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We discuss a polynomial encoding which provides a unified framework for

discussing the algebra and the spectral analysis of matrices and hypermatri-

ces. In addition to describing some algorithms for performing orthogonaliza-

tion and spectral analysis of hypermatrices, we discuss some computational

aspects, more specifically the important role of symmetries in Alon’s Combi-

natorial Nullstellensatz method for solving combinatorial problems.
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Chapter 1

Introduction

It is well-known that systems of polynomial equations over algebraically-closed

fields provide a concise encoding for classical NP-hard problems such as sub-

graph isomorphism. In [1], Alon presents a general unified algebraic frame-

work for establishing the existence of solutions to numerous problems in com-

binatorics and combinatorial number theory. In the concluding remarks of [1]

Alon points out that the proofs presented in [1] are based on algebraic non-

constructive arguments and hence supply no efficient algorithm for solving

the corresponding algorithmic problems. Alon then proceeds to raise the fun-

damental question of whether or not it is possible to modify such arguments so

as to deduce from them efficient algorithms for solving the corresponding al-

gorithmic problems. Following up on the problem raised by Alon, we remark

that it is well-known that combinatorial problems, formulated as systems of

polynomial constraints, can be solved using standard tools in computational

algebra such as Grobner basis [4, 12]. Nevertheless, it has been experimen-

tally demonstrated that current Grobner bases implementations often cannot

directly solve polynomial systems with large a number of equations. Further-

more the precise analysis of the performance of Grobner bases algorithms in

relation to special instances of combinatorial problems has not yet been estab-

lished. In the subsequent work [47, 45, 46, 50] the authors follow up on the

problem raised by Alon in [1] and propose the Nullstellensatz Linear Algebra
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algorithm (NulLA), which relies on the experimentally-observed low degrees

of Hilbert’s Nullstellensatz certificates for polynomial encodings of combina-

torial problems.

The research program developed in [47, 45, 46, 50] follows up on connec-

tions between Hilbert’s Nullstellensatz [31] and complexity theory as first ob-

served by Lovasz in [48]. Margulies establishes in [50] that given a graph

G, where α (G) denotes the size of the largest independent set in G. The

minimum-degree Nullstellensatz certificate ( associated with the Lovasz en-

coding ) for the non-existence of an independent set of size greater than α (G)

must have degree equal to α (G), and contains at least one monomial per inde-

pendent set in G. In [47, 45, 46, 50] the authors, investigate how algebraic for-

mulations enable us to crucially exploit sparsity of typical algebraic encoding

of NP-hard combinatorial problems. The authors also point out that the typi-

cal combinatorial problems have many non-trivial symmetries, which might be

exploited to improve the performance of algebraic solvers. The important role

of symmetries for solving combinatorial problems is well established in the lit-

erature [64, 34]. We show here that the order of magnitudes of the symmetries

of the algebraic constraints crucially determines the performance of algorithms

naturally suggested by Alon’s Combinatorial Nullstellensatz arguments. We

further show how the Combinatorial Nullstellensatz method provides a natu-

ral framework for attenuating the hardness of combinatorial problems by ex-

ploiting tradeoffs between the size of the algebraic certificates and the success

probability for randomized algorithms.

Having used polynomials to both encode combinatorial problems and de-

sign combinatorial algorithms, we proceed to show that polynomials also yield
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a unified framework for discussing the algebra and the spectral analysis of ma-

trices and hypermatrices. The spectral theory of hypermatrices is an important

part of numerical multi-linear algebra [36, 63, 68]. While it is likely that ideas

of eigenvalues of hypermatrices had been raised earlier, it was in 2005 that

Lim in [42] and Qi in [57] initiated a tremendous expansion and intensifica-

tion of mathematical research on the topic of hypermatrix spectral analysis. In

these papers, Lim and Qi independently defined eigenvalues and eigenvectors

of real symmetric tensors and explored their usefulness in determining posi-

tive definiteness of even-degree multivariate forms. These works extend the

classical concept of eigenvalues and eigenvectors of square matrices originally

formulated by Joseph Louis Lagrange in 1762. Spectral methods also constitute

an important part of numerical multi-linear algebra and have found applica-

tions in the field of automatic control, statistical data analysis, optimization,

magnetic resonance imaging, solid mechanics, quantum physics, higher order

Markov chains, spectral hypergraph theory, Finsler geometry, etc. We further

note that generalizations of concepts arising from linear algebra have been in-

vestigated quite extensively in the literature. Cayley in [9] instigated investi-

gations on hyperdeterminants generalizing the matrix determinants. Gelfand,

Kapranov, and Zelevinsky followed up on Cayley’s work on hyperdetermi-

nants by relating hyperdeterminants to X-discriminants in their classical book

[18]. Their work has stimulated many research directions including recent

approaches for generalizing the concept of eigenvalue and eigenvectors dis-

cussed by Qi in[56, 54] , Lim in[41], Cartwright and Sturmfels [13].

An alternative generalization of matrix algebra was also proposed by Mes-

ner and Bhattacharya in [51, 52]. The authors proposed a generalization of the

classical association scheme to higher dimensions called association schemes
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on n-tuples. In particular for triples they describe the corresponding ternary,

non-associative algebra, which naturally generalizes the Bose-Mesner algebra

[5]. They further deduce from the generalization a ternary third order hyper-

matrix algebra in addition to natural definitions for identity pairs and inverse

pairs. In [3] P. Bhattacharya develops a new 3-D transform generalizing the

Fourier transform using their proposed ternary third order hypermatrix alge-

bra and the concept of inverse pairs. In the same work Bhattacharya raises the

fundamental problem of formulating a mathematical theory for the spectral

analysis of third order hypermatrices which is consistent with their proposed

ternary algebra. We follow up on this line of research and propose here a spec-

tral framework by generalizing to hypermatrices the notion of unitarity. We

also formulate a weak version of the spectral theorem and describe algorithms

performing weak spectral decomposition of hypermatrices. Finally, we show

how the strong version of the spectral theorem for matrices and hypermatrices

can be reduced to the classical Brower fixed point theorem.

1.1 Thesis organization.

The thesis is organized as follows. Chapter 2 describes the basic mathemati-

cal background used throughout the work. Chapter 3 reviews the third order

hypermatrix algebra proposed as a generalization of matrix algebra, and in-

troduces new orthogonalization procedures for matrices and hypermatrices.

Chapter 4 provides a detail account of the polynomial algebra framework,

which simultaneously encompasses the algebra of matrices and hypermatri-

ces. Chapter 5 investigates the weak and strong formulation of the spectral

theorem as well as describing algorithmic frameworks for spectrally analyz-

ing hypermatrices. Finally, chapter 6 discusses computational aspect of Alon’s
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Combinatorial Nullstellensatz method and discusses the role of symmetries in

the analysis of performance of algorithms deduced from Alon’s Combinatorial

Nullstellensatz argument. In addition chapter 6 also discusses the combinato-

rial hardness attenuation framework.
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Chapter 2

Background

2.1 Fields and rings

A subset of the complex numbers is called a field if it is closed under the four

arithmetic operations, that is, if the addition, difference, product, and quotient

( aside from division by zero ) of any two elements ( not necessarily distinct )

of the field is again in the field.1

Roughly speaking, a ring is an algebraic structure that has most but not nec-

essarily all, of the properties of a field. In particular the requirements for the

product operation are less strict. The most important relaxation is that nonzero

elements of a ring are not required to have multiplicative inverses.

Let us use the conventional notation and write Q [x] for the set of polynomials

in the variable x with rational coefficients. More generally we will sometimes

consider C [x0, · · · , xn−1] ( also more conveniently noted as C [x]) to denote the

set of polynomials in the variables {xk}0≤k<n with coefficients from the field of

complex numbers C. Clearly the set C [x] is closed under addition, substrac-

tion and multiplication of its elements, consequently C [x] forms a ring, but not

a field.

1 The notion of a field is usually defined in greater generality to include sets that are not
subsets of the complex numbers. However, for our purposes the definition given here will
suffice.
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2.2 Quotient rings

Let R be an arbitrary commutative ring and let f , g denote two polynomials

in R [x] with f 6= 0. Let us further assume that the leading coefficient of f is a

unit in R. Then by the polynomial division theorem, there is a unique pair of

polynomials (p, q) ∈ (R [x])2 where q corresponds to the quotient and r to the

remainder such that deg (r) < deg ( f ) and most importantly

g = f q + r . (2.1)

We say that g is congruent to r modulo f and more succinctly written

g ≡ r mod f . (2.2)

Furthermore, the quotient ring R[x]/ f corresponds to the set of remainders re-

sulting from dividing elements of R [x] by f . In particular we have that

∀g (x) ∈ C [x] , and a ∈ C, g (x) ≡ g (a) mod (x− a) , (2.3)

so that the set of evaluations of elements in C [x] at an arbitrary a ∈ C corre-

sponds to the quotient ring C[x]/(x−a).

2.3 Reviewing the Lagrange interpolation

Consider the sets {(xk, yk)}0≤k<n ⊂ C × C such that xi 6= xj for i 6= j, and

consider the corresponding map prescribed by

∀ 0 ≤ k < n, xk → yk. (2.4)

Such maps can be described by the following minimal degree polynomial f

using the well known Lagrange interpolation formula

f (z) = ∑
0≤k<n

yk ∏
0≤t 6=k<n

(
z− xt

xk − xt

)
(2.5)
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and hence by construction we have

∀ 0 ≤ k < n, f (xk) = yk, (2.6)

or alternatively

∀ 0 ≤ k < n, f (z) ≡ yk mod (z− xk) . (2.7)

In particular, a single-dimensional array can be encoded as a map of the form

∀ 0 ≤ k < n, k→ yk,

where yk corresponds to the k-th entry of the array, and the pre-image set in the

map corresponds to the indexing set. For algebraic convenience, we shall often

prefer roots of unity, as our default indexing set and we consider maps of the

form

∀ 0 ≤ k < n,
(

e
2πi
n

)k
→ yk.

2.4 The Hadamard product

The Hadamard product of two given column vectors a, b ∈ Cn×1 noted a ? b,

corresponds to a column vector of the same dimensions whose entries corre-

spond to the product of the corresponding entries of a, and b; we write

k− th entry of a ? b is akbk. (2.8)

Let us recall here the familiar notation used for the vector product of a, b ∈

Cn×1 with background matrix the n× n matrix M. We write

〈a, b〉M := ∑
0≤k0,k1<n

ak0mk0,k1bk1 , (2.9)

in particular it follows that

〈a, b〉 := 〈a, b〉I = ∑
0≤k<n

akbk (2.10)
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and hence the inner-product of a and b can be expressed as

〈
a, b

〉
. (2.11)

Furthermore we have

a ?

(
∑

0≤t<m
bt

)
= ∑

0≤t<m
a ? bt, (2.12)

and

〈1n×1, a ? b〉 = 〈a, b〉 = 〈a ? b, 1n×1〉 (2.13)

finally it shall be convenient to adopt the notation convention

a?
α

:=
(
(ak)

α)
0≤k<n (2.14)

and for a set of vectors
{

vj
}

0≤j<n ⊂ Cn×1 we have

(
F0≤j<nvj

)
:= v0 ? · · · ? vn−1 (2.15)

2.5 Quick review of basic properties of roots of unity

We recall that the n-th roots of unity are solutions to the equations

xn − 1 = 0 (2.16)

its solutions are easily obtained by rewriting the equation above as

∀ k ∈ Z, xn = e2πi k,

⇒ x ∈
{(

e
2πi
n

)k
}

k∈Z/nZ

. (2.17)

Let ωn the denote the primitive n-th root of unity expressed by

ωn = e
2πi
n (2.18)
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and

Ωn :=
{
(ωn)

k
}

k∈Z/nZ

. (2.19)

Some of the basic properties of Ωn include the following two facts

∀ r ∈ Ωn, r = r−1 (2.20)

∀ α ∈ R and r ∈ Ωn, |rα| = 1 (2.21)

The Discrete Fourier Transform (DFT) matrix W whose entries are specified as

follows

W :=
(
wuv = (ωn)

u·v)
0≤u,v<n (2.22)

is such that

W ·W† = n I = W† ·W. (2.23)

We shall often denote the set of column vectors of the DFT matrix W by the set{
w?k

}
0≤k<n

, where

w :=
(

wk = (ωn)
k
)

0≤k<n
. (2.24)

Furthermore the column vectors of W can be used to parametrize arbitrary

hyperplanes. Given an arbitrary hyperplaneH specified by

H := {x ∈ Cn such that 〈a, x〉 = α} (2.25)

for some given a ∈ (C\ {0})n×1. Points lying on the hyperplaneH are parametrized

by

x =

{
γ1, · · · , γn−1 ∈ C,

(
α

n
w?0

+ ∑
0<k<n

γk w?k

)
? a?

−1

}
(2.26)

since〈
a,

(
α

n
w?0

+ ∑
0<k<n

γk w?k

)
? a?

−1

〉
=

〈
w?0

,

(
α

n
w?0

+ ∑
0<k<n

γk w?k

)〉
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=

α
∥∥∥w?0

∥∥∥2

`2

n
+ ∑

0<k<n
γk

〈
w?0

, w?k
〉 = α

⇒ x =

(
α

n
w?0

+ ∑
0<k<n

γk w?k

)
? a?

−1
(2.27)

consequently if for an arbitrary f ∈ C [x] we have that

f (x) = (〈a, x〉 − α) h (x) (2.28)

then it follows that

∀ γ1, · · · , γn−1 ∈ C, f (x) ≡ 0

mod


x−



1
a0

1
a1
...

1
an−1


?

(
α

n
w?0

+ ∑
0<k<n

γk w?k

)


(2.29)

in other words the restriction of the polynomial f to the hyperplane H is zero

if the polynomial (〈a, x〉 − α) divides f . More succintly we write

(〈a, x〉 − α) | f (x0, · · · , xn−1) . (2.30)

Finally we note that given f ∈ C [x] expressed by

f (x) = ∑
{0≤〈α, ej〉≤dj}0≤j<n

a{αj}0≤j<n
∏

0≤j<n

(
xj
)αj (2.31)

we have

f (x) ≡

∑
{0≤〈α, ej〉≤dj}0≤j<n

a{αj}0≤j<n
∏

0≤j<n

(
xj
)αj mod n mod

(
x?

n −w?0
)

(2.32)



12

we shall often refer to the remainder polynomial

∑
{0≤〈α, ej〉≤dj}0≤j<n

a{αj}0≤j<n
∏

0≤j<n

(
xj
)αj modn

as the reduced polynomial associated with f modulo
(

x?
n −w?0

)
where w?0

denotes the first column of the DFT matrix, and hence, has all of it’s entries

equal to 1.
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Chapter 3

Third order hypermatrix algebra

3.1 Overview of the third order hypermatrix algebra

At the center of the algebraic framework lies the definition of a ternary product

operation for third order hypermatrices, which generalizes matrix multiplica-

tion. The definition was first proposed by Mesner, Battacharya in [51, 52] as

a generalization of matrix multiplication. Let A = (auvw) be a hypermatrix of

dimensions (m× l × p), B = (buvw) a hypermatrix of dimensions (m× n× l),

and C = (cuvw) a hypermatrix of dimensions (l × n× p). The ternary product

of A, B, and C results in a hypermatrix D = (duvw) of dimensions (m× n× p)

which is expressed by :

duvw = ∑
0≤k<l

aukw · buvk · ckvw (3.1)

There are potentially several ways of generalizing matrix multiplication

and an alternative generalization is discussed in [8]. We favor the Mesner-

Battacharya definition for three reasons: First, every entry of the hypermatrix

D = ◦ (A, B, C) can be thought of as correlating a row vector, a depth vec-

tor, and a column vector taken from A, B, and C respectively. This fact is

compellingly analogous to matrix multiplication as illustrated in Figure 3.1.

Second, matrix multiplication becomes a special case of third order hyper-

matrix multiplication. Finally, the definition of hypermatrix multiplication
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Figure 3.1: Third order hypermatrix ternary Product ◦ (A, B, C) = D.

also suggests a generalization to the vector outer-product operation; that is,

given hypermatrices A, B, and C of dimensions (m× 1× p), (m× n× 1), and

(1× n× p) respectively, the ternary outer-product D, noted D = ⊗ (A, B, C)

is an (m× n× p) hypermatrix defined by the entry relations expressed as

dijk = ai1k · bij1 · c1jk, (3.2)

and depicted in Figure 3.2. Note that A, B and C are matrices with distinct

orientations in the same way that column and row vectors have distinct ori-

entations. Furthermore, matrix and hypermatrix multiplication can both be

viewed as summations of outer-products as depicted for hypermatrices in the

equation below

duvw = ∑
0≤k<l

aukw · buvk · ckvw ⇔ D =

(
∑

0≤k<l
⊗ (A�,k,�, B�,�,k, Ck,�,�)

)
. (3.3)
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Figure 3.2: Matrix outer-product operation ⊗ (A, B, C) = D.

3.2 Generalizing other fundamental matrix notions and ma-

trix operations

Transpose of a third order hypermatrix : Given a hypermatrix A = (au,v,w) we

define its transpose AT and its double transpose AT2
as follows:

AT = (avwu) , AT2 ≡
(

AT
)T

= (awuv) . (3.4)

It immediately follows, from the definition of the transpose, that for all hyper-

matrix A,
(

AT2
)T

= A. Consequently, the transpose operator corresponds to

a cyclic permutation of the indices of A’s entries . Furthermore, a hypermatrix

A is said to be symmetrical if A = AT = AT2
. It follows from the definitions

of the transpose and the product that by complete analogy with matrices we

have :

[◦ (A, B, C)]T = ◦
(

BT, CT, AT
)

. (3.5)
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Identity pair for third order hypermatrices : Let 1(m×n×p) denote the hypermatrix

having all of it’s entries equal to one and of dimensions (m× n× p). Recall-

ing that ∆ =
(
δijk
)

denotes the Kronecker third order hypermatrix defined by

having it’s entry assigned the value one, when the corresponding three indices

equal each other or zero otherwise. We define the identity third order hypermatrix

I to be :

I = ◦
(

1(l×l×l), 1(l×l×l), ∆
)
= ◦

(
1(l×l×l), 1(l×l×l),

(
∑

1≤k≤l
ek ⊗ ek ⊗ ek

))
(3.6)

The identity hypermatrix plays a role quite analogous to that of the identity

matrix, as pointed out by Battacharya and Mesner in [3, 51, 52] that is to say

that ∀A ∈ Cl×l×l, ◦
(

I, A, IT2
)
= A.

Inverse hypermatrix pairs: By analogy to matrix inverse A−1 where for a matrix

A, A−1, is its inverse if (MA)A−1 = M, for any non zero matrix M, the ordered

pairs (A1, A2) and (B1, B2) are related by inverse relationship if for any non-

zero third order hypermatrix M with appropriate dimensions the following

identity holds

M = ◦ (B1 ◦ (A1, M, A2) , B2) . (3.7)

Transposition of third order hypermatrices: Incidentally one may also define trans-

position hypermatrices associated with an arbitrary transposition σ of the per-

mutation group Sn expressed by

∀ σ ∈ Sn, Pσ ≡ ◦
(

1(n×n×n), 1(n×n×n),

(
∑

1≤k≤l
ek ⊗ ek ⊗ eσ(k)

))
(3.8)
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= ∑
1≤k≤l

◦
(

1(n×n×n), 1(n×n×n),
(

ek ⊗ ek ⊗ eσ(k)

))
(3.9)

Incidentally any permutation of the depth slices of A can be obtained by a finite

composition of transpositions of the form

◦
(

Pσn , · · · , ◦
(

Pσk , · · · , ◦
(

Pσ1 , A, PT2

σ1

)
· · · , PT2

σk

)
, · · · , PT2

σn

)
. (3.10)

3.3 Hypermatrix orthogonality

Orthogonality plays an important role in linear algebra, however for third or-

der hypermatrices, the notion of orthogonality induces a symmetry breaking

between two equivalent matrix definitions of orthogonality. The generalization

to hypermatrices of the notion of orthogonality was first proposed by Gnang,

Elgammal and Retakh in [19]. The first interpretation of matrix orthogonality

is associated with correlation constraints and is motivated by expressing for

some l × l matrix Q the constraints

∆ = Q ·QT ⇔ 〈qm, qn〉 =
(

∑
1≤k≤l

qmk qnk

)
= δmn. (3.11)

Consequently, the corresponding correlation constraints for an l × l × l hyper-

matrix Q is expressed by

∆ = ◦
(

Q, QT2
, QT

)
⇔
〈
qmp, qnm, qpn

〉
= δmnp. (3.12)

More generally we shall consider the ordered triplet of third order hyperma-

trices (Q, R, S) to form an uncorrelated triplet if

∆ = ◦ (Q, R, S) . (3.13)
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The second interpretation of matrix orthogonality is motivated by the Kronecker

invariance identity, expressed for some square matrix Q by

∆ = Q · ∆ ·QT. (3.14)

Incidentally, the corresponding Kronecker hypermatrix invariance identity is

expressed by

∆ = ◦
(
◦
(

Q, ◦
(

QT, QT2
, ∆
)

, QT2
)

, Q, QT
)

. (3.15)

The Kronencker invariance identity above corresponds to the conjugation op-

eration for some third-order transposition hypermatrix Q . Finally, we note

that while for matrices these two definitions of orthogonality are equivalent,

and furthermore while transposition hypermatrices simultaneously satisfy both

of these interpretations of orthogonality, in general these two definitions of or-

thogonality are not equivalent for third order hypermatrices, i.e.

∆ = ◦
(

Q, QT2
, QT

)
; ◦

(
◦
(

Q, ◦
(

QT, QT2
, ∆
)

, QT2
)

, Q, QT
)
= ∆.

(3.16)

3.3.1 Hypermatrix orthogonalization procedures

We describe here a new matrix orthogonalization procedure which naturally

extends to hypermatrices, thereby establishing the existence of n × n × n or-

thogonal hypermatrices for arbitrary integer n ≥ 2. Consider a n × n matrix

M, we seek to deduce from M a square matrix Q such that

0 ≤ i < j < n,
〈
qi, qj

〉
= 0 (3.17)
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Assuming an appropriately chosen matrix M (i.e. whose columns {mi}0≤i<n

are linearly independent ). The procedure begins by initializing the (n
2) Hadamard

product qi ? qj as follows

∀ 0 ≤ i < j < n, qi ? qj = mi ? mj −
〈

1n×1√
n

, mi ? mj

〉
1n×1√

n
(3.18)

and entry-wise , for some particular entry k we have

∀ 0 ≤ i < j < n, qi (k) qj (k) = mi (k)mj (k)− n−
1
2

〈
1n×1√

n
, mi ? mj

〉
(3.19)

because the entries do not interact, they can be treated independently. For

entry k, consider the linear constraints:

∀, 0 < j < n, ln {q0 (k)}+ ln
{

qj (k)
}
=

ln
{

m0 (k)mj (k)− n−
1
2

〈
1n×1√

n
, m0 ? mj

〉}
(3.20)

in addition to the constraint

∑
0<i<j<n

ci,j
(
ln {qi (k)}+ ln

{
qj (k)

})
=

∑
0<i<j<n

ci,j ln

mi (k)mj (k)−

〈
1n×1√

n , mi ? mj

〉
√

n

 . (3.21)

So that inverting the resulting symbolic matrix yields a parametrization of or-

thogonal matrices deduced from M. It is furthermore relatively easy to modify

the procedure described above so as deduce from M the nearest orthogonal

matrix Q in the `2 norm sense. While the orthogonalization procedure de-

scribed above is a variant of the well known Gram–Schmidt orthogonalization

process, the main advantage of our proposed variation is the fact that the re-

sulting set of orthogonalized column vectors is independent of the ordering of

the column vectors in the original matrix.
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Let us now describe the third order hypermatrix formulation of the orthog-

onalization procedure. We consider the indexing set

Idxn :=


(

n
2

)
︸︷︷︸
(i, j, j)

∪
(

n
2

)
︸︷︷︸
(i, i, j)

∪
(

n
3

)
︸︷︷︸
(i, j, k)

∪
(

n
3

)
︸︷︷︸
(j, i, k)

 , |Idxn| =
(n− 1) n (n + 1)

3
. (3.22)

Similarly to the matrix case we start from some appropriately chosen n× n×

n third order hypermatrix M ( n ≥ 3 ), and deduce from it an orthogonal

hypermatrix Q that is to say

∀ (i, j, k) ∈ Idxn,
〈
qik, qji, qkj

〉
= 0 (3.23)

where mij denotes the depth vectors located at the intersection of row i and

column j of the third order hypermatrix M. We start by initializing Hadamard

products as follows

∀ (i, j, k) ∈ Idxn, qik ? qji ? qkj =

mik ? mji ? mkj −
〈

1n×1√
n

, mik ? mji ? mkj

〉
1n×1√

n
(3.24)

because different entry locations do not interact, they can be treated indepen-

dently. Hence for an arbitrary entry t, consider the linear constraints:

∀ (i, j, k) ∈ Idxn, ln {qik (t)}+ ln
{

qji (t)
}
+ ln

{
qkj (t)

}
=

ln
{

mik (t) mji (t) mkj (t)− n−
1
2

〈
1n×1√

n
, mik ? mji ? mkj

〉}
, (3.25)

we may consider a partition of the index set into two disjoint sets

Idxn = Jn ∪Hn (3.26)

such that

|Jn| = n2 − 1, |Hn| = 3−1 (n− 1) n (n + 1)− n2 + 1 (3.27)
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in addition to the linear constraints

∀ (i, j, k) ∈ Jn, ln {qik (t)}+ ln
{

qji (t)
}
+ ln

{
qkj (t)

}
=

ln
{

mik (t) mji (t) mkj (t)− n−
1
2

〈
1n×1√

n
, mik ? mji ? mkj

〉}
. (3.28)

The partition should be made so as to ensure that the constraints are linearly

independent and taken in conjunction with the symbolic constraint

∑
(i,j,k)∈Hn

cijk
(
ln {qik (t)}+ ln

{
qji (t)

}
+ ln

{
qkj (t)

})
=

∑
(i,j,k)∈Hn

ci,j,k ln
{

mik (t)mji (t)mkj (t)−
〈

1n×1√
n

, mik ? mji ? mkj

〉
n−

1
2

}
.

(3.29)

So that inverting the resulting symbolic matrix yields a parametrization of or-

thogonal hypermatrices deduced from M. Finally just as we suggested for

matrices one can easily modify the derivation to deduces from the procedure

the nearest orthogonal hypermatrix to M.



22

Chapter 4

A polynomial and probabilistic approach to matrix
and hypermatrix algebra

4.1 Vectors as polynomials

To the uninitiated, it is at first helpful to equate vectors with arrays, and typi-

cally the access to elements of an array is symbolized by specifying the name

of the array followed by the corresponding index in brackets or in parenthesis.

For instance, a(i) indicates the access to the i-th element of the array a. Fortu-

nately this convention is also used in mathematics to symbolize the evaluation

of a function. Incidentally, we may think of arrays as functions defined over

discrete Cartesian product sets. For algebraic convenience we will use roots

of unity as default indexing set. The convenience of this choice stems from

the fact that the absolute value of arbitrary powers of any roots of unity is al-

ways 1. Furthermore, the complex conjugation operation of arbitrary powers

of roots of unity is an algebraic operation.

For an arbitrary field F and an arbitrary integer n > 0, Fx
n will denote the

parametric family of polynomial rings defined by

Fx
n := F[x]/(xn−1). (4.1)

In other words, Fx
n corresponds to the set of polynomials with coefficients from

the field F with degree bounded above by n. Let ωn ( or simply ω when no

confusion arises about the corresponding value of n ) denote the primitive n-th
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root of unity e
2π i

n , and Ωn denote the multiplicative group of n-th roots of unity,

hence Ωn :=
{

ωk}
0≤k<n. The fact that polynomials can be used to encode ar-

rays indexed by roots of unity, follows from the fundamental Lagrange invariance

identity : ∀ f (x) ∈ C [x] ,

f (x) ≡ ∑
r∈Ωn

f (r) ∏
s∈Ωn\{r}

(
x− s
r− s

)
mod (xn − 1) , (4.2)

we recall that

∀ r ∈ Ωn, f (r) := f (x) mod (x− r) (4.3)

and the polynomial ∑r∈Ωn f (r)∏s∈Ωn\{r}
( x−s

r−s
)

is the unique minimal degree

polynomial in C [x] which is congruent to f (x) modulo (xn − 1).

4.1.1 Application to sorting

The sorting problem arises frequently in practice and will constitute the first

example of a family of combinatorial problems whose resolution implicitly re-

quires a search over permutations of n elements. Given a polynomial

f : Ωn → Q [ω]

such that

∀ r ∈ Ωn, f (r) = yr ∈ Q+,

f encodes an array of positive rational numbers. By the fundamental Lagrange

invariance identity we have

f (x) = ∑
r∈Ωn

yr ∏
s∈Ωn\{r}

(
x− s
r− s

)
. (4.4)

The sorting problem therefore amounts to solve for a permutation p of the

elements of Ωn such that

∀ 0 ≤ u < v < n,
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f (p (ωu)) f (p (ωu))− f (p (ωv)) f (p (ωv)) ≥ 0. (4.5)

Let us describe the algebraic constraints on the polynomial p, which ensure

that p corresponds to an automorphism of Ωn. As a further consequence of the

fundamental Lagrange invariance identity, an automorphism of Ωn is described by

a multivariate polynomial p ( in the main variable z and the auxiliary vector

variable r = (rk)0≤k<n ) expressed by

p (z; r) ≡

∑
0≤k<n

rk ∏
0≤t 6=k<n

(
z−ωt

ωk −ωt

)
mod

{
rk −ωσ(k)

}
σ∈Sn,0≤k<n

. (4.6)

The constraints in the equation 4.6 expresses the fact that p (z; r) is associated

with a bijective map of Ωn to itself. Therefore the sorting constraints corre-

sponds to semi-algebraic constraints specified by:

∀ 0 ≤ u < v < n, | f (p (ωv))|2 − | f (p (ωu))|2 ≥ 0

mod
{

rk −ωσ(k)
}

σ∈Sn,0≤k<n
. (4.7)

We remark that although the sorting constraints in 4.7 are semi-algebraic un-

fortunately they are not equality constraints. We can turn the inequality con-

straints into equality constraints by introducing slack variables as follows

∀ 0 ≤ u < v < n, | f (p (ωv; r))|2 − | f (p (ωu; r))|2 ≡(
∑

0≤s<m

(
1 + yu,v,s

2

)
2s

)(
1 + ∑

0≤t<m

(
1 + zu,v,t

2

)
21+t

)−1

mod

 (yu,v,s)
2 − 1

(zu,v,s)
2 − 1

, rk −ωσ(k)


σ∈Sn,0≤s<m,0≤k<n

, (4.8)

where m denotes the minimum number of bits required to encode in binary

form both integers in the numerators and in the denominators of the slack vari-

ables. We may assume that m is given as part of the input. Having algebraically
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specified sorting instances, we briefly sketch the steps for determining their so-

lution. We could for instance solve sorting instances via Hilbert Nullstellensatz

certificates using such methods as the NullLA [47, 45, 46, 50]. Unfortunately

such algorithms could possibly yield exponential worst case run time perfor-

mance. This in turn suggests that the combinatorial underpinning of sorting

problems plays a crucial role in the design of efficient algorithms. In fact one

easily obtains an efficient algebraic solver for sorting by exploiting well known

divide and conquer schemes describe in [11].

4.2 Matrix algebra from the algebra of bivariate polynomials

Having described how single-dimensional arrays indexed by roots of unity

can be encoded as polynomials in a single variable, we now proceed to dis-

cuss how the algebra of bivariate polynomials naturally embeds matrix alge-

bra. Consequently, throughout the discussion, we will de-emphasize the dis-

tinction between matrices and polynomials ( and subsequently de-emphasize

the distinction between hypermatrices and polynomials ). Consider the fol-

lowing parametric family of polynomial rings, subset of C [x, y], defined for an

arbitrary field F and arbitrary integers m, n > 0 by

F
x,y
(m,n) := (F[x]/(xm−1))[y]/(yn−1) = (F[y]/(yn−1))[x]/(xm−1), (4.9)

( since polynomials in R[x, y] can be re-expressed as (R[x])[y] or equivalently

as (R[y])[x] ). It also follows as a consequence of the fundamental Lagrange

invariance identity that ∀ f ∈ C [x, y] the unique minimal degree polynomial
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in C
x,y
(m,n) which is congruent to f is expressed by

∑
(r0,r1)∈Ωm×Ωn

f (r0, r1)

 ∏
s0∈Ωm\{r0}

(
x− s0

r0 − s0

) ∏
s1∈Ωn\{r1}

(
y− s1

r1 − s1

)
(4.10)

where

(r0, r1) ∈ Ωm ×Ωn, f (r0, r1) := f (t0, t1) mod

 t0 − r0

t1 − r1

 . (4.11)

We remark that the degrees of freedom in the polynomial encoding described

above correspond precisely to the degrees of freedom of an m × n complex

entry matrices.

4.2.1 Matrix multiplication as uncentered covariance.

Given two arbitrary polynomials f (x, y), g (x, y) ∈ C [x, y], and a discrete joint

probability distribution P , defined over the pair of random variables (R0, R1)

whose support is over the Cartesian product set Ωk ×Ωk, the uncentered co-

variance associated with the new random variables ( f (x, R0) , g (R1, y)), is de-

fined to be the element of C
x,y
(m,n) expressed by

EP [ f (x, R0) g (R1, y)] = ∑
(r0,r1)∈Ω2

k

f (x, r0) g (r1, y) P (r0, r1) . (4.12)

Following the usual linear algebra convention, our default choice for the joint

probability distribution P will be the polynomial encoding of the normalized

identity matrix i.e.

P (r0, r1) = n−1In×n (r0, r1) ≡
(−1)(

n
2)

n
×

∏
0≤s<t<n

(
(r1 − r0)

2 −
(
ωs −ωt)2

(ωs −ωt)2

)
mod

 (r0)
n − 1

(r1)
n − 1

 (4.13)
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hence

P (r0, r1) = n−1In×n (r0, r1) ≡

∑
0 ≤ k0, k1 < n

(k0 + k1) | n

(r0)
k0 (r1)

k1

n2 mod

 (r0)
n − 1

(r1)
n − 1

 (4.14)

Subsequently, for convenience we adopt the following convention

E [ f (x, R0) g (R1, y)] := En−1In
[ f (x, R0) g (R1, y)] =

n−1 ∑
r∈Ωn

f (x, r) g (r, y) . (4.15)

We remark that, except for the normalizing factor n−1, E [ f (x, R0) g (R1, y)]

corresponds to the usual definition of matrix multiplication, and hence the ma-

trices respectively associated with the polynomials f , Inv f ∈ C [x, y] are said

to be inverses to one another if ∀g ∈ C
x,y
(n,n)

E
[
E
[

f (x, R0) Inv f (R1, S0)
]

g (S1, y)
]
=

E
[
E
[
Inv f (x, R0) f (R1, S0)

]
g (S1, y)

]
= n−2g (x, y) . (4.16)

In particular a bivariate polynomial q ∈ C [x, y] will be said to be unitary over

the ring C
x,y
(n,n) if

E

|q (x, R0)|
(

q (x, R0)

|q (x, R0)|

)(ω2)
0

|q (y, R1)|
(

q (y, R1)

|q (y, R1)|

)(ω2)
1
 ≡

n−1In×n (x, y) mod

 xn − 1

yn − 1

 (4.17)

we remark that the complex conjugation operation may be defined as

z̄ = |z|
(

z
|z|

)(ω2)
1

(4.18)
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where

∀ θ ∈ R,
∣∣∣eiθ
∣∣∣ = 1. (4.19)

The definition above suggests a natural generalization of the complex conjuga-

tion operation that we shall further discuss in the next chapter.

4.2.2 Matrix Kronecker product as a product of polynomials.

Let us recall that given an m× n matrix A and a p× q matrix B their Kronecker

product A⊗ B is the m p× n q matrix C with entries given by

cp u+k, q v+l = au,v bk,l. (4.20)

The Kronecker product in the polynomial encoding framework is encoded as

follows

h
(

ei2π
(

p u+k
mp

)
, ei2π

(
q v+l

nq

))
= f

(
ei 2π

m u, ei 2π
n v
)

g
(

ei 2π
p k, ei 2π

q l
)

⇒ h
(
(ωm)

u m
√(

ωp
)k, (ωn)

v n
√(

ωq
)l
)
= f

(
(ωm)

u , (ωn)
v) g

((
ωp
)k ,
(
ωq
)l
)

,

(4.21)

In summary we say that given f ∈ C
x0,y0
(m,n) and g ∈ C

x1,y1
(p,q) the polynomial corre-

sponding to their Kronecker product, h ∈ C
x0 m√x1, y0 n√y1
(m·p, n·q) is expressed by

h (x0
m
√

x1, y0 n
√

y1) := f ⊗ g := f (x0, y0) g (x1, y1) . (4.22)

Incidentally for unitary polynomials f and g over C
x0,y0
(m,m)

and C
x1,y1
(n,n) respec-

tively it follows that f ⊗ g is also unitary over C
x0 m√x1, y0 n√y1
(mp, nq) .

4.3 Hypermatrix algebra from the algebra of polynomials.

We now discuss how polynomial algebra also encompasses the algebra of hy-

permatrices. The discussion here will focus on third order hypermatrices, since
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further generalization to k-th order hypermatrices, though notationally more

complicated, is not essentially different. Consider the parametric family of

polynomial rings defined for some arbitrary field F and integers m, n, p > 0 by

F
x,y,z
(m,n,p) := ((F[x]/xm−1)[y]/(yn−1))[z]/(zp−1). (4.23)

As a consequence of the fundamental Lagrange identity it follows that ∀ f ∈

C [x, y, z], the unique minimal degree polynomial element of C
x,y,z
(m,n,p), which

is congruent to f is expressed by

∑
(r0,r1,r2)∈Ωm×Ωn×Ωp

f (r0, r1, r2)

 ∏
s0∈Ωm\{r0}

(
x− s0

r0 − s0

)×
 ∏

s1∈Ωn\{r1}

(
y− s1

r1 − s1

) ∏
s1∈Ωp\{r2}

(
z− s2

r2 − s2

) (4.24)

where

f (r0, r1, r2) := f (t0, t1, t2) mod


t0 − r0

t1 − r1

t2 − r2

 . (4.25)

We note that the degrees of freedom in this encoding corresponds precisely to

that of an m× n× p hypermatrix. Furthermore, given three arbitrary polyno-

mial f , g, h ∈ C [x, y, z] and a discrete joint probability distribution P over the

random variables (R0, R1, R2) whose support is over the Cartesian product

Ωk ×Ωk ×Ωk, we define their uncentered correlation measure to be

EP [ f (x, R0, z) g (x, y, R1) h (R2, y, z)] =

∑
(r0,r1,r2)∈Ω3

k

f (x, r0, z) g (x, y, r1) h (r2, y, z) P (r0, r1, r2) . (4.26)
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By analogy to the linear algebra convention, our default choice for the joint

distribution P will be the Kronecker delta third order hypermatrix whose cor-

responding polynomial is expressed by

P (r0, r1, r2) = n−1 In×n×n (r0, r1, r2) ≡ n−1 ∏
m0+m1 ω3+m2(ω3)

2 6=0
(

r0 + ω3 r1 + (ω3)
2 r2

)
−
(
(ωn)

m0 + ω3 (ωn)
m1 + (ω3)

2 (ωn)
m2
)

(ωn)
m0 + ω3 (ωn)

m1 + (ω3)
2 (ωn)

m2


mod

{
(r0)

n − 1, (r1)
n − 1, (r2)

n − 1
}

(4.27)

and hence

n−1 In×n×n (r0, r1, r2) ≡

∑
0 ≤ k0, k1, k2 < n

k0 + k1 + k2 ≡ 0 mod n

(r0)
k0 (r1)

k1 (r2)
k2

n−3 mod


(r0)

n − 1

(r1)
n − 1

(r2)
n − 1

 (4.28)

and similarly to the matrix case we adopt the convention

E [ f (x, R0, z) g (x, y, R1) h (R2, y, z)] :=

En−1In×n×n
[ f (x, R0, z) g (x, y, R1) h (R2, y, z)] =

n−1 ∑
r∈Ωk

f (x, r, z) g (x, y, r) h (r, y, z) . (4.29)

Remark that except for the normalizing factor n−1 we have that

E [ f (x, R0, z) g (x, y, R1) h (R2, y, z)]

corresponds to a ternary third order hypermatrix product operation as pro-

posed by Mesner and Bhattacharya [51, 52] and further discussed in [3, 19].

Furthermore, given two ordered pairs of polynomials (a (x, y, z) , b (x, y, z)) ∈
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C
x,y,z
(n,n,n) × C

x,y,z
(n,n,n) and (α (x, y, z) , β (x, y, z)) ∈ C

x,y,z
(n,n,n) × C

x,y,z
(n,n,n) we say that

such pairs are inverse pairs if ∀ f ∈ C
x,y,z
(n,n,n)

E [E [ f (x, R0, z) a (x, S0, R1) b (R2, S0, z)] α (x, y, S1) β (S2, y, z)] ≡

n−2 f (x, y, z) mod


xn − 1

yn − 1

zn − 1

 . (4.30)

furthermore a polynomial q ∈ C
x,y,z
(n,n,n) is said to be unitary over C

x,y,z
(n,n,n) if

E

q (x, R0, z) |q (y, R1, x)|
(

q (y, R1, x)
|q (y, R1, x)|

)(ω3)
2

|q (z, R2, y)|
(

q (z, R2, y)
|q (z, R2, y)|

)(ω3)
1


≡ n−1 In×n×n (x, y, z) mod


xn − 1

yn − 1

zn − 1

 . (4.31)

4.4 Lagrange interpolation for solving linear constraints.

Solving linear systems of equations is a classical topic in linear algebra. It is

well known that polynomial interpolation indeed reduces to solving a special

system of linear equations, we proceed to show here that the converse also

holds. We show that solving a general linear system of equation naturally re-

duces to a special multivariate polynomial interpolation problem. We recall

that the Lagrange interpolation formula associated with the map

∀ 0 ≤ k < n, xk → f (xk) ,

expressed by

f (x) = ∑
0≤k<n

f (xk)

(
∏

0≤t 6=k<n
(x− xt)

)(
∏

0≤t 6=k<n
(xk − xt)

)−1

. (4.32)
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Using the DFT hyperplane parametrization presented in Eq 2.26 we formulate

a vector version of the Lagrange interpolation formula above as follows

fΓ (x) = ∑
0≤k<n

f (xk)×

〈(
F0≤t 6=k<n (x− xt)

)
,
(
F0≤t 6=k<n (xk − xt)

)?−1
?

(
w0

n
+ ∑

0<j<n
γj (xk) wj

)〉
(4.33)

where
{

γj (xk)
}

0≤i,j 6=0<n are parameters to be determined. It is clear from the

expression above that the entries of the vectors {xk}0≤k<n ⊂ Cn×1 must be cho-

sen such that no two pair of distinct vectors
(
xi, xj

)
have equal entries. For-

tunately, this restriction is not particularly limiting. We further remark that,

while in the single variable Lagrange interpolation case the formula resulted

in only one polynomial, the vector formulation in 4.33 describes a family of

interpolating multivariate polynomials of degree at most n− 1 in each of the

variables. Since our goal is to solve systems of linear equations, we make the

linear form “Ansatz” that is to say we pre-suppose the existence among the in-

terpolating polynomials of a linear form with no constant term expressed by

f (x) = 〈s, x〉 . (4.34)

Note that given such an interpolating polynomial the solutions to our con-

straints are determined by

{sk = f (ek)}0≤k<n (4.35)

where {ek}0≤k<n denotes the canonical Euclidean basis vectors, or in other

words the columns vectors of the identity matrix.

Let us illustrate this with 2 × 2 system of linear equations. Consider the
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system of equation  a00 a01

a10 a11


 s0

s1

 =

 b0

b1

 . (4.36)

Solving for

 s0

s1

 in the equation above, amounts to determining a linear

interpolating polynomial

f : C2 → C

such that for aT
0 =

(
a00 a01

)
and aT

1 =

(
a10 a11

)
we have

f (a0) = b0

f (a1) = b1

(4.37)

using the proposed vector formulation of the Lagrange interpolation formula

we obtain that

f (x) = b0

〈
(x− a0) ,

 1
a00−a10

1
a01−a11

 ?


 1/2

1/2

+ γ

 1

−1


〉−

b1

〈
(x− a1) ,

 1
a00−a10

1
a01−a11

 ?


 1/2

1/2

+ γ

 1

−1


〉 (4.38)

so that

f (x) = b0

(
(x0 − a00) (x1 − a01)

) 1/2+γ
a00−a10

1/2−γ
a01−a11

−
b1

(
(x0 − a10) (x1 − a11)

) 1/2+γ
a00−a10

1/2−γ
a01−a11

 . (4.39)

By the ansatz we have

f (0) = −b0

(
a00 a01

) 1/2+γ
a00−a10

1/2−γ
a01−a11

+ b1

(
a10 a11

) 1/2+γ
a00−a10

1/2−γ
a01−a11

 = 0.

(4.40)
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Hence the solution to the linear system of equation is given by

s :=

 f (e0)

f (e1)

 mod f (0)⇔ s := (a00a11 − a01a10)
−1

 −a01b0 + a11b1

a00b0 − a10b1


(4.41)

The 2× 2 example is rather misleadingly simple, since the general n× n case is

much more intricate. Indeed the vector version of the Lagrange interpolation

formula parametrizes a family of interpolating polynomials of the form

fΓ (x) = ∑
0≤k<n

〈
x?

k
, ak (γ (x0) , · · · , γ (xn−1))

〉
(4.42)

where the vectors Γ =
{

γ
(
xj
)}

0≤j<n are parameters to be determined, how-

ever without lost of generality we can set the vector γ (xn−1) to

n−1

γ1 (xn−1)

...

γn−1 (xn−1)


=



n−1

0
...

0


(4.43)

and by linear form “Ansatz” the solution to the linear system of equation is de-

termined by the constraints

∀x ∈ Cn, f (x) := 〈s, x〉 ≡ fΓ (x)

mod
{〈

x?
k
, ak (γ (x0) , · · · , γ (xn−1))

〉}
0≤k 6=1<n

(4.44)

which induces a linear system having (n− 1)2 unknowns in n (n− 2)+ 1 equa-

tions. Fortunately, the resulting constraints can be split into n + 1 independent

linear systems of equations each of which have only n− 1 unknowns in n− 1

equations, thereby allowing us to recursively determine the solution.
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4.5 Higher order Lagrange invariance identities as higher or-

der Fourier expansions.

In recent years many applications have arisen in which it has been necessary

to go beyond the linear phases in the usual Fourier expansion, replacing them

with higher order functions such as polynomials. Such expression had ap-

peared earlier in the Physics community associated with path integral com-

putations introduced by Feynman in [16]. They have also appeared in combi-

natorics as discussed by Tao in [66]. We show here that higher order Fourier

expansion can viewed as natural generalizations to the fundamental Lagrange

invariance identity. We therefore refer to such generalizations as higher order

Lagrange invariance identities.

It is clear that polynomial interpolation over roots of unity induce a Fourier

expansions over some finite Abelian groups, as suggested by the following

rewriting of the fundamental Lagrange invariance identity for f

f
(
ωx0

n0

)
=

∑
t0∈Z/n0Z

f
(

ωt0
n0

)
∏

s0 6=t0

e2πi
(

x0
n0
+ 0

2

)
+ e2πi

(
s0
n0
+ 1

2

)
e2πi

(
t0
n0
+ 0

2

)
+ e2πi

(
s0
n0
+ 1

2

) . (4.45)

We further recall that the bivariate version of the fundamental Lagrange identity

yields the the following Fourier expansion for g

g
(
ωx0

n0 , ωx1
n1

)
= ∑

(t0,t1)∈Z/n0Z×Z/n1Z

g
(

ωt0
n0 , ωt1

n1

)
×

∏
s0 6=t0

e2πi
(

x0
n0
+ 0

2

)
+ e2πi

(
s0
n0
+ 1

2

)
e2πi

(
t0
n0
+ 0

2

)
+ e2πi

(
s0
n0
+ 1

2

) ∏
s1 6=t1

e2πi
(

x1
n1
+ 0

2

)
+ e2πi

(
s1
n1
+ 1

2

)
e2πi

(
t1
n1
+ 0

2

)
+ e2πi

(
s1
n1
+ 1

2

) . (4.46)

Finally, we recall that the fundamental Lagrange identity yields the the following

Fourier expansion for h an exponential polynomial in three variables

h
(
ωx0

n0 , ωx1
n1 , ωx2

n2

)
=
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∑
(t0,t1,t2)∈Z/n0Z×Z/n1Z×Z/n2Z

h
(

ωt0
n0 , ωt1

n1 , ωt2
n2

)
∏

s0 6=t0

e2πi
(

x0
n0
+ 0

2

)
+ e2πi

(
s0
n0
+ 1

2

)
e2πi

(
t0
n0
+ 0

2

)
+ e2πi

(
s0
n0
+ 1

2

)×

∏
s1 6=t1

e2πi
(

x1
n1
+ 0

2

)
+ e2πi

(
s1
n1
+ 1

2

)
e2πi

(
t1
n1
+ 0

2

)
+ e2πi

(
s1
n1
+ 1

2

) ∏
s2 6=t2

e2πi
(

x2
n2
+ 0

2

)
+ e2πi

(
s2
n2
+ 1

2

)
e2πi

(
t1
n2
+ 0

2

)
+ e2πi

(
s2
n2
+ 1

2

) (4.47)

we may introduce here a higher order version of the fundamental Lagrange invari-

ance identity and associated with the same function h as follows

h
(
ωx0

n0 , ωx1
n1 , ωx2

n2

)
=

∑
{0≤uk<nk}0≤k<3

h
(
ωu0

n0 , ωu1
n1 , ωu2

n2

)
∏

{0 ≤ µk < nk}0≤k<3

(µ0 6= u0) or (µ1 6= u1) or (µ2 6= u2) e
2πi
((

x0
n0

)3
+
(

µ1
n1

)2
+
(

µ2
n2

)
+ 0

4

)
+ e

2πi
((

µ0
n0

)3
+
(

x1
n1

)2
+
(

µ2
n2

)
+ 1

4

)
+

e
2πi
((

u0
n0

)3
+
(

µ1
n1

)2
+
(

µ2
n2

)
+ 0

4

)
+ e

2πi
((

µ0
n0

)3
+
(

u1
n1

)2
+
(

µ2
n2

)
+ 1

4

)
+

→

→ e
2πi
((

µ0
n0

)3
+
(

µ1
n1

)2
+
(

x2
n2

)
+ 2

4

)
+ e

2πi
((

µ0
n0

)3
+
(

µ1
n1

)2
+
(

µ2
n2

)
+ 3

4

)

e
2πi
((

µ0
n0

)3
+
(

µ1
n1

)2
+
(

u2
n2

)
+ 2

4

)
+ e

2πi
((

µ0
n0

)3
+
(

µ1
n1

)2
+
(

µ2
n2

)
+ 3

4

)
 . (4.48)

It is immediately apparent that uniqueness fails to hold for higher order Fourier

expansions. We shall refer to the expression above as the canonical cubic or-

der Fourier expansion of f more generally, the n-th order Fourier expansion

expressed by

f
(

ωx0
m0 , · · · , ω

xmn−1
mn−1

)
= ∑
{0≤ut<mt}0≤t<n

f
(

ωu0
m0 , · · · , ω

umn−1
mn−1

)
∏

{0 ≤ µt < mt}0≤t<n∨
{µt 6= ut}0≤t<n(

∑
0≤k<n

exp

{
2πi

(
∑

0≤t<k

(
µt

mt

)n−t
+

(
xk
mk

)n−k
+ ∑

k<t<n

(
µt

mt

)n−t
+

k
n

)})



37

(
∑

0≤k<n
exp

{
2πi

(
∑

0≤t<k

(
µt

mt

)n−t
+

(
uk
mk

)n−k
+ ∑

k<t<n

(
µt

mt

)n−t
+

k
n

)})−1

We therefore think of the higher order Fourier expansion described above as

providing a natural way of extending the polynomial framework described

here to non polynomial kernel approaches.
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Chapter 5

Matrix and hypermatrix spectral analysis

5.1 Generalization of the complex conjugation operation.

We start by first discussing a slight generalization to the complex conjugation

operation. We recall that the usual complex conjugation operation is defined

as follows

∀ z ∈ C∗, z = zc
0
2 := |z|

(
z
|z|

)(ω2)
0

and z = zc
1
2 := |z|

(
z
|z|

)(ω2)
1

(5.1)

where ωk denotes the primitive k-the root of unity and

∀ θ ∈ R,
∣∣∣ei θ
∣∣∣ = 1.

Incidentally, we think of the usual complex conjugation operation as a second

order operation. More generally we define the k-th complex conjugate of order

p for an arbitrary non-zero complex number z to be

zc
k
p := |z|

(
z
|z|

)(ωp)
k

, (5.2)

it follows from the definition that

∀ z ∈ C,

(
∏

0≤k<p
zc

k
p

)
= |z|p . (5.3)

Hence, for an arbitrary f ∈ C [x, y, z] its `p norm over C
x,y,z
(n0,n1,n2)

noted ‖ f ‖`p
is

implicitly defined by the equality(
‖ f ‖`p

)p
:= ∑

(r0,r1,r2)∈Ωn0×Ωn1×Ωn2

∏
0≤k<p

( f (r0, r1, r2))
ck

p . (5.4)
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In particular the k-th complex conjugate of order p of an arbitrary f ∈ C [x, y, z]

over C
x,y,z
(n0,n1,n2)

corresponds to the polynomial

f c
k
p (x0, x1, x2) = ∑

(r0,r1,r2)∈Ωn0×Ωn1×Ωn2

( f (r0, r1, r2))
ck

p

 ∏
s0∈Ωn0\{r0}

(
x− s0

r0 − s0

)×
 ∏

s1∈Ωn1\{r1}

(
y− s1

r1 − s1

) ∏
s2∈Ωn2\{r2}

(
z− s2

r2 − s2

) (5.5)

5.2 The weak form of the matrix and hypermatrix spectral the-

orem.

We recall that the matrix spectral theorem is formulated for an arbitrary n× n

hermitian matrix A as follows
A = (Q ·D0) · (Q ·D1)

†2

∆ = Q ·Q†2

D?2

j = DT
j ·Dj, 0 ≤ j < 3

where the †2 operation corresponds to a second order conjugation applied to

the entries of a matrix followed by a transpose. The spectral constraints are

equivalently written as
ai,j =

〈
(µ ? qi) ,

(
ν ? qj

)c1
2
〉

δi,j =

〈
qi, qc1

2
j

〉 , ∀ 0 ≤ i ≤ j < n . (5.6)

Theorem (weak form of the matrix spectral theorem): The entries of an arbi-

trary hermitian matrix A, admit an expansion of the form

∀ 0 ≤ i ≤ j < n,


aij =

〈
λij, qij

〉
δij =

〈
1, qij

〉 (5.7)
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for (n+1
2 ) vectors

{
λij
}

0≤i≤j<n and (n+1
2 ) vectors

{
qij
}

0≤i≤j<n.

Proof : It is immediate that the weak form of the spectral theorem trivially

follows from the usual formulation of the spectral theorem, which we refer to

as the strong form of the spectral theorem. We shall instead offer here an al-

ternative proof of the weak form of the spectral theorem. Our proof has the

advantage of naturally extending to hermitian hypermatrices of arbitrary fi-

nite order. In addition, the proof suggests a natural recursive algorithm for

performing the weak spectral analysis of matrices and hypermatrices.

Our proposed proof is inductive, and starts by establishing that the theorem

holds for 2× 2 hermitian matrices as the base case. Let

A =

 a00 a01

ac
1
2

01 a11

 ∈ C2×2, (5.8)

we note that the constraints

∀ 0 ≤ i ≤ j < 2, aij =
〈
λij, qij

〉
and δij =

〈
1, qij

〉
(5.9)

can be rewritten as

M ·



q000

q001

q010

q011

q110

q111


=



a00

a01

a11

1

0

1


(5.10)
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where

M =



λ0 λ1 0 0 0 0

0 0 λ0 λ1 0 0

0 0 0 0 λ0 λ1

1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1


(5.11)

from which we deduce that

1
λ0
− λ1(

λ1
λ0
−1
)

λ2
0

0 0 λ1(
λ1
λ0
−1
)

λ0
0 0

1(
λ1
λ0
−1
)

λ0
0 0 − 1

λ1
λ0
−1

0 0

0 1
λ0
− λ1(

λ1
λ0
−1
)

λ2
0

0 0 λ1(
λ1
λ0
−1
)

λ0
0

0 1(
λ1
λ0
−1
)

λ0
0 0 − 1

λ1
λ0
−1

0

0 0 1
λ0
− λ1(

λ1
λ0
−1
)

λ2
0

0 0 λ1(
λ1
λ0
−1
)

λ0

0 0 1(
λ1
λ0
−1
)

λ0
0 0 − 1

λ1
λ0
−1



·



a00

a01

a11

1

0

1


=



q000

q001

q010

q011

q110

q111


. (5.12)
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Where for convenience we shall define

q =



q000

q001

q010

q011

q110

q111


, a =



a00

a01

a11

1

0

1


.

We have

M · q = a (5.13)

⇒
(

M− diag
{

q?−1
? a
})
· q = 0n×1. (5.14)

Consequently entries of λ and q must be roots of the multivariate rational func-

tion

det
{

M− diag
{

q?−1
? a
}}

, (5.15)

which we think of as a variant of the characteristic equation. It is implicit in the

expressions above that we assume that q has no non-zero entries. Fortunately,

this assumption incurs very little loss of generality because, if q had zero en-

tries, a small additive perturbation will turn such entries into non-zero entries,

while only slightly perturbing the spectral decomposition. Working over the

algebraic closed field C, we have therefore reduced the existence of a weak

spectral decomposition for a hermitian 2× 2 matrices to the fundamental the-

orem of algebra. Having established the base case of the induction, we work

out the remaining part of the argument by deriving the weak spectral decom-

position of (n + 1) × (n + 1) matrices from the weak spectral decomposition

of n× n matrices. For some given (n + 1)× (n + 1) matrix A we consider the
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n + 1 minors defined as follows

∀ 0 ≤ t ≤ n, A[t] =

a[t]ij =


aij if 0 ≤ i 6= t, j 6= t ≤ n

0 otherwise

 , (5.16)

for each one of these minors, according to the induction hypothesis, we assume

that we have at our disposal the corresponding weak spectral decomposition

expressed by

∀ 0 ≤ i 6= t ≤ j 6= t ≤ n, a[t]ij =

(
∑

0≤k 6=t≤n
λ
[t]
ijk q[t]ijk

)
=
〈

λ
[t]
ij , q[t]

ij

〉
(5.17)

∀ 0 ≤ i 6= t ≤ j 6= t ≤ n, δij =

(
∑

0≤k 6=t≤n
q[t]ijk

)
=
〈

1, q[t]
ij

〉
(5.18)

and

q[t]ijk =


q[t]ijk if 0 ≤ k 6= t ≤ n

0 otherwise
. (5.19)

We think of the vectors q[t]
ij as being (n + 1) dimensional. By adding up the

expression associated with the weak spectral decomposition of the (n + 1) mi-

nors we obtain that

∀ 0 ≤ i ≤ j ≤ n, aij = ∑
0≤k≤n

〈
λ
[k]
ij ,

q[k]
ij

n

〉
= ∑

0≤k≤n

〈
1n×1, λ

[k]
ij ?

q[k]
ij

n

〉
(5.20)

and

∀ 0 ≤ i ≤ j ≤ n, δij = ∑
0≤k≤n

〈
1,

q[k]
ij

n

〉
(5.21)

we may rewrite the constraints above as

∀ 0 ≤ i ≤ j ≤ n, aij =

〈
1, ∑

0≤k≤n
λ
[k]
ij ?

q[k]
ij

n

〉
(5.22)

and

∀ 0 ≤ i ≤ j ≤ n, δij =

〈
1, ∑

0≤k≤n

q[k]
ij

n

〉
. (5.23)
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Furthermore, we have

aij =

〈 ∑
0≤k≤n

λ
[k]
ij ?

q[k]
ij

n

 ?

 ∑
0≤k≤n

q[k]
ij

n

?−1

, ∑
0≤k≤n

q[k]
ij

n

〉
, (5.24)

from which we conclude that

λij =

 ∑
0≤k≤n

λ
[k]
ij ?

q[k]
ij

n

 ?

 ∑
0≤k≤n

q[k]
ij

n

?−1

(5.25)

and we set

qij = ∑
0≤k≤n

q[k]
ij

n
(5.26)

in the weak form of the spectral decomposition of the (n + 1)× (n + 1) matrix

A is expressed by

∀ 0 ≤ i ≤ j ≤ n,


aij =

〈
λij, qij

〉
δij =

〈
1(n+1)×1, qij

〉 �. (5.27)

It is clear from the discussion above that the weak spectral decomposition of

a symmetric n × n matrix A is determined by it’s (n
2) 2× 2 Hermitian matrix

minors. We may obtain a canonical weak spectral decomposition, by using

the following explicit parametrization of 2× 2 unitary matrices derived here.

Recall that 2× 2 unitary matrices are expressed by

‖q0‖2
`2

= 1〈
q0, qc1

2
1

〉
= 0

‖q1‖2
`2

= 1

. (5.28)

By expanding out the constraints above we have

(
|q00| ei (ω2)

2θ00
) (
|q00| ei (ω2)

1θ00
)
+
(
|q01| ei (ω2)

2θ01

) (
|q01| ei (ω2)

1θ01

)
= 1(

|q00| ei (ω2)
2θ00
) (
|q10| ei (ω2)

1θ10

)
= eiπ

(
|q01| ei (ω2)

2θ01

) (
|q11| ei (ω2)

1θ11

)
(
|q10| ei (ω2)

2θ10

) (
|q10| ei (ω2)

1θ10

)
+
(
|q11| ei (ω2)

2θ11

) (
|q11| ei (ω2)

1θ11

)
= 1

(5.29)
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We first focus on the orthogonality constraints expressed by

(
|u00| ei (ω2)

2θ00
)
·
(
|u10| ei (ω2)

1θ10
)
= eiπ

(
|u01| ei (ω2)

2θ01
)
·
(
|u11| ei (ω2)

1θ11
)

(5.30)

and apply the logarithm on both sides of the equation to get

(ln |u00|+ i θ00) +
(

ln |u10|+ i (ω2)
1 θ10

)
−

(ln |u01|+ i θ01)−
(

ln |u11|+ i (ω2)
1 θ11

)
= iπ. (5.31)

Therefore, orthogonality reduces to the following pair of constraints
ln |u00|+ ln |u10| − ln |u01| − ln |u11| = 0

θ00 − θ10 − θ01 + θ11 = π

. (5.32)

Incidentally, we may rewrite the constraints as

(
1 1 −1 −1

)


ln |u00|

ln |u10|

ln |u01|

ln |u11|


= 0

⇒



ln |u00|

ln |u10|

ln |u01|

ln |u11|


=



1 1 1 1

1 1 −1 −1

1 −1 −1 1

1 −1 1 −1





c0

0

c2

c3


(5.33)

and

(
1 −1 −1 1

)


θ00

θ10

θ01

θ11


= π
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⇒



θ00

θ10

θ01

θ11


=



1 1 1 1

1 1 −1 −1

1 −1 −1 1

1 −1 1 −1





d0

d1

π
4

d3


, (5.34)

hence

U =

 ec0+c2+c3+i(π
4 +d0+d1+d3) ec0−c2+c3+i(−π

4 +d0−d1+d3)

ec0−c2−c3+i(−π
4 +d0+d1−d3) ec0+c2−c3+i(π

4 +d0−d1−d3)

 . (5.35)

Finally, a unitary matrix Q is deduced from U by simply normalizing the two

rows of the matrix U expressed above so as to ensure that the rows have `2-

norm equal to 1

Q =

 q0 = u0 · ‖u0‖−1
`2

q1 = u1 · ‖u1‖−1
`2

 , (5.36)

from which by construction it follows that

Q ·Q† = I. (5.37)

Having discussed a constructive proof of the weak form of the spectral the-

orem for matrices, we proceed to discuss in detail the proof of the weak from

of the spectral theorem for Hermitian third-order hypermatrices. We point out

that the argument also extends quite naturally to arbitrary finite order hyper-

matrices. For convenience we restrict the discussion here to the third order

hypermatrix case. Let us recall that the strong form of the hypermatrix spec-

tral theorem is formulated for an arbitrary n× n× n Hermitian hypermatrices

A as follows

A = ◦
(
◦
(
Q, D0, DT

0
)

, ◦
(
Q, D1, DT

1
)(†3)

2

, ◦
(
Q, D2, DT

2
)†3

)
∆ = ◦

(
Q, Q(†3)

2
, Q†3

)
D?3

j = ◦
(

DT
j , DT2

j , Dj

)
, 0 ≤ j < 3

(5.38)
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where the (†3)
j operation corresponds to a third order conjugation applied

to the entries of a third order hypermatrix followed by a j-th transpose. The

spectral constraints are equivalently written as
〈
(µi ? qik ? µk) ,

(
νj ? qji ? νi

)c2
3 ,
(

γk ? qkj ? γj

)c1
3
〉

= aijk〈
qik,

(
qji
)c2

3 ,
(
qkj
)c1

3
〉
= δijk

(5.39)


〈
(µi ? µk) ?

(
νj ? νi

)c2
3 ?
(

γk ? γj

)c1
3 , qik ?

(
qji
)c2

3 ?
(
qkj
)c1

3

〉
= aijk〈

1n×1, qik ?
(
qji
)c2

3 ?
(
qkj
)c1

3
〉
= δijk

.

(5.40)

This in turns leads to the weak form of the spectral theorem for third order

hypermatrices expressed as follows

〈
λijk, qijk

〉
= aijk and

〈
1, qijk

〉
= δijk. (5.41)

Theorem (weak form of the third order hypermatrix spectral theorem): the en-

tries of an arbitrary hermitian third order hypermatrix A, admit an expansion

of the form

∀ (i, j, k) ∈ Jn,


〈
λijk, qijk

〉
= aijk〈

1, qijk
〉

= δijk

(5.42)

where Jn denotes the indexing set defined by

Jn :=


(

n
1

)
︸︷︷︸
(i, i, i)

∪
(

n
2

)
︸︷︷︸
(i, j, j)

∪
(

n
2

)
︸︷︷︸
(i, i, j)

∪
(

n
3

)
︸︷︷︸
(i, j, k)

∪
(

n
3

)
︸︷︷︸
(j, i, k)

 ,

for the
(
n + 2(n

2) + 2(n
3)
)

vectors
{

λijk
}
(i,j,k)∈Jn

and the
(
n + 2(n

2) + 2(n
3)
)

vec-

tors
{

qijk
}
(i,j,k)∈Jn

.
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Proof : The proof is quite analogous to the matrix proof. It starts by estab-

lishing that the theorem holds for 2× 2× 2 Hermitian hypermatrix as the base

case for the induction. Let

A†3 = A ∈ C2×2×2 (5.43)

We note that the constraints

∀ (i, j, k) ∈ Jn, aijk =
〈
λijk, qijk

〉
and δijk =

〈
1, qijk

〉
(5.44)

can be written as

M ·



q0000

q0001

q0100

q0101

q1010

q1011

q1110

q1111



=



a000

a010

a101

a111

1

0

0

1



(5.45)

where

M =



λ0 λ1 0 0 0 0 0 0

0 0 λ0 λ1 0 0 0 0

0 0 0 0 λ0 λ1 0 0

0 0 0 0 0 0 λ0 λ1

1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1



, (5.46)
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from which we deduce that

q =



q0000

q0001

q0100

q0101

q1010

q1011

q1110

q1111



= M−1 ·



a000

a010

a101

a111

1

0

0

1



. (5.47)

Similarly, the entries of λ and q must be roots of the multivariate rational func-

tion

det
{

M− diag
{

q?−1
? a
}}

= 0 (5.48)

which we think of as expressing a variant of the characteristic equation for

Hermitian third-order hypermatrices of dimensions 2 × 2 × 2. We have as-

sumed in the expressions above that q had no non zero entries and this as-

sumption results in little or no loss in generality since for if q had zero entries,

a small additive perturbation would turn such entries into non-zero entries,

while slightly perturbing the corresponding spectral decomposition. Working

over the algebraic closed field C we have therefore reduced the existence of

the weak spectral decomposition for hermitian 2× 2× 2 matrices to the funda-

mental theorem of algebra. Having established the base case of the induction,

we now work out the remaining part of the induction argument to derive the

spectral decomposition of (n + 1)× (n + 1)× (n + 1) from the spectral decom-

position of n× n× n hypermatrices. By the induction hypothesis we assume

that we can determine the spectrum of n × n × n hypermatrices. For some
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given (n + 1) × (n + 1) × (n + 1) hypermatrice A we consider the n + 1 mi-

nors defined by

∀ 0 ≤ t ≤ n, A[t] =

a[t]i,j,k =


ai,j,k if i, j, k ∈ [n] \ {t}

0 otherwise

 (5.49)

for each one of these minors according to the induction hypothesis we assume

that we have at our disposal their spectral decomposition expressed as follows

∀ (i 6= t, j 6= t, k 6= t) ∈ Jn, a[t]ijk =

(
∑

0≤s 6=t≤n
λ
[t]
ijks q[t]ijks

)
=
〈

λ
[t]
ijk, q[t]

ijk

〉
(5.50)

∀ (i 6= t, j 6= t, k 6= t) ∈ Jn, δ
[t]
ijk =

(
∑

0≤s 6=t≤n
q[t]ijks

)
=
〈

1, q[t]
ijk

〉
. (5.51)

By adding up the weak spectral decomposition of all the minors we have

∀ (i 6= t, j 6= t, k 6= t) ∈ Jn, aijk = ∑
0≤s≤n

〈
λ
[s]
ijk,

q[s]
ijk

n

〉
(5.52)

∀ (i 6= t, j 6= t, k 6= t) ∈ Jn, δijk = ∑
0≤s≤n

〈
1,

q[s]
ijk

n

〉
(5.53)

We may rewrite the constraints as

∀ (i 6= t, j 6= t, k 6= t) ∈ Jn, aijk =

〈
1, ∑

0≤s≤n
λ
[s]
ijk ?

q[s]
ijk

n

〉
(5.54)

∀ (i 6= t, j 6= t, k 6= t) ∈ Jn, δijk =

〈
1, ∑

0≤s≤n

q[s]
ijk

n

〉
. (5.55)

Furthermore, we have

aijk =

〈 ∑
0≤s≤n

λ
[s]
ijk ?

q[s]
ijk

n

 ?

 ∑
0≤s≤n

q[s]
ijk

n

?−1

, ∑
0≤s≤n

q[s]
ijk

n

〉
. (5.56)
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From which we conclude that

λijk =

 ∑
0≤s≤n

λ
[s]
ijk ?

q[s]
ijk

n

 ?

 ∑
0≤s≤n

q[s]
ijk

n

?−1

(5.57)

and

qijk = ∑
0≤s≤n

q[s]
ijk

n
. (5.58)

In the weak form of the spectral decomposition of the (n + 1) × (n + 1) ×

(n + 1) matrix A can be expressed as follows

∀ (i, j, k) ∈ Jn+1,


〈
λijk, qijk

〉
= aijk〈

1, qijk
〉

= δijk

� (5.59)

5.3 The strong form of the spectral theorem

We may now discuss a polynomial approach to matrix and third-order hyper-

matrix spectral decomposition. We begin by formulating without proof in the

polynomial framework the strong form of the matrix spectral theorem.

Theorem ( strong form of the matrix spectral theorem ): ∀ a ∈ C
x,y
(n,n) such

that a (x, y) = ac
1
2 (x, y) , a admits an expansion of the form

E
[
( f (R0) q (x, R0))

(
gc

1
2 (R1) qc

1
2 (y, R1)

)]
= n−1a (x, y) mod

 xn − 1

yn − 1

 ,

(5.60)

where q is subject to the unitary constraint

E
[
q (x, R0) qc

1
2 (y, R1)

]
= n−1In×n (x, y) mod

 xn − 1

yn − 1

 . (5.61)
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We further remark that the spectral theorem is equivalent to the statement ∀ a ∈

C
x,y
(n,n) such that

a (x, y) = ac
1
2 (x, y) mod

 xn − 1

yn − 1

 (5.62)

there exists q ∈ C
x,y
(n,n) such that

{In×n (x, y) , a (x, y)} ⊂

Ideal generated by {q (x, r)}r∈Ωn
∩ Ideal generated by

{
qc

1
2 (y, r)

}
r∈Ωn

.

(5.63)

Finally, the spectral theorem yields the following fixed-point equation for some

unitary polynomial q over C
x,y
(n,n) ,

n−1q (x, y) ≡
E
[

a (x, R0) Inv
{

gc
1
2 (R1) qc

1
2 (y, R1)

}]
f (y)

mod

 xn − 1

yn − 1

 .

(5.64)

We now discuss the generalization of the spectral decomposition to third order

hypermatrices. Given a non-zero polynomial a ∈ C
x,y,z
(n,n,n) such that

a (x, y, z) = ac
1
3 (y, z, x) = ac

2
3 (z, x, y) mod


xn − 1

yn − 1

zn − 1

 , (5.65)

we seek to determine when a admits an expansion of the form
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E

[
( f0 (x, R0) q (x, R0, z) f1 (R0, z))

(
gc

2
3

0 (y, R1) qc
2
3 (y, R1, x) gc

2
3

1 (R1, x)
)
×

(
hc

1
3

0 (z, R2) qc
1
3 (z, R2, y) hc

1
3

1 (R2, y)
)]
≡

a (x, y, z) mod


xn − 1

yn − 1

zn − 1

 (5.66)

where for 0 ≤ i < 2, fi (x, y) = fi (y, x) , gi (x, y) = gi (y, x) , and hi (x, y) =

hi (y, x), in addition to q being unitary over C
x,y,z
(n,n,n) ; that is to say

E
[
q (x, R0, z) qc

2
3 (y, R1, x) qc

1
3 (z, R2, y)

]
≡

n−1 In×n×n (x, y, z) mod


xn − 1

yn − 1

zn − 1

 . (5.67)

Equivalently, the spectral decomposition for third order hypermatrices can also

be expressed as an ideal intersection problem as follows

{a (x, y, z) , In×n×n (x, y, z)} ⊂ Ideal generated by {q (x, r, z)}r∈Ωn
∩

Ideal generated by
{

qc
2
2 (y, r, x)

}
r∈Ωn

∩ Ideal generated by
{

qc
1
2 (z, r, y)

}
r∈Ωn

.

(5.68)

The spectral decomposition of third order hypermatrices also yields a fixed-

point equation derived as follows, let u (x, y, z) , v (x, y, z) denote the inverse

pair associated with the pair of functions((
gc

2
2

0 (y, z) qc
2
2 (y, z, x) gc

2
2

1 (z, x)
)

;
(

hc
1
2

0 (z, x) qc
1
2 (z, x, y) hc

1
2

1 (x, y)
))
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over C
x,y,z
(n,n,n), we have

n−1q (x, y, z) ≡ E [a (x, R0, z) u (x, y, R1) v (R2, y, z)]
f0 (x, y) f1 (y, z)

mod


xn − 1

yn − 1

zn − 1


(5.69)

Theorem (strong form of the third-order hypermatrix spectral theorem): If for

a ∈ C
x,y,z
(n,n,n) the induced functional map

q (x, y, z)� Fa (q) := n
E [a (x, R0, z) u (x, y, R1) v (R2, y, z)]

f0 (x, y) f1 (y, z)
mod


xn − 1

yn − 1

zn − 1


(5.70)

( where (u (x, y, z) , v (x, y, z)) are inverse pairs to((
gc

2
2

0 (y, z) qc
2
2 (y, z, x) gc

2
2

1 (z, x)
)

;
(

hc
1
2

0 (z, x) qc
1
2 (z, x, y) hc

1
2

1 (x, y)
))

C
x,y,z
(n,n,n) ) is continuous in a bounded domain specified by

(
‖q‖`3

)3
≤ κ for

some nonzero constant κ > 0 and some choice of symmetric functions

{ fi (x, y) , gi (x, y) , hi (x, y)}0≤i<2

in the variables x, y, it follows that a admits an expansion of the form

E

[
( f0 (x, R0) q (x, R0, z) f1 (R0, z))

(
gc

2
3

0 (y, R1) qc
2
3 (y, R1, x) gc

2
3

1 (R1, x)
)

(
hc

1
3

0 (z, R2) qc
1
3 (z, R2, y) hc

1
3

1 (R2, y)
)]
≡ n−1 a (x, y, z) mod


xn − 1

yn − 1

zn − 1

 .

(5.71)

Proof : The proof of the strong form of the third-order hypermatrix spectral

theorem follows as an immediate consequence of the Brouwer fixed-point the-

orem.
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In particular we note that for

Fa : C
x,y,z
(n,n,n) → C

x,y,z
(n,n,n),

and if there exist 0 < θ < 1 such that

‖Fa (q1)−Fa (q0)‖3
`3
≤ θ ‖q1 − q0‖3

`3
(5.72)

some choice of symmetric functions { fi (x, y) , gi (x, y) , hi (x, y)}0≤i<2 it fol-

lows that for an arbitrary choice of q0 ∈ C
x,y,z
(n,n,n) then the iteration defined by

qn+1 = Fa (qn) (5.73)

determines the spectral decomposition of a.
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Chapter 6

Symmetries and the Combinatorial Nullstellensatz
method

6.1 Combinatorial problems are symmetry breakings.

We recall that the General Linear group of degree n over C noted GL (n, C) cor-

responds to the multiplicative group of invertible matrices. We briefly describe

some algebraic and combinatorial problems which are naturally formulated as

symmetry breakings over the elements of GL (n, C). In fact, the solutions to

many algebraic and combinatorial problems can be thought of as instances of

symmetry breakings over the elements of GL (n, C), as illustrated by the fol-

lowing list of classical examples.

• The matrix diagonalization problem : amounts to determine F ∈ GL (n, C)

for some given n× n matrix A, such that 1

(
F ·A · Adjoint {F}

det {F}

)2

=

(
F ·A · Adjoint {F}

det {F}

)?2

(6.1)

• The unitary matrix subgroup U (n, C) of GL (n, C) : amounts to determin-

ing F ∈ GL (n, C) for which the following matrix equality holds

F det {F} = Adjoint
{

F†
}

(6.2)

1 The ? denotes the entry-wise matrix product operator.
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• The orthogonal matrix subgroup O (n, R) of GL (n, C) : amounts to deter-

mining F ∈ GL (n, C) which satisfy the matrix constraint

F = s Adjoint
{

FT
}

mod
(

s2 − 1
)

(6.3)

• The permutation matrix subgroup of GL (n, C) (i.e. canonical matrix represen-

tation of Sn ): amounts to determining F ∈ GL (n, C) such that
F = F?2

F = s Adjoint
{

FT} mod
(
s2 − 1

) (6.4)

• The nearest orthogonal matrix problem: amounts to determining elements

of O (n, R) which are nearest to the element of a given set of matrices

S ⊂ Cn×n i.e.

min

F ∈ GL (n, R)

A ∈ S

{
Trace

{
(A− F)T · (A− F)

}}
(6.5)

s.t. F = s Adjoint
{

FT
}

mod
(

s2 − 1
)

• The Hadamard matrix search problem: amounts to determine F ∈ GL (n, C)

such that 
F = F?(−1)

F = s n
2−n

2 Adjoint
{

FT} mod
(
s2 − 1

) (6.6)

• The subgraph isomorphism problem: amounts to determine whether for some

given input matrices A, B ∈ {0, 1}n×n there exists F ∈ GL (n, C) such

that 

(
FT ·A · F

)
? B = B

F = s Adjoint
{

FT} mod
(
s2 − 1

)
F = F?2

. (6.7)
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6.2 The combinatorial nullstellensatz method approach to solv-

ing subgraph isomorphism

Given adjacency matrices A and B respectively associated with unweighted

directed graphs G and H. We say that G ⊇ H i.e. H is subisomorphic to G if

the following matrix equality holds for some matrix P.

(
PT ·A · P

)
? B = B

PT · P = I

P ? P = P

(6.8)

or equivalently 
A ?

(
P · B · PT) =

(
P · B · PT)

P · PT = I

P ? P = P

(6.9)

In order to express the matrix constraints above in the polynomial framework

we first express the corresponding adjacency polynomials in their expanded

form as follows

a (x0, x1) = n−2 ∑
0≤k0, k1<n

〈
A, w?k0 ·

(
w?k1

)T
〉
(x0)

k0 (x1)
k1 (6.10)

and

b (x0, x1) = n−2 ∑
0≤k0, k1<n

〈
B, w?k0 ·

(
w?k1

)T
〉
(x0)

k0 (x1)
k1 (6.11)

respectively associated with the graphs G and H, where the set
{

w?k
}

0≤k<n

denotes the column vectors of the DFT matrix W. We recall that via the sym-

bolic vector v (x) whose entries are polynomials in the variable x expressed

by

v (x) :=

(
vk (x) = ∏

0≤t 6=k<n

(
x− (ωn)

t

(ωn)
k − (ωn)

t

))
0≤k<n

, (6.12)



59

we express the permutation polynomial p by the following vector product of

the symbolic vector v (x) and the symbolic vector r = (rk)0≤k<n as follows

p (x; r) = 〈v (x) , r〉 . (6.13)

The existence ( respectively the non existence) of solution to the corresponding

subgraph isomorphism instance associated with the input binary entry adja-

cency matrices A and B is determined by the polynomial

f (r) = ∑
0≤j0,j1<n


 ∑

0≤k0, k1<n

(
ω j0
)k0
(

ω j1
)k1

〈
B, w?k0 ·

(
w?k1

)T
〉

n2

×
1− ∑

0≤l0, l1<n

〈
A, w?l0 ·

(
w?l1

)T
〉

n2

〈
r?

l0 , r?
l1
〉

v(ω j0)·vT(ω j1)




2

mod
(

r?
n −w?0

)

since the matrices A and B have binary entries it follows that

f (r) = ∑
0≤j0,j1<n

 ∑
0≤k0, k1<n

(
ω j0
)k0
(

ω j1
)k1

〈
B, w?k0 ·

(
w?k1

)T
〉

n2

×
1− ∑

0≤l0, l1<n

〈
A, w?l0 ·

(
w?l1

)T
〉

n2

〈
r?

l0 , r?
l1
〉

v(ω j0)·vT(ω j1)

mod
(

r?
n −w?0

)

more specifically G ⊇ H if and only if the polynomial f admits an expansion

of the form

f (r) = 〈(r− Pγ ·w1) , g (r)〉 = ∑
0≤k<n

(
rk −ωγ(k)

)
gk (r) (6.14)
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for some γ ∈ Sn and {gk}0≤k<n ⊂ C [r]. The natural action of elements of the

symmetric group on the polynomial f is defined for some arbitrary σ ∈ Sn by

f (Pσ · r) = ∑
0≤j0,j1<n

 ∑
0≤k0, k1<n

(
ω j0
)k0
(

ω j1
)k1

〈
B, w?k0 ·

(
w?k1

)T
〉

n2

×
1− ∑

0≤l0, l1<n

〈
A, w?l0 ·

(
w?l1

)T
〉

n2

〈
Pσ · r?

l0 , Pσ · r?
l1
〉

v(ω j0)·vT(ω j1)
mod

(
r?

n −w?0
) .

If the function admits an expansion of the sought after form it would follow

that

f (Pσ−1 · r) = 〈(Pσ−1 · r− Pγ ·w1) , g (Pσ−1 · r)〉 (6.15)

⇒ f (Pσ−1 · r) = 〈Pσ−1 · (r− Pσ · Pγ ·w1) , g (Pσ−1 · r)〉 (6.16)

⇒ f (Pσ−1 · r) = 〈(r− Pσ◦γ ·w1) , Pσ · g (Pσ−1 · r)〉 (6.17)

and incidentally we shall crucially use the fact that
f (r) f (Pσ−1 · r) ≡ 0 mod (r− Pγ ·w)

and

f (r) f (Pσ−1 · r) ≡ 0 mod (r− Pσ◦γ ·w)

. (6.18)

Let Aut{ f (r)} denote the automorphism group of f defined as follows

Aut { f (r)} := {σ ∈ Sn, s.t. f (r)− f (Pσ · r) = 0} , (6.19)

let the set T denote group quotient Sn/Aut{ f (r)} induced by the following par-

tition of Sn

Sn =
⋃

σ∈T
σ Aut { f (r)} , (6.20)



61

Theorem (Combinatorial Resolvent): The reduced polynomial

f (r) = ∑
0≤j0,j1<n

 ∑
0≤k0, k1<n

(
ω j0
)k0
(

ω j1
)k1

〈
B, w?k0 ·

(
w?k1

)T
〉

n2

×
1− ∑

0≤l0, l1<n

〈
A, w?l0 ·

(
w?l1

)T
〉

n2

{〈
r?

l0 , r?
l1
〉

v(ω j0)·vT(ω j1)
mod

(
r?

n −w?0
)}

admits an expansion of the form

f (r) = 〈(r− Pγ ·w) , g (r)〉 (6.21)

for some γ ∈ Sn and g ∈ (C [r])n, if and only if

∏
σ∈T

f (Pσ · r) ≡ 0 mod (r−w) (6.22)

and conversely the polynomial f does not admit an expansion of the sought

after form if

∏
σ∈T

f (Pσ · r) 6= 0 mod (r−w) (6.23)

Proof : It is immediate by Euclidean division that

∀σ−1 ∈ Sn, f (r) = |κσ−1 |+ 〈(r− Pσ−1 ·w) , gσ−1 (r)〉 (6.24)

⇒ f (Pσ−1 · r) = |κσ−1 |+ 〈Pσ−1 · (r−w) , gσ−1 (Pσ−1 · r)〉 (6.25)

⇒ f (Pσ−1 · r) = |κσ−1 |+ 〈(r−w) , Pσ · gσ−1 (Pσ−1 · r)〉 (6.26)

and hence

∏
σ∈Sn

f (Pσ · r) ≡ ∏
σ∈Sn

|κσ| mod (r−w)

furthermore we note that

∏
σ∈Sn

f (Pσ · r) =
(

∏
σ∈T

f (Pσ · r)
)|Aut{ f (r)}|

(6.27)
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⇒ ∏
σ∈Sn

f (Pσ · r) mod (r−w) =

(
∏

σ∈T
|κσ|

)|Aut{ f (r)}|
(6.28)

from which it immediately follows that

∏
σ∈T

f (Pσ · r) ≡ 0 mod (r−w)⇔ ∃ σ ∈ Sn s.t. κσ = 0.� (6.29)

Finally, the computation of the unique reduced polynomial associated with the

combinatorial resolvent

∏
σ∈T

f (Pσ · r) ,

which determines the existence of solutions to the subgraph isomorphism in-

stance associated with the input matrices A and B, require manipulating poly-

nomial expressions whose number of terms is upper bounded by

∑
0≤t≤|T |

(
n
t

)
(n− 1)t (6.30)

since the terms in the reduced polynomial associated with the polynomial

∏
σ∈T

f (Pσ · r) mod
(

r?
n −w?0

)
(6.31)

precisely corresponds to the terms in the polynomial

1 +


∑

0 ≤ i < n

0 < k < n

(ri)
k


+


∑

(i0, i1) ∈ ([n]2 )

0 < k0, k1 < n

(
ri0
)k0
(
ri1
)k1


+ · · ·+


∑(

i0, i1, · · · , i|T |−1

)
∈ ( [n]|T |)

0 < k0, k1, · · · , k|T |−1 < n

∏
0≤j<|T |

(
rij

)kj


, (6.32)
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where ([n]m ) describes set of distinct unordered m-tuples chosen from the inte-

gers in the set {0, · · · , n− 1}. It also follows that if |T | ≥ n than the number of

terms in the polynomial ∏σ∈T f (Pσ · r) mod
(

r?
n −w0

)
is upper bounded

by nn terms. The upper bound on the size of the reduced polynomial corre-

sponds to our measure of the space required to store the certificate. To account

for the time required compute the certificate we provide an upper-bound on

the number of monomial products and the number of monomial reductions to

be performed throughout the procedure. The upper bound on the number of

monomial products is given by

∑
2≤m≤1+|T |

(
∑

0≤i≤2

(
n
i

)
(n− 1)i

)(
∑

0≤j≤m

(
n
j

)
(n− 1)j

)
(6.33)

while the upper bound on the number of reduction required is given by

∑
2≤m≤1+|T |

[
− ∑

0≤j≤m+2

(
n
i

)
(n− 1)j +

(
∑

0≤i≤2

(
n
i

)
(n− 1)i

)(
∑

0≤j≤m

(
n
j

)
(n− 1)j

)]
(6.34)

6.3 A canonical polynomial time reduction of boolean constraints

satisfaction problems to symmetry breakings

Consider an arbitrary boolean Constraint Satisfaction Problem (CSP) specified

for some boolean n-dimensional boolean column vector x by the constraint

xT ·A · x + bT · x + c = 0, (6.35)

for some given matrix A ∈ Cn×n , vector b ∈ Cn×1 and a scalar c ∈ C. The

solution to 6.35 is determined by solving n independent instances of symme-

try breakings over elements of the permutation group Sn. The n independent
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symmetry breaking instances of amount to determine P ∈ GL (n, C) subject to

the constraints

(P · v)T ·A · (P · v) + bT · (P · v) + c = 0 (6.36)

where

v ∈
{

∑
0≤j<k

ej

}
0≤k≤n

and


P = s Adjoint

{
FT} mod

(
s2 − 1

)
P = P?2

.

(6.37)

where
{

ej
}

0≤j<n denote the canonical Euclidean basis vectors, in other words

the column vectors of the identity matrix. Without loss of generality combina-

torial problems can be thought of as systems of boolean CSPs of the form{
xT ·Ak · x + bT

k · x + ck = 0
}

0≤k<m
, (6.38)

for a given set of matrices {Ak}0≤k<m ⊂ Cn×n , a set of vectors {bk}0≤k<m ⊂

Cn×1 , and a set of scalars {ck}0≤k<m ⊂ C. The constraints amount to deter-

mining P ∈ GL (n, C) subject to the constraints

0 = ∑
0≤k<m

∣∣∣(P · v)T ·Ak · (P · v) + bT
k · (P · v) + ck

∣∣∣2 (6.39)

v ∈
{

∑
0≤j<k

ej

}
0≤k≤n

and


P = s Adjoint

{
PT} mod

(
s2 − 1

)
P = P?2

. (6.40)

6.4 A hardness attenuation paradigm

Recall that determining the existence of solutions to a subgraph isomorphism

instance G2 ⊆ G1 reduces in poly-time (in the number of vertices) to the task of

determining if some poly-size (in expanded form) f ∈ C [r] admits an expan-

sion of the form

f (r) = 〈(r− Pγ ·w) , g (r)〉 (6.41)
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for some γ ∈ Sn and g ∈ (C [r])n. Furthermore let Aut{ f (r)} denote the

automorphism group of f defined by

Aut { f (r)} := {σ ∈ Sn, s.t. f (r)− f (Pσ · r) = 0} , (6.42)

and let T denote the group quotient Sn/Aut{ f (r)} induced by the following par-

tition of Sn

Sn =
⋃

σ∈T
σ Aut { f (r)} . (6.43)

Prior to the expansion of the partial combinatorial resolvent and crucially assum-

ing that G2 ⊆ G1 we have that

Probτ∈Sn ( f (r) 6= 0 mod (r− Pτ ·w) | G2 ⊆ G1) =

n!− |Aut { f (r)}|
n!

= 1−
(

n!
|Aut { f (r)}|

)−1

furthermore considering the partial resolvent product over permutations in the

set T \Γ we have,

Probτ∈Sn

 ∏
σ∈T \Γ

f (Pσ · r) 6= 0 mod (r− Pτ ·w) | G2 ⊆ G1

 =

n!− |Aut { f (r)}| |T \Γ|
n!

= |Γ|
(

n!
|Aut { f (r)}|

)−1

for some Γ ⊂ T and in particular,

Probτ∈Sn

(
∏
σ∈T

f (Pσr) 6= 0 mod (r− Pτ ·w) | G2 ⊆ G1

)
= 0.

The reduced polynomial associated with the partial combinatorial resolvent

∏
σ∈T \Γ

f (Pσ · r) mod
(

r?
n −w?0

)
allows us to randomly determine the existence of solution by trying permuta-

tions sampled uniformly at random. Assuming that G2 ⊆ G1, our randomized
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permutation trial procedure determines that G2 ⊆ G1 with probability greater

or equal to (1− p) if the arbitrary subset Γ of T is such that

1− |Γ|
(

n!
|Aut { f (r)}|

)−1

≤ 1− p⇒ |Γ| ≥ p
n!

|Aut { f (r)}| .

Consequently, an upper bound on the number of the monomials in the entries

of r with non zero coefficient in the reduced polynomial associated with the

partial combinatorial resolvent is given by

∑
0≤t≤|T \Γ|

(
n
t

)
(n− 1)t .

Furthermore, an upper bound on the number of products of terms as well as

the number of monomial reductions required for obtaining the reduced partial

combinatorial resolvent are respectively upper bounded by

∑
2≤m≤|T \Γ|+2

(
∑

0≤i≤m

(
n
i

)
(n− 1)i

)(
∑

0≤j≤2

(
n
j

)
(n− 1)j

)
(6.44)

and

∑
2≤m≤|T \Γ|+2

[
− ∑

0≤t≤m+2

(
n
t

)
(n− 1)t +

(
∑

0≤i≤2

(
n
i

)
(n− 1)i

)(
∑

0≤j≤m

(
n
j

)
(n− 1)j

)]
. (6.45)

Fortunately, the domain of application of the hardness attenuation framework

extends far beyond the specific problem of subgraphs Isomorphism, we dis-

cuss bellow two examples of applications of our proposed hardness attenua-

tion framework which also conveniently do not require the use of an Isomor-

phism oracle and incidentally yields significantly weaker results.

Example 1: We illustrate the hardness attenuation framework on the integer

factoring problem. We recall that integer factoring is specified for some given

input binary vector b by the CSP ∑
0≤k< n

2

xk2k

 ∑
n
2≤k<n

xk2k− n
2

 =
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 ∑
0≤k< n

2

bk2k

+ 2
n
2 mod

(
x?

2 − x
)

(6.46)

let

β =



20

...

2k

...

2
n
2−1


(6.47)

the factoring constraint can therefore be expressed as a single quadratic con-

straint over binary variables〈
x,

 1

0

⊗ β

〉〈 0

1

⊗ β, x

〉
= 2

n
2 + 〈b, β〉 mod

(
x?

2 − x
)

(6.48)

equivalently written as

xT ·


 1

0

⊗ β

 ·

 0

1

⊗ β


T

· x = 2
n
2 + 〈b, β〉 mod

(
x?

2 − x
)

(6.49)

so that the symmetry breaking formulation is expressed as

(
Pσ · ∑

0≤k<τ

ek

)T

·


 1

0

⊗ β

 ·

 0

1

⊗ β


T

·
(

Pσ · ∑
0≤k<τ

ek

)
= N

(6.50)

for 1 < τ ≤ n
2 and N = 2

n
2 + 〈b, β〉. Let

fτ := ∑
0≤j<τ

ej

which we associate with the single variable polynomial fτ (x) ∈ C [x] ex-

pressed by

fτ (x) = ∑
0≤k<τ

∏
0≤u 6=k<n

(
x−ωu

ωk −ωu

)
(6.51)
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⇒ fτ (x) = n−1 ∑
0≤k<n

1−ω−k τ

1−ω−k xk (6.52)

⇒ fτ (x) = n−1 ∑
0≤k<n

1−
(

ei2 π
n

)−k τ

1−
(

ei2 π
n

)−k xk (6.53)

⇒ fτ (x) = n−1 ∑
0≤k<n

(
ei(π

n−
π
n )
)−k τ

−
(

ei(π
n +

π
n )
)−k τ

(
ei(π

n−
π
n )
)−k
−
(

ei(π
n +

π
n )
)−k xk (6.54)

⇒ fτ (x) = n−1 ∑
0≤k<n

ei π
n (1−τ)k

(
e−i π

n

)−k τ
−
(

ei π
n

)−k τ

(
e−i π

n

)−k
−
(

ei π
n

)−k xk (6.55)

Hence

fτ (x) = n−1 ∑
0≤k<n

sin
(

π
n k τ

)
sin
(

π
n k
) (x ei π

n (1−τ)
)k

. (6.56)

We further recall that a permutation of the elements of Ωn can be encoded as a

polynomial via the symbolic vector v (x) whose entries are polynomials in the

variable x expressed by

v (x) :=

(
vk (x) = ∏

0≤t 6=k<n

(
x− (ωn)

t

(ωn)
k − (ωn)

t

))
0≤k<n

,

and the permutation polynomial will be expressed by the vector product

p (x; r) = 〈v (x) , r〉 (6.57)

so a solution to the solution to factoring problem is determined by the reduced

polynomial associated with

gτ (r) = −
(

2
n
2 + 〈b, β〉

)
+

∑
0≤j0,j1<n

[
fτ

(
p
(

ω j0 ; r
))

fτ

(
p
(

ω j1 ; r
))

mod
(

r?
n −w?0

)
×

n−1 ∑
0≤k0, k1<n

〈
 1

0

⊗ β

 ·

 0

1

⊗ β


T

, w?k0 ·
(

w?k1
)T
〉(

ω j0
)k0
(

ω j1
)k1


(6.58)
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when the number of 1s in the binary solution vector x is equal to the parameter

τ and exceed or equals the number of 0s, in the alternatively case where the

number of 0s in the binary solution x is equal to the parameter τ and exceed the

number of 1s we have that the solution to the factoring problem is determined

by the reduced polynomial associated with

gτ (r) = −
(

2
n
2 + 〈b, β〉

)
+

∑
0≤j0,j1<n

[(
1− fτ

(
p
(

ω j0 ; r
))) (

1− fτ

(
p
(

ω j1 ; r
)))

mod
(

r?
n −w?0

)
×

n−1 ∑
0≤k0, k1<n

〈
 1

0

⊗ β

 ·

 0

1

⊗ β


T

, w?k0 ·
(

w?k1
)T
〉(

ω j0
)k0
(

ω j1
)k1


(6.59)

admitting an expansion of the form

gτ (r) = 〈(r− Pγ ·w) , gτ (r)〉 (6.60)

for some γ ∈ Sn and {gτ,t}0≤t<n ⊂ C [r]. We may assume without loss of

generality that we know the value of τ, since the computation for the n
2 dif-

ferent values of τ can be performed in parallel. Fortunately we know that the

automorphism group of fτ (p (x; r)) is determined by the set of permutations

which map 1s to 1s and 0s to 0s. Incidentally there will be τ! (n− τ)! such

permutations. Furthermore we note that the composition of the permutation

prescribed by the map

∀ 0 ≤ j < n, rj → r(j+ n
2 mod n

2 )
(6.61)

with each one of the τ! (n− τ)! permutations which map 1s to 1s and 0s to 0s,

must yield a new member of the automorphism group of gτ by the commuta-

tivity property of integer multiplication, hence

|Aut {gτ (r)}| = 2 τ! (n− τ)! . (6.62)



70

Let the set T denote Sn/Aut{ f (r)} induced by the following partition of Sn

Sn =
⋃

σ∈T
σ Aut {gτ (r)} , (6.63)

by the Lagrange theorem

|T | = 2−1
(

n
τ

)
. (6.64)

Incidentally, the number of monomials in the entries of r with non zero coeffi-

cients is upper bounded by

∑
0≤t≤2−1(n

τ)−|Γ|

(
n
t

)
(n− 1)t .

while the number of products of terms as well as the number of monomial

reductions required for computing the partial combinatorial resolvent are re-

spectively upper bounded by

∑
2≤m≤1+2−1(n

τ)−|Γ|

(
∑

0≤i≤m

(
n
i

)
(n− 1)i

)(
∑

0≤t≤2

(
n
t

)
(n− 1)t

)
(6.65)

while the upper bound on the number of reduction required is given by

∑
2≤m≤1+2−1(n

τ)−|Γ|

[
−
(

∑
0≤j≤m+2

(
n
i

)
(n− 1)j

)
+

(
∑

0≤i≤2

(
n
i

)
(n− 1)i

)(
∑

0≤j≤m

(
n
j

)
(n− 1)j

)]
(6.66)

and finally

Probγ∈Sn

 ∏
σ∈T \Γ

gτ (Pσ · r) 6= 0 mod (r− Pγ ·w)

 =

n!− |Aut {gτ (r)}| |T \Γ|
n!

= 2 |Γ|
(

n
τ

)−1

Example 2: We now apply the hardness attenuation framework to the Hadamard
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matrix search problem. We start by considering the
√

n ×
√

n matrix H ex-

pressed by

H =


 1

1

⊗ 1√n
2 ×1

 · eT
0 + ∑

0<k<
√

n


 1

−1

⊗ 1√n
2 ×1

 · eT
k (6.67)

we think of the matrix as encoded with a polynomial in a single variable ex-

pressed by

h (x) = ∑
0≤i
√

n+j<n

hi,j ∏
0≤u
√

n+v 6=i
√

n+j<n

(
x−ω

u
√

n+v
n

ω
i
√

n+j
n −ω

u
√

n+v
n

)
(6.68)

and we consider the equation

∑
0≤k<

√
n

h
(

p
(

x0 ·
(

ω√n

) k√
n ; r

))
h
(

p
((

ω√n

)k
· (x1)

1√
n ; r

))
≡

√
n I√n×

√
n (x0, x1) mod

 r?
n − 1n×1

x?
√

n − 12×1

 . (6.69)

We recall that for

v (x) :=

(
vk (x) = ∏

0≤t 6=k<n

(
x− (ωn)

t

(ωn)
k − (ωn)

t

))
0≤k<n

, (6.70)

we recall the following property for the polynomial encoding the permutation

of the roots of unity

∀ 0 ≤ t < n, (p (x; r))t =
〈

v (x) , r?
t
〉

. (6.71)

To determine the existence of Hadamard matrix of size
√

n×
√

n it suffice to

determine that the polynomial

f (r) = ∑
(x0,x1)∈Ω√n×Ω√n

[√
n I√n×

√
n (x0, x1)−

∑
0≤k<

√
n

h
(

p
(

x0 ·
(

ω√n

) k√
n ; r

))
h
(

p
((

ω√n

)k
· (x1)

1√
n ; r

))2
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admits an expansion of the form

f (r) = 〈(r− Pγ ·w) , g (r)〉 (6.72)

for some γ ∈ Sn and g ∈ (C [r])n. By construction we have that

|Aut { f (r)}| ≥
(n

2
+
√

n
)

!
(n

2
−
√

n
)

! (6.73)

and hence

T ≤
(

n
n
2 −
√

n

)
(6.74)

furthermore the partial combinatorial resolvent is expressed by ∏
σ∈T \Γ

f (Pσ · r)

mod
(

r?
n −w?n

)
.

Incidentally the number of the terms in the corresponding reduced polynomial

is upper bounded by

∑
0≤t≤( n

n
2−
√

n)−|Γ|

(
n
t

)
(n− 1)t .

while the number of monomial products and monomial reductions required

for computing the partial combinatorial resolvent are respectively upper bounded

by

∑
4≤m≤3+( n

n
2−
√

n)−|Γ|

(
∑

0≤i≤m

(
n
i

)
(n− 1)i

)(
∑

0≤t≤4

(
n
t

)
(n− 1)t

)
(6.75)

while the upper bound on the number of reduction required is given by

∑
4≤m≤3+( n

n
2−
√

n)−|Γ|

[
−
(

∑
0≤j≤m+4

(
n
i

)
(n− 1)j

)
+

(
∑

0≤i≤4

(
n
i

)
(n− 1)i

)(
∑

0≤j≤m

(
n
j

)
(n− 1)j

)]
(6.76)
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while the randomized tradeoff is expressed by the probability

Probτ∈Sn

 ∏
σ∈T \Γ

f (Pσ · Pτ ·w) 6= 0 | ∃H ∈ Ω
√

n×
√

n
2 s.t.

HT ·H√
n

= I

 ≤
n!− |Aut { f (r)}| |T \Γ|

n!
= |Γ|

(
n

n
2 −
√

n

)−1

(6.77)
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Chapter 7

Conclusion

We have described here a polynomial encoding which provides a unified frame-

work for discussing the algebra and the spectral analysis of matrices and hy-

permatrices. In addition to describing some algorithms for performing orthog-

onalization and spectral analysis of hypermatrices, we have presented some

computational aspects, more specifically the important role of symmetries in

Alon’s Combinatorial Nullstellensatz method for solving combinatorial prob-

lems. It remains to determine in our furture work if the framework introduced

here can be extended to less general family of combinatorial problems and

most importantly yield comparable ressource performance. We also plan to in-

vestigate in subsequent work approximation algorithms inspired by the Alon’s

Combinatorial Nullstellensatz method.
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