (2.60) can be seen to converge absolutely in C'(K) by noting that

> DO DI W -, [

[[W]]E(FB)OO\FB/(FB)OO ms€ZL>o0 [m4]€Z/3’H’L5Z ma€ZL
(V][ [+id]]

S Z Z Z Z ||f'y,m5,m4,m3||K < 00, (2.61)

V€T 5/ (T 8) o0 M5EL>0 MaEL M3EL
[v]#[+id]

where finiteness follows from the absolute convergence of (2.55). One can then use basic analysis
to show the left-hand side of (2.60) must converge (absolutely) in C(K) to the right-hand side
of (2.60).3 Thus (2.60) is a well-defined identity in C(K).

Let L2(Nz\N) denote the space of Nz-invariant, square integrable, measurable functions
on N modulo the space of functions which vanish almost everywhere. If Q is a fundamental

domain for Nz\N then we can define an inner-product on L?(Nz\N) by defining

(h1,ho) = /Q hi(n)hs(n) dn (2.62)

where hy, hy € L?(Nz\N) and dn is a fixed Haar measure for N. It is well-known that L?(Nz\N)
is a Hilbert space when equipped with the inner-product (2.62). From this inner-product we

define a norm || - || for L?(Nz\N) by

Il = th k72 = /. h<n>|2dn>1/2, (2.63)

where h € L?(Nz\N). If h : N — C is a continuous, Nz-invariant function then it follows

that h € L?(Nz\N); in particular, f> € L%(Nz\N) for smooth, Nz-invariant functions

Y514, M3

f: N — C. If K is the closure of Q then it is easy to see that ||h|2 < ||h||x. Therefore by
(2.61), the series

Z Z Z Z f$m5,m4,m3

[[V]J€T oo \I'/T'oo M5EZ>0 [M4]EZ/3msZ M3EL
(V][ [+id]]

3In a Banach space, one can show that if 3 a;,; converges absolutely then the series b; =

4,J€L>0

> jezoo Ginj converges absolutely, the series > b; converges absolutely, and that >

ZieZ>0 bs.

1€Z>0 1,j€Lso H0I =
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converges absolutely in L?(Nz\N).

For ¢; € Z, we have

S0, ks ka kea ey (Q6Q5Q4Q3Q2Q11)

/ / / / / FTTs Ty T5T Qs Q5 Q4Q3Q2Q1n)

6(—]€5t5 — kyty — ksts — kltl) dtg dts dty dts dtq
11 41 41 1
= / / / / / f(QeQ5QuQ3Q2Q1 Re(q1d5t1 + gst1 + gatT + 3q1a5ts + 3qats
o Jo Jo Jo Jo
+3g5tits + 3qat3 + 3quqats — 3qsts — quts + te) Rs(—qats — 3q5ts — 3qats + t5)

Ra(g3t1 + 2qats + ta) Rs(qoty + t3)Tin)e(—ksts — kats — ksts — kity)

die dts dty dts dit;.
By Lemma 2.3 , we can perform the following change of variables (in order):

te = te — (q1g5t1 + gst1 + G517 + 3q1¢5t3 + 3qats + 3¢5t ts
+ 3¢2t3 + 3q1qota — 3qsts — qits)

ts > ts — (—qot1 — 3q3ts — 3qats)

ta >ty — (G5t + 2qats)

lz = t3 — gata
and utilize the Nz-invariance of f to conclude that

S0,k ka kg ky (QeQ5Q4Q3Q2Q 1)

/ / / / / J(TTsTyTsTin)e( — (k1 — ksqe + kags + ksqs)ty

— (kg — 2]€4C]2 — 3k5q2)t3 - (k4 + 3]€5C]2)t4 - k5t5) dtﬁ dt5 dt4 dtg dtl

= fksJ€4+3k5Q2,k3*2k4qu3k5q§7k1*k3¢I2+k4q§+k5qg’ (TL) (264)

Formally, we define

f0k5 k4 kskl ZfOk k'4 k3 kl(QQn)

q2€7Z

= E :fksJ€4+3k5qz,k3*2k4qu3k5qg,k1*kSQZ+k4q§+k5qg’(n)‘ (265)
q2€7Z

Observe that f(fks, ka ks, 1S formally Nz-invariant. The absolute convergence of (2.55) in C'(K)
implies the absolute convergence of the series defining f5k57k47k3,klin C(K). Thus f()z,ks,k4,k3,klis

a well-defined element of C(K). Since our choice of K was arbitrary it follows that f&km K kg ey 1S
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also defined as a continuous function on all of N. Furthermore, since the series defining
f5k07k47k37k1is formally Nz-invariant it follows that f£k57k4,k37klis Nz-invariant when thought
of as a function on N, and thus can be identified as an element of L?(Nz\N).

For ¢; € Z, we have

£0,0,0,0,k1,k2 (Q6Q5Q4Q3Q2Q1m)

//////fT6T5T4T3T1T2Q6Q5Q4Q5Q2Q1n)( ity — kot)

dtg dts dty dts dty dtsy
1 1 1 1 gl
= / / / / / f(QeQ5Q4Q3Q2Q1R6(q1qSt1 + gst1 + ¢5t] — 6q1q2q3t2
o Jo Jo Jo Jo
+ 3g5t2 — 3quqate + 3qutits + 3q1g3t3 + 3q1q2t1ts — 3qstits — 243t + qutits
+ 3q1G5t3 + 3quts + 3q5tits — 6qstats + 3qitats + 3qot3 + 3q1qats — 3qats
— quts + t6) Rs(—q3t1 + 6qaqsta + 3quta — 3qsts + qut3 — 3q5ts — 3qaty + L)
Ry(q5ts — 2qsta + qut3 + 2qats + ta) Rs(qats — quta + t3)T1T2n)
e(—kit1 — kato) dtg dts dty dts dty dis.
By Lemma 2.3, we can perform the following change of variables (in order):
te = t6 — (g3t + gst1 + @317 — 6q1q2q3ta + 3¢3ta — 3q1qata + 3qatats + 3q1qsts
+ 3q1qat1t5 — 3qstit — 2q7t3 + qitats + 3q1q3ts + 3qats + 3¢3tits — 6gstats
+ 3qt3ts + 3q2t3 + 3q1q2ta — 3qsts — qits)
ts > ts — (—qst1 + 6qagsta + 3qats — 3qsts + qits — 3q5ts — 3qats)
ty = ta — (g5t1 — 2qsta + qut5 + 2gat3)

t3 = t3 — (q2t1 — qut2)

and utilize the Nz-invariance of f to conclude that

10,0,0,0,k1,k2 (Q6Q5Q4Q3Q2Q11) = f0,0,0,0,k1 ks (12)-

Thus f0,0,0,0,k1,k, 1S & continuous, Nz-invariant function and can therefore be identified as an

element of L2(Nz\N).
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Observe that formally,

Z Z Z Z f()z,ks,k4,k3,k1 + Z Z Z f()z,o,k4,k3,k1

ks€Z+o [k4)€Z/3ksZ k3a€L k1 EL ka€Zzo [k3)E€EZL/2kAZ k1 EZ

s
+ Z Z J6:0,0,k5,k0 + Z Z f0,0,0,0,k1 k5

k3€Z20 [k1]€Z/ksZ k1 E€EZ ko€Z

= Z Z Z Zfo,k5,k4,k3,k1 + Z Z J0,0,0,0,k1 ks (2.66)

ks €L ka€ZL ks€Z k1 EZ k1€Z ko €Z
k5#0 or k470 or k3#0

The left-hand side of (2.66) can be seen to converge absolutely in C'(K) by noting that

Z Z Z Z Hfoxiks,k4yk31k1”K + Z Z Z ’|f(§0,k47k3-,k1”[(

k5€Z¢0 [k4]€Z/3k5Z k3€Z k1 €7 ]C4EZ;£0 [kg]EZ/2k4Z k1EZ
+ Y > Mfooksm e+ D0 D 150,000k ksl 5
k3€Z¢U [kl]EZ/kgz ki1€Z ko €Z
SN D Moksmaksa e T D D 10,000kl < 00, (2.67)
ks€Z ks €L ks€Z k1 EL k1E€EZ ko €L

k5#0 or kq#0 or ky#0
where finiteness follows from the absolute convergence of (2.55) in C'(K). One can then use
basic analysis to show the left-hand side of (2.66) must converge (absolutely) in C(K) to the
right-hand side of (2.66). Thus (2.66) is a well-defined identity in C(K).

SINCe ks k> F0:0.ka ks ks> £0.0,0k0. k0> £0.0.0.0k1 k2 € L2 (NZ\N) and since [[Aly < [[2]lx

for K the closure of a fundamental domain for Nz\N, then it follows from (2.67) that

Z Z Z Z foz,:k5,k4’k3,k1 + Z Z Z f()X,:O,k4,k3,k1

ks €220 [ka]€Z/3ksZ k3 €L k1 €L ka€Zso [k3]E€Z/2kaZ k1 EZ
>
+ E E J070,0,k5,61 + E E f0,0,0,0,k1 ks
k3€Zxo [k1)E€EZL/k3Z k1€Z k2€Z

converges to an element of L?(Nz\N). Combining (2.60) and (2.66) with Theorem 2.10 and
the inequality ||k, < ||h]/; yields the following theorem for smooth f € L?*(Nz\N).

Theorem 2.11. If f € L?(Nz\N) then

= Z Z Z Z f$m5,m47m3

ms€Z>0 [V]]€(T5) oo \I's/(Fg)oc [Ma]€Z/3MmsZ m3EL

[ ]
b b
LD DD DD D D SR N SR SR SR S (1 Y S O S
k5€Z¢o [k4]EZ/3k5Z ks€Z k1€Z k4€Z¢0 [kg]GZ/2k4Z k1€EZ
)
+ Z Z J070,0,ks.k0 T Z Z J0,0,0,0,k1, ks
k3€Zxo [k1)€EZ/k3Z k1€Z ko €7

where the sum converges absolutely in L?>(Nz\N).
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In order to prove Theorem 2.11 for general f € L?(Nz\N) it will be necessary to define
the terms fims’m%mg, f§k57k47k37k1 for general f € L?(Nz\N). To do this, we observe that
Tryomsmamss fo.ks ka ks ke, are well-defined for general f € L?(Nz\N), and can therefore be

thought of as elements of L?(Q) where Q is a fundamental domain for Nz\N. We can for-

)
Vs ,Mg, M3

mally define and f£k57k4_k37 %, according to the series definitions we gave earlier in
(2.59) and (2.65). In section 2.7 we will use results from section 2.6 to show that the series

defining fEms’m ms and fozk5 ka ks ky CODVErge absolutely in L?(Q). Since the series defining

p

Sime,ma,ms a0 f(%ks, ki ks by are formally Nz-invariant, it would then follow that

fE
YsMs5,Myg,M3

and f'y.. k, ke.k, Can be identified as elements of L?(Nz\N). Once we have established that are
S s mams and fgks,k4k3,k1 are well-defined elements of L?(Nz\N), we will then complete our

proof of Theorem 2.11 for general f € L?(Nz\N).

2.6 Subspaces of L*(Nz\N)
By [12, Corollary 1.126], we see that the maps

oia : RO = N, oid(®1, T2, 3, T4, 5, T6) = Xe X5 X4 X3X2 X1, (2.68)

oar : RO — N, oal(T1, T2, 3, 24, 75, 6) = X1 X4 X3X2X5Xe, (2.69)
are diffeomorphisms. Consequently, for any n € N there exists unique x; € R such that
n = XeX5X4X3X2Xy;

a similar statement also for (2.69).

It will be important to integrate smooth functions f : N — C, and in order to do so, we
will make reference to certain ideas in differential geometry [14]. We begin by selecting U;il to
serve as a global coordinate chart for V. We then select an orientation for N, which in our
case, will be given by an ordered global frame of the tangent bundle. We select the following

smooth sections of the tangent bundle to form our global frame:

b X(fly 5= 0a, [ 0l

ordered from i = 1,...,6. Let dz}¥ denote the global frame of the cotangent bundle dual to
this global frame. When we wish to integrate smooth f : N — C of compact support, we shall

do so by computing

/ f-(daN Adal A dadl Ade} Adal A dzl).
N
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For g € N, let (¢((g)f)(n) = f(g~'n). When we solve for p; in the equation

PsPsPAP3PoPr = Q6Q5Q40Q3Q20Q1 X6 X5 X4 X3 X0 Xy (2.70)
we find that
D6 = Ue + Te, P5 = Us + T5, P4 = Uq+ Ty,
P3 =u3+ 3, P2 =q2+T2, P1=(q1+T1,
where

U = g6 — 6¢1¢2q372 — 3q1q213 — 3q1q375 — 2¢3 73 — 6q2q3 w3 — 6q1qaTeTs — 3q1T5T3
— 3¢5 + 3374 + 5,
. 2, _3 2 3 a2 3
Us = 5 — 3q195T2 — 3G1G2T5 — Q1T — 3¢5%3 + 3274,
Uy = qs — 2q1G2T2 — 175 — 2¢2T3,

Uz = g3 + q1%2.

Thus

/N (L(Q6Q5Q4Q3Q2Q1) ) f) - (dal¥ A dad A dxd A dal A ded A dzl)

oo ') %) o) o 00
:/ / / / / / fOO'id(CII+.731aq2+$2,U3+x37u4+x47u5+x5,
—o0d—00J—c0J—0J—0 J—c0

ug + x6)dac6 drs dry dxs dry dzq.
Since dx; are Haar measures for R, we can perform the following change of variables (in order)
Te = Tg — Ug, T5 = Ts — Us, Ty = Ty — Uy, T3 — T3 — Uus,
to conclude that

/ (U(QeQ5Q4Q3Q2Q1) ™) f) - (dal¥ A dad A dxll A dall Adal Adxl))
N

oo oo oo oo o0 oo
= / / / / / / fooia(zr, xa, 3,24, x5, x6) de drs day des dre day
— 00 — 00 — 00 — 00 — 00 — 00

:/ f(da¥ Adad A dal A dall Adal A dxl)).
N

Thus the differential form dz¥ A dxd A dzd Adzl Adzd Adrl induces a Haar measure for N.
Furthermore, this induced Haar measure is already normalized to give fundamental domains of

Nz\N a volume equal to 1, as can be seen from the following lemma.
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Lemma 2.12.
(a) Ny = 0iq(Z5) = 0.1:(Z%), and
(b) 01a([0,1)%) and 0.14([0,1)8) are fundamental domains for Nz\N.

Proof. Clearly 0;4(Z%) C Nyz. Since Ny is generated by N; = R;(1) it follows from (2.70) that

every element of Nz can be written as ojq(x) where z € Z°, and thus Nz = 0;4(Z°). Observe

X1 X4 X3X0X5X6 = Ro(—22325 — 3x120503 + 2125 + 26) Rs (—1125 + 25)

R4(—$1.’E% + $4)R3($1$2 + xg)XQXl (2.71)
implies that 0,1;(Z%) C Nz. Conversely, observe

X6X5X4X3X2X1 = X1R4(£L'1.’£§ —+ .’E4)R3(—$11’2 + 1'3)X2R5(£L'1£L'§ —+ £C5)

Re(—22223 + 3x1 0203 — 2105 + 6)

implies that Nz C 041¢(Z°), and hence Nz = 7.4(Z°).

Next we prove that 0iq([0,1)%) is a fundamental domain for Nz\N. The proof for o, ([0, 1))
is nearly identical. For n € N, there exists x; € R such that n = Xg X5 X, X3X5X;. In (2.70)
we can select integers ¢; and g2 such that 0 < ¢; + 21,92 + 2 < 1. Proceeding, we can then

select integers g3, q4, and g5 such that

0<gs+qrat+z3<1
0 < g1 — 2q1GoT2 — 173 — 2qox3 + 74 < 1

0 < ¢s — 314572 — 3q1q223 — a3 — 3g5 w3 + 3qowa + 25 < 1.
Lastly, we can select an integer gg such that

0 < g6 — 6192g372 — 3¢ 275 — 3q1q375 — 2qi s — 6gagsws

— 6q1qaT273 — 317573 — 3qax3 + 3¢374 + 175 + 76 < 1.

This shows that each coset of Nz\N has a representative in oiq([0,1)%).

It remains to show that no two elements of 0iq([0,1)°) are contained in the same coset of
Nz\N. To prove this, suppose that in (2.70) we have ¢; € Z and x;,p; € [0,1). By (2.70) it
follows immediately that g1 = g2 = 0. Substituting ¢; = g2 = 0 into (2.70) shows that we must
have ¢3 = q4 = ¢5 = 0. When we substitute ¢; = ... = g5 = 0 into (2.70) we find that g6 = 0

and hence it follows that x; = p; for all 4. O
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For ¢ : R — N a diffeomorphism, define
f°: RS — C where fo(z1,...,26) = f(o(x1,...,26)).
For K a compact subset of IV, define
Kig = 03" (K) and Ky, = o, (K).
Lemma 2.13. For K a compact set of N and f: N — C a smooth function, we have

/ f(n)dnz/ f"id(xl,...,xﬁ)datg...dwl:/ foue(xq, ..., x) dag . . . dxq,
K Kid Kalt
where n € N and dn is the Haar measure on N which gives fundamental domains of Nz\N a

volume equal to 1.

Proof. Our discussion prior to Lemma 2.12 shows that

/ f(n)dn:/ fo4(z,...,2z6) dzg . . . dzy.
K Kiq

When we solve for p; in the equation X1 X4 X3 X0 X5 X = PsPs Py P3Py Py, it follows from (2.71)
that p; can be written in terms of x;. It is then a straightforward matter to compute that
det(d%i(pj)) = 1. By [14, Corollary 14.3] we can then conclude the remaining equation in our

lemma. O

Let W = L?(Nz\N) and let r denote right-regular representation of N on W. Let

Wiis11,ms,ma,ms denote the closure of {fﬁm,)m%m3 fe LQ(NZ\N)7 f smooth},
Wo.ks ka.ks,ky denote the closure of {f()z,k5,k4,k3,k1 :fe L2(NZ\N), f smooth},
W0.0.0.0,k1.k» denote the closure of {fo.0.0.0.k, .k : f € L*(Nz\N), f smooth}, (2.72)
where all these closures are taken in W. One can check that these spaces are closed under r by
referencing the definitions of fﬂ%ms’mbms (2.59), f5k57k4,k37k1 (2.65), and f0.0,0,0,k1 ks (2.71), all

of which are defined by conditions and actions on the left.

For f,h € L?(F) where F = [0,1)°, let
1 1
(o) = / / f@r,... 26)h(@r o @) das...dzy and |flar = (f, Y2 (2.73)
0 0
By Lemma 2.13 it follows that if f,h € W = L?(Nz\N) then

(fsh) = (f7, 07 p = (f7 b)) 7 and |[fll2 = [|f7

2.7 = |17 |2.7;
recall that we defined (-,-) in (2.62) and || - ||z in (2.63). We shall use these equalities often
throughout this section.

For the rest of this section we will suppose that f € W = L?(Nz\N) is a smooth function,

unless indicated otherwise. We will also assume that ¢; € Z.
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2.6.1 Analysis of W(p))msmims

Suppose [[y]] # [[#id]]. In this subsection we will show that Wipy)j ms my,m, 1S isometric to
L?(R?). Via this isometry we will construct a representation of N on L?(R?). We will then
analyze the smooth vectors of L?(IR?) under this representation, which will allow us to give an
explicit description in section 2.7 of the Nz-invariant distributions on N. To begin this analysis,

observe

VI6T5TuTsy ' Q3Q20Q1 X6 X5 X4 X3 X2 X1
= Rg(bts + ate + ug)Rs(dts + cte + us)Ra(ts + ua)Rs(qs + ats + 12 + x3)

Ro(g2 + ¢tz + z2)Ri(qn + 21),
where

ug = —3cqzts — bacqsts — 2a°ct; — 6q1g2q3wa — 6aqigatars — 6cqigstsmy
— 6acq1t372 — 3qqax3 — 3q1q373 — 3aqitsrs — 3cqitsas — 2qias — 6g2q373
— 6bagatsxrs — 6cgstsrs — 6act§3§3 — 6q1q22x273 — 6cqitsroTs — 3q1x%a:3
— 3q2x§ — 3ct3x§ + 3q3x4 + 3atsxs + qr x5 + X6,

Uy = —3c2q3t§ — ac2t§ — 3q1q§m2 — 6¢cq1gatsxe — 3c2q1t§x2 — 3q1q2m§ = 30q1t3x§
— qlzg — 3q§a:3 — 6cqatsxs — 302t§z3 + 3qox4 + 3ctszy + 5,

ug = —2cqsts — act§ — 2q1q2x2 — 2cqit3Te — qlxg — 2gox3 — 2ctzxrs + 4.
Recall that (2.58) and (2.7g) shows that

fol'y,mg,,m4+3(aq2—cqa)ms,mg—2(aq2—cq3)m4—3(aq2—cq3)2m5 (TL)

= f'y,m5,m4,m3 (Q3Q2Q1n)
1 1 1 gl
= / / / / FOTT Ty Tsy ™ Q3Q2Q1n) (—msts — maty — mats) dte dis diy dis.
o Jo Jo Jo
Therefore, when we perform the simultaneous change of variables (2.8) and then perform the
following change of variables (in order)

+x
te — 6 — Ug, ts — t5 — us, ty >ty — ug, ﬁgl—>t3—q2 2’
C
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it follows from Lemmas 2.3 and 2.4 that

Oia
(fol"hms7m4+3(a!,‘(2—Cqs)ms,m3—2(aq2—Cqs)m4—3(af12—0%)2m5) (w1, 22, T3, L4, T5, T6)

= fyms,ma,ms (Q3Q20Q1 X6 X5 X4 X3X2X1)

_ e(m3QQ _amag  a’msgd L 2ma(agz — cqs) — 3ms(aga — cqs)”
c C Cc C
(a —cq1)(ma +3ms(age — cg3)) 5 (a—cq1)’ms 4

T2

+ 2(my + 3ms(agqe — cq3))raxs + 3ms(a — cqy)rixs — Semsroxs
+ (ma + 3ms(age — cqz))zs + (ams — cmsqr)xs — Cms%)

Uryms,ma,ms (@1 + 21, —Cg3 + agz + a2 — cqix2 — cx3), (2.74)

where

/w'y ms,m4,ms3 51753 wf'ym5,m4 m3(51,83)

/ / / / f‘"d s1,cts, atz — 3,t4,t5,t6)e(—m3t3—acm4t§+a262m5t§

— myty — amsts + cmste + 2mytsss — 3acm5t£2))33 + 3m5t38§) dtg dts dty dts. (275)

As indicated in the above definition, we will at times suppress writing f in the subscript of

Y fivy.ms,ma,ms When context is clear. Observe that by (2.59),

( $m5’m4,m3)aid (wlvaa $37x47m5a$6)

_ oid
- Z Z Z (fo1%m5~,m4+3(aq2*ng)m5,m3*2(aqz*Cq3)m4*3(a¢I2*Cq3)2m5) ($17~~~,-T6)

q1€Z q3€Z [q2] €L/
2 2 3
o Z Z Z (m3CI2 _amygy  a"Mmsgy
c c
Q€L q3€Z [q2)€L/ L

ms — 2my(aga — cq3) — 3ms(aga — cq3)2x (a —cq1)(mq + 3ms(aga — ng))xQ
2 — 2
c c

+
— m 3 + 2(myg + 3ms(age — cq3))x2xs + 3ms(a — cql)mgxg - 3cm5x2x§

+ (ma + 3ms(age — cgs))ra + (ams — emsqr) s — Cms%)

Voy,ms,ma,ms (Q1 + T1, —Cq3 + aga + axa — cq1x2 — cx3). (2.76)
From (2.74) we see that
<(fQ;1'y,m5,m4+3(aQchq3)m5,m372(aq27cq3)m473(a(p70q3)2m5)Uid’

[ —
(fR1(41)*l'y,m5,m4+3(a€27cég)m5,m372(a£27cZ3)m473(aZ27653)2m5) d>.7: =0

if g1 # ¢1 or aga — cq3 # aly — cls (or equivalently, if ¢1 # €1, g2 # {2, or g3 # {3); simply

perform integration is the x5 and x4 variables in (2.73) to see why this is the case. Thus by
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(2.76), the Pythagorean theorem, and changing variables, we find that

o 2
(H ¥,ms, m47m3|| ) <|| ¥,1M5,Me,MM3 ld||2,]-‘>
= Z Z Z (H(lel’Y,m57m4+3(aqz—cqa)ms7m3—2m4(aqz—cq3)—3m5(an—ch)Z)Jid

2
2,]-')
Q1 €L q3€L [q2]€L/cZ

= Z Z Z / / / |¢’Y ms,may, mg(q1 +m1,aq2+ax2—cqlxg—c(m3+q3))|

q1€Z q3€Z [q2)EZL/ cZ

dl‘g d.IQ dIl

= Z Z / / / [y, ms,ma,ms (@1 + 21, ag2 + axs — cqra2 — ca3)|? dug dvy day

q1€Z [q2]€L/ L

=> > /// |9y msmams (@1 + @1, —cx3)|? dag dag day

q1€Z [q2]E€EL/ L

= Y / / |9y msma,ms (21, —x3)|” ds day

lg2]€Z/cZ

= [ Wmmaans 1) g dn. (2.77)

This implies that ¥ s m..ms € L?(R?). Conversely, given ¢ € L?(R?), we can define

hw;[['y]],mg,m4,m3 (:Ch e 7376) = Z Z Z Ty 05,03 (1‘13 XT2,T3,T4,Ts5, 1‘6)1 (278)

1 ELL3EL [€2)EL) T

where

10y 00,05 (T1, T2, T3, T4, T5, T¢)

(m3€2 amM% a2m5€§ ms — 27714((152 — 063) — 37715 (CLZQ — 863)2

=e - - + T2
C C & C

(@ —cly)(mg + 3ms(aly —cl3)) 5 (a—cl1)*ms 3

Lo =~ T2
c c

+ 2(my + 3ms(aly — cls))zoxs + 3ms(a — cby)rirs — 3cmsroxs
+ (ma4 + 3ms(aly — cl3))xs + (ams — cmsly)xs — cm5x6)

’L/J(Zl + 21, —cls + als + axe — clixs — CLL'g).

One can check that Ry((y]],ms,ma,ms 1S @ well-defined element of L?(F) by repeating the argument
in (2.77) with f7 ms.ma,ms Te€Placed bY Ny (4] ms,ma,ms- Furthermore, it can be shown that

R[] msma,ms 18 0 (Nz)-invariant. To see that this is the case, one solves for p; in (2.70)

and observes that

70y 2,65 (D1, D25 D35 Py P55 P6) = T2y 41 botqz,3-+01q2+q5 (L1, T2, T3, Ta, T, Tg).-

Thus vy, (j]),ms,ma,ms © 0;11 is a well-defined element of L?(Nz\N).
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Let (1)), ms,mams © L2 (R?) = Wity ms ma,ms Where

D] msmams (V) = hups[(y]]msmams © Tiq

and v € L?(R?). Technically, we should prove that

—1 —1\X
Pps{iyl)mssma,ma © Oiq- = (Pags[)],ms,ma,ma © Oia ){iy]],mes,ma,ms

to justify that Wiy ms,ma,m, truly is the co-domain of @[y} s mye,m,- To see that this is the
case, it suffices by (2.59) to show that

1 1 1 1
/ / / / T4 03,05 © i (QT ' NTETTuTs(Q7 ') ™ X6 X5 X4 X3X2X1)
o Jo Jo Jo

e(—m5t5 — (myg + 3ms(aga — cq3))ts — (m3 — 2my(age — cq3) — 3ms(ags — cq3)2)t3)

dte dts dty dts
0 if 61 # q1,l2 # g2, or l3 # g3
= . (2'79)
rqnqmqa(xlyu-axﬁ) if {4 = q1,02 = q2, and f3 = g3

To show that (2.79) holds, one solves for p; in the equation
PsPs PPy Py P = (Q7 ') ToTs TuT3(Q1 ') X6 X5 Xa X3 Xo X
and substitutes 1y, ¢, ¢, (D1, D2, D3, P4, Ps, Ps) in for
Ty 2.t © 0g (QU N T TIT3(Q1 1) ™ Xo X5 Xa X3 X X1)
on the left-hand side of (2.79). One then sees that the first case of (2.79) follows when we inte-
grate in the tg, t5, and t4 variables, and that the second case of (2.79) follows from a straightfor-

ward calculation. By (2.77), we see that @[] ms ma,ms 15 an isometry; indeed, @11 ms . ma,ms 15 &

surjection since ®((,] ms,m4,m; Maps smooth functions in L?(R?) to a dense set in Wi, ms,ma,ms-

7]

We define a representation [y}, ms,m4,m, of N on L?(R?) by the equation

T[y]],ms,m4,ms3 (n)(¥) = (I)ﬁ'yl}],ms7m41m)3(r(n)q)[['y]],ms,m4,m3 (),

where 1 € L?(R?). We wish to give an explicit formula for T([y]],ms,ma,ms- L0 accomplish this,

let

Py ,es .05 (wlvaa $37x4,$571'6)

m3€2 am4€§ a2m5€§ ms3 — 2m4(a€2 - 663) - 3m5 (CLKQ - 663)2
e( - - + T2

C c c C

(@ —cly)(mg + 3ms(aly —cl3)) 5 (a—cly)*ms 3

- 2 2

c c

+ 2(my + 3ms(aly — cls))zoxs + 3ms(a — cby)rirs — 3cmsroxa

+ (m4 + 3m5(a€2 — ng))x4 + (am5 — cm5£1)$5 — cm5x6),
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and let

q(z1’x37y13 ce ay6)

3ams xgyg

_ e(mgyz _ 2mazzys  3msriys  amays

C C c

2 3
_amsy;

+ maT1ys — + 3msT173Y5
+ 2amsT1ys — emsTTYs + 2mayeys + 6msT3yeys + 3amsysys
— 3emsT1Y5Ys — 3CMsY2y3 + MaYa + 3MsT3Ya + amsys — CMsT1Ys — cmsye)-
When we solve for p; in
PyPsPyPsPo Py = X X5 X4 X3 X0 X1 YsYsY1Y3YaY) (2.80)
we find that
Peqes,05 (p17p2’p3ap41p51p6)
= Pty to,05(21, T2, T3, T4, 5, ) (21 + L1, —clz + aly + axy — clixo — cx3,Y1,. .., Y6)-
Since
T4y 05,03 (11?17 XT2,T3,T4,Ts5, CEG)
= Py 0a,05(T1, 2,3, T4, T5, T6)Y ({1 + 21, —clz + aly + axy — clyza + cx3),
it follows that
70y 05,05 (plaanp3ap4ap57p6) (281)
= Puy ,05,05(P1, D2, D3, P4, D5, D6 )V ({1 + p1, —cl3z + aly + apy — clips + cps3)
= Pty ,05,05 (1'17 X2,x3,T4,Ts5, fﬁ)‘](gl + X, _C‘€3 + a€2 + ary — C€1$2 — CX3,Y1, .- 7y6)

(6 + 1) + y1, (—cls + aly + axo — clyzo — cas) + (ay2 — c(by + x1)y2 — cy3)).

Observe (r(Y@%ﬂYngYl)d)[M]’mE),m4’m3 (¢))(X6X5X4X3X2X1) is simply a sum of

10, 5,05 (D1, P2, P3, P4, D5, P6). Thus by (2.81) we see that
(r(YoY5YaY3Ya Y1) @ (1)) i amsms () (X6 X5 Xa X3 X X1)

is of the form ha where ¢ € L?*(R?). When we solve for 4, we are then able to

[V]],ms,ma,m3’

deduce that

(W[[’Y]]7m5»m47m3 (Y6Y5Y4}%Y2Y1)¢) (317 33)

= q(51,53,Y1,-- -, ¥6)V(51 + Y1, 83 + ayz2 — cs1y2 — cys3)
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3amss3y3

2 2
_ e(m3y2 _ 2mys3y2 3msszys  amay;
c c c

2 3
_aTmsy;

+ mysiys — + 3mss183Y5
+ 2amss1ys — cmssiys + 2mayays + 6mssayays + 3amsyays

— 3cmss1ysys — 3cmsyays + Mays + 3Mss3ys + amsys — cmss1Ys — CmSyG)

P(s1+y1, 83+ ay2 — cs1y2 — cys). (2.82)
Let f € W[T‘CY]] ms.ma.mss that is to say, let f be a smooth vector under the action of r. By

definition, n acts upon such f according to (1.1). Since ®((y)],ms,m4,ms i an isometry it follows

that ¥ = ¥ ¢,((4]),ms,[ma],ms 18 also a smooth vector and that n acts upon ¢ via Ty ms,ma,ms

and (1.1). In particular, observe

. (7'[' , M5, Mg ,Mm (Tl)qlf) (51, 83) — 1,[}(81, 53)
(R mamons (P1) s1,55) = Jimg T (0lmemmacms ’

i Pt tss) ZW(s188) g o

t1—0 tl

and

- (T)ms magms (T3)Y) (51, 83) — (s, 53)
({01 ms s (Pa) 1) (1, 83) = limy (pme o t3)
iy (51083 — cts) — Y(s1, 83)
ts—0 t3

= —c(0s,¥) (51, 53).-

The above limits are in L2(IR?) under the usual L? norm, and thus technically, 95,1 and 0,1 are
weak L? derivative of 1. By repeated application of the above argument we have that 1) has weak
derivatives of all orders. By the Sobolev embedding theorem it follows that 1 = ¥ 1.y ms,my,ms
is a smooth function on R? which vanishes at infinity [5, Theorem 9.17].

Also observe that

(W[[W]Lms,m4,m3 (T4)1/)) (s1,83) —(s1,53)
ty

(W[['y]],m5,m4,m3 (P4)¢) (517 53) = t14i£1>10

e(m4t4 + 3m5t453) -1
ta

= ¢(81783) d

= w(81783) tianO d7t4

[e(mats + 3mstass)];, —
= 2mi(ma + 3mss3)Y(s1, $3),

and

. ™ JM5,Mg, M (TS)’(/} (51353) —¢(51783)
(o mems (P)) (51, 5) = Jimy (1211 ma t5)

e(amsts — cmysits) — 1
t5

= (s1, S3) tELno = (s1, 53)d75[e(am5t5 - cm551t5)}t5:0

= 2mi(ams — cmss1)Y(s1, S3)-

By repeated application of these arguments it follows that |s1|71|s3]920%1 9% [p] € L?(R?) for all

S1 783

ki, ji € Z>o. Once again, by the Sobolev Embedding Theorem it follows that |s1]7 s3] 0F1 9% [4)]
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is a smooth functions on R? which vanish at infinity. Thus

w = wf;77m57m47m3 € S(R2)7 (283)

where S(IR?) is the space of Schwartz functions on R2.

2.6.2 Analysis of Wo,k5,k4,k3,k1

Suppose ks # 0, ks # 0, or k3 # 0. In this subsection we will show that Wo r, iy ke 1S
isometric to L?(R). Via this isometry we will construct a representation of N on L*(R). We
will then analyze the smooth vectors of L?(IR) under this representation, which will allow us to
give an explicit description in section 2.7 of the Ngz-invariant distributions on V. To begin this

analysis, observe

TeT5T4T3T1 Q2 X6 X5 X4 X3 X0 X,

= R¢(te + ug)Rs(t5 + us)Ra(ts + ua) R3(ts + uz)Ra(ge + x2)R1(t1 + 1),

where

—2q3t2 3q§t1t3 — 6q§t%x2 — 6gatitsre — Gth?mg — 3t1t3x§ 2t1x2
— 6q%t1x3 — 6gatsrs — 6gotizoxs — 3t1x§x3 — 3qzx§ + 3qotiz4 + 3ty
+ tizs + 26,

= —q3t1 — 331132 — 3qat125 — 25 — 3g5w3 + 3oy + 5,

Uy = —qgtl — 2qot1x9 — tl.ﬁ% — 2qox3 + 14,

uz = qot1 + t172 + 3.

Recall that (2.64) and (2.7h) show that

f07k57k4+3k5q27k3*2k4Q2*3k5q§,k1*k3q2+k4q§+k5q§ (n)

= [0,k kaks, kr (Q210)

/ / / / / F(TsTsTyT3 Ty Qon)e(—ksts — katy — kst — kity)

dte dts dty dts dt;.
Therefore, when we perform the following change of variables (in order)

tg = te —ug, ts5r>ts—us, tgr>ts—ug, tz3r—>tz—uz, t1+—>t—x,
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it follows from Lemma 2.3 that

(fO,k5,k4+3k5q2,k372k4q273k5q§,k17lc3q2+k4q§+k5qg)Uid (x1, %2, T3, %4, T5, Tp)
= f0,ks ka ks ke (Q2X6 X5 X4 X3X0X1)
= e((k1 — ksqz + kaq3 + ksq3)x1 + (ks — 2kaqe — 3ksq3) (w3 — 2172)

+ (kg + 3ksqa) (24 + 2123) + ks (w5 + 331902))7% ks kg ks ky (T2 + q2), (2.84)

where

¢0 k5,/€47k3,7€1 82 ¢f ;0,ks5,ka ks, k1 (52)

/////fg’d (to,t5,ta,ts, S2,t1)e(—kit1 — ksts — kata — ksts

+ k3t152 — k4t1$% — k5t1$§) dt(} dt5 dt4 dtg dtl. (285)

As indicated in the above equality, we will at times suppress writing f in the subscript of

W§0,ks,ka ks, When context is clear. Observe that by (2.65),

(Fooks s k)7 (@1, T, @3, T, 5, )

— L )%id
- § (fo,k‘s7k4+3k5qz,k3—2k4q2—3k5q%,k‘1—kgqg+k4qg+k5qg) (z1’z27x37x47x5?z6)

q2E€Z
= e((ky — kago + kags + ksg3)a1 + (ks — 2kags — 3ks3) (w5 — w125)
q2E€Z
+ (ks + 3ksqo) (x4 + 2123) + ks (w5 + 2123) )10 ks ka ks ks (T2 + G2)- (2.86)

From (2.84) we see that
<(f 2 2 3)71d
0,k5,ka+3k5q2,k3—2kaq2—3ks5q5,k1—k3qa+kaqs+ks5q5 )
(f 2 2 a)gid> =0
0,ks,kq+3ks5l2,ks—2kala—3ksl3 k1 —ksla+kal5+ksls

if go # {9; simply perform integration is the x4, 3, and 7 variables in (2.73) to see why this

is the case. Thus by (2.86), the Pythagorean theorem, and changing variables, we find that

2 2
(Hf02,k57k4,7€3,’€1 Hz) = (H<f02,/€57/€47k3,7€1 >Uid Hz,]-‘)

2
= Z (H(f(),ks);k4+3k5qz,k327€4£]23’€5q§,k1’C3Q2+k4q§+ksqg)oid 2]_.>
q2€7Z ’
o
/ ety (52 + )P doo = [ e o2) P e (28)
q2€Z e

This implies that 1o gy k, k5.6, € L2(R). Conversely, given ¢ € L*(R), we can define

Pai0 ks oa kg r (T15 T2, L3, Ta, Ts, Lg) = E 1o, (21, T2, T3, T4, T5, Te), (2.88)
2XY
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where

U2 (171, X2, T3, T4,Ts5, xﬁ)
= 6((](11 — k3€2 + /{J4€§ + k5€§)l’1 + (kg - 2]{14€2 - 3]€5€§)(1’3 — 1711‘2)
+ (kg + 3kslo) (w4 + 2123) + ks (25 + 2123) )1 (22 + £o).
One can check that hy.0 ks ky ks, 15 & Well-defined element of L? (F) by repeating the argument
in (2.87) with f% . k. Teplaced by hy.o ks ky ks - Furthermore, it can be shown that

a0, ks e ks . 1S Oig (Nz)-invariant. To see that this is the case, one solves for p; in (2.70) and

observes that

rez(p1,p2,p37p4’p5,p6) = T62+q2($1,$27953,$47$5,$6)~

Thus A0, ks ka ks kr © Oigq 18 @ well-defined element of L2(Nz\N).

.72
Let ®0,k5,k4,k3,k1 L (R) - WO,ksak47k3,k1 where
1
Do,k ka ks ki1 (V) = Pps0,ks ke ks oy © g -
Technically, we should prove that

-1 _ —1\X
a0,k ks ks ke © Oiq = (Rps0,ks ka,kis by © T )0oks ks ki ka

to justify that Wo g, &, ks k, truly is the co-domain of @ . , ks, - TO see that this is the case,

it suffices by (2.65) to show that

1 1 1 1 1
/ / / / / T¢, © 0’1:11(T6T5T4T3T1X6X5X4X3X2X1)e( — k5t5 _ (k4 + 3k5Q2)t4
o Jo Jo Jo Jo

— (ks — 2kaqz — 3ksq3)ts — (k1 — ksqz + kaqs + ksqi)t1) die dts dty dts dty

0 if 2 # q2
Tq2($1,...,.’£6) lf€2:q2
To show that (2.89) holds, one solves for p; in the equation
PsPsPyP3sPo Py = T T5T)T5T) X6 X5 X4 X3 X0 X (2.90)

and substitutes ry, (p1, p2, P3, P4, P5, Pe) in for 1, oai;ll (T6T5TyT3T1 X6 X5X4X35X2X7) on the left-
hand side of (2.89). One then see that the first case in (2.89) follows when we integrate in the
t4, t3, t1 variables, and that the second case in (2.89) follows from a straightforward calculation.
By (2.87), we see that ®g kg ky ks, k, is an isometry; indeed, ®o gy kg ks.k, 1S & surjection since

D0 ks ka.ks.k; Maps smooth functions in L2(R) to a dense set in Wo gy k, ks k; -
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We define a representation 7 s k,.ks,k: of N on L?(R) by the equation

70,5 ks b () () = B0k s i ien (P R0 e s s by (1)),
where ¢ € L*(R). We wish to give an explicit formula for 7o g k, ks.k - To accomplish this, let
P, (71, T2, T3, T4, T5, Tp)
= e((k1 — kslo + kal3 + ksl3)x1 + (ks — 2kals — 3ksl3) (x5 — 2122)
+ (ka + 3kslo) (w4 + 2123) + ksx5)

and let

q<$273/1» e 7y6)
= e(kiy1 — kazayr + kazdyr + ksziyr — ksyryz + 2kazoyiye + 3ksz3y1yo + kayiys

+ 3ksov1ys + ksy1ys + ksys — 2karoys — 3ksx3ys + kays + 3kszoys + ksys).

When we solve for p; in (2.80) we find that

Pes (D1, D2, D3, P4, D5, P6) = Pe, (%1, T2, T3, T4, 5, T6) (T2 + q2).
Since
10, (21, T2, T3, T, T5, Te) = Pr, (T1, T2, T3, Ta, Ts, Te) Y (L2 + T2)

it follows that

72, (P1, P2, P3, P4 Ps, Do)

= pu, (P1, P2, D3, P4, P5,P6) Y ({2 + P2)

= po, (1,22, T3, T4, T5, T6)§ (b2 + T2, Y1, - - -, Y )V((l2 + z2) + y2). (2.91)
Observe (r(YsYsYaY3YaY1)Po ks by ks by (1)) (X6 X5 X4 X3 X2 X1 ) is simply a sum of
70, (P1, D2, P3, P4, D5, P6). Thus by (2.91) we see that

(r(YoYsYaYsYo Y1) D0 kg ks s ey (V) ) (X6 X5 X4 X3 X0 X71)

is of the form h -~

D:0.ks ka ks where {l; € L2(R). When we solve for {/zv, we are then able to deduce

that
(00, ks ki ks ey (Y6 Y5 YaY3Y2Y1)1h) (52)
= q(s2,Y1,---,Y6)V (52 + y2)
= e(kiy1 — kssay1 + kassyr + kssiyr — ksyays + 2kasayiye + 3kss3y1ye
+ kayrys + 3kssoy1ys + ksy1ys + kays — 2kasays — 3kss3ys + kaya

+ 3kssays + ksys) ¥ (s2 + y2). (2.92)
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Let f € W55 ks by - OI0CE Po s ks ks k18 an isometry it follows that ¢ = 1 £.0 ks ka ks ky 18

also a smooth vector and that n acts upon v via mg gy ks ks,k, a0d (1.1). In particular, observe

(71—016 P (P2)¢)(82) — lim (Wo,k5,/€4,k3,k1(T2)1/))(82) —1/}(52)
yks ka, ks, k1 P

—0 tQ
— 1im Y(ta + 52) — P(s2)
to—0 t2

=/ (s2). (2.93)

The above limit is in L?(R) under the usual L? norm, and thus technically, 1’ is the weak
L? derivative of 1. By repeated application of the above argument we have that ¢ has weak
derivatives of all orders. By the Sobolev embedding theorem it follows that v = 1 £.0.k5 ka, ks, k1
is a smooth function on R which vanishes at infinity.

Also observe that
(770,195,k4,k3,k1 (Tl)d])(‘g?) — ¢(52)

tq

e(k1t1 — kst182 + k4t18% + kg,tls%) -1

m

t1—0 tl

(0,5 ke keg ke (P1) 1) (52) = Jim,

d
= w(SQ)Th [G(kltl — k3t182 —+ k4t18% —+ k5t15§)]t 0

1=

= 271'7,(]{51 — k382 + ]{5485 + k’55§)¢)(82), (294)
5 T -
(o ks (P (52) = Jing (Tt (T0N2) = 0122)
t3—0 t3
G(kgtg - 2]€4t382 - 3k5t38%) —1

= P(s2) lim t

d
= w(SQ)% [e(k‘gt?, - 2k4t352 - 3k5t3$%)} t3=0

= 27i(ks — 2kqso — 3k553)Y(s2), (2.95)
. 0, ks ka kg, k1 (L2 So) — W(s
(o s (P (52) = Jig (Tt (T0N2) = 0102)
o . e(k4t4 + 3k5t482) -1
- ’(/}(82) t£1§0 ty
d .
= ¢(82)d7t4[e(k4t4 + 3k5t482)]t4:0 = 27TZ(]€4 + 3k582)¢(82). (2.96)

By repeated application of these arguments it follows that |sy|/1)*) € L%(R) for all k,j € Z>o.
Once again, by the Sobolev Embedding Theorem it follows that |s|7¢)(®) are smooth functions

on R which vanish at infinity. Thus

Y= ¢f;0,k5,k4,k3,k1 € S(R)7 (297)

where S(R) is the space of Schwartz functions on R.
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2.6.3 Analysis of Wy 0.0k ks

In this subsection we will show that Wy 0,00k, ,k, is isometric to C. To begin this analysis,

observe
TeTsTyT5T1 To X6 X5 X4 X3 X2X1
= Re(te + ug) R5(ts + us)Ra(ts + ua) R3(ts + usz) Ra(g2 + z2) Ra(t1 + 71)
where
ug = 2433 — 3t1t3ty — 6t3t2wg — 6tytotswy — 6titexs — 3titzxs — 2323 — 6t1taws
— 6totzxry — 6t1toxoTs — 3t1x§m3 — 3t2x§ + 3t1toxy + 3tszy + t125 + T,
us = —t1t3 — 3tytizy — 3titox: — t1x3 — 3t3xs 4 Stoxy + x5,
Uy = —tltg — 2t1toxy — tlxg — 2oy + T4,

uz = ti1ts +t1x9 + 3.
Therefore, when we perform the change of variables (in order)
te — te — Ug, ts — 15 — us, ta — g — Uy,
ts — t3 — us, t1 —t — 1, to — to — x9,
it follows from Lemma 2.3 that

f((JT,i(()i,O,O,kl,kg = Ck17k2€(k1x1 + ka?)v

where

1 1
Ckl,k2 = cf;kl,kz = /0 .. /0 faid (tl,t2,t3,t4,t5,t6)€(—k1t1 — kgtg) dt6 e dtl. (298)

As indicated in the above equality, we will at times suppress writing f in the subscript of cf.x, &,
when context is clear.

Observe
1/2

1 1
|fo,o,o7o,k1,k2||2—(/ / ckl,kze@lxl+k2x2>|2dx2d:c1) -
0 0

Thus the map
0.0.0,0.k1 k2 = Chy ks (2.99)
is an isometric injection from Wy 00,0,k ,k, into C. For c € C, let
heskey ko (21, T2, 03, T4, 5, 26) = ce(krz1 + ko).

One can easily show that h¢x, i, © 0;11 is Nz-invariant, and thus it follows that the map (2.99)

is in fact a surjection onto C. Thus Wy 00,0k, %, i isometric to C via (2.99).
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2.7 A Fourier Series for Ny-invariant Distributions on N

We will use the following lemma to prove Theorem 2.15, and from Theorem 2.15 we will deduce

Theorem 2.11 for general f € W = L?(Nz\N).

Lemma 2.14.

w=| P D D D Winmsmims

M5 €20 [V €(5)oe\[s /(Ds)oe [ma] €Z/3msZ ma €l
(V)] [id]

ol B D DB D Workikm

ks€Zzo [ka]€Z/3ksZ k3C€Z k1 €L

@ @ @ @WO,O,k4,k3,k1 @ EB @ W0,0,0,k3,k1

ka€Zo [k3)€L/2ksZ k1 EZ k3€Zzo [k1)€EZ/k3Z
S (@ EB WO,O,O,O,kl,k2> (2.100)
k1€Z ko €Z

where the subspaces on the right-hand side of (2.100) are defined in (2.72).

Proof. In the previous section we showed that:

o if u € Wiy}, ms,ma,ms then u”id is of the form (2.78),

2]
o if u € Wy ks ks ks ke, then u”id is of the form (2.88).

From these observations and the fact that (uq,us) = (uf™

,ug'y x for uy, ug € W, one can easily
check that the subspaces listed on the right-hand side of (2.100) are pairwise orthogonal. Thus
it follows that the right-hand side of (2.100) is indeed contained in W in a natural way.
Recall that we have proved Theorem 2.11 for smooth f € W = L?(Nz\N). This shows
that smooth f € W are contained in the right-hand side of (2.100). Since both the left and
right-hand sides of (2.100) are closed and since both the left and right-hand sides of (2.100)

contain smooth f as a dense set, it follows by density that (2.100) holds. O
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Theorem 2.15. For f € W = L*(Nz\N) we have

faid ($1,$2,1‘37I’4,ZL‘5,$6) = Z Z Ckl’k26(k1$1 —+ kgl’g) (2101&)
k1E€EZ ko €L

+ Y > D ek — ksga)an + ks(—z122 4 23))10,0,0.ks.k (T2 T G2) (2.101b)

k3€Zxo [k1]€L/k3Z q2€Z

+ Z Z Z Z e((k1 — kaqz + kag3)x1 + (ks — 2kaqo)(—z122 + 23) (2.101¢)

ka€Zzo [k3)€ZL/2ko7 k1 €L q2€Z

+ ka(z123 + $4))¢0,0,k4,k3,k1 (2 + ¢2)

+ Z Z Z Z Z e((k1 — k3qo + k‘4(]§ + kSQS)xl

ks EZ;éO [k‘4]€Z/3k5Z k3s€Z k1€Z q2€Z
+ (ks — 2kaqz — 3ksq3) (x5 — 122) + (kg + 3ksqo) (x4 + 2123) + ks (25 + 2123))

Y0,k ka ks ko (T2 + G2) (2.101d)

R S S D S D

ms€EZ>o [["/]]G(F[—j)m\r‘ﬁ/(rﬁ)w [m4]€Z/3m5Z m3€ZL q1E€EL Q3L [qQ]GZ/CZ
(V1A[[id]]

N m3 — 2my(ags — cq3) — 3ms(ags — CQ3)2332 (a — cq1)(mg + 3ms(aga — cqs3)) 2
- 2
c c

a—cqi)’m
— waﬁ + (my + 3ms(age — cq3)) (2213 4+ 24) + (a — cqr)ms (233 + 25)

— cms(3ze73 + $6)>¢w,m5,7n4,m3(ql + 1, —cg3 + age + axe — cq1x2 — cx3) (2.101e)

where the above series converges absolutely in L*(F) (recall F = [0,1)%) and where 1 ms my.ms
W0, ks kg ks by » ANA Ciy ky are defined according to (2.75), (2.85), and (2.98) (respectively). Fur-
thermore, it follows that ¥, my mams € L*(R?) and $o ks ka ks, k1 € L2(R). In particular, if f €
W (a smooth vector of W under the right reqular representation) then o ms myms € S(R?)

and Yo ks ky ks ke, € S(R).

Proof. Observe that Lemma 2.14 shows that f € W must be equal to an absolutely convergent
series of the form (2.101), except that it is not immediately obvious that the ¥y mg my mss
Y0,k ka ks kys Chi ks i1l SUCh a series expansion must be defined by (2.75), (2.85), and (2.98)
(respectively); a priori, they are only known to be elements of L?(R?), L?(R), or C. However, if
in the definitions of ¥ .y ms ma.mss YF:0,ks ks ks kes a0 Cropy k, given in (2.75), (2.85), and (2.98)
(respectively), one replaces f7id with the aforementioned series expansion and computes the
resulting integrals, it becomes apparent that the ¥ ;. my mss V0,ks ks ks k1> a0d Ck 1, given by
Lemma 2.14 agree with those defined in (2.75), (2.85), and (2.98) (respectively).

The statement regarding f € W follows immediately from (2.83) and (2.97). O

Recall that the principal obstruction to stating Theorem 2.11 for general f € L?(Nz\N) was
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our inability to define f>

ims,ma,ms and f&ks,k%k&kl for general f € L?(Nz\N). Indeed, although
we could define ffms’m‘hmg and f(JZ,ks,k4,k3,k1 formally using series, it was not immediately
obvious that such series should converge in L?(Q) where Q is a fundamental domain for Nz\N.

. Oid
By Theorem 2.15 we see that the series defining ( Simsma, ms) 7 and (foz,k57k4k3,k1> converge

absolutely in L?(F) (recall (2.76) and (2.86)). Since ;4 is a homeomorphism, it follows that the

series defining f>

by it als ; ‘0 T2 —
S ms.mams a0 fo oo, must also converge absolutely in L°(Q) where Q =

oiq(F). Since Q is a fundamental domain for Nz\N and since the series defining f>,,_ ..

Z . . . Z Z
and [k, k, ks.k, are formally Nz-invariant, it follows that f2,, . ... and fg o oo . are

well-defined elements of L?(Nz\N). Furthermore, Theorem 2.15 essentially shows that

fUid = Z Z Z Z s mmm4,m3) -

ms €250 [V €(Ta)o\Da /(Da) e [mal €2/3msZ ms€l

([VIA[[£id]]
Tid U]d
D D DD Fokekemk) T D D D (Fookakek)
ks€Zxo [ka]€Z/3ks L k3 €L k1 €L k4€Zso [k3|€Z/2ksZ k1 EL
b Tid Tiq
+ 3 Y (Foowen) D D (0,000 k)7
k3€Zo [k1]€EZ/k3Z k1€Z ko€Z

from which it follows that Theorem 2.11 holds for general f € L?(Nz\N), since ojq is a home-
omorphism.

It should be noted that our choice of coordinate chart o;q for this Fourier series is in some
sense arbitrary, and has some drawbacks with regards to certain computations we will need
to perform. As we will see later, such computations are easily performed by using a Fourier
series for f7»* instead. Deducing a Fourier series for f=* is a simple matter now that we have

established a Fourier series f7. Indeed, by (2.71) and (2.101), we see that for f € W,

fo (x1, o, T3, T4, T5,T6) = Z Z Chy kp€(k121 + kaw2) (2.102a)
k1€Z ko €Z
+ Z Z Z — k3q2)m1 + k33)10,0,0,ke,k: (T2 + G2) (2.102b)

k5€Z¢0 [kl]GZ/k'gZ q2€7Z

* Z Z Z Z e((k1 — kago + kag3)z1 + (ks — 2kaqa)as + kazs)

ka EZ#O [kg]EZ/QkAZ k1€EZ q2€7Z

00,0,k k5, k1 (T2 + @2) (2.102¢)

+ 3 S ST Y ek — ks + kagd + ksad)a

ks EZ;,go [k4]€Z/3k5Z ks€Z k1€Z q2€Z

+ (k3 — 2kaqz — 3k505) s + (ka + 3ksqo)a + k55) V0 ks ko ks ks (T2 + 42) (2.102d)
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> > YOYLEY Y ot ams

M5 €20 [V €(T5)oc\[s /(Da)oc [mal €2/3msZ ma€Z 41 €7 43€Z [q2] €L/ .

[[VN]#[[Fid]]
a’msgs  mg — 2my(age — cq3) — 3ms(aga — cqs)?
c c
(a—cqr)(ma+3ms(ags — cq3)) o (a—cq1)?ms 4
B ¢ 27 c 2

+ (my4 + 3ms(age — cqg))(mlxg + 2xow3 4+ x4) + (0 — cql)m5(2x1x§ + 395%:33 +x5)
— cmg (2323 + 3wy w303 + 32023 + 2125 + x6)>

Yy ms,mams (@1 + 21, aq2 — cq3 4+ axy — c(v122 + 23) — cq1 (2102 + 13)), (2.102¢)

where the above series converges absolutely in L?(F).

Since Nz\N is a compact set it follows that W = C*°(Nz\N) as sets. Furthermore, one
can show via an application of Taylor’s theorem that the usual Fréchet topology typically as-
signed to C°°(Nz\N) via the sup-norm agrees with the topology defined on W°. Consequently,
we have that W= = D'(Nz\N) both as sets and as topological vector spaces.

In our applications we will need a Fourier series expansion for distributions 7 € D'(Nz\N) =
W=, To do this, we will define some Sobolev spaces. Let D € Ug(g) be of order m. We say
that f € W is weakly D-differentiable if there exists h € W such that

/ () (r(D)g)(n) dn = (—1)™ / h(n)é(n) dn
Nz\N Nz\N

for all ¢ € W. We say that such h € W is the weak D-derivative of f. Let H™ denote the
elements of W which have weak D-derivatives for all D of order < m. We equip H™ with the

inner-product

=3 / PN DRI dn

where {D;} is a basis for the subspace of elements of Uc(g) of order < m. It is not too difficult
to show that one obtains equivalent inner-products when different choices of basis are made.
One can also show that H™ is a Hilbert space and that H{", the closure of W in H™, is also

a Hilbert space. As usual, the topology of H™ (and H(") is defined by the norm

1/2
1 fllm = (f, /Y2 = (ZH f||2) :

where f € H™.
By [5, Proposition 5.15], it follows that if 7 € D’'(Nz\N), then 7 is bounded with respect
to finitely many of the semi-norms that define the topology on W°. As can be seen from the

definition of these seminorms, it follows that there exists m € Z~( such that 7 is bounded with
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respect to the Sobolev norm || - ||, on H{*. By the Riesz representation theorem, the map
v {4 0)m (2.103)

from H{* onto (HJ")" (the space of continuous linear functionals on H{") is an isomorphism of
topological vector spaces. The topology on H{* to which we refer to is the usual norm topology
and the topology of (H{")" to which we refer to is the strong topology, which coincides with
the usual operator norm topology. Since 7 can be realized as an element of (H{")’, there exists

vy € HJ* which gives 7 under the map (2.103); in particular,

7(¢) = (¢, vr)m

for ¢ € W.

Observe that the series expansion given in Theorem 2.11 also holds in H{" since

(T(D) $m5,m4,m3) = (T(D)f)ﬁ'y]],mg,,mz;,mg?

(’”(D)f()z,ks,k4,k3,kl) = (T(D)f)akg,,m,kg,,kl ) (2.104)

for D € Uc(g) and f € H™. Thus we obtain the series expansion given in Theorem 2.11 for v,
as an element of HJ". Since the injection of W into H{" is continuous and has dense image,
when we pull back the resulting series expansion of v, to W~> we have that the corresponding
series for 7 converges unconditionally in W~ (which is equipped with the strong distribution

topology) [21, §23]. In particular, we have the following theorem.

Theorem 2.16. For 7 € W~ we have

= 3 > 2 2 Tblimamams

ms€Z>0 [[V]]€(T5)oc\I's/(T'g)oc [M4]€Z/3MmsZ m3EL

[[V]#[[£id]]
> >
DD DD D DL N DD Tokakeds
ks€Z [k4]EZ/3m5Z ks€Z k€L k4€Z¢o [k3]62/2k4z ki1€Z
>
+ E E 70,0,0,ks,k1 T E E 70,0,0,0,k1,kz2>
k3€Zso [k1)€EZL/k3Z k1 €7 ko €7

where the series converges unconditionally in the strong distribution topology, and where

¥ _ 3
T[[’y]],m5,m4,m3(¢) - <¢7 (vT)[['y]],m5,m4,m3>m7

T()X,:ks,k4,k3,k1(¢) = (¢, (vr)02,k5,k4,k3,k1>Tn7

70,0,0,0,k1,ks (@) = (@, (V+)0,0,0,0,k1,k ) m > (2.105)

for ¢ € We°.
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Corollary 2.17. Let ¢ € W. If ¢4 has the series expansion (2.101) then there exists
tempered distributions Py m, ma,ms ° R2 — C, P0.ks ka ks ke - R = C and constants di, r, € C
such that

T[E[:'y]],m5,m4,m3 (¢) = Pvy,ms,m4,m3 (¢W,m5,m4ym3)7

T()X,:k5,k4,k3,k1 (D) = PO,k ka ks k1 (V0,ks ka ks k1 )

70,0,0,0,k1.k2 () = diy ks Chy ks (2.106)

Proof. We shall prove our corollary for the case of T(fk& ki.ks.k, - Lhe other cases follow similarly.

Observe

()Ek5,k4,k3,k1 = (o, (Ur)§k5,k4,k3,k1>

= Z/ / )7 (@1, 26) (F(Di)0r)3 e s kst ) 7 (@15 - - T6)

dxg...dxl

We replace (r(D;)¢)% and ((r (Di)vT)aks,k4)k37kl)”id with their corresponding Fourier series of

the form (2.101). Upon simplifying, we find that

b >
T0,ks,ka,k3,k1 (¢) = <(UT)0,k5,k4,k3,kl ) ¢>m

o0
ZZ/ Vr(D)):0, ks ka ks kr (T2)Vr(Dy)vr 30,k ki ks ke (T2) A2
D; -

From the definition of 7 gy kg ks.ky (2-92), it follows that

Vr(D)i0,ks ka ks ks = T0,ks ka ks, by (D) (V6,0 k5, ka ks k1 )-

Observe that by (2.92), it follows that

0, ks ka ks ke (P5)Vi0,k5 ki ks ks = (270 K500, k5 s ks ko »
0,k ka ks ke (P6) V0, k5 ke ks by = 0.

From this and (2.93), (2.94), (2.95), (2.96), it follows that 1,(D)¢:0,ks ks ks,k, 1S @ linear com-
bination of terms of the form |z|74*) where j,k € Z>¢. Thus we are left with an expression
for 7o ks ka ks ki (@) that is evidently a tempered distribution. We denote this distribution by

PO, ks kea ks ko - O

In later arguments it will be helpful to prove statements for 7 € W~°° by supposing 7 €
W and then applying a density argument. In such instances we will replace ¥y mg my,ms>
W0, ks ka ks, kr> A0 Cly ko DY Py.ms,ma,mss P0,ks ka ks k> a0d di, k,, respectively. This is justified
since Corollary 2.17 shows that the aforementioned tempered distributions are induced by the

Fourier components in (2.101).
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2.8 Automorphic Distributions on G,

Recall that in section 2.1, we concretely identified G = G2 as a subgroup of SO(4,3). With
regards to this concrete realization, let B(G) denote the space of lower triangular matrices of

G. Likewise, let

uy 0 0 0 0 0 0
0 wuz* 0 0 0 0 0
0 0 w30 0 0 0
Ay, = | 0 0 0 1 0 o o0 [
0 0 0 O0wuy? 0 0
0 0 0 0 0 wujlug 0
0 0 0 0 0 0wyt
where u1,us € Ry, and
&2 0 000 0 O
0 eea 000 0 0
0 0 00 0 0
Mee, =0 0 010 0 0|,
00 00e 0 O
0 0 000 ee 0
00 000 0 e

where €1,€5 € {£1}. Let

A(G) = {au1;u2 tuU, U2 € R>0},

M(G) = {me, e, : €1,€62 € {£1}}.

Let N_(G) be the space of unipotent lower triangular matrices of G. Observe that B(G) =
M(G)A(G)N_(G). We shall often times write b € B(G) as b = man_ where m € M(G),
a € A(G), and n_ € N_(G).

Observe that every (possibly non-unitary) representation of B(G) is of the form

— o A1—1 61, A2—1 02
w(/\1,>\2);(51,52)(b) - w()\17/\2)>(51,52)(man—) =u €1 U €2

where Ay, Ao € C and d1,02 € {0,1}. In our definition of w(x, x,),(s,,6,), We have subtracted 1 in
the exponents of u; so as to maintain certain conventions in representation theory. With this

convention, we have that the dual of W1, A2),(61,82) 18 W(—A1,—2a),(51,52)"
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Let (7, V') be a generic, irreducible, cuspidal representation of G and let ¢ denote an embed-
ding of (m,V) into L?(Gz\G). Associated to (m, V) is the dual representation (7', V'), which
we defined in section 1.1. For v € V*°, define 7 € (V')~* by 7(v) = i(v)(e), where e € G is
the identity element. Since i is an embedding into L?(Gz\G) it follows that T is Gz-invariant.
By a result of Casselman and Wallach ([3] and [22, Theorem 5.8]), we have that there exists

A1, A2 € C, 61,02 € Z/27, and G-equivariant, topological vector space injections:

VS VL a0 (G) and (V)72 = V™ 5 0(G),

where we write ‘/(:;\:1070/\2),(51;52)(G) for ijf,xz),(él,éz)(G) (which we defined in section 1.2). We
shall abuse notation by identifying 7 € (V/)7°°(G) as an element of ‘/(;1070/\2)7(51752)(63) rather
than making explicit reference to the above injection.

By section 1.2, we can also identify 7 with a distributional section of a line bundle over
G/B(G). Hence we can restrict 7 to N = N(G) since N gives a dense open set in G/B(QG).
We shall occasionally abuse notation further by writing 7 for this restriction to N(G) when
the context is clear, otherwise, we will write 7|y. Since 7 is Gz-invariant, it follows that 7|y
is then Nz-invariant since Nz = N N Gz. Therefore we can identify 7|y with an element of
D'(Nz\N). By our comments following (2.102), we are able to identify 7 with an element of
W= where W = L?(Nz\N) is equipped with the right regular representation. Consequently,
7 inherits the Fourier series given in Theorem 2.16. When 7 € V(g\ol ), (61,5,) OnE can show that
7|y € C°(Nz\N). In this case, (7|n)7¢ has the series expansion (2.101). Likewise, (7| )72
has the series expansion (2.102).

For U the unipotent radical of a parabolic subgroup of G, we let du denote a Haar measure

for U. Recall that by the definition of cuspidality, we have

/ i(v)(u)du =0
GzNU\U

for all U the unipotent radicals of proper parabolic subgroups of G and for all v € V*°. Since
(7' (u)T,i(v)) = (1, m(u"1)i(v)) = i(v)(n), it follows that this cuspidality condition is equivalent
to

v = / 7' (u)Tdu =0 (2.107)
GzNU\U

for all U that are unipotent radicals of a proper parabolic subgroup of G. The prior integral
is well-defined since it takes values in V~°° which is a complete, locally convex, Hausdorff

topological vector space in which G acts continuously.

Lemma 2.18. Let 7 € 1/(;?,0/\2)7(61,62)(G), cuspidal, and Gz-invariant. Then
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(a) dk1,0 = d()’]c2 =0 fO’f' all kl,kz S Z,
(b) di, ky = sgn(usl)‘s1 Sgn(ﬁg)éQdEZkl)qkz for all ki, ko € Z.

Proof. Let U, denote the unipotent radical of the maximal parabolic subgroup of G which has
trivial intersection with the one parameter subgroup for the o root. We can parametrize U, by

=YsY5Y,Y3Ys, where y; € R. By solving for p; in
PsPsPyP3Po Py = YsY5Y,Y3Yo Xe X5 Xy X3 X0 X1,

and utilizing (2.101) to evaluate 774 (py, ..., pg), we find that
/ / Z diy goe(k1z1 + ka(z2 + y2)) dya dyr = Z i, 0e(k1z1).
0 ki ko€Z ki€Z
Since we have assumed that 7y, = 0, it follows that dj, o = 0 for all k; € Z. By a similar
argument for Ug, the unipotent radical of the maximal parabolic subgroup of G' which has
trivial intersection with the one parameter subgroup for the 3 root, we obtain that dg s, = 0
for all ko € Z. This proves part (a).

For part (b), it suffices by a density argument to suppose 7 € ‘/(‘3\‘317)\2)7(51’62). Observe

m_ ', Xe X5 X4 X3 Xo X1me, o,

= R¢(e126) Rs(€1€2w5) Ra(€aw4) Ra(€1€223) Ro(€122) R (€21),

-1
€1,€2

and 7(gm2'.)) = sgn(e1)’sgn(e2)®7(g). Since M(Gs) is a subgroup of Gy it follows that

7(9) = ' (Mey.e2)7(9) = T(MT(, 9Mer e e,) = sgn(er)sgn(e) 2 m(mZl, gme, co)-

Thus

o
T (Ila .’132,13756471'5,1'6)

= sgn(el)‘slsgn(eg)‘52 77 (€91, €122, €1€2T3, €24, €1€2T5, €1X4)- (2.108)

When we replace 774 with its series representation (2.101), and integrate against the character
(z1, 72, 23, 24, T5,76) > e(—k121 — kaxa)
we obtain part (b). O

Let G, denote an embedded S L5 of the Levi subgroup for the root «; in particular, let G,



be the group consisting of elements of the following form:

ab 0 0 0 00
cd 0 0 0 00
0 a> 2ab —b*00
0 ac 1+2bc —bd 00
0 —c? —2cd d*> 00

0 0 0 0 ab

o o o o o

0 0 0 0 cd
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(2.109)

where a,b,¢,d € R and ad — be = 1. Let w, denote the Weyl group reflection for the « root

which comes from setting a = d = 0, —=b = ¢ = 1 for h in (2.109). Let wg denote the Weyl

group reflection for the 8 root which comes from setting a =d =0, —b=c =1 for h in (2.2).

In what follows, we will use the following normalization for the Fourier transform:

7o) = /_ " f()e(—at) dr,

where f : R — C in the above integral converges. Recall that po .1,0,0, £0,0,0,1,0 are the distri-

butional analogue of ¥9,0.1,0,0, %0,0,0,1,0 that occurs in (2.101c), (2.101b) and (2.102c), (2.102b).

The following lemma gives us important equalities relating these terms to the distributional

constant terms.

Lemma 2.19. For T € V(;f’o)\z)’(&h&ﬂ(G), we have

(a) po,0,1,00(w2) = sgn(—z2)%2|z2*2 " pg0.0,1,0(—25 "),

~ _ —k
(b) Poooro(rr)=sgn(—zy)% |z M1 Z Ck1,1€<1)

ki€Z 11
as equalities between distributions on Rq.

Proof. By a density argument it suffices to suppose 7 € ‘/(3\019\2),(51752)' Observe

U);IX1X4X3X2X5X6 = R1(—£U5)R4(£E3)R3(—$4)R2(—$51)R5($1)

Re(—=3x374 + 2125 + 26) 01, |3y~ 1 11 sgn(—ws) 70—
where n_ € N_. By this and the Gz-invariance of f, we have that

ag.
T (21, T2, T3, Ta, T5, Tg)

= sgn(—xg)%%|zg | 2 L1 (—:c57 —x517 —X4,T3,%1, —3X3L4 + T1T5 + mg)



65

as an equality between distributions on R x Ry x R*. By replacing both instances of 77 in
the above equation with (2.102) and integrating against (1,23, x4, T5, T6) — e(—xz4), we obtain
part (a).

Next, observe

w51X6X5X4X3X2X1 = R6(3$§$3 + JZ5)R5(—3$2$§ — Z‘G)R4(2$2$3 + $4)R3(£2)

Ro(=3) Ry (=27 )ajs, -1 1 Msgn(—ay) 170
where n_ € N_. By this, and the Gz-invariance of f, we have that

a;
T d(xl,Z'Q; $3,$4,x57$6)

= sgn(—:rl)‘s1 |J}1|)\1717'0id (fxl_l, —x3, X9, 2T223 + T4, 73m2x§ — Tg, 3x§1’3 + x5)

as an equality between distributions on R x R®. By replacing both instances of 77 in the
above equation with (2.101) and then integrating against (z2, xs3, 24,25, xg) — e(—x3), we find
that
1 —]Cl
/ D e(=m1(w2+02))p0,00,1,0(w2+q2) dwy = sgn(—a1)™ |z [N 71 D Ckl’le(>' (2110
0 q2€7Z k1€Z z1
If we let po,0,0,1,0 denote the Fourier transform of pg ,0,1,0 then upon simplifying the left-hand

side of (2.110), we obtain part (b). O
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Chapter 3

Distributions on Other Groups

All Lie groups are assumed to be over R in this chapter, unless stated otherwise.

3.1 A Double Cover of SL;

In this section we will analyze the distributional principal series representations for double
cover groups of SL;E and SLs. We begin by reviewing the multiplication laws for such groups
and then proceed to analyze the unbounded realizations of these distributional principal series
representation spaces. By studying these unbounded realizations, we can determine when cer-
tain distributional principal series representation spaces lie naturally within other distributional
principal series representation spaces for larger groups.

Let SLE = {g € GLy : det(g) = £1}. As a set, let S/I\ét = SLE x {#1}. Recall that the
Hilbert symbol for R is given by the following formula:

-1 ifz<O0andy<0

({I?, y) H =
1 otherwise,

ab 4
where x,y € Ryq. For € SL3, define
cd

ab c ifc#0
cd d ifc=0.

For g1,95 € SL;E, define

([ X(9192) X(9192) o X(9192)
a(g1,g2) = ( X(g1) ' X(g2) )H<d t(gl)aiX(gl) )H

One can show that « is a 2-cocycle [10], and thus we give SL;E the structure of a group by

defining the following multiplication law:

(91761) : (92762) = (9192704(91,92)6162)7
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where g1, g2 € SL;E and €1, e € {£1}. In addition to identifying SLQi as a group, one can give

SL2jE the structure of a smooth manifold by requiring the map
g=1(9.6)—~g 3.1)

to be a smooth covering map from SLT onto SLF.

Let
€1 0 u 0
m:m61,€2 = b a’:au = bl
0 e 0 u!
1z 10
n=nmn, = yandn_ =n_, = ,
01 x 1

where €1,€e5 € {£1}, u € Rsp, and € R. As indicated in the above definitions, sometimes we

will suppress the variables €1, €2, u, and z in our notation. Let B(SL;) denote the subgroup of

lower triangular matrices of SLY, and let
N(SLE) = {n=mn, : z € R}.
Under the Langlands decomposition, B(SLE) = M (SL3)A(SLE)N_(SLY) where

M(SLQi) = {Me, e, : €1,62 € {£1}},
ASLE) = {au 1 € Roo),

N_(SLE)={n_,:z € R}.

Next we define various subgroups of SLi analogous to the ones defined for SL¥. Let

a=ay, = (ay,1),

M= My ez,e3 = (m61,€2’ 63),

n="ny =Ny, 1), and n_ =n_ ; = (n_ 4, 1), (3.2)
where €1, €9,€3 € {+1}, u € Ry, and 2 € R. Let
M(SLE) = {fte, cp.es © €1, €2, €3 € {£1}}, A(SLE) = {ay : u € Rup},
N_(SLE) = {fi_, : 2 € R}, N(SLZ) = {fi, :z € R}.

One can check that M(Sflgt), A(Svaét), N_(Sfl\ét), and N(SLA;i) are subgroups of Sfl\ét Let
B(SLy) = M(SL3)A(SL3 )N_ (SL3).
For e € {£1}, let 01 : M(SL?) — GL2(C) denote the representation of M(SL?) defined
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by the following equations:

10 +1 0 -1 0 0 =+e
O¢,1 , 1) = , O¢,1 , 1] = 5
01 0 =+1 0 —1 Fe O
-10 +e 0 10 0 F1
O¢,1 ,:l:l = , O¢,1 7:|:1 = . (33)
01 0 Fe 0—1 F1 0

Likewise, let o¢ 1 : M(SLf;i) — GL3(C) denote the representation of M(SL/EE) defined by the

following equations:

10 +1 0 -1 0 0 e
Oe,—1 ;21 = ) Oe,—1 ;£ = )
01 0 +1 0 -1 Fe 0
-10 0 1 10 e 0
Oc,—1 , 1] = i , Oc,—1 , 1] = i ; (3.4)
01 F1 0 0 -1 0 =e

and for § € Z/2Z, let <5 : M(SL?) — GL1(C) = C* denote the representation of M(SAL})

defined by the following equations:

10 -1 0 5

S 7:|:1 = 17 S 7:|:1 = (_1) )
01 0 -1
-10 5 10

(%) 7:|:1 = (—1) y Ss ,:|:1 =1. (35)
01 0 -1

For v € C, let
p (@) = u” L. (3.6)

Notice that p, is a quasi-character of A(SLY). For b=man_ € B(SLY), ¢; € {£1}, 6 € {0,1},
we define

W(ey ,62),1/(1)) = Oeyen (m)p (@),

ws, (b) = <5 (M) (@),

both of which are representations of B(SLQi). In order to simplify notation, we will write

(Srl:gt) and write Vé_OO(SLA;i) for V’OO(SrIEt) (see section 1.2 for the

v ws, v

Vi, (SLy) for Vo

(61762)7V 1,€2),v
definition of these spaces). By using the standard basis for C2, we can write f € V(;O‘E’z) V(SLEE)
fi —ooiar £
as f = (fi, fa) = | | where fi € C-=(SLE, ).
f2

As discussed in section 1.2, each f = (f1,f2) € Viece) L(SL¥) can be identified with a

distributional section s of a vector bundle over SL; /B(SL3). Since the group N (SfIEt) maps
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injectively into S/IEt /B (SLA;j[)7 we shall abuse notation by writing this subset of SLA;i / B(S,Igt)
as N(SE}) Since as a subset of SfI:gt/B(SLf:i), N(Sfigt) is an open set, it follows that we can
consider the restriction of sy to N(SL?) We denote this restriction by fo = ((f1)o, (f2)0)-!
Since we can parameterize N (S’IEE) by x +— ng, we can also identify fy as a distribution on R.
Similarly, we let foo = ((f1)o0, (f2)oo) denote the restriction of sy to §_1N(SLA;i), where

s= (" 7)), (3.7)

10

and where 571NV (Sflgt) is identified as a subset of SLA;jE /B(Svaét) Since we can parameterize
5’1N(SLA-2£) by x — s 'n,, we can also identify f., as a distribution R. Since N(SL/vzi) and
§_1N(SLA;i) cover SAL}/B(SE})? it follows that f is completely determined by fy and foo.

Since for x # 0,

S 1
01
—z! x|t n(—x
(! 1. ] °1.1). sen(-z) 0 1, (3.8)
0 1 sgn(z) |z 0 sgn(—x)
then for f € V(;‘f;)’V(SI_:i) we have
_ -1
] ) if 2> 0
e1(fi)o(—27")
(f2)oc (@)
-1
||t (Fr)ol==7") it x <0,
(f2)o(=z71)

as distributions on Ryo. Conversely, when given distributions (fi)o, (f2)0, (fi)ocs (f2)ee €

C~°°(R) which satisfy (3.9), one can define a unique element f € Ve (SLF). Thus

61762)7V

‘/(;o,ig),u(sf]igt) = {((fl)()? (f2)07 (fl)oo> (f2)oo) S C_OO(R)4 .

(f1)0s (f2)0s (F1)oe, and (f2)eo satisfy (3.9) as distributions on R;éo}. (3.10)

This space on the right-hand side of (3.10) is known as the unbounded model for V,~*° (SL,\;i)

(€1,€2),v

We hope that the reader will not be too confused by this notation, but we felt that using a notation
such as (sf)o would become too cumbersome.
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Statements analogous to (3.9) and (3.10) also hold for V:{UOO(SL;). In particular, if we let fo
denote the restriction of s; to N(SL3), and let fs, denote the restriction of s; to 3~ N(SL3),
then by (3.8),

foo(@) = sgn(—2)°|z["~ fo(—a ™) (3.11)
as distributions on R. Hence
Vi ¥(SLY)
o {(fo,foo) € C™(R)?: fo and f., satisfy (3.11) as distributions on Rﬂ)}. (3.12)

Define SLy to be the inverse image of SLy under (3.1). We write the intersection of M(SL/?),
A(éigEL and N(SLA}) with SLy as M(SLsy), A(SLy), and N(SLy), respectively. For ¢ € {£1},
let o : M (S\IZQ) — C* denote the representation of M (é\ig) defined by the following equations:

10 -1 0
Oc , 1| = +1, Oc ,+1 | = Fei, (3.13)
01 0 -1
We define

wie)w(b) = oe(M)p, (@), ° (3.14)

which is a representation of B(éi:g); recall that p, is defined in (3.6). In order to simplify

notation, we will write V7 (SLy) for Vo, (SLy). Let

log(z) denote the branch cut of the logarithm whose imaginary

part lies in (—m, 7], and let 2 = exp(log(z)t) where t € C, z € C*. (3.15)

For f € V(;)“;(éfg), let fo denote the restriction of sy to N(éig) = R, and let fo, denote the
restriction of sf to 5 1N(SLy) = R. Since N(SLs) and ' N(SLy) cover SLy/B(SL), it follows
that f is completely determined by fp and fo. By (3.8), we find that for f € V(:)Oj(é\fq),
foo(@) = sgn(=2) x|~ fo(—2~") (3.16)
as distributions on Ro. Conversely, when given distributions fo, foo € C™°°(R) which satisfy

(3.16), one can define a unique element f € V(Z)Oj(éig) Thus

V,75(SLa) (3.17)

= {(fo, fo) € CT(R)? : fy and fo satisfy (3.16) as distributions on Rg}.

2This is somewhat redundant since N(SLz) = N(SL3), but is notationally consistent.

3The parenthesis around e allow us to distiguish w(),, from ws, .



71

Let L : V(;O)OV(SNLQ) — Vo> (SLA;i) denote the map given by

(e1,€2),v

fo
())<= | (3.18)
Joo foo

where f € V(;Csou(gig) Notice that we have used the isomorphisms in (3.10) and (3.17) in order
to define this map. We see from (3.16) and (3.9) that £ maps into V(:EQW(SLgt) as claimed.

Furthermore, it follows that £ is equivariant under the left regular representation of §f42. Thus

by (3.18), we are able to identify

V5, (SLy) € Vi 2, (SLE). (3.19)
Let
_ —10
my = ,1
01

The following lemma allows us to describe £ in terms of distributions on SLy and SLi, as

opposed to describing £ in terms of restrictions of distributional sections of vector bundles.

Lemma 3.1. Let f € V(;O)QV(S’EQ), and let h € V(;O‘;) V(S'zg) be the image of f under L.
, £ €2),

If e =1, then

(g, = (Mlgim. =afs (g, =—if, and (f2)lg,n. = aif;

and if e = —1, then
(Mg, = Plgim, =1f,  (Pllg, = —if, and (fo)lg,m =1

Proof. Tt suffices by a density argument to suppose that f € V(‘?f e2) V(S\Ijg). As described in

)

section 1.2, for (f1, f2) € V(C:,ez),y(Sin) there exists a corresponding section of a vector bundle

S(va) : SLE/B(SLE) — ((SLE/B(SLE)) x €2)/ ~, where

f1(9)
f2(9)

st (FBOLE)) = 3 | 301,000 (071) :beB(SLy) p,  (3.20)

and where ~ is an equivalence relation on (SLA;i/B(SALg[)) x C? defined in (1.2). If (f1, f2) is

the image of f under £, then it follows that

f(9)
—if(9)

st (FBOL)) = { | 9 (er ) (071) . € B(SLy) ¢, (3.21)
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for § € SLy; recall that every coset of SLE /B(SLy) has a representative of the form §B(SL7)

where § € SLy. By comparing (3.20) and (3.21), we see that

f1(9) f(9)
f2(9) —if(9)

)

forg € §f42. This proves half of our lemma. To prove the other half, one uses the transformation

law for V,_°° (S,I:gt) to see that

(€1,€2),v
Elf(g) if €g = 1
e1if(9)
f2(gm.)
if(9) _
if €9 = -1
—-f(9)

O

We conclude this section with an analysis of unbounded realizations of distributional prin-
cipal series for SLy. We write the intersection of M(SLY), A(SLY), and N(SLY) with SLy as
M(SLy), A(SL3), and N(SLs), respectively. Let B(SLg) = M (SLy)A(SLy)N(SLy). For v € C,

let 1, (a,) = u~, which is a quasi-character of A(SLz). For b = man_ € B(SL2) we define,

ws,p (b) = <s(m) (@),

which is a representation of B(SLy). To simplify our notation, we will write %TVOO(SLQ) for
V5,22 (SL). For f € Vg >(SLa), let fo denote the restriction of sy to N(SL2) = R, and let fu
denote the restriction of sf to sT!N(SL2) & R where

0 -1

10

Since N(SLz) and s~!N(SLy) cover SLy/B(SLs), it follows that f is completely determined by
fo and f.. Since for xz # 0,

1x 11—zt z[7t 0 sgn(—x 0
1. _ [ [ s8n(=2) : (3.22)
01 0 1 sgn(x) |z 0 sgn(—x)

it follows for f € Vs > (SL2), we have that

foo(@) = sgn(—2)°[z[" " fo(—271), (3.23)
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as distributions on Ro. Conversely, when given distributions fy, foo € C7°°(R) which satisfy

(3.23), one can define a unique element f € V({VOO(SLg). Thus

Vs, (SLa)

= {(fo, fo) € CT®(R)? : fo and fo satisfy (3.23) as distributions on R }. (3.24)

We overload notation by defining £ : Vs > (SL2) — V; (gﬂgt) to be the equivariant map (with
respect to SLy) given by
(f07f00)'_>(f05f00)5 (325)

where f € Vs > (SL2). Notice that we used the isomorphisms (3.12) and (3.24) in our definition
of L. Since (3.11) and (3.23) agree it follows that £ is indeed well defined. Thus we are able to
identify

V;®(SLa) € V5, =(SLE). (3.26)

3.2 A Double Cover of J

In this section we will analyze the distributional principal series representations for double
cover groups of J and J*, where J and J* are certain subgroups of Gy we will define shortly.
As in section 3.1, we will define the multiplication laws for such double cover groups, and then
study the unbounded realizations of distributional principal series representation spaces for such
groups. By studying these unbounded realizations, we can determine when certain distributional
principal series representation spaces lie naturally within other distributional principal series
representation spaces for larger groups.

One can show that

ad—bc 0 0 0 O 0 0

0 a —b0 O 0 0

0 —cd 0 0 0 0

where a,b,c,d € R
Lg= 0 0O 01 0 0 0 :
L such that ad — bc = 1
0 0 00 ad—bc ad—be 0
—c d
0 0 00 ad—bc ad—be 0
0 0 00 0 0

is a subgroup of G5 which is isomorphic to SL;t. In fact, Lg is a subgroup of the Levi component
for the § root, and hence Lg acts by conjugation on the subgroup Up = { X X5 X4 X3Xs : z; €
R}. Let J* = Ug - Lg, which is a subgroup of G5. Abstractly speaking, we see that J* is

isomorphic to the semidirect product of Lg and Ug.
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Via the covering map of SLi onto SLT 2 Lg, we are able to give the set Us x SLi the

structure of a group. Specifically, the multiplication law is given by

(u1g1) - (u2g2) = (u1g1u2gy *)g192

where g1,¢g2 € SLA—Q;7 uy,ug € Ug, and g1, g are the respective images of g; and g, under the
covering map of SLA;jE onto SL2jE = Lg. We denote this group by J* and we write elements of
JE as ug where u € Ug and g € SrIEt Let ¢ : SfI:gt — J* denote the natural embedding of SrIEt
into J*.

Let B(J*) denote the space of lower triangular matrices of J*. Under the Langlands

decomposition, B(J*¥) = M(J*)A(J*)N_(J*) where
M(J*) = o(M(SLE)), A(J*) = ((A(SLE)). and N_(J*) = ((N_(SLY)).
Likewise, let
M(7%) = (M(SLE)), A(J%) = ((A(SLF)), N_(J%) = (N_(SLF)),

and B(ﬁ) = M(JNi)A(JNi)N_(JNi) We let N(J*) denote the group of unipotent upper-
triangular matrices of J*. Since N(J*) = Us - t(N(SL¥)), we define N(ﬁ) =Ug- L(N(Srfgt))
To simplify notation, we will write 7, @, 71, 7, and b for the elements (), ¢(a), t(7), t(7i_),

and ¢(b), respectively.

1

Observe that o, ¢, 0t7! and ¢5 0t ~! are representations of M(ﬂ), and that p, o7 !is a

quasi-character of A(ﬁ) For b = man_ € B(JNi) we define

Wersea)w () = (0er,ep 007 1)(M) - (11 0071) (@), and

ws.w(b) = (G5 01 (M) - (1 007 1) (@),

both of which are representations of B(ﬁ) In short, we are taking the representations we
defined in section 3.1 and identifying them as representations on J*E via L. As usual, we shall

write V,~ (JNi) for V- >° (ﬁ), and write V(;TVOO(ﬁ) for Vw’df’:’(ﬁ). By using the standard

(e1,€2),v W(ep,ea) v

basis for C?, we shall write f € V(Zf;) V(j;) as f = (f1, f2) = h where f; € C_oo(ﬂ,(C).
o f2

As discussed in section 1.2, f = (f1, f2) € V(;O‘:z) V(JNi) can be identified with a distribu-
tional section sy of a vector bundle over J* /B (:]1) Since the group NV (ﬂ) maps injectively
into JNi/B(ﬁ), we shall abuse notation by writing this subset of JNi/B(ﬁ) as N(JNi) Since

as a subset of J* /B (:7;), N (JNi) is an open set, it follows that we can consider the restriction

of s5 to N(JNi) We denote this restriction by fo = ((f1)o, (f2)o). Since we can parameterize
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N(J%) by

(@1, 2, 3, T, 5, T6) — X X5 XaX3X2X7,

we can also identify fo as a distribution vector on R6.# Likewise, we let foo = ((f1)oo, (f2)oo)
denote the restriction of sy to §*1N(ﬂ), where §*1N(ﬂ) is thought of as a subset of
SL¥/B(SLE). Here we abuse notation by writing § for +(3); similarly, we write s for «(s).

Since we can parameterize 3~'N(JF) by
(21,72, T3, 04, T5,76) — 5 X6 X5 X4 X3X2 X7,

we can also identify f., as a distribution vector on RS. Since N (JNi) and 51N (JNi) cover
JE / B(ﬂ), it follows that f is completely determined by fo and f..

Since
8_1X6X5X4X3X28 = R6(3$g$3 =+ 1‘5)R5(—3l‘2l‘§ — xg)R4(2x2ac3 + $4)R3($2)R2(—I3),
it follows that

S X X5 Xu X5 X0 X4

~. 1 @
= R6(3I§.’L‘3 + x5)R5(—3x2x§ — $6)R4(2.’L‘2l‘3 + $4)R3($2)R2(—$3)8_1 ;1
01

Applying (3.8) then shows that that

51 X X5 X4 X3 X0 Xy
= R6(3£C3CE§ —+ (E5)R5(73$21’§ — $6)R4(2$21'3 + 1’4)R3((E2)R2(7IE3)R1(71’1_1)
lz1|71 0 sgn(—x1) 0

1
sgn(z1) |z1] 0 sgn(—1)

1. (3.27)

Thus for f € V(oo (ﬁ) we have that

€1,€2),V

(fl)oo(mlvx% $3,$47$57$6)
foo(x17x2,m3; x4ax57x6) =
(f2)00($17x2a x3,$4,$5,$6)

“The parameterization of N (ﬁ) which we have used is simply o4, which we defined in (2.68).
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[ e (f2)o(= xy !, —x3, 22, 29w3 + 24, —3w223 — 6, 30323 + 5) .
‘x1|y ifx;y >0

el(fl)o(—xfl, —x3, X2, 2T2T3 + T4, —3962;10% — 16, 32373 + T5)

[ Urdo(= xy !, —x3, w2, 209w3 + 4, —3w203 — 6, 32303 + T5) '
|21 |” if z1 <0

(fo)o(—27 ", —x3, 2o, 2003 + T4, —3T22% — x6, 3323 + T5)

(3.28)

as distributions on R x R®. Conversely, when given distribution vectors (f1)o, (f2)o, (f1)oo,
(f2)oo € C™°(R®) which satisfy (3.28), one can define a unique element f = (fi,f2) €
Vo (J%). Thus

(€1,€2),v

Vi 5 = {0, (f2)o, (Fi)ees (f2)oo) € C™2(RE)* (3.29)

(f1)os (f2)0, (f1)oo, and (f2)eo satisfy (3.28) as distributions on R.o X RS}.

Statements analogous to (3.28) and (3.29) also hold for f € V] (Ji) In particular, if we
let fo denote the restriction of s to N(J jE) =~ RS, and let fo denote the restriction of sy to

§_1N(ﬁ) =~ RS, then

fw(x17x25x3am4ax57x6)

= sgn(—x1)5|x1\”_1f0(—x1—1, —23, T, 2ToT3 + T4, —3T2x5 — T, 3253 + T5) (3.30)
as distributions on R x R5. Consequently,

Vs (%) (3.31)

o {(fo’ foo) €CT°(R®)?: fy and f, satisfy (3.30) as distributions on Rz x ]R5}.

Let J = {g € J* : det(g) = 1}. We define J to be the inverse image of J under the
covering map J* — J*. We write the intersection of M(j}), A(JNi), N_(jvi)7 and N(ﬁ)
with J as M (.J), A(J), N_(J), and N(J), respectively. Let B(J) = M(J)A(J)N_(J). Observe

1 -1

that o ot~ is a representation of M (J ) and that p, o™ is a quasi-character of A(j) For

b= man_ € B(J) we define

(o (B) = (70 ™) (i) - (1w 00 ™H)(@),
which is a representation of B(J). In order to simplify notation, we will write V(Z)Oj(j) for
VW(SO,, (J)

For f € V(Z)O';(j), let fo denote the restriction of sy to N(J) = RS, and let f denote

the restriction of s; to 3 'N(J) = RS. As earlier, we will also identify fo and fs, with the
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distributions fo o oiq and fa 0 03q on R, Since N(J) and 32N (.J) cover .J/B(J), it follows

that f is completely determined by fy and foo. By (3.27), we find that for f € V(Z)OS(J ) that

foo(®1, T2, 73, T4, 75, T6) (3.32)
= sgn(—wl)e/Q\xﬂ”*lfo(—xfl, —X3, X9, 2T2T3 + T4, —3x2x§ — 26, 3323 + x5)

as distributions on Ro x R®. Conversely, when given distributions fo, foc € C7°°(R®) which

satisfy (3.32), one can define a unique element f € V(Z)OZ(J ). Thus

V() 339
=~ {(fo, fro) € C7(R%)?: fy and f., satisfy (3.32) as distributions on R x R®}.

We define an equivariant map (with respect to J) from f € V(;O)oy(j ) into Vi) V(JNi) by
(3.18). Indeed, we see from (3.28), (3.29), (3.32), and (3.33), that (3.18) maps into V(:‘;)’V(‘/]Vi)
as claimed. Thus by (3.18), we are able to identify

Ve, () c v, (). (3.34)

(e1,€2),v

We write the intersection of M (J¥), A(J*), and N(J*) with J as M (J), A(J), and N(J),

1

respectively. Observe that ¢s o t™! is a representation of M (J) and that yu, o:™! is a quasi-

character of A(J). For b =man_ € B(J) we define

ws(b) = (s 007 )(m) - (0171 )(a),

which is a representation of B(J). In order to simplify notation, we will write Vs >(J) for

V. >(J). For f € V(;,_VOO(J), let fo denote the restriction of sy to N(J) = RS, and let fo denote

ws v

the restriction of sy to s7'N(J) = R®. We shall also let f; and fs denote the distributions
foooiq and foo 0 0w, respectively. Since N(J) and s~1N(J) cover J/B(J), it follows that f is
completely determined by fy and fo,. By (3.27), we have that
8_1 . X6X5X4X3X2X1
= R6(3$§$3 + $5)R5(—31}21‘§ — .’176)R4(2$L‘2$3 + .’L‘4)R3($2)R2(—J)3)R1(—l‘;1)
zi™t 0 sgn(—x 0
|71 ) gn(—x1) (3.35)
sgn(z1) [z1] 0 sgn(—1)

Thus it follows that for f € Vs >(J),

fOO(CC17I2,I’3, I4,IE5,I6)

= sgn(—z1)°|z1 [V "L fo (—27", —23, T2, 2003 + T4, —3T223 — T6, 353 + 5) (3.36)
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as distributions on Ry x R®. Conversely, when given distributions fy, foo € C7°°(R%) which

satisfy (3.36), one can define a unique element f € Vy >*(J). Thus

Vs, (J) (3.37)

=~ {(fo, foo) € CT®(R®)? : fy and fo satisfy (3.36) as distributions on R}

For f € V5 (J) we define an equivariant map into V({VOO(JNi) by (fo, foo) = (fo, foo). Indeed,
since (3.30) and (3.36) agree, it follows that this map is well-defined. Thus we are able to
identify

Vi 2 (J) € Ve (T%). (3.38)

3.3 The Theta Distribution

(J), which has many of the properties of

oo

In this section we will define a distribution 6 € V(:l) 1
2

the more familiar automorphic theta functions. To deduce these properties for 6, we begin by
considering the function
O(z1, 22, 23,24) = Z e(—m?2z + 2m(—z122 + 3) — (2123 + 24)),
meZ
where z1 = x1 —1y1, 1,22, 23,24 € R, and y; € R5(. Observe that © is a holomorphic function

in the z; variable.
Proposition 3.2. If zy =21 —iy; € C and y; > 0 then
(a) ©(z1,22,73,24) = O(21 + 1,20, 72 + T3, —T3 + T4),
. N—1/2 -1 T2
(b) @(21) 332,333,334) = (22Z1) © IR _2'7:3’ o 27:2'733 + x4 )

421 2

Z1

(C) 6(21,$Q,$3,$4) = (1 o 421)1/2@<_4214_1

, —I2 —+ 4.’£3, —xs3, 41’% -+ ﬂf4> .
Proof. Observe

@(2’1 + 1, xo, 1‘3,1‘4)

= Z e(=m?(z1 + 1) +2m(—(z1 + Do + x3) — (21 + 123 +24))

= Z e(—m?z1 + 2m(—z120 + (23 — 22)) — (2125 + (23 + 24)))
meZ

2
= @(Zl,wg, xr3 — T2,Toy + 31‘4).

This proves part (a).
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If we set z1 = —iy; we find that

@(*iyh T2,X3, ‘T4)

= Z e(m%iy1 + 2m(iyiaa + x3) — (—iy123 + 24))
mEeZ

= exp(—2mz2y; )e(—x4) Z exp(2m(—m?y; — 2mazay1))e(2mas).
mMmEZ

Let f(t) = exp(2n(—t2y; — 2tzoy1))e(2ta3). By changing variables in ¢ and utilizing the fact
that the Gaussian function is its own Fourier transform, we find that

f(&) = /OO exp(2m (—t2yy — 2twoyy))e(2txs — t€) dt

— 00

exp(2m(—t2y; + x2y1))e(2tas — 2woxy — t€ + 206) dt

1
—
3

— 00
o0

= e(—2xaw3 + x28) exp(27rx%y1)/ exp(—27my1t?)e(—(€ — 2x3)t) dt

- -aie2)

= e(—2xow3 + 228) exp(2ﬂx§y1)(2y1)*1/2 exp< %
1

By the Poisson summation formula, we obtain the following equality

O(—iy1, o, 23, 24) = exp(—2mxay; )e(—14) Z f(m) = exp(—2m23y1)e(—x4) Z f(m)

meZ meZ
- > 2 ~1/2 —m(m — 2x3)*
= exp(=2myyn)e(—wa) Z e(—2zox3 + mas) exp(2mz3y1 ) (2y1) ST oy
1
mez
= ()~ Z e(mxs — (22273 + 74)) exp (— L 7””3)
meZ 2y1 Y1 1
1 1 To

= 2 _1/2 _ 27 2 ot _2 (7)

( yl) mzeze m Tiys +2m 4iy1( 333) + 5

e <_ <4i1y1(_2x3)2 + (2z973 + x4)))

1 i)
= (2y1) V20 —, —223, 22,2 .
(251) iy, T3, s 2T2T3 + x4
Part (b) follows by analytic continuation since we have proven part (b) for z; = —iy; where

y1 > 0.
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By applying parts (b), (a), and then (b) once more, we see that

@(217302, 3?3,564
1

(&
(5

= (2iz1) —1/2¢g —23:3, 2x2x3 + x4)

= (2iz1) 1/29 —2x3, x2 213, —(—2x3)? 4 2x023 + x4>

1 ~1/2
~e (o “)i)

-1 -2
© ? —2(% — 23}3), %, 2(—2.1‘3)(% — 2.133) + 22913 — (—21‘3)2 + x4
(s +1)
1/2 —1 e “1 2
= (212’1)7 / (2(421 +1>Z> 9(_412:1_’_:[,—1'2—"41'3,—1'3,4%3"_%4).
If we set z; = —iy; in the above equality, we find that

O(—iy1, x2, 3, 14)
1 12 —i
= (2y1)" Y2 2 1 o ———  — P
(2y1) ( (42211 + )) (4(iy1)+1’ Ty + 43, —r3, 43 + T4

—1/2 .
1 . —1Y1 2
S T | Of — " ot dwy, —us, da? +
( 9 (4Zy1 )Z) <—4(—2y1) + 1’ r2 T3, T3, X3 x4>

. oN— —1iY1 2
= (14 4iy) V20 — Iyt dry, —5, 422 2y ).
( yl) 74(77/y1) + 1 2 3 3 3 4
Since this proves part (c) for z; = —iy; where y; > 0, it follows by analytic continuation that
part (c) holds for all z;. O
To define our 6 distribution as an element of V"%, (.J), it will be helpful to consider an

(-1),3

alternative unbounded realization for V( Cio) L(J). Let

L 0 —2-1
Q=a, s=3sa = 1], (3.39)
2 0

and let f € V(:T; L (J). Recall that associated to f € V(:‘i‘; L (J) is a distributional section sy of
)3 )

a vector bundle over .J/B(J). Let fu denote the restriction of sf to N(J), and let fyoo denote

the restriction of s¢ to Q7' N(J J). Since N(J) and Q~2N(J) cover J/B(J), it follows that f is

completely determined by fy and foo,. Since for z; # 0, we have
Q' X6 X5 X4 X3 XX

= R < 1 (33’)2.%‘3 + 3?5)) R5( (3$2$3 + IG))R4(2.T21‘3 + 1‘4)R3( )Rg( 2333)

1N\ N
Rl (41:1) a2w1msgn(—rl),sgn(—zl),1n*v
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where n_ € N_(J), it follows that
fQOO(x17x2)x3a'r47x57x6)

(3.40)
—1/2 —1/2 -1 L2 2 Lo
=sgn(—x1) |21 | fo o —2zx3, B 2x9x3 + T4, —2(3x225 + x6), 5(3x2x3 +xs5) |,

as an equality between distributions on Rq x R5. Conversely, when given distributions fo, foss €

C~°°(R) which satisfy (3.40), one can define a unique element f € V(Zol‘; ,(J). Thus

VL) (3.41)
> {(fo, face) € CT(R)? : fo and foo, satsify (3.40) as distributions on R}
Let 6y € C~°°(R®) denote the distribution
Oo(x1, 22, X3, T4, x5, T6) = Z e(—m2xy + 2m(—z120 + 23) — (123 + 24)). (3.42)
meZ

Notice that 6y has no x5 or xg variables in its definitions; we include these variables in our

notation to make it clear that we can also identify 6y as a distribution on NV (j ) = RE. Let
0200 € C7°°(R) denote the distribution

9200 = 6(—1/8)90. (343)

We wish to show that the pair (fy,0200) defines an element of V(jo) 1 (J) via the isomorphism
)

(3.41). To do this, observe that as y; — 0 we have that ©(z1, xa, x3,24) — (1, 22, T3, 24) for

z1 = x1 — ty1. Therefore by Proposition 3.2(b), when we let y; — 0, we find that

Oo(x1, 22,23, T4, 25, T6)

-1 1
= (ylligo(Qzlz’)l/2>90 (43:1, —2x3, %, T4 + 2x013, —2(3x2x§ + xg), 5(3x§x3 + m5)>
Observe that for 1 #£ 0,

|221|7/%e(~1/8) ifx; >0
lim (22,7)"Y2 =

y1—0

|221|71/2e(1/8)  if z; < 0.

Thus for x; # 0,

0200 (T1, T2, 3, T4, T5, 26) = €(—1/8)00(x1, 22, T3, T4, T5, T¢)
-1 1
= sgn(—xl)—1/2|2x1|—1/290 (4@, —2x3, %, T4 + 22923, —2(3x2x§ + ), 5(31‘%1‘3 + xs)) .
1
Therefore by (3.41), it follows that (p, f2o) defines a unique element 6 € V(:1) (j) Let sg

denote the distributional section corresponding to 6. As our notation suggests, it follows that
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if we restrict sp to N(J) = RS, we obtain our originally defined 6 given in (3.42). Likewise,

if we restrict sy to Q_lN(j) =~ RS, we obtain our originally defined 6o, given in (3.43). Also

note that by (3.34), it follows that @ can also be thought of as an element of V(_jol) l(ﬁ)
)3

Let

~ ab C "Ji
T (4) = L) (8) €SLE :a,b,e,d€Z, a=d=1(mod4), c = 0(mod4) %, (3.44)
C

where (—) is the Kronecker symbol; see Proposition 4.2 for some properties of the Kronecker
symbol. One can show that 'y (4) is a well-defined subgroup of SL,. We also let T';(4) denote
L<f1(4)) c J. Let

Jz = Uz(4) - T1(4), where Uz(4) = (N2, N3, N4, N2, Ng) (3.45)
(recall that N; = R;(1)).
Theorem 3.3. 6 is jz—im;ariant

Proof. Recall that hy.00,-1,0,0 is defined in (2.88). Observe that 6y is of the form hy.0,0,-1,0,0
with ¢ = 1. In subsection 2.6.2 we showed that such hy.00,—1,0,0 is Nz-invariant.> Therefore
o is Nz-invariant, and hence 6y is N7 and Uyz(4)-invariant.

Next, observe that for x; # i,

QN QO ' X6 X5 X4 X5 X0 X,

= R6(8x§ + LBG)R5(*16£E§ + x5 — 4%6)R4(4$§ + £C4)X3R2($2 — 41’3)

T ~_1 ~ ~
R1 (4.I1 F1 ) a‘1,4zl‘msgn(174xl),Sgn(174x1),1n77

where n_ € N_(J). Therefore by the transformation law for V(:‘T)’ L (J), we find that for 1 # 1,
'2

(W(Qngil)ilo)O(xla 1:2,I3,$4,JL‘5,I6)

=11—4z, /250 1—4z, —1/2
g

x E
90 <—4;L'11—|—1, To — 4503,:637417% + x4, 71655% + x5 — 458(,', 81’§ + l’6> .

Since O(z1,x2,x3,x4) = O(21, —T2, —x3,24) (this can be seen directly from the definition of ©

by applying the change of index m +— —m), it follows from part (c) of Proposition 3.2 that

21

O az,a,00) = (1= 4:0) %0 2

2
2 — 4£C3, (E3,41’3 + CL’4> .

5Technically, we proved the Nz-invariance of hqy;0,0,—1,0,0 for ¢ € L? (R), but a similar argument also
applies for ¢ € S'(R).
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Since

1 |1 — da|~1/? if 1 —4x, >0
lim (1 — 4z;) =
y1—>0

(=)l — day |~/ if 1 — 42y <0,
then for zq # 1,
Oo(x1, 22,23, T4, 5, T6)
=1- 4m1|_1/25gn(1 _ 41:1)_1/2
6o (1_11%,3:2 — 4x3, 3,473 + 24, — 1625 + 5 — 46, 8T5 + 376).
Thus for z1 # 1,

(T(AN1Q )1 0)o (21, 22, 23, T4, T5, 6) = Op (21, T2, T3, T4, T5, Tg).

Since fl (4) is generated by N; and QN;Q71, it follows that 6 is jz invariant for x; # i.

In what follows we will let 7 denote the left regular representation on V(__T)’ 1 (J). Suppose
2

Q6Q5Q4Q3Q2 € Uz(4). Since m(QsQ5Q4Q3Q2)"10 € V(j;‘)’ , then there exists a distributional
2

section S:(Qs050405Q.)-10 Of a line bundle over j/B(j) corresponding to m(QsQ5Q4Q3Q2) 0.

Recall from section 1.2 that
SW(Q6Q5Q4Q3Q2)719(}B(‘T)) = 59(Q6Q5Q4Q3Q2EB<:]V))» where ;B(j) S j/B(j),

and sy is the distributional section corresponding to 6. Recall that (7(QeQ5Q4Q3Q2) 10)200

is simply the restriction of 5,(0;050.050.)-10 tO Q~IN(J), where we identify Q~1N(J) as a
subset of J/B(.J). Therefore, since

QsQ5Q1Q3Q2Q7!
_ 1
=Q 'Rg (2(—3615% - Q5)>R5 (2(3¢203 + g6) ) R1(292q3 + q4) R <—%2)R2(2(I3)
it follows that

(m(Q6Q5Q1Q3Q2) ™ 0)200 (X6 X5 X4 X3X2X1)

= 51(Q0@:Q1QaQ)—0( Ko X5 Xy X3 X5 X))

= 50(Q6Q5Q1Q3Q2 ' X X5 X4 X5X2X1)

= 3¢ (QlRG <; (—3d3q3 — Q5)> R5(2(3g245 + q6) ) Ra(29205 + q4) R3 (*%) R2(2g3)

X6X5X4X3X2X1)

1
= b20o (RG (2(—3115613 - Q5)>R5 (2(3q243 + 46) ) R4(2¢2q3 + q4) Rs (—%Q)Rz(?%)

X6X5X4X3X2X1).
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Since QsQ5Q41Q3Q1 € Uz(4) then
1
Rg <2 (—34¢3q3 — %)) R5(2(3g245 + q6) ) Ra(29205 + q4) R3 (*%)32(2%) € Nz.

Therefore, by (3.43) and the Nz-invariance of 6y it follows that

(m(Q6Q5Q14Q3Q2) ™" 0) 200 (X6 X5 X4 X5 X5 X1)
= e(—1/8)bo <R6 <; (—3¢3q3 — Q5)> R5(2(3¢263 + q6) ) R1(2g2q3 + q4) R (—%Z)
R2(2(J3)X6X5X4X3X2X1>
=e(—1/8)0p(Xe X5 X4 X3X0X7) = 0200 (X X5 X4 X3X2X1).
Thus 0s is Uz (4)-invariant.

Likewise, since
NQTP =07 H QN Q7Y and (ONQTHQT = Q7N
it follows from (3.43) and the Ny and QN Q™ !-invariance of 6 (for 21 # 1), that

(m(N1) 7 10) 200 (X6 X5 X4 X3 X2 X1) = sr(ny)-10(Q ' X6 X5 X4 X3X2X1)
= 89(N1971X6X5X4X3X2X1) = 59(971(QNlﬂil)X6X5X4X3X2X1)
= 0200 (AN QN X6 X5 X4 X3 X0 X1) = e(—1/8)0p (AN Q1) X6 X5 X4 X3 X2 X))

=e(—1/8)0 (X6 X5 X4 X3X0X1) = 0200 (X6 X5 X4 X3 X0 X1),
and

(m(QAN1Q ™) 710) 200 (X6 X5 X4 X3 X2 X1) = Srany0-1)-10(Q 7 X6 X5 X4 X3 X5 X1)
= 5p(ANIQ QI X X5 Xy X3 X0 X 1) = 59(Q N X6 X5 X4 X3 X2 X))
= O (N1 X6 X5 X4 X3 X5 X1) = e(—1/8)80 (N1 X6 X5 X4 X3X5X1)

= 6(—1/8)90(X6X5X4X3X2X1) = 9200(X6X5X4X3X2X1)7
for x1 # i. Thus 6o is N7 and QN;Q~ -invariant for z; # %. Since

{Q_1X6X5X4X3X2X1 : (x17x2,x3,x47x5,x6) S R;‘é% X R5}

U{X6X5X4X3X2X1 (21,2, 03, 24,75, 76) € Ry1 x R}

covers J/B(J), it follows that 6 is Jy-invariant. O
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Chapter 4

Metaplectic Eisenstein Distributions

4.1 The Metaplectic Eisenstein Distribution at oo

In this chapter we will define distributional analogues of the metaplectic Eisenstein series, which
we shall refer to as metaplectic Fisenstein distributions. Additionally, we will prove that such
distributions have meromorphic continuation to C, and prove that there exists a functional
equation between these metaplectic Eisenstein distributions.
We will define our metaplectic Eisenstein distributions to be elements of the space V(Z)OE (S\I/Jg),

where € = +1. Recall that by definition,

Vi (SLa)

= {f € C(SLy,C) : (gb) = w(e), (b1 f(G) for all § € SLa, b € B(SLa)}, (4.1)

where w(,),,, is defined in (3.14). Also recall that V(Z)Oj(éiz) comes equipped with the left regular
representation, which we shall denote by 7. In the following lemma we give explicit formulas
for (w(g)f)o and (7(9) f)oo in terms of fo and foo, where f € V(Z)Oj(éig), see section 3.1 for the
definitions of these terms. In the statement of the following lemma, we will use the following

simple fact: if a,b,¢,d € R, k € {1} then there exists " € {£1} such that

ab ~ _ d —c
k|5t =5"1 K] (4.2)
cd b a
~ 0 -1
where 5 = ,1 ] as defined in (3.7).
10
— ~ ab —
Lemma 4.1. Let f € V7(SL) and g l= & | € SLs.
’ cd

(a) If ¢ # 0 then

(7(@)/)o(@) = w(—c, e+ d)uler +d|"sgn(cr + )/ fo (fii})

as an equality between distributions on R 2=d.
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(b) If c=0 then
b

(7@ Pole) =l sy o 55 + )

as an equality between distributions on R.

(c) If b#0 then

(7 (@) )e) = w0, b2+ )| b+l s b+ )2 (G5 ).

as an equality between distributions on Rq.

(d) If b=0 then
c

(@) ) (@) = la]sen(@) /2 foc (35 = 2)

a

as an equality between distributions on R.

Recall that k' is defined according to (4.2).

Proof. Observe that for ¢ # 0 and = # _Td, we have
1 1z a ar+b 10
g ! 71 = 71 ! y R
01 ccr+d 01
1 axtt +d 0
((rE L) [ (s et
0 1 0 sgn(cx + d)
lex +d|71 0 1 0 10
. 1] 10 - K-
0 |cx + d] a1 01

sgn(cz + d) 0

Notice that

(=, cx+d)g
0 sgn(cx + d)

is an element of M (éig) By utilizing the transformation law for V(:)"j(éfg) (given in (4.1)),
we find that

(@) Fo(x) = (¢ e+ d)plex + | sgn(cx + ) fo (ﬂ)

as an equality between distributions on R £=d- Similarly, when ¢ = 0 (which implies that

c

a=d~! #0) we see that

GGG
SO DR (A D (SR DR (B
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Thus

(7@ Pole) = sy o 55 + )

as an equality between distributions on R. This proves parts (a) and (b).

Recall that by (4.2) we have

a b ab ~ ]~ —~
(77 K f) (x) = sf ,k | $7 N, B(SLs)
cd > cd
. d —c e —
=s5|$ k' | n,B(SLa) |,
b a

where sy is the distributional section of a vector bundle over SL, / B(éi2) which corresponds to

f; see section 1.2 for more details on this correspondence. Thus we can repeat the argument in

ab d —c
the prior paragraph with ,k | replaced by ,&' | to prove the remainder
cd —b a

of our lemma.

Recall that in (3.44) we defined

~ ab C ’E
I'h4) = ) (E) € SLy :a,b,c,d €7Z,a=d=1(mod4), c=0(mod 4) p,
c

where (—) is the Kronecker symbol. One can show that f1(4) is a well-defined subgroup of
§f42. Since we will be performing several computations involving the Kronecker symbol, we
state (without proof) some of its important properties. More information about the Kronecker

symbol can be found in [1, §3.4.3], [4, §5].

Proposition 4.2 (Properties of the Kronecker Symbol). Let a,b,m,n € Z.
e Ifp is an odd prime then
0 if a = 0(mod p),

(p) =41  if there exists x € Z such that x® = a(mod p),

—1 if there are no solutions to x? = a(mod p).

0 ifa=0(mod2),
a
. (*) =41 4fa=1,7(mod8)-

—1 ifa=3,5(mod8)
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~1 ifa<0, o (a> 1 ifa==+l1

[ ]
VS
=]
N———

|

\r—‘
7N
N
Lls
N——

Il

1 ifa >0, 0 otherwise.

o Ifn==4pi'---pF is the prime factorization of n then

-GG @
o Ifab#0 andn # —1 then (%) <z) - (if’)

o Ifmn #0 and a # —1 then (%) (ﬁ) = <i>

n mn

dn  if n =2(mod 4),
o Ifn >0 then (E) = <b) if a = b(modm) where m =
n n

n  otherwise.

e Ifa#3(mod4) and a # 0 then (£) = (%) if m = n(mod c) where

n

4da if a = 2(mod 4),
a otherwise.

(-1 (a-1)
e If p,q are positive odd integers then (p) (q) =(-1) S e
q p

Let §p denote the Dirac distribution on R centered at zero. By (3.16), the pair (dg,0) defines
an element of V(Z)Oj(éig) We abuse notation by writing this element of V;)Oj(é\flg) as dp. Let
doo = 7(5)d0, where

_ 0 —1
s = ,
10
Observe that
(500)0 =0 and (600)00 = —61'50. (4 3)
ab -
Lemma 4.3. Let 7! = (( ),(2)) el (4).
cd

(a) We have
(§)lel™ " tsen(0)/20_asc if c#0,
0 if c=0,

as an equality between distributions on R.
(b) We have
—ei(—e,d)g(S)|d]"sgn(d)/*5:  if be #0,
(T(¥)0o0)oc = —€i b ifb#0,c=0,

—€ide ifb=0,



as an equality between distributions on R.

Proof. By Lemma 4.1(a,b) we have that
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(4.4)

as an equality between distributions on R 2=d when ¢ # 0, and as an equality between distribu-

tions on R when ¢ = 0. Thus it remains to describe ((7)dx)o about the point =4 when ¢ # 0.

To do this, first observe that a,d # 0 since ¥ € f1(4). Next observe that

= o) = ({7 ] (Deon

-1

Thus by Lemma 4.1(a), we have that

(m(¥)do0)o(z) = (7(75)d0)o(z)

= (E) (c,a) g (a, —azx — b)g|az + )" " Lsgn(—azx — b)6/250<

d

cr+d
—ax—b)’

as an equality between distributions on R S

(4.6)

We can simplify our expression in (4.6). To do so, consider ¢ a test function on R £=b- By

performing various changes of variables, we have that

(E)(c,a)H(a ax — b)g|az + b|* “tsgn(—ax — b)/24,

(
:/R#O 5 (c,a)H(Ch—CWC)H|a$|u_1sgn(_a$)6/250( ) x_z)
¢

)
)0 —aa) o sen(-aa) 200 ° - 1) (v 2)a

a’x

B /]R¢o x_Q(g)(c’ a)u(a,ax™ ") glaz™ ! sgn(ax )26 <_ac T ;)

ac a

=) a>H<a,c1>Hc“1sgn<c1>6/2¢(1 - )

cx—i—d)(ZS ) da
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In this last equality we have used the fact that %b #* _Td. Thus for ¢ # 0, we have

(r(@)sc)o = (5)Iel ™" sen(e)/26_aye, (4.7)

as an equality between distributions on R ey Since =% # =2 then it follows from (4.4) that
(m(¥)do0)o vanishes about the point =2. Thus we conclude that (4.7) holds as an equality
between distributions on R. This proves part (a) of our lemma.
To prove part (b) of our lemma, recall that if ¢ = 0 then we must have a = d = 1 since
3 € I'1(4). Thus if ¢ = 0, then
—1
—-b -1 0 1

75 = 1] = 1
10 ~1 b

Therefore when ¢ = 0, it follows from this equality and Lemma 4.1(c) that

(m(¥)d0)oc = (m(¥8)d0) e = 0, (4.8)

as an equality between distributions on R.zo. If on the other hand we have ¢ # 0, then it follows

from (4.5) and Lemma 4.1(c) that

(m(¥)d0) e = (m(¥8)d0) e = 0, (4.9)

as an equality between distributions on R.c. Thus it remains to describe (7(7)de)oo about
the point 3, both for the case of ¢ = 0 and the case of ¢ # 0. To do this, we observe that for
be # 0 we have

~ela-1 1 ¢ 1
Y8 =S ) (av d)H > ) (410)
()

and for be = 0 (which implies a = d = 1 since 5 € I';(4)) we have

F g7l =51 1] ifb#0,c=0, (4.11)

st =51 1| ifb=0. (4.12)
01

Notice that (4.10), (4.11), and (4.12) are equalities of the form (4.2). Thus by (4.10), (4.11),

jib —ac> ,(a,d)u (3)) . When performing

such a computation with a computer algebra system, it is necessary to use the fact that ad — bc = 1 to
deduce this equality.

1Specifically, one calculates that 37 '3~ ! is equal to ((
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and Lemma 4.1(c), it follows that for b # 0 we have

(m(7)050) oo (%)

— E _ _ v—1 o €/2 dr —c
(a,d)H<d)(b, bx + a)g| — bx + a|”” ‘sgn(—bz + a) (600)00(—1).1‘—"-0,)7

— 5 E o o v—1 B /2 dr —c

= ez(a,d)H(d)(b, bx + a)p| — bx + a|”” “sgn(—bx + a) §0<—bx—|—a>’ (4.13)

as an equality between distributions on R;a .2 In the case where b = 0 (which impliesa = d = 1

since 5 € I'y(4)), it follows from (4.12) and Lemma 4.1(d) that

(m(7)000) 00 () = —€ibe(x)

as an equality between distributions on R.

We can simplify our expression in (4.13). To do so, consider ¢ a test function on Rysa.

Upon performing various changes of variables, we find that

/ (77620 ) oo (2)(2) dit
R_.a

—c
bx +a

= —ei/R (a,d)m (2) (b, —bz + a) | — br + a|”sgn(—bx + a)e/Q(SO(

)qﬁ(x) dx
E)(b —bx) | — bar|" " sgn(—bx)< 25, <W>¢(a€ + ) dx
d/” b
9)(1) —bx) g |br|sgn(—baz)</ 25
7) (b m|bx|" ™ Tsgn(—bx)/ 24

—x 1l o —x d 1 a

)<"’ b>H|b el 18gn<b> <b - x> pty)
1 1\ -1
= —e /R#O(a,d)H 2) (b, bx>H|b|_”_1|x|_”_1sgn(bm> < ) (sz Z) dx
1 1\? (-1
= —Gi(a,d)]—](§> (b, d>H|d|Ulsgn<d) ¢< bd + b)
d

— —ei(a,d)u (b, )H(s)|d\*V*lsgn(d)e/?/]R 55 (2)d(x) dr.

%

In this last inequality we have used the fact that § # 5. Thus for b # 0 we have
(1(3)000) oo = —€ila, d) (b, d) (=) |d|~Lsgn(d)/?s 4.14
7330w = —cila, (b, ) (5 )l sgn(d)/25:, (4.14)

as an equality between distributions on Rza. Since § # § it follows from (4.9) that (7(7)dec)oe

vanishes about the point ¢, and thus we can conclude that (4.14) holds as an equality between

2This equality does indeed hold when b # 0 and ¢ = 0 since if ¢ = 0 then ¢ = d = 1, and thus
(CL, d)H (%) =1.
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distributions on R. Notice that the b # 0, ¢ = 0 case in part (b) follows immediately from (4.14)
since if c =0 we have a =d = 1.

We can simplify our formula in (4.14) when be # 0; in particular, (a,d)g(b,d)n can be
written more concisely. Observe that if d > 0 then it follows that (a, d) g (b,d) g = (—c¢,d) i since
(z,d)g = 1 whenever d > 0. We wish to prove that this is also the case for d < 0. To do so, recall
that (x,2)u(y, 2)m = (2y, 2) g for z,y, 2 € Ryo. Therefore (a,d)(b,d)(—c,d) = (a,d)(—bec, d). If
d < 0 and a > 0 then it follows that ad < 0, which implies that —bc > 1; thus (a,d)(—bc,d) = 1.
If a,d < 0 then it follows that ad > 0, which implies that —bc < 1. Since we have assumed
that be # 0 we can conclude that —be < 0 and thus (a,d)(—be,d) = 1. Thus, we have that
(a,d)(b,d)(—c,d) = 1, which implies that (a,d)(b,d) = (—c¢, d). Therefore, when bc # 0 we have

~ . c —— €/2
(7(3)0m0)o0 = —€i (—e,d)ir () Il sem(@)/ o (4.15)
as an equality between distributions on R. This proves part (b) of our lemma. O
Let
~ 1n
Foo = 5 ]. ne Z
01

For R(v) > 1, we define the metaplectic Fisenstein distribution at 0o to be the following distri-

bution in V(:)oj(éig)

ER@G) =Gv+l) Y 7(3)0<(9), (4.16)

:Yrefl (4)/foo
where

G = I a-p

p odd prime

The summation over I'y (4)/Ts is justified since by Lemma 4.3, we have that du is ['oe-invariant

under the left regular representation. Thus EV is at least formally I';(4)-invariant. We shall

justify the convergence of this series momentarily.

_ ab
Observe that for 771 = . (%) | we have that
cd
~ 1n d —b c 1n d dn—b> c
(- @) () ©
01 —Cc a d 01 —c —cn+a d

Thus, for each coset of 'y (4) /T s there corresponds unique (¢, d) € Z2 such that ged(c,d) = 1,

¢ = 0(mod4), and d = 1(mod 4); indeed, such (¢, d) is unique since the above equality shows
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that if 7T = 7T for some 7' € f1(4), then

o= (1) 6

Conversely, when given (c,d) € Z? such that ged(c,d) = 1, ¢ = 0(mod 4), and d = 1(mod 4), it
follows that there exists a,b € Z such that ad — bec = 1. Since ¢ = 0(mod4) and d = 1(mod4)
it follows that a = 1(mod 4). Thus we are able to construct 5 which corresponds to such (¢, d).

Therefore
[y (4)/Toe = {(c,d) € Z* : ged(c,d) = 1,¢ = 0(mod 4),d = 1(mod 4)}.
Thus by Lemma 4.3, we have

~ & —v— €
(BS) @ =G+ > ()™ senle)?0_s(a). (4.17)
(C,d)€Z¢0XZ
ged(c,d)=1
d=1(mod 4)
c=0(mod 4)

~ , C\ | g €
(EﬁOO)) (x)_—ezC2(2V+l)<§o(z)+ 3 (—c,d)H(g)|d| Lsgn(d) /253(:5)).(4.18)
e (¢,d)ELso X

ged(e,d)=1

d=1(mod 4)

c=0(mod 4)

Notice that for ®(r) > 1, the integrals of (4.17) and (4.18) converge uniformly and absolutely
against compactly supported test functions on R. Therefore, since El(,oo) is determined com-
pletely by (E,(,OO))O and (El(,oo)> , it follows that E£°C) depends holomorphically on v for
R(v) > 1. Furthermore, it followsocjchat our series expansion for B converges in the strong

distribution topology.

4.2 Fourier Coefficients of £

Since (Eﬁoo)) is periodic, it has a Fourier series expansion. In particular,
0
(El(,oo))o(x) = Z ane(nx)
ne”Z

where

1 ~
an:/o <E£ ))O(:v)e(fmc)dx.
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By carefully calculating a,, we will be able to show in section 4.3 that E(>) has meromorphic

continuation to all of C. By (4.17), observe

an _ Z /

GEv+1) (c,d) ezﬁxz

le| ™" tsgn(c )E/Qéfg(x)e(—nx)dac

ged(e,d)=
d= 1(mod4)
¢=0(mod 4)
C) —p1 [nd . c 1 [(nd
= Z (f || e() +ei Z (7)\c| e()
(C,OCI)<€Zd>0><Z d ¢ (C,g)>€Zd<0><Z d ¢
—a<c —d>c
d=1(mod 4) d=1(mod 4)
c=0(mod 4) ¢=0(mod 4)
C) 1 [ nd , —c 1 [ nd
= Z (f |e| e() +ei Z () |e| e()
(c,g)<€Zd>o><Z d ¢ (cdi)e§>oxz d ¢
—d<c —d>—c
d=1(mod 4) d=1(mod 4)
¢=0(mod 4) ¢=0(mod 4)
—nd — d
= X (G e 2 (F)ee(®)
(ed)€L>0xZ B ¢ (cd)soxz ¢
<c <c
d=3(mod 4) d=1(mod 4)
¢=0(mod 4) c=0(mod 4)

For ¢ > 0 we have (%) =

an = €i(2(2v + 1) Z A;e((j)C—y_le(_ncd)

(e,d)EL>o XL
0<d<c
c=0(mod 4)

=ciG(2v+1) > A;E(L;C>(4c)”1e<—2f),

(¢,d)EZL>oXT
0<d<4c

(%d), and for d = 1(mod4) we have (=

where
1 if d =1(mod4),
Ag=1qi ifd=3(mod4),
0 otherwise.
Let

Ki(nide)= Y A ( )(Zd), (4.19)

d€Z/(4c)Z ¢
T ne
G = 3 (3)e(%): (4.20)
T€L/CL

where k = 1(mod 2). Thus

an = €471 (20 + 1) Z ¢V K (—ns 4e).
CE€Z>0
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Since K (n;c) = K_,,(—n;c) it follows that

anp = €™ GRu 1) Y ¢TI (K 1(en;dc)),

c€Z>o
where
z ife=1,
Ce(z) = (4.21)
z ife=-—1.

For ¢ = 2¥¢/ where ged(2,¢’) = 1 and k € Zx, it follows from [8, Lemma 2] that
K_1(n;4c) = K_1(n;2872¢) = K_ o (nd; 282 G(n2k+2; ),
where ¢’ and 2F+2 are integers such that ¢/¢’ = 1(mod 2¥+2) and 2¥+22%+2 = 1(mod ¢’). Thus

an = €id "1 (2v 4+ 1) Z cVTIC_(K_i(en;4c))

c€Z>o

=il v+ Y Y (2kc')—v—1c,6(K,C,(ena;2k+2)G(en2k+2;c')). (4.22)
' €Z~o kEL>o
¢’ odd

For the remainder of this section, we will prove two lemmas which we will use in section 4.3

to see that the Fourier coefficients a,, can be expressed in terms of Dirichlet L-functions.

Lemma 4.4. Let ¢ > 0 and odd.

(a) If ged(n,c) =1 and ¢ is prime then G(n;c) = (%)Accl/2

(p—1)(g—1)
a

(b) If ¢ = pq and ged(p,q) = 1 then G(n;c) = (—1)
A G(n;c) is multiplicative since ApA, = (—1)%4@71)qu.

G(n;p)G(n;q). Consequently,

(c) If ¢ is square-free and ged(n, c) =1 then G(n;c) = (%)Accl/Q.

(d) If k > 2, p is prime, and n = p‘n’ where gcd(n’,p) = 1 and £ € Z>o, then

0 i<k —1,
—pk—1 if€=Fk—1,k even,
G(n;p*) = (%’)Appk—lﬂ if 0=k —1,k odd,

pF — pkl if £ >k, k even,

0 if £ >k, k odd.

(e) If ¢ is not square-free then G(1;¢) = 0.



96

Proof. Part (a) is a classical result due to Gauss [7]. For part (b), observe that since ¢ is odd

then we must have p and ¢ be odd. Therefore, the law of quadratic reciprocity for the Jacobi

v (0)6)

By this equality and the multiplicativity of the Jacobi symbol, it follows that

snea= 5 C)(5), 2, ()

z(mod p) y(mod q

= ()0).2, 2 (O)

z(mod p) y(mod g

e 2 g )

z(mod p) y(mod g

— (- Y Y (mq;yzo)(xq;yp)e<n<xqp:yp>>

z(mod p) y(mod q)

D D (wﬁyp)e(n(xqu))

z(mod p) y(mod q) Pq Pq

G(n;pq).

symbol shows that

_ (71) (p—1)4((1—1)

To prove part (c), suppose ¢ = ¢; ... qr where the ¢; are distinct odd primes. We will prove
part (c¢) by performing induction on k. If £k = 1 then part (¢) follows immediately from part
(a). Suppose that we know part (c) holds when k = ¢ — 1. Thus if k = ¢, it follows from part
(b) and part (a) that

ACG(TL; C) = AEI1"'6115—1G(”5 qi--- QZfl)AqeG(n@ qf)

n 2 12 1 2 1/2 2 2 (TN 1/2
= (ql...qe_1>A‘h”'q21(q1...q‘€1) / (%)qu(qf) 2 = Aqr'-qquqz(z)c/ :

: 2 : 2 2 _ A2 _
Since A7 is a character, it follows that A7 .., A7 = AZ. Thus part (c) holds for k = £.
Therefore by induction, part (c) holds in general.

To prove part (d), observe that since ged(n’, p) = 1, it follows that observe that

Glp*) = Y (;>e<m>:(;) 2 (pa};)e(p’“xf)

z(mod p*) z(mod p*)
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Since ¢ < k, we have then that

o= (5) XX (TH)e(HhE)

y(mod p?) x(mod pk—*¢)

(3) ¥ 5 (s (e

y(mod p*) w(mod pk—*)

(%), 2,2 G)GE)

y(mod p*) z(mod p*~*)

V.5 (M)

z(mod pk—*)

Now that we have established (4.23), we can proceed to prove part (d) on a case by case.

e If { < k —1 then by (4.23) it follows that
n' z\" T
p z(mod pk—*¢) p p

BT )
-

z(mod p) y(mod pk—¢—1)

2 ) ) )

’@?T‘ 3.
b

Bw‘ 3.
3

z(mod p) y(mod pk—¢=1)

2 GHE) )

z(mod p) y(mod pk—¢-1)

=)
)
>

“@k‘ 3.

e If { =k — 1 then by (4.23) it follows that

G(n;p’“)=<2,:>pf > (;>6(2>

z(mod p)

If k is even then (%) =1 for x # 0(mod p), and since ) ;(modp) e(z

» ) = —1, we have
zZ0(mod p)

=

in this case that

G(n;p*) = —(%)pé-

p

If k is odd then > 0d,) (%)e(%) = G(1;p), and so in this case we have that

X n'
p
e If ¢ > k then

wwn- T (GHE)- 5, (6)

z(mod p*) z(mod pk)
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If k is even then G(n;p*) = p* — p*~1. If k is odd then

o= 2 G2 2 (5

z(mod p*) z(mod p) y(mod pF—1)

2.5 )

z(mod p) y(mod p*—1)

To prove part (e), observe that ¢ = ¢i'g5" ... ¢j™ where e; € Z~¢ and the g; are distinct

primes. Since c¢ is not square-free, we can arrange to have e; > 2. By part (b) it follows that

()
G(L;¢) = (—1) T G(1;¢7")G(L05% ... q;7).
By part (d), we have that G(1, ;") = 0. Thus part (e) follows. O

Let

1 if c=1(mod8),

1 if c=1(mod4), 1 if c=3(mod8),
xa(c) =4 -1 ifc=3(mod4), and xs(c)=<¢ -1 ifc=>5(mod8g),
0  otherwise, —1 if ¢=7(mod8),

0 otherwise.

Lemma 4.5. Let ¢ > 0 and odd.

(a) If n = 1(mod4) then
AT'K_.(ne;4) = (1 +1i)xa(c), where ¢ € Z such that c¢ = 1(mod 4),
ATYK_o(ne;8) = 2%/2(1 +i)xs(c), where ¢ € Z such that c¢ = 1(mod 8),
ATYK_ (ne;282%) =0, where ¢ € Z such that cz = 1(mod 28+?),

for k> 2.
(b) If n =3(mod4) then
ATYK_(ne;4) = —(1+4)xa(c), where ¢ € Z such that cc = 1(mod 4),

AT'K _.(ne;8) =0, where ¢ € Z such that cc = 1(mod 8),

ATYK_(ne; 22 =0,  where ¢ € Z such that ¢ = 1(mod 2F72),

for k> 2.
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(c) If n =2, £>0, and gcd(n',2) = 1, then

(I+d)xalc) if€>1,
ATYK _(ne;4) = , where ¢ € Z such that c¢ = 1(mod 4)
—(I+i)xale) =1,

AT'K_.(ne;8) =0, where ¢ € Z such that ce = 1(mod 8),
and for k > 2 and & € Z such that c¢ = 1(mod 2¥+2), we have that:

(1) if £ > k+ 2 then

AJTK_(ne;22) (1 +1)2%xa(c) if k even,
c —clnc; =

0 if k odd,
(2) if t =k+1 then

A*lK ( - 2k+2) 7(]‘ +7’)2kx4(c) ka even,
—clne; =

c

0 if k odd,
(3) if £ =k then

AJTK_ (ng;282) (1 +1i)2"xa(n'c) if k even,
c A =

0 if k odd,
(4) if ¢ =k —1 then

ALK (nes 247 = if k even,

%2’““){8(71’0’) if k odd,
(5) if ¢t <k —2 then
ATYK (ng; 282 = 0.
Proof. Observe that for k£ > 2 we have that

ATTKo(ng 2k = Ab_lK_b(mB; Qk)

if ¢ = b(mod 2¥) and n = m(mod 2¥). Thus the evaluation of A7 K _.(n¢;4) and A7 K _.(ne; 8)
in parts (a), (b), and (c) follows from a finite number of computations which are easy to perform.
The evaluation of AZ1K_.(ne; 282) for k > 2 in parts (a) and (b) are a consequence of part

(c.5).
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If Kk > 1 then

K_o(n; 252)

o [ 2FF2 ned o[ 2Ft2 ned
Z Ad( d )e<2k+2>: Z Ad( d >e(2k+2)

d(mod 2k+2) d(mod 2F12)
d odd
ned k-c ned
= €<2k+2> +(=Dfe Y e(2k+2>
d(mod 2F12) d(mod 2F12)
d=1(mod 8) d=3(mod 8)
& ned o ned
+EDE D e itz | T > e k2
d(mod 2F*2) d(mod 2F12)
d=5(mod 8) d=T7(mod 8)
ned k- né(d + 2)
= > e(w>+(—1) i) 6(2m
d(mod 2F12) d(mod 2F12)
d=1(mod 8) d=1(mod 8)

O () (e

d(mod 2F12) d(mod 2¢72)
d=1(mod 8) d=1(mod 8)

2ne 4ne 6ne ned
_ k:c k .c
= <1+(1) ze<2k+2>+(1) e<2k+2>+z e<2k+2>> g e<2k+2>.
d(mod 2F+2)

d=1(mod 8)

Since we can write n = 2‘n’ where gcd(2,n’) = 1, this equation can also be written as

K_.(ng; 282)

. (2 n/e 20+2p'e . (271 3n'e
= (1 + (—1)kzce<2k+2) + (—1)k6<2k+2> + ’LC€<2]€+2>>
2n'ed
d(mod 2F12)

d=1(mod 8)

Along with this equation, we shall often use the identity AZ*(1+4i¢) = (1+1i)x4(c) in evaluating
K_.(ne; 28+2).

Suppose that k > 2.
o If / > k + 2 then by (4.24) we have that
ATVK o(ne; 22 = A1+ (—1D)Fi¢ + (—1)F 4-9)2k 1
AZ(1 44928 if k even, (1414)28x4(c) if k even,
0 if k£ odd, 0 if £ odd.

This proves part (c.1).
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o If { = k+ 1 then by (4.24) we have that

d
ATV o(ng;2942) = AZY 1+ ()R + (DR i) Y e<” © )
d(mod 2F12)
d=1(mod 8)
—AZY(1 +i%)2k if k even, —(1+14)2Fy4(c) if k even,
0 if k odd, 0 if & odd.
This proves part (c.2).

e If ¢ = k then by (4.24) we have that

'ed
ATK o(ne; 2812 = AN (1 = (DR + (-D)F i) > e<”c >
d(mod 2F+2)
d=1(mod 8)
Observe

1 ko P 2(1 —14) if k even,
Ac (17(*1) 7 +(*1) —1 ):
0 i k odd,

since A7 (1 —4¢) =1 — i regardless of the value of c. Also observe that

2kl if c=n' = 1(mod 4),

= =2y, ().
_2k,—1

Z <n’cd) —2F=1i if —c=mn'=1(mod4),
e

d(mod 2F12)

i if c=—n'=1(mod4),
d=1(mod 8)

2kl if c =n/ = 3(mod 4),

Thus for k even,

ATYK  (ng;282) = (1 +0)28xu(n/c).
This proves part (c.3)

o If / =k — 1 then by (4.24) we have that

K_.(ne; 282)

d(mod 27 12)
d=1(mod 8)

(et () o () () x ()

d(mod 2F12)
d=1(mod 8)

= 2k-1 <1 + (—1)’%‘%("4) + (—1)%(%) + ice<3zlc>)e<7?).
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If n’é = 1(mod 4) then

. /- . . . . . /=
Zc—&-3n c _ Zc+3 — ZC(—’L) — —ZC+1 — _,Lc+n c.

If n’é¢ = 3(mod 4) then

/- =
Zc+3n ¢ _ ’LC+1 c+3 _ _Zc+n ¢

=—1
Therefore, regardless of the values of n’ and ¢, we have that
14+ (_1)kic+n’é _ (_1)k 4get3n’e —q 4 (_1)kic+nlé _ (_1)k _jetn'e
0 if k even
2(1 —i¢t7'®),if k odd.

Thus K_.(n¢;2542) = 0 if k is even, and if k is odd then

-
K_o(ng; 2842) = 28(1 — icw%)e(?)'
If n’ = 3(mod4) then 1 — i“t"'¢ = 0 and hence K_.(n&; 252) = 0. Thus it remains to

evaluate K_.(ne; 25+2) for n = 1(mod 4). Towards this end, observe that

'a "¢ ’ "7 "l
(1 _ ic+’n 6)6<n80) _ (1 _c +n'c )€<nSC )

if ¢ = ¢/(mod8) and n' = n”(mod8). In light of this, we give the following table for
values of AJ1K _.(ne; 282) = AZ12k(1 - i“+”,5)e<”—'5):

8
n'\c 1 3 5 7
1tigk+1 1tigk+1 _ltigk+1 | _ 14igk+1
1 /3 2 /3 2 /3 2 /3 2
_ltigk+1 | _ 14igk+1 1+igk+1 14igk+1
) NG 2 N 2 /2 2 /2 2

From this we see that

1+

ATYK (ne; 2F1?) =
(& ( ) \/Q

2kt lyg(n'c).
This proves part (c.4).

If ¢ <k — 2 then

2n'ed n'e \°
2 e( okt2 ) = 2 6(2k2+2> :
d(mod 2F12) d(mod 2F12)

d=1(mod 8) d=1(mod 8)

Ifé&= 6(2,9,71”2) and m is an odd integer, then since £% # 1 and since

gSm Z gmd — Z 5m(d+8) — Z fm,d7

d(2k+?) d(mod 2F12) d(mod 2F12)
d=1(mod 8) d=1(mod 8) d=1(mod 8)
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it follows that

2n'ed
> e iz | =0
d(mod 2F12)

d=1(mod 8)

Hence by (4.24), we have that A K_.(n'c¢/;2¥+2) = 0. This proves part (c.5).

4.3 The Meromorphic Continuation of Fourier Coefficients

0)

To prove that E,E has a meromorphic continuation, we need to further simplify our Fourier

coefficient calculations from the previous section. Let

Ga(e,n, 2%:v)
- (1f (%)wf%) [T -2y Y m(pf‘)c_s(APJG(enz?;pj))<pj>*“*1,
p odg‘grime J€Z>0
Gs(e,n, 2% 1)
=(1-(F)2F) II =) X )0 (ApGlenZ®ip)) (),
D Odg\grime J€ZL>o
and

o ()= 3 (2o

>0

where (%) is the Kronecker symbol. We will use the following lemma to expedite our simplifi-

cation of a,,.

Lemma 4.6.

(a) For k even,

G2 +1) g x4(c)C_c <AC/G(en27k; c')) ()" t=L (V + %, <€.n>>g4(e, n, 2" V).
C/€Z>0
c’odd

(b) For k odd,

GEv+1) Y xs(@)C-(AuGlendFid)) (@) L(u+ % (f"))gs&,n,zk;u).
CIEZ>O
c odd

Proof. By Lemma 4.4(b) it follows that x4(c’)C_. (AC/G(enﬁ; c’)) is multiplicative. Therefore,
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by Lemma 4.4(a,d) we have that

GEv+1) Y al@)C(AuGlen?Fid)) (@)
C'€Z>O
c’odd

—Gev+1) I D ) (Ap GlenFip)) ) ) !

p odd prime j€Z>¢

e 1 (52

p odd prime
pin

[T X e (apcensp))e)
p odilzrime JE€EL>0

=aev+1) ] (1+(€;>p—”—i>

p odd prime
pin

I > x4(pj)Cfe(Aij(enﬁ;ij(pj)_”_l-
p odglgrime J€Z>o

In the last we line we used the fact that X4(p)A% = 1 for all odd primes, and we used that

(%) = 1 since k is even. Since

o (Br)-er ()

it follows that

C2(2V + 1) Z X4(C/)C—e (AC’G(Gnﬁ; Cl)) (c/)—u—l

C/EZ>0
c’odd
—1
_ H (1 _ p72y71)—1 H <1 _ <m>pué>
p odd prime p odd prime p
pln pin

[T X aw)e(a,Genp))e)

p odd prime j€Z>q

pln
:L(u—ki7 (m>)(1_ (%)2_’1_%) H (1_p—2u—1)71
. poddlprime
pln

[T X ut)e(apGenp)) o)
p odc;‘zrimejezzo

This proves part (a).

The proof for part (b) is very similar to the proof for part (a). By Lemma 4.4(b) we have
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that xs(¢')C (AC/G(enQTC; c’)) is multiplicative. Therefore, by Lemma 4.4(a,d) we have that

G(2v+1) Z Xg(c’)C_g(AC/G(en?;c’))(c’)_”_l

C,€Z>0
c’odd

e+ I Y xs)C (8 Glend®p)) ()

p odd prime jE€Z>q

=eev+1) ] (1+X8(p)c (AA(“;Q]C))]Q—V—;)

p odd prime
ptn

[T 3 st (8 G(en2fp)) (/)

p odd prime jE€Z>q

pln
=G@v+1) ] (1 + (m>p”5>
p odd prime p
pin

[T X xwte-c(a,Gp)) o)

p odd prime j€Z>q
pln

In the last we line we used the fact that xg (p)Af,(%) = Xs (p)A%(%) =1 for all odd primes;
2) since k is odd, and the fact that

this follows from the fact that (%) = (p

if p=1,7(mod 8),

(2> 1
») o
—1 if p = 3,5(mod 8).

By (4.25) it follows that

Gev+1) Y Xg(c’)c,E(AC/G(m?k;c'))(c’)—”-l

C/€Z>0
c’odd
1 en -1
_ 1
= H (1 — p_2”_1) H (1 — ()p‘”‘z)
p odd prime p odd prime p
pln pin

[I X e .(a,6enp)e)

p odd prime jE€Z>q

pln
1 /en en 1 -1
=L{v+3(7)) (- ()2 ) Loyt
(v 5(M)0- (5 ) T -
p odd prime
pln

H Z Xs(pj)cfe (Aij(enﬁ;pj)) (pj)_”_l_

p odd prime j€Z>q
pln

This proves part (b).
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Proposition 4.7. Let ES) e V(;)Oj(ﬁg) where R(v) > 1, with a,, the Fourier coefficients of
(Eﬁoo))o. Recall that in (4.22) we showed that

an =it G YY) (zkc/)—u—lc,e(K,C,(enE;2’€+2)G(en2k?z;c’)).
' €Z~0 k€Z>o
¢ odd

(a) If en = 3(mod 4) then

an, =—(1+ ei)4”1L(V + %, (m)>g4(e,n,4; V).

(b) If en = 1(mod 4) then

€en

an, = (1+ ei)4_”_1L(V + %, <')>Q4(e,n,4; v)

1
(L4 ed)23/2(1 - z)gulL(u +3 (m))gg(e,n, 8; ).
(¢) If n = 2n' where ged(n',2) =1 then

an, =—(1+ ei)4V1L(y + %, (e_n)>g4(e7n,4; V).

(d) If n =2 where £ > 1 and ged(n',2) = 1, then

an, = (1+ ei)4_”_1L<u + 17 (6?1)>Q4(6, n,4;v)

2
=2 1 1 sen
+ (1 +€t) Z 2k (2’”2)71/7 L(I/ +3 (.>)g4(e,n, 282 0)
kkezvin

—u— 1
+

+ ooy (1 + €0)2 (242) 7 ya(en) L[ v

(1+€)

+ de=0(2) 7

9l+2 (2Z+3)_V_1x8(en')L<V n }7 (@))gg(e,nﬂ“?’; V),

1 if £ = j(mod?2),
where 0p=j(2) = for j € {0,1}.
0 otherwise,
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Proof. Suppose en = 3(mod 4). By (4.22) and Lemma 4.5(b), we have that

=it v Y Y (ch')*V*1C_€(A;lK_C,(enB; 2’“+2)AC,G(en2k+2;c’))

' €Z~0 k€Z>o
¢’ odd

=€id ™V G20 + 1) Z ()Y Co (ALK o (end;4) A G(end; )

CIEZ>0
c'odd
=€id™V (20 + 1) Z ()7 Coe((—1 = i) xa(¢))Coec (A Gend; )
C/EZ>0
c’odd
=€id™" T (20 + 1) Z ()7 (=1 + €i)xa()Coc (A Gend; )
'€=
c’odd
=—(1+e)d ™ 1G02r+1) Z Xa(¢)Coe (A G(end; ) (<)
€0
c’odd

Part (a) then follows from Lemma 4.6(a).

Suppose en = 1(mod 4). By (4.22) and Lemma 4.5(a) we have that

an = €™ Q2u 1) Y () TTIC (AL Ko (end; 4)AwGlend; )

C/€Z>o
¢’ odd

+eid (2 + 1) Z (2¢) VT (AL K o (end;8) A G (en8; ')

C/€Z>0
¢’ odd
= €47V (2 + 1) Z ()Y ((T 4 4)xa(c))Coe (A G(end; )
' €lxo
¢’ odd
+ed T GRu 1) Y (2c')—”—1c,6(23/2(1 +i)xg(c/))C,e(Ac/G(eng;c’))
c'€Zxo
¢’ odd
=eid VT G2v +1) Z ()71 = €i)xa()Cc (A G(end; )
=V
¢’ odd
+eid o (2v + 1) Z (2¢) 7V 123/2(1 — i) xs () Coe (A G(en8; ')
C/€Z>0
¢’ odd
=(1+e)d 1 02u4+1) Z xa(¢)C—c (A G(end; ) (<)t
C,€Z>o
c’odd
+ (1 +€)23287v "1, (20 4+ 1) Z xs(¢)Coc (A G(en8; ) (<)
C'€Z>o
¢ odd

Part (b) then follows from Lemma 4.6(a,b).



Suppose n = 2n’ with ged(n’,2) = 1. By (4.22) and Lemma 4.5(c), we have that

an =i GRu 1) Y () TTIC (AL K (end; 4)AwGlend; )

C,€Z>o
¢’ odd

=4 VI G2v + 1) Z ()Y ((—1 — i) xa(¢))Coe (Aw Gend; )

I EZ>0
¢’ odd

(L4 e)d™ v +1) Y xal(d)C—c(AuGlend; ) (<)

I E€Z>0
¢’ odd

Part (c) then follows from Lemma 4.6(a).
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Suppose n = 2‘n’ with ged(n’,2) = 1 and £ > 1. By (4.22) and Lemma 4.5(c), we have that

an = €471 (20 + 1) Z Z (2kc’)’”’1C_€(A;1K_ (enc’; 2k+2)Ac,G(en2k+2;c'))

' €Z~o k€L

¢’ odd
=4 G20 + 1) Z ()Y ((L 4 1) xa(c))C—e (A G(end; )
C/€Z>U
¢’ odd
+eid ™" (v 41 Z Z (28 )7 (1 + ) xa(c)2F)C— (ACIG(6n2k+2;c’))
c €Z>o k
C odd eVen
et G+ 1) YD (@) e (-1 — ()2 )
C/€Z>0
¢’ odd

C_. (AC/G(CTL%; c'))

+ Se=o(2) €4 (20 + 1) Z (2°¢) 7T e (1 + ) xa(en'c)2%) C— (AC,G(enW; c’))

' E€Z~¢
¢ odd
1 041 N—v—1 L+ 040 'y
+ Op=0(2)€i4 G2 +1) Z (277 Coe| —=2" xs(en'c)
, V2
c' €Z>0
¢ odd

. (AC,G(enzm; c'))
=(1+e) 4 Qr+1) D xald)C o (AvGlend; ) ()

c E€Z>0
¢’ odd

-2
(1+ €) Z 2k (2k+2) C2(2V—|—1) Z X4(C’)C_E(ACIG(GNW;Cl))(cl)_”_l

k=2 €L
even c/ odd
— Gp=1(2) (1 + €i)2"7! (2“1)_”_1@(21/ +1) Z xa(c)Ce (AC/G(en%‘H; c’)) ()t
€L
¢’ odd

+bimo() (14 €0)2/(272) 7 a(en)e(2v + 1) Y xale)

C'€Z>o
¢ odd
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. (AC,G(QO; c')) ()~

1+e —v-1
+ Sp=0(2) —=2"T2(21?) Xs(en)G(2v+1) > xs(c)
V2 ,
c'€Z>o
¢’ odd
-C_5<AC/G(en%; c’)) ()L
Part (d) then follows from Lemma 4.6(a,b). O

For n # 0, we wish to show that a,, has meromorphic continuation to all of C. To do so, we

write
en = st where s = H pland t = H P’ (4.26)
p|In p'lln
£ even £ odd
Thus

p prime
—1 -1
4 4
ST e-G) I G)r)
p prime p p prime p
pls pts
t 1 -1 1 €en
L) e )
p prime p '
pls
which implies
1 en t -1 1 t
fora ()= IO Gr)rlr o ()
ppr‘nne
pls

Therefore

L(l/ + %, (e.n))gzl(e,n, 2% 1)

oo b ()0 (5

[T 0 Y e (8 Glendt:p)) ()

p odd prime J€Z>o
pln
en -1 1 t t -1
S ) DL G
p prime
pls

[T a-»>H " Y m(pj)c_e(Aij(en?;pj))(pjr”*l
P oddlprime JE€EZL>0
pln
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where

Pon = {(1 - (%)Q_V_%) 2l (4.27)

1 otherwise.

Since (1— (£)p=4) (14 (£)p~—F) = 1= 1 it ollows that
(u+ ) (e,n,2% v
@1 )

I (1_ (5)]3_”_5) 3 X4(pa)cE(A,,]G(en%;pj))(pj)”1>

1— —2v—1
(1-p ) =

p odd prime
pls

I o> X X4<pf'>ce(ApJG<en2’“;pJ>)<p">“)
p odd prime J€Z>o

plt

w1 () e ()
11 <1+ (;)plf%)_l > X4(P’)C5(APJG(en2k;pJ))(p])yl)

p odd prime JE€EZL>0
pls

I a-r2H"' Y X4(Pj)ce<Aij(€n2k;Pj))(Pj)V1)~ (4.28)
p odd prime JEL>

plt
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A nearly identical calculation shows that

L(V + %, (én))gg(e,n,Qk;l/)

“p (1= () e (o4 3. ()

-1

11 <1+ <t)p”§) > XS(pj)C—e<Apr(€n27;pj))(pj)*”*l
P oddlprimc p J€Z>o

[T a-»zH " Y Xs(pi)Cfe<Ap.fG(en27k;pj))(pj)_”_l : (4.29)
p odd prime J€ZL>o

plt N

The following lemma allows us to further simplify (4.28) and (4.29).

Lemma 4.8. Let n # 0 and € = 1 with en = st as above.

(a) If p odd and p*||t then

-1
> W)C- (B Glen2Fip) ) () = (L= p ) Y P
J€Z>0 =0
j even
where x = x4 0T Xs-
(b) If p odd and p‘||s then for even k we have
> )0 (A Glen2Fip) ) ()
J€Z>o
t —v—1 t —v—1 — —jv —Lv
= {1+ (=)o) (1= (= )p72) D+ |,
p p —
J
J even
and for odd k we have
> xs)C- (B GlenZFsp) ) ()
J€ZL>o
6 Q) B
p p —

(c) If p=2 then
Z X4(Pj)c—s(Aij(enfk;pj))(pj)*Vfl =0,

J€Z>o

Z XS(Pj)C—e(Aij(enfk;pj))(ﬁ)—V—l —0.

J€Z>o
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Proof. If p|t and p odd, then there exists n’ € Z and £ € Z~q such that en = p‘n’, gcd(p,n’) = 1,

and ¢ is odd. Therefore by Lemma 4.4(d), we have that

Z Xa(p)C—e (Apj G(en?;pi)) (P71

JE€L>0
£—1 .
= 3 xa@)C (A Glen2Fp) ) ()
=0
j even
+ X4(pé+1)c—e (AleG(GTLQT“;pZJrl)) (pfﬁ’l)fl/fl
-1
=1+ ) @ = H) " =)
j=2
j even
-1
=14+ Z (p—]l/ _p—ju—l) _p—(Z—i-l)u—l
j=2
J even
-3
—1_p 1y Z (p77v — p=GH2w=1y | = (=D _ (vl
j=2
Jj even
£—3
_ (1 _p—2u—l) + (1 _p—2u—l) Z p—]l/ + (1 _p—2u—1)p—(2—1)u
=2
j even

-1
=(1—p> D p
=0

J even

This same argument also work when we replace x4 with ys, and thus we have proven part (a).

If p|s and p odd, then en = p’n’ where ged(p,n’) = 1 and £ is even. Therefore by Lemma

4.4(d), we have for even k that

> )0 (A GlenFip)) ()7
J€ZL>0
L
= 3 alP)C (A Glen2Fp) ) ()
=0

+ X4(p€-‘4-1)(376 (Ap[JrlG(enﬁ;p@-&-l)) (pé-'rl)—u—l

2k/
14 n

@ =" H@) 7 xa™ - (Apm (

J 208

R S Rl ) A R
J
je

<.
@

S <HM(\
RN

<
o N

108

A é+;) (+1\—v—1
» ) P (")

Notice that we used the fact that X4(p£+l)Ape+1 A, =1 for all odd primes and that (%) =1

since k is even. Likewise, since (%) = ( ) for odd k and xs(p*T1)A et (%)Ap =1 for all

2
P
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primes, we have by Lemma 4.4(d) that for odd k,

> xs®)C-c (A Glen2Fsp) ) (o)

JE€Z>0

L
= 3 s )C (B GlenZFsp)) ) () s (0O (e Glen2Fip ) ) ()
§=0
J even

2k

A z+;> 041\ —v—1
p ) pD (p )

l
=1+ > @ -p )+ xs( e <APM (

n’
p

4
=14+ D @ - (

j even

[_l’_l f4+1\—v—
) p 2 (p 1) 1 .
Thus fOI' part (}3)7 it remains tO Simplify

L /
1+ Y (= He) ™+ <n>p”5(p“1)‘”‘l-

=2 p
j even
Observe
L o
; - iN—p— 1 W
L+ ) - )+ <)p”2(p”1) .
j=2 b
j even
Y
=14 Z (p~ " —p= V1) + <n>p(€+1)l'é
i=2 b
J even
-2
-1 p—zu—1+ (p_]”— —(j+2)u—1)+p—éu+ (”)p—(e-u)u—g
j=2 p
J even
0—2 n
1
— (1 —21/—1) Z p—jl/ +p—£u<1+ ()p—u—2>
=0 P
J even
’ n =2
1 1
(e G| (-G ) B
p p 0
G=
J even

Part (b) now follows since (”—,) = (i)

p

Part (c) follows directly from the fact that x4(p’) = xs(p’) = 0 for j > 0. O
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By Lemma 4.8, (4.28), and (4.29), we have for even k that

1 /en k.
L(V+ 3 ('))94(6,71,2 V)

NN, _,_1 1 [/t
- (- (e 1 ()
y (-2 -1
1 — v —fv —Jjv
(=G S IR DR D

p odd prime =0 p odd prime j=0
p'lls J even p°||t Jj even

and for odd k, we have that

L(l/ + %, (e_n))gs(ﬂ”a 2k§V)
~ o (1= (P2 e (v 3. ()

N
~
|
—

—

O (-Gt o] || T o] am
p odd prime p 7=0 p odd prime j=0

Pe”S J even p2||t j even

Observe that (4.30) and (4.31) are each the product of a Dirichlet polynomial and a Dirichlet
L-function L(I/ + %, (E)) If t # 1 then L(V + %, (5)) has holomorphic continuation to all of C.
If t =1 then L(V + %, (i)) has holomorphic continuation to all of C except for a simple pole
v = % Therefore, by Proposition 4.7, we see that for n # 0, a, has holomorphic continuation
to all of C except for a simple pole at v = % if en is a square.

In the following proposition we obtain a formula for ag which shows that ag also has holo-
1

morphic continuation to all of C except for a pole at v = 3.

Proposition 4.9. For ES) e V(Z)Oj(g'zg) with R(v) > 1, we have that
ap = (1 +€)272"72¢(2v).
Proof. Recall that by (4.22) and (4.19), we have that

ap = €id "1 (2v + 1) Z V(K _1(0;4c))

cE€Z>o
4c
a—u—1 —v—1
=ed T Gr+1) Y e D) Ad(d>
c€Zxo d€Z/AcT

If ¢ is a square then

Z Ad(i;j): Z Adzl_;i(?(‘lc),

de€z/4ct
ged(e,d)=1
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where ¢ is the Euler totient function. If ¢ is not a square then we select d’ € (Z/4¢Z)* such

that (%) = —1; since (f—cl) =1 it follows that we can always select d’ such that d' = 1(mod4).

4 4 4 4

<¢;> Z (;) = Z (dc> it follows that Z (;) =0.
d(mod 4e) d(mod 4c) d(mod 4c)
d=1(4) d=1(4) d=1(4)

By the same argument it also follows that

> (%) =0, and thus Y (‘Z‘:) _o.

d(mod 4c) d(ri%céf)c)

Since

Therefore if ¢ is not a square then we have

NOR

dez/4cZ.

Thus

ap = €id ™" G (20 + 1) Z 07V71ﬂ¢(46)

2
cEZ>o
c a square

_ 1+€Z4—y 1<- (21/+ 1) Z C—2y—2¢(462)

2
c€Z>o

1+e _,_ b
_ 4 1C2(2V+1) Z Z 2k —2 2¢ 22k+2 2)

2
c€ZL>o k€L>o
¢ odd

_ 1+ 6i4_”_1C2(2V+ 1) Z Z (2k;)—2u—20—2v—222k‘+1¢(02)

2
c€Z>o kEZZO
c odd

e ) ST 2 Y e 22

2
c€Z>o kGZzO
c odd

=(1+e)2 21 -27) G+ 1) | Y 7 20()
c€Z>o
¢ odd

Since ¢(c?) is multiplicative, it follows that

= (1 + 61.)272”72(1 - 272V)_1<2(21/ + 1) H Z —2u— 2 2k).

p odd prime k€Z>¢
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Observe that for odd primes p we have that

Z (pk)721/72¢(p2k) =14 Z p72ku72k(p2k _p2k71)

kE€Z>o k€Z>y
=1+ Z (p72k1/ _p72ku71) -1 _p72u71 + Z (p72ku _p72(k+1)1/71)
kEZ>, kEZ>,
-1 7p72u71 + (1 7p72u71) Z p72kv — (1 7p721/71) Z p72ku
kEZ>1 k€Z>¢
B 1— p72u71
- 1 _p—21/ '

Using this expression and the Euler product expansion for (3(2v + 1) gives us that

1— —2v—1
ag = (1 + EZ‘)272V72(1 — 2721’)714.2(21/ -+ 1) H Jﬁ
p odd prime

=1+ ei)272”’2(1 — 2*21’)*1 H (1— p72u)71

p odd prime

= (1+€i)27272¢(2v).
O

Now that we have established the meromorphic continuation of the Fourier coefficients a.,,
it remains to prove that (El(,oo)>0(x) = > nez @né(nz) also has meromorphic continuation. In
particular, we wish to show that the series ), _, ane(nz) converges for all v # % We begin by
establishing bounds for

L<V + %, (en>>g4(€7n72k§ v),

when k even, and for

L(u + % (%))Qs(e,nﬂk; V),

when k odd. To do this, we will compute our bounds using the formulas given (4.30) and (4.31).

For R(v) > 0, we have the following (crude) bounds (recall that ps,, was defined in (4.27)):

pa- (1= (5)27 )| 420 b <272 <y,

-1 -1
I Xrrs 11 X< I »o=hml

p odd prime j=0 p odd prime j=0 p odd prime
ptljt  Jeven ptljt  Jeven Pt
t -2
—v—1 —jv —Lv
1—(=|p" 2 p+p
p odd prime p J=0
;DL]HS j even
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L -2
= H Z p*ju _ (Zt))pvé Z psz/
=0

p odd prime 7=0

pl’«HS J even J even
14 £—2
— iy t 1 —jv
< II D R ) I
p odd prime 7=0 p Jj=0
p£||S J even j even
14 £—2
_1
< JI [ Xt Xt
p odd prime \ j=0 j=0
pe||8 j even j even
(4 V4 {41 2
< JI @+< JI »* <>
p odd prime p odd prime
plls Plls

For R(v) < 0, we also have the following bounds:

Pom - (1 _ (%)Q—V—%)‘ < (14277032 < (2.97R0))2 _ 4 R@)-1,

H § p Y| < H 0. p~ R < H pHROI+D

p odd prime j=0 p odd prime p odd prime
pillt  Jeven pellt Pl

< |n|7§R(u)+1

)

t {—2
i (ROSE e
p 0

p odd prime J=
olls ey

L

_ H —jv (t> vl 0—2 L
p L > p
0 7=0

p odd prime \ j=

PZHS J even J even
L ¢ -2
S V1D SPEC Y VPR SR
p odd prime 7=0 p 7=0
pz||s j even j even

< H i p7Z§R(V)+p7%(V)7% Z_ZQ pffi)?(u)
j=0 =0

p odd prime
pklls j even J even

¢
< H 9p~R®) prm(u) < H p-p RO gy~ RW)
j=0

p odd prime ) p odd prime
pllls j even PZHS



118

< H p.pfﬂ%(u)pfpfﬁ)?(u) — H p(erl)(*?R(V)*Fl) < |n2|7%(u)+1
p odd prime p odd prime
ptlls ptlls

By these inequality, it follows from (4.30) for even k that

2(v4 5 () )ortem 2e0)

AnP|IL(v+ L, (4)] if R(v) >0

4= RE)=1 | = RW)+1 2|~ éR(u)+1’L(y+ J(B)| iR <0

AnpP|L(v+ L, (¢ iHfR(v)>0
[amplre () v .
[4n3| RO L (v 4+ 5, (1) i R() <0
Similarly, it follows from (4.31) for odd k that
1
’L(V_|_ 5 (@))gs(e n, 2% )
AnlP|L(v+ %, (¢ ifR(r)>0
[l 1) w .

[ ROL o+ 4 ()] R <o

We now show that there exists K : (C;é% — R+ such that

‘L<y+;, (t»‘ < K(v), (4.34)

for all t and R(v) > 3. First observe that for R(v) > 3 we have that

‘L(V—&— > (t))’ < ’c(%(u) + ;)’

Thus such K (v) exists for R(v) > 1. By utilizing the functional equation for L(v + 3, (%)) for

Ha (1))

t # 1, we see that for R(v) < —1 we have

=
o e )

Finding a bound for when t = 1 is easy since L(u + ()) = C(l/ + ), and clearly such a

)

F(1—2z+2§) ¢

R(v)

—_

[\

function is bounded by |C (v+3) ’ Thus we have shown that K (v) which satisfies (4.34) does
indeed exist for [R(v)| > 1. On [R(v)| < 3, v # 3 it is well-known that there exists E(v) which

bounds all L(V, (t)) continuously in v and polynomially in ¢ away from v # %

In Proposition 4.7 we see that a,, for n # 0, consist of finite sums with terms of the form

ok (2h+2) v, (y, (t) > G,(e.n, 2%, v),
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where j = 4,8. The number of such summands for a given a,, are bounded polynomially in
n. Therefore, since each factor in such summands is seen to be polynomially bounded in n,
it follows that the a, for n # 0 are polynomially bounded in n. This suffices to show that

(El(,oo)) (x) = X ez ane(nx) converges on C_.1. With some extra work one can also see that
0

(~£OO))O(:E) = Y ,c7 ane(nx) has a simple pole at v = 1: indeed, one can easily check that

(v — 1)a, are holomorphic and that (v — %) >, _, ane(nx) converges on all of C.

Now that we have established that (El(,oo)> has meromorphic continuation to C with a
0

simple pole at v = %, it then follows that El(,oo) also has meromorphic continuation to C,

provided that (E("o)) has meromorphic continuation to C. One means of doing this is to
oo

compute a Fourier series expansion for (E (OO)) and establish the meromorphic continuation
(oo}

of its Fourier coefficients just as we have done for (El(,oo)) . Instead, we will deduce the
0

meromorphic continuation of (Eﬁw)) in large part from the meromorphic continuation of
(B .
0 ~ ~
Since (") and (E5)
5 1N(SL2)B(SLy) respectively, and since the complement of N (SLy)B(SL2)N3~ !N (SLg) B(SLs)

are themselves the restrictions of s z() to N (SAL/Q)B (éig) and

in SL; /B (§f42) is simply 5B (ﬁg), it follows that we have already established the meromor-

phic continuation of (El(,oo)) . Since by (4.18) we have that

e
(Eg@)w - (Eﬁm»o@‘mﬂ — €iCo(2v + 1)d, (4.35)

it follows that El(,oc) has meromorphic continuation to all of C, with a simple poles at v = 0, %

Tim

" log(2)

and v = —%WheremEZ.

4.4 The Metaplectic Eisenstein Distribution at 0

Recall that El(,oo) is the distributional analogue of the usual metaplectic Eisenstein series based

at the cusp oco. Next we shall define E,EO), which will be a distributional analogue of the

metaplectic Eisenstein series based at the cusp 0. To do this, recall that in (3.39) we defined

e 0 —271
N=a, 5s=3saz = 1], (4.36)
2 0
~ 0 -1 B 2 0
where s = ,1] and az = ,1 ], as defined in (3.7) and (3.2) respectively.
10 027!

Let f(o) = Q0L Following [9], we define the metaplectic Eisenstein distribution at 0 to be
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the following distribution in V. (SLQ)

EQ =Gev+1) Y 7(72)dw, (4.37)
FeT1(4)/T o)

where R(v) > 1. Since 6 is invariant under left translation by L', it follows that 7(€2)du is

invariant under left translation by f(o). Thus the summation over I'y (4)/ f(o) in the definition

of Eﬁo) is justified. By construction, we see that El(,o) is formally f1(4)-invariant. We will justify
the convergence of the series defining E‘ﬁo) momentarily.
~ 11 11 10
Since I'1(4) is generated by ,1] and Q 1071 = ,1], it
01 01 —4 1

follows that QI (4)Q~ = I'1(4). Since QI'1(4)Q1 =T (4) and QT Q! = f(o), we have that

EP =Gr+1) Y w(@9)0x = n(QEL.
7€f1(4)/i>0

7(0)

Therefore the series defining F,~’ converges for #(v) > 1, and we have that E has meromor-

phic continuation to C with a simple pole at v = % Since W(Q)El(,oo) is foo—invariant, it follows

that (El(,o)) is periodic. Thus (El(,o)) has a Fourier series expansion:
0 0

(L), (@) = 3 buc(na),

where
bn ——/0 (El, )0(33)6(—7137) dz.

In section 4.5, we will establish a functional equation between E,EOO) and E,(,O). We will do this
by computing an explicit formula for the Fourier coefficient by. The derivation of this formula
will make considerable use of the Kronecker symbol. We refer the reader back to Proposition

4.2, where the relevant properties of the Kronecker symbol are stated.
Proposition 4.10. For B € Vo (SLQ) with R(v) > 1, we have that

bo = €277 1 (20).

that (3)(3) = (Ga) =

= 1. Thus (5) = (%), both for ¢ # 0 and ¢ = 0. Next we seek to

c c

Proof. Suppose 77! = ( (9) ] € I'y(4). If ¢ # 0 then ad = 1(mod ¢), which implies
(1) =
) in order to express (3‘) = (5) in terms of ( ) Since a = 1(mod 4)

evaluate (_b)( ) (
) = (’7)(@) = (%) Therefore when b # 0, we have that the sign of b is

a

c
it follows that (

a



inconsequential when it comes to evaluating (‘;’C). Observe that for b > 0 we have that

(f)(i)1 if a > 0,
<‘abc> _ (‘_blc) (‘_l;c) — sgn(—c) (_1a> — sgn(—0) if a < 0.

Hence (=2)(£) = (=2¢) = (a,—c)p for b # 0. Thus for b # 0, we have that

(5)= ()= ()0 = (2) oo
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(4.38)

the last equality follows since a = 1(mod4). We shall make reference to this equality later in

our proof.

Observe that for ¢ # 0, we have

—1
~Qs = -2 P ,sgn(c)(£> = 2 _2db 7sgn(c)(f)

c _d
—2a -5 5

o

Thus by Lemma 4.1(a), we have for ¢ # 0,

(T(7) o0 )o () = (m(7828)0)0 ()
—c -1 c /2 o
s (3)(5-50-5) [5org ] sm(o5e-g) <_2_2b>

= sen(©) (§> (¢, —cax — d) g2 ex + d|”sgn(—ca — d)/? (4<a:p + b>> ,

as an equality between distributions on R 2=d- Let ¢ a test function of compact support on

R_ —a. Observe that

e

4 4
(C,) 2u+1|c|u1|x|ulsgn<
CT H Ccx

€/2
eN{ =1\ it -1 1 d
= sen(c)(3) ) 277" ldal lsg“(a) ¢<ac‘c>
H

(4.39)
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If b # 0, then it follows from (4.38) that
sene) (§) (o) ysmn(-a) " = senfe) (1 ) (@, =0 (c: ) ()"
= sgn(c) (z>sgn(ac)sgn(—a)e/2 = sgn(a) <z)sgn(—a)e/2 =— (Z)sgn(—a)_s/z.

By this equality and (4.39), we have for b # 0, that
~ b —v—1 —€/2
(r(32)d0)o = — | — ] |24 sgn(—a) s, (4.40)
a a

«. Conveniently, (4.40) also holds for b = 0 since

c

as an equality between distributions on R £

b =0 implies a = d =1 and (%) = 1; indeed, observe that in this case we have

sgn(c) (2) (¢, —a)Hsgn(—a)E/2 = sgn(c)sgn(c)sgn(—1)/? = ei = — (?)sgn(—l)_ﬁ/Q.

Thus it remains to describe (7(7)d4 )o about the point =¢ for when ¢ # 0. To do this, observe

¢
that for ¢ # 0 we have that

-1

o= (2 8) o) - (2, ) Graom

Thus by Lemma 4.1(a) we have that
(m(Y8)do0)o = 0,

as an equality between distributions on R —». Since =4 £ =b it follows that (m(¥2)ds)o
vanishes about the point =%, and thus (4.40) holds as an equality between distributions on R.
With (4.40) established as equality between distributions on R, it remains for us to index

the cosets of f1(4)/f(0) in some natural way. Observe

1 0 d —b (c) 1 0
—4n 1 —c a , —4n 1

—c—4an a d + 4bn

From this equality we see that to each coset of I'y (4)/ f(o) there corresponds (a, b) € Z? such that
ged(a,b) = 1 and @ = 1(mod 4). Furthermore, this correspondence is unique, for if both ﬁf (0)
and ?’f(o) correspond to the same (a,b) € Z, then it follows that 715" € f(o). Conversely,
when given (a,b) € Z? such that ged(a,b) = 1 and a = 1(mod 4), it follows that gcd(a, 4b) = 1.
Thus there exists ¢/,d € Z such that ad — 4bc’ = ad — b(4¢’) = 1. Since a = 1(mod4) then
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d = 1(mod4). If we let ¢ = 4¢’ then ¢ = 0(mod4). Thus we are able to construct 5 which

corresponds to such (a,b). Therefore
T1(4)/T(0) = {(a,b) € Z* : ged(a,b) = 1,a = 1(mod 4)}. (4.41)
By (4.41), we have that

<El(’0))0 =—((2v+1) Z <Z> |2a‘7yilsgn(—a)_e/25_7b

(a,b)ez?
ged(a,b)=1
a=1(mod 4)

Observe

b —€
G2 +1) 21/+1 / Z (a)|2a|_y_1sgn(—a) /25%(1‘)@0

(a,b)€Z?
ged(a,b)=1
a=1(mod 4)

= Y (Z) 2077 = Y <Z> |2a| 71

(a,b)EZ~oXZ (a,b)EZ<oXZ
0<—-b<a 0>—b>a
a=1(mod 4) a=1(mod 4)

= ) (_ab)|2a|—”—1— > (_ba)|2a|—”—1.

(a,b)€Z>0 X7 (a,b)€Z>o X7
0<b<a 0<b<a
a=1(mod 4) a=3(mod 4)

Observe that if @ = 1(mod4) then (=2) = (=1)(2) = (2), and if b > 0 and a # O then

() = (2) () = (&) Thus
1 o)

a€lxo \bEZ/aZ

Observe that if a is a square then

but if @ is not a square then
Z b
() - O.
a
beZ/al

The latter case follows since if a is not a square then there exists b’ € Z such that ged(a,b’) =1

and (%) = —1, and thus

(=O)-O(=@)-(=®)-( =)

beZ/al beZ/al

Therefore

bo = €iCa(2v +1) Y Ao(a®)|2a® 77 = €ila(20 + 1277 Y g(a®)|a] T

a€Zxo aEZd>(i)
ao
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Since ¢(a?) is multiplicative, it follows just as in the proof of Proposition 4.9 that

bo = €io(2v +1)277 1 H Z $(p?*) (p*) 22

p odd prime k€Z>q

=eiGa(2v+127" ]

p odd primes

1 _p—2u—1 o
— = €271 (2v).

4.5 The Eisenstein Distribution Functional Equation

Recall that in (3.2) and (3.7) we defined the following elements of SLy:

~ €1 0 ~ u 0
Mey,ez,e5 = ,€3 |, Gy = , 10,
0 e 0 wu!
- 1z _ 10 _ 0 -1
Ng = 71 y N—x = al ) and s = ) )
01 r 1 10

where ¢; € {£1}, u € Rsp, and x € R. Throughout this section, we will suppose that f €
V(zj ﬂ,(éig) where € = £1; notice that we now have —v as our complex parameter instead of

v. Recall that by definition,

Vs, (SLy)

= {f € C®(SLy,C) : f(gh) = w(e),(b~1)f(7) for all § € SLo,b € B(SLa)}, (4.42)

where w(cy,,, is defined in (3.14).
For R(v) >0, let I, : Vi _ (SLQ) -V (SLQ) where

/ @57 d (4.43)

In a moment we will show that the integral defining I,, does indeed converge for (v) > 0, and
that the codomain of I, is in indeed V( (SLQ) With regards to justifying the convergence of
the integral, observe that by the transformation law given in (4.42), we have that

(L. f)o / f nzsny)dy*/ F((y142) @y~ Msgn(y) sen(y) sen(m) T —y~1) AY

— 00

:/_ Iyl‘”‘1sgn(y)‘e/gf(m_y—lm)dy=/ ly|" sen(—y) "2 folz +y)dy,  (4.44)

with the latter integral converging absolutely for #(v) > 0. By an almost identical argument it

also follows that

(I, f)oo(x) = /_Oo lyl" sgn(—y) "% foo (2 + ) dy, (4.45)



125

with the integral converging absolutely for ®(r) > 0. Thus the integral defining I, f converges

absolutely for () > 0. As for justifying the codomain statement, observe
(oo} (oo}
LG = [ sa@smyd= [ fGLatd
—ut [ @y = [ @ = w0, @) @)

From this equality and the fact that M (éiz) is the center of §I:2, it follows that I, does indeed
have V(?)’V(éig) as its codomain.

Observe that I, is an intertwining operator between the spaces V(‘?)’ﬁy(éig) and ‘/(SV(S‘EQ)
A well-known result from representation theory states that I, can be meromorphically continued
to all of C [13]. Our goal for this section is to describe I, (E(_OS)) in terms of ES° and E,SO), and
to thus obtain a distributional analogue of the functional equation for metaplectic Eisenstein
series. To accomplish this, we need to define the following Gamma factors. For § € {0,1}, let

Galv) = 2cos(%)(2m)*T(v) if6=0, (1.46)

2isin(Z¢)(2m)"*T(v) if 6 =1;
and for €1, e € {1}, let

Gy a(v) = (e(ei”) + elie(_ff”»(zw)—vr(u)

= V2(1 + €14) cos(g (1/ — %)) 27)" T (v). (4.47)

The following lemma gives some integral representations for these gamma factors.

Lemma 4.11. For 0 < R(v) < 1,

(a) Gs(v) = /_OO sgn(m)éml’_le(x)dx,
() Gaolv) = [ senlean)lalelo)i,

where the above integrals converge conditionally.

Proof. For 0 < R(v) < 1, one can show that

/Ooo x| te(xx) dr = e<i”> (2m) VT (v). (4.48)
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Thus for 0 < R(v) < 1 we have that

/Z sgn(z)’|z|" " Le(z) dz = /OOO lz|V " te(z) dx + (—1)° /OOO lz|¥ te(z) dx
= /0 x|~ te(x) do + (_1)6/0 2| e(—x) dx
- e(%) (2m) " T(v) + (-1)%(‘4”) (2m)""T(v)

~ (o) n() + o on() - (5)) o

= Gs(v),
and
/00 sgn(egx)i|x|"_1e(x)dx = /OO sgn(x)%|x|”_1e(62x)dx
- _ooo
/ sgn(x \x|" e(exx)dz + [m sgn(a:)é71 lz|" " Le(exx)dx
/ e(eax)dx + elz/ooo lz|" " e(—epx)dx
= ( —&—elze(_ff/))(Qﬁ)_”F(u)
=G e (v)-
O
We can define the intertwining operator I, on V (SLQ) in two equivalent ways. One ap-

proach is to extend I,, by continuity on the dense subset of smooth functions in V( e (SLg). Al-
ternatively, one can define I, on V(_)‘X’ (é\ig) by first observing that the pairing on V% _V(§I:2) X
V9w (SLQ) described in section 1.2 extends continuously to V- °° (SLQ) X V&, (SLQ). Thus

for T € V(E)o‘iu(SLg) and f € V>, , we define I, by the equahty

(L7, f) = (1,1 f)

that is to say, we define I,, on V(:)O‘iy to be the adjoint of I_, on V(°_°€) ,- We use this latter
definition of I, for when working with elements of V(Z)oiy.

It is well-known that I_, o I, is a scalar operator. The following lemma, which follows from

[20, p. 89], gives us an exact description of this scalar operator.

Lemma 4.12. For f € V3™ (SLQ)

27i cot(mv)

(I_,If)=e f.
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Let 1, denote the element of V(Z)oj (§f42) defined by
(1y)o(z) =1 and (1) (0) = 0.
Similarly, to avoid confusion, we will write do . for the do element of V(Z)Ol‘j(éig)
Lemma 4.13. For §o,—,,1_, € V(Z)Oiy(ﬁg) we have
(a) I,(0o0,—v) = —€il,,
(b) I,(1-,) =

Proof. For f € V™, (§f42), observe that [ (Joc)o(2)(I-, f)o(z) dz = 0. By (4.3) and (4.43),

SV

we have for R(v) < 0 that
/_OO (0o0)oo () (T—p floo(x) = —€i(I_, f)oo(0) = —ei /_OO fGE5ny)at
= —€i /_00 f(ny) dt = —ei /_OO 1o(z) fo(z) dx.

Thus 1,000, —, = —€il, for R(v) < 0. To see that this equality also holds for R(v) > 0, observe
that for h € C°(R), we have that

v /R(—ei]l,,)o(m)h(sc) dx

is holomorphic on C, and that

Vi /R(L,éoo,_l,)o(x)h(x) dx = /R(éoo,_y)o(x)l_,,(h)(ac) dx

is meromorphic on C. The uniqueness of meromorphic continuation then asserts that

/ (L6 )o(@)h(x) dz = / (—eil,)o(2)h(z) da
R

R

as meromorphic functions on C. Since this equality holds for any h € C°(R), it follows that
(I0oo,—v)o = (—e€il,)o. A similar argument shows that (1,000, —1)oc = (—€il, )0, and thus part

(a) follows.

274 cot(mr)
v

Lemma 4.12 applied to doo,—, shows that I_, 1,600, — = ¢(V)000,—1, Where c(v) =€

Therefore by part (a), —eil_, 1, = ¢(v)dco,—v, Which becomes

oo,V — 0o,V
et %4 14

II/]]-fy == GZ’C(_I/)(SOOJ/ = (Ez)ewé 27T COt(ﬂ-V)

when we replace v with —v and solve for I,,1_,,. O
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Recall that a,, denotes the Fourier coefficients of (E,SOO)) and that b,, denotes the Fourier
0
coefficients of (~,SO)) . To show the dependence of these coefficients on v, we will also write
0

an(v) and b, (v) for a,, and b, respectively. Let as (V) denote the coefficient of dy in

[ (0) _ ()
(EV ) %) (Ey ) o) ’R#O ’
By (4.35) we see that
(oo (V) = €iCa(2v + 1).

Likewise, let b () denote the coefficient of dg in
().~ (52). .
o) oo IR0
We shall refer to as (v) and b (V) as Fourier coefficients at oo. Observe
(E9)_ = () _ = (s 9E)_= (st 5

- (ﬁ(agl)ﬁ((fid, 71))155&))0 - fei(w('dgl)Eﬁc’o))o,

o0

where ) is defined in (4.36). Therefore, since (E£OO)>0 has no delta distribution at 0 by (4.17)
it follows that (E,(,O)) vanishes about 0. Thus

o0

beo (V) = 0.

In what follows, we shall use the following identities:

U (20 4 1) = —Go(20), (4.49)

((1—5) = Gols)¢(s): (4.50)
Recall that by Proposition 4.9, we have that
ao(v) = (1 +€)27272¢(2v).

Therefore by Lemma 4.13, (4.49), and (4.50), we have that

Lao(-)1 ) = =22 gy s = -

TEOUTY) (1 4 )22 1¢(~20)ms

= _%(TFV)(]- + 6’i)22u71G0(21/ + 1)C(2V + 1)500,1/

= (1+€)22 7 1Go(2v)¢(2v + 1)d00.

(—€i(1+ €i)2* ' Go(2v) (1 — 272" 1) 1) (eia (20 + 1)) 000,

= ((1—€)2? 1 (1 = 272" G (20)) oo (V)60 v (4.51)
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and

I (oo (—V)000, 1) = —€itoo (—v) 1, = (1 — 2271 (=2v + 1)1,
=(1-2""HGo(2v)¢(2v)1,
= ((1 — )21 — 2‘2"‘1)‘1G0(2y))

: ((1 i)l 9 2 ly(q 22”—1)§(2u))1y. (4.52)

We wish to write (1 — ei)=1272vF1(1 — 272v=1)(1 — 22~1)((2v) as ag(v) + d(v)bo(v) where

d : C — C. Since by Proposition 4.9 and Proposition 4.10, we know that

ao(v) = (1 +€i)2722¢(2v),

bo(v) = €271 (2v) = 27771 (1 — 272)¢(2v),
it follows that when we solve for d(v) we find that
d(v) = (1 —ei)277(1 —2%).

Theorem 4.14. For ES € Vi )°j(§f/2) we have

I, (E(_Oj)) - ((1 — )22 (1 - 2*2”*1)*16*0(2;/)) (E&Xﬂ +(1—e)27(1— 22”)E§0>).
Proof. We have established that the 0-th Fourier coefficient of
I, (E(fj)) - ((1 — )21 — 2*2"*1)*1G0(2y)) (Egoo) + d(u)Eg())) (4.53)

is equal to zero, and that the Fourier coefficient at oo of (4.53) is also equal to zero. In light
of [17, (2.17)], we have then that (4.53) is cuspidal at co. Indeed, in classical terms, the series
(El(,o))o(x) = > nezbn(v)e(nx) is seen to be a series expansion of EY) based at the cusp at
oo. If one can establish that both ES)O) and F© are cuspidal at the cusp %, then it follows
from the general theory of the metaplectic Eisenstein series that we must also have that (4.53)
is cuspidal at the cusp 0. Since for almost all v € C, 0 is the only automorphic distribution
which is cuspidal at all these cusps, it follows by meromorphic continuation that (4.53) holds

for all v at which E and E” are defined.

)

In order to determine if E is cuspidal at 1, we let

10
0= 1

)

21

9
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and let (%) le(@) = E() (©9). One can check that the minimal n € Z~ ¢ for which (E,(,OO) |(_))O(m+
n) = (Eﬁw”@)o(x) is n = 4. Indeed, this is the case since

-11 -3 2

On; = , 110, 0ng, = , 110,
—4 3 -85
~ -5 3 ~ -7 4
Ons = ,110, and Ony = , 110,
—-12 7 —-16 9
11 -3 2 -5 3
11, ,1], and 1
—4 3 -85 —-12 7

are seen to not be elements of I'; (4) (either for failing the congruence conditions, or for having

a second coordinate incompatible with the corresponding Kronecker symbol associated to the

74, 74 (—16)
_169) —169) \ 9

is an element of I'; (4). Thus when we calculate Fourier coefficients of (Eﬁoo)|@) , we do so by
0

matrix coordinate), while

integrating over the interval [0,4).

Since
12 -3 2
71 = ) )
01 -85
and since
-3 2 10 -3 2 -3 2 -8 .
71 : 7_1 = 7_1 = ) <> S F1(4)7
-85 01 -85 -85

it follows from our transformation law for Eﬁm) that

(E<°°> |@)0(x +2) = B (@ﬁgﬁxB(éig))

- -3 2 o - -3 2 o

= B , 1|07, B(SLy) | = —E() ,—1 | ©7, B(SLy)
-85 -85

— [ (@ﬁl.B(éig)) = —(E<°°>\e)0(x)-

Therefore,
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By an identical argument, it also follows that

t44<E§”H@)0@ﬂdx0

To show that E‘,EOO) is cuspidal at %, it remains to show that the Fourier coefficient at oo

(i.e. the coefficient of §y of (E(O")|@) ) is equal to zero. To see that this is the case, observe
o0

~ ab
that for 71 , (&) | we have that
cd
-1
N b —d c+2d d
0 1535 = k| = %
a+2b c+2d —a—2b —b

Therefore by Lemma 4.1(c), we have that

(7(3)ds0)|0) o (%) = (7(F8)0)l0) oo () = ((7(©775)d0)) , () = O,

as an equality between distributions on R c+2a. Since ¢ + 2d # 0 (since ¢ + 2d = 2(mod 4)),
d
it follows from (4.16) that the Fourier coefficient at oo for E*|e is zero. Therefore, ES) s

cuspidal at the cusp %

)

Likewise, for the case of El(,o , we observe that

-1

[N]ISH

N 2b —2a — 4b —2b
07 10s = k] = . %
§+d —2a—4b —5—d -5

and therefore by Lemma 4.1(c,d), we have that

(T(A)de0)l0) oo (2) = ((7(F28)d0)|6) o (2) = ((m(O71725)d0)) () = 0,

as an equality between distributions on R..24a when b # 0, and as an equality between distri-
butions on R when b = 0. In this latter case we see immediately from (4.37) that the Fourier
coefficient at oo is zero, and in the former case we have that the Fourier coefficient at oo is zero
since 2 + ¢ = %2!7 # 0 (since a + 2b = 1,3(mod 4)). Therefore, B s cuspidal at the cusp
O

=
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