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ABSTRACT OF THE DISSERTATION
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with
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by Dong Dai

Dissertation Director: Tong Zhang

Given a finite family of functions, the goal of model averaging is to construct

a procedure that mimics the function from this family that is the closest to an

unknown regression function. More precisely, we consider a general regression

model with fixed design and measure the distance between functions by mean

squared error (MSE) at the design points. In this thesis, we propose a new

method Bayesian model averaging with exponentiated least square loss (BMAX)

to solve the model averaging problem optimally in a minimax sense.
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Chapter 1

Introduction

Model Selection refers to the problem of using the data to select one model from a

list of candidate models, while model averaging averages all the candidate models.

Earlier studies have already shown that model averaging techniques provide better

predictive performances than any single selected model in the presence of model

uncertainty (Raftery et al., 1997). Bayesian model averaging (BMA) is a strong

approach of model averaging. In this chapter, we will firstly give an introduction

on Bayesian model averaging approaches, then the optimal regret of the model

averaging problem is defined with an exact oracle inequality.

1.1 Bayesian Model Averaging

Given data vector Y = (y1, . . . , yn)> ∈ Rn, it is often routine to consider many

possible models, sayM1, . . . ,MK , and denote the dictionary of all models asH =

{M1, . . . ,MK}. Each modelMj consists a family of distributions {p(Y |θj,Mj)},

indexed by θj ∈ Ωj ⊂ Rdj . The comprehensive Bayesian approach for multiple

model setups proceeds by assigning a prior probability distribution p(θj|Mj) to

the parameters of each model, and a prior probability p(Mj) to each model.

Under this framework, the data are realized in three stages: first the model

Mj is generated from p(M1), . . . , p(Mk); second the parameter θj is generated

from p(θj|Mj); third the data Y are generated from p(Y |θj,Mj).

If ∆ is the quantity of interest, such as mean in regression model, then its
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posterior distribution given data Y is

p(∆|Y ) =
K∑
j=1

p(∆|Mj,Y )p(Mj|Y ). (1.1)

This is an average of the posterior distributions under each of the models consid-

ered, weighted by their posterior model probability. The posterior probability for

model Mj is given by

p(Mj|Y ) =
p(Y |Mj)p(Mj)∑M
l=1 p(Y |Ml)p(Ml)

, (1.2)

where

p(Y |Mj) =

∫
p(Y |θj,Mj)p(θj|Mj) dθj (1.3)

is the marginal likelihood of Mj.

Let θ̂j ∈ Rdj denote the maximum likelihood estimate (MLE) of θj, specifi-

cally,

θ̂j = argmin
θj∈Ωj

p(Y |θj,Mj) ,

and let `j(θj) = log p(Y |θj,Mj) be the log-likelihood.

The posterior mean and variance of ∆ are as follows:

E(∆|Y ) =
K∑
j=1

E(∆|Mj,Y )p(Mj|Y ) , (1.4)

and

Var(∆|Y ) =
K∑
j=1

[
Var(∆|Mj,Y ) + (E(∆|Mj,Y )− E(∆|Y ))2

]
p(Mj|Y ) .

(1.5)

Such model averaging or mixing procedures have been developed and advocated

by LEAMER (1978); GEISSER (1993); DRAPER (1995); Raftery et al. (1996);

CLYDE et al. (1996).

While Bayesian model averaging (BMA) is an intuitively attractive solution

to be used to overcome the problem of model uncertainty, its implementation has

required careful attention to prior specification and posterior calculation.
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The size of model classes often makes the summation in equation (1.2) com-

putationally infeasible. To overcome the problem of exploding model space size

in the presence of large numbers of regressors, two approaches are common:

(1) The first method is to apply the Occam’s window algorithm presented in

Madigan and Raftery (1994) to average over a set of parsimonious, data-

supported models, selected based on model posterior probability. This al-

gorithm discards all the models that predict the data far less accurately

than the models which provide the best predictions. This means all models

belonging to

A =

{
Mj :

maxl p(Ml|Y )

p(Mj|Y )
> C

}
will be excluded where C is the data analyst’s choice and maxl p(Ml|Y )

represents the model with the highest posterior model probability. This

algorithm also excludes all complex models that receive less support from

the data than their simpler counterparts. Mathematically, models that are

in

B = {Mj : ∃Ml ∈ Ac, Ml ⊂Mj, p(Mj|Y ) < p(Ml|Y )}

will not be considered. These two principles remarkably reduce the model

space size.

(2) An alternative to Occam’s window approach is to use Markov Chain Monte

Carlo (MCMC) sampler that is the most common method used to obtain

samples from the posterior distributions. MCMC methods sample from

probability distributions based on constructing a Markov chain that has

the desired distribution as its equilibrium distribution. The state of the

chain after a large number of steps is then used as a sample of the desired

distribution. The quality of the sample improves as the number of steps

increases. Madigan and York (1995) uses Markov chain Monte Carlo model

composition (MC3) to directly approximate (1.1). Specifically, one can
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construct a Markov chain {M(t)}, t = 1, 2, . . ., with state space H and

equilibrium distribution p(Mi|Y ) and simulate this Markov chain to obtain

observations M(1), ...,M(N). Then for any function g(Mi) defined on H,

the average

Ĝ =
1

N

N∑
t=1

g(M(t))

is an estimate of E(g(M)). Applying standard Markov chain Monte Carlo

results,

Ĝ→ E(g(M)) a.s. as N →∞

(see, e.g., Smith and Roberts, 1993). To compute (1.1) in this fashion set

g(M) = p(∆|M, Y ). To construct the Markov chain, define a neighborhood

nbd(M) for each M ∈ H. Define a transition probability function q by

setting q(M→M′) = 0 ∀ M′ /∈ nbd(M) and q(M→M′) nonzero for all

M′ ∈ nbd(M). If the chain is currently in state M, proceed by drawing

M′ from q(M→M′). M′ is accepted with probability

min

{
1,
p(M′|Y )q(M′ →M)

p(M|Y )q(M→M′)

}
.

For a basic introduction to Metropolis-Hastings algorithm, see e.g. Marin

and Robert (2007).

There are also two practical problems to be solved in (1.3). First, we have to

choose the priors p(θj|Mj) and second, we have to compute the integrals. For

certain interesting classes of models such as discrete graphical models (see, e.g.,

Madigan and York, 1995) and linear regression (see, e.g., Raftery et al., 1997),

closed form integrals for the marginal likelihood, (1.3) are available.

Denote mj = p(Y |Mj), the Bayes factor for Mi versus Mj is defined to be

Bij =
p(Y |Mi)

p(Y |Mj)
=

∫
p(Y |θi,Mi)p(θi|Mi) dθi∫
p(Y |θj,Mj)p(θj|Mj) dθj

=
mi

mj

, (1.6)
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which gives a measure of the evidence for modelMi versus modelMj, and with

Bayes factors, (1.2) can be written as

p(Mj|Y ) =
p(Mj)Bj1∑M
l=1 p(Ml)Bl1

where Bj1 is the Bayes factor for Mj versus M1.

If we try to use a noninformative prior for p(θj|Mj) we run into a problem.

Recall that noninformative priors are often improper and that improper priors

are only defined up to a constant. So if p(θj|Mj) is an improper prior for θj and

cj is an arbitrary positive constant, then q(θj|Mj) = cjp(θj|Mj) could also be

used as a prior. But now the Bayes factor becomes

Bij =
ci
cj

∫
p(Y |θi,Mi)p(θi|Mi) dθi∫
p(Y |θj,Mj)p(θj|Mj) dθj

,

so the Bayes factors and the posterior probabilities are ill-defined since there are

arbitrary constants floating around in the equations.

An excellent approximation to p(Y |Mj) can be provided by the Laplace

method (see, e.g., Tierney and Kadane, 1986).

Let ˆ̀
j = `j(θ̂j) and OP (1) denotes bounded in probability. It can be shown

(Kass and Wasserman, 1995) that mj = m̂j(1 +OP (1)) where

log m̂j = ˆ̀
j −

dj
2

log n , (1.7)

which is known as Bayesian information criterion (BIC) or the Schwarz criterion

(Schwarz, 1978; Kass and Raftery, 1995) where for each model Mj the BIC

formula is defined as

BICj = −2ˆ̀
j + dj log n ,

to be used a criteria for model selection. (1.7) means that mj can be approximated

by m̂j, which requires no integration and does not depend on the prior. The

catch is that the error OP (1) does not go to 0 as n gets large. But it is worth

pointing out that, first, quantities like mj typically tend to ∞ as sample size
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increases. Hence, the error of the approximation relative to the quantity we are

estimating does tend to 0. In other words, |m̂j − mj|/|mj| → 0 in probability.

Second, there are certain priors for which the approximation (1.7) has an error

of size OP (n−1/2). One example of such a prior is a unit information prior (UIP)

which is discussed in Kass and Wasserman (1995). A second prior that justifies

the smaller error term is Jeffreys’ prior p(θj|Mj) ∝ |Iθj |1/2 where Iθj is the

Fisher information. Jeffreys’ prior is usually improper and thus is plagued by the

arbitrary constant. But if define the arbitrary constant in front of Jeffreys’ prior

is defined to be cj = (2π)−dj/2, then it turns out that, again, the error in (1.7)

is OP (n−1/2). In short, if we adopt the noninformative prior then m̂j is a fairly

accurate approximation of mj. Thus using BIC is approximately equivalent to

using Jeffreys’ prior with this particular choice for the constant cj. If we use the

approximation (1.7) and let p(Mj) = πj, then

p(Mj|Y ) ≈ m̂jπj∑M
l=1 m̂lπl

.

A more exact method to calculate mj = p(Y |Mj) is by simulation. The idea

is this: we draw a random sample θ1
j , . . . ,θ

N
j from the posterior p(θ|Y ,Mj), then

try to find a way to use the sample to estimate mj.

Recall that from Bayes’ theorem we have

p(θj|Y ,Mj) =
p(Y |θj,Mj)p(θj|Mj)

p(Y |Mj)
,

it follows that

mj = p(Y |Mj) =
p(Y |θj,Mj)p(θj|Mj)

p(θj|Y ,Mj)
.

This equation holds for all values of θj ∈ Ωj. Pick any value θ̃j of θj and calculate

mj =
p(Y |θ̃j ,Mj)p(θ̃j |Mj)

p(θ̃j |Y ,Mj)
where p(Y |θ̃j,Mj) and p(θ̃j|Mj) are easy to evaluate

since they are given functions. The remaining is to evaluate p(θ̃j|Y ,Mj), the

value at point θ̃j for function p(θj|Y ,Mj). Notice that

p(θj|Y ,Mj) =
p(Y |θj,Mj)p(θj|Mj)

p(Y |Mj)
∝ p(Y |θj,Mj)p(θj|Mj) ,
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then we can use MCMC. Specifically, pick a starting point θ0
j , draw a candidate

value ψ from some distribution q(θ0
j → ψ) (a usual choice is Gaussian distribution

centered at θ0
j), then θ1

j = ψ with probability

min

{
1,

p(Y |ψ,Mj)p(ψ|Mj)q(ψ → θ0
j)

p(Y |θ0
j ,Mj)p(θ

0
j |Mj)q(θ

0
j → ψ)

}
,

otherwise θ1
j = θ0

j . Now draw a candidate from q(θ1
j → ψ) and so on. Continue

the process until we have N draws, θ1
j , . . . ,θ

N
j . Then we apply any density

estimation technique (see, e.g., Silverman, 1986) to use the sample θ1
j , . . . ,θ

N
j to

estimate p̂(θ̃j|Y ,Mj) of p(θ̃j|Y ,Mj). Then our estimate of mj is

m̂j =
p(Y |θ̃j,Mj)p(θ̃j|Mj)

p̂(θ̃j|Y ,Mj)
.

This process is repeated for each model to get estimates m̂1, . . . , m̂K .

An alternative theory, that might be effective in these more delicate problems

is the theory of intrinsic Bayes factors by Berger and Pericchi (1996). Briefly,

suppose that we are comparing two models Mj : {p(y|θj), πj(θj)}, j = 1, 2,

where πj(θj) are the conventional priors. (The extension to several models is

straightforward.) We start with improper noninformative priors pj(θj) = cjhj(θj)

for each model Mj, where hj(θj) is a non-integrable function and cj is an ar-

bitrary constant which can not be determined. A small subset S of the data

Y = (y1, . . . , yn)> (thus denote Y = S ∪Sc) is used as the training set to update

the prior by Bayes’ theorem. Mathematically, denote this posterior by p(θj|S)

which is calculated as (for j = 1, 2)

p(θj|S) =
p(S|θj)πj(θj)

mj(S)

where mj(S) =
∫
p(S|θj)πj(θj) dθj and S is such that mj(S) ∈ (0,∞). With

the remainder of the data Sc, the Bayes factor is computed using p(θj|S) as the
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prior. This gives the partial Bayes factor,

BS
21 =

∫
p(Sc|θ2)p(θ2|S) dθ2∫
p(Sc|θ1)p(θ1|S) dθ1

= B21B12(S)

where B12(S) = p(S|M1)
p(S|M2)

. Thus the partial Bayes factor BS
21 corrects B21 with a

term B12(S), and the arbitrary constants c1 and c2 cancel out.

It should be noted that for a given sample Y , we can consider different training

samples S, and hence there exists a multiplicity of partial Bayes factors, one

for each training sample. To avoid dependence on a particular training sample,

Berger and Pericchi (1996) first suggested considering all possible subsamples S

for which there is no proper subsample satisfying the inequalities mj(S) ∈ (0,∞)

for any cj. They termed this subsample a minimal training sample. Second, they

considered the arithmetic mean of BS
21 for all minimal training samples. This

produces the so-called “arithmetic intrinsic Bayes factor”, defined as

BAI
21 = B21

L∑
`=1

B12(S`) ,

where L is the number of minimal training samples contained in the sample.

Other ways of “averaging” BS
21 are possible, but whereas the arithmetic mean

produces priors for model selection, other methods may not necessarily do the

same. The intrinsic methodology is still being developed (see, e.g., Casella and

Moreno, 2006; Casella et al., 2009; Moreno et al., 2010), along with other related

technique such as the Fractional Bayes Factors that firstly discussed in O’Hagan

(1995) and De Santis and Spezzaferri (1997) and Expected Posterior prior (Pérez

and Berger, 2002). All of these methods are within a more general topic of

Objective Bayesian methods, see BERGER and PERICCHI (2001); Clyde and

George (2004); Berger (2006) for introduction and review.

Prior density choice for BMA analysis is not limited to model priors. Priors

on the parameter space also need to be specified in linear models. Most of BMA
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studies assume a conditionally normal distribution as the choice of prior structures

for the coefficients with zero mean and a variance structure proposed by Zellner

(1986).

Mathematically, given response vector Y ∼ N(µ, σ2In) and design matrix

X = (f 1, . . . ,f d) ∈ Rn×d, and assume µ = EY ∈ Rn in the space spanned by

{f 1, . . . ,f d}, the columns of X.

The model choice problem involves selecting a subset of predictor variables

that places additional restrictions on the subspace that contains the mean. We

index the model space by γ ∈ {0, 1}d ⊂ Rd, a vector of indicators with γj = 1,

meaning that f j is included in the set of predictor variables, and with γj = 0,

meaning that f j is excluded.

Under each model Mγ, µ may be expressed in vector form as

µ|Mγ = Xγβγ ,

where Xγ ∈ Rn×dγ represents the design matrix under model Mγ and βj ∈ Rdγ

is the vector of regression coefficients. Or we can write

Y |Mγ ∼ N(Xγβγ, σ
2In) . (1.8)

Zellner (1986)’s g prior for βγ is defined as

βγ|Mγ, g ∼ N(0, gσ2(X>γXγ)
−1) , (1.9)

which has been widely adopted because of its computational efficiency in evaluat-

ing marginal likelihoods and model search and, perhaps most important, because

of its simple, understandable interpretation as arising from the analysis of a con-

ceptual sample generated using the same design matrix X as employed in the

current sample.

The choice of g effectively controls model selection. With large g typically

concentrating the prior on parsimonious models with a few large coefficients,
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whereas small g tends to concentrate the prior on saturated models with small

coefficients (George and Foster, 2000). Recommendations for g have included the

following:

• Unit information prior (UIP). Kass and Wasserman (1995) recommended

choosing priors with the amount of information about the parameter equal

to the amount of information contained in one observation. For regular

parametric families, the “amount of information” is defined through Fisher

information. In the normal regression case, the unit information prior cor-

responds to taking g = n, leading to Bayes factors that behave like the BIC.

Eicher et al. (2011) conducted a thorough study of different prior structures

and show that the combination of the UIP, on the parameter space and the

uniform distribution on the model space is superior to any other possible

combinations of priors proposed in the BMA literature.

• Risk inflation criterion. Foster and George (1994) calibrated priors for

model selection based on the RIC and recommended the use of g = d2

from a minimax perspective.

• Benchmark prior. Fernández et al. (2001) did a thorough study on various

choices of g with dependence on the sample size n or the model dimension d

and concluded with the recommendation to take g = max(n, d2). We refer

to their “benchmark prior” specification as “BRIC” as it bridges BIC and

RIC.

• Empirical Bayes (EB). George and Foster (2000) proposed and developed

empirical Bayes methods using either global or local estimate of g. In ad-

dition to assumption of linear model (1.8) and g priors (1.9), they also

assume the hierarchical Bernoulli(w) priors of sparsity pattern γ for each

model Mγ, more specifically,

p(Mγ|w) = wdγ (1− w)d−dγ , w ∈ [0, 1] , (1.10)
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where dγ = ‖γ‖0.

It can be easily shown that

p(Mγ|Y , g, w) ∝ exp

{
g

2(1 + g)
[SSγ/σ

2 − F (g, w)dγ]

}
where SSγ = ‖Y −Xγβ̂γ‖2

2 with β̂γ as least square estimator for βγ, and

F (g, w) =
g

1 + g

{
2 log

1− w
w

+ log(1 + g)

}
.

Thus for given Y , g and w, p(Mγ|Y , g, w) is increasing in SSγ/σ
2 −

F (g, w)dγ, which means maximizing

SSγ/σ
2 − F (g, w)dγ (1.11)

is equivalent to selecting the highest posterior model. Suitable choice of g

and w will recover us the well known criteria such as AIC, BIC, RIC.

Rather than using fixed pre-specified values of g and w, George and Foster

(2000) considered estimating them from the data via empirical Bayes. For

this purpose, they proposed two approaches, marginal maximum likelihood

(MML) and conditional maximum likelihood (CML). MML entails finding

g = ĝ and w = ŵ that maximize the overall marginal likelihood

p(g, w|Y ) ∝
∑
γ

p(Mγ|w)p(Y |Mγ, g)

∝
∑
γ

wdγ (1− w)d−dγ (1 + g)−dγ/2 exp{ gSSγ
2σ2(1 + g)

} , (1.12)

and inserting them into (1.11) to obtain

CMML = SSγ/σ
2 − F (ĝ, ŵ)dγ . (1.13)

Note that the penalty F (ĝ, ŵ) adapts to the data through the estimates of g

and w. George and Foster (2000) showed via simulations that, as opposed to

fixed penalty criteria, the performance of CMML is nearly as good as the best

possible fixed penalty criterion over a broad range of model specifications.
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A drawback of CMML is that it can be computationally overwhelming es-

pecially when X is nonorthogonal because maximizing (1.12) involves av-

eragingMγ over the whole model space. To mitigate this difficulty George

and Foster (2000) also proposed CCML, an easily computable alternative.

CCML entails choosing the model Mγ for which the conditional likelihood

p∗(g, w,Mγ|Y ) ∝ p(Mγ|w)p(Y |Mγ, g)

∝ wdγ (1− w)d−dγ (1 + g)−dγ/2 exp{ gSSγ
2σ2(1 + g)

} , (1.14)

is maximized over g, w andMγ. Although its performance was not quite as

good as that of CMML, George and Foster (2000) showed that CCML offered

similar adaptive improvements over fixed penalty criteria.

• Fully Bayes (FB). Rather than using a plug-in estimate to eliminate g, a

natural alternative is FB with the integrated marginal likelihood under a

proper prior on g. Consequently, a prior on g leads to a mixture of g priors

for the coefficients βγ, which typically provides more robust inference. And

in many statistical decision problems, the admissible estimators are either

Bayes or limits of Bayes procedures (Berger, 1985), one might anticipate

that such FB procedures would improve over EB which are neither Bayes

nor limits of Bayes procedures. Although Zellner and Siow (1980) did not

explicitly use a g-prior formulation with a prior on g, their recommendation

of a multivariate Cauchy form for p(βγ|σ2) implicitly corresponds to using

a g-prior with an Inv-Gamma(1/2,n/2) prior on g, namely,

p(βγ|σ2) ∝
∫
N
(
βγ | 0, gσ2(X>γXγ)

−1
)
π(g) dg ,

with

π(g) =
(n/2)1/2

Γ(1/2)
g−3/2e−n/(2g) . (1.15)

Besides the above Zellner-Siow prior (1.15) on g, both Liang et al. (2008)
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and Cui and George (2008) investigated another prior on g in the form of

π(g) =
a− 2

2
(1 + g)−a/2 , g > 0 , (1.16)

which is a proper distribution for a > 2. This family of priors includes

priors used by Strawderman (1971) to provide improved mean square risk

over ordinary maximum likelihood estimates in the normal means problem.

Liang et al. (2008) also modified the Strawderman prior to

π(g) =
a− 2

2n
(1 +

g

n
)−a/2 ,

for the consistency under the null model. Liang et al. (2008) found that all

of the FB mixture g-priors do as well as the global EB with model selection,

except under the null model, whereas Cui and George (2008) found that the

global EB outperformed FB procedures (under the assumption of known

σ2). Liang et al. (2008) used a uniform prior on the model space (for both

the EB and the FB procedures), whereas Cui and George (2008) placed

independent Bernoulli(w) priors on variable inclusion and compared EB

estimates of w with FB procedures that place a uniform prior on w. Thus

the prior distributions over models is an important aspect and may explain

some of the difference in their findings. Additionally, the simulations in Cui

and George (2008) are for the d = n case while Liang et al. (2008) show that

FB procedures are consistent as n→∞ for fixed d, additional study of their

theoretical properties is necessary for the situation when p is close to the

sample size n. Maruyama and George (2011) extended FB with generalized

g-prior and a beta-prime distribution as a prior on g.

Although BMA has become a mainstream tool in empirical settings with large

numbers of potential regressors, it remains problematic. The set of priors on pa-

rameters within a model and the set of the prior model probabilities must be

specified before calculating posterior probabilities attached to different models.
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As stated in Ley and Steel (2009), the choice of prior distributions can be ex-

tremely critical for the outcome of BMA analysis. These prior probabilities must

be informative with respect to the likelihood, meaning priors should be relatively

high where the likelihoods are large; otherwise, the choice of priors will have a

substantial effect on the posteriors. Another issue, raised by Hjort and Claeskens

(2003), is the difficulty of dealing with the priors when they are in conflict with

each other, stemming from mixing together many prior opinions regarding the

parameters of interest.

1.2 Optimal Regret of Model Averaging under Misspeci-

fication

The seminal works of Nemirovski (2000) and Tsybakov (2003) have introduced

an idealized setup to study the properties of model averaging procedures inde-

pendently of the models themselves.

Let x1, . . . , xn be n given design points in a space X and let H = {f1, . . . , fM}

be a given dictionary of real valued functions on X . The goal is to estimate an

unknown regression function η : X → R at the design points based on observations

Yi = η(xi) + ξi ,

where ξ1, . . . , ξn are i.i.d N (0, σ2).

The performance of an estimator η̂ is measured by its mean square error

(MSE) defined by

MSE(η̂) =
1

n

n∑
i=1

(η̂(xi)− η(xi))
2 .

The goal is to build an estimator η̂ that mimics the function fj in the dictionary

with the smallest MSE. Formally, a good estimator η̂ should satisfy the following

exact oracle inequality in a certain probabilistic sense:

MSE(η̂) ≤ min
j=1,...,M

MSE(fj) + ∆(n,M, σ2) , (1.17)
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where the remainder term ∆ > 0 should be as small as possible. Note that oracle

inequality (1.17) is a truly finite sample result and the remainder term should

show the interplay between the three fundamental parameters of the problem:

the “dimension” M , the sample size n and the noise level σ2.

From the early days of model averaging problem, it has been established (see,

e.g., Tsybakov, 2003; Rigollet, 2012) that the smallest possible order for ∆(n,M, σ2)

was σ2 logM/n for oracle inequalities in expectation, where “smallest possible”

is understood in the following minimax sense. There exists a dictionary H =

{f1, . . . , fM} such that the following holds. For any estimator η̂, there exists a

regression function η such that

EMSE(η̂) ≥ min
j=1,...,M

MSE(fj) + Cσ2 logM

n
.

for some positive constant C. Moreover, it follows from the same results that this

lower bound holds not only in expectation but also with positive probability.

While the goal is to mimic the best model in the dictionary H, it has been

shown (see Rigollet and Tsybakov, 2012, Theorem 2.1) that there exists a dictio-

nary H such that any estimator (selector) η̂ restricted to be one of the elements

of H cannot satisfy an oracle inequality such as (1.17) with a remainder term of

order smaller than σ
√

(logM)/n, in other words, model selection is suboptimal

to compete with best single model from a given family.

Rather than model selection, model averaging has been successfully employed

to derive oracle inequalities (1.17) in expectation (see the references in Rigol-

let and Tsybakov, 2012) with notable exceptions (Audibert, 2008; Lecué and

Mendelson, 2009; Gäıffas and Lecué, 2011; Dai and Zhang, 2011; Rigollet, 2012;

Dai et al., 2012) who produced oracle inequalities that hold in deviation (with

high probability).

When the oracle inequality (1.17) holds in expectation, the remainder term

∆(n,M, σ2) assesses the expected risk of η̂ compared to the best single model in
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H, but it does not precise the fluctuations of risk. In several application fields

of learning algorithms, these fluctuations play a key role: in finance for instance,

the bigger the losses can be, the more money the bank needs to freeze in order

to alleviate these possible losses. In this case, a good algorithm is an algorithm

having not only low expected risk but also small deviations.

Thus below we seperate the cases of in expectation and in deviation when ora-

cle inequality (1.17) holds. Hereafter we call an estimator η̂ is expectation optimal

(or optimal in expectation) if η̂ satisfies exact oracle inequality with remainder

term ∆(n,M, σ2) of order σ2 logM
n

:

EMSE(η̂) ≤ min
j=1,...,M

MSE(fj) + ∆(n,M, σ2) ; (1.18)

and η̂ is called deviation optimal (or optimal in deviation) if it satisfies the fol-

lowing probably approximately correct (PAC) type inequality with probability

greater than 1− δ with remainder ∆(n,M, σ2, δ) of order σ2 log(M/δ)
n

:

MSE(η̂) ≤ min
j=1,...,M

MSE(fj) + ∆(n,M, σ2, δ) . (1.19)

Precisely, model averaging consists in choosing η̂ as a convex combination of

the fj’s with carefully chosen weights. Let ΛM be the flat simplex of RM defined

by

ΛM =
{
λ = (λ1, . . . , λM)> ∈ RM : λj ≥ 0 ,

M∑
j=1

λj = 1
}
.

Given dictionary H, each λ ∈ ΛM yields a model averaging estimator η̂ = fλ,

where

fλ =
M∑
j=1

λjfj .

The early papers of Catoni (1999) and Yang (1999) introduced and proved

optimal theoretical guarantees for a model averaging estimator called progressive

mixture that was later studied in Audibert (2008) and Juditsky et al. (2008) from

various perspectives. This estimator is based on exponential weights, which, since
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then, have been predominantly used and have led to optimal oracle inequalities

in expectation.

Mathematically, let π = (π1, . . . , πM)> ∈ ΛM be a given prior and β > 0 be a

temperature parameter, then the jth exponential weight is given by

λexp
j ∝ πj exp

(
− nM̂SE(fj)/β

)
, (1.20)

where

M̂SE(fj) =
1

n

n∑
i=1

(
Yi − fj(xi)

)2
.

Then it is shown that (see, e.g., Rigollet and Tsybakov, 2011; Dalalyan and

Salmon, 2012; Rigollet and Tsybakov, 2012)

EMSE(fλexp) ≤ min
j

{
MSE(fj) +

β

n
log(π−1

j )

}
where the most common prior choice of π is the uniform prior π = (1/M, . . . , 1/M)>

but other choices that put more or less weight on different functions of the dictio-

nary have been successfully applied to various related problems (see, e.g., Rigollet

and Tsybakov, 2011; Dalalyan and Salmon, 2012; Rigollet and Tsybakov, 2012).

The fixed design Gaussian regression was considered in Dalalyan and Tsy-

bakov (2007, 2008) who proved an oracle inequality of the form (1.17) with op-

timal remainder term. This result holds only in expectation and not with high

probability. While the limitation may have followed the proof technique, we actu-

ally show in next chapter that it is inherent to exponential weights. Consequently,

we say that exponential weights are deviation suboptimal since the expectation

of the resulting MSE is of the optimal order but the deviations around the ex-

pectation are not. Note also that the original paper of Dalalyan and Tsybakov

(2007) made some boundedness assumption on the distance between function in

the dictionary H and the regression function η. This assumption was lifted in

their subsequent paper (Dalalyan and Tsybakov, 2008). In this thesis, we make

no such assumption except for the lower bound.
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For regression with random design, Audibert (2008) observed also that var-

ious progressive mixture rules are deviation suboptimal. In the same paper, he

addressed this issue by proposing the STAR algorithm which is optimal both in

expectation and in deviation under the uniform prior and, remarkably, does not

require any parameter tuning as opposed to progressive mixture rules. Math-

ematically, suppose fk1 is the empirical risk minimizer among functions in H,

where

k1 = argmin
j

M̂SE(fj) , (1.21)

the STAR estimator f ∗ is defined as

f ∗ = (1− α∗)fk1 + α∗fk2 , (1.22)

where

(α∗, k2) = argmin
α∈(0,1),j

M̂SE
(
(1− α)fk1 + αfj

)
. (1.23)

Also for random design, Lecué and Mendelson (2009) followed by Gäıffas and

Lecué (2011) proposed deviation optimal methods based on the same sample

splitting idea. However, sample splitting method does not carry to fixed design.

Subsequently, Dai et al. (2012) proposed a new Q-aggregation estimator,

which is quite similar to that proposed in Rigollet (2012). The Q-aggregation

estimator enjoys the same theoretical properties as the STAR algorithm but for

fixed design regression, with implementation of a greedy algorithm GMA-0, which

is a cleaner version of Greedy Model Averaging (GMA) algorithm firstly proposed

in an earlier paper by Dai and Zhang (2011), and GMA-0 and GMA both enjoy

optimal deviation. Though the deviation optimality of Q-aggregation is derived

with sharpest exact oracle inequality which holds both in expectation and in de-

viation, but there are also two limitations there. (1) Q-aggregation could be gen-

eralized for continuous candidates dictionary H, but the greedy model averaging

method GMA-0 can not be adapted to this scenario, and to solve Q-aggregation
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is to estimate a posterior distribution; (2) though Q-aggregation can be regarded

intuitively as regression plus variance penalty, it still lacks of good interpretation.

In Chapter 2, an innovative method, Bayesian Model Averaging with Ex-

ponentiated Least Square Loss (BMAX) will be introduced. While exponential

weighted model averaging estimator, can be treated as Bayes estimator (posterior

mean) under least square loss, it is already shown to be optimal in expectation,

yet it is deviation suboptimal. The new model averaging estimator, aggregate by

BMAX, is essentially a Bayes estimator under some exponentiated least square

loss, and is proven to be optimal both in expectation and in deviation. Not only

the aggregate by BMAX can be approximated by greedy approach for discrete

candidates dictionary H, gradient descent algorithm can also be implemented to

this strong convex optimization problem and it can be adapted to continuous can-

didates dictionary. Moreover, under some conditions Q-aggregation in Dai et al.

(2012) is essentially a dual representation of aggregate by BMAX, which is yet

more extensive and better defined, lifting the two limitations of Q-aggregation

mentioned above.

BMAX is applied to linear models with Gaussian priors in Chapter 3, where

naturally, the BMAX estimator is competitive to the best single linear model, and

a gradient descent algorithm implemented with Metropolis-Hastings sampler is

proposed. In addition, a Frequentist’s aggregation of affine estimators is provided,

as an extension of Q-aggregation from static models to affine estimators which

are not independent of noise.

In Chapter 4 we discuss the mixture of g under the same Bayesian frame work

of Chapter 3 with application of BMAX, and the BMAX estimator is shown to

be competitive to that of Chapter 3 with hyper parameters of distribution on g

properly chosen.
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Chapter 2

Bayesian Model Averaging with Exponentiated

Least Square Loss (BMAX)

2.1 Notations and Settings

Let x1, . . . , xn be n given design points in a space X , let H = {f1, . . . , fM} be a

given dictionary of real valued functions on X and denote f j = (fj(x1), . . . , fj(xn))> ∈

Rn for each j. The goal is to estimate an unknown regression function η : X → R

at the design points based on observations

yi = η(xi) + ξi ,

where ξ1, . . . , ξn are i.i.d N (0, σ2).

Denote vectors as Y = (y1, . . . , yn)>, η = (η(x1), . . . , η(xn))> and ξ =

(ξ1, . . . , ξn)>, the true model can be expressed as

Y = η + ξ , (2.1)

with ξ ∼ N(0, σ2In). Denote `2 norm as ‖Y ‖2 = (
∑n

i=1 y
2
i )

1/2 and inner product

as 〈ξ,f〉2 = ξ>f .

Let ΛM be the flat simplex in RM defined by

ΛM =

{
λ = (λ1, . . . , λM)> ∈ RM : λj ≥ 0,

M∑
j=1

λj = 1

}
,

and π = (π1, . . . , πM)> ∈ ΛM be a given prior.

The Kullback-Leibler divergence for λ,π ∈ ΛM is defined as

K(λ,π) =
M∑
j=1

λj log(λj/πj) ,
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and hereafter, we use the convention 0 · log(0) = 0.

Given any λ ∈ ΛM and H, we define the model averaging estimator for func-

tion η as

fλ =
M∑
j=1

λjfj ,

then with notation fλ = (fλ(x1), . . . , fλ(xn))> we have

fλ =
M∑
j=1

λjf j ,

which will be used as estimator for η ∈ Rn.

Define V (λ) as

V (λ) =
M∑
j=1

λj‖f j − fλ‖2
2 , (2.2)

the variance of aggregation by λ ∈ ΛM given H on design points.

Given ν ∈ (0, 1), define P (λ) as

P (λ) = (1− ν)‖fλ − η‖2
2 + ν

M∑
j=1

λj‖f j − η‖2
2 , (2.3)

and it is easy to see that P (λ) = ‖fλ − η‖2
2 + νV (λ).

2.2 Deviation suboptimality of two commonly used esti-

mators

2.2.1 Aggregate by exponential weights

The exponential weights λexp = (λexp
1 , . . . , λexp

M )> ∈ ΛM are defined as

λexp
j ∝ πj exp

(
−
‖f j − Y ‖2

2

2ω2

)
, ∀ j ∈ {1, . . . ,M}. (2.4)

where ω > 0 is a temperature parameter.

It is well known (see, e.g., Rigollet and Tsybakov, 2012) that the exponential

weights λexp defined in (2.4) are the solution to a minimization problem:

λexp ∈ argmin
λ∈ΛM

{
M∑
j=1

λj‖f j − Y ‖2
2 + 2ω2K(λ,π)

}
. (2.5)
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It was shown in Dalalyan and Tsybakov (2007, 2008) that for ω2 ≥ 2σ2, it

holds that

E‖fλexp − η‖2
2 ≤ min

j=1,...,M

{
‖f j − η‖2

2 + 2ω2 log(π−1
j )
}
. (2.6)

The proof of this result relies heavily on the fact that the oracle inequal-

ity holds in expectation and whether the result also holds with high probability

arises as a natural question. While the paper of Audibert (2008) does not cover

the fixed design Gaussian regression framework of our paper and concerns expo-

nential weights with an extra averaging step, it contributed to the common belief

that exponential weights would be suboptimal in deviation. In particular, Lecué

and Mendelson (2012) derived lower bounds for the performance of exponential

weights in expectation when ω2 is chosen below a certain constant threshold in the

case of regression with random design. Moreover, they proved deviation subop-

timality of exponential weights when ω2 is less than
√
n/(log n). However, these

lower bounds rely heavily on the fact that the design is random and do not extend

to the fixed design case.

Now we consider the following dictionary H. Assume that M,n ≥ 3. Let

e(1) = (1, 0, . . . , 0)> ∈ Rn and e(2) = (0, 1, 0, . . . , 0)> ∈ Rn be the first two vectors

of the canonical basis of Rn. Moreover, let e(3), . . . , e(M) ∈ Rn be M − 2 unit

vectors of Rn that are orthogonal to both e(1) and e(2). Let f 1, . . . ,fM be such

that

f 1 = σ
√
ne(1) , f 2 = σ(1 +

√
n)e(2) ,

and for any 3 ≤ j ≤M , f j is defined by

f j = f 2 + σαje
(j) ,

where α3, . . . , αM ≥ 0 are tuning parameter to be chosen later. Moreover, take the

regression function η ≡ 0 so that MSE(f 1) ≤ MSE(f j) for any j ≥ 2. Observe

that ‖f j‖2
2/n ≥ σ2 so that the following lower bounds cannot be interpreted as

artifacts of scaling the signal-to-noise ratio.
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Assume that M ≥ 4 and n ≥ 3. We call parameters ω > 0 as low temperatures

when

ω2 ≤ σ2
√
n

log(8
√
n)
. (2.7)

In particular the exponential weights employed in the literature on model aver-

aging use the low temperature ω2 = 2σ2 (see, e.g., (2.6) above).

Proposition 1. Fix M ≥ 4, n ≥ 3 and assume that the noise random variables

ξ1, . . . , ξn are i.i.d. N (0, σ2). Let η and H be defined as above. Then, the aggre-

gate fλexp with exponential weights λexp given by (2.4) satisfies

MSE(fλexp) ≥ min
j=1,...,M

MSE(fj) +
σ2

4
√
n
,

with probability at least 0.07 at low temperatures, for any α3, . . . , αM ≥ 0.

Moreover, if M ≥ 8
√
n and for any j ≥ 3, we have

2
√

2 log(100M) ≤ αj ≤ n1/4 , (2.8)

then, the same result holds at any temperature, with probability at least 0.06.

Remark 1. Proposition 1 states precisely that exponential weights are deviation

suboptimal, if ω2 is chosen small enough and in particular if ω is any constant

with respect to M and n.

2.2.2 Aggregate by projection

Another natural solution to solve the model averaging problem is to take the

vector of weights λproj defined by

λproj ∈ argmin
λ∈ΛM

M̂SE(fλ) , (2.9)

which minimizes the empirical risk. We call λproj the vector of projection weights

since the aggregate estimator fλproj is the projection of Y onto the convex hull of

the f js.
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It has been established that this choice is near -optimal for the more difficult

problem of convex aggregation with fixed design (see Juditsky and Nemirovski,

2000; Nemirovski, 2000; Rigollet, 2012) where the goal is to mimic the best convex

combination of the f js as opposed to simply mimicking the best single one of

them. More precisely, it follows from Theorem 3.5 in Rigollet (2012) that

EMSE (fλproj) ≤ min
λ∈ΛM

MSE(fλ) + 2σ

√
logM

n

≤ min
j=1,...,M

MSE(fj) + 2σ

√
logM

n
,

and a similar oracle inequality also holds with high probability. The second in-

equality is very coarse and it is therefore natural to study whether a finer analysis

of this estimator would yield an optimal oracle inequality for the aggregate fλproj

both in expectation and with high probability. This question was investigated

by Lecué and Mendelson (2009) who proved that fλproj cannot satisfy an oracle

inequality of the form (1.17) with high probability and with a remainder term

∆(n,M, σ2) of order smaller than n−1/2. Their proof, however, heavily uses the

fact that the design is random and we extend it to the fixed design case in Propo-

sition 2 below.

Our lower bound for the aggregate by projection relies on a different construc-

tion of the dictionary. Let m be the smallest integer that satisfies m2 ≥ 4n/13

and let n,M be large enough to ensure that m ≥ 16, M − 1 ≥ 2m. Let

e(1), . . . , e(m) ∈ Rn be the first m vectors of the canonical basis of Rn. For any

j = 1, . . . ,M , the f js are defined as

f j =



√
ne(j) if 1 ≤ j ≤ m,

−
√
ne(j) if m+ 1 ≤ j ≤ 2m,

0 if j = 2m+ 1 ,

f 1 if j > 2m+ 1 ,

Moreover, define η ≡ 0 so that 0 = MSE(f2m+1) ≤ MSE(fj) for all 1 ≤ j ≤M .
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Proposition 2. Fix n ≥ 416,M ≥
√
n and assume that the noise random vari-

ables ξ1, . . . , ξn are i.i.d. N (0, σ2). Let η and H be defined as above. Then, the

projection aggregate fλproj with weights λproj defined in (2.9) is such that

MSE(fλproj) ≥ min
j=1,...,M

MSE(fj) +
σ2

√
48n

,

with probability larger than 1/4. Moreover, the above lower bound holds with

arbitrary large probability if n is chosen large enough.

Note that we employed a different dictionary for each of the aggregates. There-

fore, it may be the case that choosing the right aggregate for the right dictionary

gives the correct deviation bounds. In the next section, we propose a new model

averaging method, Bayesian model averaging with exponentiated least square loss

(BMAX), that automatically adjusts the aggregate to the dictionary at hand.

2.3 Deviation Optimal Aggregate by Bayesian Model Av-

eraging with Exponentiated Least Square Loss

In this section, we will show that the aggregate by Bayesian model averaging with

exponentiated least square loss (BMAX) is deviation and expectation optimal.

Consider the following Bayesian framework, Y is normally distributed with

mean µ = (µ1, . . . , µM)> and covariance matrix ω2In:

Y |µ ∼ N(µ, ω2In) , (2.10)

and for j = 1, . . . ,M , the prior for each model is

π(µ = f j) = πj . (2.11)

Then the posterior distribution of µ given Y is

p(µ = f j|Y ) =
p(Y |µ = f j)p(µ = f j)∑M
j=1 p(Y |µ = f j)p(µ = f j)

=
exp

(
−‖fj−Y ‖

2
2

2ω2

)
πj∑M

j=1 exp
(
−‖fj−Y ‖

2
2

2ω2

)
πj
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The Bayesian framework above is to output an aggregate estimator for the

model averaging problem, given Y and {f 1, . . . ,fM}. Please note that parame-

ters µ and ω2 are not necessarily equal to true mean η and variance σ2 in (2.1),

and η is not necessarily in dictionary {f 1, . . . ,fM}. Yet the Bayesian framework

and loss function L(ψ,µ) defined and discussed later will convey interpretation of

the model averaging problem. We will, avoid the question of whether the Bayesian

or Frequentist approach to statistics is “philosophically correct”, the focus here

is simply on methodology.

The quantity of interest is η = EY , we consider Bayes estimator ψ̂, which

minimizes the posterior expected loss from µ, the mean of Y in our Bayesian

framework:

ψ̂ = argmin
ψ∈Rn

E [L(ψ,µ)|Y ] , (2.12)

where L is some loss function.

With least square loss L(ψ,µ) = ‖ψ − µ‖2
2, the Bayes estimator is posterior

mean, which is essentially Exponential Weighted Aggregation (EWA) estimator

(Rigollet and Tsybakov, 2012) :

ψ`2(ω
2) =

∑M
j=1 exp

(
−‖fj−Y ‖

2
2

2ω2

)
πjf j∑M

j=1 exp
(
−‖fj−Y ‖

2
2

2ω2

)
πj

(2.13)

which is already proven to optimal in expectation (Dalalyan and Tsybakov, 2007,

2008), yet suboptimal in deviation (Proposition 1).

In this thesis, we introduce an exponentiated least square loss

L(ψ,µ) = exp

(
1− ν
2ω2
‖ψ − µ‖2

2

)
, (2.14)

where ν ∈ (0, 1).
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It follows that

E [L(ψ,µ)|Y ] =
M∑
j=1

L(ψ,f j)p(µ = f j|Y )

=
M∑
j=1

exp

(
1− ν
2ω2
‖ψ − f j‖2

2

) exp
(
−‖fj−Y ‖

2
2

2ω2

)
πj∑M

j=1 exp
(
−‖fj−Y ‖

2
2

2ω2

)
πj

Thus the Bayes estimator defined in (2.12) with loss (2.14) is

ψX(ω2, ν) = argmin
ψ∈Rn

J(ψ) , (2.15)

where

J(ψ) =
M∑
j=1

πj exp

(
− 1

2ω2
‖f j − Y ‖2

2 +
1− ν
2ω2
‖ψ − f j‖2

2

)
, (2.16)

and ψX(ω2, ν) is the aggregate by Bayesian model averaging with exponentiated

least square loss (BMAX).

The below theorem shows that ψX(ω2, ν) is optimal both in expectation and

in deviation.

Theorem 1. Assume ν ∈ (0, 1) and if ω2 ≥ σ2

min(ν,1−ν)
, we have oracle inequality

for any λ ∈ ΛM ,

‖ψX(ω2, ν)−η‖2
2 ≤ ν

M∑
j=1

λj‖f j−η‖2
2 +(1−ν) ‖fλ − η‖2

2 +2ω2K(λ,πδ) , (2.17)

with probability at least 1− δ. Moreover,

E‖ψX(ω2, ν)−η‖2
2 ≤ ν

M∑
j=1

λj‖f j−η‖2
2 +(1−ν) ‖fλ − η‖2

2 +2ω2K(λ,π) . (2.18)

Our theorem implies that ψX(ω2, ν) can compete with an arbitrary fλ in the

convex hull with λ ∈ ΛM . However, we are mainly interested in competing with

single models, the situation where λ is at a vertex of the simplex ΛM , specifically

‖λ‖0 = 1. With ν ∈ (0, 1), the theorem implies that ψX(ω2, ν) is deviation
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optimal unlike the aggregate with exponential weights. This is explicitly stated

in the following corollary, which shows that our estimator solves optimally the

problem of model averaging. Its proof follows by simply restricting the minimum

over ΛM to the minimum over its vertices in Theorem 1.

Corollary 1. Under the assumptions of Theorem 1, ψX(ω2, ν) satisfies

‖ψX(ω2, ν)− η‖2
2 ≤ min

j∈1,...,M

{
‖f j − η‖2

2 + 2ω2 log

(
1

πjδ

)}
, (2.19)

with probability at least 1− δ. Moreover,

E‖ψX(ω2, ν)− η‖2
2 ≤ min

j∈1,...,M

{
‖f j − η‖2

2 + 2ω2 log

(
1

πj

)}
. (2.20)

Also it is worthy to point out that the condition ω2 ≥ σ2

min(ν,1−ν)
implies ω2 is at

least greater than 2σ2 (when ν = 1/2), and the author believes that the inflation

of noise is a trade off for tolerance of misspecification of the true η, which is not

necessarily included in the candidates dictionary H.

In the Bayesian framework stated above, as loss function L(ψ,µ) changes

from least square loss to exponentiated least square loss (2.14), Bayes estimator

changes from exponential weighted model averaging estimator which is optimal

only in expectation, to BMAX estimator ψX(ω2, ν) which is proven to be optimal

both in expectation and in deviation. The possible reason for this change is that

least square loss only controls the bias, while exponentiated least square loss

controls bias and variance at the same time, which can be seen roughly by Taylor

expansion

exp

(
1− ν
2ω2
‖ψ − µ‖2

2

)
= 1 +

1− ν
2ω2
‖ψ − µ‖2

2 + (1/2)

(
1− ν
2ω2
‖ψ − µ‖2

2

)2

+ · · · .

It is also natural to extend Theorem 1 from discrete candidates dictionary

H = {f1, . . . , fM} to general parameterized dictionary HΩ = {fγ : γ ∈ Ω},

denote f γ = (fγ(x1), . . . , fγ(xn))>.
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Corollary 2. Assume ν ∈ (0, 1) and Ω is the parameter space, for any distribu-

tion Θ(γ) over Ω such that K(Θ, π) is finite for given prior π(γ). If ω2 ≥ σ2

min(ν,1−ν)

then we have oracle inequality

‖η̂−η‖2
2 ≤ ν

∫
Ω

‖f γ −η‖2
2Θ(γ) dγ+ (1− ν)

∥∥∥∥∫
Ω

f γΘ(γ) dγ − η
∥∥∥∥2

2

+ 2ω2K(Θ, πδ)

(2.21)

with probability at least 1− δ. Moreover,

E‖η̂−η‖2
2 ≤ ν

∫
Ω

‖f γ−η‖2
2Θ(γ) dγ+(1−ν)

∥∥∥∥∫
Ω

f γΘ(γ) dγ − η
∥∥∥∥2

2

+2ω2K(Θ, π) ,

(2.22)

where

η̂ = argmin
ψ∈Rn

∫
Ω

exp

(
− 1

2ω2
‖f γ − Y ‖2

2 +
1− ν
2ω2
‖f γ −ψ‖2

2

)
π(γ) dγ (2.23)

Remark 2. Under this continuous scenario, we can not achieve result parallel to

Corollary 1 for competing with single models, because restricting Θ(γ) to mass on

a specific point will cause singularity, specifically, K(Θ, π) = 1 · log(1/0) =∞.

2.4 Algorithms to solve BMAX

In last section, we introduced and analyzed the BMAX estimator ψX(ω2, ν),

which is optimal both in expectation and in deviation to solve the model averaging

problem. In this section, we provide two algorithms to approximate the minimizer

of log J(ψ), equivalently, ψX(ω2, ν).

We propose two algorithms, Greedy Model Averaging (GMA-BMAX) algo-

rithm, and Gradient Descent (GD-BMAX) algorithm. The convergence rates of

both algorithms will be shown. Specifically, denote k as the number of itera-

tions in the algorithms, GMA-BMAX algorithm has a converge rate of O(1/k),

and GD-BMAX algorithm converges with a geographic rate of O(qk) for some
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q ∈ (0, 1). Oracle inequalities will be shown for the k-th step estimators of both

algorithms.

Define condition under which the `2-norm of f j is bounded by constant L ∈ R:

‖f j‖2 ≤ L , ∀ j = 1, . . . ,M . (2.24)

Given ν ∈ (0, 1) and ω > 0, define

A1 =
1− ν
ω2

, (2.25)

in addition, with L in (2.24), define

A2 =
1− ν
ω2

+

(
1− ν
ω2

)2

L2 , (2.26)

and

D =

(
1− ν
ω2

)
L2 +

(
1− ν
ω2

)2

L4 . (2.27)

Lemma 1 and Lemma 2 are listed below for convenience, and they describe the

strong convexity of log J(ψ), similar derivation details can also be found at (e.g.,

Boyd and Vandenberghe, 2004, Section 9.1.2).

Denote

∇2 log J(ψ) =
∂2 log J(ψ)

∂ψ∂ψ>

as the Hessian matrix of log J(ψ), then we have the following lemma,

Lemma 1. For any ψ ∈ Rn we have

∇2 log J(ψ) ≥ A1In , (2.28)

and if {f 1, . . . ,fM} satisfies condition (2.24), then

∇2 log J(ψ) ≤ A2In , (2.29)

where A1 and A2 are defined as (2.25) and (2.26).

The strong convexity of log J(ψ) described by Lemma 1 implies the following

lemma, which measure the quantity of [log J(ψ)− log J(ψX(ω2, ν))].



31

Lemma 2. For any ψ ∈ Rn we have the following inequalities

log J(ψ)− log J(ψX(ω2, ν)) ≤ 1

2A1

‖∇ log J(ψ)‖2
2 , (2.30)

and if {f 1, . . . ,fM} satisfies condition (2.24), then

log J(ψ)− log J(ψX(ω2, ν)) ≥ 1

2A2

‖∇ log J(ψ)‖2
2 , (2.31)

where A1 and A2 are defined as (2.25) and (2.26).

Also note that, since log J(ψ) is strongly convex, its minimizer ψX(ω2, ν) is

unique.

2.4.1 Greedy Model Averaging Algorithm (GMA-BMAX)

Optimizing convex functions over convex sets is an important topic in modern

statistical computing, with many algorithms ranging from gradient descent to

interior point (IP) methods (see, e.g., Boyd and Vandenberghe, 2004, for a recent

overview). For simple constraints sets such as the simplex ΛM considered here,

so-called proximal methods (see, e.g., Beck and Teboulle, 2009) have shown very

promising performance, especially when M becomes large. However, the most

efficient of these methods (IP and proximal methods) do not output a sparse

solution in a general case.

In the sequel, we focus on greedy algorithms introduced into the statistical

literature by Jones (1992). In optimization, greedy algorithms over simplex ΛM

are known as Frank-Wolfe type (or reduced gradient) methods. Their name refers

to the original paper of Frank and Wolfe (1956).

The GMA-BMAX algorithm below can be seen as greedy algorithm that add

at most one function from the dictionary H at each iteration. This feature is

attractive as it outputs a k-sparse solution that depends on at most k functions

from the dictionary after k iterations. Similar algorithms with the purpose to
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Algorithm 1 Greedy Model Averaging Algorithm (GMA-BMAX)

Input: Noisy observation Y , dictionary H = {f1, . . . , fM}, prior π ∈ ΛM , pa-
rameters ν, ω.

Output: Aggregate estimator ψ(k).
Let ψ(0) = 0.

for k = 1, 2, . . . do
Set αk = 2

k+1

J (k) = argminj log J(ψ(k−1) + αk(f j −ψ(k−1)))

ψ(k) = ψ(k−1) + αk(fJ(k) −ψ(k−1))
end for

solve model averaging has appeared in Dai and Zhang (2011) and Dai et al.

(2012).

The following proposition follows from the standard analysis in Frank and

Wolfe (1956); Jones (1992); Barron (1993). It shows that the estimator ψ(k) from

Algorithm 1 converges to ψX(ω2, ν), the solution of BMAX as defined in (2.15).

Proposition 3. For ψ(k) as defined in Algorithm 1 (GMA-BMAX), if {f 1, . . . ,fM}

satisfies condition (2.24), then

log J(ψ(k)) ≤ log J(ψX(ω2, ν)) +
8D

k + 3
. (2.32)

Proposition 3 states that GMA-BMAX outputs ψ(k) at the k-step, such that

log J(ψ(k)) converges with a rate of O(1/k) to log J(ψX(ω2, ν)), the minimum of

log J(ψ).

Another proposition below describes that the upper bound in the oracle in-

equality of ψ(k) output from GMA-BMAX converges to that of ψX(ω2, ν) in

Theorem 1, with a rate of O(1/
√
k).
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Proposition 4. Assume ν ∈ (0, 1) and if ω2 ≥ σ2

min(ν,1−ν)
, we have oracle inequal-

ity for any λ ∈ ΛM ,

‖ψ(k) − η‖2
2 ≤ ν

M∑
j=1

λj‖f j − η‖2
2 + (1− ν) ‖fλ − η‖2

2 + 2ω2K(λ,πδ)

+ 2

√
16D

A1(k + 3)
‖ψX(ω2, ν)− η‖2 +

16D

A1(k + 3)
, (2.33)

with probability at least 1− δ. Moreover,

E‖ψ(k) − η‖2
2 ≤ ν

M∑
j=1

λj‖f j − η‖2
2 + (1− ν) ‖fλ − η‖2

2 + 2ω2K(λ,π)

+ 2

√
16D

A1(k + 3)
E‖ψX(ω2, ν)− η‖2 +

16D

A1(k + 3)
. (2.34)

Remark 3. From Proposition 4, if ω2 ≥ σ2

min(ν,1−ν)
, for any j = 1, . . . ,M we have

MSE(ψ(k)) ≤ MSE(fj) + 2ω2 log

(
1

πjδ

)
+O(1/

√
k) ,

with probability at least 1− δ and

EMSE(ψ(k)) ≤ MSE(fj) + 2ω2 log

(
1

πj

)
+O(1/

√
k) .

When k → ∞, ψ(k) achieves optimal deviation bound. However, it does not

imply optimal deviation bound of ψ(k) for small k (k < ∞), while the greedy

algorithms described in Dai and Zhang (2011) (GMA) and Dai et al. (2012)

(GMA-0 and GMA-0+) both achieve optimal deviation bound for small k ≥ 2.

2.4.2 Gradient Descent Algorithm (GD-BMAX)

A Gradient Descent Algorithm (GD-BMAX) is proposed in this section to solve

ψX(ω2, ν), the unique minimizer of J(ψ) in Rn.

Notice that

∇ log J(ψ(k−1)) =
∇J(ψ(k−1))

J(ψ(k−1))
=

1− ν
ω2

(ψ(k−1) − fλ(k−1)) ,
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Algorithm 2 Gradient Descent Algorithm (GD-BMAX)

Input: Noisy observation Y , dictionary H = {f1, . . . , fM}, prior π ∈ ΛM , pa-
rameters ν, ω2.

Output: Aggregate estimator ψ(k).
Let ψ(0) = 0.

for k = 1, 2, . . . do
Choose fixed step size tk = s ∈ (0, 2/A2) for k > 0.

fλ(k−1) =
M∑
j=1

λ
(k−1)
j f j

where λ(k−1) ∈ ΛM and

λ
(k−1)
j ∝ πj exp

(
− 1

2ω2
‖f j − Y ‖2

2 +
1− ν
2ω2
‖ψ(k−1) − f j‖2

2

)
(2.35)

and fλ(k−1) can be approximated by Algorithm 3 when M is large.

ψ(k) = (1− tk
1− ν
ω2

)ψ(k−1) + tk
1− ν
ω2

fλ(k−1)

end for

where λ(k−1) ∈ ΛM is defined as (2.35), it implies that the k-th step update is

ψ(k) = (1− tk
1− ν
ω2

)ψ(k−1) + tk
1− ν
ω2

fλ(k−1) = ψ(k−1) − tk∇ log J(ψ(k−1)) ,

thus Algorithm 2 is essentially a gradient decent algorithm with step size tk.

Proposition 5. For ψ(k) as defined in Algorithm 2 and choose fixed step size

tk = s ∈ (0, 2/A2) for k > 0, if {f 1, . . . ,fM} satisfies condition (2.24), then

log J(ψ(k))− log J(ψX(ω2, ν))

≤ [1− 2A1(s− (A2/2)s2)]k
(

log J(ψ(0))− log J(ψX(ω2, ν))
)
. (2.36)

Remark 4. For the step size tk, we may choose tk = s = 1/A2 to minimize the

righthand side of (2.36), it follows that

log J(ψ(k))− log J(ψX(ω2, ν)) ≤ (1− A1/A2)k
(

log J(ψ(0))− log J(ψX(ω2, ν))
)
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Remark 5. The convergence rate can be improved by the Heavy Ball Method (see,

e.g., Poljak, 1987; Nesterov and Nesterov, 2004).

Proposition 5 states that GD-BMAX outputs ψ(k) at the k-step, such that

log J(ψ(k)) converges with a geographic rate to log J(ψX(ω2, ν)), the minimum

of log J(ψ).

The following proposition describes that the upper bound in the oracle in-

equality of ψ(k) output from GD-BMAX converges to optimal deviation bound of

ψX(ω2, ν) in Theorem 1 as when k →∞, with a geographic rate.

Proposition 6. Assume ν ∈ (0, 1) and if ω2 ≥ σ2

min(ν,1−ν)
, we have oracle inequal-

ity for any λ ∈ ΛM ,

‖ψ(k) − η‖2
2 ≤ ν

M∑
j=1

λj‖f j − η‖2
2 + (1− ν) ‖fλ − η‖2

2 + 2ω2K(λ,π) + 2ω2 log(1/δ)

+ 2
√
L2[1− 2A1(s− (A2/2)s2)]k‖ψX(ω2, ν)− η‖2

+ L2[1− 2A1(s− (A2/2)s2)]k , (2.37)

with probability at least 1− δ. Moreover,

E‖ψ(k) − η‖2
2 ≤ ν

M∑
j=1

λj‖f j − η‖2
2 + (1− ν) ‖fλ − η‖2

2 + 2ω2K(λ,π)

+ 2
√
L2[1− 2A1(s− (A2/2)s2)]kE‖ψX(ω2, ν)− η‖2

+ L2[1− 2A1(s− (A2/2)s2)]k . (2.38)

Remark 6. From Proposition 6, if ω2 ≥ σ2

min(ν,1−ν)
, for any j = 1, . . . ,M we have

MSE(ψ(k)) ≤ MSE(fj) + 2ω2 log

(
1

πjδ

)
+O(qk) ,

with probability at least 1− δ and

EMSE(ψ(k)) ≤ MSE(fj) + 2ω2 log

(
1

πj

)
+O(qk) ,

for some constant q ∈ (0, 1).
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Though the GD-BMAX algorithm does not give sparse output as GMA-

BMAX algorithm, it has a faster geographic convergence rate than O(1/k) of

GMA-BMAX. Like Proposition 4, the results in Proposition 6 do not imply opti-

mal deviation bounds of ψ(k) for small k (k <∞). Later in Section 2.5, a greedy

algorithm GMA-0 is to solve Q-aggregation (with linear entropy), GMA-0 not

only outputs sparse estimator like GMA-BMAX algorithm, but also it has opti-

mal deviation bound after small iterations (k ≥ 2). Yet it does have limitations,

which will be discussed as well.

When M is large, it is not practical to directly calculate λ(k−1) ∈ ΛM in

GD-BMAX algorithm with formulation

λ
(k−1)
j ∝ πj exp

(
− 1

2ω2
‖f j − Y ‖2

2 +
1− ν
2ω2
‖ψ(k−1) − f j‖2

2

)
,

instead, we can apply Metropolis-Hastings (MH) sampler to approximate λ(k−1)

for the k-th iteration in Algorithm 2. For a basic introduction to Monte Carlo

methods and Metropolis-Hastings sampler, see e.g. Marin and Robert (2007).

The MH algorithm stated above is an approach to approximate fλ(k−1) with

u
(k−1)
T , it results that the sequence {ψ(k)} in the GD-BMAX algorithm will have

perturbations.

Below we give a simple proposition describing how the perturbations from

approximating fλ(k−1) would influence convergence of sequence {log J(ψ(k))} to

log J(ψX(ω2, ν)).

Proposition 7. Given Y ∈ Rn, for all k > 0, we assume u
(k−1)
T from Algorithm 3

satisfying the following:

E[u
(k−1)
T |ψ(k−1)] = fλ(k−1) (2.39)

‖COV [u
(k−1)
T |ψ(k−1)]‖op ≤ s2 (2.40)
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Algorithm 3 Metropolis-Hastings (MH) Sampler for estimating fλ(k−1) at k-th
step in Algorithm 2

Input: Noisy observation Y , dictionary H = {f1, . . . , fM}, prior π ∈ ΛM , pa-
rameters ν, ω2, (k − 1)-th step estimator ψ(k−1).

Output: u
(k−1)
T as estimator of fλ(k−1) =

∑M
j=1 λ

(k−1)
j f j.

Initialize j(0) = 0.

for t = 1, · · · , T0 + T do
Generate j̃ ∼ q(·|j(t− 1)).
Compute

ρ(j(t− 1), j̃) = min

(
q(j(t− 1)|j̃)θ(j̃)

q(j̃|j(t− 1))θ(j(t− 1))
, 1

)
,

where

θ(j) = πj exp

(
− 1

2ω2
‖f j − Y ‖2

2 +
1− ν
2ω2
‖ψ(k−1) − f j‖2

2

)
.

Generate a random variable

j(t) =

{
j̃ , with probability ρ(j(t− 1), j̃)

j(t− 1) , with probability 1− ρ(j(t− 1), j̃)

end for
Calculate

u
(k−1)
T =

1

T

T0+T∑
t=T0+1

f j(t).
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where ‖ · ‖op is matrix spectral norm. Then we have

E
(

log J(ψ(k))− log J(ψX(ω2, ν))
)

≤ [1− 2A1(s− (A2/2)s2)]k
(

log J(ψ(0))− log J(ψX(ω2, ν))
)

+ A1ns
2/2 .

2.5 Q-aggregation: A Dual Representation of Aggregate

by BMAX

In this section, we will firstly introduce another model averaging method, Q-

aggregation, which was proposed in Dai et al. (2012); then we will show that Q-

aggregation (with Kullback-Leibler entropy) is essentially a dual representation of

the aggregate by BMAX as defined in (2.15) and (2.16); finally GMA-0 algorithm

and its deviation optimality originally proved in Dai et al. (2012) are listed for

comparisons with GMA-BMAX and GD-BMAX, both in theory and via numerical

experiments in the next section.

Given Y and {f 1, . . . ,fM}, Q-aggregation fλQ is defined as following:

fλQ =
M∑
j=1

λQj f j , (2.41)

where λQ = (λQ1 , . . . , λ
Q
M)> ∈ ΛM such that

λQ ∈ argmin
λ∈ΛM

Q(λ) , (2.42)

and

Q(λ) = ‖fλ − Y ‖2
2 + ν

M∑
j=1

λj‖f j − fλ‖2
2 + 2ω2Kρ(λ,π) , (2.43)

for some ν ∈ (0, 1). Kρ(λ,π) is defined as

Kρ(λ,π) =
M∑
j=1

λj log

(
ρ(λj)

πj

)
, (2.44)
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where ρ is a real valued function on [0, 1] satisfying

ρ(t) ≥ t ,

t log ρ(t) is convex . (2.45)

When ρ(t) = t, Kρ(λ,π) becomes K(λ,π), the Kullback-Leibler entropy.

When ρ(t) = 1, Kρ(λ,π) =
∑M

j=1 λj log(1/πj), a linear entropy in ΛM , especially,

penalty of Kρ(λ,π) in (2.43) vanishes when π is a flat prior.

To build duality, first define function T : Rn → R as

T (h) = − ν

1− ν
‖h− Y ‖2

2 − 2ω2 log

(
M∑
j=1

πj exp
(
− ν

2ω2
‖f j − h‖2

2

))
, (2.46)

and denote the maximizer of T (h) as

ĥ = argmax
h∈Rn

T (h) . (2.47)

Define function S : ΛM × Rn → R as

S(λ,h) = − ν

1− ν
‖h− Y ‖2

2 + ν
M∑
j=1

λj‖f j − h‖2
2 + 2ω2K(λ,π) . (2.48)

Define two hyper planes A and B in ΛM × Rn as

A =

{
(λ,h) ∈ ΛM × Rn : h =

1

ν
Y − 1− ν

ν
fλ

}
,

B =

{
(λ,h) ∈ ΛM × Rn : λj =

exp
(
− ν

2ω2‖f j − h‖2
2

)
πj∑M

i=1 exp
(
− ν

2ω2‖f i − h‖2
2

)
πi

}
.

(2.49)

The following lemma states the relationship between ĥ and fλQ :

Lemma 3. When ρ(t) = t, with all above definitions, we have the following

min
λ∈ΛM

Q(λ) = min
λ∈ΛM

max
h∈Rn

S(λ,h) = max
h∈Rn

min
λ∈ΛM

S(λ,h) = max
h∈Rn

T (h),

moreover, A ∩B =
{

(λQ, ĥ)
}

.
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Lemma 3 states that, (λQ, ĥ) is the joint of hyper planes A and B, and the

saddle point of function S(λ,h) over space ΛM × Rn.

With T (h) defined as (2.46), make the transformation h = 1
ν
Y − 1−ν

ν
ψ then

it is easy to verify that

T (h) = −2ω2 log (J(ψ)) , (2.50)

where J(ψ) is defined as (2.16).

So maximizing T (h) is equivalent to minimizing J(ψ), thus

ĥ =
1

ν
Y − 1− ν

ν
ψX(ω2, ν) ,

combine it with

ĥ =
1

ν
Y − 1− ν

ν
fλQ ,

from Lemma 3, it follows that ψX(ω2, ν) = fλQ , thus we have

Theorem 2. When ρ(t) = t,

ψX(ω2, ν) = fλQ ,

where ψX(ω2, ν) is defined by (2.15) and (2.16), and fλQ is defined by (2.41),(2.42)

and (2.43).

Below we also include a corollary from Lemma 3 and Theorem 2, and it

describes an sufficient and necessary condition of λQ,

Corollary 3. When ρ(t) = t, λ̃ = λQ if and only if

λ̃j =
exp

((
−‖f j − Y ‖2

2 + (1− ν)‖fλ̃ − f j‖2
2

)
/2ω2

)
πj∑M

i=1 exp ((−‖f i − Y ‖2
2 + (1− ν)‖fλ̃ − f i‖2

2) /2ω2) πi
. (2.51)

Proof. (Necessity) Since ψX(ω2, ν) = fλQ from Theorem 2, then let ∂J(ψ)
∂ψ

=

0, (2.51) is obtained.

(Sufficiency) If λ̃ satisfies condition (2.51), it is solution to λ in A∩B, which

has the unique point (λQ, ĥ) from Lemma 3, resulting that λ̃ = λQ.
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Theorem 2 states that, when ρ(t) = t, Kρ(λ,π) becomes Kullback-Leibler

entropy, Q-aggregation (with Kullback-Leibler entropy) fλQ is essentially a dual

representation of ψX(ω2, ν), the aggregate by BMAX, and apparently it follows

that, fλQ shares the same expectation and deviation optimality as ψX(ω2, ν) in

solving the model averaging problem, and this matches the results on optimality

of fλQ by Theorem 3.1 in Dai et al. (2012), where it is proved with generalKρ(λ,π)

with ρ(t) satisfying condition (2.45). Theorem 3.1 of Dai et al. (2012) is listed

below without proof for convenience.

Theorem 3. Assume ν ∈ (0, 1) and if ω2 ≥ σ2

min(ν,1−ν)
, for fλQ as defined in

(2.41),(2.42) and (2.43) with ρ(t) satisfying condition (2.45), we have oracle in-

equality for any λ ∈ ΛM ,

‖fλQ − η‖2
2 ≤ ν

M∑
j=1

λj‖f j − η‖2
2 + (1− ν) ‖fλ − η‖2

2 + 2ω2K(λ,πδ) , (2.52)

with probability at least 1− δ. Moreover,

E‖fλQ − η‖2
2 ≤ ν

M∑
j=1

λj‖f j − η‖2
2 + (1− ν) ‖fλ − η‖2

2 + 2ω2K(λ,π) . (2.53)

GMA-0 is an algorithm proposed in Dai et al. (2012) as a greedy approach

to solve Q-aggregation with linear entropy (Kρ(λ,π) =
∑M

j=1 λj log(1/πj) when

ρ(t) = 1). For comparison purpose, we list GMA-0 algorithm below.

In GMA-0 algorithm, e(j) denotes the jth vector of the canonical basis of RM .

Similar to GMA-BMAX, it is a greedy algorithm that add at most one function

from the dictionary at each iteration. It outputs a k-sparse solution that depends

on at most k functions from the dictionary after k iterations. Moreover, GMA-0

leads to sparse estimators that achieve the optimal deviation bounds for small

k ≥ 2, while the estimators from GMA-BMAX (sparse) and GD-BMAX (dense)

only have such bounds when k →∞.

Below we show the convergence rate of GMA-0 algorithm is O(1/k),
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Algorithm 4 GMA-0 Algorithm

Input: Noisy observation Y , dictionary H = {f1, . . . , fM}, prior π ∈ ΛM , pa-
rameters ν, β.

Output: Aggregate estimator fλ(k) .

Let λ(0) = 0, fλ(0) = 0.

for k = 1, 2, . . . do
Set αk = 2

k+1

J (k) = argminj Q(λ(k−1) + αk(e
(j) − λ(k−1)))

λ(k) = λ(k−1) + αk(e
(J(k)) − λ(k−1))

end for

Proposition 8. When ρ(t) = 1, λ(k) is output from GMA-0, for any λ ∈ ΛM ,

for k ≥ 1 it holds that

Q(λ(k)) ≤ Q(λ) +
4(1− ν)

k + 3

M∑
j=1

λj‖f j − fλ‖2
2 .

For k ≥ 2, fλ(k) achieves optimal deviation.

Theorem 4. Fix ν ∈ (0, 1), k ≥ 2 and π ∈ ΛM . Take

ω2 ≥ σ2 inf
θ∈(0,1]

max

{
1

ν − 4(1−ν)(1−θ)
(k+3)θ

;
1

(1− θ)(1− ν)(1− 4
k+3

)

}
,

then fλ(k) with λ(k) output by GMA-0 satisfies

‖fλ(k) − η‖2
2 ≤ min

j

{
‖f j − η‖2

2 + 2ω2 log

(
1

πjδ

)}
,

with probability 1− δ. Moreover,

E‖fλ(k) − η‖2
2 ≤ min

j

{
‖f j − η‖2

2 + 2ω2 log

(
1

πj

)}
.

Both the proof of Proposition (8) and Theorem 4 can be found in Dai et al.

(2012) (Theorem 4.1 and 4.2).
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To get a better quantitative idea of the result, we illustrate the particular

choice ν = 1/2. In this case, it can be easily shown that the optimal θ is given

by θ?k = 2/(
√
k + 3 + 2). Therefore, in this case, one may take

ω2 ≥ 2σ2

1− 2/
√
k + 3

.

In particular, for k = 2, it is sufficient to take ω2 = 2(5 + 2
√

5)σ2 ≥ 19σ2 .

Although it achieves the optimal rate for model averaging, the large constant

implies that it is may still be beneficial to run the algorithm for more than two

iterations.

It is worth pointing out that with flat prior, the first stage estimator fλ(1) = fĵ

is simply the empirical risk minimizer with ĵ ∈ argminj M̂SE(fj). We have already

pointed out that this estimator achieves suboptimal deviation bounds; therefore

the requirement of k ≥ 2 in our analysis is natural.

Remark 7. Theorem 4 implies deviation bounds of the optimal order for all

k ≥ 2, and the constant ω2 decreases to σ2/min(ν, 1− ν) as in Theorem 3 when

k →∞. Such results indicate that the choice of ν is not critical and any positive

constant leads to the same optimal bound. However, we can optimize the constant

by choosing ν = 1/2 which can be used in the simulations.

Remark 8. GMA-0 algorithm uses only zero order information, namely, the

coordinate that minimizes the objective value Q(·) (which is relatively uncommon

in the greedy algorithm literature), instead, the standard Frank-Wolfe procedure in

the greedy algorithm literature uses first order information, namely the gradient

∇Q, to pick the best coordinate J (k). Mathematically,

J (k) = argmin
j

(
∇Q(λ(k))

)
j
,

then from the classical greedy algorithm analysis in (Frank and Wolfe, 1956;

Jones, 1992; Barron, 1993) we could still get similar results as Proposition 4

of GMA-BMAX algorithm under condition (2.24), and λ(k) is well-known in the

literature (also see surveys Clarkson, 2008; Jaggi, 2011).



44

Remark 9. At iteration k in GMA-0 algorithm, we could take a more aggressive

optimization step to update λ(k) given {J (1), . . . , J (k)}, specifically,

λ(k) = argmin
λ∈ΛM

Q(λ) ,

s.t. λj = 0 for j /∈ {J (1), . . . , J (k)}. This kind of additional optimization is

referred to as fully-corrective step (Shalev-Shwartz et al., 2010), which is known

to improve performance in practice. And apparently this full-corrective outputs

also share the deviation optimality as GMA-0 in Theorem 4.

Note that when we choose flat prior π, the choice of J (k) in GMA-0 algorithm

can be further simplified to

J (k) = argmin
j

{
‖f j − Y ‖2

2 − (1− ν)(1− αk)‖fλ(k−1) − f j‖2
2 + 2ω2 ln(1/λj)

}
,

(2.54)

which can be interpreted as at each iteration of GMA-0 algorithm, estimator f j

is preferred to other candidates if it is closer to Y and has less correlated with

current aggregate estimator fλ(k−1) (i.e. we want ‖fλ(k−1) − f j‖2
2 be large while

‖f j − Y ‖2
2 being small).

With equation

‖(1− αk)fλ(k−1) + αkf j − Y ‖2
2

= (1− αk)‖fλ(k−1) − Y ‖2
2 + αk‖f j − Y ‖2

2 − αk(1− αk)‖fλ(k−1) − f j‖2
2 ,

reorganize equation (2.54) and J (k) can be equivalently chosen by

J (k) = argmin
j
{‖(1− αk)fλ(k−1) + αkf j − Y ‖2

2 + ναk(1− αk)‖fλ(k−1) − f j‖2
2

+ 2αkω
2 ln(1/λj)

}
, (2.55)

which implies that GMA-0 algorithm is a cleaner version of GMA algorithm in Dai

and Zhang (2011), and they all share the deviation and expectation optimality.

The advantage of GMA-0 compared to algorithms GMA-BMAX and GD-BMAX
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are: it not only outputs spare estimators which hold optimality for small k ≥ 2,

it also becomes parameter free if we choose flat prior as π = (1/M, . . . , 1/M)>

(penalty term 2ω2 ln(1/λj) in (2.54) vanishes) and set ν = 1/2 as default, while

GMA-BMAX and GD-BMAX algorithms need to tune ω for practical applica-

tions.

In addition, with flat prior π when k = 2, GMA-0 is different from STAR

algorithm (defined as (1.21), (1.22) and (1.23)) with an additional term να2(1−

α2)‖fλ(1)−f j‖2
2 where α2 = 1/2, penalizing the variance comes from aggregation.

2.6 Numerical Experiments

The purpose of this section is to illustrate the advantages of using BMAX esti-

mators by numerical examples. We focus on the average performance of different

algorithms and configurations.

2.6.1 Model Setup

We identify a function f with a vector (f(x1), . . . , f(xn))> ∈ Rn. Define f 1, . . . ,fM

so that the n ×M design matrix X = (f 1, . . . ,fM) has i.i.d standard Gaussian

entries. Let In denote the identity matrix of Rn and let ∆ ∼ N (0, In) be a

random vector. The regression function is defined by η = f 1 + 0.5∆. Note that

typically f 1 will be the closest function to η but not necessarily. The noise vector

ξ ∼ N (0, σ2In) is drawn independently of X where σ = 2.

We define the oracle model (OM) fk∗ , where k∗ = argminj MSE(fj). The

model fk∗ is clearly not a valid estimator because it depends on the unobserved η,

however it can be used as a performance benchmark. The performance difference

between an estimator η̂ and the oracle model fk∗ is measured by the regret defined

as:

R(η̂) = MSE(η̂)−MSE(fk∗) . (2.56)
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Since the target is η = f 1 +0.5∆, and f 1 and ∆ are random Gaussian vectors,

the oracle model is likely f 1 (but it may not be f 1 due to the misspecification

vector ∆). The noise σ = 2 is relatively large, which implies a situation where

the best convex aggregation does not outperform the oracle model. This is the

scenario we considered here. For simplicity, all algorithms use a flat prior πj =

1/M for all j.

The experiment is performed with the parameters n = 50, M = 200, and

σ = 2, and repeated for 500 replications.

2.6.2 Comparative Results among Different Models

GMA-BMAX and GD-BMAX algorithms are provided to solve BMAX.Q-aggregation

(with Kullback-Leibler entropy) is a dual representation of the aggregate by

BMAX , while GMA-0 algorithm is a greedy approach to solve Q-aggregation

(with linear entropy), thus GMA-0 is included for comparison purpose and it is

parameter free with flat prior and ν = 1/2 fixed. From the definition of Q(λ)

(2.43), it is easy to see that, the minimizer of Q(λ) (when ρ(t) = 1 with flat

prior) becomes λproj in (2.9) by setting ν = 0, so λproj is approximated by GMA-

0 with ν = 0 by running 200 iterations, and the projection algorithm is denoted

by “PROJ”. GMA-BMAX, GD-BMAX and GMA-0 are run for K iterations up

to K = 150, with ν = 1/2 (this choice theoretically optimize upper bound of

the oracle inequality (2.17),(2.18)), parameter ω for GMA-BMAX, GD-BMAX is

chosen as ω2 = σ2/5, and parameter ω for exponential weighted model averaging

(denoted by “EWMA”) is tuned by ten fold cross validation. STAR estimator is

also included. Regrets (2.56) of all algorithms are reported for comparisons.

Results are composed in two forms: table (Regrets of STAR, EWMA, PROJ,

Regrets versus iterations for GMA-BMAX, GD-BMAX, GMA-0), and figure (Re-

grets vs iterations for GMA-BMAX, GD-BMAX, GMA-0).

Table 2.1 is a comparison of commonly used estimators (STAR, EWMA and



47

Table 2.1: Performance Comparison

STAR EWMA PROJ
0.458± 0.44 0.435± 0.5 0.425± 0.3

k = 1 k = 5 k = 15 k = 60 k = 100 k = 150
GMA-BMAX 0.687± 0.72 0.493± 0.43 0.417± 0.38 0.376± 0.37 0.37± 0.37 0.368± 0.38
GD-BMAX 0.974± 0.23 0.873± 0.21 0.69± 0.2 0.415± 0.33 0.376± 0.36 0.368± 0.38

GMA-0 0.549± 0.78 0.395± 0.45 0.373± 0.41 0.368± 0.4 0.369± 0.41 0.368± 0.4

PROJ) with GMA-BMAX, GD-BMAX, GMA-0. The regrets are reported using

the “mean± standard deviation” format.

The results in Table 2.1 indicate that GMA-BMAX, GD-BMAX and GMA-

0 perform better as iteration k increases, and all three algorithms beat STAR,

EWMA and PROJ when k is large enough. GMA-BMAX beats when k = 15

and GD-BMAX beats when k = 60. This does not conflict with Proposition 4

and Proposition 6 which state that GD-BMAX has faster convergence rate than

GMA-BMAX, because they start from different initial points, and if we calculate

the total decrements after k = 60 iterations for them, the regret of GMA-BMAX

decreases by 0.687−0.376 = 0.311 while that of GD-BMAX decreases by 0.974−

0.415 = 0.559, we can see the performance of GD-BMAX actually improves faster

than that of GMA-BMAX. GMA-0 beats STAR, EWMA and PROJ after as small

as k = 5 iterations, which still gives a relatively sparse averaged model. This is

consistent with Theorem 4 which states that GMA-0 has optimal bounds for

small k (k ≥ 2), we can also see that in order to achieve good performance, it is

necessary to use more iterations than k = 2 (although this does not change the

O(1/n) rate for the regret, it can significantly reduce the constant).

Figure 2.1 compares the MSE performance of GMA-BMAX, GD-BMAX and

GMA-0 with ν = 1/2. GMA-0 is parameter free when set ν = 1/2 with flat

prior, while GMA-BMAX and GD-BMAX need to choose some proper ω2 (in

this experiment, we simply set ω2 = σ2/5), after large iterations (k = 100), they
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Figure 2.1: Regrets R(ψ(k)) versus iterations k.

behaves very similar. Notice that GMA-BMAX and GD-BMAX initialize both

with ψ(0) = 0, but they has difference estimator even after the first iteration

(k = 1), GMA-BMAX selects j ∈ {1, . . . ,M} that minimizes log J(f j) and GD-

BMAX outputs a dense estimator, whiles GMA-0 selects j ∈ {1, . . . ,M} that

minimizes Q(f j) and the first stage output is actually the empirical risk minimizer

fk1 where k1 = argminj M̂SE(fj).
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Chapter 3

Aggregation of Linear Models

3.1 Aggregate by BMAX for Linear Models with Gaus-

sian priors

In the previous chapter, we introduced aggregate by Bayesian model averaging

with exponentiated least square loss (BMAX), which is proved to solve the model

averaging problem optimally both in deviation and in expectation. There we

assume f 1, . . . ,fM , the M candidate estimators of η = EY are deterministic,

independent of the noise ξ ∼ N(0, σ2In), where Y = η + ξ. This scenario will

apply for example, when data are split for training and testing, and different

estimators for the testing data are learned from training data based on different

models. In this chapter, we will investigate the scenario where the candidates are

not independent of noise under linear model assumption.

3.1.1 Bayesian Framework of BMAX for Linear Models

with Gaussian priors

Given response vector Y = (y1, . . . , yn)> which is constructed by some unknown

mean η ∈ Rn corrupted by Gaussian noise ξ ∼ N(0, σ2In), namely,

Y = η + ξ ,

and we assume that σ2 is known. Also a set of predictor variables f 1, . . . ,f d ∈ Rn

are given, and define X = (f 1, . . . ,f d) ∈ Rn×d. Our goal is to estimate the mean
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vector η, given vector Y and matrix X, and usually, we are interested in the

relationship between the truth η and predictor variables X, thus the basic but

fundamental linear model is often considered.

Under the linear model, we assume η is in the linear space spanned by

f 1, . . . ,f d ∈ Rn, the columns of matrix X, yet this assumption, is not necessarily

true. Thus we assume a Bayesian framework in which the mean of Y is denoted

by µ ∈ Rn instead of η to avoid confusions. Moreover, the model choice problem

involves selecting a subset of predictor variables and placing additional restric-

tions on the subspace that contains the mean. Specifically, let ℘ = {0, 1}d ⊂ Rd,

we index the model space by γ = (γ1, . . . , γd)
> ∈ ℘, a vector of indicators with

γj = 1, meaning that f j is included in the set of predictor variables, and with

γj = 0, meaning that f j is excluded. Denote the number of elements in ℘ as

|℘| = 2d. In addition, we assume that, given sparsity pattern γ, let Mγ denote

the linear model under which µ is in the linear space spanned by the columns in

X with respective to the sparsity pattern γ.

Mathematically, we assume that

Y = µ+ ζ ,

µ|Mγ = Xγβγ ,

where ζ ∼ N(0, ω2In) with some parameter ω > 0, and Xγ ∈ Rn×dγ represents

the design matrix composed by columns in X respective to sparsity pattern γ

and βγ ∈ Rdγ is the regression coefficients vector.

Zellner (1986)’s g prior for βγ is defined as

βγ|Mγ ∼ N(0, gω2(X>γXγ)
−1) , (3.1)

which has been widely adopted because of its computational efficiency in evaluat-

ing marginal likelihoods and model search and, perhaps most important, because

of its simple, understandable interpretation as arising from the analysis of a con-

ceptual sample generated using the same design matrix X as employed in the
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current sample. So in this chapter, we adapt to use the Gaussian prior for βγ,

βγ|Mγ ∼ N(β̃γ, gω
2K−1

γ ) ,

where Kγ ∈ Rdγ×dγ is positive definite, β̃γ ∈ Rdγ and g > 0 are given.

In a nutshell, our Bayesian framework is

Y |µ ∼ N(µ, ω2In) , (3.2)

µ|Mγ,βγ = Xγβγ , (3.3)

βγ|Mγ ∼ N(β̃γ, gω
2K−1

γ ) , (3.4)

and model prior is

p(Mγ) = πγ , (3.5)

for γ ∈ ℘, where Kγ ∈ Rdγ×dγ is positive definite, β̃γ ∈ Rdγ , and g > 0, ω > 0

are given.

Consider Bayes estimator ψ̂

ψ̂ = argmin
ψ∈Rn

E [L(ψ,µ)|Y ] (3.6)

where L is some loss function.

It follows from the above Bayesian framework that

E [L(ψ,µ)|Y ]

=
∑
γ∈℘

∫
L(ψ,Xγβγ)p(βγ|Y ,Mγ)p(Mγ|Y ) dβγ

=
1

p(Y )

∑
γ∈℘

∫
L(ψ,Xγβγ)p(Y |Mγ,βγ)p(βγ|Mγ)p(Mγ) dβγ

=
(2πω2)−n/2

p(Y )

∑
γ∈℘

πγ

∫
L(ψ,Xγβγ) exp

(
− 1

2ω2
‖Y −Xγβγ‖2

2

)
p(βγ|Mγ) dβγ
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For least square loss L(ψ,µ) = ‖ψ−µ‖2
2, the Bayes estimator is the posterior

mean

ψ`2(ω
2) = E(µ|Y ) =

∑
γ∈℘

p(Mγ|Y )XγE(βγ|Y ,Mγ) =
∑
γ∈℘

λγXγβ̂γ , (3.7)

where λ = (λ1, . . . , λ|℘|)
> ∈ Λ℘,

λγ ∝ πγ|
1

g
Kγ|1/2|X>γXγ +

1

g
Kγ|−1/2

· exp

(
− 1

2ω2
‖Y −Xγβ̂γ‖2

2 −
(β̂γ − β̃γ)>Kγ(β̂γ − β̃γ)

2gω2

)
, (3.8)

and

β̂γ = (X>γXγ +
1

g
Kγ)

−1(X>γ Y +
1

g
Kγβ̃γ) . (3.9)

Proof of (3.7) can be found in Appendix.

Now we apply the exponentiated least square loss L(ψ,µ) = exp{1−ν
2ω2 ‖ψ −

µ‖2
2} that introduced in Chapter 2, the respective Bayes estimator is

ψX(ω2, ν) = argmin
ψ∈Rn

J(ψ) , (3.10)

where

J(ψ) =
∑
γ∈℘

πγ

∫
exp

(
1− ν
2ω2
‖ψ −Xγβγ‖2

2 −
1

2ω2
‖Y −Xγβγ‖2

2

)

(2πgω2)−dγ/2|Kγ|1/2 exp

(
−

(βγ − β̃γ)>Kγ(βγ − β̃γ)
2gω2

)
dβγ .

(3.11)

By integrating out βγ in (3.11), we can rewrite J(ψ) as following:

Proposition 9.

J(ψ) =
∑
γ∈℘

πγ|
1

g
Kγ|1/2|νX>γXγ +

1

g
Kγ|−1/2

· exp

(
1− ν
2ω2

(ψ −Xγβ̂γ)
>W γ(ψ −Xγβ̂γ)

)
· exp

(
− 1

2ω2
‖Y −Xγβ̂γ‖2

2 −
(β̂γ − β̃γ)>Kγ(β̂γ − β̃γ)

2gω2

)
, (3.12)
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where

W γ = In + (1− ν)Xγ

(
νX>γXγ +

1

g
Kγ

)−1

X>γ . (3.13)

From the above proposition, by setting ∇ log J(ψ) = 0, it is easy to see that

ψX(ω2, ν) is essentially the aggregation of Xγβ̂γ’s, the Maximum A Posteriori

(MAP) estimator of µ under each model Mγ, though the aggregation is not

simply in the form of
∑

γ∈℘ λγXγβ̂γ where
∑

γ∈℘ λγ = 1, like ordinary Bayesian

model averaging framework (e.g. (3.7)) in which λγ is proportional to the posterior

probability p(Y |Mγ) (or modified with some dimension penalty); but in the form

of
∑

γ∈℘AγXγβ̂γ where Aγ ∈ Rn×n and
∑

γ∈℘Aγ = In, thus in this case it puts

different weights for each observation in the averaging procedure, which may gives

us some clues about model averaging for linear models: estimate each observation

by model averaging with different weights on the predictor variables.

3.1.2 Deviation Bounds of BMAX for Linear Models with

Gaussian priors

Next we propose a theorem stating BMAX estimator for linear models with Gaus-

sian priors is competitive with any single linear model.

Theorem 5. Consider BMAX estimator ψX(ω2, ν) as defined in (3.10) and

(3.11), assume ν ∈ (0, 1) and if ω2 ≥ σ2

min(ν,1−ν)
, we have oracle inequality

‖ψX(ω2, ν)− η‖2
2 ≤ min

γ∈℘
β∗γ∈Rdγ

{
‖Xγβ

∗
γ − η‖2

2 +
1

g
(β∗γ − β̃γ)>Kγ(β

∗
γ − β̃γ)

+2ω2 log(
1

πγδ
) + ω2 log(|νgX>γXγK

−1
γ + Idγ |)

}
,

(3.14)
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with probability at least 1− δ. Moreover,

E‖ψX(ω2, ν)− η‖2
2 ≤ min

γ∈℘
β∗γ∈Rdγ

{
‖Xγβ

∗
γ − η‖2

2 +
1

g
(β∗γ − β̃γ)>Kγ(β

∗
γ − β̃γ)

+2ω2 log(
1

πγ
) + ω2 log(|νgX>γXγK

−1
γ + Idγ |)

}
.

(3.15)

Remark 10. The term ‖Xγβ
∗
γ − η‖2

2 + 1
g
(β∗γ − β̃γ)>Kγ(β

∗
γ − β̃γ) on the right

hand side of the above two inequalities, can be further minimized for β∗γ over Rdγ ,

and the minimizer is essentially the ridge regression estimator under model Mγ

as if there is no noise.

Remark 11. If we use Zellner’s g prior (3.1) for βγ|Mγ (i.e. set Kγ = X>γXγ),

then log(|νgX>γXγK
−1
γ + Idγ |) = dγ log(1 + νg) is of order d.

Theorem 5 shows oracle inequalities of BMAX estimator to compete with sev-

eral linear models with Gaussian priors. It is easy to see that, the two inequalities

(3.14) and (3.15) still hold when setting πk = 1 for some k ∈ ℘ and πj = 0 for

j 6= k, which means there is only one linear model with Gaussian prior to be

considered. Then the following corollary is directly obtained from Theorem 5

and Proposition 9, and we will also see that ψX(ω2, ν) turns out to be a ridge

regression estimator.

Corollary 4. For fixed sparsity pattern k ∈ ℘, consider BMAX estimator ψX(ω2, ν)

as defined in (3.10), (3.11) with πk = 1, assume ν ∈ (0, 1) and if ω2 ≥ σ2

min(ν,1−ν)
,

for any β∗k ∈ Rdk we have oracle inequality

‖ψX(ω2, ν)− η‖2
2 ≤ ‖Xkβ

∗
k − η‖2

2 +
1

g
(β∗k − β̃k)>Kk(β

∗
k − β̃k)

+ 2ω2 log(
1

δ
) + ω2 log(|νgX>kXkK

−1
k + Idk |) , (3.16)



55

with probability at least 1− δ. Moreover,

E‖ψX(ω2, ν)− η‖2
2 ≤ ‖Xkβ

∗
k − η‖2

2 +
1

g
(β∗k − β̃k)>Kk(β

∗
k − β̃k)

+ ω2 log(|νgX>kXkK
−1
k + Idk |) . (3.17)

Also, ψX(ω2, ν) can be expressed explicitly as

ψX(ω2, ν) = Xkβ̂k = Xk(X
>
kXk +

1

g
Kk)

−1(X>k Y +
1

g
Kkβ̃k) (3.18)

From the above corollary we can see that, the BMAX estimator for fixed

sparsity k ∈ ℘ can compete with any linear predictors of sparsity pattern k. Also

the BMAX estimator turns out to be a ridge regression estimator when sparsity

pattern is fixed.

3.2 Gradient Descent Algorithm for Solving BMAX in

Linear Models with Gaussian Priors

To solve ψX(ω2, ν) is equivalent to solve the minimization problem of log J(ψ).

In this section we propose a gradient descent algorithm to solve ψX(ω2, ν) as

defined in (3.10) and (3.11) based on expression (3.12) in Proposition 9.

Define the following condition under which the `2-norm of f̂ γ = Xγβ̂γ is

bounded by some constant L2 ∈ R:

‖f̂ γ‖2 ≤ L2 ∀ γ ∈ ℘ . (3.19)

Given L2, define

A3 =
2(1− ν)2(1 + ν)

ν3
(L2

2/ω
4) +

1− ν
ν

(1/ω2) , (3.20)

With L2 and A3 defined, the algorithm is as following.

The following lemma describes the strong convexity of log J(ψ).
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Algorithm 5 Gradient Descent Algorithm to solve BMAX in Linear Models with
Gaussian Priors (GD-BMAX-LM)

Input: Noisy observation Y , X ∈ Rn×d and Kγ ∈ Rdγ×dγ ; prior π ∈ Λ|℘|;
parameters g, ν, ω2.

Output: Aggregate estimator ψ(k).
Let ψ(0) = 0, f̂ γ = Xγβ̂γ where β̂γ is defined as (3.9) for γ ∈ ℘.

for k = 1, 2, . . . do
Choose step size tk = s ∈ (0, 2/A3).
Calculate

∇ log J(ψ(k−1)) =
1− ν
ω2

∑
γ∈℘

λ(k−1)
γ W γ(ψ

(k−1) − f̂ γ)

where λ(k−1) ∈ Λ|℘| and

λ(k−1)
γ ∝ πγ|

1

g
Kγ|1/2|νX>γXγ +

1

g
Kγ|−1/2

· exp

(
1− ν
2ω2

(ψ(k−1) −Xγβ̂γ)
>W γ(ψ

(k−1) −Xγβ̂γ)

)
· exp

(
− 1

2ω2
‖Y −Xγβ̂γ‖2

2 −
(β̂γ − β̃γ)>Kγ(β̂γ − β̃γ)

2gω2

)

Calculate
ψ(k) = ψ(k−1) − tk∇ log J(ψ(k−1)).

end for
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Lemma 4. For any ψ ∈ Rn we have

∇2 log J(ψ) ≥ A1In , (3.21)

and if condition (3.19) satisfies, then for k > 0 and α ∈ [0, 1] it holds that

∇2 log J((1− α)ψ(k−1) + αψ(k)) ≤ A3In , (3.22)

where A1, A3 are defined as (2.25) and (3.20), ψ(k) is the k-th iteration output

from Algorithm 5.

The strong convexity of log J(ψ) described by Lemma 4 implies the following

lemma, which measures the quantity of [log J(ψ)− log J(ψX(ω2, ν))].

Lemma 5. For any ψ ∈ Rn we have the following inequalities

log J(ψ)− log J(ψX(ω2, ν)) ≤ 1

2A1

‖∇ log J(ψ)‖2
2 , (3.23)

where A1 is defined as (2.25).

Proposition 10. Given condition (3.19) is satisfied, for ψ(k) output from Algo-

rithm 5 and choose fixed step size tk = s ∈ (0, 2/A3) for k > 0, then

log J(ψ(k))− log J(ψX(ω2, ν))

≤
[
1− 2A1(s− (A3/2)s2)

]k (
log J(ψ(0))− log J(ψX(ω2, ν))

)
.

Remark 12. We can simply take s = 1/A3 to minimize the right hand side of

above inequality, it results that

log J(ψ(k))− log J(ψX(ω2, ν)) ≤ (1−A1/A3)k
(

log J(ψ(0))− log J(ψX(ω2, ν))
)
.

The proof of Proposition 10 is almost the same as that of Proposition 5. And it

states that Algorithm 5 converges to the minimum of log J(ψ) with a geographic

rate.

When |℘| = 2d is large, it is not practical to directly calculate ∇ log J(ψ(k−1))

out. Instead, we may use Monte Carlo methods such as Metropolis-Hastings algo-

rithm (Algorithm 6) to approximate ∇ log J(ψ(k−1)) of k-th step in Algorithm 5.
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Algorithm 6 Metropolis-Hastings Sampler for estimating∇ log J(ψ(k−1)) at k-th
step in Algorithm 5

Input: Noisy observation Y ; for γ ∈ ℘, Xγ ∈ Rn×dγ and Kγ ∈ Rdγ×dγ ; prior

π ∈ Λ|℘|; parameters g, ν, ω2, (k − 1)-th step estimator ψ(k−1).

Output: v
(k−1)
T as estimator of ∇ log J(ψ(k−1)).

Initialize j(0) = 0.

for t = 1, · · · , T0 + T do
Generate γ̃ ∼ q(·|γ(t− 1)).
Compute

ρ(γ(t− 1), γ̃) = min

(
q(γ(t− 1)|γ̃)θ(γ̃)

q(γ̃|γ(t− 1))θ(γ(t− 1))
, 1

)
,

where

θ(γ) = πγ|
1

g
Kγ|1/2|νX>γXγ +

1

g
Kγ|−1/2

· exp

(
1− ν
2ω2

(ψ(k−1) −Xγβ̂γ)
>W γ(ψ

(k−1) −Xγβ̂γ)

)
· exp

(
− 1

2ω2
‖Y −Xγβ̂γ‖2

2 −
(β̂γ − β̃γ)>Kγ(β̂γ − β̃γ)

2gω2

)

Generate a random variable

γ(t) =

{
γ̃ , with probability ρ(γ(t− 1), γ̃) ;

γ(t− 1) , with probability 1− ρ(γ(t− 1), γ̃) .

end for
Calculate

v
(k−1)
T =

1− ν
ω2

1

T

T0+T∑
t=T0+1

Wγ(t)(ψ
(k−1) −Xγ(t)β̂γ(t))
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3.3 A Frequentist’s Approach: Apply Q-Aggregation To

Affine Estimators

In Section 2.5, we introduced Q-aggregation (Dai et al., 2012), and proved that Q-

aggregation (with KL entropy) is essentially a dual representation of the aggregate

by BMAX, under the assumption that candidate estimators {f 1, . . . ,fM} are

static, being independent of noise ξ.

In last section BMAX is applied to linear models with Gaussian priors, and

the Bayes estimator is an aggregation of ridge regression estimators which are not

independent of noise ξ.

Now we define affine estimators f̂ γ indexed by parameter γ ∈ ℘,

f̂ γ = AγY + bγ , (3.24)

where symmetric Aγ ∈ Rdγ×dγ satisfies
Aγ ≥ 0 ,

maxγ∈℘ ‖Aγ‖op ≤ V ,

(3.25)

for some constant V and ‖ · ‖op is the matrix spectral norm. Denote the set size

of ℘ as |℘|.

In this section, given observation Y ∈ Rn, we propose a model averaging

approach by aggregation of affine estimators f̂ γ.

Affine estimators are frequently used in the statistical literature and the fol-

lowing are several examples (see, e.g., Dalalyan and Salmon, 2012).

• Ordinary least squares: we assume bγ = 0 and AγY is the projection of

Y to a linear subspace Lγ of Rn. In our special example with γ being the

sparsity pattern of a dictionary, we denote by Xγ the design matrix X

restricted to the columns indicated by the sparsity pattern γ. Let Aγ =

Xγ(X
>
γXγ)

−X>γ , where B− represents the pseudo-inverse of a matrix B,



60

then we have

f̂ γ = AγY = Xγβ̂γ ,

where

β̂γ ∈ argmin
βγ∈Rdγ

‖Y −Xγβγ‖2
2 .

• Ridge regression: with γ being the sparsity pattern of a given design matrix

X, set bγ = 0 and Aγ = Xγ(X
>
γXγ + λIdγ )

−1X>γ for some λ > 0, which

gives the estimator

f̂ γ = AγY = Xγβ̂γ ,

where β̂γ is the solution of the ridge regression problem

β̂γ ∈ argmin
βγ∈Rdγ

[
‖Y −Xγβγ‖2

2 + λ‖βγ‖2
2

]
.

• Diagonal filters: the matricesAγ’s are diagonal; that is, Aγ = diag(a1, · · · , an).

An example given in Dalalyan and Salmon (2012), called truncated SVD,

corresponds to the choice of ak = 1k≤γ for some integer γ ∈ ℘ = {1, . . . , n}.

The aggregation is taken in the form of

f̂λ =

|℘|∑
j=1

λjf̂ j . (3.26)

where λ = (λ1, . . . , λ|℘|)
> ∈ Λ|℘| and f̂ j defined as (3.24). Our goal is to find a

proper λ such that f̂λ is a good approximation of η = EY .

Leung and Barron (2006) proposed an aggregation method over estimators

that are least-square projections onto linear subspaces. For instance, under a

given n × dγ design matrix Xγ (dγ ≤ n), the project estimator to the linear

subspace spanned by the columns of Xγ is given by the least squares estimator

f̂ γ = Xγ(X
>
γXγ)

−1X>γ Y . In Leung and Barron (2006), the coefficients used in

aggregation formula (3.26) is based on exponential weighting, given by

λγ ∝ πγ exp
(
−(‖f̂ γ − Y ‖2

2 + σ2(2dγ − n))/(2ω2)
)
,
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where {πγ} is a prior distribution over the dictionary of models. For appropriately

chosen ω2 ≥ 2σ2, Leung and Barron (2006) proved optimal oracle inequalities in

expectation for the exponential weighted aggregation method, with ∆(n,M, σ2)

in (1.17) being of the order σ2 logM/n. Extensions of Leung and Barron (2006)

have been made in multiple directions. Rigollet and Tsybakov (2011) focused

on high-dimension models and treated the sparsity in particular. They proposed

the Exponential Screening (ES) estimator by choosing a specific discrete prior.

The ES estimator benefits from three types of sparsity simultaneously, which in-

cludes the low rank of design matrix X, `0 and `1 norm of the parameter vector.

Dalalyan and Salmon (2012) extended projection estimators to general affine es-

timators which take the more general form of f̂ γ = AγY +bγ. However, previous

work using the exponential weighting scheme only led to oracle inequalities in

expectation. There are so far no deviation results that hold in high probability

for affine model aggregation.

Now we propose an aggregation estimator that can achieve a proper deviation

bound, by applying a modified version of Q-aggregations (Rigollet, 2012; Dai

et al., 2012) to affine estimators (3.24) that satisfy conditions (3.25). Note that

different from Dalalyan and Salmon (2012), we do not require the affine matrices

Aγ’s to be exchangeable and we make no assumption on bγ.

Specifically, define

f̂
Q

= f̂θ̂ =
∑
γ∈℘

θ̂γf̂ γ, (3.27)

where

θ̂ ∈ argmin
θ∈Λ|℘|

{
(1− ν)‖̂fθ − Y ‖2

2 + ν
∑
γ∈℘

θγ‖f̂ γ − Y ‖2
2 + Φ

∑
γ∈℘

θγCγ + ΦK(θ,π)

}
,

(3.28)

ν ∈ (0, 1) and Cγ is defined as

Cγ =
8σ4tr(A2

γ)

Φ2 − 8V Φσ2
+

2σ2tr(Aγ)

Φ
. (3.29)
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The following theorem shows the modified Q-aggregation of affine estimators

has an oracle inequality with a proper deviation bound.

Theorem 6. Consider affine estimators f̂ γ of (3.24) that satisfy conditions

(3.25). Given ν ∈ (0, 1), let f̂
Q

be the aggregation estimator defined by (3.27),

(3.28) and (3.29). If Φ ≥ 32
[
V ∨ (min{ν, 1− ν})−1]σ2, then for any fixed q ∈ ℘,

we have

‖f̂
Q
− η‖2

2 ≤ ‖f̂ q − η‖2
2 + ΦCq + Φ log(

1

πqδ
) ,

with probability at least 1− δ.

Theorem 6 states that Q-aggregation on affine estimators is competitive to

any single affine estimators in the given dictionary, while Theorem 5 states that

the aggregate by BMAX for linear models with Gaussian priors is competitive

to any single linear estimator given the design matrix X. The remainder term

in oracle inequalities of both theorems are of order O(dγ), and such dimension

related term seems extra compared to the results of Leung and Barron (2006)

and Dalalyan and Salmon (2012), which actually can not be eliminated due the

chi-square type noise term from projection of Gaussian noise.
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Chapter 4

Fully Bayes Approach with Hyper Prior on g

Rather than using a plug-in estimate to eliminate g, a natural alternative is Fully

Bayes (FB) with the integrated marginal likelihood under a proper hyper prior

on g. Consequently, a prior on g leads to a mixture of priors on the coefficients

βγ, and it typically provides more robust inference. Although Zellner and Siow

(1980) did not explicitly use a g-prior formulation with a prior on g, their recom-

mendation of a multivariate Cauchy form for p(βγ|σ2) implicitly corresponds to

using a g-prior with an Inv-Gamma(1/2,n/2) prior on g, namely,

p(βγ|σ2) ∝
∫
N
(
βγ | 0, gσ2(X>γXγ)

−1
)
π(g) dg ,

with

π(g) =
(n/2)1/2

Γ(1/2)
g−3/2e−n/(2g) .

Besides the above Zellner-Siow prior on g, both Liang et al. (2008) and Cui

and George (2008) investigated hyper-g prior on g in the form of

π(g) =
a− 2

2
(1 + g)−a/2 , g > 0 ,

which is a proper distribution for a > 2. This family of priors includes priors

used by Strawderman (1971) to provide improved mean square risk over ordinary

maximum likelihood estimates in the normal means problem. Liang et al. (2008)

also modified the hyper-g prior to hyper-g/n prior

π(g) =
a− 2

2n
(1 +

g

n
)−a/2 ,

for model selection consistency under the null model.
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4.1 BMAX framework and settings for Linear Models with

Gaussian priors and priors on g

We adopt the Bayesian framework for linear models in Chapter 3, the only dif-

ference is that in this chapter we put a prior on the parameter g. Given Y ∈ Rn

and X ∈ Rn×d, our Bayesian framework for this chapter is

Y |µ ∼ N(µ, ω2In) , (4.1)

µ|Mγ,βγ = Xγβγ , (4.2)

βγ|gγ,Mγ ∼ N(β̃γ, gγω
2K−1

γ ) , (4.3)

gγ|Mγ ∼ Inv-Gamma(αγ, (dγ/2 + αγ)g0) , (4.4)

and model prior is

p(Mγ) = πγ , (4.5)

where γ ∈ ℘ is sparsity pattern with respective to subset of X columns, Kγ ∈

Rdγ×dγ is positive definite, β̃γ ∈ Rdγ , and αγ, g0, ω > 0 are given.

Consider Bayes estimator ψ̂

ψ̂ = argmin
ψ∈Rn

E [L(ψ,µ)|Y ] (4.6)

where L is some loss function.
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It is easy to see that

E [L(ψ,µ)|Y ]

=
∑
γ∈℘

∫
L(ψ,Xγβγ)p(βγ|Y ,Mγ)p(Mγ|Y ) dβγ

=
1

p(Y )

∑
γ∈℘

∫
L(ψ,Xγβγ)p(Y |Mγ,βγ)p(βγ|Mγ)p(Mγ) dβγ

=
(2πω2)−n/2

p(Y )

∑
γ∈℘

πγ

∫
L(ψ,Xγβγ) exp

(
− 1

2ω2
‖Y −Xγβγ‖2

2

)
p(βγ|Mγ) dβγ

For exponentiated least square loss L(ψ,µ) = exp{1−ν
2ω2 ‖ψ − µ‖2

2}, the Bayes

estimator is

ψX(ω2, ν) = argmin
ψ∈Rn

J(ψ) (4.7)

where

J(ψ) =
∑
γ∈℘

πγ

∫
exp

(
1− ν
2ω2
‖ψ −Xγβγ‖2

2 −
1

2ω2
‖Y −Xγβγ‖2

2

)
p(βγ|Mγ) dβγ .

(4.8)

Under assumptions (4.3) and (4.4), since p(βγ|Mγ) =
∫∞

0
p(βγ|gγ,Mγ)p(gγ|Mγ) dgγ,

with simple algebra we have

p(βγ|Mγ) =
(
2πω2(dγ/2 + αγ)g0

)−dγ/2 |Kγ|1/2
Γ(dγ/2 + αγ)

Γ(αγ)

·

(
1 +

(βγ − β̃γ)>Kγ(βγ − β̃γ)
2(dγ/2 + αγ)g0ω2

)−(dγ/2+αγ)

(4.9)

The following theorem states that with a prior on gγ for each modelMγ, the

prediction performance of the BMAX estimator ψX(ω2, ν) is competitive to the

BMAX estimator with any chosen g in Chapter 3.

Theorem 7. Consider BMAX estimator ψX(ω2, ν) as defined in (4.7) and (4.8),

with Gaussian priors as (4.3) and (4.4). Assume ν ∈ (0, 1) and if ω2 ≥ σ2

min(ν,1−ν)
,
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we have oracle inequality

‖ψX(ω2, ν)− η‖2
2

≤ min
γ∈℘

β∗γ∈Rdγ

{
‖Xγβ

∗
γ − η‖2

2 +
1

g0

(β∗γ − β̃γ)>Kγ(β
∗
γ − β̃γ) + 2ω2 log(

1

πγδ
)

+ω2 log(|νg0X
>
γXγK

−1
γ + Idγ |) + 2ω2 log

(
(dγ/2 + αγ)

dγ/2Γ(αγ)

Γ(dγ/2 + αγ)

)}
,

(4.10)

with probability at least 1− δ. Moreover,

E‖ψX(ω2, ν)− η‖2
2

≤ min
γ∈℘

β∗γ∈Rdγ

{
‖Xγβ

∗
γ − η‖2

2 +
1

g0

(β∗γ − β̃γ)>Kγ(β
∗
γ − β̃γ) + 2ω2 log(

1

πγ
)

+ω2 log(|νg0X
>
γXγK

−1
γ + Idγ |) + 2ω2 log

(
(dγ/2 + αγ)

dγ/2Γ(αγ)

Γ(dγ/2 + αγ)

)}
.

(4.11)

Remark 13. For any given g > 0 in Theorem 5, we can simply set the hy-

per prior (4.4) with g0 = g, then the upper bounds of oracle inequalities in

Theorem 5 and Theorem 7 becomes almost same with only one additional term

of 2ω2 log
(

(dγ/2+αγ)dγ/2Γ(αγ)

Γ(dγ/2+αγ)

)
in (4.10) and (4.11) of Theorem 7. And since

Γ(z) ≈ zz−1/2e−z
√

2π,

log

(
(dγ/2 + αγ)

dγ/2Γ(αγ)

Γ(dγ/2 + αγ)

)
≈ log

(
(dγ/2 + αγ)

dγ/2Γ(αγ)

(dγ/2 + αγ)dγ/2+αγ−1/2e−(dγ/2+αγ)
√

2π

)
= log

(
(dγ/2 + αγ)

1/2edγ/2+αγ
Γ(αγ)√

2π

)
= O(dγ) ,

thus when d is fixed, aggregate by BMAX in linear models with mixture of g-priors

is competitive to that with any fixed g chosen in Chapter 3 on the prediction

accuracy on model averaging problem.



67

4.2 Gradient Descent Algorithm for Solving BMAX in

Linear Models with Gaussian Priors and Priors on

g

Since we can change the order of ∇2 and
∫

(·)dg, below we listed a corollary with

results paralleled to those of Lemma 4 and Lemma 5.

Corollary 5. For any ψ ∈ Rn we have

∇2 log J(ψ) ≥ A1In , (4.12)

and

log J(ψ)− log J(ψX(ω2, ν)) ≤ 1

2A1

‖∇ log J(ψ)‖2
2 , (4.13)

and if condition (3.19) holds, then for k > 0 and 0 ≤ α ≤ 1

∇2 log J((1− α)ψ(k−1) + αψ(k)) ≤ A3In , (4.14)

where A1 and A3 are defined as (2.25) and (3.20).

Below we propose a gradient descent algorithm to solve ψX(ω2, ν) defined by

(4.7) and (4.8).

Algorithm 7 Gradient Descent Algorithm to solve BMAX in Linear Models with
Gaussian Priors and priors on g (GD-BMAX-LM-g)

Input: Noisy observation Y ; for γ ∈ ℘, Xγ ∈ Rn×dγ and Kγ ∈ Rdγ×dγ ;prior
π ∈ Λ|℘|; parameters g0, ν, ω

2.
Output: Aggregate estimator ψ(k).

Initialize ψ(0) = 0.

for k = 1, 2, . . . do
Choose step size tk = s ∈ (0, 2/A3).
Calculate

ψ(k) = ψ(k−1) − tk∇ log J(ψ(k−1)) .

end for

With Corollary 5 we can show that Algorithm 7 converges to the minimum of

log J(ψ) in a geographic rate.
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Proposition 11. Given condition (3.19) is satisfied, for ψ(k) output from Algo-

rithm 7 and choose fixed step size tk = s ∈ (0, 2/A3) for k > 0, then

log J(ψ(k))− log J(ψX(ω2, ν))

≤ [1− 2A1(s− (A3/2)s2)]k
(

log J(ψ(0))− log J(ψX(ω2, ν))
)

Remark 14. We can simply take s = 1/A3 to minimize the right hand side of

above inequality, it results that

log J(ψ(k))− log J(ψX(ω2, ν)) ≤ (1−A1/A3)k
(

log J(ψ(0))− log J(ψX(ω2, ν))
)
.

The proof of Proposition 11 is almost the same as that of Proposition 10. And

it states that Algorithm 7 converges to the minimum of log J(ψ) with a geographic

rate. The calculation of ∇ log J(ψ(k−1)) is similar to that of Algorithm 5, the

only difference is that we need to integrate with priors on g, which can be done

by Monte Carlo methods, namely, sample {g1, . . . , gN} from priors, and with

each fixed g` (` = 1, . . . , N), the calculation is exactly the same as Algorithm 5,

then we just need to average the results over sample {g1, . . . , gN} to approximate

∇ log J(ψ(k−1)).
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Appendix A

Proofs

A.1 Proof of Proposition 1

Note first that by homogeneity, one may assume that σ = 1. Moreover, write for

simplicity λ = λexp. If we assume λ1 ≤ 1/2, we obtain

‖fλ‖2
2 − ‖f 1‖2

2 ≥ |λ1f 1 + (1− λ1)f 2|22 − |f 1|22 (A.1)

= (1− λ1)2|f 2|22 − (1− λ2
1)|f 1|22

≥ 2(1− λ1)2
√
n+ [(1− λ1)2 − (1− λ2

1)]n

≥
√
n/2− 2λ1n .

We first treat the low temperature case where ω is chosen as in (2.7). Define

the event

E = {nM̂SE(f 2) + 2
√
n ≤ nM̂SE(f 1)} ,

and observe that η ≡ 0 gives

E =
{

2〈f 2 − f 1, ξ〉2 ≥ ‖f 2‖2
2 − ‖f 1‖2

2 + 2
√
n
}
. (A.2)

On the one hand, we have ‖f 2‖2
2 − ‖f 1‖2

2 = 1 + 2
√
n and on the other hand

‖f 2 − f 1‖2
2 = ‖f 2‖2

2 + ‖f 1‖2
2 = (2n+ 2

√
n+ 1) ≥ 1

8
(1 + 4

√
n)2 .

Thus, we have

P(E) ≥ P(2〈f 2 − f 1, ξ〉2 ≥ 2
√

2‖f 2 − f 1‖2) = P(Z ≥
√

2) ≥ 0.07 . (A.3)
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where Z ∼ N (0, 1). In view of (2.4), on the event E, we have

λ1 ≤ λ2e
− 1
ω2

√
n ≤ 1

8
√
n
≤ 1

2
,

for low temperature ω chosen as in (2.7). Together with (A.1), it yields

‖fλ‖2
2 − ‖f 1‖2 ≥

√
n

4
.

We now turn to the case of potentially high temperatures. Actually, the

following proof holds for any temperature ω as long as the αjs are chosen small

enough. In this case, we can expect the M exponential weights to take comparable

values. To that end, define for each j = 2, . . . ,M , the event

Fj =
{

M̂SE(f j) ≤ M̂SE(f 1)
}
,

Define F =
⋂M
j=2 Fj and denote by F c

j the complement of Fj. Recall that ‖f j‖2
2 =

‖f 2‖2
2 + α2

j so that

F c
j =

{
2〈f j − f 1, ξ〉2 ≤ ‖f j‖2

2 − ‖f 1‖2
2

}
=
{

2〈f 2 − f 1, ξ〉2 + 2〈f j − f 2, ξ〉2 ≤ ‖f 2‖2
2 − ‖f 1‖2

2 + α2
j

}
⊂ Ec ∪Gj ,

where the E is defined in (A.2) and Gj is defined as

Gj =
{

2〈f j − f 2, ξ〉2 ≤ α2
j − 2

√
n
}
.

In view of (2.8), we have

P(Gj) ≤ P
(
2〈f j − f 2, ξ〉2 ≤ −α2

j

)
≤ P

(
Z ≥

√
2 log(100M)

)
≤ 0.01

M
.

Therefore,

P(F c) ≤ P(Ec) +
M∑
j=2

P(Gj) ≤ 0.93 + 0.01 = 0.94 .

Note now that on the event F , for any j = 2, . . . ,M , we have λj ≥ λ1 so that

λ1 ≤ 1/M ≤ 1/2. Together with (A.1), it yields

‖fλ‖2
2 − ‖f 1‖2

2 ≥
√
n

2
− 2n

M
≥
√
n

4
,

where, in the last inequality, we used the fact that M ≥ 8
√
n.
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A.2 Proof of Proposition 2

Note first that by homogeneity, one may assume that σ = 1. Next, observe

that fλproj = (Pmξ, 0, . . . , 0)> ∈ Rn, where Pmξ ∈ Rm is the projection of ξ̃ =

(ξ1, . . . , ξm)> onto Bm1 (
√
n), the `1-ball of Rm with radius

√
n.

Let E denote the event on which ‖ξ̃‖1 ≤
√
n and observe that, on this event,

we have Pmξ = ξ̃. It yields

nMSE(fλproj) =
m∑
j=1

ξ2
j = ‖ξ̃‖2

2 ,

Let now F denote the event on which ‖ξ̃‖2
2 ≥ m/2 and note that on E ∩ F , it

holds

MSE(fλproj) ≥ m

2n
≥
√

1

13n

To conclude our proof, it remains to bound from below the probability of

E ∩ F . The bounds below follow from the fact that ‖ξ̃‖2
2 follows a chi-squared

distribution with m degrees of freedom. We begin by the event E. Using Hölder’s

inequality, we have

P(Ec) ≤ P
(
‖ξ̃‖2

2 ≥
n

m

)
= P

(
‖ξ̃‖2

2 − E‖ξ̃‖2
2 ≥

n

m
−m

)
Next, using the fact that m2 ≤ 8n/13 together with Laurent and Massart (2000a,

Lemma 1) we get

P(Ec) ≤ P
(
‖ξ̃‖2

2 − E‖ξ̃‖2
2 ≥

5m

8

)
≤ e−m/16 .

Moreover, using Laurent and Massart (2000a, Lemma 1), we also get that

P(F c) = P
(
‖ξ̃‖2

2 − E‖ξ̃‖2
2 ≤ −

m

2

)
≤ e−m/16 .

Therefore, since n ≥ 416 implies m ≥ 16, we get

P(E ∩ F ) ≥ 1− P(Ec)− P(F c) ≥ 1− 2e−m/16 ≥ 1− 2/e ≥ 1/4 .
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A.3 Proof of Theorem 1

Proposition 12. For any λ ∈ ΛM , real sequence {xj}Mj=1, and a > 0, we have

M∑
j=1

λjxj − aK(λ,π) ≤ a log

(
M∑
j=1

πje
xj/a

)
.

Proof. The result follows directly from Jesen’s Inequality as

exp

(
M∑
j=1

λj((xj/a)− log(λj/πj))

)
≤

M∑
j=1

πje
xj/a

We also need the following lemma to prove the theorem.

Lemma 6. For any ψ ∈ Rn, let λ ∈ ΛM defined as

λj ∝ πj exp

(
− 1

2ω2
‖f j − Y ‖2

2 +
1− ν
2ω2
‖ψ − f j‖2

2

)
Then we have the following equation

∇J(ψ)

J(ψ)
=

1− ν
ω2

(ψ − fλ),

and

‖fλ − η‖2
2 −

(
ν

M∑
j=1

θj‖f j − η‖2
2 + (1− ν)‖fθ − η‖2

2

)

= −ν
M∑
j=1

λj‖f j − fλ‖2
2 − (1− ν)‖fθ − fλ‖2

2 + 2ξ>(fλ − fθ)− 2ω2K(λ,π)

+2ω2K(θ,π)− 2ω2K(θ,λ) + 2(1− ν)(fθ − fλ)>(fλ −ψ).

Proof. Since

J(ψ) =
M∑
j=1

πj exp

(
− 1

2ω2
‖f j − Y ‖2

2 +
1− ν
2ω2
‖ψ − f j‖2

2

)
,
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and

∇J(ψ) =
M∑
j=1

πj exp

(
− 1

2ω2
‖f j − Y ‖2

2 +
1− ν
2ω2
‖ψ − f j‖2

2

)
1− ν
ω2

(ψ − f j),

Then we have

∇J(ψ)

J(ψ)
=

1− ν
ω2

(ψ − fλ).

From the definition of λ we have,

λi
λj

=
πi exp

(
− 1

2ω2‖f i − Y ‖2
2 + 1−ν

2ω2 ‖ψ − f i‖2
2

)
πj exp

(
− 1

2ω2‖f j − Y ‖2
2 + 1−ν

2ω2 ‖ψ − f j‖2
2

)
then it follows that

2ω2 log(λi/πi) + ‖f i − Y ‖2
2 − (1− ν)‖ψ − f i‖2

2

= 2ω2 log(λj/πj) + ‖f j − Y ‖2
2 − (1− ν)‖ψ − f j‖2

2

Sum up each hand side of the above equation with weight λ and any chosen

θ ∈ ΛM ,

M∑
j=1

λj‖f j − Y ‖2
2 − (1− ν)

M∑
j=1

λj‖f j −ψ‖2
2 + 2ω2

M∑
j=1

λj log(λj/πj)

=
M∑
j=1

θj‖f j − Y ‖2
2 − (1− ν)

M∑
j=1

θj‖f j −ψ‖2
2 + 2ω2

M∑
j=1

θj log(λj/πj)

Combine the above equation and the following facts that

M∑
j=1

λj‖f j −ψ‖2
2 = ‖fλ −ψ‖2

2 +
M∑
j=1

λj‖f j − fλ‖2
2

and

M∑
j=1

θj‖f j −ψ‖2
2 = ‖fθ −ψ‖2

2 +
M∑
j=1

θj‖f j − fθ‖2
2

= ‖fθ − fλ‖2
2 + ‖fλ −ψ‖2

2 − 2(fθ − fλ)>(fλ −ψ)

+
M∑
j=1

θj‖f j − fθ‖2
2
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we have

M∑
j=1

λj‖f j − Y ‖2
2 − (1− ν)

M∑
j=1

λj‖f j − fλ‖2
2 + 2ω2K(λ,π)

=
M∑
j=1

θj‖f j − Y ‖2
2 − (1− ν)

M∑
j=1

θj‖f j − fθ‖2
2 + 2ω2K(θ,π)− 2ω2K(θ,λ)

−(1− ν)‖fθ − fλ‖2
2 + 2(1− ν)(fθ − fλ)>(fλ −ψ)

Plug the following two equations to each hand side of (A.4)

M∑
j=1

λj‖f j − Y ‖2
2 − (1− ν)

M∑
j=1

λj‖f j − fλ‖2
2 = ‖fλ − Y ‖2

2 + ν

M∑
j=1

λj‖f j − fλ‖2
2

M∑
j=1

θj‖f j−Y ‖2
2− (1−ν)

M∑
j=1

θj‖f j− fθ‖2
2 = ν

M∑
j=1

θj‖f j−Y ‖2
2 +(1−ν)‖fθ−Y ‖2

2

and rearrange the terms we have

‖fλ − Y ‖2
2 −

(
ν

M∑
j=1

θj‖f j − Y ‖2
2 + (1− ν)‖fθ − Y ‖2

2

)

= −ν
M∑
j=1

λj‖f j − fλ‖2
2 − (1− ν)‖fθ − fλ‖2

2 − 2ω2K(λ,π) + 2ω2K(θ,π)

−2ω2K(θ,λ) + 2(1− ν)(fθ − fλ)>(fλ −ψ)

then by combining the above equation with Y = η + ξ it follows that

‖fλ − η‖2
2 −

(
ν

M∑
j=1

θj‖f j − η‖2
2 + (1− ν)‖fθ − η‖2

2

)

= −ν
M∑
j=1

λj‖f j − fλ‖2
2 − (1− ν)‖fθ − fλ‖2

2 + 2ξ>(fλ − fθ)− 2ω2K(λ,π)

+2ω2K(θ,π)− 2ω2K(θ,λ) + 2(1− ν)(fθ − fλ)>(fλ −ψ)

Now we are ready to prove Theorem 1.

From the definition of ψX(ω2, ν) (2.15), ψX(ω2, ν) is the minimizer of J(ψ),

thus ∇J(ψX(ω2, ν)) = 0. By using Lemma 6, ψX(ω2, ν) = fλ with λ ∈ ΛM
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defined as

λj ∝ πj exp

(
− 1

2ω2
‖f j − Y ‖2

2 +
1− ν
2ω2
‖ψX(ω2, ν)− f j‖2

2

)
.

Also from Lemma 6 we have

‖fλ − η‖2
2 −

(
ν

M∑
j=1

θj‖f j − η‖2
2 + (1− ν)‖fθ − η‖2

2

)

= −ν
M∑
j=1

λj‖f j − fλ‖2
2 − (1− ν)‖fθ − fλ‖2

2 + 2ξ>(fλ − fθ)− 2ω2K(λ,π)

+2ω2K(θ,π)− 2ω2K(θ,λ)

It is also easy to verify the following inequality

−ν
M∑
j=1

λj‖f j − fλ‖2
2 − (1− ν)‖fθ − fλ‖2

2 ≤ −ν1

M∑
j=1

λj‖f j − fθ‖2
2

where ν1 = min(ν, 1− ν).

Combining the above inequality and 2ω2K(θ,λ) ≥ 0 we have

‖fλ − η‖2
2 −

(
ν

M∑
j=1

θj‖f j − η‖2
2 + (1− ν)‖fθ − η‖2

2

)

≤ −ν1

M∑
j=1

λj‖f j − fθ‖2
2 + 2ξ>(fλ − fθ)− 2ω2K(λ,π) + 2ω2K(θ,π)

=
M∑
j=1

λj
(
−ν1‖f j − fθ‖2

2 + 2ξ>(f j − fθ)
)
− 2ω2K(λ,π) + 2ω2K(θ,π)

≤ 2ω2 log

(
M∑
j=1

πj exp

{
−ν1‖f j − fθ‖2

2 + 2ξ>(f j − fθ)

2ω2

})
+ 2ω2K(θ,π)

where the last inequality is using Proposition 12 with xj = −ν1‖f j − fθ‖2
2 +

2ξ>(f j − fθ) and a = 2ω2.



76

Put expectation for ξ at each side of the above inequality,

E‖fλ − η‖2
2 −

(
ν

M∑
j=1

θj‖f j − η‖2
2 + (1− ν)‖fθ − η‖2

2

)

≤ 2ω2E log

(
M∑
j=1

πj exp

{
−ν1‖f j − fθ‖2

2 + 2ξ>(f j − fθ)

2ω2

})
+ 2ω2K(θ,π)

≤ 2ω2 log

(
M∑
j=1

πjE exp

{
−ν1‖f j − fθ‖2

2 + 2ξ>(f j − fθ)

2ω2

})
+ 2ω2K(θ,π)

≤ 2ω2 log

(
M∑
j=1

πj exp

{
(−ν1 + σ2/ω2)

‖f j − fθ‖2
2

2ω2

})
+ 2ω2K(θ,π)

≤ 2ω2K(θ,π)

where the second inequality is from concavity of log(t), the third comes from

Gaussian assumption, and the last one is because of assumption ω2 ≥ σ2/ν1 =

σ2

min(ν,1−ν)
.

Also by Chernoff bound with probability at least 1− δ,

‖fλ − η‖2
2 −

(
ν

M∑
j=1

θj‖f j − η‖2
2 + (1− ν)‖fθ − η‖2

2

)
≤ 2ω2K(θ,π) + 2ω2 log(1/δ).

A.4 Proof of Lemma 1

Define λ ∈ ΛM as

λj ∝ πj exp

(
− 1

2ω2
‖f j − Y ‖2

2 +
1− ν
2ω2
‖ψ − f j‖2

2

)
It follows that

∇J(ψ)

J(ψ)
=

1− ν
ω2

(ψ − fλ)

and

∇2J(ψ)

J(ψ)
=

M∑
j=1

λj

((
1− ν
ω2

)2

(ψ − f j)(ψ − f j)> +

(
1− ν
ω2

)
In

)
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Then we have

∇2 log J(ψ) =
(∇2J(ψ))J(ψ)− (∇J(ψ))(∇J(ψ))>

J2(ψ)

=
M∑
j=1

λj

((
1− ν
ω2

)2

(ψ − f j)(ψ − f j)> +

(
1− ν
ω2

)
In

)

−
(

1− ν
ω2

)2

(ψ − fλ)(ψ − fλ)>

=

(
1− ν
ω2

)
In +

(
1− ν
ω2

)2

FAF>

where F = (f 1, . . . ,fM) ∈ Rn×M and A = diag(λ1, . . . , λM)− λλ> ≥ 0.

Therefore ∇2 log J(ψ) ≥
(

1−ν
ω2

)
In.

With assumption that ‖f j‖2 ≤ L for all j, for any u ∈ Rn,

u>Fdiag(λ1, . . . , λM)Fu =
M∑
j=1

λju
>f jf

>
j u =

M∑
j=1

λj(f
>
j u)2

≤
M∑
j=1

λj(‖f j‖2‖u‖2)2 ≤ L2‖u‖2
2

which results that

FAF> ≤ Fdiag(λ1, . . . , λM)F> ≤ L2In,

and it follows that ∇2 log J(ψ) ≤
((

1−ν
ω2

)
+
(

1−ν
ω2

)2
L2
)
In.

A.5 Proof of Lemma 2

From inequality (2.28), for any ψ1 ∈ Rn we have

log J(ψ1) ≥ log J(ψ2) + (ψ1 −ψ2)>
∇J(ψ2)

J(ψ2)
+ (A1/2)‖ψ1 −ψ2‖2

2

The righthand side of the above inequality is a convex quadratic function of ψ1

(for fixed ψ2). Setting the gradient with respect to ψ1 equal to zero, we find that
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ψ̃1 = ψ2 − (1/A1)∇J(ψ2)
J(ψ2)

minimizes the righthand side. Therefore we have

log J(ψ1) ≥ log J(ψ2) + (ψ1 −ψ2)>
∇J(ψ2)

J(ψ2)
+ (A1/2)‖ψ1 −ψ2‖2

2

≥ log J(ψ2) + (ψ̃1 −ψ2)>
∇J(ψ2)

J(ψ2)
+ (A1/2)‖ψ̃1 −ψ2‖2

2

= log J(ψ2)− 1

2A1

∥∥∥∥∇J(ψ2)

J(ψ2)

∥∥∥∥2

2

Since this holds for any ψ1 ∈ Rn, we have

log J(ψX(ω2, ν)) ≥ log J(ψ2)− 1

2A1

∥∥∥∥∇J(ψ2)

J(ψ2)

∥∥∥∥2

2

Similarly, from inequality (2.29), for any ψ1 ∈ Rn we have

log J(ψ1) ≤ log J(ψ2) + (ψ1 −ψ2)>
∇J(ψ2)

J(ψ2)
+ (A2/2)‖ψ1 −ψ2‖2

2,

minimizing each side over ψ1 will give us

log J(ψX(ω2, ν)) ≤ log J(ψ2)− 1

2A2

∥∥∥∥∇J(ψ2)

J(ψ2)

∥∥∥∥2

2

.

A.6 Proof of Proposition 3

As in the proof of Theorem 1, ψX(ω2, ν) = fλ with λ ∈ ΛM defined as

λj ∝ πj exp

(
− 1

2ω2
‖f j − Y ‖2

2 +
1− ν
2ω2
‖ψX(ω2, ν)− f j‖2

2

)
.

For any j = 1, . . . ,M ,

log J(ψ(k)) = log J
(
ψ(k−1) + αk(fJ(k) −ψ(k−1))

)
≤ log J

(
ψ(k−1) + αk(f j −ψ(k−1))

)
≤ log J(ψ(k−1)) + αk(f j −ψ(k−1))>

∇J(ψ(k−1))

J(ψ(k−1))
+ 2α2

kD
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where the first inequality comes from definition, the second inequality is from

Taylor expansion at ψ(k−1) and (2.29) in Lemma 1 with the fact that ‖f j −

ψ(k−1)‖2
2 ≤ 4L2.

Then we sum the above inequality over λ which results that

log J(ψ(k)) ≤ log J(ψ(k−1)) + αk

M∑
j=1

λj(f j −ψ(k−1))>
∇J(ψ(k−1))

J(ψ(k−1))
+ 2α2

kD

= log J(ψ(k−1)) + αk(ψX(ω2, ν)−ψ(k−1))>
∇J(ψ(k−1))

J(ψ(k−1))
+ 2α2

kD

≤ log J(ψ(k−1)) + αk(log J(ψX(ω2, ν))− log J(ψ(k−1))) + 2α2
kD

where the last inequality comes from the convexity of log J(ψ).

Denote δk = log J(ψ(k))− log J(ψX(ω2, ν)), it follows that

δk ≤ (1− αk)δk−1 + 2α2
kD

Since

δ0 = log J(ψ(0))− log J(ψX(ω2, ν)) ≤ log J(ψ(0))

≤ log

(
M∑
j=1

πj exp

(
1− ν
2ω2
‖ψ(0) − f j‖2

2

))

≤ 1− ν
ω2

2L2 ≤ 2D

By mathematical induction if δk−1 ≤ 8D
k+2

then

δk ≤ (1− αk)δk−1 + 2α2
kD

≤ (1− 2/(k + 1))
8D

k + 2
+ 2(2/(k + 1))2D ≤ 8D

k + 3

Therefore

log J(ψ(k)) ≤ log J(ψX(ω2, ν)) +
8D

k + 3
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A.7 Proof of Proposition 4

‖ψ(k) −ψX(ω2, ν)‖2
2 ≤

2

A1

(
log J(ψ(k))− log J(ψX(ω2, ν))

)
≤ 2

A1

8D

k + 3
=

16D

A1(k + 3)

where the first inequality comes from Taylor expansion at point ψX(ω2, ν), with

using (2.28) in Lemma 1 and ∇J(ψ2); and the second inequality is from Propo-

sition 3.

It follows that

‖ψ(k) − η‖2
2 = ‖(ψ(k) −ψX(ω2, ν)) + (ψX(ω2, ν)− η)‖2

2

≤ ‖ψX(ω2, ν)− η‖2
2

+2‖ψX(ω2, ν)− η‖2‖ψ(k) −ψX(ω2, ν)‖2 + ‖ψ(k) −ψX(ω2, ν)‖2
2

≤ ‖ψX(ω2, ν)− η‖2
2 + 2

√
16D

A1(k + 3)
‖ψX(ω2, ν)− η‖2 +

16D

A1(k + 3)

Then the proposition follows using Theorem 1.

A.8 Proof of Proposition 5

ψ(k) = ψ(k−1) − tk∇ log J(ψ(k−1))

log J(ψ(k)) = log J(ψ(k−1) − tk∇ log J(ψ(k−1)))

≤ log J(ψ(k−1))− tk‖∇ log J(ψ(k−1)))‖2
2 + (A2/2)t2k‖∇ log J(ψ(k−1)))‖2

2

= log J(ψ(k−1))− (tk − (A2/2)t2k)‖∇ log J(ψ(k−1)))‖2
2

where the inequality is from (2.29).
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Then by subtracting log J(ψX(ω2, ν)) by each side, we have

log J(ψ(k))− log J(ψX(ω2, ν))

≤ log J(ψ(k−1))− log J(ψX(ω2, ν))− (tk − (A2/2)t2k)‖∇ log J(ψ(k−1)))‖2
2 (A.4)

Also from (2.30) we have

‖∇ log J(ψ(k−1)))‖2
2 ≥ 2A1

(
log J(ψ(k−1))− log J(ψX(ω2, ν))

)
(A.5)

Choose fixed step size tk = s ∈ (0, 2/A2) for any k > 0, combining (A.4) and

(A.5) results

log J(ψ(k))− log J(ψX(ω2, ν))

≤ [1− 2A1(s− (A2/2)s2)]
(

log J(ψ(k−1))− log J(ψX(ω2, ν))
)

It follows that

log J(ψ(k))− log J(ψX(ω2, ν))

≤ [1− 2A1(s− (A2/2)s2)]k
(

log J(ψ(0))− log J(ψX(ω2, ν))
)

A.9 Proof of Proposition 6

‖ψ(k) −ψX(ω2, ν)‖2
2 ≤

2

A1

(
log J(ψ(k))− log J(ψX(ω2, ν))

)
≤ 2

A1

(1− A1/A2)k log J(ψ(0))

≤ 2

A1

(1− A1/A2)k
1− ν
2ω2

L2 = L2(1− A1/A2)k

where the first inequality comes from Taylor expansion at point ψX(ω2, ν), with

using (2.28) in Lemma 1 and ∇ log J(ψX(ω2, ν)) = 0; the second inequality is

from Proposition 5; and the third inequality is from assumption (2.24) resulting

log J(ψ(0)) ≤ 1−ν
2ω2 L

2.
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It follows that

‖ψ(k) − η‖2
2 = ‖(ψ(k) −ψX(ω2, ν)) + (ψX(ω2, ν)− η)‖2

2

≤ ‖ψX(ω2, ν)− η‖2
2

+2‖ψX(ω2, ν)− η‖2‖ψ(k) −ψX(ω2, ν)‖2 + ‖ψ(k) −ψX(ω2, ν)‖2
2

≤ ‖ψX(ω2, ν)− η‖2
2

+2
√
L2(1− A1/A2)k‖ψX(ω2, ν)− η‖2 + L2(1− A1/A2)k.

Then the proposition follows using Theorem 1.

A.10 Proof of Proposition 7

Y is given, the following expectation is respect to the randomness from the

MH algorithm. For k > 0, u
(k−1)
T from Algorithm 3 is estimator of fλ(k−1) =∑M

j=1 λ
(k−1)
j f j. Then in Algorithm 2 we update ψ(k) by

ψ(k) = ψ(k−1) − tk
1− ν
ω2

(ψ(k−1) − u(k−1)
T )

Denote v(k−1) = 1−ν
ω2 (ψ(k−1) − u(k−1)

T ), then we have

E[v(k−1)|ψ(k−1)] =
1− ν
ω2

(ψ(k−1) − fλ(k−1)) = ∇ log J(ψ(k−1))

and

‖COV[v(k−1)|ψ(k−1)]‖op =

(
1− ν
ω2

)2

‖COV[u
(k−1)
T |ψ(k−1)]‖op ≤

(
1− ν
ω2

)2

s2

It follows that

log J(ψ(k)) = log J(ψ(k−1) − tkv(k−1))

≤ log J(ψ(k−1))− tk∇ log J(ψ(k−1))>v(k−1) + (A2/2)t2k‖v(k−1)‖2
2

where the inequality is from (2.29).
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Then by subtracting log J(ψX(ω2, ν)) by each side and take expectation con-

dition on ψ(k−1), also denote δk = log J(ψ(k))− log J(ψX(ω2, ν)), we have

E[δk|ψ(k−1)] ≤ δk−1 − tk∇ log J(ψ(k−1))>E[v(k−1)|ψ(k−1)]

+(A2/2)t2kE[‖v(k−1)‖2
2|ψ(k−1)]

≤ δk−1 − tk‖∇ log J(ψ(k−1))‖2
2

+(A2/2)t2k

(
‖∇ log J(ψ(k−1))‖2

2 + n

(
1− ν
ω2

)2

s2

)

= δk−1 −
1

2A2

‖∇ log J(ψ(k−1))‖2
2 +

1

2A2

(
1− ν
ω2

)2

ns2

Combine the above inequality with

‖∇ log J(ψ(k−1)))‖2
2 ≥ 2A1

(
log J(ψ(k−1))− log J(ψX(ω2, ν))

)
(A.6)

which is from (2.30).

It results that

E[δk|ψ(k−1)] ≤ δk−1(1− A1/A2) +
A2

1

2A2

ns2

And it directly follows that

E[δk] ≤ E[δk−1](1− A1/A2) +
A2

1

2A2

ns2

Therefore

E[δk] ≤ E[δ0](1− A1/A2)k +
A1

2
ns2

A.11 Proof of Lemma 3

Assume (λ0,h0) ∈ A ∩B. We have

Q(λ0) ≥ min
λ∈ΛM

Q(λ) = min
λ∈ΛM

max
h∈Rn

S(λ,h) ≥ max
h∈Rn

min
λ∈ΛM

S(λ,h)
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The second inequality is from simple algebra and the third inequality is from

Lemma 36.1 in Rockafellar (1997).

Also we have

max
h∈Rn

min
λ∈ΛM

S(λ,h)

= max
h∈Rn

[
min
λ∈ΛM

(
ν

M∑
j=1

λj‖f j − h‖2
2 + 2ω2K(λ,π)

)
− ν

1− ν
‖h− Y ‖2

2

]

= max
h∈Rn

[
− ν

1− ν
‖h− Y ‖2

2 − 2ω2 log

(
M∑
j=1

πje
−ν‖fj−h‖22/2ω2

)]
= max

h∈Rn
T (h) = T (ĥ) ≥ T (h0)

The second equality comes from Jessen’s inequality

exp

(
M∑
j=1

λj

(
− ν

2ω2
‖f j − h‖2

2 − log
λj
πj

))
≤

M∑
j=1

λj exp

(
− ν

2ω2
‖f j − h‖2

2 − log
λj
πj

)
.

Now we have

Q(λ0) ≥ min
λ∈ΛM

Q(λ) = min
λ∈ΛM

max
h∈Rn

S(λ,h) ≥ max
h∈Rn

min
λ∈ΛM

S(λ,h) = max
h∈Rn

T (h) ≥ T (h0)

Our target is now to prove Q(λ0) = T (h0). Since (λ0,h0) ∈ A ∩B we have
h0 =

1

ν
Y − 1− ν

ν
fλ0 ,

λ0
j =

exp
(
− ν

2ω2‖f j − h0‖2
2

)
πj∑M

i=1 exp
(
− ν

2ω2‖f i − h0‖2
2

)
πi

Then

M∑
i=1

exp
(
− ν

2ω2
‖f i − h0‖2

2

)
πi =

exp
(
− ν

2ω2‖f j − h0‖2
2

)
πj

λ0
j

which results that

log

(
M∑
i=1

exp
(
− ν

2ω2
‖f i − h0‖2

2

)
πi

)
= − ν

2ω2
‖f j − h0‖2

2 − log(λ0
j/πj)

=
M∑
i=1

λ0
i

(
− ν

2ω2
‖f i − h0‖2

2 − log(λ0
i /πi)

)
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Plug back into T (h0),

T (h0) = − ν

1− ν
‖h0 − Y ‖2

2 − 2ω2

[
M∑
i=1

λ0
i

(
− ν

2ω2
‖f i − h0‖2

2 − log(λ0
i /πi)

)]

= − ν

1− ν
‖h0 − Y ‖2

2 + ν

M∑
i=1

λ0
i ‖f i − h0‖2

2 + 2ω2K(λ0,π)

= ‖fλ0 − Y ‖2
2 + ν

M∑
i=1

λ0
i ‖f i − fλ0‖2

2 + 2ω2K(λ0,π)

= Q(λ0)

The third equality is obtained by plugging in h0 = 1
ν
Y − 1−ν

ν
fλ0 .

Therefore

Q(λ0) = min
λ∈ΛM

Q(λ) = min
λ∈ΛM

max
h∈Rn

S(λ,h) = max
h∈Rn

min
λ∈ΛM

S(λ,h) = max
h∈Rn

T (h) = T (h0)

So ĥ = h0 and λQ = λ0, combining with h0 = 1
ν
Y − 1−ν

ν
fλ0 , we have

ĥ =
1

ν
Y − 1− ν

ν
fλQ .

Then A ∩B has unique point (λQ, ĥ).

A.12 Proof of (3.7)

E(µ|Y ) =
∑
γ∈℘

E(Xγβγ|Y ,Mγ)p(Mγ|Y )

=
∑
γ∈℘

XγE(βγ|Y ,Mγ)p(Y |Mγ)p(Mγ)/p(Y )

=
1

p(Y )

∑
γ∈℘

πγXγE(βγ|Y ,Mγ)p(Y |Mγ)

=
1

p(Y )

∑
γ∈℘

πγXγ

∫
βγp(βγ|Y ,Mγ)p(Y |Mγ) dβγ

=
1

p(Y )

∑
γ∈℘

πγXγ

∫
βγp(Y |βγ,Mγ)p(βγ|Mγ) dβγ
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∫
βγp(Y |βγ,Mγ)p(βγ|Mγ) dβγ

=

∫
βγ(2πω

2)−n/2 exp

(
−
‖Y −Xγβγ‖2

2

2ω2

)
(2πω2)−dγ/2|Kγ/g|1/2 exp

(
−

(βγ − β̃γ)>Kγ(βγ − β̃γ)
2gω2

)
dβγ

= (2πω2)−n/2(2πω2)−dγ/2|Kγ/g|1/2
∫
βγ exp(−Gγ/2ω

2) dβγ

where

Gγ = ‖Y −Xγβγ‖2
2 + (βγ − β̃γ)>Kγ(βγ − β̃γ)/g

Since β̂γ = (X>γXγ +Kγ/g)−1(X>γ Y + 1
g
Kγβ̃γ), then

Gγ = (βγ − β̂γ)>(X>γXγ +Kγ/g)(βγ − β̂γ)

+‖Y ‖2
2 + β̃

>
γKγβ̃γ/g − β̂

>
γ (X>γXγ +Kγ/g)β̂γ

= (βγ − β̂γ)>(X>γXγ +Kγ/g)(βγ − β̂γ)

+‖Y −Xγβ̂γ‖2
2 + (β̂γ − β̃γ)>Kγ(β̂γ − β̃γ)/g

It follows that∫
βγp(Y |βγ,Mγ)p(βγ|Mγ) dβγ

= (2πω2)−n/2|Kγ/g|1/2|X>γXγ +Kγ/g|−1/2

exp

(
−
‖Y −Xγβ̂γ‖2

2 + (β̂γ − β̃γ)>Kγ(β̂γ − β̃γ)/g
2ω2

)
β̂γ



87

Thus,

E(µ|Y ) =
(2πω2)−n/2

p(Y )

∑
γ∈℘

πγ(Xγβ̂γ)|Kγ/g|1/2|X>γXγ +Kγ/g|−1/2

exp

(
−
‖Y −Xγβ̂γ‖2

2 + (β̂γ − β̃γ)>Kγ(β̂γ − β̃γ)/g
2ω2

)

Also notice that

p(Y ) =
∑
γ∈℘

p(Y |Mγ)p(Mγ)

=
∑
γ∈℘

p(Mγ)

∫
βγ

p(Y |βγ,Mγ)p(βγ|Mγ) dβγ

=
∑
γ∈℘

πγ(2πω
2)−n/2|Kγ/g|1/2|X>γXγ +Kγ/g|−1/2

exp

(
−
‖Y −Xγβ̂γ‖2

2 + (β̂γ − β̃γ)>Kγ(β̂γ − β̃γ)/g
2ω2

)

Therefore,

E(µ|Y ) =
∑
γ∈℘

λγ(Xγβ̂γ)

where

λγ ∝ πγ|Kγ/g|1/2|X>γXγ +Kγ/g|−1/2

exp

(
−
‖Y −Xγβ̂γ‖2

2 + (β̂γ − β̃γ)>Kγ(β̂γ − β̃γ)/g
2ω2

)

and
∑

γ∈℘ λγ = 1 and λγ > 0.
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A.13 Proof of Proposition 9

J(ψ) =
∑
γ∈℘

πγ

∫
exp

(
1− ν
2ω2
‖ψ −Xγβγ‖2

2 −
1

2ω2
‖Y −Xγβγ‖2

2

)

(2πgω2)−dγ/2|Kγ|1/2 exp

(
−

(βγ − β̃γ)>Kγ(βγ − β̃γ)
2gω2

)
dβγ

=
∑
γ∈℘

πγ(2πgω
2)−dγ/2|Kγ|1/2

∫
exp

(
−Hγ

2ω2

)
dβγ

where

Hγ = −(1− ν)‖ψ −Xγβγ‖2
2 + ‖Y −Xγβγ‖2

2 + (βγ − β̃γ)>Kγ(βγ − β̃γ)/g

=
(
βγ +

(
νX>γXγ +Kγ/g

)−1
(

(1− ν)X>γ ψ −X>γ Y −Kγβ̃γ/g
))>

·
(
νX>γXγ +Kγ/g

)
·
(
βγ +

(
νX>γXγ +Kγ/g

)−1
(

(1− ν)X>γ ψ −X>γ Y −Kγβ̃γ/g
))

−
(

(1− ν)X>γ ψ −X>γ Y −Kγβ̃γ/g
)>

·
(
νX>γXγ +Kγ/g

)−1
(

(1− ν)X>γ ψ −X>γ Y −Kγβ̃γ/g
)>

−(1− ν)‖ψ‖2
2 + ‖Y ‖2

2 + β̃
>
γKγβ̃γ/g

J(ψ) =
∑
γ∈℘

πγ(2πgω
2)−dγ/2|Kγ|1/2(2πω2)dγ/2|νX>γXγ +Kγ/g|−1/2e

Gγ

2ω2

=
∑
γ∈℘

πγ|Kγ/g|1/2|νX>γXγ +Kγ/g|−1/2 exp

(
Gγ

2ω2

)
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where

Gγ = −
(

(1− ν)X>γ ψ −X>γ Y −Kγβ̃γ/g
)>

·
(
νX>γXγ +Kγ/g

)−1
(

(1− ν)X>γ ψ −X>γ Y −Kγβ̃γ/g
)>

−(1− ν)‖ψ‖2
2 + ‖Y ‖2

2 + β̃
>
γKγβ̃γ/g

= (1− ν)ψ>
[
In + (1− ν)Xγ

(
νX>γXγ +Kγ/g

)−1
X>γ

]
ψ

−2(1− ν)ψ>Xγ

(
νX>γXγ +Kγ/g

)−1
(X>γ Y +Kγβ̃γ/g)

+(X>γ Y +Kγβ̃γ/g)>
(
νX>γXγ +Kγ/g

)−1
(X>γ Y +Kγβ̃γ/g)

−‖Y ‖2
2 − β̃

>
γKγβ̃γ

= (1− ν)(ψ − µγ)>
[
In + (1− ν)Xγ

(
νX>γXγ +Kγ/g

)−1
X>γ

]
(ψ − µγ)

−(1− ν)µ>γ

[
In + (1− ν)Xγ

(
νX>γXγ +Kγ/g

)−1
X>γ

]
µγ

+(X>γ Y +Kγβ̃γ/g)>
(
νX>γXγ +Kγ/g

)−1
(X>γ Y +Kγβ̃γ/g)

−‖Y ‖2
2 − β̃

>
γKγβ̃γ/g

where

µγ =
[
In + (1− ν)Xγ

(
νX>γXγ +Kγ/g

)−1
X>γ

]−1

·Xγ

(
νX>γXγ +Kγ/g

)−1
(X>γ Y +Kγβ̃γ/g)

From definition (3.9) we have

(X>γXγ +Kγ/g)β̂γ = (X>γ Y +Kγβ̃γ/g)
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Then

µγ =
[
In + (1− ν)Xγ

(
νX>γXγ +Kγ/g

)−1
X>γ

]−1

Xγ

(
νX>γXγ +Kγ/g

)−1

(X>γXγ +Kγ/g)β̂γ

=
[
In + (1− ν)Xγ

(
νX>γXγ +Kγ/g

)−1
X>γ

]−1

Xγ

(
νX>γXγ +Kγ/g

)−1

(νX>γXγ +Kγ/g + (1− ν)X>γXγ)β̂γ

=
[
In + (1− ν)Xγ

(
νX>γXγ +Kγ/g

)−1
X>γ

]−1

Xγ

(
Idγ + (1− ν)(νX>γXγ +Kγ/g)−1X>γXγ

)
β̂γ

=
[
In + (1− ν)Xγ

(
νX>γXγ +Kγ/g

)−1
X>γ

]−1

(
In + (1− ν)Xγ(νX

>
γXγ +Kγ/g)−1X>γ

)
Xγβ̂γ

= Xγβ̂γ

Also notice that

−(1− ν)µ>γ

[
In + (1− ν)Xγ

(
νX>γXγ +Kγ/g

)−1
X>γ

]
µγ

+(X>γ Y +Kγβ̃γ/g)>
(
νX>γXγ +Kγ/g

)−1
(X>γ Y +Kγβ̃γ/g)

−‖Y ‖2
2 − β̃

>
γKγβ̃γ/g

= −(1− ν)β̂
>
γX

>
γXγ

(
νX>γXγ +Kγ/g

)−1
(X>γ Y +Kγβ̃γ/g)

+(X>γ Y +Kγβ̃γ/g)>
(
νX>γXγ +Kγ/g

)−1
(X>γ Y +Kγβ̃γ/g)

−‖Y ‖2
2 − β̃

>
γKγβ̃γ/g

= −(1− ν)β̂
>
γX

>
γXγ

(
νX>γXγ +Kγ/g

)−1
(X>γ Y +Kγβ̃γ/g)

+β̂
>
γ (X>γXγ +Kγ/g)

(
νX>γXγ +Kγ/g

)−1
(X>γ Y +Kγβ̃γ/g)

−‖Y ‖2
2 − β̃

>
γKγβ̃γ/g

= β̂
>
γ (X>γ Y +Kγβ̃γ/g)− ‖Y ‖2

2 − β̃
>
γKγβ̃γ/g

= −‖Y −Xγβ̂γ‖2
2 − (β̂γ − β̃γ)>Kγ(β̂γ − β̃γ)/g
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Therefore,

J(ψ) =
∑
γ∈℘

πγ|
1

g
Kγ|1/2|νX>γXγ +

1

g
Kγ|−1/2

· exp

(
1− ν
2ω2

(ψ −Xγβ̂γ)
>W γ(ψ −Xγβ̂γ)

)
· exp

(
− 1

2ω2
‖Y −Xγβ̂γ‖2

2 −
(β̂γ − β̃γ)>Kγ , (β̂γ − β̃γ)

2gω2

)

where

W γ = In + (1− ν)Xγ

(
νX>γXγ +

1

g
Kγ

)−1

X>γ .

A.14 Proof of Theorem 5

Proposition 13. For any given positive definite matrix A ∈ Rd×d, we have the

following inequality

tr(AB−1) + log(|B|) ≥ d+ log(|A|),

for any positive definite matrix B ∈ Rd×d, and the equation is held when B = A.

Proof.

tr(AB−1) + log(|B|) = tr(B−1/2AB−1/2) + log(|B|) = tr(C)− log(|C|) + log(|A|)

where C = B−1/2AB−1/2 is also positive definite. And by singular value decompo-

sition C = O>UO whereO ∈ Rd×d is orthogonal matrix and U = diag(u1, . . . , ud) >

0. Then

tr(C)− log(|C|) = tr(U)− log(|U |) =
d∑
i=1

(ui − log(ui)) ≥ d

and last equation holds when ui = 1 ∀i, which is equivalent to A = B.
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For some fixed l ∈ ℘, specify f γ with distribution Θ(γ) in Corollary 2 as

following:

f γ|βl,Ml = X lβl,

and βl|Ml ∼ N(β∗l , ω
2D−1

l ) and p(Ml) = 1.

While π(γ) is defined as,

f γ|βγ,Mγ = Xγβγ,

and p(βγ|Mγ) is as defined in (3.4) and p(Mγ) = πγ .

Then we apply Corollary 2, write the right hand side of oracle deviation

inequality (2.22) as

RHS = ν

∫
Ω

‖f γ − η‖2
2Θ(γ) dγ + (1− ν)

∥∥∥∥∫
Ω

f γΘ(γ) dγ − η
∥∥∥∥2

2

+ 2ω2K(Θ, π)

The notation of E(·) below is for expectation with respect to Θ(γ), specifically

f γ = X lβl with

βl ∼ N(β∗l , ω
2D−1

l ),

then we have∫
Ω

‖f γ − η‖2
2Θ(γ) dγ = E‖X lβl − η‖2

2

= tr(COV(X lβl)) + ‖X lβ
∗
l − η‖2

2

= ω2tr(X>l X lD
−1
l ) + ‖X lβ

∗
l − η‖2

2

and ∥∥∥∥∫
Ω

f γΘ(γ) dγ − η
∥∥∥∥2

2

= ‖X lβ
∗
l − η‖2

2
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Also

K(Θ, π) = E

log
(2πω2)−dl/2|Dl|1/2 exp

(
− (βl−β∗l )>Dl(βl−β∗l )

2ω2

)
πl(2πω2)−dl/2|K l/g|1/2 exp

(
− (βl−β̃l)>Kl(βl−β̃l)

2gω2

)


= log(1/πl) +
1

2
log(|Dl|/|K l/g|)

+E

(
−(βl − β∗l )>Dl(βl − β∗l )

2ω2
+

(βl − β̃l)>K l(βl − β̃l)
2gω2

)

Notice that

E(βl − β∗l )>Dl(βl − β∗l ) = Etr

[(
D

1/2
l (βl − β∗l )

)(
D

1/2
l (βl − β∗l )

)>]
= tr

[
COV

(
D

1/2
l (βl − β∗l )

)]
= dlω

2

and

E(βl − β̃l)>K l(βl − β̃l) = Etr

[(
K

1/2
l (βl − β̃l)

)(
K

1/2
l (βl − β̃l)

)>]
= ω2tr(K lD

−1
l ) + (β∗l − β̃l)>K l(β

∗
l − β̃l)

Therefore we have

RHS = ‖X lβ
∗
l − η‖2

2 + 2ω2

(
log(1/πl) +

1

2
log(|Dl|/|K l/g|)

)
+ω2νtr(X>l X lD

−1
l )− dlω2 + ω2tr(K lD

−1
l /g)

+(β∗l − β̃l)>K l(β
∗
l − β̃l)/g

= 2ω2 log(1/πl)− ω2 log(|K l/g|)− dlω2

+‖X lβ
∗
l − η‖2

2 + (β∗l − β̃l)>K l(β
∗
l − β̃l)/g

+ω2tr
(
(νX>l X l +K l/g)D−1

l

)
+ ω2 log(|Dl|)

where β∗l and Dl are to be decided to minimize RHS.

Now we minimize RHS over Dl ∈ Rdl×dl being positive definite. By using

Proposition 13, when

Dl = νX>l X l +K l/g
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the minimum is obtained, and RHS becomes

RHS = 2ω2 log(1/πl) + ω2 log(|νgX>l X lK
−1
l + Idl |)

+‖X lβ
∗
l − η‖2

2 + (β∗l − β̃l)>K l(β
∗
l − β̃l)/g

A.15 Proof of Corollary 4

The oracle inequalities can be obtained directly by restricting πk = 1 in Theo-

rem 5. Here we just show the explicit expression for ψX(ω2, ν). With Proposi-

tion 9, ψX(ω2, ν) is the minimizer for J(ψ) as in (3.12) with πk = 1. So it is

obvious that

ψX(ω2, ν) = Xkβ̂k

where β̂k = (X>kXk +Kk/g)−1(X>k Y +Kkβ̃k/g) as defined in (3.9), and β̂k is

the MAP estimator for minimizing

‖Y −Xkβ̂k‖2
2 + (β̂k − β̃k)>Kk(β̂k − β̃k)/g.

over βk ∈ Rdk for fixed sparsity pattern k ∈ ℘.

A.16 Proof of Lemma 4

Proposition 14. W γ as defined in (3.13) satisfies the following inequality

In ≤W γ ≤ (1/ν)In ,

for any γ ∈ ℘.
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Proof. Firstly it is easy to verify the following inequality by using SVD on matrix

K−1/2
γ (X>γXγ)K

−1/2
γ ,

(
K−1/2

γ (X>γXγ)K
−1/2
γ

)−1

≥
(
K−1/2

γ (X>γXγ)K
−1/2
γ +

1

νg
In

)−1

Then it follows that

(X>γXγ)
−1 − (X>γXγ + (1/νg)Kγ)

−1

= K−1/2
γ

[(
K−1/2

γ (X>γXγ)K
−1/2
γ

)−1

−
(
K−1/2

γ (X>γXγ)K
−1/2
γ +

1

νg
In

)−1
]

·K−1/2
γ

≥ 0

which results

Xγ(X
>
γXγ + (1/νg)Kγ)

−1X>γ ≤Xγ(X
>
γXγ)

−1X>γ

Then we have

W γ = In +
1− ν
ν
Xγ

(
X>γXγ +

1

νg
Kγ

)−1

X>γ

≤ In +
1− ν
ν
Xγ(X

>
γXγ)

−1X>γ ≤ (1/ν)In

where the last inequality is because Xγ(X
>
γXγ)

−1X>γ ≤ In. And W γ ≥ In is

obvious since Xγ

(
X>γXγ + 1

νg
Kγ

)−1

X>γ ≥ 0.

Proposition 15. For any k > 0 and 0 ≤ α ≤ 1,

‖αψ(k−1) + (1− α)ψ(k)‖2
2 ≤ (1/ν)L2

2 .
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Proof. Denote f̂ γ = Xγβ̂γ and a = tk
1−ν
ω2 , then we have

ψ(k) = ψ(k−1) − tk∇ log J(ψ(k−1))

= ψ(k−1) − a
M∑
j=1

λ(k−1)
γ W γ(ψ

(k−1) − f̂ γ)

=
M∑
j=1

λ(k−1)
γ

[
(In − aW γ)ψ

(k−1) + aW γf̂ γ

]
where λ(k−1) ∈ Λ|℘| and

λ(k−1)
γ ∝ πγ|

1

g
Kγ|1/2|νX>γXγ +

1

g
Kγ|−1/2

· exp

(
1− ν
2ω2

(ψ(k−1) −Xγβ̂γ)
>W γ(ψ

(k−1) −Xγβ̂γ)

)
· exp

(
− 1

2ω2
‖Y −Xγβ̂γ‖2

2 −
(β̂γ − β̃γ)>Kγ(β̂γ − β̃γ)

2gω2

)

It follows that

‖ψ(k)‖2
2 ≤

∑
γ∈℘

λ(k−1)
γ

∥∥∥(In − aW γ)ψ
(k−1) + aW γf̂ γ

∥∥∥2

2

For each γ ∈ ℘, define µ
(γ)
1 and µ

(γ)
n as the smallest and biggest eigenvalue of

W γ. From Proposition 14, tk ≤ ν
1−νω

2 implies a ≤ ν ≤ 1/µ
(γ)
n , and it follows that

(In − aW γ)aW γ ≥ 0 ,

and then we have∥∥∥(In − aW γ)ψ
(k−1) + aW γf̂ γ

∥∥∥2

2

=
∥∥∥(In − aW γ)ψ

(k−1)
∥∥∥2

2
+
∥∥∥aW γf̂ γ

∥∥∥2

2
+ 2〈(In − aW γ)ψ

(k−1), aW γf̂ γ〉2

≤
∥∥∥(In − aW γ)ψ

(k−1)
∥∥∥2

2
+
∥∥∥aW γf̂ γ

∥∥∥2

2

+ψ(k−1)>(In − aW γ)aW γψ
(k−1) + f̂

>
γ (In − aW γ)aW γf̂ γ

= ψ(k−1)>(In − aW γ)ψ
(k−1) + f̂

>
γ aW γf̂ γ
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where the inequality is because: write (In − aW γ)aW γ = A2 ≥ 0 for some

positive-definite matrix A ∈ Rn×n and 2h>1 A
2h2 ≤ h>1 A2h1 + h>2 A

2h2 for any

h1,h2 ∈ Rn.

Then we have

‖ψ(k)‖2
2 ≤

M∑
j=1

[
ψ(k−1)>(In − aW γ)ψ

(k−1) + f̂
>
γ aW γf̂ γ

]
≤

M∑
j=1

[
(1− aµ(γ)

1 )‖ψ(k−1)‖2
2 + aµ(γ)

n ‖f̂ γ‖2
2

]
≤ (1− a)‖ψ(k−1)‖2

2 + (a/ν)‖f̂ γ‖2
2 ≤ (1− a)‖ψ(k−1)‖2

2 + (a/ν)L2
2

where the third inequality is using Proposition 14.

Then by mathematical induction we can conclude that for any k ≥ 0, ‖ψ(k)‖2
2 ≤

(1/ν)L2
2 and the reasons are as following: firstly, ‖ψ(0)‖2

2 = 0 ≤ (1/ν)L2
2; secondly

if ‖ψ(k−1)‖2
2 ≤ (1/ν)L2

2 then

‖ψ(k)‖2
2 ≤ (1− a)‖ψ(k−1)‖2

2 + (a/ν)L2
2

≤ (1− a)(1/ν)L2
2 + (a/ν)L2

2 = (1/ν)L2
2

Thus for any k > 0 and 0 ≤ α ≤ 1,

‖αψ(k−1) + (1− α)ψ(k)‖2
2 ≤ α‖ψ(k−1)‖2

2 + (1− α)‖ψ(k)‖2
2 ≤ (1/ν)L2

2.

Now we are ready to prove Lemma 4. It is easy to see that for any ψ ∈ Rn
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that can be expressed as ψ = αψ(k−1) +(1−α)ψ(k) for some k > 0 and 0 ≤ α ≤ 1,

∇2 log J(ψ) =
∇2J(ψ)

J(ψ)
− (∇J(ψ)/J(ψ))(∇J(ψ)/J(ψ))>

=
∑
γ∈℘

λγ

[(
1− ν
ω2

)2

W γ(ψ − f̂ γ)(ψ − f̂ γ)>W γ +
1− ν
ω2

W γ

]

−
(

1− ν
ω2

)2
(∑
γ∈℘

λγW γ(ψ − f̂ γ)

)(∑
γ∈℘

λγW γ(ψ − f̂ γ)

)>

≤
∑
γ∈℘

λγ

[(
1− ν
ω2

)2

W γ(ψ − f̂ γ)(ψ − f̂ γ)>W γ +
1− ν
ω2

W γ

]

Also notice that for any γ ∈ ℘,

tr
(

(ψ − f̂ γ)(ψ − f̂ γ)>
)

= ‖ψ − f̂ γ‖2
2 ≤ 2(‖ψ‖2

2 + ‖f̂ γ‖2
2)

≤ 2(1/ν + 1)L2
2

where the last inequality is from Proposition 15.

With rank
(

(ψ − f̂ γ)(ψ − f̂ γ)>
)

= 1, there exists 0 < bγ ≤ 2(1/ν+ 1)L2
2 and

orthogonal matrix O ∈ Rn×n such that

(ψ − f̂ γ)(ψ − f̂ γ)> = O>diag(bγ, 0, . . . , 0)O

Then for any u ∈ Rn,

u>W γ(ψ − f̂ γ)(ψ − f̂ γ)>W γu = u>W γO
>diag(bγ, 0, . . . , 0)OW γu

≤ bγ‖OW γu‖2
2 ≤ 2(1/ν + 1)L2

2u
>W 2

γu

≤ 2(1/ν + 1)L2
2(1/ν)2‖u‖2

2

where the last inequality is from W γ ≤ (1/ν)In. Then it follows that

W γ(ψ − f̂ γ)(ψ − f̂ γ)>W γ ≤
2(1 + ν)

ν3
L2

2In .

Therefore,

∇2 log J(ψ) ≤
[(

1−ν
ω2

)2 2(1+ν)
ν3

L2
2 + 1−ν

ω2 (1/ν)
]
In = A3In
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Order all the sparsity pattern by (γ1, . . . , γ|℘|), it is easy to verify that for any

ψ ∈ Rn,

∇2 log J(ψ) =
1− ν
ω2

∑
γ∈℘

λγW γ +

(
1− ν
ω2

)2

GFG>

≥ 1− ν
ω2

∑
γ∈℘

λγW γ ≥
1− ν
ω2

In

where G = (W γ1(ψ − f̂ γ1), . . . ,W γ|℘|(ψ − f̂ γ|℘|)) ∈ Rn×|℘|, and

F = diag(λ1, . . . , λM)− λλ> ≥ 0

with λ = (λγ1 , . . . , λγ|℘|).

A.17 Proof of Theorem 6

Lemma 7. Suppose (Y1, · · · , Yk) are i.i.d. standard Gaussian random variables.

Let a1, · · · , ak be nonnegative numbers, and

|a|∞ = sup
i=1,··· ,k

|ai|, |a|2 =

(
k∑
i=1

a2
i

)1/2

,

and let

Z =
k∑
i=1

ai(Y
2
i − 1).

Then for any u ∈ (0, 1
2|a|∞ ),

E
(
euZ
)
≤ exp

(
|a|22u2

1− 2|a|∞u

)
.

Proof. This lemma follows directly from the proof of Lemma 1 in Laurent and

Massart (2000b).

Lemma 8. Given any λ ∈ Λ|℘|, when Φ ≥ 32σ2V , for any fixed q ∈ ℘ we have

with probability at least 1− δ:

2〈ξ, f̂λ − f̂ q〉2 − ΦK(λ,π)− Φ
∑
γ∈℘

λγCγ ≤
32σ2

Φ

∑
γ∈℘

λγ‖f̂ γ − f̂ q‖2
2 + Φ log

(
1

δ

)
.
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Proof. Let ∆ = 2〈ξ, f̂λ − f̂ q〉2 − ΦK(λ,π)− Φ
∑

γ∈℘ λγCγ, then we have

E

[
exp

(
∆

Φ
− 32σ2

Φ2

∑
γ∈℘

λγ‖f̂ γ − f̂ q‖2
2

)]

= E

[
exp

(∑
γ∈℘

λγ

(
2

Φ
〈ξ, f̂ γ − f̂ q〉2 − log(

λγ
πp

)− Cγ −
32σ2

Φ2
‖f̂ γ − f̂ q‖2

2

))]

≤ E

[∑
γ∈℘

λγ exp

(
2

Φ
〈ξ, f̂ γ − f̂ q〉2 − log(

λγ
πp

)− Cγ −
32σ2

Φ2
‖f̂ γ − f̂ q‖2

2

)]

= E

[∑
γ∈℘

πp exp

(
2

Φ
〈ξ, f̂ γ − f̂ q〉2 − Cγ −

32σ2

Φ2
‖f̂ γ − f̂ q‖2

2

)]
=

∑
γ∈℘

πp exp(−Cγ)E
[
exp

(
2

Φ
ξ>(BγY + vγ)−

32σ2

Φ2
(BγY + vγ)

>(BγY + vγ)

)]
where Bγ = Aγ − Aq and vγ = bγ − bq. The inequality in the above derivation

follows from Jensen’s inequality.

Let’s consider the term in expectation for each γ ∈ ℘,

E
[
exp

(
2

Φ
ξ>(BγY + vγ)−

32σ2

Φ2
(BγY + vγ)

>(BγY + vγ)

)]
= exp

(
−32σ2

Φ2
η>B2

γη −
64σ2

Φ2
η>Bγvγ −

32σ2

Φ2
v>γ vγ

)
· E
[
exp

(
ξ>(

2

Φ
Bγ −

32σ2

Φ2
B2
γ)ξ + ξ>(

2

Φ
(Bγη + vγ)−

64σ2

Φ2
B2
γη −

64σ2

Φ2
Bγvγ)

)]
We obtain from Cauchy-Schwarz inequality that

E
[
exp

(
2

Φ
ξ>(BγY + vγ)−

32σ2

Φ2
(BγY + vγ)

>(BγY + vγ)

)]
≤ P1P2,

with

P1 = E
[
exp

(
4

Φ
ξ>(Bγ −

16σ2

Φ
B2
γ)ξ

)]1/2

,

P2 = E
[
exp

(
ξ>(

4

Φ
(Bγη + vγ)−

128σ2

Φ2
B2
γη −

128σ2

Φ2
Bγvγ)

)]1/2

· exp

(
−32σ2

Φ2
η>B2

γη −
64σ2

Φ2
η>Bγvγ −

32σ2

Φ2
v>γ vγ

)
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Now we will bound P1 and P2 separately and we consider P1 first. By as-

sumption, each matrix Aγ is symmetric and positive semi-definite and could

be decomposed by SVD: Aγ = Q>γDγQγ, where Dγ = diag(ζγ1 , . . . , ζ
γ
n) with

ζγ1 ≥ . . . ≥ ζγn ≥ 0, and Qγ ∈ Rn×n is orthogonal. Therefore,

4

Φ
ξ>(Bγ−

16σ2

Φ
B2
γ)ξ ≤

4

Φ
ξ>Bγξ ≤

4

Φ
ξ>Aγξ =

4

Φ
[Qγξ]>Dγ[Qγξ] =

4σ2

Φ

rk(Aγ)∑
i=1

ζγi Z
2
i ,

with Z = (Z1, · · · , Zn)> = Qγξ/σ ∼ N (0, In), rk(Aγ) denotes rank of Aγ.

Then we have

P1 ≤ E

exp

4σ2

Φ

rk(Aγ)∑
i=1

ζγi Z
2
i

1/2

≤ exp

(
8σ4tr(A2

p)

Φ2 − 8V Φσ2
+

2σ2tr(Aγ)

Φ

)
= exp(Cγ) ,

where the second inequality is by applying Lemma 7 with u = 4σ2

Φ
, ai = ζγi , k =

rk(Aγ).

To bound P2, denote 32σ2

Φ2 = c, we observe that

P 2
2 = exp

(
−2cη>B2

γη − 4cη>Bγvγ − 2c‖vγ‖2
2

)
· E

[
exp

(
ξ>
(

4

Φ
(Bγη + vγ)− 4cB2

γη − 4cBγvγ

))]
≤ exp

(
−2cη>B2

γη − 4cη>Bγvγ − 2c‖vγ‖2
2

)
exp

(
σ2(η>(

8

Φ2
B2
γ −

16c

Φ
B3
γ + 8c2B4

γ)η + η>(
16

Φ2
Bγ −

32c

Φ
B2
γ + 16c2B3

γ)vγ)

)
exp

(
σ2(v>γ (

8

Φ2
− 16c

Φ
Bγ + 8c2B2

γ)vγ)

)
≤ exp

(
c

(
−7

4
‖Bγη + vγ‖2

2 +
16σ2

Φ
‖Bγ‖op‖Bγη + vγ‖2

2

+
256σ4

Φ2
‖Bγ‖2

op‖Bγη + vγ‖2
2

))
≤ exp

(
c‖Bγη + vγ‖2

2(−7

4
+

16V σ2

Φ
+

256V 2σ4

Φ2
)

)
In the above derivation, the first inequality is from Eeξ>f ≤ eσ

2‖f‖22/2, the

second inequality is by simple algebra, and the third inequality follows because
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‖Bγ‖op ≤ V . By our assumption of Φ, we know that

256V 2σ4

Φ2
+

16V σ2

Φ
≤ 7

4
,

and hence P2 < 1.

With the bounds on P1 and P2 and Markov inequality, we see

P

[
∆

Φ
− 32σ2

Φ2

∑
γ∈℘

λγ‖f̂ γ − f̂ q‖2
2 ≥ log

(
1

δ

)]

= P

[
exp

(
∆

Φ
− 32σ2

Φ2

∑
γ∈℘

λγ‖f̂ γ − f̂ q‖2
2

)
≥ 1

δ

]

≤ δE exp

(
∆

Φ
− 32σ2

Φ2

∑
γ∈℘

λγ‖f̂ γ − f̂ q‖2
2

)
≤ δ.

Hence with probability of at least 1− δ,

∆ ≤ 32σ2

Φ

∑
γ∈℘

λγ‖f̂ γ − f̂ q‖2
2 + Φ log

(
1

δ

)
.

Define

Ŝ(θ) = (1− ν)‖fθ − Y ‖2
2 + ν

∑
γ∈℘

θγ‖f̂ γ − Y ‖2
2 ,

and

S(θ) = (1− ν)‖fθ − η‖2
2 + ν

∑
γ∈℘

θγ‖f̂ γ − η‖2
2 .

Lemma 9. For any q ∈ ℘, and α ∈ (0, 1), we have

‖fθ̂ − η‖
2
2 − ‖f̂ q − η‖2

2 ≤ −(1− ν)‖fθ̂ − f̂ q‖
2
2 + 2〈ξ, fθ̂ − f̂ q〉2 − ν

∑
γ∈℘

θ̂γ‖f̂ γ − fθ̂‖
2
2

− Φ
∑
γ∈℘

θ̂γCγ + ΦCq − ΦK(θ̂,π) + Φ log(
1

πq
)

Proof. Easily seen that, for ∀ θ ∈ Λ|℘|:

Ŝ(θ)− S(θ) = ‖Y ‖2
2 − ‖η‖2

2 − 2〈ξ, fθ〉2.



103

And by definition,

Ŝ(θ̂) + Φ
∑
γ∈℘

θ̂γCγ + ΦK(θ̂,π) ≤ Ŝ(θ) + Φ
∑
γ∈℘

θγCγ + ΦK(θ,π).

Using the above equation and inequality, we have

S(θ̂) ≤ S(θ) + Φ
∑
γ∈℘

(θγ − θ̂γ)Cγ + 2〈ξ, fθ̂ − fθ〉2 + ΦK(θ,π)− ΦK(θ̂,π)

which is equivalent to:

(1− ν)[‖fθ̂ − η‖
2
2 − ‖fθ − η‖2

2]

≤ 2〈ξ, fθ̂ − fθ〉2 + ν
∑
γ∈℘

(θγ − θ̂γ)‖f̂ γ − η‖2
2 + Φ

∑
γ∈℘

(θγ − θ̂γ)Cγ + ΦK(θ,π)

− ΦK(θ̂,π).

Now we pick eq ∈ Λ|℘|, where eq ∈ R|℘| has value 0 in any coordinate except at

position q where it takes value 1. Therefore, feq = f̂ q. Furthermore, we pick

θ = (1− α)θ̂ + αeq. By simple algebra, we get

‖fθ̂ − η‖
2
2 − ‖fθ − η‖2

2 = α‖fθ̂ − η‖
2
2 − α‖f̂ q − η‖2

2 + α(1− α)‖fθ̂ − f̂ q‖
2
2 .

Hence,

(1− ν)α[‖fθ̂ − η‖
2
2 − ‖f̂ q − η‖2

2]

≤ −(1− ν)α(1− α)‖fθ̂ − f̂ q‖
2
2 + 2α〈ξ, fθ̂ − f̂ q〉2 − να

∑
γ∈℘

θ̂γ‖f̂ γ − η‖2
2

+ να‖f̂ q − η‖2
2 − Φα

∑
γ∈℘

θ̂γCγ + ΦαCq + ΦK((1− α)θ̂ + αeq,π)− ΦK(θ̂,π)

≤ −(1− ν)α(1− α)‖fθ̂ − f̂ q‖
2
2 + 2α〈ξ, fθ̂ − f̂ q〉2 − να

∑
γ∈℘

θ̂γ‖f̂ γ − η‖2
2

+ να‖f̂ q − η‖2
2 − Φα

∑
γ∈℘

θ̂γCγ + ΦαCq − ΦαK(θ̂,π) + ΦαK(eq,π).

The last inequality is due to the convexity of the Kullback-Leibler distance. Using

the equation ∑
γ∈℘

θ̂γ‖f̂ γ − η‖2
2 = ‖fθ̂ − η‖

2
2 +

∑
γ∈℘

θ̂γ‖f̂ γ − fθ̂‖
2
2 .



104

Divide both hand sides of the above inequality by α and let α → 0+, we obtain

the desired inequality by rearranging the terms.

We are now ready to prove Theorem 6. It is easy to verify that

− (1− ν)‖fθ̂ − f̂ q‖
2
2 − ν

∑
γ∈℘

θ̂γ‖f̂ γ − fθ̂‖
2
2 ≤ −ν1

∑
γ∈℘

θ̂γ‖f̂ γ − f̂ q‖2
2 (A.7)

where ν1 = min(ν, 1− ν).

Combining Lemma 9 and equation (A.7), we see that

‖fθ̂ − η‖
2
2 − ‖f̂ q − η‖2

2 ≤ Φ log(
1

πq
) + ΦCq + ∆− ν1

∑
γ∈℘

θ̂γ‖f̂ γ − f̂ q‖2
2 (A.8)

where ∆ = 2〈ξ, fθ̂ − f̂ q〉2 − ΦK(θ̂,π)− Φ
∑

γ∈℘ θ̂γCγ.

Using Lemma 8, we know that with probability of at least 1− δ,

∆ ≤ 32σ2

Φ

∑
γ∈℘

θ̂γ‖f̂ γ − f̂ q‖2
2 + Φ log

(
1

δ

)
,

where Φ ≥ 32σ2(V ∨ (min(ν, 1− ν))−1) ≥ 32σ2V .

Combine the above inequality with (A.8), we obtain

‖fθ̂ − η‖
2
2 − ‖f̂ q − η‖2

2 ≤ Φ log(
1

πqδ
) + ΦCq + (32σ2/Φ− ν1)

∑
γ∈℘

θ̂γ‖f̂ γ − f̂ q‖2
2

Then theorem is concluded with 32σ2/Φ− ν1 ≤ 0 since

Φ ≥ 32σ2(V ∨ (min(ν, 1− ν))−1) .

A.18 Proof of Theorem 7

For any fixed l ∈ {1, . . . ,M}, we just specify f γ with distribution Θ(γ) in Corol-

lary 2 as following:

f γ|βl,Ml = X lβl,
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and βl|Ml ∼ N(β∗l , ω
2D−1

l ) and p(Ml) = 1.

While π(γ) is defined by ∀j ∈ {1, . . . ,M},

f γ|βj,Mj = Xjβj,

and p(βj|gj,Mj) is as defined in (4.3), p(gj|Mj) ∼ Inv-Gamma(α, θ) where θ =

(dl/2 + α)g0, and p(Mj) = πj .

Then we apply Corollary 2, write the right hand side of oracle deviation

inequality (2.22) as

RHS = ν

∫
Ω

‖f γ − η‖2
2Θ(γ) dγ + (1− ν)

∥∥∥∥∫
Ω

f γΘ(γ) dγ − η
∥∥∥∥2

2

+ 2ω2K(Θ, π)

The notation of E(·) below is for expectation with respect to Θ(γ), specifically

f γ = X lβl with

βl ∼ N(β∗l , ω
2D−1

l ),

then we have∫
Ω

‖f γ − η‖2
2Θ(γ) dγ = E‖X lβl − η‖2

2

= tr(COV(X lβl)) + ‖X lβ
∗
l − η‖2

2

= ω2tr(X>l X lD
−1
l ) + ‖X lβ

∗
l − η‖2

2

and ∥∥∥∥∫
Ω

f γΘ(γ) dγ − η
∥∥∥∥2

2

= ‖X lβ
∗
l − η‖2

2

Also

K(Θ, π) = E

log
(2πω2)−dl/2|Dl|1/2 exp

(
− (βl−β∗l )>Dl(βl−β∗l )

2ω2

)
πlh(βl)
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where

h(βl) = (2πω2)−dl/2|K l|1/2θ−dl/2
Γ(dl/2 + α)

Γ(α)

·

(
1 +

(βl − β̃l)>K l(βl − β̃l)
2θω2

)−(dl/2+α)

Notice that

E(βl − β∗l )>Dl(βl − β∗l ) = Etr

[(
D

1/2
l (βl − β∗l )

)(
D

1/2
l (βl − β∗l )

)>]
= tr

[
COV

(
D

1/2
l (βl − β∗l )

)]
= dlω

2

Also by combining

E log

(
1 +

(βl − β̃l)>K l(βl − β̃l)
2θω2

)
≤ E

(βl − β̃l)>K l(βl − β̃l)
2θω2

and

E(βl − β̃l)>K l(βl − β̃l) = Etr

[(
K

1/2
l (βl − β̃l)

)(
K

1/2
l (βl − β̃l)

)>]
= ω2tr(K lD

−1
l ) + (β∗l − β̃l)>K l(β

∗
l − β̃l)

will results

E log

(
1 +

(βl − β̃l)>K l(βl − β̃l)
2nθω2

)

≤ tr(K lD
−1
l )/(2θ) +

(β∗l − β̃l)>K l(β
∗
l − β̃l)

2θω2
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Therefore we have

RHS = ‖X lβ
∗
l − η‖2

2 + νω2tr(X>l X lD
−1
l )

+2ω2E

log
(2πω2)−dl/2|Dl|1/2 exp

(
− (βl−β∗l )>Dl(βl−β∗l )

2ω2

)
πlh(βl)


= ‖X lβ

∗
l − η‖2

2 + νω2tr(X>l X lD
−1
l )

+2ω2
(
log
(
(2πω2)−dl/2|Dl|1/2

)
− (dl/2) + log(1/πl)− E log h(βl)

)
= ‖X lβ

∗
l − η‖2

2 + νω2tr(X>l X lD
−1
l )

−dlω2 log(2πω2) + ω2 log |Dl| − dlω2 + 2ω2 log(1/πl)

−2ω2 log

(
(2πω2)−dl/2|K l|1/2θ−dl/2

Γ(dl/2 + α)

Γ(α)

)
+2ω2(dl/2 + α)Eln

(
1 +

(βl − β̃l)>K l(βl − β̃l)
2θω2

)
≤ ‖X lβ

∗
l − η‖2

2 + νω2tr(X>l X lD
−1
l )

+ω2 log |Dl| − dlω2 + 2ω2 log(1/πl)

−ω2 log |K l|+ dlω
2 log θ − 2ω2 log

(
Γ(dl/2 + α)

Γ(α)

)
+2ω2(dl/2 + α)

(
tr(K lD

−1
l )/(2θ) +

(β∗l − β̃l)>K l(β
∗
l − β̃l)

2θω2

)
= ‖X lβ

∗
l − η‖2

2 + 2ω2 log(1/πl)

+ω2

(
log |Dl|+ tr((

dl/2 + α

θ
K l + νX>l X l)D

−1
l )− dl

)
−ω2 log |K l|+ dlω

2 log θ − 2ω2 log

(
Γ(dl/2 + α)

Γ(α)

)
+
dl/2 + α

θ
(β∗l − β̃l)>K l(β

∗
l − β̃l)

where β∗l and Dl are to be decided to minimize RHS.

Now we minimize RHS over Dl ∈ Rdl×dl being positive definite. By using

Proposition 13, when

Dl =
dl/2 + α

θ
K l + νX>l X l
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the minimum is obtained, and RHS becomes

RHS ≤ ‖X lβ
∗
l − η‖2

2 + 2ω2 log(1/πl)

+ω2 log |dl/2 + α

θ
K l + νX>l X l|

−ω2 log |K l|+ dlω
2 log θ − 2ω2 log

(
Γ(dl/2 + α)

Γ(α)

)
+
dl/2 + α

θ
(β∗l − β̃l)>K l(β

∗
l − β̃l)

Since θ = (dl/2 + α)g0 it follows that

RHS ≤ ‖X lβ
∗
l − η‖2

2 + (1/g0)(β∗l − β̃l)>K l(β
∗
l − β̃l)

+2ω2 log(1/πl) + ω2 log |νg0X
>
l X lK

−1
l + Idl |

+ω2 (dl log(dl/2 + α)− 2 log(Γ(dl/2 + α)/Γ(α))) .
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