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ABSTRACT OF THE DISSERTATION

Detecting Signatures of Natural Selection in Genetic Data

by Aatish Bhatia

Dissertation Director: Dr. Gyan Bhanot

I report on three studies where I identify signatures of natural selection in humans,

and dissect the genetic architecture of complex phenotypic traits in yeast. In chapter

2, I discuss the results of a quantitative trait mapping study, where we showed that

yeast growth can be characterized by multiple biologically-relevant growth parameters

obtained by fitting yeast growth OD data to a sigmoid function. We identified quantita-

tive trait loci (QTL) and gene-gene interactions driving variation in these yeast growth

parameters. We analyzed the environment dependence of these QTLs and gene-gene

interactions, and identified a common gene, FLO8, which interacts with other genes

in an environment specific fashion to affect distinct growth phenotypes. In chapter 3,

I describe our published study where we applied quantitative trait locus mapping to

wildtype yeast strains, and identified linked clusters of genetic variants that contributed

to variation in the sporulation efficiency of these strains. In chapter 4, I describe our

work on identifying signatures of natural selection in the human lineage, specifically

in the Maasai people in East Africa. Our work suggests that the Maasai have under-

gone recent diet induced positive natural selection that may confer protection against

hyperlipidemia and cardiac diseases.
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Chapter 1

Introduction

1.1 The fundamental forces that shape the genome

Natural selection is the primary mechanism through which organisms become better

adapted to their environment. The vast majority of random mutations have either a

deleterious or a neutral effect on the reproductive success of an organism. Occasionally,

a mutation, or a series of mutations arise, which enhance the ability of an organism

to pass on copies of its genes to future generations. It is these rare events that make

organisms better adapted to their environment.

Selection pressures are different for different organisms, depending on their life cy-

cles, the ecological niches they occupy, their method of reproduction, and the timescales

over which biological forces alter their genomes. Neutral forces such as mutation, re-

combination and genetic drift (discussed below) alter the genome over long timescales.

On the other hand, selection can act rapidly. These forces create a complex interplay

of timescales over which must be carefully analyzed to detect signatures of natural

selection.

The overall question we begin to address in this thesis is: how can we identify genetic

signatures of adaptation in genetic data?

In this thesis, I restrict my attention to eukaryotes, specifically to yeast (S. cere-

visiae) and humans. In natural populations such as human groups, it is difficult to

isolate the genetic loci underlying complex traits [3], [4], [5]. Our understanding of

eukaryote evolution has therefore greatly benefited by quantitative genetic studies con-

ducted in experimental populations of yeast [6]. The abundance of phenotype data and

high-resolution genotype data has led to genomic scans and experimental methods that
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can precisely dissect the genomic architecture of complex phenotypes [3], [7]. Further-

more, we can identify the gene and interactions governing complex traits with a high

degree of accuracy. In chapters 2 and 3, I describe my work identifying genetic loci,

as well as gene-gene interactions and gene-environment interactions, that contribute

towards complex quantitative phenotypic traits in yeast. In Chapter 4, I describe my

work identifying signals of natural selection in humans, specifically in the members of

the Maasai population in East Africa.

A defining aspect of life is that organisms can pass on their genomes, with modifi-

cation, to the next generation. Darwin used the term “descent with modification” to

describe this phenomenon. Today we understand the molecular basis by which DNA

is translated into proteins. However, the mapping from DNA variants to phenotypic

changes is highly complex and there are notably few instances where the presence or

absence of a single mutation determines a phenotype. Complex traits, such as height

or disease risk in humans, or growth and aging in yeast, are regulated by the inter-

action of multiple genes, each of which may have a small effect on the overall pheno-

type [8], [9], [10], [11]. The phenotypic effect of a gene can also depend on the genotypes

at many other genes (the genetic background). And lastly, the effect of a gene, and its

interactions with other genes, are highly dependent on the environmental context.

Experimental techniques in molecular biology such as knock-down gene studies and

genome-wide associations studies allow us to dissect the genetic basis of such complex

phenotypes. In particular, a host of statistical tools under the category of quantitative

trait mapping uses the genotype and phenotype data of a large number of individuals

to identify causal genetic variants that drive a change in phenotype [12], [13].

In chapter 2, I report on the results of such a mapping study, where we show

that yeast growth can be characterized by three different growth parameters, which

we expect to be regulated by a number of distinct genetic loci. Using sequence and

growth data for different carbon sources in crosses between highly divergent strains of

yeast, we identified the genes and gene-gene interactions that drive variation in these

growth parameters. By mapping these traits in a variety of environmental conditions,

we analyzed the environment dependence of these genes and gene-gene interactions,
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and identified specific genes that interact in an environment-specific manner to alter

growth phenotypes.

In chapter 3, I describe our published study where we applied quantitative trait

mapping to wild-type yeast strains (i.e. those isolated from the wild as opposed to

clinical or lab-adapted isolates), and identified linked clusters of genetic loci which con-

tribute to variation in sporulation efficiency among these strains [1]. Such an analysis,

which attempts to map quantitative traits using a limited set of wildtype strains, is

quite challenging. One specific challenge is the need to correct for population struc-

ture. In this study, we addressed this using some recently developed statistical tools to

correct for the bias from the relatedness (population substructure) of the yeast samples.

In chapter 4, I discuss our published work [2] on identifying diet induced selection in

humans. Compared to yeast genetics, the study of natural selection in humans requires

us to address a completely different set of issues, which are specific to multicellular, non-

clonal, sexually reproducing organisms. The widespread availability of genome-wide

sequencing and large-scale polymorphism data on diverse human populations allows

us to investigate selection at a finer resolution than previously possible [14], [15], [16],

[17], [18], [19]. To understand the challenges involved in detecting natural selection in

humans, and to understand the statistical methods to identify these signals, we first

need to understand the evolutionary selection pressures that shape the genome.

In the rest of the introduction, we give a brief description of the four fundamental

‘forces’ that shape the genomes of organisms, and then describe how to use this un-

derstanding to detect selection. Using the understanding of these major forces, we will

develop the rationale for a fitness landscape, where multiple genes interact and drive

phenotypes in an environment dependent fashion. Finally, we describe how we can use

this overall picture to identify quantitative trait loci by dissecting the genetic basis of

complex phenotypes, in single celled eukaryotes in chapters 2 and 3 and in multicellular

eukaryotes in chapter 4.
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1.1.1 The first force: Mutations: increasing genetic diversity

In eukaryotes, mutations are local genomic changes that arise from a variety of effects,

such as copying/editing errors in DNA replication, effects of line elements, errors in

DNA damage repair, etc. The most common type of mutations are point mutations,

which change a single letter of DNA. A single DNA position (nucleotide) that has two

or more forms circulating in a population is known as a single nucleotide polymorphism

(SNP). Mutations can also present themselves as abnormal numbers of repeats of a

DNA sequence, known as copy number variation (CNV). These manifest as insertions or

deletions, and occur mainly due to errors in DNA replication, particularly while copying

highly repetitive DNA sequences. Insertions can also be caused by self-replicating

transposable elements.

Mutations can be classified on the basis of their heritability. Somatic mutations are

those that occur within an individual lifetime, but which cannot be passed onto the

next generation. Many cancers are the result of such somatic mutations. On the other

hand, germ-line mutations are mutations that can be passed onto the next generation.

In multicellular, sexually reproducing species, these are mutations in sex cells - sperm

or egg cells. In single celled organisms, somatic mutations are generally the same as

germ-line mutations (exceptions are cases where there is asymmetric segregation of

DNA errors in cell division).

It is often said that mutations occur at random. This statement is true in the

following limited sense: mutations occur without any regard to their potential con-

tribution to the fitness of an organism. However, due to the biochemical properties

of DNA, certain mutations are more likely to occur. For example, the most common

point mutations are C ↔ T or A ↔ G transitions [20]. This is because the amino

acids C/T (one-ring pyrimidines) and A/G (two-ring purines) are structurally similar.

Furthermore, the probability of mutation is not uniform on the genome, and genomes

have mutational hot spots where the mutation rate can be an order of magnitude higher

than in mutational cold spots [20].

Of the point mutations that fall within genes, synonymous mutations are those that
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do not change the protein sequence. This is possible because the genetic code is degen-

erate, with many of the amino acids encoded by several triplets of bases. On the other

hand, non-synonymous mutations are those that do alter the amino acid, and hence

affect the overall protein sequence. These altered proteins can then have functional

consequences for the organism. For example, a non-synonymous mutation in the genes

BRCA1 or BRCA2 significantly increases an individual’s chances of developing breast

cancer [21]. Indeed, non-synonymous mutations are the most common way in which

an altered genotype brings about a change in phenotype. We will identify and discuss

many such protein-altering mutations in each of the chapters that follow.

Assume for simplicity that mutations are the only force shaping the genome. If a

segment of DNA has a local mutation rate µ per base per generation, then the frequency

p of this variant will change only when a mutation occurs. Hence,

p′ = (1− µ)p

where p and p′ are the frequencies of a particular variant (allele) at this locus in suc-

cessive generations.

The change in frequency in a single generation is

∆p = −µp

As µ is typically very small, we can justify taking the continuum limit:

dp

dt
= −µp

The solution of this equation is a familiar exponential decay, i.e. p = p0e
−µt, where

t is the number of generations that have elapsed. Hence, the timescale over which

mutation brings about significant changes is allele frequencies is given by tµ ≈ 1
µ .

For humans, the mutation rate is approximately µ = 2.5× 10−8 per nucleotide per

generation [20]. An average human gene is on the order of 10 kilobases in size (10 kb

= 10,000 nucleotides) [22]. The occurrence of mutations within a gene can be modeled

as a Poisson process. The probability of at least one mutation occurring in such a gene

in a single generation is given by 1 − e−µd where d = 10, 000 is the gene size (note
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that 1− e−µd ≈ µd for small µd). Thus, for an average gene in humans, the mutation

rate is µgene ≈ 2.5 × 10−4. The timescale corresponding to this (tµ = 1
µgene

) is about

4,000 generations, or somewhere between 80,000 to 100,000 years. This is the timescale

over which neutral mutations build diversity in a 10 kb gene in the absence of other

effects. However, due to genetic drift (discussed below), the timescale over which such

mutations will attain a reasonable frequency in the population is even longer.

1.1.2 The second force: Recombination: breaking down genetic cor-

relations

In sexually reproducing organisms, the process known as genetic recombination shuffles

the genomes of the parents in their offspring. Recombination allows beneficial mutations

occurring in different lineages to rapidly combined in an offspring. Furthermore, re-

combinations allows for genes to occur in new combinations, which can lead to a fitness

advantage. Indeed, from the perspective of evolution, the primary benefit of sex is to

dramatically increase the pace of adaptation, as sex provides a mechanism to ‘mix and

match’ beneficial mutations that have evolved in separate lineages. In contrast, asexual

populations can never combine beneficial mutations occurring in different individuals.

Instead, every beneficial mutation in asexual reproduction must arise independently in

the same lineage, which significantly slows down the pace of adaptation. In chapter

2, we identify situations where recombination between genetically divergent strains of

yeast leads to a phenotypic change in growth because mutations from distinct parental

lineages interact in the offspring. Studying growth parameters in these hybrid strains

allows us to identify functional loci associated with the growth phenotype.

Somatic cells in diploid organisms such as humans have two copies of each chromo-

some - a paternally derived copy and a maternally derived copy. On the other hand, sex

cells (sperm or egg) are haploid, and contain only a single set of chromosomes. When

an individual produces sex cells in early embryogenesis, their paternally and maternally

inherited chromosomes are pairwise aligned and shuffled at several points, so that each

sex cell is a different reshuffling of their chromosomes. This is the process of recom-

bination, through which each individual passes on to their progeny a haploid mosaic
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of their own paternally and maternally inherited DNA. Each of our chromosomes is a

shuffled copy of our grandparents chromosomes, one from the maternal grandparents

and the other from the paternal grandparents.

While mutations are a constant source of new genomic changes, recombination can

spread these changes across lineages, by shuffling the genomes of unrelated individuals.

These forces increase the pace of adaptation in a population, and also lead to an increase

in genetic diversity. One of the key challenges of detecting signs of natural selection is

to identify the genetic fingerprints of selection in the past, which have been obscured by

generations of subsequent mutation and chromosomal shuffling. In chapter 4 we discuss

the methods that we used to detect such signatures in humans.

To understand how recombination shuffles the genome, consider a pair of bi-allelic

loci, X and Y on the same chromosome. At each locus, we have two alleles, a wild

type allele and a mutant allele. We denote these as 0 and 1 respectively. Let 2N be the

sample size (twice the number of individuals for a diploid species). The degree to which

the alleles at these two loci are correlated in the population is a measure of the amount

of recombination that has occurred. To capture this effect, we define a quantity D as

follows:

D = 〈XY 〉 − 〈X〉〈Y 〉

=
1

2N

∑
i

xiyi −
1

2N

∑
i

xi
1

2N

∑
i

yi

= PXY − PXPY

Here, PX and PY denote the frequency of the mutant genotype at X and Y , and

PXY denotes the frequency of the double mutant individuals at X and Y . In the

population genetics literature, the quantity D is known as the linkage disequilibrium

coefficient, and the degree to which it deviates from zero is a measure of the relatedness

of the two loci. D captures the extent to which the observed two-locus frequencies are
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dependent. It is simply related to the Pearson correlation coefficient r as follows:

r =
〈(X − 〈X〉) (Y − 〈Y 〉)〉

σXσY

=
〈XY 〉 − 〈X〉〈Y 〉

σXσY

=
D√

PX(1− PX)PY (1− PY )

In asexual species, the population consists of clones of the previous generation.

Hence, apart from the effects of mutations, the correlation between different loci on the

same chromosome is very high. The extreme case of perfect correlation is known as

perfect linkage disequilibrium.

In contrast, in a sexually reproducing population, recombination will work to de-

couple loci over time. If the probability of a recombination event occurring between the

two loci in a single generation is r, then the probability that the two loci will remain

linked is 1 − r. In the remaining fraction r of the time, recombination shuffles the

two loci. Then, assuming random mating, the probability of arriving at the mutant

genotype at both loci is rPXPY . Thus, the expected frequency of individuals with the

double mutant genotype in the next generation is the sum of these two effects. The

first effect reduces the probability and the second increases it. Thus,

P
′
XY = (1− r)PXY + rPXPY

P
′
XY − PXPY = (1− r)(PXY − PXPY )

D′ = (1− r)D

Here the prime indicates the next generation. We have assumed that the allele fre-

quencies remain constant in the next generation. This is typically the case for large

population sizes, assuming random mating and a sufficiently small mutation rate and

selection pressure.

Over t generations, for small r,

Dt = (1− r)tD0 ≈ e−rtD0

Hence linkage disequilibrium decays exponentially in time. In particular, we can
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define a timescale tr ≈ 1
r over which recombination breaks down linkage between alle-

les. As we will see, recombination erodes the genetic signature of selection over these

timescales. The accumulation of new mutations and the shuffling of chromosomes due

to recombination are the major forces that obscure signatures of positive selection which

occurred in the past.

1.1.3 The third force: Genetic Drift: finite population size reduces

genetic diversity.

Genetic drift is the stochastic variation in allele frequencies that arises due to a finite

population size. Given a population size of N individuals, mating is modeled as the

random union of 2N alleles (the factor of two accounts for diploid populations). This

introduces a stochastic variation in allele frequencies from generation to generation.

If in a given generation the allele frequency at a given locus is p, in the next gen-

eration, the probability of sampling exactly i of the same allele out of the 2N alleles

available, is given by the binomial distribution:

P (i) =

(
2N

i

)
pi(1− p)2N−i

i is a binomially distributed variable, and therefore has mean 〈i〉 = 2Np and variance

σ2i = 2Np(1 − p). Therefore, 〈p′〉 = 〈i〉
2N = p and its variance is σ2p′ = σ2i /(2N)2 =

p(1− p)/2N .

The heterozygosity of a population is defined as the probability that two randomly

chosen alleles are different. Genetic drift causes the heterozygosity to decay over time.

We can demonstrate this by calculating the expected value of heterozygosity after a
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single generation of mating.

H = 〈2p′(1− p′)〉

= 2
(
〈p′〉 − 〈p′2〉

)
= 2

(
〈p′〉 − σ2p′ − 〈p′〉

2
)

= 2p (1− p)
(

1− 1

2N

)
= H0

(
1− 1

2N

)
Over t generations,

Ht = H0

(
1− 1

2N

)t
≈ H0 exp

(
− t

2N

)
where the approximation holds in the limit of large population size. Note that when

N →∞, Ht = H0, i.e. in an infinite population, in the absence of mutation or selection,

the heterozygosity remains unchanged over generations. The equation above also shows

that the heterozygosity decays to zero over a timescale tdrift ≈ 2N generations. Hence

genetic drift has the effect of reducing the genetic diversity in a population over time.

In realistic situations, the population size fluctuates over time. This generalizes the

above equation to:

Ht = H0

(
1− 1

2N0

)(
1− 1

2N1

)(
1− 1

2N2

)
· · ·

= H0

t−1∏
i=0

(
1− 1

2Ni

)

≈ H0

(
1−

t−1∑
i=0

1

2Ni

)(
to lowest order in

1

Ni

)
= H0

(
1− t

2Neff

)
≈ H0 exp

(
− t

2Neff

)(
to lowest order in

1

Neff

)
Thus, the heterozygosity at a locus in a population with a variable population size falls

off exponentially over a timescale tdrift ≈ 2Neff .
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The quantity Neff is called the effective population size, and it determines the

overall rate at which genetic diversity decays. It is defined as the harmonic mean of

the population size over time.

t

Neff
=

t−1∑
i=0

1

2Ni

Since Neff is a harmonic mean, it will be biased towards generations with the lowest

population sizes. This is known as a genetic bottleneck effect, where species that have

had low population numbers in the past continue to exhibit low genetic diversity.

Although the human population is very large today (≈ 7 billion individuals), for

much of human history, the effective population size of breeding humans was on the

order of 10,000 individuals [23]. This corresponds to a timescale tdrift ≈ 20, 000 gener-

ations, or about half a million years. Drift is a very slow force in humans.

1.1.4 The balance between drift and mutation

If drift serves to reduces the heterozygosity in a population, why is it that populations

are not devoid of all genetic diversity at neutral loci? The answer is that mutations

oppose the effects of genetic drift.

We have seen that due to finite sampling effects, genetic drift reduces the heterozy-

gosity in a single generation by the following amount:

H1 = H0

(
1− 1

2N

)
=⇒ ∆Hdrift = − 1

2N
H0

Now, instead, consider a population of infinite size with a mutation rate µ. The

heterozygosity in a given generation can be related to that in the previous generation

as follows:

H1 = H0 + (1−H0)
(
1− (1− µ)2

)
In words, the equation above says that there are two ways to be heterozygous in

the next generation. Either you select two alleles that are non-identical in the first

generation, and this happens with probability H0. Or, you select two alleles that are

identical in the first generation (with probability 1 − H0), and at least one of them
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undergoes a mutation. The factor of 1 − (1 − µ)2 is the probability that a mutation

occurred in at least one of the two alleles, since (1 − µ)2 is the probability that no

mutation occurred in both alleles.

H1 = H0 + (1−H0)
(
1− (1− µ)2

)
≈ H0 + 2µ(1−H0)

=⇒ ∆Hµ = 2µ(1−H0)

Combining these equations, we see that the overall change in heterozygosity in a

single generation has contributions from two terms: a drift term, and a mutation term.

Thus,

∆H = ∆Hdrift + ∆Hµ

= − 1

2N
H0 + 2µ(1−H0)

Mutations increase the genetic diversity, and drift decreases it. These two opposing

forces attain an equilibrium when,

∆H = 0

=⇒ 2µ(1−Heq)−
1

2N
Heq = 0

=⇒ Heq =
4Nµ

1 + 4Nµ

When 4Nµ ≈ 1, we see interesting dynamics between drift and mutation. If 2µ >>

1
2N , mutation dominates over drift, and we reach the limiting case where all 2N alleles

are different from each other. On the other hand, if 2µ << 1
2N , then the mutation rate

is insufficient to offset the depletion of genetic diversity due to drift, and one of the

alleles will attain a frequency of 1 (fixation).

1.1.5 The fourth force: Selection: results in adaptations

We have discussed the three neutral forces that alter gene frequencies and affect genetic

diversity. We saw that mutation and drift act in opposite directions, and that there

is a regime in which they can balance each other. However, this assumes that new

mutations have a neutral effect and their fate is decided by chance.
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An interesting situation arises when a new mutation confers a selective advantage to

an individual. In the context of population genetics, a selective advantage amounts to

a higher reproductive success. Hence, for a mutation to be under positive selection, it

must provide a reproductive advantage to its bearer, i.e. it must increase the probability

of its occurring in the next generation. If this effect is sufficiently strong, then the

mutation will spread through the population at an exponential rate. The timescale

for this spread is smaller than the timescale over which recombination breaks down

linkage, or the timescale over which mutation builds diversity and breaks down linkage.

The result is to create a region of the genome where diversity is markedly reduced,

i.e. to create genomic islands where many individuals in the population share the

selected mutation and the region around it (until it is broken up by recombination).

This phenomenon of local reduction in genomic diversity around a selected mutation is

known as a selective sweep. These selective sweeps leave behind a footprint of reduced

genomic diversity, and these can be detected using numerous statistical tests which we

will discuss and employ when identifying signatures of natural selection in the Maasai

in chapter 4.

We can understand selection quantitatively as follows. Consider the fate of two

alleles at a single locus, that differ in the extent to which they affect the reproductive

success of the individuals that carry them. Suppose that, in a certain generation, the

alleles have frequency p and q = 1− p. Assume that the fitness of each allele provides

a multiplicative factor to its frequency in the next generation. Then, we have that

p′ = p
w1

w

q′ = q
w2

w

where the primes indicate the next generation. Here w1
w and w2

w are the normalized

selection coefficients (or fitness coefficients), and w is a normalization constant:

p′ + q′ = 1

=⇒ w = w1p+ w2(1− p)
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Thus w is also the mean fitness of the population with respect to this allele.

The change in frequency in a single generation is given by

∆p = p′ − p

= p
(w1

w
− 1
)

with some simplification, this can be written as

∆p =
(w1 − w2)

w
pq (1.1)

This can be written in the more suggestive form first expressed by Sewall Wright in

1932 [24] [25].

∆p =
pq

w

dw

dp

This equation encapsulates the idea that natural selection drives allele frequencies to

maximize the mean fitness. The change in frequency of an allele that is under selection

depends on two key factors: the genetic variance 2pq and on the slope of the fitness

function dw
dp . The latter term led Wright to the notion of a fitness landscape. In the

case of two interacting loci, the fitness landscape is a two dimensional surface defined

over the space of possible genotype frequencies. Wright visualized fitness as a very

high-dimensional surface, defined over the range of frequencies of the vast number of

genetic loci that interact to produce a complex phenotype. In this model, populations

are driven to adaptive peaks in the landscape. If selection were the only operative

force, populations would remain stuck in local peaks of this fitness landscape. However,

mutation and drift can drive a population to explore the space away from these peaks,

into fitness valleys and towards other fitness peaks.

There are few lessons we can take away from this idea of a fitness landscape. First,

that population size governs the dynamics of populations in the landscape. Small pop-

ulation sizes are more strongly driven by drift and furthermore, selection has a weaker

effect in such populations. Therefore smaller populations are less likely to be trapped

in a local adaptive peak and can drift further in fitness space. This hypothesis, known

as the shifting balance theory, was proposed by Wright to explain how populations

approach ever higher fitness peaks. Secondly, the entire fitness landscape is strongly
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dependent on the environment in which the population exists, which changes with

time. Therefore, the landscape is far from a static entity - peaks and valleys shift as the

environment varies. Classic examples of selection in response to environmental condi-

tions are the genetic adaptations for high altitude existence in residents of the Tibetan

Plateau [26], and lactase persistence in cattle herders [18], [27], [28], [29].

Finally, the fitness landscape emphasizes the important notion that genotypes are

not independent. The existence of fitness peaks implies that different genes do not

have a simple additive effect, but instead interact with each other to create the fitness

landscape. Such gene-gene interactions are known as epistatic interactions, and we

investigate their effects further when we study the gene interaction networks in yeast

in chapter 2.

1.1.6 Effect of selection on allele frequencies

Let us consider the trajectory of a mutation that is undergoing positive selection. Taking

the continuum limit, we can write equation 1.1 as

dp

dt
= fp(1− p) (1.2)

where f is the difference in relative fitness of the two alleles. This equation is the widely

recognized logistic differential equation, whose solution is a sigmoidal function

p(t) =
p0

p0 + (1− p0)e−ft

This teaches us that the rate of growth of an allele under selection is initially slow,

then enters a period of exponential growth as the allele spreads to a sizable fraction of

the population. The growth rate peters out as the allele frequency is close to fixation

(p = 1). The timescale corresponding to these selective sweeps is inversely proportional

to the fitness advantage of the allele tsel ≈ 1
f . A selective advantage of 1 in a 1000 can

cause a sizable change in the frequency of an allele in just 1,000 generations. This is

a much shorter timescale compared to trecombination, tdrift or tmutation. Therefore, the

hallmark of a selective sweep is a region of the genome over which genetic diversity is

rapidly depleted, until the forces of recombination and mutation restore the diversity

around the selected locus.
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In real populations, a finite population size causes genetic drift to interact with

selection. The detailed calculation of this effect was done by Kimura in 1962 [30]. In

a seminal paper, he showed that the probability of a selected mutation being fixed in

the population (i.e. attaining frequency of 1), assuming an initial frequency of 1
2N , is

given by

P (fixation) =
1− e−s

1− e−2Ns

Hence, selection can interact with drift when the fitness advantage of an allele s ≈ 1
2N .

For s >> 1
2N , drift plays no role in selection.

1.1.7 Timescales of selection

The genetic signature of selection is that a single genetic variant (allele) rises rapidly in

frequency in the population. Neighboring alleles that are linked to the selected mutation

will also rise in frequency, and this is known as genetic hitchhiking. This results in a local

reduction in genomic diversity, known as a selective sweep. The signature of a selective

sweep is therefore lowered diversity combined with an abundance of rare alleles that have

risen to a high frequency. All methods that identify selection over long timescales are

designed to detect this signature. Over longer timescales, mutation and recombination

will re-introduce diversity into this genetic locus. On average in humans, a chromosomal

segment 100 kilobases in length will have had more than one recombination event in

30,000 years, and this breaks down the pattern of linkage. Therefore methods that

are based on linkage disequilibrium will only work over a timescale up to about 30,000

years, after which recombination has effectively broken down the linkage. Over much

longer timescales, (i.e. on the order of half a million years) mutations will re-appear

with reasonable frequency in this region, restoring the diversity. Eventually, these

neutral forces will overwrite the signature of selection. Therefore, we only have access

to selective sweeps that have occurred in the not-too distant past.

The following is a summary of signatures used to detect selection, ranked according

to the timescale over which they are effective. For a review of these methods, see [15].

1. High proportion of protein altering mutations (millions of years)
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2. Reduced genetic diversity, abundance of high-frequency derived alleles (< 250,000

years)

3. Differences between population groups (< 50,000 years)

4. Methods based on linkage disequilibrium (< 30,000 years)

In chapter 4 we use numerous statistics designed to identify population differences

and linkage disequilibrium based signals to identify genes undergoing recent, positive,

natural selection.

1.1.8 Challenges of Genome-Wide Association Studies

One of the key issues in computational scans of selection is that it is difficult to isolate

the effect of a single mutation in a population. Our ability to separate the phenotypic

effects of two distinct genetic variants relies on the extent to which the mutations occur

separately in the population, and on the frequency with which the variants occur in the

population [31]. This issue is particularly important in clonal populations where recom-

bination is rare or absent, because this leads to high correlation (linkage disequilibrium)

between loci. Furthermore, if the individuals in a population differ in degree of relat-

edness, this can lead to spurious associations between markers due to the population

stratification [32]. Genome-wide association studies (GWAS) of naturally occurring

populations typically need very large sample sizes to overcome these challenges [31].

An ideal genetic mapping study would involve a large sample of equally related

individuals (to avoid spurious associations due to population structure), low linkage

disequilibrium (so that distinct genotypes are assorted randomly), and genotype fre-

quencies of 50% for a bi-allelic locus (allowing for equal statistical power to detect the

affect of both the alleles). Furthermore, we should have a high-resolution map of ge-

netic markers to maximize our ability to isolate causal variants. Such a situation can

be engineered in yeast, by studying a large number of segregants that are created by

crossing two genetically divergent parental strains.
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1.1.9 Dissecting the genetic architecture of complex traits using quan-

titative trait mapping

Mancera et al. [7] created a high resolution genetic map of all segregants that arose from

56 meiotic crosses between two genetically divergent strains of Saccharomyces cerevisiae.

The segregants are the products of meiosis between the parental genomes (each cross

resulting in four segregants). Since recombination happens at random locations in the

genome, the large number of recombination events between the parents ensures that

distant loci are effectively uncorrelated in the segregants. Furthermore, by genotyp-

ing all meiotic offspring at nucleotides where the parental strains differed, Mancera et

al. [7] ensured that the genotype frequencies in the offspring was approximately 50%

(the exception being asymmetrical crossover events, which occurred rarely). One can

then measure any yeast phenotype of these strains, across a variety of environmental

conditions, and use the genotype and phenotype data to conduct a high resolution

genetic mapping study.

The central idea behind quantitative trait mapping is to identify associations be-

tween the phenotype and the genotype of an organism at a given marker. A quantitative

trait locus, or QTL, is a marker where individuals with different genotypes have signifi-

cantly different phenotypic means. For a complex trait, multiple QTLs may contribute

towards phenotypic variance in the population, each QTL explaining a fraction of the

variance.

In the quantitative trait mapping projects of chapters 2 and 3, we fit the phenotypic

data at a locus to two hypotheses, one of which is that there is a genotype/phenotype

association, and the other is a null hypothesis. The hypothesis of genotype/phenotype

association being tested is that phenotype data fits to different means for each genotype

at the locus (i.e. the marker is a QTL). The null hypothesis is that the phenotype data

fits a single overall mean (no QTL present). The parameters of these models are inferred

using maximum likelihood. The strength of the evidence for the presence of a QTL at

a locus is evaluated using the LOD score, which is the log (base 10) of the ratio of

the likelihood of the QTL hypothesis to that of the null hypothesis. A LOD score
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of 3 implies that the hypothesis that a QTL is present is 1000 fold more likely than

the null hypothesis that there is no QTL. The details and implementation of LOD

scores to identify QTLs and environment specific QTL-QTL interactions are discussed

in chapters 2 and 3.
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Chapter 2

The FLO8 locus regulates yeast growth plasticity through

environment specific epistatic interactions

2.1 Introduction

A single genotype can exhibit different phenotypes in different environments, a property

which is known as phenotypic plasticity [33]. The extent of phenotypic plasticity is

quantifiable as the rate of change of the phenotype with respect to an environmental

variable (reviewed in [34], [35]). A gene-environment interaction or GEI is characterized

by measurable differences in plasticity as the alleles at a locus are varied. Such loci,

called GEI QTLs, contribute to the variation in phenotypes seen across environments in

populations. It is possible to identify such GEI QTLs by identifying the genotypes which

cause a differential change in phenotype under a change in the environment [36], [37].

There are two proposed models about how organisms mediate plasticity [38], [39]:

The first model, called the “allelic sensitivity model”, asserts that there are loci with a

direct effect on the phenotype and differential effects of its alleles in different environ-

ments contribute to variation in plasticity or GEI. The second, called the “regulatory

gene model”, posits that regulatory genes affect the expression of other genes, which

directly affect the phenotype, in an environment dependent way. The two models are

overlapping to the extent that regulatory genes may affect the expression of allelic sensi-

tivity genes resulting in variation in plasticity. There is no clear distinction between the

kind of genes which can fall under either model. There is also the possibility that the

genotype/phenotype association is a complex scenario, with plasticity being governed

by epistatic interactions between the effects of the QTL and genes that it affects.

In a unicellular, non-motile organism such as Saccharomyces cerevisiae, carbon
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sources act both as an energy source as well as signaling molecules [40]. Their avail-

ability affects not only growth, but also other processes, such as stress response and

metabolism [41]. In its evolutionary history, yeast must have encountered and adapted

to a variety of carbon sources, both fermentable high growth sources such as glucose,

fructose, and maltose, as well as non-fermentable, slow growth sources such as glyc-

erol, and ethanol (reviewed in [42], [6]). Mapping studies have shown that different

QTL contribute to variation in growth in the presence of different types of carbon

sources [43], [44]. However, how these QTLs vary for fermentable and non fermentable

carbon sources is not well understood.

Yeast growth can be studied via measurements of several phenotypes, including

colony size [45], biomass [46] and growth kinetics [47]. However, it is known that

different carbon sources can have independent effects on these measures of growth [48],

[43]. The mechanism by which different growth phenotypes are affected by changing

carbon sources is not clearly understood, nor is it known which genes regulate growth

plasticity.

One can now ask: How plastic are the three growth parameters across diverse envi-

ronments? Do the same QTLs mediate plasticity across functionally dissimilar environ-

ments? Do these QTLs vary for different growth parameters? Do epistatic interactions

amongst these QTLs contribute to variation in growth plasticity? In this study we at-

tempted to understand these questions by studying the genetic factors driving growth

across a varied set of carbon sources.

Two genetically and phenotypically divergent yeast strains, S96 (a laboratory strain)

and YJM789 (a clinical isolate) [49], [50] were selected for mapping. From a pre-

viously studied set of high-resolution genotyped meiotic segregants [7], we grew 157

non-flocculating segregants separately in the presence of fructose, maltose and glyc-

erol. Three growth parameters: lag time, doubling time and biomass accumulated were

calculated by fitting the growth data to a sigmoid function (described below). Using

the phenotypic values obtained from these curve fits, we identified (mapped) the QTLs

driving the variation in each parameter in the presence of each of the three carbon

sources, and then mapped gene × environment interactions (GEI QTLs). This allowed
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us to identify the QTLs that confer variation within a single environment, as well as the

GEI QTLs that confer variation in plasticity across environments. Finally, we studied

epistatic interactions between the resulting single environment and GEI QTLs.

Our analysis showed that genetic regulators of growth plasticity are both environ-

ment specific and growth parameter specific. We also found that common QTLs and

QTL-QTL interactions contribute to variation in lag time and doubling time, and fur-

ther, that a largely dissimilar set of QTLs and interactions governs the variation in

biomass. A key finding of our study was that different genetic regulators govern growth

rate and biomass. In addition, we identified an overlap in QTLs and QTL-QTL interac-

tions, including the presence of a common interaction with the FLO8 locus in fructose

and glycerol. This demonstrated that growth in these dissimilar media have some com-

mon regulators. Furthermore, we found that this FLO8 locus interacts with multiple

QTLs to regulate distinct growth parameters, indicating that a regulatory gene may

affect different target structural genes to manifest phenotypic plasticity.

2.2 Materials and Methods

2.2.1 Strains and Growth Conditions

We measured optical density growth profiles for the two parental yeast strains S288C,

YJM879, and for 157 meiotic segregants, obtained from the collection of Mancera et

al. [7]. The strains were grown separately in the presence of Glycerol, Fructose, Maltose,

and in YPD (yeast-extract peptone dextrose). In each environmental condition, we

measured two experimental replicates for each segregant, and 12 replicates for each

parental strain. Optical density data was measured for each strain in intervals of 15

minutes over a period of 50 hours.

2.2.2 Curve Fitting

We used a custom Python script to fit the data to growth curves. Each set of optical

density measurements was fit to a sigmoidal curve with the functional form:
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OD(t) =
m

1 + exp(−2c(t− t 1
2
))

(2.1)

The optical density (OD), which is proportional to the number of yeast cells, is a

function of three parameters - c, m and t 1
2
. The parameter m is the maximum growth

attained by a strain, in units of optical density. The parameter t 1
2

is the time, measured

in minutes, at which the number of yeast cells are one half of their maximum amount.

When t→ t 1
2
, the yeast growth curve is approximately described by an exponential, i.e.

OD(t) ≈ m
2 e

c(t−t 1
2
)
. Hence t 1

2
can be thought of as the time after which a yeast strain

undergoes exponential growth. The doubling time δ = ln(2)
c , measured in minutes, is

the time for a strain to double in number while in exponential growth.

One concern in using a sigmoidal model to curve-fit growth curves is that the growth

rate c and the time to exponential growth t 1
2

may be dependent on the initial number

of cells. Hence, any experimental variation in initial OD may affect the measurement

of these growth parameters. Here, we demonstrate that this is not a significant issue,

and that variation in the initial number of yeast cells has a small effect on c and t 1
2
.

As OD(t) ∝ N(t), the growth rate is given by:

1

N(t)

dN(t)

dt
= c(1− tanh(c(t− t 1

2
)))

This simplifies considerably at t = t 1
2
,

1

N(t)

dN(t)

dt

∣∣∣∣
t=t 1

2

= c

implying that, near t 1
2
, the growth is well approximated by exponential growth.

At the initial timepoint t = 0,

N0 = OD(0) =
m

1 + e
2ct 1

2

We can relate the uncertainty in N0 to the uncertainty in c and t 1
2

using the following

relation:

σ2N0
=

(
∂N0

∂c

)2

σ2c +

(
∂N0

∂t 1
2

)2

σ2t 1
2

+ 2
∂N0

∂c

∂N0

∂t 1
2

σcσt 1
2

Corr(c, t 1
2
)
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which reduces to

σ2N0
=

(
1

2
mct 1

2
sech2(ct 1

2
)

)2
(σt 12

t 1
2

)2

+
(σc
c

)2
+ 2

σt 1
2

t 1
2

σc
c

Corr(c, t 1
2
)


And, using the relations N0e

ct 1
2 = m

2 sech(ct 1
2
) and sech(ct 1

2
)e
ct 1

2 = 1 + tanh(ct 1
2
), we

can simplify this to:

1[
ct 1

2
(1 + tanh(ct 1

2
))
]2 (σN0

N0

)2

=

(
σt 1

2

t 1
2

)2

+
(σc
c

)2
+ 2

σt 1
2

t 1
2

σc
c

Corr(c, t 1
2
)

This is the desired relation between uncertainty in N0 to uncertainty in c and uncer-

tainty in t 1
2
. If we assume that uncertainty in c and uncertainty in t 1

2
are on the same

order of magnitude (as seen in the data), i.e.

σc
c

= (1 + ε)
σt 1

2

t 1
2

Then, to first order in ε,

1√
2(1 + ε)(1 + Corr(c, t 1

2
))

1

ct 1
2
(1 + tanh(ct 1

2
))

σN0

N0
=
σt 1

2

t 1
2

As an example, for S96 in Maltose, c ≈ ln(2)/167 min−1, t 1
2
≈ 760 min, so

√
2ct 1

2
(1+

tanh(ct 1
2
)) ≈ 8.9. Inserting these values,

1√
(1 + ε)(1 + Corr(c, t 1

2
))

1

8.9

σN0

N0
=
σt 1

2

t 1
2

Hence, an uncertainty of
σN0
N0

in initial OD leads to at most 1
8.9 ≈ 0.11 as much uncer-

tainty in t 1
2

(for strain S96), and this factor is even lower if lag time and growth rate are

correlated (as seen in the data). A similar argument holds true for other yeast strains

analyzed. This suggests that, under the assumption that the data is well approximated

by a sigmoid curve, the growth parameters that are inferred from the curve fit are not

strongly affected by variation in the initial number of yeast cells.

2.2.3 Mapping single QTLs

For each strain, we measured 9 phenotypic traits: 3 growth parameters (doubling time,

lag time, biomass), each of which was measured in 3 environmental conditions (in the
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presence of glycerol, maltose, and fructose). Genotype data for the parental strains

and segregants was obtained from Mancera et al. [7], and filtered to include only single

nucleotide markers, which resulted in 48,934 markers.

We used the R/qtl [12], [13] package to construct a genetic map and identify QTLs

separately for each of the 9 conditions. QTLs were identified using the LOD score,

which is the log10 of the ratio of the likelihood of the experimental hypothesis to the

likelihood of the null hypothesis. A LOD score of 3 implies that the hypothesis in

question is 1000 times more likely than the null hypothesis at a given locus.

In the case of a non-interacting QTL, we compare the likelihood of the data given

the following two hypotheses:

H1 : yi = µ+ βgi + εi

H0 : yi = µ+ εi

Here, yi is the phenotype of strain i, gi is a genotype variable (0 or 1) and εi is a

noise variable, with zero mean and fixed variance, representing stochastic variation in

the measurements.

H1 is the hypothesis that the two genotypes have different means (i.e. a QTL is

present), and H0 is the null model that both genotypes have the same mean (no QTL

present). The parameter β captures the effect of the QTL.

We define a likelihood function for each hypothesis:

L(H1) =
∏
i

φ(yi|µ+ βgi, σ
2)

L(H0) =
∏
i

φ(yi|µ, σ2)

where φ is the density function for the normal distribution, and the parameters µ,

β and σ2 are obtained for each hypothesis by maximizing the likelihood.

The LOD score of interest for a single environment QTL is then LOD = log(L(H1)
L(H0)

).

L(H0) =

(
1

2πσ2

)n
2 ∏

i

exp

(
−(xi − µ)2

2σ2

)

logL(H0) =
n

2
log

(
1

2πσ2

)
− 1

2σ2

∑
i

(xi − µ)2
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Similarly, we have that

logL(H1) =
n

2
log

(
1

2πσ2

)
− 1

2σ2

∑
i∈G1

(xi − µ1)2 +
∑
i∈G2

(xi − µ2)2


where µ2 = µ1 + β

We can simplify the maximum likelihood estimations by noting that:

∑
i∈Gj

(xi − µj)2 =
∑
i∈Gj

(xi − x̄j)2 + nj(x̄j − µj)2

where x̄j = 1
nj

∑
i∈Gj

xi is the mean of samples with the jth genotype.

Maximizing the likelihood with respect to µj , we see that the maximum likelihood

estimate of µj is just the sample mean:

µ̂j = x̄j

Similarly, maximizing the likelihood with respect to σ2 shows that the maximum

likelihood estimate of σ2 is the weighted average of the variances of the genotype vari-

ances.

σ̂2 =
∑
j

∑
i∈Gj

(xi − µj)2

n
=
∑
j

nj
n
σj

2

The LOD score is then logL(H1)− logL(H0), which can be simplified to:

(2.2)
LOD =

n

2
log

( ∑
i(xi − x̄)2∑

i∈G1
(xi − x̄1)2 +

∑
i∈G2

(xi − x̄2)2

)

=
n

2
log

(
nσ2

n1σ21 + n2σ22

)
where σ2 is the sample variance, and σ21 and σ22 are the variances of samples with

genotypes 1 and 2.

The size of the effect of the QTL (β) is then given by the difference in sample means

for the two genotypes, i.e. β̂ = µ̂2 − µ̂1 = x̄2 − x̄1.

We used the scanone function in R/qtl to compute this LOD score using the Haley-

Knott regression algorithm [12], [13]. This is an interval mapping method and has

the advantage over marker regression that it can impute data at missing markers and

inspect positions between markers. We compute p-values in R/qtl with a permutation
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test (1,000 permutations). The null distribution was obtained by measuring the highest

genome-wide LOD score obtained from each permutation of the permutation test [12],

[13].

2.2.4 Mapping QTL-environment interactions

A QTL-environment interaction occurs when the effect of a QTL is environment de-

pendent. We identify such QTLs by pooling data from two environmental conditions

and including the effect of the environment as a covariate. This requires us to compare

the following two hypotheses:

HI : yi = µ+ βggi + βxxi + γgixi + εi

HA : yi = µ+ βggi + βxxi + εi

The new variable xi is an environmental covariate that is 0 or 1 depending on the

environment of the strain. As before, the parameters µ, βg, βx, γ are all obtained by

maximizing the likelihood.

In HA, the effect of the environment is modeled as an additive covariate, i.e. the

phenotype is the sum of a constant QTL effect (βg) and a constant environment de-

pendent effect (βx). In HI , the effect of the environment is modelled as an interactive

covariate. The term γ captures the effect of the QTL-Environment interaction.

To identify a QTL-environment interaction, the LOD score of interest is LOD(HI)−

LOD(HA). These scores were calculated by again using the scanone function in R/qtl

(using the Haley-Knott regression algorithm), including the environmental variable as

an additive and interactive covariate. We compute p-values as before (100 permuta-

tions) [12], [13].

2.2.5 Mapping QTL-QTL interactions

A QTL-QTL interaction occurs when the effect of a QTL at a single locus depends on

the genotype at some other locus. We identified the presence of QTL-QTL interactions
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by comparing the following hypotheses:

HI : yi = µ+ β1g1i + β2g2i + γg1ig2i + εi

HA : yi = µ+ β1g1i + β2g2i + εi

Here g1i and g2i are binary variables that specify the genotypes at two loci. As

before, µ, β1, β2 and γ are inferred from the data using maximum likelihood. The

parameters β1 and β2 quantify the individual effect of each QTL, and γ quantifies the

effect of the QTL-QTL interaction.

The LOD score of interest in identifying QTL-QTL interactions is LOD(HI) −

LOD(HA). The log likelihood of each hypothesis can be written as

logL =
n

2
log

(
1

2πσ2

)
− 1

2σ2

∑
j∈{00,01,10,11}

∑
i∈Gj

(xi − x̄j)2 + nj(x̄j − µj)2
 (2.3)

where

µ00 = µ

µ10 = µ+ β1

µ01 = µ+ β2

µ11 = µ+ β1 + β2 + γ

for the interactive hypothesis HI .

Maximizing Equation 2.3 with respect to µ, β1, β2 and γ shows that

µ̂ = x̄00

β̂1 = x̄10 − µ̂

β̂2 = x̄01 − µ̂

γ̂ = x̄11 − µ̂− β̂1 − β̂2

For the additive hypothesis HA, there is one fewer parameter:

µ00 = µ

µ10 = µ+ β1

µ01 = µ+ β2

µ11 = µ+ β1 + β2
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Maximizing Equation 2.3 with respect to µ, β1 and β2 gives a set of three equations:

n00(x̄00 − µ) + n10(x̄10 − µ− β1) + n01(x̄01 − µ− β2) + n11(x̄11 − µ− β1 − β2) = 0

n10(x̄10 − µ− β1) + n11(x̄11 − µ− β1 − β2) = 0

n01(x̄01 − µ− β2) + n11(x̄11 − µ− β1 − β2) = 0

Which can be solved to provide maximum likelihood estimates for µ, β1, and β2.

α = n01n10(n00 + n11) + n00n11(n01 + n10)

µ̂ = (n00(n10n11 + n01(n10 + n11))x̄00 + n01n10n11(x̄01 + x̄10 − x̄11))/α

β̂1 = ((n00 + n10)n01n11(x̄11 − x̄01) + n00n10(n01 + n11)(x̄10 − x̄00))/α

β̂2 = ((n00 + n01)n10n11(x̄11 − x̄10) + n00n01(n10 + n11)(x̄01 − x̄00))/α

(2.4)

The LOD score is then logL(HI)− logL(HA)

LOD =
n

2
log

∑
i∈G00

(xi − µ̂)2 +
∑
i∈G10

(xi − µ̂− β̂1)2 +
∑
i∈G01

(xi − µ̂− β̂2)2

+
∑
i∈G11

(xi − µ̂− β̂1 − β̂2)2


− n
2

log

∑
i∈G00

(xi− x̄00)2+
∑
i∈G10

(xi− x̄10)2+
∑
i∈G01

(xi− x̄01)2+
∑
i∈G11

(xi− x̄11)2


(2.5)

where the parameters µ̂, β̂1, β̂2 are obtained using equation 2.4.

We used a custom-written python script to compute this LOD score for pairwise

comparisons among a set of markers. Our script did not impute missing genotypes.

We compute p-values in python with a permutation test (1,000 permutations) where

the null distribution consisted of the highest LOD score obtained among all pairwise

comparisons for each permutation of the phenotype.
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2.2.6 Mapping QTL-QTL-environment interactions

So far we have investigated two locus interactions, where the phenotype data is mapped

to a relation of the form

y = µ+
∑
j

βggj +
∑
j,k

γjkgjgk + ε

In the equation above, we have dropped the i subscript on y, g, and ε for the sake of

clarity. This model accounts for single locus effects as well as pairwise interactions.

However, we can also investigate three-point interactions such as QTL × QTL × QTL

interactions or QTL×QTL× environment interactions by investigating the effect of an

additional term of the form δg1g2g3 where g3 could be an additional genotype locus, or

it could be an environmental covariate variable x. The term δ captures the effect size

of the QTL×QTL× environment or QTL×QTL×QTL interaction.

Concretely, we compare the following hypotheses:

H3I : yi = µ+ β1g1i + β2g2i + β3g3i + γ12g1ig2i + γ13g1ig3i + γ23g2ig3i + δg1ig2ig3i + εi

H2I : yi = µ+ β1g1i + β2g2i + β3g3i + γ12g1ig2i + γ13g1ig3i + γ23g2ig3i + εi

As before, the log likelihood of either hypothesis can be written as:

logL =
n

2
log

(
1

2πσ2

)
− 1

2σ2

∑
j∈{Z2×Z2×Z2}

∑
i∈Gj

(xi − x̄j)2 + nj(x̄j − µj)2


Maximizing logL(H3I) gives us the maximum likelihood estimate of the parameters

of H3I :

µ̂ = x̄000

β̂1 = x̄100 − µ̂

β̂2 = x̄010 − µ̂

β̂3 = x̄001 − µ̂

γ̂12 = x̄110 − β̂1 − β̂2 − µ̂

γ̂23 = x̄011 − β̂2 − β̂3 − µ̂

γ̂13 = x̄101 − β̂1 − β̂3 − µ̂

δ̂ = x̄111 − γ̂12 − γ̂23 − γ̂13 − β̂1 − β̂2 − β̂3 − µ̂
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To maximize the likelihood of H2I , we differentiate logL(H2I) with respect to µ,

β1, β2, β3, γ12, γ23, γ13, resulting in a set of 7 simultaneous linear equations:

2n000(x̄000−µ)+2n100(x̄100−β1−µ)+2n010(x̄010−β2−µ)+2n001(x̄001−β3−µ)

+ 2n110(x̄110 − β1 − β2 − γ12 − µ) + 2n101(x̄101 − β1 − β3 − γ13 − µ)

+2n011(x̄011−β2−β3−γ23−µ)+2n111(x̄111−β1−β2−β3−γ12−γ13−γ23−µ) = 0

2n100(x̄100 − β1 − µ) + 2n110(x̄110 − β1 − β2 − γ12 − µ)

+2n101(x̄101−β1−β3−γγ13−µ)+2n111(x̄111−β1−β2−β3−γ12−γ13−γ23−µ) = 0

2n010(x̄010 − β2 − µ) + 2n110(x̄110 − β1 − β2 − γ12 − µ)

+2n011(x̄011−β2−β3−γ23−µ)+2n111(x̄111−β1−β2−β3−γ12−γ13−γ23−µ) = 0

2n001(x̄001 − β3 − µ) + 2n101(x̄101 − β1 − β3 − γ13 − µ)

+2n011(x̄011−β2−β3−γ23−µ)+2n111(x̄111−β1−β2−β3−γ12−γ13−γ23−µ) = 0

2n110(x̄110 − β1 − β2 − γ12 − µ) + 2n111(x̄111 − β1 − β2 − β3 − γ12 − γ13 − γ23 − µ) = 0

2n011(x̄011 − β2 − β3 − γ23 − µ) + 2n111(x̄111 − β1 − β2 − β3 − γ12 − γ13 − γ23 − µ) = 0

2n101(x̄101 − β1 − β3 − γ13 − µ) + 2n111(x̄111 − β1 − β2 − β3 − γ12 − γ13 − γ23 − µ) = 0

The solution to these simultaneous equations gives us the maximum likelihood estimates

µ̂, β̂1, β̂2, β̂3, γ̂12, γ̂23, γ̂13

α = (n000n001n010n011n100n101n110 + n001n010n011n100n101n110n111
+ n000(n001n010n011n100n101 + n010n011n100n101n110

+ n001(n010n011n100 + n011n100n101 + n010(n011 + n100)n101)n110)n111)

µ̂ · α = n000(n001n010n011n100n101n110 + n010n011n100n101n110n111
+ n001(n010n011n100n101

+ (n010n011n100 + n011n100n101 + n010(n011 + n100)n101)n110)n111)x̄000
+ n001n010n011n100n101n110n111(x̄001 + x̄010 − x̄011 + x̄100 − x̄101 − x̄110 + x̄111)

β̂1 · α = n000(n010n011n100n101n110n111(−x̄000 + x̄100)

+ n001(n011n100n101n110n111(−x̄000 + x̄100)

+ n010(n100n101n110n111(−x̄000 + x̄100)

+ n011(−n100(n101n110 + (n101 + n110)n111)(x̄000 − x̄100)
+ n101n110n111(−x̄001 − x̄010 + x̄011 + x̄101 + x̄110 − x̄111)))))

+ n001n010n011n100n101n110n111(−x̄001 − x̄010 + x̄011 + x̄101 + x̄110 − x̄111)
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β̂2 · α = n000(n010n011n100n101n110n111(−x̄000 + x̄010)

+ n001(−n010(n011n100n101n110 + (n011n100n101 + n100n101n110
+ n011(n100 + n101)n110)n111)(x̄000 − x̄010)

+ n011n100n101n110n111(−x̄001 + x̄011 − x̄100 + x̄101 + x̄110 − x̄111)))
+ n001n010n011n100n101n110n111(−x̄001 + x̄011 − x̄100 + x̄101 + x̄110 − x̄111)

β̂3 · α = n000(−n001(n010n011n100n101n110 + n011n100n101n110n111
+ n010(n011n100n101 + n100n101n110 + n011(n100 + n101)n110)n111)(x̄000 − x̄001)

+ n010n011n100n101n110n111(−x̄010 + x̄011 − x̄100 + x̄101 + x̄110 − x̄111))
+ n001n010n011n100n101n110n111(−x̄010 + x̄011 − x̄100 + x̄101 + x̄110 − x̄111)

γ̂12 · α
= n001n010n011n100n101n110n111(x̄001 − x̄011 − x̄101 + x̄111)

+ n000(n010n011n100n101n110n111(x̄000 − x̄010 − x̄100 + x̄110)

+ n001(n011n100n101n110n111(x̄001 − x̄011 − x̄101 + x̄111)

+ n010(n100n101n110n111(x̄000 − x̄010 − x̄100 + x̄110)

+n011(n101n110n111(x̄001− x̄011− x̄101+ x̄111)+n100(n110n111(x̄000− x̄010− x̄100+ x̄110)

+ n101(n110(x̄000 − x̄010 − x̄100 + x̄110) + n111(x̄001 − x̄011 − x̄101 + x̄111)))))))

γ̂23 · α = n001n010n011n100n101n110n111(x̄100 − x̄101 − x̄110 + x̄111)

+ n000(n010n011n100n101n110n111(x̄100 − x̄101 − x̄110 + x̄111)

+ n001(n011n100n101n110n111(x̄100 − x̄101 − x̄110 + x̄111)

+ n010(n011(n100n101n110 + n101n110n111 + n100(n101 + n110)n111)

(x̄000 − x̄001 − x̄010 + x̄011) + n100n101n110n111(x̄100 − x̄101 − x̄110 + x̄111))))

γ̂13 · α = n001n010n011n100n101n110n111(x̄010 − x̄011 − x̄110 + x̄111)

+ n000(n010n011n100n101n110n111(x̄010 − x̄011 − x̄110 + x̄111)

+ n001(n011n100n101n110n111(x̄000 − x̄001 − x̄100 + x̄101)

+ n010(n100n101n110n111(x̄000 − x̄001 − x̄100 + x̄101)

+ n011(n101n110n111(x̄010 − x̄011 − x̄110 + x̄111)

+n100(n101(n110+n111)(x̄000−x̄001−x̄100+x̄101)+n110n111(x̄010−x̄011−x̄110+x̄111))))))
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The LOD score is then logL(H3I)− logL(H2I)

LOD =
n

2
log

 ∑
i∈G000

(xi − µ̂)2 +
∑
i∈G100

(xi − µ̂− β̂1)2 +
∑
i∈G010

(xi − µ̂− β̂2)2

+
∑
i∈G001

(xi − µ̂− β̂3)2 +
∑
i∈G110

(xi − µ̂− β̂1 − β̂2 − γ̂12)2

+
∑
i∈G011

(xi − µ̂− β̂2 − β̂3 − γ̂23)2 +
∑
i∈G101

(xi − µ̂− β̂1 − β̂3 − γ̂13)2

+
∑
i∈G111

(xi− µ̂− β̂1− β̂2− β̂2− γ̂12− γ̂23− γ̂13)2
− n

2
log

 ∑
i∈G000

(xi− x̄000)2

+
∑
i∈G100

(xi− x̄100)2 +
∑
i∈G010

(xi− x̄010)2 +
∑
i∈G001

(xi− x̄001)2 +
∑
i∈G110

(xi− x̄110)2

+
∑
i∈G011

(xi − x̄011)2 +
∑
i∈G101

(xi − x̄101)2 +
∑
i∈G111

(xi − x̄111)2


(2.6)

This LOD score can then be used to investigate the presence of QTL × QTL × QTL

interactions or QTL×QTL× environment interactions.

2.3 Results

2.3.1 Growth rate is not a strong predictor of overall growth

Three growth parameters, doubling time, lag time, and biomass accumulated, were

measured for parental haploid strains S96 (denoted by ‘S’) and YJM789 (denoted by

‘Y’), and 157 of their haploid meiotic segregants, separately in the presence of fruc-

tose, glycerol, and maltose as the sole carbon source (see methods below). Figure 2.1

schematically illustrates the effect of separately varying each growth parameter.

We observed that doubling time and lag time consistently showed a high correlation

of r2 ≈ 0.7 to 0.8 (Table 2.1). In contrast, doubling time and lag time both showed a

wide range of correlations with biomass (r2 ≈ 0.4 to 0.8), indicating that the growth

rate (doubling time or lag time) does not predict overall growth (accumulated biomass).

In agreement with these results, we find substantial overlap between doubling time and

lag time QTLs, whereas these QTL do not have a strong effect on biomass (see below).
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Figure 2.1: Yeast growth curves are fit to sigmoidal curves that are a function
of three growth parameters. The figure shows the effect of varying each growth
parameter independently: maximum OD, corresponding to overall biomass, (left), time
to exponential growth, corresponding to time spend in the lag phase of growth (center),
and doubling time (right).

Our results indicate that growth is a multi-variable phenotype, and that growth rate

(lag time and doubling time) and biomass capture different aspects of growth.

Table 2.1: Correlations between Doubling Time, Lag Time, and Biomass in
a fixed environmental condition

Environmental Doubling Time Doubling Time Lag Time
Condition vs Lag Time vs Biomass vs Biomass

Glycerol 0.73 0.41 0.40

Maltose 0.82 0.54 0.56

Fructose 0.77 0.79 0.57

This table lists correlation coefficients calculated between different growth
phenotypes, calculated over both parental strains S and Y and 157 segregants. The
calculation was repeated in the three media conditions. In all conditions, the three
growth parameters are not strongly correlated, suggesting that growth is a
multi-dimensional phenotype and each phenotype should be considered separately.

2.3.2 Yeast grown in glycerol and fructose show similar growth pat-

terns

We observed that fructose, a readily fermentable sugar and glycerol, a non-fermentable

sugar, showed the highest correlation for all growth parameters. In contrast, growth

parameters in fructose and maltose were not correlated, even though they are both

readily fermentable sugars (Table 2.2). The higher correlation between growth pheno-

types in glycerol and fructose can be explained by the common QTLs and QTL-QTL

interactions that we identified in these conditions (see below).

The difference between the growth parameters of the S and Y parents was largest in
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Figure 2.2: Average growth phenotypes for parental strains S96 (blue),
YJM789 (red) and 157 segregants (purple). Error bars represent ±1SE. Varying
the sugar source results in marked differences in yeast growth parameters.

fructose, where Y showed a longer doubling time, longer lag time and a higher maximum

OD than S, indicating that Y has a preference for growth efficiency (quantified by peak

biomass attained) over growth rate in the presence of fructose (Figures 2.2 and 2.3). In

both glycerol and fructose, growth was slower in Y than in S (as quantified by doubling

time and lag time). No difference was observed between the parental strains in Maltose.

The S strain showed similar growth patterns in maltose and fructose, whereas the Y

strain grew slower but with a higher efficiency in fructose compared to maltose.

2.3.3 A QTL in FLO8 increases growth efficiency and decreases growth

rate for the Y allele in glycerol and fructose

We identified a strong QTL in fructose and glycerol, with the LOD score peaking

consistently at chr 5, position 377,186 bp, which is located in the gene FLO8 (Figure

2.4). This QTL has a strong effect on doubling time, lag time, and biomass in fructose

(LOD = 6.93, 15.88, 6.68 respectively), and on lag time in glycerol (LOD = 6.60) (Table

2.3, Figures 2.5 and 2.6). The 1.5 LOD support interval for this QTL extends over a 15
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Figure 2.3: Average growth curves for parental strains S96 (blue), YJM789
(red) and 157 segregants (purple). These curves were generated using the average
values of doubling time, lag time, and biomass in each condition. The segregants are
more similar to S96 than to YJM789 in their growth profile.

Table 2.2: Correlations of growth phenotypes across Glycerol, Maltose, and
Fructose rich environments

Growth Glycerol Maltose Glycerol
Parameter vs Maltose vs Fructose vs Fructose

Doubling Time 0.05 -0.09 0.28

Lag Time 0.10 -0.01 0.66

Biomass 0.13 0.02 0.20

This table lists correlation coefficients for a given growth phenotype between different
environmental conditions, calculated over both parents and 157 segregants. Low
correlations indicate high dissimilarity in growth phenotypes between Glycerol and
Maltose, and between Maltose and Fructose. All growth phenotypes show a low to
medium correlation between Glycerol and Fructose.

kb region from 364,321 bp to 379,328 bp, containing genes SSA4, RTT105, NUP157,

MAM1, GLE2, FLO8, KAP123 and the peak LOD score is consistently identified at

the same SNP in the FLO8 gene across four different phenotypes (Table 2.3). Hence,

we refer to this locus as the FLO8 locus in the rest of this manuscript.

FLO8 is a transcriptional activator that binds to the promoter of FLO11, a gene

that is required for filamentous growth (pseudohyphal growth in diploids and invasive

growth in haploids) [51], [52]. Activation of FLO8 contributes towards filamentous

growth [51], [53] and is required for flocculation [54]. The S96 strain has a nonsense

mutation in this gene that prevents haploid invasive growth, and functional FLO8

transformants of S96 show a partial haploid invasion phenotype [55]. Our results show

that, apart from its known role in filamentous growth, FLO8 may have a carbon source
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Figure 2.4: Chromosome 5 LOD Curves indicate the presence of the FLO8
QTL in Fructose (lag time, doubling time, biomass) and Glycerol (lag time).

Table 2.3: Single environment QTLs

Glycerol Maltose Fructose

Doubling Time chr5@377,186
(6.93, 21.3%) p < 0.001

Lag Time chr5@377,186 chr5@377,186
(6.60, 19.4%) p < 0.001 (15.88, 42.3%) p < 0.001

chr12@30,768
(3.69, 11.5%) p < 0.04

Biomass chr2@83,942
(3.89, 12.2%) p < 0.05

chr5@377,186
(6.68, 20.6%) p < 0.001

This table lists QTLs that were identified as significant (p < 0.05) based on 1,000
permutation tests. Each entry lists the chromosome position (in bp), LOD score, and
permutation test p-value.

specific effect on growth kinetics.

The FLO8 QTL contributed to 42.3% of the phenotypic variance in lag time in

fructose, and 19.4 % of the variance in lag time in glycerol. However, it showed no

significant effect on any growth phenotype in maltose (Table 2.3 and Figure 2.6). The

conclusion from these observations is that this QTL contributes to the high correlation

in lag time between fructose and glycerol noted previously (Table 2.2).

The FLO8 QTL was identified as having a large effect (LOD > 6.9) on all growth

parameters in fructose (Table 2.3 and Figure 2.5). This observation is consistent with
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Figure 2.5: Effect of FLO8 QTL on all growth parameters for strains grown
in the fructose media condition. S and Y correspond to S96 and YJM789 allele
at the marker. The Y allele at this marker is associated with a preference for growth
efficiency over growth rate, as evidenced by longer doubling time and lag time, and
higher biomass.

the fact that there were high correlations among all growth parameters for strains grown

in fructose (Table 2.1). Furthermore, the direction of the effect of this QTL is consistent

with the interpretation that the Y strain has adapted to prioritize growth efficiency over

growth rate in fructose (Figure 2.5).

In maltose, we identified a QTL on chr 2 that had an intermediate effect on biomass

(LOD = 3.89), with the LOD score peaking at position 83,492 bp (1.5 LOD support

interval = 77,256 bp to 90,683 bp). This QTL contributed to 12.2% of the variance in

biomass in maltose and the interval included the genes NUP170, ATG8, ILS1, SSA3,

AAR2 and RPS8A. The gene SSA3, an ATPase belonging to the Hsp70 family, is

known to interact with the maltose-responsive transcriptional activator MAL63 [56],

and is therefore a candidate that may contribute to biomass variation.
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Figure 2.6: Effect of FLO8 QTL on lag time for all three media conditions. S
and Y correspond to S96 and YJM789 allele at the marker. This QTL has a significant
effect in glycerol and fructose media conditions.

2.3.4 Many QTLs reversed their phenotypic effect with a change in

carbon source (antagonistic gene-environment interaction)

We mapped QTLs that interact with the environment (GEI QTLs) for all growth param-

eters across all three pairs of environments. These GEI QTLs fall into three categories:

scale effect QTLs (whose effect is in the same direction in the two environments), antag-

onistic effect QTLs (whose effect is in the opposite direction in the two environments),

and environment specific QTLs (whose effect is only present in a single environment)

(Figure 2.7).

We observed a large number of GEI QTL that were not identified in single QTL

mapping (Table 2.4). Many of these QTLs, while they had a small (i.e. not significant)

effect in each individual environment, yet they interacted antagonistically between envi-

ronments, leading to their identification as GEI QTLs. Hence, our results demonstrated

that a more comprehensive set of QTLs contributing to phenotypic plasticity can be

identified by mapping gene-environment interactions, as QTLs that have small individ-

ual effects can have significant pleiotropic effects when environmental conditions are

varied.
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Figure 2.7: Phenotype effect plots of GEI QTLs demonstrate clear gene-
environment interactions. (a) A chr2 QTL showing a Maltose specific effect. (b
and c) A chr 8 QTL showing an antagonistic interaction (crossover) where the S allele
has a larger doubling time in Fructose and Glycerol, and Y allele has a larger doubling
time in Maltose.

2.3.5 Growth is modulated by common QTLs of similar effect in glyc-

erol and fructose

We observed that eleven GEI QTLs were responsible for the differences in growth rate

in glycerol or fructose and maltose (Table 2.4). In contrast, only two GEI QTLs were

identified when comparing growth rate in glycerol to that in fructose. These results

demonstrate that even among small effect QTLs, similar loci affect growth rates in

glycerol and fructose. This corroborates well with the higher correlation among growth

phenotypes in glycerol and fructose, and the fact that the FLO8 QTL was significant

even in single environment mapping in these conditions.

2.3.6 FLO8 regulates growth through environment specific and growth

parameter specific epistatic interactions with loci on chr 7 and

chr 13

In each medium, we examined pairs of single environment QTL candidates of any

effect size (p < 1.0, permutation test) to test significance for QTL-QTL interactions

(p < 0.05, permutation test). This analysis showed that QTLs of weak independent
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Table 2.4: Gene-Environment Interaction QTLs

Glycerol Glycerol Maltose
vs Maltose vs Fructose vs Fructose

Doubling Time chr2@90,357 (1.93) p = 0.01 chr2@91,797 (3.51) p < 0.01
chr3@105,155 (2.50) p < 0.01

chr4@22,874 (1.69) p = 0.04
chr5@364,321 (1.78) p = 0.04 chr5@364,321 (4.49) p < 0.01
chr8@525,401 (2.04) p = 0.01 chr8@525,401 (2.17) p = 0.01
chr10@394,687 (2.12) p = 0.01 chr10@404,421 (2.68) p = 0.01

chr11@219,509 (2.29) p = 0.01
chr12@388,274 (2.11) p = 0.01

chr13@407,190 (1.79) p = 0.03
chr14@411,669 (2.06) p = 0.03

chr16@398,558 (2.76) p = 0.01 chr16@347,462 (1.85) p = 0.03

Lag Time chr2@90,194 (3.22) p = 0.01 chr2@90,194 (3.02) p < 0.01
chr3@74,327 (2.24) p = 0.01

chr4@22,874 (2.67) p = 0.01
chr5@364,321 (5.25) p < 0.01 chr5@364,321 (7.01) p < 0.01

chr8@521,191 (2.28) p < 0.01
chr12@386,022 (2.49) p < 0.01

chr13@163,283 (2.58) p = 0.02 chr13@159,055 (1.98) p = 0.04

Biomass chr2@83,906 (3.74) p = 0.03 chr2@83,906 (3.79) p = 0.03
chr3@97,696 (2.72) p = 0.01
chr5@378,582 (2.24) p = 0.04

This table lists QTLs showing a gene-environment interaction that was identified as
significant (p < 0.05) using 100 permutation tests. The presence of a GEI QTL
indicates the presence of a genotype environment interaction. Each entry lists the
chromosome position (in bp), LOD score, and permutation test p-value.

effect (i.e. they did not pass genome-wide significance threshold as a single-environment

QTL) were involved in statistically significant QTL-QTL interactions (Table 2.5).

In glycerol and fructose, a common interaction was identified between the FLO8

locus and a locus on chr13, affecting lag time in glycerol (interaction LOD score = 2.6,

Figure 2.8), and fructose (interaction LOD score = 3.1, Figure 2.8) (Table 2.5). The

1.5 LOD support interval for the chr13 QTL extended over a 31 kb region from 146,198

to 177,237 bp. In both media conditions, the interaction demonstrated that the strains

with the S allele at chr13 and the Y allele at chr5 had the longest lag time (Figure 2.8).

In glycerol, the FLO8 locus interacted strongly with a locus on chr7 to alter biomass,

peaking between 26,299 to 33,274 bp (interaction LOD score = 3.26, Table 2.5). This

interaction had a dominant effect on biomass, leading to a 1.5 fold increase in maximum

optical density for strains with the Y allele at chr5 and S allele at chr7 (Figure 2.9).

However, as the chr7 QTL had a weak effect in a single environment (LOD = 1.6), we

could not measure the 1.5 LOD support interval (a 1.0 LOD support interval extended
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Figure 2.8: An interaction between the FLO8 QTL and a locus on chr13
regulates lag time in the presence of Glycerol and in Fructose. S and Y
correspond to S96 and YJM789 allele at each marker. Strains with the S allele at chr13
and the Y allele at chr5 have a longer lag time.
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Figure 2.9: An interaction between the FLO8 QTL and a locus on chr7 reg-
ulates biomass in the presence of Glycerol. S and Y correspond to S96 and
YJM789 allele at each marker. Strains with the S allele at chr7 and the Y allele at chr5
have a higher biomass.

from 9.4 to 67.38 kb). Furthermore, the interaction between the FLO8 locus and the

chr13 locus arose only when mapping lag time in glycerol and fructose (Table 2.5).

Similarly, we identified QTL-QTL interactions that are only associated with doubling

time (Table 2.5).

Thus, epistatic QTL interactions described above were both environment specific

and parameter specific, highlighting the ability of yeast populations to independently

vary separate aspects of growth in response to their environment.

2.4 Discussion

Non-motile organisms need to exhibit high phenotypic plasticity in order to adapt to

changing environments. Growth is a key phenotype which should exhibit such plasticity

in these organisms. For Saccharomyces cerevisiae, the availability and utilizability

of carbon sources affects every aspect of growth (Reviewed in [40]), and many genes

are known to respond to a change in the type and level of carbon sources [57], [58].

Attempts have been made to identify loci contributing to variation in yeast growth
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Table 2.5: QTL-QTL interactions

Glycerol Maltose Fructose

Doubling Time chr8@26,177 - chr8@525,401
(2.565) p = 0.035

chr11@219,509 - chr12@96,033
(3.018) p = 0.02

Lag Time chr5@364,321 - chr13@163,283 chr5@364,321 - chr13@161,922
(2.601) p = 0.012 (3.101) p = 0.009

chr5@377,186 - chr13@163,283 chr5@377,186 - chr13@161,922
(2.379) p = 0.029 (2.519) p = 0.04

Biomass chr5@401,150 - chr7@28,371
(3.258) p = 0.007

This table lists QTL-QTL interactions that were identified as significant (p < 0.05)
based on 1,000 permutation tests. Each entry lists the chromosome positions of the
interacting SNPs (in bp), LOD score, and permutation test p-value.

under different environmental conditions [43], [44]. However, the mechanisms by which

genetic interactions affecting different aspects of yeast growth are modulated by nature

of carbon sources is not well understood.

In the present study, we mapped variation in phenotypic plasticity across three car-

bon sources for three growth parameters. Using two genetically divergent yeast strains,

S96 (a lab strain) and YJM789 (a clinical isolate), and their meiotic recombinants, we

found a variety of loci associated with carbon source dependent phenotypic plasticity

for all three growth parameters. We also found that this variation was attributable

to different sets of GEI QTLs for growth rate (lag time and doubling time) and for

biomass. We identified epistatic interactions between some of these GEI QTLs which

contributed to their environment specificity.

Our study identified a strong QTL at chr5, position 377,186 bp, located in the FLO8

gene which had different effects on doubling time, lag time, and biomass in fructose and

glycerol. It is known that the FLO8 gene is functional in YJM789 but not in S96 [55].

Our study found that the Y allele of this locus contributes to a slower growth rate but

higher biomass accumulation in fructose and glycerol, but not in maltose. Furthermore,

we find that FLO8 regulates growth kinetics through distinct, environment-specific

interactions with other QTLs, that separately affect growth rate and biomass.
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2.4.1 Gene-environment interactions demonstrated scale effects, en-

vironment specific effects, and crossover effects

By mapping gene-environment interactions across pairwise comparisons of growth me-

dia, we identified GEI QTLs in the following three categories: a) scale effect interactions

occur when single QTLs contributed to variation in growth in both environments, with

different effect sizes. An example is the FLO8 locus across glycerol and fructose which

affects both doubling time and lag time; b) environment-specific interaction QTLs.

These contribute to growth in only one of the two media (to the limit of our mapping

resolution). The maltose specific chr2 locus affecting biomass showed such an effect; c)

crossover effect QTLs. In this case, one parental allele increases the phenotype in one

condition, and the other parental allele increases the phenotype in another condition.

Six of the twelve GEI QTLs fall into this category. Such crossover interactions can

occur if one allele is sensitive to an environmental variable and the other allele shows

a resilient phenotype across environment. Alternatively, the parental strains may have

adapted to different environmental conditions at these loci.

Many genome-wide significant GEI QTLs were not significant QTLs in single envi-

ronment mapping. Instead, these GEI QTLs had a weak effect in a specific environment,

but had a significant effect when the carbon source was varied, in the form of a crossover

effect of the phenotype. This result has two broad implications. First, it stresses the

added statistical power of GEI mapping to identify loci involved in crossover inter-

actions. Secondly, it shows that the differences that we identified between growth in

fructose/glycerol and growth in maltose are regulated by multiple crossover interactions.

2.4.2 Growth in functionally dissimilar carbon sources, fructose and

glycerol, is regulated by common QTLs and epistatic interac-

tions

Fructose, a monosaccharide, and maltose, a disaccharide, are both readily fermentable

sugars and support faster growth rate and larger biomass than in glycerol, a non-

fermentable carbon source. This is readily seen for both the lab strain S96 and the
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clinical isolate YJM789 (Figure 2.2).

The high phenotypic correlations observed for all growth parameters when compar-

ing fructose-rich and glycerol-rich environments can be partly explained by the overlap

in QTLs and QTL-QTLs interactions in these conditions. The FLO8 locus contributed

to variation in lag time in glycerol, and to all three growth parameters in fructose (ex-

plaining 42.3% of the variation in lag time). On the other hand, two distinct QTLs (on

chr2 and chr12) were identified for growth in maltose (Table 4.5).

The FLO8 locus was not identified on mapping in glucose, also a readily fermentable

sugar (results not presented). Furthermore, we identified a common interaction between

FLO8 and a chr13 QTL for lag time in glycerol and fructose, whereas no significant

QTL-QTL interactions were detected in maltose.

Our results support the interpretation that FLO8 regulates growth kinetics in a sim-

ilar manner in a non-fermentable carbon source, glycerol, and in a fermentable carbon

source, fructose. This mechanism of growth regulation is absent in other fermentable

carbon sources like glucose and maltose. FLO8 is an invasive growth specific transcrip-

tion factor, and although expressed throughout growth kinetics, it activates invasive

growth only during nutrient limitation (i.e. in the absence of a fermentable carbon

source). In our study, the FLO8 locus was found to affect growth parameters in nutri-

ent rich conditions (lag phase and exponential phase in fructose) through interactions

conserved across nutrient limited conditions (glycerol).

A large number of gene-environment interactions were identified in our study when

comparing fructose or glycerol to maltose, but not when comparing fructose to glycerol.

This suggests that, apart from the FLO8 locus, many other alleles differentially affect

growth for the two fermentable carbon sources (Table 2.4). Many of these GEI QTLs

showed crossover interactions, indicating that the S and Y alleles are antagonistically

adapted to the two fermentable carbon sources.
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2.4.3 Yeast regulates growth rate and biomass through different sets

of QTLs and epistatic interactions

Yeast growth is usually measured as a single gross phenotype. Previous studies have

shown that different phases of growth are differentially affected by various environmen-

tal conditions [48], [43].

In our study, we noted that while there was a high correlation between lag time

and doubling time, these parameters showed a low correlation with total biomass ac-

cumulated. This implies two things: a) the lag time (i.e. time for yeast to adapt to

a nutrient condition and enter exponential phase) is highly predictive of the doubling

time; b) the growth rate is not a good predictor of the overall biomass accumulated.

Hence our study emphasizes that growth is characterized by growth rate and growth

yield, and variations in these traits have a partially overlapping genetic basis. We iden-

tified a QTL that regulates all three phases of growth (the FLO8 locus in fructose), as

well as QTLs having a parameter specific affect. Gene-environment mapping identified

partially overlapping sets of QTLs that regulate growth parameter specific interactions

between glycerol/fructose and maltose (Table 2.4).

The FLO8 locus interacts with a locus on chr13 to affect lag time in fructose and

glycerol (Figure 2.8), and with a locus on chr7 to affect biomass in glycerol (Figure 2.9).

This demonstrates that a common gene (FLO8 ) can have different genetic interactors

that differentially regulate lag time and doubling time. Our study indicates that growth

kinetic parameters in S. cerevisiae are differentially regulated in an environment specific

manner through interactions with a common regulator, FLO8. Such modular functional

mechanisms may have provided yeast with the flexibility to alter each growth phase

independently to optimize its fitness in the varied environments encountered in its

evolutionary history.
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2.4.4 Phenotypic plasticity arises through epistatic interactions be-

tween environment-specific QTLs (allelic sensitivity hypothesis)

and environment-specific regulatory interactions (gene regula-

tory hypothesis)

Two models have been proposed to explain genetic control of phenotypic plasticity. The

allelic sensitivity model proposes that the plasticity of a population is contributed by

genes which directly alter the phenotype in changing environments. In contrast, the

gene regulatory model suggests that regulatory genes render plasticity by activating or

repressing structural genes in an environment specific manner [38]. The two hypotheses

are not mutually exclusive and it is possible that both types of genes contribute to

plasticity of a complex phenotype like growth. Our study supports such a complex

scenario, because we find that the FLO8 locus, a transcriptional regulator, affects

growth rate and biomass directly (Figure 2.5, Table 2.3) as well as through epistatic

interactions with other loci (Figures 2.8 and 2.8, Table 2.5).

In glycerol, the FLO8 locus interacts strongly with a QTL on chr7 to affect biomass.

This interaction increases the overall biomass accumulated by 50% (measured in OD) for

the segregants with the Y/S combination of alleles at chr5/chr7. One of the genes in the

chr7 QTL is RTG2, a transcription factor that senses mitochondrial dysfunction [59].

Glycerol is a respiratory medium, requiring the TCA cycle and the glyoxylate cycle

activity for growth and RTG2 is known to affect expression of the enzymes involved in

these cycles [59]. Crucially, RTG2 and FLO8 both increase FLO11 activity, resulting

in an invasive growth under glucose limited conditions (Reviewed in [52]). Hence, it is

possible that RGT2 and FLO8 interact either via FLO11 or independently to affect

biomass in glycerol. It has been shown that polymorphisms in transcription factors

directly affecting the phenotype can have environment specific interactions [60]. Our

study shows that epistatic interaction between loci not directly associated with growth

can have carbon source specific effects on various growth parameters.

An example of a regulatory locus showing environmental specificity is the GEI QTL
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on chr2 (Table 2.4). This locus was identified when maltose was compared to fruc-

tose/glycerol, but not when fructose was compared to glycerol. The 1.5 LOD support

interval for the chr2 QTL extends over a 13 kb region containing the genes (NUP170,

ATG8, ILS1, SSA3, AAR2 and RPS8A). One of these genes, SSA3 has been shown

to form a subcomplex with the maltose responsive transcription factor MAL63, in the

presence of maltose [56]. This is consistent with our finding that this locus was identi-

fied in GEI mapping (in all growth parameters) specifically for comparisons involving

maltose.

Summary: Yeast growth is a highly composite phenotype, and its various measures

(biomass, growth rate and lag time) show plasticity in different carbon sources related

to different QTLs. Much of this plasticity is a result of carbon source specific gene-

gene interactions. Furthermore, these interactions are parameter specific suggesting

that yeast has the ability to modulate different aspects of growth independently to

maximize its fitness across varied environments. The candidate genes located in the

QTLs identified in this study are both regulatory and structural genes which interact

to contribute to variation in phenotypic plasticity.

2.5 Future Directions

Thus far, we have applied quantitative trait mapping to the phenotypic means of pop-

ulations. The hypothesis being investigated is: does the genotype at a given set of

loci affect the phenotypic mean of the samples? The standard assumption in mapping

quantitative trait loci (QTL) is that the phenotypic variance remains unchanged [13].

However, there can be valid biological reasons for phenotypic variance to be affected

by changes in the genotype. Indeed, it is quite likely that fluctuations (standard devia-

tion) in phenotypic output may be proportional to the phenotypic abundance (mean).

Alternatively, there may be gene-gene interactions present in a strain that regulate

the phenotypic output. These regulation mechanisms may differ for strains and hence

be disrupted in the hybrid offspring. In the above study, we observe environment-

dependent differences in the phenotypic variance of certain growth traits. Specifically,

the yeast strain YJM789 shows a larger phenotypic variance than S96 (haploid form of
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S288c) for doubling time and lag time when grown with glycerol as the carbon source

(Figure 2.2). This leads to the following biological question: do the genetic drivers of

phenotypic variance differ from the drivers of phenotypic mean in these growth param-

eters?

We can address this question by mapping QTL that drive variation in the phenotypic

variance of samples. Concretely, we can investigate the following three hypotheses, given

by their corresponding likelihood functions.

L(HM ) =
∏
i

φ(yi|µ+ βgi, σ
2)

L(HV ) =
∏
i

φ(yi|µ, σ2 + αgi)

L(H0) =
∏
i

φ(yi|µ, σ2)

where φ is the density function for the normal distribution, and the parameters µ,

σ2, β and α are obtained for each hypothesis by maximizing the likelihood. HM is

the hypothesis that the genotype affects the phenotypic mean, HV is the hypothesis

that the genotype affects the phenotypic variance, and H0 is the null hypothesis that

genotype does not affect the phenotypic mean nor the phenotypic variance. In the

equations above, if we assume the gaussian form for φ,

φ(xi|µ, σ2) =

(
1

2πσ2

)n
2

exp

(
−(xi − µ)2

2σ2

)

the log likelihoods of the three hypotheses are then given by

logL(H0) =
n

2
log

(
1

2πσ2

)
− 1

2σ2

∑
i

(xi − µ)2

logL(HM ) =
n

2
log

(
1

2πσ2

)
− 1

2σ2

∑
i∈G1

(xi − µ1)2 +
∑
i∈G2

(xi − µ2)2


logL(HV ) =
n1
2

log

(
1

2πσ21

)
+
n2
2

log

(
1

2πσ22

)

− 1

2σ21

∑
i∈G1

(xi − µ)2

− 1

2σ22

∑
i∈G2

(xi − µ)2
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For the null hypothesis, maximizing logL(H0) shows that the mean and variance esti-

mators are the phenotypic mean and the phenotypic variance, respectively.

µ̂ = x̄

σ̂2 = σ2

For the HM hypothesis, maximizing logL(HM ) gives us the parameter estimates:

µ̂j = x̄j

σ̂2 =
∑
j

nj
n
σj

2

For the HV hypothesis, maximizing logL(HV ) gives us that the parameter estimates:

µ̂ = x̄

σ̂j
2 = σj

2

Inserting these values back into the log likelihoods gives us the respective LOD scores:

LODmean = log

(
L(HM )

L(H0)

)
=
n

2
log

(
nσ2

n1σ21 + n2σ22

)
LODvariance = log

(
L(HV )

L(H0)

)
=
n1
2

log

(
σ2

σ21

)
+
n2
2

log

(
σ2

σ22

)
where σ2 = 1

n

∑
i (xi − x̄)2 is the overall variance, and σ21 and σ22 are the variance for

samples with genotypes 1 and 2, respectively.

These log of odds scores LODvariance and LODmean can then be used to identify

loci that contribute to variation specifically in the phenotypic variance or in the pheno-

typic mean. Furthermore, LODmean − LODvariance = log
(
L(HM )
L(HV )

)
can identify which

hypothesis is a better fit for a given genetic locus. We can use these LOD scores to

address the question of whether the genetic drivers of the phenotypic variance differ

from the drivers of the phenotypic mean. We can also extend these methods to an unex-

plored direction of QTL mapping where, analogously to the discussion in the Methods

section of this chapter, we can identify gene-gene interactions and gene-environment

interactions that may regulate phenotypic variance.
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Chapter 3

Sporulation Genes Associated with Sporulation Efficiency

in Natural Isolates of Yeast

3.1 Introduction

Sporulation is a response to nutrient deprivation in which yeast exits mitotic cell cycle

and enters into meiosis, leading to spore formation [61]. About 400 genes have been

shown to modulate sporulation [62], [63] and more than 1,000 genes are known to change

expression during sporulation [64], [65]. Sporulation efficiency, defined as the fraction

of cells that sporulate in a culture, varies among strains and has been identified as

a quantitative trait that is modulated by at least 10 genes [66], [67], [68]. However,

many of these studies have been performed using laboratory strains [66], [67], which

face distinct selective pressures as compared to wild type strains.

The lack of information about traits in natural populations has limited our un-

derstanding of the potential effects of evolution, selection pressure, life history and

environment on trait variation and its mechanism of action. Sporulation is triggered

as a response to nutrient deprivation. As natural isolates face strong selection pressure

to adapt to nutrient changes in their environment, it is reasonable that mechanisms

causing variation in sporulation efficiency in natural isolates may be very different from

those operating in laboratory strains.

Several previous studies have shown variation of sporulation efficiency among nat-

ural isolates of yeast, such as clinical, oak and wine strains [68], [69], [70], [71]. To

understand this variation among a larger set of natural isolates and to identify some

of the genetic factors contributing to this phenotype, we measured the sporulation

efficiency of strains in the SGRP collection [72]. While a previous study has shown

large variation in sporulation efficiency in SGRP strains [71], our goal was to examine
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whether the genes that have been implicated in sporulation to date [61], [63] also con-

tribute to sporulation efficiency variation in these SGRP strains. This would help us

understand how sporulation efficiency variation is modulated in natural isolates from

diverse environmental niches.

To identify loci associated with sporulation efficiency in the SGRP collection, we

used two methods of association mapping (described below) on a set of 397 sporula-

tion and sporulation-associated genes. After correcting for population structure in the

SGRP strains, we identified two significant clusters of SNPs in strong linkage disequi-

librium that were strongly associated with high sporulation efficiency. The SNPs were

found in the genes HOS4, MCK1, SET3, SPO74 and other candidate genes.

3.2 Materials and Methods

3.2.1 Yeast Strains and Culture Conditions

Yeast strains were obtained from the Saccharomyces Genome Resequencing Project

(SGRP) [72]. All strains were grown under standard media and growth conditions. To

measure sporulation efficiency, strains were first grown in YPD (yeast extract, peptone

and dextrose) from a starting optical density (OD) at 600nm of 0.2 to a final OD of 1.0.

Their cell cycle was then synchronized by growing them in YPA (yeast extract, peptone

and acetate) from a starting OD of 0.2 to final OD of 1.0 at 30◦C, shaking at 250rpm [73].

Approximately 1×107 cells from this synchronized culture were then incubated in liquid

sporulation medium (1% potassium acetate supplemented with amino acid mixture) at

30◦C for the duration of experiment.

3.2.2 Estimation of Sporulation Efficiency

For each strain, three biological replicates were used and approximately 1,000 cells

were counted per replicate per strain. Sporulation efficiency was measured as the ratio

of tetrads and dyads produced by a strain, to the number of cells (expressed as a

percentage). For each strain, sporulation efficiency was measured every two days until

saturation was reached for three consecutive readings.
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3.2.3 Sequence Data

The sequence and SNP data for all strains was obtained from the SGRP project (http:

//www.sanger.ac.uk/research/projects/genomeinformatics/sgrp.html; downloaded

in February 2012). Sequence alignments using the Saccharomyces cerevisiae genome as

reference were performed for each gene being analyzed, starting from 500 base pairs

upstream of the gene. Alignment was performed using the SGRP tool ‘alicat.pl’ (avail-

able for download at the SGRP database). Based in this alignment, variant loci were

identified and were analyzed for association with the phenotype.

3.2.4 LOD Score Analysis

The data consisted of 42,003 SNPs with phenotype data for 32 strains. These SNPs

were filtered to include only bi-allelic SNPs with no missing data and with minor allele

frequency≥ 2/32, leaving 10,481 SNPs. For each SNP, we calculated the LOD score [13],

which is the log (base 10) of the ratio of the likelihood of the data given the hypothesis

that there is a QTL to the likelihood of the data given the hypothesis that there is

no QTL at a locus. A LOD score of 3.0 implies that the likelihood that there is

a QTL (i.e. the data are drawn from a distribution where the two genotypes have

different phenotypic means) is 1,000 times greater than the likelihood that there is no

QTL (i.e. the data are drawn from a distribution where the two genotypes have the

same phenotypic mean). Let q1 and q2 be the fraction of strains having allele 1 and

2, respectively, and x be the total number of strains. Let v1 and v2 be the phenotype

variances of strains with alleles 1 and 2, and v be the overall phenotype variance. Then,

for each SNP, the LOD score is given by

LOD =
x

2
log(

v

q1v1 + q2v2
)

Permutation tests of up to 106 permutations were performed to assign an empirical

p-value to each SNP. This test approximates the probability of observing a LOD score

greater than or equal to a certain value, under the null hypothesis that there is no

QTL at this SNP. To correct for multiple hypothesis testing (Bonferroni correction),

we first grouped the 10,481 SNPs in the filtered data into clusters containing SNPs

http://www.sanger.ac.uk/research/projects/genomeinformatics/sgrp.html
http://www.sanger.ac.uk/research/projects/genomeinformatics/sgrp.html
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that were in perfect linkage disequilibrium. This identified n = 1709 distinct clusters.

The permutation test p-value was multiplied by n to obtain the Bonferroni corrected

p-value. This left us with 2 clusters of SNPs with p-value < 0.03.

3.2.5 Binomial Analysis

As a check on the LOD analysis, we also performed a binomial test on the data. The

data consisted of 42,003 variant loci in genes potentially associated with sporulation

and a measured sporulation efficiency value for 32 strains. After retaining only bi-

allelic SNPs with no missing data and restricting to loci with minor allele frequency

(MAF) > 5/32 ( 0.16), 4,664 SNPs remained. The strains were stratified into 3 sets,

broadly based on the sporulation efficiency classification used by Cubillos et al. [71],

ranging from 0/1, 2 and 3. Set S1 contained 15 poor sporulation efficiency strains, with

sporulation efficiency from 0% to 24%; set S2 contained 8 intermediate efficiency strains

with sporulation efficiency from 25% to 74%, and S3 contained 9 high sporulation

efficiency strains, with sporulation efficiency from 75% to 100%. Thus, the a priori

probabilities for a strain chosen at random to belong to set S1, S2, and S3 were 0.47,

0.25 and 0.28 respectively.

For each allele, a binomial test was applied to determine whether an allele at a SNP

was significantly associated with set S1 (low sporulation efficiency) or with set S3 (high

sporulation efficiency).

Let n be the number of samples with the major alleles and k the number of major

alleles in class S1. Also, let p to be the a priori probability for an allele to occur in

class S1 (0.47). If there is no association between the major allele and low sporulation

efficiency, the probability P of obtaining k or more major alleles in class S1 is given by:

P =
n∑

m=k

(
n

m

)
pm(1− p)n−m

This is the p-value, or the probability of obtaining an association as extreme as

the one seen in the data by chance, when the null hypothesis is true, i.e. when there

is no association between the allele and sporulation efficiency. For the 4,664 SNPs
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that remained after filtering, the p-value was computed as described above to test for

the association of both minor and major alleles with high or low sporulation efficiency

(4 comparisons per SNP). We used a significance threshold of p < 0.05. For our

final results, we retained only those SNPs identified as statistically significant by the

LOD score analysis and by the binomial test, as being associated with the sporulation

phenotype (Table 3.2, Table S4 in [1]). Table S2 in [1] lists the LOD score, binomial

test p-values, genotypes and mean phenotypes for the 69 SNPs that were identified with

a LOD score > 2.5.

3.3 Results

3.3.1 Sporulation Efficiency Variation in SGRP collection strains

The sporulation efficiency of the 36 sequenced, genetically diverse and highly polymor-

phic S. cerevisiae strains in the SGRP collection showed extensive variation, ranging

from zero for strains that did not sporulate: 322134S, 378604X, 273614N, YIIc17-

E5, poor (1-25%) for DBVPG6044, K11, DBVPG1106, Y9, intermediate (25-49%) for

DBVPG1788, YJM975, YJM978, high (50-74%) for Y12, Y55, BC187, DBVPG6040,

L-1528, and very high (75-100%) for L-1374, UWOPS05-227.2, SK1, YPS606, YPS128

(Table 3.1 and Table S3 in [1]). Approximately one third (11 out of 32) of the strains

failed to sporulate and their sporulation efficiency was set to zero in the association

analysis. The inability of these isolates to sporulate may simply reflect the fact that

the lab condition for temperature, media, aeration, etc. [74] used may not be appro-

priate for sporulation in these natural strains. Alternately, these strains may have

inherently low sporulation efficiency and may have developed alternate mechanisms to

cope with nutrient deprivation, e.g. pseudo-hyphae as in case of YJM981 and 322134S.

In addition to a wide spectrum of sporulation efficiencies, these strains also showed a

specific pattern in the kinetics of sporulation, with the high sporulation efficiency strains

showing fast sporulation kinetics and the low sporulation efficiency strains showing slow

sporulation kinetics. For example, the strain YPS128 had maximum sporulation effi-

ciency of 99.5% and reached saturation within 48 h. On the other hand DBVPG1788
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Table 3.1: Sporulation efficiency measurement of SGRP strains. Table re-
produced from [1]
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had a maximum sporulation efficiency of 41.0% and took 8 days to reach this efficiency.

Keeping the strain for a longer time in the sporulation media condition did not increase

their sporulation efficiency (Figure 3.1, Table S3 in [1]). A comparison of sporulation

efficiency estimated at 23◦C in [71] with our estimates at 30◦C showed notable dif-

ferences (see Table 3.1). In the two studies, 16 strains had consistent efficiencies in

both studies, indicating a significant effect of temperature dependence in sporulation

efficiency. The results of our analysis are therefore relevant at 30◦C. Future studies will

be necessary to understand the effect of temperature on sporulation efficiency.

Figure 3.1: Kinetics of sporulation efficiency measurements of representative
S. cerevisiae SGRP strains. Sporulation efficiency of each strain was measured
till saturation, i.e. when sporulation efficiency did not vary for three consecutive time
points. The data is plotted as mean and standard deviation of 3 independent biological
replicates. Figure reproduced from [1].

3.3.2 SNP Variation in Sporulation Genes

Given our limited sample size, we searched for genotype/phenotype associations only

among sporulation and sporulation associated genes. A survey of the literature identi-

fied a comprehensive list of 397 genes [63], [64], [65], [75] which included genes required
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for metabolic adaptation, early, middle and late sporulation genes (meiosis, spore for-

mation and general stress response genes), mitochondrial and autophagy genes and also

genes which were induced upon sporulation but had unknown function (Table S1 in [1]).

We looked for variation in these genes across all strains by identifying variant alleles

from the SGRP alignment of all 32 strains. In total, we found 42,003 SNPs across these

genes. The presence of variation allowed us to look for genetic determinants of variation

of sporulation efficiency in these strains.

3.3.3 Association Mapping of Sporulation Efficiency

We used two methods to identify SNPs in genes that were associated with an increase

or decrease in sporulation efficiency. The first method used the LOD score to identify

SNPs in which the genotype was strongly associated with the sporulation efficiency

phenotype. A high LOD score was evidence for the presence of a quantitative trait

locus, where the two genotypes at a locus had significantly different phenotype averages.

The second method binned the strains into three classes of high, intermediate and low

sporulation efficiency and then applied a binomial test (see Methods) to identify SNPs

in association with high and low sporulation. Both methods identified 31 SNPs in 24

different genes (Bonferroni corrected p-value < 0.03, permutation test) associated with

sporulation efficiency variation (Table 3.2, Table S4 in [1]).

3.3.4 Population Structure Correction

Recently, the SGRP collection has been proposed for use in yeast GWAS studies [76],

[77]. However, several issues have been raised about using this collection, including high

type I errors (false positives) in determining causative loci [76], as underlying population

structure can lead to spurious associations [77]. Using STRUCTURE [78] to determine

population structure, and data for 201 phenotypes (not including sporulation efficiency),

Diao and Chen [77], used extensive simulations and several GWAS methods on a genome

wide set of tag SNPs to show that the mixed linear model EMMAX-KLA (a model with

local ancestry and the kinship matrix as covariates) was the most effective at reducing

type I errors and correcting for population structure in these strains. EMMAX-KLA
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Table 3.2: Clusters of SNPs with genome-wide significant LOD scores (Bon-
ferroni corrected p-value < 0.03). Table reproduced from [1]

was applied to our phenotype data to identify the tag SNPs that were significantly

associated with the sporulation phenotype after correcting for population structure

(p < 0.05). We verified that the SNPs that we identified as statistically significant using

the LOD score and binomial test were in perfect linkage disequilibrium (r2 = 1) with

the tag SNPs identified as statistically significant using EMMAX-KLA, demonstrating

that the association with sporulation efficiency remained after correcting for population

structure (Table S4 in [1]).

3.3.5 Candidate SNPs and Genes Associated with Sporulation Effi-

ciency

The SNPs that were identified as statistically significant by our two association analyses

fell into two linkage blocks, one with a LOD score of 4.47 (Bonferroni corrected p <

0.004, permutation test) and another with a LOD score of 3.5 (Bonferroni corrected

p < 0.026, permutation test). The first linkage block contained 5 SNPs whereas the
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second linkage block contained 26 SNPs. These blocks of linked SNPs contained SNPs

that were associated with sporulation efficiency in the SGRP strains. The SNPs in

these clusters showed perfect linkage (r2 = 1) i.e. they segregated in an identical

manner across the yeast strains and they were not all contiguous in the genome. This

suggests a residual population structure effect due to a small sample size. As a result, we

could not computationally determine which of the SNPs in our clusters were causally

associated with the phenotype and which were non-causal and in linkage with other

causal variants. It will be necessary to analyse additional strains or perform additional

experiments on the SGRP strains to answer this question.

Gene annotations were performed for these potentially functional SNPs to classify

them as regulatory, synonymous or non-synonymous. We found that 20 genes had

SNPs in their coding region and 5 genes (CDC10, EMI5, MLS1, SPR6 and SSN8 )

had SNPs in their un-translated region. One gene, SPR6, had SNPs in both coding

and regulatory regions (Table S4 in [1]). Interestingly, deletions of EMI5, MLS1 and

SSN8 have been reported to decrease sporulation efficiency [79] and CDC10 deletion

abrogates sporulation [62].

Four of the 26 coding SNPs were non-synonymous. These may affect sporulation

efficiency altering binding ability, or the extent of functionality, or the flux through

the pathway which may alter protein levels. Two of the 4 non-synonymous substitu-

tions were in SET3 (A1783T), a repressor of sporulation specific genes [80] and HOS4

(A1384G), a component of Set3 complex and a suppressor of early and middle sporula-

tion specific genes [81]. A possible reduction in protein function due to these mutations

in the repressors, Set3 and Hos4, could lead to an increase in sporulation efficiency

in strains with these SNPs. The other two non-synonymous substitutions were MCK1

(C1112A) and SPO74 (C16A), deletions of which lead to decrease [62] and absence [82]

of sporulation respectively. Among these four non-synonymous substitutions, the only

one non-conservative substitution in Mck1 (T371K) lies within its putative kinase do-

main, a positive regulator of meiosis and spore formation [83].

Two of the genes, HOS4 and SPR6 (a gene of unknown function expressed during

sporulation and interacting with sporulation genes [84]), were present in both significant
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clusters (Table 3.2), suggesting their role as potential candidates for variation in sporu-

lation efficiency across SGRP strains. However, an experimental validation is required

to confirm their actual role, either by performing reciprocal hemizygosity analysis [3]

or by constructing allele replacement strains.

3.4 Discussion

A limited understanding of traits in natural populations is one of the biggest challenges

in genetic association studies. This lack of information about phenotypes in the wild

has limited our knowledge about the role played by evolution, life history, environ-

ment and selection pressure in driving these processes. In this study, we have tried to

understand the genetic basis of variation in sporulation efficiency in natural isolates

of yeast using the SGRP collection. Since sporulation is triggered as a response to

nutrient deprivation, we expected that the genetic factors contributing to variation in

sporulation efficiency might be different for lab strains compared to natural isolates. To

identify such differences, we measured sporulation efficiency of S. cerevisiae strains in

the SGRP collection and found a large variation in sporulation efficiencies ranging from

0% to 100%, which we then used to identify the genetic basis of variation in sporulation

efficiency of these wild yeast strains.

Our study suggests that both regulatory and coding variants may be responsible for

variation in sporulation efficiency. Four out of twenty six (15%) of the SNPs identified

to be associated with sporulation efficiency were non-synonymous, and occurred in

the genes HOS4, MCK1, SET3 and SPO74. We list these genes as candidate drivers

of variation in sporulation efficiency in the SGRP collection. Previous studies have

identified roles for sporulation genes (IME1, RME1 ) and sporulation-associated genes

(FKH2, PMS1, RAS2, RSF1, SWS2 ), as well as non-sporulation pathway genes (MKT1,

TAO3 ) in maintaining this variation [66], [67], [68]. Our results showed that in the

SGRP collection, a different set of genetic factors contribute to variation in sporulation

efficiency.

S. cerevisiae is a powerful system for quantitative trait genetics and has advanced
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our understanding of the genotype-phenotype relationship of these traits. With decreas-

ing cost of sequencing and high-throughput phenotyping, yeast has become a model for

GWAS studies [76], [77]. Our results provide another example of how GWAS studies in

the SGRP collection can identify known and new candidates for sporulation efficiency

variation in natural strains of yeast. Thus, it provides insight into how the selection

pressure due to changes in the environmental conditions of natural isolates (such as nu-

trient availability) can drive evolution of a phenotype (such as variation in sporulation

efficiency).
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Chapter 4

Detecting signs of recent, positive selection in the Maasai

people of East Africa

4.1 Introduction

The Maasai are a pastoralist, Nilotic people living primarily in southern Kenya and

northern Tanzania. An economy traditionally based on herds of cattle, sheep, and

goats led to a diet rich in lactose, fat, and cholesterol consisting largely of milk, meat,

and blood. Although their cholesterol intake is high (600− 2000 mg/day), and 66% of

their calories come from fat, their total serum cholesterol levels average 135 mg/100 ml

[85], [86], [87], [88]. In comparison, a study consisting of cohorts from seven countries

(Croatia, Finland, Greece, Italy, Japan, Netherlands, USA) found that the average

dietary cholesterol intakes are 141−612 mg/day and serum cholesterol levels range from

160 − 266 mg/100 ml [89]. Although African children generally have lower cholesterol

levels (115−137 mg/100 ml for 7-8 year olds) than other populations [90], the fact that

adult Maasai have very low cholesterol levels, in spite of a high cholesterol diet, is quite

remarkable. The Maasai also have low rates of cholelithiasis (especially cholesterol

gallstones), low blood pressure, and low incidence of atherosclerotic coronary artery

disease [85], [86], [87], [91]. Various hypotheses to understand this puzzle have been

proposed, such as: physical fitness and freedom from emotional stress [91], [92], a hypo-

cholesterolaemic factor in milk [93] and saponins derived from herbs [94]. However,

the hypo-cholesterolaemic factor was never found, and the model of [91], [92] could not

explain the low frequencies of heart disease in older Maasai men who lead sedentary

lives after age 24, when their warrior (Murran/Moran) period ends [95], [96].

Additional clues emerged from a controlled experiment [86] on 23 healthy Maasai

adults (11 experimental, 12 control) between the ages of 20 and 24 years. All study
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subjects were fed a basic high calorie, cholesterol-free diet for 8 weeks, including trace

amounts (1 micro-curie) of radioactively labeled Cholesterol-4-14C. The eleven subjects

in the treatment group were fed 2 g of crystalline cholesterol per day in addition to the

basic diet. Blood and fecal samples were collected at the start of the study, weekly for

8 weeks and at the end of 9, 16 and 24 weeks. Using the radioactive tracer to quan-

titate/normalize the measurements, the data were analyzed to characterize metabolic

patterns, namely, the amounts of dietary cholesterol absorbed, synthesized and ex-

creted. The study found that, in spite of the additional 2 g/day ingestion of cholesterol

in the experimental group, there were no significant differences in serum cholesterol,

phospholipids, triglyceride levels and lipoprotein patterns between the experimental and

control groups. Both groups had identical turnover rates for cholesterol, with no evi-

dence for cholesterol storage in the experimental group. In a similar study in American

subjects, Mattson et al. [97] found that total serum cholesterol increased linearly with

dietary cholesterol with 11.8 mg/100 ml increase for every 100 mg/1000 kcal increase

in dietary cholesterol over the range 100−317 mg/1000 kcal. Were this relation to hold

in the Maasai, an increase of 66 mg/100 ml total cholesterol levels would be expected in

the above experiment, contrary to the observed cholesterol homeostasis. The observed

cholesterol homeostasis could not be attributed to a hypo-cholesterolaemic factor, or

to saponins, which were absent from the Maasai study diet. The authors concluded

that the Maasai have some basically different genetic traits that result in their having

superior biologic mechanisms for protection from hypercholesterolemia [87].

It is widely accepted that there is a strong genetic component in the risk of hy-

percholesterolemia, atherosclerosis and heart disease [98], [99], [100], [101]. Typically,

genome-wide association studies (GWAS) focus on markers for increased risk of dis-

ease [102], [103], [104], [105], [106] and to a lesser extent on protective polymorphisms.

Such protective polymorphisms are known to arise as adaptations and can be identified

in selection studies. For example, many studies have identified polymorphisms confer-

ring lactase persistence in Northern Europeans, which arose with the advent of cattle

breeding [28]. Just as in Europe, pastoralism arose in East Africa around 4,000-10,000
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years ago [107] leading to selection for lactase persistence [18]. In the Maasai, pastoral-

ism led to a lactose rich, high fat, high cholesterol diet of milk, meat and blood [88]. It

is quite reasonable that, in a time span similar to that which conferred lactase persis-

tence in Europeans, selection pressure in the Maasai from such a diet might result in

genetic adaptations against diseases such as hypercholesterolemia and atherosclerosis.

Motivated by this possibility, we performed a genome wide scan for selection in 156

founder individuals from the Maasai of Kinyawa, Kenya (MKK) using the HapMap

3 SNP (single nucleotide polymorphism) data [19] to identify genomic regions under

recent selection. We also used SNP data from 110 HapMap 3 founder individuals from

the Luhya population from Webuye, Kenya (LWK) as a reference group. Three com-

plementary metrics to detect selection were applied: the Fixation Index (FST ) [108],

the Cross Population Extended Haplotype Homozygosity (XP-EHH) [17], and the In-

tegrated Haplotype Score (iHS) [14], [16]. Note that the phased data used for iHS

and XP-EHH was from HapMap3 Release 2, which has fewer individuals (143 and 90

for MKK and LWK respectively) whereas the data for FST was from HapMap Release

3, which had more individuals (156 and 110 respectively). Our analysis consistently

identified strong, recent selection in genes involved in lipid metabolism and lactase

persistence in the Maasai (MKK) samples. Several of the regions under selection in

MKK contained specific polymorphisms known to protect against hyperlipidemia in

other populations. Sanger sequencing of DNA from six MKK samples showed that

the GC-14010 polymorphism in the Minichromosome Maintenance Complex Compo-

nent (MCM6 ) gene, known to confer adult lactase persistence in East Africans [18],

is segregating in the Maasai at a frequency of 58%. These results suggest that the

regions identified contain polymorphisms that confer lactase persistence and protection

from hypercholesterolemia in the Maasai. The wider consequence of our study is that

consistent dietary pressure can induce strong selection in complex pathways in a short

time ( 150− 400 generations).
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4.2 Numerical methods to detect recent positive selection

4.2.1 The HapMap database

We analyzed single nucleotide polymorphism (SNP) data and phased haplotype data

collected and made publicly available by the International HapMap Project [19]. HapMap

3 release 3. SNP genotype data was downloaded from http://snp.cshl.org/ for

founder individuals from the Maasai in Kinyawa, Kenya (MKK) (n = 156), the Luhya

in Webuye, Kenya (LWK) (n = 110), African-Americans in Southwest USA (ASW) (n

= 53), the Yoruba in Ibadan, Nigeria (YRI) (n = 147), and Utah residents of Northern

and Western European ancestry (CEU) (n = 112). Using PLINK (http://pngu.mgh.

harvard.edu/~purcell/plink/) [109], we filtered the data to retain only the SNPs

that were common to all populations. HapMap 3 release 2 autosomal haplotype data

for the MKK (n = 143) and LWK (n = 90) was also downloaded from http://hapmap.

ncbi.nlm.nih.gov/downloads/phasing/2009-02_phaseIII/HapMap3_r2/. The data

was phased using IMPUTE++ [110]. SNPs were pre-filtered for Hardy Weinberg equi-

librium and for low frequency of Mendel errors (http://hapmap.ncbi.nlm.nih.gov/

downloads/genotypes/2010-05_phaseIII/00README.txt). Genetic maps were down-

loaded from http://hapmap.ncbi.nlm.nih.gov/downloads/recombination/2008-03_

rel22_B36/rates/ to obtain the genetic map position of the SNPs in centiMorgans.

4.2.2 Addressing Population Structure using STRUCTURE

Using PLINK [109], the genotype data for MKK, LWK, YRI, ASW and CEU was

further filtered to exclude SNPs with minor allele frequency < 1% or SNPs where more

than 1% of the genotype data was missing. Restricting the samples to founders resulted

in 1,325,342 common SNPs for 578 individuals. To analyze the population structure of

these populations, we further restricted the genotype data to a random subset of 1%

of these SNPs (12,999 SNPs) and ran the no admixture model in STRUCTURE [111]

version 2.3. We found that k = 6 ancestral populations fit the data best (Table 4.1).

Thinning the dataset was necessary to reduce the likelihood of SNPs in linkage

disequilibrium, which is a requirement for the no admixture model. Adding more SNPs

http://snp.cshl.org/
http://pngu.mgh.harvard.edu/~purcell/plink/
http://pngu.mgh.harvard.edu/~purcell/plink/
http://hapmap.ncbi.nlm.nih.gov/downloads/phasing/2009-02_phaseIII/HapMap3_r2/
http://hapmap.ncbi.nlm.nih.gov/downloads/phasing/2009-02_phaseIII/HapMap3_r2/
http://hapmap.ncbi.nlm.nih.gov/downloads/genotypes/2010-05_phaseIII/00README.txt
http://hapmap.ncbi.nlm.nih.gov/downloads/genotypes/2010-05_phaseIII/00README.txt
http://hapmap.ncbi.nlm.nih.gov/downloads/recombination/2008-03_rel22_B36/rates/
http://hapmap.ncbi.nlm.nih.gov/downloads/recombination/2008-03_rel22_B36/rates/
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did not result in significant gains in statistical power. We used 10,000 steps in the

“burnin” period, and 20,000 steps as the number of MCMC iterations. We ran the

simulation over several values for k = number of inferred (ancestral) populations, and

obtained the log likelihoods for the fits as shown in Table 4.1.

4.2.3 FST computation

Using PLINK, we retained 1,175,055 autosomal SNPs in Hardy Weinberg equilibrium

(p > 0.05) and with minor allele frequency > 5% in either population (LWK and MKK).

We then computed FST using the method of [108]. Two tests were used to assess sta-

tistical significance, a Bonferroni corrected permutation test (p-value pB), and an em-

pirical p-value that compared the FST of a SNP to the FST distribution of intergenic

SNPs. Gene positions were from the human genome build 37 (GRCh37/hg19) avail-

able at http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/knownGene.

txt.gz. To avoid linkage with genes and promoter regions, we define intergenic regions

as those that are at least 50 kb away from the start or stop site of a gene. For the

remaining genic or near-gene SNPs, we calculated an empirical p-value (pE) given by

the fraction of intergenic SNPs with greater FST . This procedure identified 1,232 SNPs

with pB < 8.6 × 10−6 and pE < 0.001 that are the top candidates for selection using

FST . These SNPs were then clustered into regions of high linkage (Table 4.3) using the

method described below (details of the FST calculation are below).

4.2.4 iHS computation

Autosomal haplotype data for 991,737 SNPs in MKK with minor allele frequency > 10%

were used to calculate raw iHS scores as in Voight et al. [16]. These raw iHS scores were

binned on the basis of derived allele-frequency, and the scores in each bin were standard

normalized to zero mean and unit variance. Genomic sliding windows of 50 SNPs were

ranked by the percentage of SNPs with |iHS|> 2. The SNPs with |iHS|> 2 that

occurred in the top 0.02% of non-overlapping windows were selected as top candidates

for selection by iHS. These were then clustered into regions of high linkage (Table 4.5)

using the method described below (details of the iHS calculation are below).

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/knownGene.txt.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/knownGene.txt.gz
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4.2.5 XP-EHH computation

Autosomal haplotype data for 1,373,755 SNPs in MKK and LWK was mapped to

genomic locations in the human genome, build 37 (GRCh37). XP-EHH scores were

calculated using the code at http://hgdp.uchicago.edu/Software/xpehh.tar. The

XP-EHH scores were fit to a normal distribution, which identified the threshold for

genome-wide significance to be XP-EHH ≥ 4.796 (Bonferroni corrected p < 0.05, two-

tailed test). The SNPs that exceeded this threshold were chosen as top candidates for

selection by XP-EHH (Table S5 in [2]). These SNPs were clustered into regions of high

linkage (Table 4.5, Table S6 in [2]) using the method described below (further details

of the XP-EHH calculation are included below).

4.2.6 LD clustering of SNPs

The SNPs identified as candidates for selection by each of the above methods were

clustered using genotype r2 as an estimator of linkage disequilibrium. We used the

criterion that for a SNP to be included in a cluster, it must have genotype r2 ≥ 0.25

with at least one other SNP in the cluster (the justification for this choice of cutoff is

given below).

More concretely, for the SNPs identified by the methods above, we used PLINK

to extract a file of raw genotype data from the HapMap genotype data file for MKK.

These files contained a matrix of genotype values, whose columns were labeled by SNPs

and rows labeled by individuals. We imported this genotype matrix into the statistical

package R, to calculate a SNP × SNP Pearson correlation matrix. This correlation

matrix was then used to construct a SNP × SNP adjacency matrix whose entries are

1 if r2 ≥ 0.25 and 0 if r2 < 0.25. The problem of finding linked clusters of SNPs

then translates to identifying the connected components of the graph described by this

adjacency matrix. This computation was performed in Python using the NetworkX

package (http://networkx.lanl.gov/) [112].

http://hgdp.uchicago.edu/Software/xpehh.tar
http://networkx.lanl.gov/
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4.2.7 Sequencing loci in LCT/MCM6 and RAB3GAP1

Forward and reverse primers for Sanger sequencing were chosen using Primer3 (http:

//frodo.wi.mit.edu/primer3/), and checked for absence of homologies to other parts

of the human genome using BLAT [113]. The details of the primers, the loci sequenced

and the samples used are in Appendix S5 of [2].

4.2.8 Further details on the fixation index FST

Figure 4.1: Workflow illustrating the stages in the FST analysis of the genotype
data.

The overall workflow used in the FST analysis is shown in Figure 4.1. Genotype

data from HapMap 3 release 3 [19] was downloaded and pruned to 1,175,055 autosomal

SNPs with minor allele frequency > 0.05 in MKK (n = 143 founders) and LWK (n

= 100 founders). To reduce the chance of incorporating SNPs with genotyping errors,

we imposed a Hardy-Weinberg equilibrium p-value cutoff < 0.05 in either population

(as calculated by PLINK [109]), and excluded SNPs with genotype missing in > 5% of

samples. FST was computed using the method of Reynolds, Weir and Cockerham [108].

FST computation details

The fixation index FST is the fraction of total variance in the genotype frequencies of

a population that is due to the variance between the populations. Concretely, if we

define σ2population to be the component of variance between populations and σ2individuals

http://frodo.wi.mit.edu/primer3/
http://frodo.wi.mit.edu/primer3/
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to be the component of variance between individuals within a population, and σ2gamete

to be the component of variance between gametes within an individuals

FST =
σ2population

σ2population + σ2individual + σ2gamete

We can now simplify each term:

σ2population =
1

n1 + n2

∑
pop1

(p1 − p)2 +
∑
pop2

(p2 − p)2


=
n1p

2
1 + n2p

2
2

n1 + n2
− p2

= 〈p2j 〉 − p2

where we have defined:

〈p2j 〉 ≡
n1p

2
1 + n2p

2
2

n1 + n2

and p is the average frequency:

p =
n1p1 + n2p2
n1 + n2

Similarly,

σ2individual =
1

n1 + n2

 ∑
individuals∈pop1

(pi − p1)2 +
∑

individuals∈pop2
(pi − p2)2


=

n1
n1 + n2

p1(1− p1)
2

+
n2

n1 + n2

p2(1− p2)
2

=
1

2

(
p− 〈p2j 〉

)
where we have used that σ2j =

pj(1−pj)
2 for a single population. This can be derived

assuming Hardy-Weinberg equilibrium of genotype frequencies as follows:

σ2j =
1

n

∑
i

(pi − pj)2 = 〈p2i 〉 − p2j

= (p2j × 1 + 2pjqj ×
(

1

2

)2

+ q2j × 0)− p2j

=
pj(1− pj)

2
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Finally,

σ2gamete =
1

n1 + n2

 ∑
genotypes∈pop1

σ2g +
∑

genotypes∈pop1
σ2g


=

1

n1 + n2

(
n1
p1(1− p1)

2
+ n2

p2(1− p2)
2

)
=

1

2

(
p− 〈p2j 〉

)
∑

genotypes∈popj
σ2g =

1

2nj
2nj

(
p2jσ

2
00 + 2pjqjσ

2
het + q2jσ

2
11

)
= p2j × 0 + 2pjqj ×

1

4
+ q2j × 0

=
pj(1− pj)

2

In summary,

〈p2j 〉 ≡
n1p

2
1 + n2p

2
2

n1 + n2

FST =
σ2population

σ2population + σ2individual + σ2gamete
=
〈p2j 〉 − p2

p(1− p)

In 1984, Weir and Cockerham derived an unbiased estimator for FST that accounts

for the bias associated with sampling a population [108]. Their result is summarized

below, and we used this estimator of FST in the results that follow. If n1 and n2 are the

number of MKK (Maasai) and LWK (Luhya) individuals measured at a locus l, and p1

and p2 are the derived allele frequencies at this locus in the two populations, define al

and bl as:

al = (p1 − p2)2 −
(n1 + n2)(2n1p1(1− p1) + 2n2p2(1− p2)

4n1n2(n1 + n2 − 1)

bl =
2n1p1(1− p1) + 2n2p2(1− p2)

n1 + n2 − 1

Then,

FST =
al

al + bl

Bonferroni corrected permutation p-value pB for FST

At every SNP we compute a p-value for FST using a permutation test. The null hy-

pothesis is that all rearrangements of the alleles among the two populations are equally
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probable. The Bonferroni corrected permutation p-value pB is then n times the proba-

bility that the value of FST in the null-distribution exceeds the observed value of FST ,

where n = number of hypotheses (SNPs) tested.

For each SNP, there are 2(n1 + n2) alleles in the combined population. We define

a partition of the data by assigning 2n1 alleles to MKK and the rest to LWK. The

permutation p-value p is the sum, over all such partitions, of the probability that the

FST value obtained in a partition is greater than or equal to the FST value x obtained

in the actual data. Thus,

p(x) =
∑
part

Prob(part) θ(FST (part)− x) (4.1)

where the θ is a step function that ensures that only partitions with FST > x contribute

to the sum.

Let n1(−−), n2(−−) and n1(−+), n2(−+) be the number of mutant homozygous

and heterozygous individuals in the MKK and LWK cohorts. Then the total number

of mutant alleles N in the combined population is given by:

N = 2(n1(−−) + n2(−−)) + n1(−+) + n2(−+)

Since we know the genotypes of the samples, N is known from the data. In the 2n1

alleles assigned to MKK, let there be n mutant alleles. Then,

p1(part) =
n

2n1

p2(part) =
N − n

2n2

Using these values of p1(part) and p2(part) (which are specific to the partition), one

can compute FST (part) using the formulae in the previous section. The values that n

take are limited to the open interval: [nmin, nmax], with nmin = max(0, N − 2n2) and

nmax = min(2n1, N). Hence, we can rewrite equation 4.1 as:

p(x) =
∑

n=[nmin,nmax]

(
N
n

)(
L−N
L1−n

)(
L
L1

) θ(FST (n)− x) (4.2)

where, L = 2n1 + 2n2, L1 = 2n1 and L2 = 2n2. The factor in the numerator is the

number of ways of assigning n mutant alleles and N − n non-mutant alleles to the 2n1
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loci in the MKK samples. The normalization factor in the denominator accounts for all

possible ways of choosing 2n1 alleles from 2(n1 + n2) alleles. For each of the 1,175,055

SNPs tested, we computed the sum in Equation 4.2 to obtain the permutation p-value

p(x) for each measured value of FST = x. From this, we obtained a Bonferroni corrected

p-value: pB(x) = 1175055× p(x).

Empirical p-value pE using the FST distribution of intergenic SNPs

As a further filter, the FST values of SNPs in non-intergenic regions were compared to

the FST distribution of intergenic SNPs. SNP annotations were obtained for version

hg19 of the human genome from http://hgdownload.cse.ucsc.edu/goldenPath/

hg19/database/knownGene.txt.gz. Intergenic SNPs were defined as those located

more than 50 Kb away from the start and stop sites of all known genes. This 50Kb

buffer was used to exclude promoter regions (possibly conserved due to purifying selec-

tion) and to minimize the effect of LD with genic SNPs.

The FST distribution of 351,254 intergenic SNPs was used to compute an empirical

p-value pE for the remaining non-intergenic SNPs as the fraction of intergenic SNPs

with higher FST . 1,232 SNPs within genes or within 50 kb of genes with pB < 8.610−6

and pE < 0.001 were retained for clustering. These are shown in Supplementary Table

3a in [2] and summarized in Tables 4.3 and 4.4.

Clustering significant SNPs using Linkage Disequilibrium

The SNPs thus identified as selection candidates do not all represent independent se-

lection events. During a selective sweep, many neighboring linked SNPs can hitchhike

along with the selected allele, and thus show correspondingly high scores for selection.

In order to identify such linked regions in which high FST SNPs occur, the 1,232 SNPs

identified above were clustered into contiguous genomic regions using genotypic r2 in

MKK as a measure of linkage disequilibrium. For each population, a SNP was assigned

to a cluster if it had a genotype r2 ≥ 0.25 with at least one other SNP in the cluster.

The value r2 ≥ 0.25 has been shown to correspond to a genetic distance of 0.01 −

0.02 cM across a varied set of population growth models [114]. Assuming a genomic

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/knownGene.txt.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/knownGene.txt.gz
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average recombination rate of 1 cM/Mb, this is equivalent to a physical distance on

the order of 10 kb in each direction. The probability for two or more SNPs from a

randomly chosen set of 1,232 SNPs to occur within 10 kb is close to one percent, hence

we conclude that r2 ≥ 0.25 is a reasonably stringent cutoff for linkage.

Using XP-EHH to identify the population in which a sweep has occurred

Assuming that only one of the two populations has undergone a selective sweep at a

given locus, we identified the population in which the sweep is more likely to have

occurred by comparing the local haplotype diversity across populations. Concretely,

for each cluster identified by FST , we label it as selection candidate in MKK if the

maximum normalized XP-EHH score of a SNP in the cluster is > 3. A positive value

for XP-EHH indicates that the MKK carry the longer-range haplotypes.

This procedure identified 26 clusters (containing 318 SNPs) as selection candidates

in MKK (Supplementary Table 1a in [2]). 9 of these clusters include SNPs that exceed

the genome-wide significance threshold for XP-EHH (XP-EHH > 4.8, Bonferroni cor-

rected p < 0.05, two-tailed). In Table 4.7, we list the intersection of clusters that are

identified as genome-wide significant by at least two out of the three methods used (FST ,

iHS, XP-EHH). Supplementary Table 2 in [2] shows the concordance of our results with

those of the HapMap consortium [19].

The remaining SNPs were either singletons (did not occur in clusters) or were in

clusters that could not be confidently assigned to the MKK. In Table 4.4, we list the

non-synonymous SNPs with most significant genome-wide FST . These are our top

candidates for possible functional polymorphisms.

4.2.9 Further details on the integrated haplotype score: iHS

Selection events not only sweep functional loci to high frequency, they also reduce hap-

lotype diversity in the region around the selected locus because of hitchhiking. The

Extended Haplotypic Homozygosity (EHH) statistic [14] exploits this principle and

provides a criterion for detecting SNPs under selection within a population, without

reference to another population. EHH measures the diversity of extended haplotypes
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containing a chosen core haplotype, as a function of the distance from the core. Re-

cently, much work has focused on using EHH to define various measures (such as iHS [16]

or iES [115]) which can identify recent selection. Here, we use iHS to detect recent se-

lective sweeps in the Maasai.

EHH is the probability, as a function of distance from the core SNP, that two

randomly selected haplotypes that share the core SNP will be identical. It is defined

as follows:

EHH(x) =

∑h(x)
i=1

(
ni(x)
2

)(
n
2

)
where ni(x) is the number of samples of a particular haplotype i (up to a distance x),

h(x) is the total number of distinct unique haplotypes in this distance, and n is the

total number of samples. Thus, n =
∑h(x)

i=1 ni(x) .

iHS is defined as the log of the ratio of the integrated EHH score for haplotypes

containing the ancestral allele to the integrated EHH score for haplotypes containing

the derived allele [16].

unstandardized iHS = log

(∫
EHHancestral(x)dx∫
EHHderived(x)dx

)
Since iHS is a local measure and does not use a reference population, haplotypes for

both alleles share the same genomic environment (local mutation rate, recombination

rate) and are subject to identical population demography. Hence iHS does not suffer

from ambiguities associated with genomic and population structure specific variations

such as differences in recombination rates, demographic history, population bottlenecks,

etc. As a result, significantly large values of iHS are more likely to be due to selection.

High values of iHS occur when haplotype diversity is reduced because of selection

induced hitchhiking, which leads to more extended haplotypes for the selected allele

and a consequent slower fall-off of EHH on either side of the selected locus. A high iHS

scoring SNP typically has one allele associated with longer haplotypes and lower neigh-

borhood diversity compared to the other allele (see Figure 1a in [16]). In a selective

sweep, hitchhiking causes both functional SNPs as well as any SNPs in their neighbor-

hood to have amplified iHS scores. In fact, simulations show that a high density of

high-scoring SNPs is a better indicator of a selective sweep than high iHS score of a
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single SNP [16].

Computational details and p-value significance

Autosomal haplotype data phased with IMPUTE++ [110] was downloaded on 10.24.2010

from: http://hapmap.ncbi.nlm.nih.gov/downloads/phasing/2009-02_phaseIII/

HapMap3_r2/. SNPs were pre-filtered for Hardy Weinberg equilibrium and had low fre-

quency of Mendel errors (see http://hapmap.ncbi.nlm.nih.gov/downloads/genotypes/

2010-05_phaseIII/00README.txt). We further pruned the data by removing SNPs

with MAF < 0.1. After applying these filters, we analyzed 991,737 SNPs. The ancestral

allele information was downloaded from the NCBI ftp server (ftp://ftp.ncbi.nih.

gov/snp/database/shared_data/) on 7.5.2011. Genetic maps were downloaded from

HapMap website (http://hapmap.ncbi.nlm.nih.gov/downloads/recombination/2008-03_

rel22_B36/rates/ as accessed on 9/22/2010). These maps did not contain the genetic

distances for all the SNPs used, and hence we interpolated the genetic distances. For

the final results genetic distances were converted to GRCh37.

To identify potential genomic regions under selection in the MKK data, we followed

the protocol described in [16]. We calculated the integrals of EHH for each SNP using

the genetic distances over a domain of integration such that at least one allele of the

SNP has an EHH > 0.05. We then binned these raw scores according to derived allele

frequency.

Since the total number of haplotypes is 286, the frequencies of alleles are integral

multiples of 1/286 (=0.0035). Hence, we used each frequency to comprise a single bin,

and obtained 229 bins spanning frequencies 0.1 to 0.9 (SNPs with minor allele frequency

< 0.1 were filtered out). We computed the mean and standard deviation of iHS values

for each frequency bin and standard normalized the raw iHS scores to have zero mean

and unit variance. We then considered sliding windows of 50 consecutive SNPs and

noted the fraction of SNPs with normalized-iHS (hereafter iHS) ≥ 2. This fraction of

high-scoring SNPs in a window is the statistic used for detecting selective SNPs [16].

Using sliding windows is advantageous over using fixed, gene-centric windows as done

http://hapmap.ncbi.nlm.nih.gov/downloads/phasing/2009-02_phaseIII/HapMap3_r2/
http://hapmap.ncbi.nlm.nih.gov/downloads/phasing/2009-02_phaseIII/HapMap3_r2/
http://hapmap.ncbi.nlm.nih.gov/downloads/genotypes/2010-05_phaseIII/00README.txt
http://hapmap.ncbi.nlm.nih.gov/downloads/genotypes/2010-05_phaseIII/00README.txt
ftp://ftp.ncbi.nih.gov/snp/database/shared_data/
ftp://ftp.ncbi.nih.gov/snp/database/shared_data/
http://hapmap.ncbi.nlm.nih.gov/downloads/recombination/2008-03_rel22_B36/rates/
http://hapmap.ncbi.nlm.nih.gov/downloads/recombination/2008-03_rel22_B36/rates/
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in [16], since it does not rely on the choice of start position. In [16], the top 1% of non-

overlapping windows were candidates for selective sweep. As we used sliding windows of

size 50 SNPs, we corrected for this by looking at 1/50th of the top 1% of such windows

with the constraint that they do not overlap. Overall we analyzed 990,659 windows and

chose top 196 non-overlapping windows. Some of these chosen windows were adjacent

to each other, and are likely to represent sweeps extending more than 50 SNPs. To

merge such windows, we listed all SNPs with |iHS|≥ 2 (high-scoring SNPs) in these

top windows (listed in Supplementary Table 2b), and clustered them using a genotype

r2 cutoff of 0.5. This clustering has the advantage that it does not impose an ad-hoc

window size, but is based on local patterns of LD. We kept clusters with size greater

than the least number of high-scoring SNPs in the top windows (20). These clusters are

candidate regions for selective sweeps in the Maasai, and are given in Supplementary

Table 2b in [2]. We then used the UCSC genome browser to identify genes and GWAS

SNPs that lie in these regions.

4.2.10 Further details on cross-population extended haplotype ho-

mozygosity: XP-EHH

A selective sweep results in the rapid rise in the frequency of beneficial alleles accompa-

nied by a reduction in haplotype diversity in the neighborhood of functional mutations

due to a hitch-hiking effect (see [25] for a discussion). The key idea behind methods

to identify selective sweeps is to use metrics that probe such reduced haplotype diver-

sity. The statistic EHH (Extended Haplotype Homozygosity) [14] is one such metric.

It measures the reduction in haplotype diversity by computing the probability that

two extended haplotypes around a given locus are the same, given that they have the

same allele at the locus. While selection decreases haplotype diversity, recombination

increases it. Since recombination rates vary widely across the genome within and be-

tween populations, the EHH statistic can be interpreted as a measure of selection only

after suitable normalization. The iHS statistic [16] compares the integrated EHH pro-

files between two alleles at a given SNP in the same population (iHS is discussed in

more detail in Supplementary Appendix 3). On the other hand, the XP-EHH (Cross
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Population Extended Haplotype Homozygosity) statistic (defined below) compares the

integrated EHH profiles between two populations at the same SNP [17].

The iHS statistic is expected to be more reliable when one cannot find a good refer-

ence population (i.e. when the demographic history of potential reference populations

is unknown or very different from the target population), but has low power when the

selected allele is close to fixation. On the other hand, XP-EHH is expected to be more

reliable if a reference population with a similar demographic history is available, and if

the allele under selection is close to fixation in one of the populations. For XP-EHH,

we used the Luhya (LWK) samples as the reference population to compare to the Maa-

sai (MKK) samples. The motivation to choose the LWK samples was that they were

closest to MKK with respect to overall population structure (discussed in Results).

Computing XP-EHH requires the computation of EHH in each population. For a

bi-allelic SNP with alleles a and A, the EHH is defined as follows:

EHH(x) =

∑hx
i=1

(
ni
2

)(
na

2

)
+
(
nA
2

)
Here na and nA are the number of haplotypes with alleles a and A respectively, ni is

the count of the ith haplotype in a population and hx represents the number of distinct

haplotypes in a genomic region up to a distance x from the locus. The unstandardized

XP − EHH statistic is then defined as:

XP − EHH(x) (before standardization) = log

∫
D EHHpop1(x)dx∫
D EHHpop2(x)dx

In Eq. (2), pop1 and pop2 represent the two populations (pop1 = MKK and pop2

= LWK in our case). The integration domain D (cutoff over the x integration) was

chosen so that the EHH values for both populations have fallen to sufficiently small

values. We chose the cutoff as the distance at which EHH for both the populations

combined was 0.03 − 0.04. The unstandardized XP-EHH scores from Eq. (2) were

standard normalized and p-value cutoffs were obtained (after correcting for multiple

hypothesis testing) from a Gaussian fit to the resulting data. Since XP-EHH (unlike

iHS) is not sensitive to allele frequencies, there is no need to stratify the data into

frequency bins before determining significance.
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Autosomal haplotype data phased with IMPUTE++ was downloaded on 10.24.2010

from: http://hapmap.ncbi.nlm.nih.gov/downloads/phasing/2009-02_phaseIII/

HapMap3_r2/. SNPs were pre-filtered for Hardy Weinberg equilibrium and had low fre-

quency of Mendel errors (see http://hapmap.ncbi.nlm.nih.gov/downloads/genotypes/

2010-05_phaseIII/00README.txt). Common SNPs between the MKK and the LWK

were retained, and un- standardized XP-EHH scores were computed using the program

by Joe Pickrell at http://hgdp.uchicago.edu/Software/. SNPs with unique posi-

tions in the dbSNP build 131 (GRCh37) were retained, leaving 1,373,756 SNPs. As

expected, the distribution of XP- EHH was close to Gaussian (Fig. 1). We used IGOR

Pro (http://www.wavemetrics.com/products/igorpro/igorpro.htm) to fit the data

to a Gaussian, using the Levenberg- Marquardt method for curve-fitting. Using this

fit, we obtained the cutoff of XP-EHH > 4.7958 at 95% genome-wide significance levels

(two-tailed Bonferroni corrected p = 0.05, n = 1,373,756). SNPs passing this threshold

are candidates for selection in MKK and are listed in Supplementary Table 3a in [2].

High scoring XP-EHH SNPs seemed to naturally form clusters when mapped to chro-

mosomal regions. To identify regions associated with selective sweeps, high scoring

SNPs were clustered using the same scheme as was used for FST and iHS. Clusters of

SNPs were defined as sets of SNPs that had genotype r2 ≥ 0.25 for at least two SNPs

in the cluster. These clusters of SNPs are listed in Supplementary Table 3b in [2].

4.3 Results

4.3.1 Population Structure

Two of the methods used to detect selection (FST and XP-EHH) require a genetically

similar reference population. A comparison of FST among HapMap populations shows

that the MKK and African-Americans from South-west USA (ASW) have the lowest

average FST (0.0145), followed by MKK and the Luhya in Webuye, Kenya (LWK)

(0.017), while FST between MKK and Yoruba from Nigeria (YRI) is significantly higher

(0.027) (Table S6 in [19]). However, a plot of the first two principal components from a

PCA analysis of the African populations and Utah residents with Northern and Western

http://hapmap.ncbi.nlm.nih.gov/downloads/phasing/2009-02_phaseIII/HapMap3_r2/
http://hapmap.ncbi.nlm.nih.gov/downloads/phasing/2009-02_phaseIII/HapMap3_r2/
http://hapmap.ncbi.nlm.nih.gov/downloads/genotypes/2010-05_phaseIII/ 00README.txt
http://hapmap.ncbi.nlm.nih.gov/downloads/genotypes/2010-05_phaseIII/ 00README.txt
http://hgdp.uchicago.edu/Software/
http://www.wavemetrics.com/products/igorpro/igorpro.htm
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European ancestry from the CEPH collection (CEU) (Figure S2c in [19]) shows that

the MKK are genetically closer to LWK.

To understand the degree of admixture in the populations ASW, CEU, LWK, MKK

and YRI, we used STRUCTURE [111] on a randomly sampled subset of 12,999 SNPs

from the HapMap 3 dataset. Without using any population identification information,

STRUCTURE found that the data fits best to 6 ancestral populations (Figure 4.2). In

agreement with [19], [116], the STRUCTURE results show that whereas the CEU and

YRI are genetically homogenous, the LWK, ASW and MKK are admixed, with a 20%

CEU admixture in ASW. The LWK and ASW also have a large admixture with YRI

(66% and 76% respectively), while MKK have a smaller admixture with YRI (10%). In

addition, the STRUCTURE results indicate that MKK have a 15% admixture with two

populations that are not sampled in the HapMap study. We also see a small admixture

between MKK and LWK, which is expected, given their geographical proximity. These

results are largely consistent with linguistic phylogeny; whereas the Maasai speak a

Nilo-Saharan language, the Luhya and the Yoruba speak Niger-Congo languages, also

spoken by African ancestors of African Americans [116].

Figure 4.2: Population structure components for individuals from CEU,
ASW, LWK, MKK and YRI. Results from STRUCTURE version 2.3 on geno-
type data for 12,999 randomly selected SNPs in 578 founder (unrelated) individuals
from the CEU, ASW, LWK, MKK and YRI HapMap populations. The no-admixture
model showed that the data was best fit by 6 inferred ancestral populations. Each
column represents an individual, and the colors indicate the fractions of their genotype
attributable to ancestry from each of the 6 inferred populations.

This analysis shows that k=6 populations is overwhelmingly the most likely fit to the

data under the no admixture model. We then used distruct [117] to create the images

shown in Figures 4.2 and 4.3. The 20% European admixture in ASW is clearly visible.
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Figure 4.3: Population structure components for populations CEU, ASW,
LWK, MKK and YRI. Results from STRUCTURE version 2.3 on genotype data for
12,999 randomly selected SNPs in 578 founder (unrelated) individuals from the CEU,
ASW, LWK, MKK and YRI HapMap populations. The no-admixture model showed
that the data was best fit by 6 inferred ancestral populations. Each column represents a
sample population, and the colors indicate the fractions of their genotype attributable
to ancestry from each of the 6 inferred populations.

Table 4.1: Log Likelihood values of STRUCTURE analysis

k = Number of lnP (X|K) Relative Log Probability of Fit
Inferred Populations = Estimated Log Probability of Fit

1 -7124377.3 -382966.4
2 -6792102.1 -50691.2
3 -6756124.2 -14713.3
4 -6752204.2 -10793.3
5 -6769565.8 -28154.9
6 -6741410.9 0
7 -7247376.2 -505965.3
8 -7242335.3 -500924.4

The log likelihood values of the fits from Structure or various numbers of inferred
populations.

It is also clear that the Maasai are highly admixed, with a clear African admixture from

YRI and LWK as well as a 15% admixture with two other populations not represented

in HapMap (Table 4.2).

To further quantify the genetic similarity of MKK, LWK, ASW and YRI to the six

ancestral populations, we assigned a six component vector to each of these populations,

whose coordinates were the fraction of the ancestral components represented in them.

A comparison of the cosine similarity of these vectors showed that the largest overlap

was between MKK and LWK (0.18), followed by MKK and ASW (0.16). Based on their

closer proximity to MKK in the PCA plot, as well as closer cosine similarity, we chose

the LWK as the appropriate reference population for the FST and XP-EHH analysis.



83

Table 4.2: Population structure components identified by STRUCTURE

HapMap Population ID Teal Brown Purple Pink Green Yellow Number of founders

CEU 0.998 0 0 0 0 0 112
ASW 0.202 0.003 0.002 0.759 0.026 0.009 53
LWK 0.001 0.004 0.002 0.655 0.32 0.018 110
MKK 0.02 0.118 0.028 0.101 0.046 0.687 156
YRI 0.001 0.002 0.001 0.992 0.003 0.002 147

The percentage contributions to CEU, ASW, LWK, MKK and YRI from the 6
ancestral population groups inferred by STRUCTURE. The ancestral groups are
labeled as different colors, indicated on Figure 4.2.

4.3.2 Selection based on FST

We calculated FST between MKK (n = 156) and LWK (n = 110) as in [108] for 1,175,055

SNPs common to both populations that passed filters for minor allele frequency, geno-

typing rate, and consistency with Hardy-Weinberg equilibrium. Statistical significance

was assessed using a Bonferroni corrected permutation test p-value pB (described in

Methods). Within the SNPs that passed this filter, we identified those deviating sig-

nificantly from neutral evolution using an empirical p-value (pE) based on the FST

distribution of intergenic SNPs. This identified 1,232 SNPs with pB < 8.6 × 106 and

pE < 0.001 (Table S1 in [2]) which were either genic or within 50 kb of genes.

In a recent selective sweep, many neighboring SNPs may remain linked due to genetic

hitchhiking. To identify such regions, we grouped the genome-wide significant SNPs

identified by FST into clusters based on linkage disequilibrium using the criterion that

each SNP has genotype r2 ≥ 0.25 with at least one other SNP in the cluster (described

in Methods). Each cluster so identified is a candidate for a selective sweep in one of the

two populations. To identify the population in which the sweep is most likely to have

occurred, we compared the local haplotype diversity in each population using the XP-

EHH score [17]. For each cluster identified by FST , we label it as a selection candidate

in MKK if the maximum XP-EHH score of a SNP in the cluster is > 3. A positive value

for XP-EHH indicates that the MKK carry the longer-range haplotypes. This procedure

identified 26 clusters (containing 318 SNPs) as candidate regions for selective sweeps in

MKK (Table S2 in [2]). Nine of these clusters include SNPs that exceed the genome-wide

significance threshold for XP-EHH (XP-EHH > 4.79580, Bonferroni corrected p < 0.05,
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two-tailed). The most significant genomic regions and non-synonymous SNP candidates

under selection in MKK by FST are listed in Table 4.3 and Table 4.4 respectively. Note

that the isolated SNPs identified in Table 4.4 have high FST with respect to at least

two of the three possible reference African populations (ASW, LWK and YRI). This

suggests that the results shown there do not strongly depend on the choice of the

reference population.

Table 4.3: Top 20 genomic regions identified as selection candidates in MKK
using the FST statistic and clustering. Table reproduced from [2]

4.3.3 Selection based on iHS

Recent selective sweeps amplify beneficial mutations and reduce haplotype diversity due

to the hitchhiking effect. The Extended Haplotype Homozygosity [14] (EHH) statistic

identifies such events without using a reference population. EHH(x) measures the

probability that two randomly selected haplotypes sharing the same allele at a SNP

are identical up to genomic distance x. At each SNP, we computed the unstandardized
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Table 4.4: The most significant non-synonymous SNPs under selection in
MKK using FST , with LWK as the reference population. Table reproduced
from [2]

Integrated Haplotype Score [16] (iHS), defined as the logarithm of the ratio of the

integrated EHH scores for the ancestral allele and the derived allele. Stratifying the

data into bins by the derived allele frequency of the SNPs, the scores within each

bin were then normalized to have zero mean and unit standard deviation. The iHS

statistic is less sensitive to demographic history (e.g. population bottlenecks) and to

local differences in recombination rates, because such factors have similar effects on

ancestral and derived alleles, and tend to cancel in the ratio [16]. If either allele is

under selection, the reduced haplotype diversity around it will tend to increase the

absolute value of iHS.

Following the protocols in [16], raw iHS scores for 991,737 SNPs in MKK (n = 143

individuals) that passed filters (minor allele frequency cutoff, consistency with Hardy-

Weinberg equilibrium) were binned by derived allele frequency and standard normalized

within each bin (described in Methods). Genomic regions were scored by the fraction of

high scoring iHS SNPs (|iHS|> 2) using a sliding window of 50 SNPs. The top 0.02% of

non-overlapping SNP windows identified 196 regions likely to be under selection (Table

S3 in [2]). These were further grouped on the basis of linkage disequilibrium using the

same criterion as for FST (genotype r2 ≥ 0.25). The most significant regions identified
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as candidates for selection in MKK are in Table 4.5 (the complete list is in Table S4

in [2]).

Table 4.5: The most significant genomic regions under selection in MKK
using iHS. Table reproduced from [2]

4.3.4 Selection based on XP-EHH

The third method used to identify selective sweeps in MKK was the Cross Population

Extended Haplotype Homozygosity statistic (XP-EHH) [17]. This statistic compares

the EHH profiles for bi-allelic SNPs between two populations. It is defined as the log

of the ratio of the integrals of the EHH profiles for a given allele between the two

populations (described in Methods). The comparison between populations normalizes

the effects of large-scale variations in recombination rates on haplotype diversity, and

has a higher statistical power to detect sweeps that are close to fixation [17].

Using the LWK cohort (n = 90) as the reference population for MKK (n = 143),

XP-EHH was calculated for 1,373,755 SNPs that passed various filters (further details
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provided below). Following [17], we assigned p-values using a Gaussian fit after standard

normalizing the XP-EHH distribution. SNPs with Bonferroni corrected p-value < 0.05

(two-tailed) were chosen as potentially significant candidates for selection. These are

listed in Table S5 in [2]. We also clustered these candidate SNPs (using the genotype

r2 ≥ 0.25 criterion as before) to identify putative regions under selection in MKK (Table

S6 in [2]). The most significant regions thus identified are listed in Table 4.6.

Table 4.6: The most significant genomic regions under selection in MKK
using XP-EHH, with LWK as the reference population. Table reproduced
from [2]

4.3.5 Overlap of high scoring regions

The metrics we use probe for different signatures of selection, and hence, genomic

regions which are identified by more than one metric are more likely to be true positives.

Using a concordance between at least two of the metrics, we identified seven genomic

regions as strong candidates for selection (Table 4.7). There was also overlap between

the regions identified by our methods and those identified by the International HapMap

Consortium for MKK (they used a statistic they call CMS or Composite of Multiple

Signals) [19]. These regions of concordance are listed in Table S7 in [2] and summarized

in Table 4.7. Figure 4.4 shows the results for all three metrics for chromosome 2. The

significant selection in a region in Chr2q21 of size 1.0 − 1.7 Mb is clearly visible in
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Figure 4.4a. Figure 4.4b shows details of this region which contains a large number of

polymorphisms with significant high scores by all three metrics (discussed below).

Table 4.7: Concordant genomic regions identified by at least two of three
metrics as candidates for selection in MKK. Table reproduced from [2]

We found that the non-synonymous SNP with the highest genome-wide significant

FST was rs2241883 in the gene Fatty Acid binding Protein 1, Liver (FABP1, alter-

native name LFABP) (Table 4.4 and Figure 4.4a). The SNP rs2241883 is a T→C

non-synonymous transition which encodes a Threonine to Alanine (T94A) change in

the protein LFABP, which is expressed in liver. The C allele was associated with total

tri-glyceride and low density lipoprotein (LDL) cholesterol levels in Germans [118], and

with Apolipoprotein B (ApoB) levels induced by a high fat diet in French-Canadians

[119]. The MKK have high FST at this SNP, relative to all the other three African

populations in Hapmap (Table 4.4). The allele frequency of the C allele is also highest

(0.44) in MKK compared to all other HapMap3 populations (in which the frequency

ranges from 0.09 − 0.32). These results suggest that the rs2241883 polymorphism is

under selection in the Maasai.

4.3.6 Maasai are under Selection in a 1.7 Mb Region on Chr2q21 for

Lactase Persistence

The largest cluster under selection in Maasai, identified by all the metrics, was a 1.7 Mb

region on Chr2q21 (Figures 4.4a, 4.4b, Tables 4.3, 4.4, 4.5, 4.6). The region includes the

Lactase (LCT ) gene, which encodes the Lactase protein, as well as the gene MCM6,

which contains intronic regulatory regions for LCT [18], [120], [121], [122]. Specific
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Figure 4.4: (a) Genome-wide significant scores identifying candidate regions
under selection on Chromosome 2. Chromosome wide plot of SNPs with significant
scores using FST (empirical p-value < 0.001 and Bonferroni corrected permutation test
pB < 8.6106), iHS (normalized |iHS|> 2), and XP-EHH (XP-EHH ≥ 4.796, two-tailed
Bonferroni corrected p ≤ 0.05). The SNPs thus identified were clustered on the basis
of linkage disequilibrium to identify contiguous genomic regions that are candidates for
selections (Table 4.3, 4.4, 4.5, 4.6, 4.7). The locus containing the genes LCT and MCM6
(135-137 Mb) was identified by all three metrics as the top candidate for selection.
The non-synonymous T→C polymorphism at rs2241883 in the FABP1 gene had most
significant genome-wide FST (FST = 0.25, pE = 3.13105). The MKK samples have
a high frequency ( 0.45) of the protective C allele, known to be associated with low
cholesterol levels in Europeans. (b) Inset of the LCT locus on Chromosome 2.
An inset of the FST , iHS and XP-EHH scores for SNPs in the 1 Mb locus (from
135.8-136.8 Mb) on Chr 2 containing the genes LCT and MCM6. The uniformly high
values for all three metrics in this region suggest that this locus has undergone strong
selection pressure. The blue marker indicates the position of the lactase associated
SNP in MCM6 that we sequenced, which was polymorphic in MKK with frequency
pC = 0.58± 0.14 (68% CI) for the protective C allele. Figure reproduced from [2]
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polymorphisms in these regions are known to confer lactase persistence in Europeans

and Africans [18], [120]. Our results are in agreement with other studies that have also

shown that this region is under recent, positive selection in the Maasai [18], [17], [14],

[16], [123], [29].

To identify specific polymorphisms for adult lactase persistence in the Maasai, we

sequenced DNA from six founder MKK samples (HapMap IDs: NA21367, NA21379,

NA21454, NA21519, NA21522, NA21650) at five loci in MCM6 (G/C-14010, rs41525747,

rs4988235, rs41380347 and rs182549), which are known to be associated with lactase

persistence in Africans and Europeans [18]. We found that the GC-14010 polymorphism

in the MCM6 gene is segregating in these samples (nGG = 1, nGC = 3, nCC = 2).

We estimated the frequency of the beneficial (C) allele in the MKK samples to be

pC = 0.58 ± 0.14 (68% CI from finite size sampling - details in Appendix S5 in [2]).

This is in agreement with Tishkoff et al. [18], who showed that this allele is significantly

associated with lactase persistence, has significantly reduced haplotype diversity indica-

tive of a selective sweep, and is segregating at high frequency in Maasai individuals from

Kenya.

4.3.7 The Selected Locus on Chr2q21 Contains Polymorphisms Asso-

ciated with Cholesterol Levels

The selected locus on Chr2q21 contains polymorphisms that have been associated with

cholesterol levels in various GWAS studies [124], [125], [126]. The SNP rs7570971 in

RAB3GAP1, not found in the HapMap data for the MKK, is associated with total

cholesterol levels in a GWAS of > 100, 000 individuals of European descent [124]. How-

ever, the six MKK samples we sequenced were homozygous at this locus in the Maasai

for the allele associated with an increase in total cholesterol levels in the samples with

European descent.

A study in a Finnish cohort identified polymorphisms in LCT associated with total

cholesterol and Low Density Lipoprotein C (LDL-C) levels [125]. The authors found

that the lactase persistence genotype in Finns, as defined by the genotype for SNP

rs4988235, was associated with lower cholesterol values. Several SNPs in and around
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the gene LCT were associated with total cholesterol and LDL-C levels, with stronger

associations in males than females. This study also found that the G allele at the

synonymous SNP rs2304371 in the LCT gene was associated with highest LDL-C levels

in males. The same SNP was identified by our methods as a selection candidate (Tables

S1, S2, S3 in [2]). However, once again, the major allele in the MKK (frequency 87%)

was the one associated with higher LDL-C levels.

4.3.8 The CYP3A Locus is a Candidate for Selection in Maasai

On Chromosome 7, a 261 kb wide region spanning the entire Cytochrome P450 Sub-

family 3A (CYP3A) locus was identified as a candidate for selection by FST and iHS

(Tables 4.3, 4.5). All CYP genes in this locus contain SNPs with genome-wide signifi-

cant FST or iHS scores, including: CYP3A4 (a potent oxidizer of steroids and drugs),

CYP3A5 (involved in oxidation of fatty acids and steroids in the liver), CYP3A7 (the

main CYP enzyme expressed in fetal livers) and CYP3A43 (involved in testosterone

metabolism). The CYP proteins play an important role in drug metabolism and in the

synthesis of steroids from cholesterol [127].

4.4 Discussion

In spite of diet that is rich in fat and cholesterol, the Maasai have low blood cholesterol

levels and low incidence of heart disease and atherosclerosis. Cholesterol challenge

studies in the 1970s [86] demonstrated that the Maasai are able to maintain cholesterol

homeostasis in response to elevated levels of dietary cholesterol, and suggested that the

mechanism of cholesterol homeostasis may have a genetic basis. In the present study,

we used HapMap 3 data to investigate this possibility. Using 90-110 unrelated LWK

individuals as a reference population, three complementary metrics (FST , iHS and XP-

EHH) were used to identify SNPs and chromosomal regions under selection in 143-156

unrelated MKK (Maasai) individuals in HapMap 3. The genomic regions and genes

identified as selection candidates in MKK are shown in Tables 4.4, 4.5, and 4.6 for the

FST , iHS, and XP-EHH metrics respectively. We identified seven genomic regions as
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strong candidates for selection using concordance between at least two of the metrics

(Table 4.7). We now discuss some of the most interesting SNPs and regions identified

for the role they may play in lactase persistence and lipid pathway selection in the

Maasai.

Using FST , the most significant non-synonymous SNP was the polymorphism rs2241883

located at 88.42 Mb on Chromosome 2 (Figure 4.4a, Table 4.4). This is a Threonine

to Alanine substitution (T94A) in exon 3 of the FABP1 (or LFABP) gene, a fatty acid

binding protein expressed in liver. This locus was not detected by iHS or XP-EHH,

suggesting either an increased local recombination rate or a more ancient selective

sweep. The T94A polymorphism was strongly associated with lower levels of plasma

triglycerides and LDL-cholesterol levels in a study of 826 individuals from Northern

Germany [118]. A study of plasma concentrations of ApoB in 623 French Canadian

men found that carriers of the A94 allele were protected against high ApoB levels when

consuming a high fat and saturated fat diet, possibly because of diminished function

of the protein LFABP due to a disruption in ligand binding [118]. LFABP knockout

mice fed a high cholesterol, high saturated fat diet were protected against diet-induced

obesity and lower levels of hepatic triglycerides compared to control mice, despite the

absence of discernible differences in energy levels, food intake, or mal-absorption of

fat induced obesity [128], [129]. The study concluded that “LFABP may function as

a metabolic sensor in regulating lipid homeostasis” [128]. The protective C allele of

this SNP is segregating in the Maasai at allele-frequency 0.44, suggesting that the ef-

fect of the T94A mutation on the LFABP pathway may be partly responsible for the

homeostatic regulation of blood cholesterol in Maasai [85], [86], [87].

We found evidence for a strong recent selective sweep in a 1.7 Mb region on Chr2q21

(Figure 4.4, Table 4.3, 4.4, 4.5, 4.6, 4.7). This region is known to harbor polymorphisms

conferring lactase persistence in Kenyans, and has been shown to be under strong recent

selection. Tishkoff et al. [18] performed a phenotype-genotype association study for

lactase persistence on 470 Tanzanians, Kenyans and Sudanese who were genotyped

at 123 SNPs, in a 3 Mb region surrounding the LCT and MCM6 genes. The SNP

known as G/C-14010 was found to have the most significant association with the lactase
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persistence phenotype in Kenyan Nilo-Saharan and Tanzanian Afro-Asiatic populations,

as well as in a meta-analysis of all the populations combined. Tishkoff et al. observed

the C-14010 allele to occur at 32% frequency in Kenyan populations. As this SNP is in

the upstream regulatory region of the gene LCT, the authors also studied the effect of

this polymorphism on expression using luciferase assays in intestinal cells. They found

that the C-14010 allele leads to a significantly higher expression. Furthermore, an iHS

analysis of the haplotype background on which the SNP occurs indicated that the SNP

is under selection in Kenyans and Tanzanians. We found that in the MKK samples from

HapMap the C-14010 allele is segregating at high frequency (0.58). Thus, our results

confirm the findings of Tishkoff et al., that C-14010 contributes towards selection for

lactase persistence in the MKK samples from HapMap.

In addition to lactase persistence, the GWAS studies of [124] and [125] indicate

that, in Europeans, the locus on Chr2q21 is associated with cholesterol levels. As this

locus is also identified by our analysis, it may be associated with cholesterol levels in

the Maasai. However, the allelic variants of the GWAS SNPs of [124], [125] that have

high frequency in MKK are associated with an increase in cholesterol levels in Euro-

peans. This might reflect the possibility that Europeans and Maasai have different

sets of functional polymorphisms at this locus responsible for lower cholesterol levels:

indeed it is known that the Maasai have an African polymorphism associated with lac-

tase persistence, different from the one found in Europeans. It could also be that in the

Maasai, the SNPs identified in our study are not themselves functional, but linked to

functional variants that are not genotyped. Given the extended linkage disequilibrium

(LD) in this region due to a selective sweep in both Europeans and the Maasai, this

last possibility is especially important. The differing effects of the SNPs identified in

the Maasai, as compared with the Europeans, could arise from the effects of differing

modifier alleles at different loci in this region. These possibilities emphasize the diffi-

culties associated with identifying true functional polymorphisms because of potential

population specificity of SNP based studies. However, given the GWAS findings, and

the strong signal of selection in MKK seen in our analysis, the LCT locus is a candidate

region for identifying genotypic variants associated with cholesterol regulation in the
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Maasai.

We also identified a 261 kb locus on Chr 7 (the CYP3A locus) to be under selection

using FST and iHS (Tables 4.3 and 4.5). This locus has been identified in re-sequencing

studies and genome-wide scans to be under positive selection in Africans and non-

Africans [16], [130], [131] and is also under positive selection for salt sensitivity in

equatorial populations [130], [132]. This locus contains the CYP3A (cytochrome P450,

subfamily 3A) family of genes which are involved in cholesterol metabolism and steroid

biosynthesis [127]. This family contains CYP3A5, a gene involved in fatty acid oxidation

in liver, as well as CYP3A7, a gene encoding a CYP enzyme expressed in fetal livers.

Variants in CYP3A5 have been shown to reduce the efficacy of certain statins, drugs

used to lower cholesterol biosynthesis [133]. Thus, the selection pressure at this locus,

as identified by our analysis, coupled with its role in cholesterol metabolism, suggests

that the CYP3A locus is an important candidate for cholesterol homeostasis in the

Maasai.

Several other clusters identified to be under selection in MKK contain genes related

to cholesterol metabolism, cholesterol biosynthesis and atherosclerosis. On Chr12q13,

we identified a region spanning many genes with one of the highest FST signals (Table

4.3). This locus contains the Apolipoprotein F (APOF ) gene, involved in cholesterol

transport and esterification [127], whose over-expression in mice reduces high density

lipoprotein (HDL) cholesterol levels [134]. A cluster identified by iHS on chromosome

11q13.5 contains the gene Diacylglycerol O-acyltransferase 2 (DGAT2 ) (Table 4.5).

This gene is involved in biosynthesis of triglycerols [135], [136] and has been implicated

in hyperlipidemia [137] and fatty liver disease [138]. Another cluster on Chr7p21.1

identified by iHS, contains the Integrin Beta 8 (ITGB8 ) gene (Table 4.5) implicated

as a quantitative trait locus (QTL) for fibrinogen plasma levels in a study involving

3600 Native Americans [139]. Fibrinogen levels are associated with risks for several

cardiovascular diseases [140], and play a role in the pathogenesis of atherosclerosis

[139]. XP-EHH identified a genome-wide significant region on chromosome 16q22.2-

22.3, containing the gene Craniofacial Development Protein 1 (CFDP1 ) (Table 4.6). A

GWAS showed that this region is associated with low levels of HDL cholesterol in 400
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French-Canadians [141].

Our results identified several genes and loci involved in cholesterol metabolism as

selection candidates in the Maasai. Thus, our findings suggest that the Maasai are

adapted for a high-cholesterol and high-fat diet. The traditional diet of the Maasai is

rich in saturated fats and cholesterol, and low in carbohydrates. Similar ketogenic diets

are often used to treat epileptic seizures in children [142], [143]. Early complications of

these diets include hypertriglyceridemia, hypercholesterolemia, and low levels of HDL,

and late complications include osteopenia, renal stones, and cardiomyopathy [143],

[144]. This suggests that a diet rich in fat and cholesterol from childhood can exert a

strong diet-induced selection pressure on survival and reproductive success.

4.5 Future Directions

The Extended Haplotype Homozygosity (EHH) is a quadratic measure of diversity, and

is the probability that two randomly selected haplotypes are identical up to a distance

x from the core SNP. It is quantified as follows:

EHH(x) =

∑(
ni
2

)(∑
ni
2

) ≈ ∑
n2i

(
∑
ni)2

=
∑

p2i

where ni are the number of haplotypes of type i that are identical up to a distance x.

The total number of haplotypes =
∑

i ni.

The integrated haplotype score (iHS) is then defined (up to a negative sign) as the

log ratio of the integral of this statistic for the two alleles (derived allele and ancestral

allele) at a bi-allelic SNP.

iHS(x) = log

∫
EHHD(x)dx∫
EHHA(x)dx

The central idea is that this quadratic measure of diversity, when integrated, is

able to quantify the difference in the pattern of diversity surrounding a locus under

selection from one that is evolving under neutral forces (see Figure 4.5). This raises the

question: how do other measures of diversity, such as entropy based measures, perform

in detecting selection?
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We began to address this question as follows. Consider the Tsallis entropy [145] -

one of the many generalizations of the Shannon entropy - which is defined as:

Sq(x) =
1−

∑
i p
q
i (x)

q − 1

For q = 1, this reduces to the Shannon entropy:

lim
q→1

Sq(x) = S1(x) = −
∑
i

pi(x) log pi(x)

For q = 2,

S2(x) = 1− EHH(x)

This suggests a possible generalization of EHH:

Sq(x) =
1−

∑
i p
q
i (x)

q − 1

We then measure the statistical power of these metrics to detect selective sweeps in

simulated SNP data. We simulate haplotype data at a number of SNPs using mbs [146],

a modification of Hudson’s coalescent simulation software ms, that includes the effect of

selection. Using mbs, we can vary the population size N , as well as neutral parameters

such as the effective mutation and recombination rates (4Nµ and 4Nr respectively,

where µ and r are the mutation and recombination rates per site per generation). We

can also include the effect of selection on a single SNP, parameterized by the selection

coefficient 4Ns.

(a) (b) (c)

Figure 4.5: Plot of Extended Haplotype Homozygosity (EHH) surrounding
the derived allele and the ancestral allele for varied selection coefficients
(4Ns) measured on haplotype data simulated using mbs [146]. (a) 4Ns = 0
(neutral evolution) (b) 4Ns = 100 (moderate selection) (c) 4Ns = 500 (strong selection)
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One can then take the simulated haplotype data generated by mbs and model the

ascertainment bias involved in sampling real haplotype data (low frequency variants

are less likely to be detected than high frequency variants).

For the N haplotypes, we created a binary distance matrix CN×N (x) whose entries

are 1 for identical haplotypes and 0 for dissimilar haplotypes. The haplotype frequencies

pi are then obtained from the eigenvalues λi(x) of CN×N (x).

pi =
λi∑
λi(x)

From which we can calculate
∑

i p
q
i . Alternatively, we can calculate

∑
i p
q
i in the fol-

lowing equivalent way: ∑
i

pqi =
Tr(Cq)

Tr(C)q

The Tsallis Entropy is then:

Sq(x) =
1−

∑
i p
q
i (x)

q − 1

From which we can calculate an integrated score for the two alleles at a bi-allelic SNP.

IHSq = log

∫
SqD(x)dx∫
SqA(x)dx

IHSq = log

∫
1− SqD(x)dx∫
1− SqA(x)dx

We studied the ability of IHSq and IHSq to detect selection sweeps for different values

of q. Higher powers of q indicate a weighting that is more strongly biased by the

frequency of the most frequent haplotype. The following figure shows the values of

IHSq |selection −IHSq |neutral
CI(IHSq |neutral)

and similarly for IHSq, where CI represents the width of a 95% confidence interval.

Figure 4.6 indicates that IHSq is not strongly dependent on the value of q, for

q < 10. Furthermore, IHSq shows a linear dependence on selection strength, and a

larger difference beween scores of selected loci and neutral loci, as compared to the

conventional integrated haplotype score = IHS2.

We further assessed the dependence of IHSq on the recombination rate ρ = 4Nr.

Ideally, these integrated scores should not depend strongly on the recombination rate
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(a) (b)

Figure 4.6: Comparison of performance of two integrated selection metrics,
IHSq and IHSq, to detect sweeps of varied selection strengths. The plots
shows the value of the difference between the average selected score and the average
neutral score, divided by the 95% the confidence interval of the neutral score. 100
simulation replicates were run to generate these figures. Error bars indicate ±1SE. (a)

IHSq = log
∫
SqD

(x)dx∫
SqA

(x)dx
(b) IHSq = log

∫
1−SqD

(x)dx∫
1−SqA

(x)dx

because the effect of recombination is common to haplotypes with the ancestral allele

and those with the derived allele, and should therefore cancel out in the ratio. This

agrees with the simulation results (Figure 4.7).

Hence, the Tsallis Entropy may provide a framework to extend the integrated Hap-

lotype Score (iHS) of Voight et al. [16]. In particular, a future project in this direction

could explore some of the following:

• Include a model of ascertainment bias to test the performance of selection metrics

on ascertained data

• Optimize selection metrics to reduce the dependence on neutral forces such as the

recombination rate ρ = 4Nr, the mutation rate θ = 4Nµ, and the frequency of

the derived allele.

• Investigate the functions f(q) that optimize the ability of the integrated score

obtained from S =
∫
f(q)Sqdq or S =

∑
q fqSq to detect selective sweeps, and

reduce the overall false positive rate over realistic values of ρ, θ and selection

strength.
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Figure 4.7: Dependence of selection metric IHSq on recombination rate. For
a wide range of realistic recombination parameters, the selection metrics are not signif-
icantly affected by the variation in recombination rate. Error bars indicate ±1SE.

• Determine whether a non-binary distance matrix CN×N (x) (such as a correlation

matrix) can improve the performance of IHSq.
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