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Two optimization methodologies are proposed for sonar placement in ports and waterways to 

keep the environment under surveillance against security threats. The optimization models are 

named Probabilistic Risk Model (PRM) and Strategic Risk Model (SRM). The PRM resembles a 

typical sensor placement problem in the sense that they share some constraints and a similar 

objective function, yet the PRM integrates a number of features that are specific to our problem. 

The SRM is a game theoretic model that takes the intelligent actions of the attackers into account. 

This study focuses on the attacks that are initiated through the water and are targeting the 

infrastructures at a port or a waterway. The sonars are placed under the water. They are utilized to 

detect anomalies such as divers, torpedoes or explosives mounted on the hull of vessels that can 

be potential sources of a terrorist attack. The proposed models are grid based meaning that a 

hypothetical two dimensional grid of cells is placed on the environment to discretize it. This 

process allows us to measure various specifics of different sections of the environment via cells.  
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The contribution of this study to the literature of maritime security risk is that it is the first study 

that models the sonar placement problem via game theory in ports and waterways. Moreover, 

both models address a number of key concepts of sensor placement which are mostly ignored in 

the literature.  

The SRM’s advantage over PRM is the integration of the attacker’s intelligent factor into the 

modeling effort. SRM allows the attacker to be intelligent. This approach is translated to a two 

player game where the opponents seek to maximize their own payoffs. Various models of this 

two player game are discussed and modeled. The last model which is a general-sum two player 

game is the most general model and is capable of integrating real world assumptions. 
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1. Introduction 

  



2 

 

1.1. Introduction 

The increasing international trade in containerized cargo, oil, minerals and ores in the last couple 

of decades has placed significant emphasis on maritime transportation. Annual sea-born trade 

more than tripled since the 1970s resulting in over 90% of international cargo moving through 

marine terminals (U.N. 2011). Maritime transportation is economical and in many situations the 

only means of transportation. Clearly, this trend significantly increased maritime traffic involving 

varying sizes of vessels and tankers carrying all types of cargo from containers to bulk, liquid and 

gas of which a significant portion is dangerous cargo. This in turn applies significant pressure on 

ports to improve their logistics operations for acceptable vessel waiting times as well as the safety 

and security of cargo, vessels, port infrastructure and the people living in the port communities. 

Furthermore, the global economy has become vulnerable to shutdowns of the transportation 

system. Any stoppage or appreciable slow-down in port operations impact numerous supply 

chains, with extended stoppages resulting in some vessels being diverted to other ports, as was 

the case in the 2003 strike of longshoremen in the port complex of Los Angeles/Long Beach.  As 

a response to this growth in the maritime sector, the US Department of Homeland Security 

developed the National Strategy for Maritime Security of 2004 that has the objectives to enhance 

international cooperation to prevent terrorist or criminal attacks in the maritime domain, to 

protect maritime-related population centers and critical infrastructure, to minimize damage and 

expedite recovery following an incident in the maritime domain and to safeguard the ocean and 

marine resources. Maritime Domain Awareness is an important component of the National 

Strategy for Maritime Security that is built on efforts currently carried out by the US Coast Guard 

and Customs and Border Protection, National Oceanographic and Atmospheric Administration 

and other Federal agencies to gather information on vessel operation and ownership, the maritime 

cargo supply chain and the marine environment.  
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Unfortunately, the more critical an infrastructure is for a nation, the more susceptible it is to 

terrorism efforts. The geography of a port makes it vulnerable to attacks that may be initiated 

from air, ground and water. In the literature of critical infrastructure protection against intentional 

attacks, numerous articles have studied and modeled situations where the attack is launched and 

performed on the ground (Yates et al. 2011; Dimitrov et al. 2009; Lee and Kulesz 2008). 

However the literature of seaborne terrorist attacks is not large. An Autonomous Underwater 

Vehicle (AUV), a diver or a peculiar object mounted at the bottom of a vessel can be a potential 

source of a terrorist attack to the infrastructures located around a port.  

In general, two approaches dominate the literature of resource allocation problems against 

terrorist attacks; namely Probabilistic Risk Model (PRM) and Strategic Risk Model (SRM). 

Although it may not seem logical in the beginning to use the PRM for security risk analysis, it 

performs reasonably well in allocating resources. The idea of the PRM originates from the safety 

risk problems where the goal is to mitigate the consequences of unintentional events such as 

natural disasters, machinery failures, accidents and etc. Based on the literature, it is suitable to 

assume that these events occur by chance and there are factors that increase the chance of their 

occurrence. That is, evaluating the probability of occurrence of such events as a function of 

factors causing them; e.g. poor visibility due to bad weather conditions can lead to higher 

accident probabilities. The same approach is used in many literature articles to model the security 

risk analysis. It means to assume that the terrorist attacks happen in the same manner as 

unintentional events. This approach assumes that any factor that attracts the terrorists’ attention 

increases the probability of a potential attack. Then it attempts to allocate resources in the 

sections of the field of interest where the potential attack probabilities are high in order to prevent 

them. The shortcoming of this methodology is the fact that it ignores any type of response that the 

intelligent attacker may do to neutralize the defender’s actions. In other words PRM misses the 

interaction between the attacker and defender based on their decisions.  
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On the other hand, the SRM considers both parties as intelligent players of a game, where each 

player wants to maximize his gain from the situation based on his conception about the other 

player’s decisions. The SRM seeks to find an equilibrium in which neither of the players can do 

better by just changing his decision. The structure and assumptions of the SRM fit better to the 

resource allocation problem against security risks. As a result, most of recent studies utilize the 

SRM.  

1.2. Contribution 

This study contributes to the literature of maritime security risk management via proposing 

methodologies for allocating sensors under the water in a port to detect underwater anomalies. 

The major contribution is in the game theoretic (strategic) model. Numerous articles in the 

literature have modeled the security risk problem by game theoretic methodologies (Zhuang and 

Bier 2007; Bier, Samuelson, and Oliveros 2007; Powell 2007; Paruchuri et al. 2008; Kunreuther 

and Heal 2002). However, the problem of interest for most of these studies is to allocate a limited 

resource among candidate sites located far apart. This implicitly suggests that assignment of 

resources to one site does not improve (or deteriorate) the coverage on any other site due to the 

distance between sites. This approach is not capable of capturing the essence of sensor placement 

in ports. 

In order to apply a sensor allocation methodology to a body of water (a port), it needs to be 

discretized into sites. A practical discretization technique is to put a grid of square cells on the 

environment (Dhillon and Chakrabarty 2002; Kim and Park 2006; Yates et al. 2011). In such a 

case typically the range of detection for sensors is larger than cell size. As a result, allocating 

resources to cells (placing a sensor in a cell) certainly affects the coverage of adjacent cells. To 

the best of my knowledge, this effect (called “interdependent allocation” in this manuscript) is not 
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considered in any of the game theoretic models for security risk analysis. The game theoretic 

model proposed in this study features interdependent sensor allocation.  

Two approaches are used to model the sonar allocation problem in this study. The first one is 

called the probabilistic modeling approach. It is a mixed integer linear optimization program and 

is inherently probabilistic due to the uncertainty associated with sonar coverage (a sonar covers 

objects that fall in its coverage range with a probability which is called detection probability). The 

second one is the strategic modeling approach. It is a game theoretic model that converts the 

sonar allocation problem to a game between two players (the defender and the attacker). 

In the probabilistic approach, the proposed model is quite complex. It is not feasible to solve this 

model for optimality using available Solver Packages. Another contribution in this study is 

devising a heuristic solution methodology for the probabilistic model. It can be used to obtain 

close-to-optimal solutions in a reasonable amount of time for large scale problems. 

As mentioned earlier, similar approaches have been developed for security risk analysis problem 

in the literature. Yet this study focuses on some significant aspects of this problem which are 

often ignored or left off through simplifying assumptions. Instances of these contributions are: 

 Details of sensor specifications and various coverage types (not necessarily 360˚ coverage) are 

considered. Not all sensors have 360˚ coverage. To reduce costs, it is possible to use sensors with 

lower degree coverage for special purposes such as acute angle coverage. Various sensors with 

different angular coverage can be used in the proposed models. Another sensor attribute that 

affects the modeling effort is the sensor detection range. It helps to specify the cell size as 

mentioned earlier. 

 Geographical features of the environment such as curvatures and barriers are taken into 

account. If a barrier blocks the line of sight for a sensor, then the cells behind the barrier are not 



6 

 

going to be covered by the sensor. Moreover, the more curvatures and details exist in the 

environment, the smaller the cell size is needed to be to capture the details. 

 Higher detection probabilities are assumed for the cases where multiple sensors cover a cell. 

This effect is referred to as “multiple detection” in this manuscript. According to interdependent 

allocation concept described before, a sensor allocated in a cell can cover an adjacent cell too. 

There might be circumstances where multiple sensors are placed in the vicinity of a cell. If this 

cell falls within the detection range of more than one of those sensors, the cell will be under 

multiple detection. In this case, the cell’s detection probability is higher than the detection 

probability it receives from any single one of those sensors. 

 Detection probabilities of sensors decrease as a function of the distance from the sensor. This 

fact is called “range-dependent detection probability” and is regarded in this study. As sound 

waves travel in a medium, they lose their energy. This effect ultimately leads to the reduction of 

detection probability as a function of distance. 

 Characteristic values of cells play a significant role in both modeling approaches. This 

parameter shows how significant a cell is and how critical it is to keep the cell under surveillance 

(surveillance and coverage are used in this manuscript interchangeably). The characteristic values 

affect the sonar allocation scheme directly. That is, both models decide the location of sonars 

based on this measure. The process of calculating cell characteristic values is also described in 

this study. 

The objective of the study is to develop an allocation scheme for sensors, such that the probability 

of detecting potential attacks is maximized. A budget constraint limits the number of sensors to 

be allocated. Hence it becomes critical where to place these resources to achieve the maximum 

surveillance. In order to quantify the characteristics of the field of interest, a discretization 

process is required.  
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 The discretization process and its effect on model’s parameters and its performance are 

discussed. Putting a grid of cells on a field of interest may seem an easy preprocessing task. 

However, the size of cells depends on the geographical features of the field and the desired level 

of accuracy in the model. On the other hand, decreasing the cell size leads to greater number of 

cells. As the number of cells increase, the size of the optimization model expands and reaching its 

optimal solution becomes more and more difficult. Hence a tradeoff between the level of details 

in the model and the effort to reach optimality can specify a feasible range for cell size. It is 

possible to tighten the feasible range for the cell size further by considering the sensor 

specifications. This process is explained in more details in Chapter 2. 

1.3. Structure of Chapters 

The remainder of this study is structured in the following manner. 

In Chapter 2, the literature of sensor allocation problem for security is discussed first. Then the 

proposed PRM is presented in two steps. First a basic model is presented to illustrate the idea 

behind the model. This model is followed by an example. Then the full version of the model is 

built on top of the basic model. It is a mixed integer linear programming model that seeks to 

minimize the overall risk of the port by placing a limited number of sonars under the water in a 

subset of candidate points set. The full model features range-dependent detection probability and 

multiple detection of cells. It also allows multiple sonar types to be used. A few preprocessing 

steps are required to prepare the parameters for the sensor allocation model. These steps are 

discussed in this Chapter as well.  

The proposed model is an NP hard problem and it cannot be solved for optimality efficiently in 

case of large-scale problems. In Chapter 3, an example is provided to show how long it takes to 

solve even a small case of the full model. Then a greedy heuristic solution technique that utilizes 

the greedy solution for knapsack problem is provided to solve the model for large-scale instances 
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in a reasonable amount of time. The computational complexity of this methodology is then 

discussed and a number of test cases are followed to exercise the performance of the heuristic 

method. The heuristic solution technique performs very well when the density of sonars is low in 

the field of interest. This fact allows the solution method to be used to in real world scenarios. 

Due to budget limitations in such scenarios, the sonars are quite scarce in the field and the 

solutions from the heuristic technique are close to optimal.  

Next, the SRM is proposed in Chapter 4. A number of definitions in the area of game theory are 

presented at the beginning of this Chapter. Then the literature of application of game theory 

against terrorist attacks is surveyed. A few concepts about game theory that are going to be used 

in the model are introduced before presenting the modeling methodology. A basic though 

powerful concept is the duality theory that relates a zero-sum game (where the payoff of two 

players add up to zero for all possible situations) to a duplet of dual linear program models. It 

helps to find the mixed strategy equilibrium of the game by solving the equivalent linear 

programs. The solution for the primal linear model provides the attacker’s optimal mixed strategy 

and the solution to the dual model is the defender’s optimal mixed strategy. Our interest in SRM 

is to obtain the defender’s optimum strategy that leads to sonar allocation. The attacker’s problem 

solution is not of much interest here. However, it can be used later to generate attack scenarios to 

compare the performance of various models. 

The payoff matrix of this particular SRM (which is the input for the dual linear programs) is then 

exploited. This matrix is populated based on various combinations of attacker and defender 

strategies. Then a few simplifying assumptions are made. These assumptions let us propose the 

game theoretic model in a more straightforward way. The final step in this Chapter is to provide 

the linear program of the defender which can be a guideline for sonar allocation. 

Chapter 5 is dedicated to the removal of simplifying assumptions that are made through 

proposing the game theoretic model. These assumptions are removed step by step and each makes 
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the mathematical linear program of the defender or the payoff matrix more complex. Once these 

assumptions are removed, the model becomes a binary linear program and the size of payoff 

matrix becomes dependent on the number of sonar types that are allowed in the model. This 

model is comparable with probabilistic model of Chapter 2 in the sense that they incorporate the 

same level of features and details. These two models will be compared by defining three 

performance measures at the end of this chapter. 

The final step in extending the SRM of Chapters 4 and 5 is to allow the payoff matrices to be 

general-sum (rather than zero-sum). This leads to flexibility of SRM in accepting any payoff 

matrices for players. A mixed integer linear program approach is selected from the literature to 

build the general-sum game. This model is able to integrate the features of the sonar placement 

problem into it. We extend this model step by step to integrate these features (as we did in 

Chapter5). Finally, the performance of the final general-sum SRM is tested via a test case. This 

test case illustrates the significance of attacker’s intelligence and interest in the final solution of 

the game. 

1.4. Notes 

While reading the rest of this study, some questions may rise in the mind of reader; such as the 

reason for using sonars or the rationale behind assuming a two dimensional environment while it 

is three dimensional. Here, a few discussion points are presented that help to resolve these 

questions to a great extent. 

 Electromagnetic sensors that are widely used for detection in many applications are not 

feasible to be used under the water in ports and waterways. Due to chemical properties of the 

field of interest (salty water) in our study, electromagnetic waves lose their energy as travelling 

through salty water so fast that their detection range does not exceed 50 ft. Instead of 

electromagnetic sensors, a different type of sensor called sonar (sound navigation and ranging) is 
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assumed to be deployed for detection purposes. As suggested by its name, sonar operates based 

on sound waves as opposed to electromagnetic waves. Sound waves can propagate in salty water 

without losing much energy. Sonar detection range under the water may even exceed 10000 ft. 

 The region of interest in this study is a body of water which is clearly a three dimensional 

(3D) space and the objects can move in any direction under the water. Yet the grid to put on the 

field of interest is assumed to be two dimensional (2D) in our modeling effort. In other words, the 

candidate points to place sonars lie on a plane and the coverage region of sonars is an area (as 

opposed to a volume). Comparison of the depth of water in the field of interest in this study and 

the range of sonar coverage provides the rationale behind this assumption. Water depth (d) at 

ports and waterways fall below 100 ft. (National Dredging Needs Study of U.S. Ports and 

Harbors 2002), while the range of coverage (r) is at least 2000 ft. for a typical sonar. The sonars 

are to be deployed at the seabed on a foundation and they (a sonar with 360 ˚ coverage) can cover 

the half-sphere with radius r above them. Since the water is shallow, the coverage volume of the 

sonar is cut by the water surface at the distance r-d above the location of sonar. The volume under 

the coverage of a sonar is approximately a disc (cylinder) with radius r and height d. Instead of 

dealing with this volume, it is possible to map it to a circle with radius r in a 2D space and 

assume that the sonar covers the circle. Clearly everything falling in the volume of the disc will 

also appear in the projected circle. Moreover the seabed is usually a flat surface in ports and 

waterways and any steep surface that may obstruct the line of sight for sonars can be treated as a 

barrier. 

The above explanation is just used as a justification for mapping a 3D field to a 2D equivalent of 

it for the modeling effort. However, in reality the sonar can recognize in what 3D location the 

sonar is and also in what direction it is moving. The seabed is usually a flat surface in ports and 

waterways and any steep surface that may obstruct the line of sight for sonars can be treated as a 

barrier and can be modeled with both modeling methodologies. 
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 The network of sonars to be allocated are assumed to be linked to each other and to the hub in 

land with wireless connections. The network topology of these nodes and their connection issues 

and limitations are not the subject of focus in our study. Due to the budget limitations and relative 

area of a region of interest and the sonar area coverage, the number of sonars to be placed in a 

port or a waterway will not exceed the order of ten. Hence, we assume that the connectivity of 

sonar nodes is not a major issue practically. 

 In our study no effort is designated to distinguish the type of anomalies a sonar has detected.  

Recognition of anomalies from the signals that sonars receive is a hot topic itself in signal 

processing. We assume that if a sonar detects an object, it sends the corresponding signals to the 

hub. When the signals reach the hub, they are processed properly to extract the information about 

what object has fall within the coverage, where it is located and in what speed and direction it is 

moving. 

 The problem of interest in the PRM may resemble a number of other optimization problems in 

the literature; e.g. facility location problem (FLP), wireless sensor networks optimization 

(WSNO) problem. Although these problems may look the same in general, in details they differ 

to a great extent.  

Based on its nature, each of these problems imposes a number of limitations to the optimization 

model that makes the problem unique; e.g. in WSNO the nodes are required to be connected to 

each other. Also due to large number of sensors to be placed, data transfer capacity issues may 

arise in this type of problem. These lead to a different set of constraints compared the ones in our 

problem. Also the physics of our problem makes it different from an FLP. That is, the coverage of 

sonars is over an area of interest, while in the FLP, the resources are required to service points of 

interest. 

According to the application the model is developed for,  every model may seeks different goal; 

e.g. in facility location problems the objective is to minimize the cost of material transportation, 
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while in our problem this cost does not apply and the goal is to maximize the coverage of sonars. 

In WSNO the objective may be to maximize the coverage or connectivity, to minimize the cost or 

bandwidth problems or any combination of them.  

Moreover, the structure of problem is fixed in all of the problems mentioned above; e.g. the nodes 

to be served and their requirements are known in an FLP, or the number of users in a WSNO 

problem is at least probabilistically known. However, in an SRM the attacker will choose the 

node to attack based on his intelligence. As a result the defender cannot act according to a pre-

specified structure. Instead, he needs to play a game with the attacker. This idea makes the SRM 

approach totally different from the aforementioned models. 
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2. Probabilistic Risk Model 
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2.1. Introduction 

Critical Infrastructure Protection has become one of the highest priorities of department of 

Homeland Security as a result of the terrorist attacks of September 11
th
, 2001. These attacks 

showed how dramatic the aftermath of such an attack can be. According to Bram, Orr, and 

Rapaport (2002), it led to a loss of almost 3000 lives. It also affected the US and world economy 

tremendously based on Makinen (2002), caused health issues for several months in one of the 

most highly populated cities of the world as suggested by Barry (2006) and many more 

consequences that no one thought of before. All nations learned important lessons from these 

incidents and have planned to become more aware and ready against similar efforts.  

According to the Department of Homeland Security (2011), there are 18 categories of critical 

infrastructures in the US and at least hundreds in each category. Clearly, it is not feasible to 

protect all of them against undesirable attacks with a limited budget. Among all, there are 

instances that a number of infrastructures are located closely and operating interdependently such 

as ports. Ports typically consist of cargo vessel terminals delivering the nation’s essentials, oil 

terminals, refineries, chemical plants and transportation systems. Hence, a typical port includes 

tens of infrastructures operating in the same region and in case one of these infrastructures is 

compromised it will affect the others; e.g. the whole port may shut down due to security issues 

for a period or the efficiency of the port may decrease dramatically for a much longer time.  

This Chapter contributes to the literature of critical infrastructure protection and maritime security 

risk management via proposing a sonar allocating methodology under the water in ports and 

waterways. The objective is to keep the underwater environment under surveillance of sonars to 

minimize the risk of potential attacks by underwater anomalies such as divers, torpedoes or etc.  

Our approach integrates technical features of sonars into the mathematical model. Multiple 

coverage of sonars (meaning that the detection probability in a cell increases as the number of 
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sensors covering that section increases) and range-dependant detection probability (implying that 

the detection probability decreases as the distance from a sensor decrease) are two major specifics 

of sonar that are incorporated in this study. The preprocessing steps that affect the model 

parameters are also discussed here. These steps which are mainly referred to as the discretization 

process are usually missing in the literature articles.  

The next section provides a background on security risk analysis and sensor placement and 

discusses the deficiencies in the literature where the content of this work can help. Then, the 

mathematical model is presented in two steps. First a small model is provided to illustrate the 

concept of the optimization model. An example shows how this model works. Then the full-scale 

model is introduced and modified through a few steps. The preprocessing steps to prepare model 

parameters are then discussed and followed by the conclusion of this chapter. 

2.2. Literature Review 

The number of articles studying security risk analysis of logistics operations and transportation 

systems is ample. Although the modeling approach may differ in various articles, they all seek the 

same objective, controlling and minimizing the probability and/or the impact of undesirable 

events. According to Kaplan and Garrick (1981), in order to address security risk analysis in an 

environment, one need to answer these three questions; what may happen, how likely is that, and 

what are the consequences. However, many of the citations in the literature use a more 

quantitative and formal approach to evaluate and mitigate risk. This approach takes advantage of 

the concept of risk as the expected consequence of incidents. In other words, the expected value 

of the consequences of incidents which are likely to happen in a field can be thought of as the risk 

of that field. Hence to calculate the expected consequences, it can be conditioned on the types of 

possible incidents. That is 
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 (2.1) 

where E(C|Im) is the expected consequence given the incident type m and p(Im) is the probability 

that incident type m happens. Since any attack does not necessarily lead to an incident, we need to 

further condition the incidents on the attack types in order to quantify the probability of incidents. 

Note that the consequences are not directly dependent on the attack types, but the dependence is 

through the incident. That makes the following equation (Willis 2007) legitimate. 
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P(Ij|Ek) is the conditional probability of incident occurrence (successful attack) given that an 

attack has happened and p(Ek) is the probability of attack occurrence. In security risk 

terminology, p(Ek) is called the threat (T) probability, P(Ij|Ek) is the vulnerability (V) of the asset 

against the attack, and E(C|Ij) is the expected consequence given the attack. Thus, this analogy 

leads to the well-known risk formula proposed by multiple studies in the literature (Willis 2007; 

McGill, Ayyub, and Kaminskiy 2007; Ezell et al. 2010):  

         ( 2.3) 

That is the basis for a number of articles in risk analysis. Unlike Golany et al. (2009) and Garrick 

et al. (2004) whom incorporate all three factors in their models, most literature articles focus on 

one or two of the factors and attempt to mitigate the risk by alleviating those factors and provide a 

decision support system to combat terrorism; e.g. Brown et al. (2005) and Brown et al. (2006) 

attempt to minimize the consequence cost of invading an infrastructure by letting the attacker and 

defender play a game, where their interaction defines the threat probabilities. Yates et al. (2011) 
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try to minimize the vulnerability of an infrastructure by decreasing the attack probability via 

supervising the possible assault routes. 

As a result of the US Department of Homeland Security’s concentration on defending critical 

infrastructures against terrorist attacks after the 9/11 incident, numerous post 2001 articles study 

different aspects of security risks of infrastructures (Simonoff, Restrepo, and Zimmerman 2007; 

Leung, Lambert, and Mosenthal 2004; Berry et al. 2005; Golen, Mishra, and Shenoy 2010; Yates 

et al. 2011). Despite studying the same subject, these articles use different approaches to model 

risk and suggest a wide range of solutions to mitigate it. This variety may be due to two factors. 

First, there exists a wide range of infrastructures each having different specifics; e.g. Simonoff, 

Restrepo, and Zimmerman (2007) basically analyze the historical data of disruptions such as 

terrorist attacks to electric power grids in the US and Canada over time and their consequences. 

Leung, Lambert, and Mosenthal (2004) prioritize bridges for protecting them against terrorist 

attacks and then perform a threat and vulnerability analysis for each specific case. Berry et al. 

(2005) provide a resource allocation scheme for placing sensors in municipal water networks 

against maliciously injected contaminants such that the expected fraction of the population at risk 

is minimized. Besides, the variety of attack modes i.e. air, ground and water adds another 

dimension to the problem. Golen, Mishra, and Shenoy (2010) provide an underwater sensor 

allocation scheme for an area clearance scenario, and Yates et al. (2011) apply a similar idea for 

protecting critical infrastructures on the ground by protecting the routes leading to them. 

A generic approach in protecting critical infrastructures is to increase their surveillance by 

installing detective instruments in their proximity such that the probability of undetected attack 

and its success decreases. Sensors are the most widely known detective objects used in this field. 

This risk mitigation approach leads to a well-known problem in optimization theory which is the 

Sensor Placement Problem (SPP). Due to the diversity of sensors, they can be used in many 

applications, e.g. Dimitrov et al. (2009) propose a mixed integer linear optimization method to 
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deploy radiation detectors against nuclear material smugglers in a transportation network, Lee 

and Kulesz (2008) also propose a sensor placement methodology to protect the population against 

exposure to chemical, biological and radiological threats. Chakrabarty et al. (2002) and Dhillon 

and Chakrabarty (2002) provide models for grid coverage sensor placement to keep a region 

under surveillance and use heuristic techniques to solve their models. Clouqueur et al. (2002) 

deploy sensors on the ground using a sequential heuristic technique such that the exposure of the 

paths (leading to the infrastructures) to sensors is maximized and hence the surveillance is 

maximized. Wilhelm and Gokce (2010) provide a model to design a surveillance system for ports 

and waterways by utilizing various types of sensors to detect anomalies above water. They 

propose a mixed integer linear model and use the branch and price decomposition technique to 

solve it. Golen, Mishra, and Shenoy (2010) provide an underwater sensor allocation scheme 

(based on game theory) to protect a specific part of the ocean against submarine threats. 

In the literature on sensor placement problem, the models are divided into three categories based 

on what they are seeking to cover.  Most are focused on covering a set of points of interest 

(infrastructures) and are called point coverage problems such as Chakrabarty et al. (2002) and 

Dhillon and Chakrabarty (2002). This category is quite analogous to the Facility Location 

Problem (FLP) and the Art Gallery Problem (AGP). The approaches and algorithms developed 

for FLP and AGP can be used to solve the point coverage problem with minimal modifications. 

Some such as Yates et al. (2011) are interested in covering the routes and paths that lead to 

infrastructures. This group is called barrier or path coverage problems. The last group seeks to 

cover an area of interest and is known as area coverage problems. Since the physics of the area 

coverage problem is different from the two other classes (characteristics of cells are 

distinguishable from a point or line assumption), it is not usually possible to use solution 

techniques for other categories to solve the area coverage problem. 
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Golen, Mishra, and Shenoy (2010) study the area coverage problem. This article is the most 

relevant research to the problem of our study. Although Pompili, Melodia, and Akyildiz (2006) 

and Aitsaadi et al. (2007) investigate underwater sensor networks allocation, they seek dissimilar 

objectives and have different constraints. They study the full area coverage problem in which 

there are ample sensors for deployment. In this type of problem the cost is considered as an 

objective function sought to be minimized (this is not a realistic approach in real case scenarios, 

where budget is a pre-determined value). Moreover, the model proposed in Pompili, Melodia, and 

Akyildiz (2006) is suitable for the uniform sensing problem which is not consistent with sensor 

placement against terrorist attacks. Golen, Mishra, and Shenoy (2010) look for the optimal 

placement of sonars under water such that maximum surveillance is achieved with a limited 

budget. However, due to the vastness of the environment under study (sections of ocean or open 

sea), the authors assert some assumptions that make the model less deficient for ports and 

waterway surveillance. The authors discretize the environment into cells within which the 

acoustic characteristics are quite homogeneous. Due to the slow rate of change in water 

characteristics in the oceans, the cell sizes are relatively large such that multiple sonars are 

allowed to be placed in a single cell. As another result of considering large cells, the authors 

assume that placing a sonar in one cell may have no effect on the adjacent cells. Since the 

transition in environmental characteristics that affect the sonar coverage is much faster in coastal 

waters comparing to oceans (Knauss 2005), the cell size needs to be smaller to keep the 

homogeneity in a cell. As cells become smaller it is not safe anymore to assume no relation 

between a sonar in one cell and the coverage in a nearby cell.  

As an area coverage problem, our study assumes that a sonar that is placed in one cell can cover 

(the area of) as many cells as its range of detection allows. The model allows a cell to be covered 

by multiple sonars, in which case the detection probability increases. Additionally the change 

(decrease) in detection probability of a sonar by moving farther from the sonar is considered in 
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our model. This relationship is not linear and in most cases there is no closed-form expression to 

explain it. It is usually measured through experimentations in the water body of interest and 

analyzed using graphs as given in Urick (1983). This is one of the significant benefits of our 

modeling effort in this study as will be explained in the following sections. 

2.3. A Grid View (discretization) 

In order to effectively allocate sonars in a given body of water, we propose to identify the area 

with a grid consisting of a number of cells with the same size each having a set of key attributes. 

That is we discretize the area into a number of units of smaller areas potentially to be covered by 

a sonar in the vicinity. This approach is a typical way to study sensor placement problems in large 

scale regions of interest and numerous literature articles have utilized this procedure (Dhillon and 

Chakrabarty 2002; Golen, Mishra, and Shenoy 2010; Lin and Chiu 2005). The cell size of the 

grid depends on the desired level of accuracy, geographical shape of the body of water and the 

level of activity in the port. Generally, the more irregular the boundary lines of the waterway are 

and the more congested it is, the smaller the cell size should be to make the placement process 

more accurate. Resolution of sonars and complexity of the mathematical model are also important 

factors to keep in mind while deciding on the cell size. A more detailed discussion about the cell 

size and how to discretize the detection probability is presented later in this Chapter. 

2.4. The Mathematical Model 

In this section we present two models that seek optimal placement of sonars such that the port and 

its infrastructures are under surveillance of sonar coverage to provide maximum risk reduction 

against any undesirable intrusion or attack under water. A budget constraint will be the limiting 

factor. 
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2.4.1. The Basic Model 

A basic mathematical model that can be used in sonar allocation involves a linear risk 

minimization problem with binary decision variables. The model parameters are: 

aij: characteristic value of cell (i,j). This parameter shows how significant a cell is and how 

critical it is to keep the cell under surveillance. In fact the value of this parameter governs the 

problem and specifies a priority for cells to be covered by sonars. 

dp: sonar detection probability.  

s: price of a sonar. 

b: budget to place and maintain sonars. 

Nij: set of neighboring cells of cell (i,j) including itself that a sonar can cover. 

Note that in this study, we have chosen the lower left corner of each cell to represent the cell and 

be the candidate point for sonar placement. Figure  2.1 shows a sonar being placed in cell (i,j) (the 

hatched one) that covers the 4 cells including cell (i,j) itself. In this figure |Nij|=4, where | | refers 

to the size of the set. 

 

Figure  2.1. A sonar being placed in cell (i,j) 

 

The decision variables in the basic model are: 

    {
                                  (   )
                                                        

 

(i,j)
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and 

    {
             (   )                      
                                                           

 

Note that all the sonars to be placed in this model are of the same type. Using this notation, the 

model can be written as follows: 

    ∑∑   (        )

  

 ( 2.4) 

s.t.:   

     ∑               (   )

(   )    

 ( 2.5) 

 ∑∑       

  

 ( 2.6) 

         {   } ( 2.7) 

The objective function (equation ( 2.4)) is a risk measure that the model is minimizing. The aij 

value shows the criticality of the cell (i,j) and the bigger it is, the higher the significance of the 

cell is. If a cell is covered by a sonar, then yij for that cell is one and therefore (for dp values close 

to one such as 0.95) the coefficient of aij is small which can be interpreted as if a cell is covered 

by a sonar then the cell is better prepared against undesirable intrusions and hence exposed to less 

risk. Conversely, if the cell is not covered, yij is zero and the aij value is multiplied by one and 

will remain the same which means the cell is not under surveillance and remains vulnerable to 

attacks. Inequality ( 2.5) assures that for a cell to be covered there must be a sonar in the vicinity 

which is covering the cell. Since the objective function seeks to minimize the weighted 

summation of –yij’s (maximize the weighted summation of yij’s) it prefers to enforce the 

maximum number of yij’s to be equal to one. Consequently inequality ( 2.5) works as equality and 
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whenever there is a sonar in the vicinity of a cell that can cover the cell, the cell’s corresponding 

yij becomes one. This intuition also helps us to see that the binary constraint on the variable yij is 

not necessary. In other words, equations ( 2.4) and ( 2.5) enforce the yij’s to be binary. Inequality 

( 2.6) is just the budget limitation to purchase, deploy and maintain the sonars and the final 

statement (equation ( 2.7)) forces the decision variables to be binary. 

2.4.2. An Example 

A simple example is provided here to better understand the workings of the model. The problem 

includes a field of 30 cells with some hypothetical ship lanes passing through them as shown in 

Figure  2.2. For simplicity, the aij’s are obtained merely based on the number of paths passing 

through each cell; e.g. the bottom right cell of the grid is crossed by two lines (vessel paths) and 

therefore the characteristic value for this cell is two. Sonars are assumed to have 360˚ coverage 

and each covers 4 cells (refer to Figure  2.1). 
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Figure  2.2. Characteristic values of each cell in the grid 

 

The proposed model is a binary integer programming model and since it involves a small grid, the 

number of variables and constraints is small enough to use an optimization solver to obtain the 

optimal solution. As illustrated in Figure  2.3 the optimal sonar placement tends to cover the cells 

with the highest characteristic values. Each sonar is assumed to cost four unit of price and the 
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total budget is 13 units.  Thus due to budget limitations, just two sonars are used to cover eight 

cells with highest characteristic values in the optimal allocation. 
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Figure  2.3. Optimal sensor placement for a simple example 

 

Since one sonar type is allowed in this basic model, the number of cells (c) and budget (b) are the 

only variables that affect the complexity of the model. For fixed c and b values the number of 

possible ways to allocate sonars is easy to calculate. The number of sonars is   [
 

 
] (the integer 

part of 
 

 
). Then the number of possible sonar allocations is the number of possible combinations 

of n out of c (  
 ). Hence when the budget constraint is low (the case in real case problems) even 

if the number of cells is large (less than millions) the number of possible allocations is still 

possible to check in a reasonable amount of time. Although this model does not cover most of the 

features of the main model presented in next section, it still can be used for large-scale problems 

(if the assumptions do not spoil the quality of the problem) to provide optimal solutions, since 

solving the main model for optimality might be infeasible in such cases. 

2.4.3. The Comprehensive Model 

The optimization model of the last section is not detailed and general enough to be used in real 

world scenarios. It needs to be modified such that it can integrate more realistic assumptions. 
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Here, a more advanced model will be presented that covers the deficiencies of the basic model to 

a great extent. It allows multiple sonar types to be used in the model. It considers that the 

detection probability of a sonar decreases as the distance from the sonar increases. It also takes 

the extra coverage (when multiple sonars cover a cell) into account. From another point of view, 

this model works the same as the basic model fundamentally. They share a similar objective 

function and all the constraints of the basic model exist in the advanced model. Many of the 

parameters and decision variables are the same as well. Next, the comprehensive model is 

presented. 

The model parameters are: 

aij: characteristic value of cell (i,j).  

n: index for type of coverage, i.e. n=1 indicates the highest detection probability and n=2 

indicates the second highest detection probability, and so on. 

dpn: type of detection probability due to proximity to the sonar. This parameter is needed to 

represent the change in detection probability as a function of distance from the sonar. For 

example, n equals one and the detection probability is close to one for those cells within the close 

proximity of the sonar, and as the distance between the sonar and the cells increase, n increases 

and the detection probability decreases, as shown in Figure  2.4. 
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Figure  2.4. Types of detection probability 
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dpmax: the maximum detection probability considered. (dpmax>dpn,∀n) 

m: index for sonar type (sonars differ in range, detection probability, angular coverage or other 

specifications). 

sm: price of a sonar type m. 

b: available budget to purchase sonars. 

Nijmn: set of neighboring cells of (i,j) including cell (i,j) itself, that a sonar type of type m 

positioned in cell (i,j) can cover by detection probability of type n. For example in Figure  2.4 if 

the place that the sonar (the red circle) is placed at is cell (i,j), for the shown sonar type, if n=1 

then the 4 darkest cells in the center of the discretized shape are the only elements of Nijm1 and for 

n=2 the 12 cells that are surrounding the cells at the center are the elements of Nijm2. 

u: maximum number of the same type multiple coverage to be allowed. 

The decision variables are 

      {
                                                  (   )
                                                                                    

  

      {
                    (   )                                          
                                                                                                             

        

and 

    {
                    (   )                                
                                                                                          

         

The model can be constructed as: 
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The objective function (equation ( 2.8)) is a risk measure to be minimized. In fact the rationale 

behind this objective function comes from equation (2.1). The aij value, as described earlier, 

shows the criticality of the cell (i,j) and it can be thought of as the consequence level in case that 

cell is attacked successfully. The term multiplied by aij in equation ( 2.8), as will be described 

below captures the vulnerability of the cell and is called the vulnerability function. Threat 

probability is assumed to be taken into account with the definition of aij. That is, the higher the 

value of aij is, the more prone it is to an attack by the adversaries. Since the attacker is likely to 

prioritize cells for attack based on the significance values of the cells, the threat probabilities will 

be rational to the significance values of the cells. Accordingly, the significance values of cells 

appear twice in the equation implicitly. Instead it is reasonable to assume that the significance 

level of the cells embodies the threat probabilities in it and remove the threat probability from the 

equation. 
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Now let us explain equation ( 2.8). If a cell is covered by at most one sonar, then the tij value for 

that cell is zero and 1-tij is one. If tij=0 and the cell is not covered, the preparedness is zero for 

that cell and the coefficient of aij is one. If tij=0 and the cell is covered, depending on the type of 

detection probability, the preparedness of that cell is calculated (using dpi for type i) and 1-

preparedness results in unpreparedness, which is then multiplied by aij. If the cell is covered by 

more than one sonar, tij is one and hence 1-dpmax is multiplied by aij. Therefore the more a cell is 

covered by sonars the less it is vulnerable against attacks. 

In order to explain the way multiple detection of sonars over one cell is modeled, consider the 

vulnerability function of a cell as 

   [(     )  (     ) (     )] ( 2.15) 

where i,j,…,s refer to the type of coverage the cell receives from all the covering sonars 

according to its distance with sonars. When a cell is not covered by any sonar its unpreparedness 

(vulnerability) is one. If it is covered by one sonar the vulnerability will be 1-dpi, where i 

corresponds to the type of coverage the cell receives. In case the cell is covered by more than one 

sonar, the vulnerability comes out to be as given in equation ( 2.15). Since the values for detection 

probability are quite large (values close to one such as 0.95), the term [(1-dpi)·(1-dpj)…(1-dps)] 

tends to get smaller and smaller as the number of covering sonars increase; e.g. if the smallest 

detection probability of sonars is 0.9, the vulnerability of a cell with two covering sonars is 0.01, 

and by increasing the number of sonars this value merges to zero. Hence, beyond double 

coverage the gain in vulnerability by increasing the sonars is minimal. Therefore, to make the 

model less complicated a maximum value of detection probability (dpmax) is introduced and any 

cell with multiple coverage is assumed to be covered by dpmax and equation ( 2.15)  is replaced by 

the vulnerability function in equation ( 2.8). 



29 

 

Inequality ( 2.9) implies that in order for a cell (i,j) to be covered by detection type n (yijn≥0), there 

should be a sonar in the vicinity of that cell covering the cell with detection probability of type n. 

Since the objective function seeks to maximize the value of yijn implicitly, this inequality is 

always active (binding) at the optimal solution meaning that both sides of the inequality become 

equal. Equations ( 2.10) and ( 2.11) are meaningful when they work together. In fact, they make tij 

to be either zero or one. When the number of sonars that cover cell (i,j) is more than one, 

inequality ( 2.10) becomes tight and forces tij to be one, while constraint ( 2.11) is redundant. If at 

most one sonar covers the cell, inequality ( 2.11) becomes tight and forces tij to be zero and 

expression ( 2.10) becomes redundant. That is these two constraints are disjunctive. Inequality 

( 2.12) is the budget constraint. Finally based on expressions ( 2.13) and ( 2.14) all the decision 

variables are binary except yijn which can be any positive integer.  

In reality, with a limited budget, it is preferable to cover as many cells as possible rather than 

covering a number of cells with multiple sonars and keeping the rest uncovered. Furthermore, 

multiple coverage of the same type is even more unlikely to happen. As a result, it is reasonable 

to limit yijn to a small integer such as two or three. Besides, due to the functionality of equations 

( 2.10) and ( 2.11), yijn is enforced to be integer. Consequently it is possible to remove the 

integrality constraint from yijn and just put an upper bound such as 2 or 3 on it (u=2 or 3). 

2.4.4. Linearization of the Objective Function 

Typically solving an optimization model with a linear objective function is easier than the ones 

with polynomial objective functions. That is why it is preferred to build a model with the least 

possible degree in the objective function. Luckily by introducing a set of auxiliary variables and 

constraints, this model can be converted to a new identical model with a linear objective function. 

The new binary variable wijn takes care of the multiplication of (1-tij) and yijn such that the 

conditions in Table  2.1 are satisfied.  
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Table  2.1. Required behavior of the new variable wijn 

1-tij yijn 
Desired value of wijn 

(with respect to tij and yijn values) 

1 1 1 

1 0 0 

0 1 0 

0 2 or more 0 

 

Due to equations ( 2.10) and ( 2.11), the other combinations of (1-tij) and yijn do not occur. In order 

to enforce the conditions in Table  2.1 a pair of new constraints is added to the model as shown 

below. 

 
    

 
 (     )                         ( 2.16) 

and 
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                  ( 2.17) 

Note that u in equations ( 2.16) and ( 2.17) is an input parameter in the model, as described earlier. 

After integrating Wijn into the model, the multiplication of (1-tij) and yijn in the objective function 

is replaced by wijn. Hence, the objective function can be rewritten as 

    ∑∑   {  (∑(        )

 

          )}

  

 ( 2.18) 

with these modifications the objective function is linearized and the problem can be solved using 

a mixed integer linear programming model. 
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2.5. Preparing Model Parameters 

Most of model parameters and variables depend directly on the cell size and number of cells to 

place on the field. A brief discussion on the discretization process follows. 

2.5.1. Cell Size Calculation 

The initial step of solving the sensor placement problem is to calculate the appropriate cell size of 

the grid that is going to be placed on the field, as it determines the number of decision variables to 

be used in the model.  In most of the earlier work the cell size is assumed known, which is not the 

case most of the time. It is important to have an effective cell size that is not too small or not too 

large. The process of cell size determination is discussed briefly here.  

As mentioned in the discretization process, several variables affect the cell size, most of them 

favoring smaller cell size. In order to obtain a reasonable cell size, it is necessary to study the 

field and test various cell sizes to find an appropriate one which includes the desired details of the 

field, while keeping in mind that too small a cell size will complicate the model and may not help 

catching increased details due to sonar resolution accuracy. The process can start with an 

approximate cell size and additional steps are taken to arrive at the optimal size considering 

different types of sonars. The basic idea is to maximize the overlap between the area covered by 

the sonar and the cells of the grid within the sonar’s coverage, such that less sonar coverage is 

wasted and less accuracy is sacrificed. In Figure  2.5, the hatched area shows the wasted coverage 

and the dotted area illustrates the points that the accuracy is sacrificed. Although the dotted area 

falls out of coverage (with less detection probability), it is assumed that the whole cell including 

the dotted area is covered by the sonar with the same detection probability. 
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Figure  2.5. Idea of cell size calculation (in this figure all 16 cells are assumed to be covered) 

 

Having an interval for cell size in mind and knowing the range of sonars considered, one can 

iterate the following search algorithm to find an optimal value for cell size where coverage wastes 

and loss in accuracy are minimized. 

The algorithm to obtain the optimal cell size is given below: 

L: lower bound for the cell size 

U: upper bound for the cell size 

q: sonar types 

wki: wasted coverage for sonar type k when the cell size is i 

lki: lost coverage for sonar type k when the cell size is i 

fi: total in efficiency for cell size i 

Algorithm: 

Step 1: 

                                                                     //For any integer in the range of cell size 

           {       }                                                      //For all sonar types 

              Calculate wki and lki 

              Calculate    ∑ (       )
 
    

 

7%

7% 7%

7%
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Step2: 

 Find           {        } 

 Use i
*
 as the cell size 

 

Since the number of each type of sonar in the final solution is not known, this technique may not 

lead to the optimal cell size for the final solution of the problem, but at least it assures that an 

appropriate cell size is fed to the main model. 

2.5.2. Discretizing Detection Probabilities 

Fixing the cell size makes it possible to discretize the sonar coverage accordingly. Assuming 

binary detection probability for sensors (sonars) is a very rough approximation. Instead, it is more 

realistic to presume that detection probability reduces as the distance from the sonar increases. 

Exponential decay is the most common model for the change in detection probability as a 

function of distance. However, in the literature of underwater acoustics this assumption is not 

well-justified. Alternatively, it is suggested to find the corresponding relation through 

experimental measurements for the body of water under study as proposed by Urick (1983). 

Aitsaadi et al. (2007) suggest using multi-level detection probability to capture more details in the 

model. Our study considers the experimental relation between detection probability and distance 

from the sonar, and discretizes the detection probability as follows.  

To discretize the detection probability, suppose that a sonar is placed at a candidate cell as shown 

in Figure  2.6 and we are interested to find the approximate detection probability for the grayed 

cells. Note that the detection probability is assumed to be the same for the grayed cells. The 

closest distance from the grayed cells and the sonar location is d1 and the farthest distance is d2. A 

straightforward way to approximate the detection probability for these cells is to average the 

corresponding detection probabilities for d1 and d2. It is also possible to use more complicated 
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and accurate ways to approximate the average detection probability, but the change in the average 

is really minimal for different calculation methods. 

d1

d2

 

Figure  2.6. Process of discretizing the detection probability 

 

Moreover, assuming non-binary detection probability leads to integration of uncertainty into the 

modeling approach. If we define an indicator function for preparedness of each cell (i,j) as I{cell 

(i,j) is prepared against attacks (or 100% under detection)}, then the expected preparedness for 

that cell under coverage of sonars is the term [(1-dpi)·(1-dpj)…(1-dps)] in equation ( 2.15). Hence, 

the expected unpreparedness or vulnerability is 1-[(1-dpi)·(1-dpj)…(1-dps)]. In other words the 

objective function (equation ( 2.8)) in the mathematical model includes the expected vulnerability 

in it. This methodology is used widely in the literature to embed the uncertainty in detection 

probability into the sensor placement model (Dhillon and Chakrabarty 2002; Bar-Noy, Brown, 

and Shamoun 2010; Cavalier et al. 2007; Golany et al. 2009). 

2.5.3. Significance Values Calculation 

As discussed earlier and observed in the model the cell significance values (aij’s) play a very 

important role in the allocation scheme that the model proposes. That is, the higher the 

significance values in a section (consisting a group of cells) of the environment are (relative to the 

other sections), the higher the probability of sonar allocation to that section is. Hence, while 
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defining these values all the factors that may increase the chances of a terrorist attack to a specific 

section of the port must be considered; e.g. the relative significance of infrastructures in the port 

and their proximity to water, the maritime transportation routes and their relative importance 

regarding types of cargo being carried, the frequency of ferries passing through and the passenger 

capacities of ferries, among others.  

Moreover, some of the information cannot be gathered through data, such as the criticality of 

each infrastructure for the nation’s well-being. These need to come from a detailed study of the 

infrastructures and their effect on the nation’s survival. Another approach for estimating such 

information is to elicit from expert opinions. This is a complicated task by itself. Each specific 

port needs an elicitation process with customized questions and experts who know the port and its 

significance to gather the required information.  

2.6. Conclusion 

A mixed integer linear programming model is proposed to place sonars underwater to mitigate the 

risk of terrorism that might be instigated via the water side in ports and waterways. The proposed 

model contains a risk minimization objective function along with constraints to ensure plausible 

placements under a budget limitation.  The approach requires discretizing the environment by 

putting a grid of cells on the field of water under study. The size of the grid cells depends on the 

geography, desired level of accuracy and sonar specifications. A simple and straightforward 

heuristic algorithm is presented to calculate the cell size. Finding the cell size helps us to specify 

the model parameters that depend on the cell size, such as the number of cells, the types of 

detection probabilities to allow in the model and significance values of the cells.  

The model features two key issues for the sensor placement problem, which are usually missing 

in the literature. In case a cell is covered by multiple sensors, their detection probabilities are 

aggregated for that cell. The range dependency of the detection probability is also considered. 
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The model is presented in two stages. The first model is quite simple and it provides an 

understanding of the elements of the objective function and shows how the constraints guarantee 

the coverage. The second model basically builds on the basic model, but it involves more realistic 

scenarios. Since the latter is a quadratic mixed integer programming problem, a linearization 

approach is presented.  

The computational complexity of the proposed model is discussed in Chapter 3 and a fast 

heuristic technique is presented as a solution methodology for the model. Then a number of test 

cases are created and used to show the flexibility of the model and performance of the heuristic 

technique. 
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3. The Heuristic Algorithm and Test 

Examples 
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3.1. Introduction 

The probabilistic risk model of Chapter 2 features a number of significant details of the sensor 

placement problem such as multiple detection and range-dependent detection probability. It also 

provides the flexibility of using various types of sonars with different ranges and angular 

coverage (such as 90˚, 180˚ and 360˚). In order to use the model for a body of water a few 

preprocessing steps are required to be done. These steps include calculation of cell size, 

discretization of detection probability and calculation of significance values. The latter ones are 

directly affected by the cell size calculation. Once the cell size is calculated, the total number of 

cells required to cover the environment can be calculated as well. The model has the flexibility to 

use different number of sonars for surveillance according to the budget constraint. The higher the 

budget is, the greater the number of sonars becomes. 

These features make the model so general that it becomes appropriate to be used in real world 

problems without undergoing many simplifications. However, computational complexity is the 

drawback for such a model. In other words, after modeling a real world scenario with the 

methodology of Chapter 2, one needs to worry about the way to reach the optimal placement of 

sonars. Number of cells, number of sonar types, budget constraint, multiple coverage of sonar and 

range-dependent detection probability are factors that increase the complexity of the model. 

In this Chapter, first a test example featuring multiple sonar types, multiple coverage of sonar and 

range-dependent detection probability, but with low budget and low number of cells is presented 

to show how big the problem becomes even in case of small number of cells and sonars. Then the 

effect of these parameters on the complexity of the problem and the feasible set is discussed. 

Previous articles have also shown that this problem is quite complex and solving it for optimality 

for large-scale problems may not be feasible. As a result a heuristic solution technique is devised 
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to provide reasonably good solutions for large-scale problems. A number of test instances are run 

to contrast the performance of the heuristic and a solver package. 

3.2. A Test Case 

In order to provide a realistic scenario for the comprehensive mathematical model of Chapter 2 

(equations (( 2.8) through (( 2.14)), the New York Harbor is considered to be the test case. There 

are a plenty of reasons to select such a strategic location to study. A diverse set of infrastructures 

is located all around the harbor; vessels carry different types of cargo to terminals in the port, a 

considerable number of ferries transport people between New York and New Jersey, among 

others. Figure  3.1 provides a geographical overview of the region. 

 

Figure  3.1. An aerial map of New York Harbor (the map is extracted from Google Earth) 

 

Initially the model parameters need to be determined, such as the cell size, aij’s, detection 

probabilities and sonar types. Since a full-scale elicitation process is not undertaken, the aij’s are 

calculated based on the number of routes crossing each cell, the frequency of vessels using the 
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paths and the type of cargo each vessel is carrying. Using these factors, the grid for the harbor and 

the color coded aij’s will possibly look like the one in Figure  3.2. 

 

Figure  3.2. Criticality of cells calculated based on vessel routes (the background map is extracted from 

Google Maps) 

 

Three types of sonars with 360°, 180° and 90° angular coverage are used in the model with 

ranges of 750, 900 and 1000 meters and prices of $48, $37 and $26 respectively
1
. The cell size is 

chosen to be 300 meters. The square shown in Figure  3.2 is covered by approximately 

65·55=3575 cells. Since more than half of the cells are not located on the water, they are removed 

from the picture (and also from the analysis). Also, three types of detection probabilities are 

assumed to exist in this model. Accordingly as shown in Figure  3.3, the closest cells to the sonar 

(the darker ones) having probability of detection (dp) equal to 0.99, the mid class cells have a dp 

of 0.95 and the lightest cells a have dp=0.9. 

                                                      
1
 The real cost of sonars is in the scale of thousands of dollars. 

Most Critical

Least Critical
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Figure  3.3. Types of detection probabilities (coverages) to be used for the 3 sonar types in the example 

 

After defining all the parameters, it is possible to find the optimal sonar allocation for the test 

case problem. Since this case does not have a large number of variables (due to relatively large 

cell size) it is still possible to solve the problem with an objective value close to the true optimal. 

In order to reach a competitive solution in a reasonable amount of time, an α percent relative 

optimality tolerance is enforced, such that the solution procedure is stopped as soon as the current 

solution reaches the 1-α percent of the optimal solution (solver first relaxes some of the 

constraints to reach a lower bound to the optimal value and then according to this lower bound, 

the solver can assure that each feasible solution is in what gap of the optimal solution). The 

CPLEX 12 (IBM 2011) solver is used for this purpose and it takes almost 50 hours to reach the 

solution. The solution for a specific budget constraint (b=$400) is presented in Figure  3.4. As 

Figure  3.2 and Figure  3.4 suggest, the model is sensitive to characteristic values and places sonars 

accordingly. 
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Figure  3.4. A sonar placement scheme for the New York Harbor (based on the characteristic values 

obtained from vessel routes) 

 

3.3. The Heuristic Solution Technique 

As seen earlier, solving the full model explained previously for large-scale fields of water with 

details is quite challenging (the problem is NP hard; see Aspnes, Goldenberg, and Yang (2004)). 

There are parameters that increase the complexity of the model rather exponentially and make it 

difficult to solve for the optimal solution; namely the number of sonar types (q), budget (b) and 

number of cells (c). The number of sonar types is typically few (due to compatibility with the 

environment). It is reasonable to ignore this parameter in dealing with the complexity of the 

model. Unfortunately this is not the case for the budget and the number of cells. Budget is the 

variable that the decision makers impose on the model and it can have any value (although often 

limited), and the number of cells is the parameter that defines the accuracy of the output and is 

expected to be large.  In order to still benefit from the model for such scenarios with acceptable 
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accuracy, a heuristic solution technique that is fast (does not grow exponentially in budget and 

number of cells) and accurate is needed. In this section such an algorithm is proposed and 

discussed for its accuracy and runtime.  

The proposed solution method resembles the so called greedy algorithm, where a locally optimum 

solution is chosen at each iteration of the solution process. Suppose that a grid of cells (Λ) with 

known characteristic values and q types of sonar with corresponding detection probability pk, 

range rk and price sk (k=1,…, q) are available. The set of candidate points for sonar placement (Δ) 

is also known. Before getting into the iterative placement algorithm, in step 1 the method looks at 

the total budget for sonar placement, and then searches among all possible combinations of sonars 

that exhaust the budget and chooses the combinations that leave the least unused budget and puts 

them in a set called the dominant set D. For example, suppose in a simple problem with two sonar 

types (first type costing $3 and the second type costing $5), the budget is $14. Among all possible 

combinations of these two types, the one with three sonars of the first type and one sonar of the 

second type consumes the budget the most (and probably will generate more risk reduction 

compared to other combinations). The dominant set may include one or more elements denoted 

by Xw, where w=1,2,…,|D|. If the cardinality of the dominant set is high, a number of 

combinations are selected at random to be considered in the iterative algorithm, since going 

through several combinations of sonars helps the model search in more sections of the feasible 

region to find the optimal solution. 

 Next, the main part of the algorithm (the iterative placement process) is executed for each 

element of the dominant set. For each element Xw, the iterative algorithm is run until all sonars of 

the element are placed. In every iteration, the algorithm goes through all candidate locations in Δ. 

For each point, the algorithm calculates the amount of risk (characteristic value) that each type of 

sonar will cause in case it is placed in that location. Considering all candidate points provides the 

risk reduction (vijk) for each cell (i,j) by sonar type k. Then, for each sonar type, the maximum risk 
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reduction (vmax,k) and its location (   ) 
  is obtained. Finally the division of the maximum risk 

reduction by the price of the corresponding sonar type (vmax,k/sk) is the criterion for sonar selection 

in every iteration. The higher this value is, the more that sonar reduces risk per dollar of budget. 

In fact this ratio comes from the greedy algorithm (Dantzig 1957) which is typically used for the 

knapsack problem. The only difference between the knapsack implementation and this technique 

is the need to update the criterion ratio for each sonar type in the greedy technique at the end of 

each iteration (after placing a sonar). In fact when a sonar is placed, the corresponding aij values 

(characteristic value of the cells that the placed sonar is covering) need to be updated as shown in  

Figure  3.5. Then that sonar is removed from the current element of the dominant set. Since some 

of the characteristic values are updated, the maximum risk reduction for each sonar type needs to 

be calculated again for the next iteration.  

 

Figure  3.5. Updating aij’s 

 

The algorithm loops until all of the sonars in that element of the dominant set are placed. The 

summation of the final characteristic values is the objective value Ow for this placement scheme. 

Then, the same process is repeated for all other elements of the dominant set. The final result of 

each element is called a placement scheme. Consequently a placement scheme for each of the 

elements of the dominant set is achieved. To further improve the solutions, for each of these 

solutions a complimentary process is performed, such that all combinations of one, two, three and 

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

a11 a12 a13 a14

a21 a*22 a*23 a24

a31 a*32 a*33 a34

a41 a42 a43 a44

a*ij = aij (1-dp)
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four sonars are chosen to be removed temporarily from the placement scheme and replaced by 

new sonars that the greedy chooses (as much as the budget constraint permits to do so). This 

process helps to visit various sections of the feasible region and avoids the model becoming stuck 

at a local optimum. Throughout this complimentary process the objective value is observed and 

whenever it falls below the current value, the replacement becomes permanent and the process 

continues until all combinations are evaluated. When the complementary process is executed for 

all the placement schemes, the one with the lowest objective function is returned as the final 

solution. The algorithm representation of the greedy approach is presented below. 

Heuristic Greedy Algorithm: 

Step 1: 

Find all    {             } such that                        (where xwk is the 

number of sonars of type k in the w
th
 combination and w=1,2,…,R  where R is the number of 

possible combinations of sonars that exhausts the budget) 

 

Step 2: 

Construct the dominant set D, a subset of Xw’s with the minimum remaining budget of    

(                   )  

 

Step 3: 

                | |                                 //For any element of the dominant set 

 While |  |                                                     //While the element is not empty 

                                                    //For sonar types that still exist in Xw 

   (   )                                                           //For any candidate point to place a sonar 

Calculate the risk reduction for sonar type k,  if it is placed at (i,j) 

 Find the maximum risk reduction vmax,k at location (   ) 
  for sonar type k 
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Obtain          {
      

  
⁄            }  and place a sonar of type f  at (   ) 

  

                                                          //Remove the sonar from the combination set 

If        , then |  |  |  |    

Evaluate the objective function Ow for this combination set (Xw) 

 

Step 4:                                                        //Search of an improved solution 

                | | 

            {       } 

Remove  all combinations of i sonar(s) at a time, ant try to replace them (it) with sonars of highest 

ratio of vmax,k/sk (max risk reduction/sonar price) and recalculate the objective function   
  

If   
      , then confirm the replacement 

Else undo the replacement 

Find the set with lowest Ow and choose it as the best solution 

 

3.4. A Discussion on the Heuristic Algorithm 

To check the efficiency of the proposed algorithm, first its computational complexity is compared 

with the size of the feasible set, and then its results and runtime are compared to the solutions 

obtained from the CPLEX 12 solver called from the GAMS (GAMS 2012) software. 

Suppose that the budget is b and there exist q sonar types to choose among and c cells in the field. 

If the average sonar price is p, then the number of possible selections to exhaust the budget is 

equal to the number of integer solutions to the following equation, 

                     ( 3.1) 

or approximately equal to the number of integer solutions to 
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            ⌊
 

 
⌋    ( 3.2) 

where xi represents the number selected from sonar type i. The number of possible solutions to 

this problem is     
     

based on (Murty 1981). 

Moreover, for each of the possible selection above, there exists approximately  
  

 

∏    
 
   

  different 

placement schemes. Putting these together, results in      
     

 
  

 

∏    
 
   

  many different possibilities 

in the feasible set. Basically the time to find the solution is of order O(c
n
). For the heuristic 

algorithm after finding the best combinations of sonars which also requires     
     

 possibilities 

to be evaluated, the sonar allocation takes place by checking all cells for each type of sonar for 

each iteration of placement. Therefore in each iteration c·q possibilities are checked, and there are 

n iterations (sonars) in total, resulting in c·q·n possibilities. Finally in the neighborhood search 

process, various combinations of two, three and four placed sonars are temporarily removed from 

the model. Then the main part of the algorithm is called again to place new sonars in the model. If 

these new sonars result in higher risk reduction than the removed sonars, the removal and 

placement become permanent. Since at most four sonars are removed at the same time there will 

be around    
      possibilities to check in this process which is a polynomial of degree four for 

the number of cells and linear for the budget and the number of sonar types. Altogether the 

heuristic algorithm is of order O(n
l
) where l is max{4,q} (as mentioned before in real case 

problems the number of sonar types rarely exceeds two or three).  

Moreover it is possible to modify the algorithm for large scale problems such that it runs much 

faster; e.g. one can skip finding best combinations set and just begin with placing sonar until the 

budget is consumed (thus skipping     
     

 possibilities in step 1) or one can just look at 

combination of a subset (e.g. 2) sonars instead of going from one to five sonars in the final step 
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(removal and replacement process). As a result, the computational complexity of the algorithm 

reduces to O(n), while the final solution is still close to optimal (see that the modified heuristic 

results in Table  3.2 to compare the speed and accuracy of this approach with the heuristic itself). 

Clearly the number of possibilities to check in this heuristic is much less than the ones in the 

feasible region, which makes the algorithm applicable for large scale problems with a reasonable 

level of accuracy. In Table  3.1 each of the three main parameters are doubled to show how the 

number of possibilities change in the heuristic algorithm and the feasible set. One can see how 

dramatically the number of possible sonar placements increases in the feasible set, while for the 

heuristic algorithm the increments are minor. 

Table  3.1. Effect of model parameters on the heuristic and possibilities space 

Parameter change 

Impact on  the heuristic model 

Impact on the 

number of possible 

cases parameter From to 

number of 

cells 
c 2c twice more calculation 

2
2n 

times more 

possibilities 

Budget  n 2n 

Does not require much more than twice 

calculations for small values of q (q less than 

10) 

At least c
n
 times more 

possibilities 

Sonar 

types 
(q<5) 2q twice more calculation 

Around n
2
 times more 

possibilities 

 

It is also important to mention that when the density of sonars is not high (sonars are sparsely 

distributed in the environment and their coverage overlap is minimal), the results of the heuristic 

algorithm are close to the results from solver package (see the upper rows of Table  3.2 and lower 

rows of Table  3.3). Fortunately this is the case in most of the real scenarios, where due to the 

budget limit the firm desires to reach the highest protection although the environment is not under 

coverage of sonars thoroughly.  
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3.5. Test Instances 

In order to determine how close the results of the algorithm are to the optimal solution and also 

compare its runtime with the CPLEX solver, the results of a number of small test cases are 

generated using the heuristic algorithm and the branch-and-cut technique used in the solver (note 

that the solver package does not go over all possible situations in the state space of the problem, 

and hence the runtimes are not comparable to the results in Table  3.1). The same computer was 

used for all the runs with an Intel Xeon 3 GHz CPU.  To reach a comparable solution with the 

solver in a reasonable amount of time, a three percent relative optimality tolerance is enforced, 

such that all solutions from the solver package are guaranteed to be within a three percent interval 

of the optimal solution (In order to reach solutions in a reasonable amount of time, we had to 

follow this process). The results for the solver in Table  3.2 and Table  3.3 are generated 

accordingly. As the budget constraint is more relaxed (budget increases), the execution time of 

the solver increases exponentially as shown in Table  3.2, such that it becomes impractical to 

obtain a solution in a reasonable amount of time. That is why some cells in the “Time” column of 

Table  3.2 have the value of “>100000” in the solver solution section. It means that in 100000 

seconds the solver could not guarantee that the current solution is in the 3 percent gap of the 

optimal solution and the current solution is returned. 

Table  3.2 provides a comparison of the results of the solver, heuristic and modified heuristic for a 

number of synthetic cases with different budget levels. For each case five similar scenarios are 

generated and the results are averaged to provide more robust results. A sample scenario case 

with 300 cells is illustrated in Figure 3.6. The other four scenarios have the same configuration (a 

grid of 10×30), but with slightly different characteristic values. 
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Figure 3.6. A typical test case scenario with 300 cells 

 

The lowest value of the budget (100) corresponds to the case with at most three sonars (according 

to sonar prices). Note that the values of the budget are monetary, but the dollar sign is dropped for 

simplicity. In this case the sonars are scarce in the environment. The highest budget value 

translates to sonar abundance, such that almost all cells (with positive aij) are covered by sonars. 

A number of intermediate cases in increments of 100 are also provided to illustrate the effect of 

sonar density on the accuracy of the heuristic and also the runtime to reach the solution. The 

number of cells is 300 (c=300) for all the cases in Table  3.2 as shown in Figure 3.6.Three types of 

sonars (q=3) with 360˚, 180˚ and 90˚ coverages were considered. The sonars cost $48, $35 and 

$26, respectively.
2
 The average value of the objective function (summation over all aij’s) over all 

five scenarios is 21861 before placing sonars. Table  3.2 shows the dramatic increase in the 

runtime of the solver as the number of sonars increases. The heuristic algorithm solves each case 

in a reasonable amount of time, while the modified heuristic solves all the cases in less than a 

second. On the other hand, the value of the objective function is quite close in all three methods, 

especially when the budget is low. Figure  3.7 depicts the results of objective values for the solver 

and heuristic technique from Table  3.2 graphically. Clearly, the heuristic method provides better 

solutions in low budget scenarios as the graphs in Figure  3.7 suggests. Due to the greedy nature 

of the heuristic method, it performs better in scenarios with smaller feasible sets. However, as the 

                                                      
2
 The real cost of sonars is in the scale of thousands of dollars. 
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number of sonars increases and the multiple coverage issue appears, the solver outperforms the 

heuristic method.  

Table  3.2. Comparison of solver and heuristic as budget increases 

Budget 

Constraint 

(b) 

Solver  Heuristic  Modified Heuristic 

Objective 

Value 
Time (sec)  

Objective 

Value 

Time 

(sec) 
 

Objective 

Value 
Time (sec) 

100 18557 19  19497 <1  19497 <1 

200 15464 235  16654 <1  16654 <1 

300 12701 962.6  14059 2  14059 <1 

400 10204 19359.6  11779 5  12340 <1 

500 7915 >100000  9652 10  11829 <1 

600 5845 >100000  7693 21  9879 <1 

700 3918 >100000  5800 37  7876 <1 

800 2776 >100000  4157 60  6278 <1 

900 1306 >100000  2921 98  5047 <1 

1000 471 >100000  2121 147  3978 <1 

 

 

Figure  3.7. Performance of the heuristic algorithm as budget increases 

 

In order to observe the effect of the number of cells on the runtime of the solver and the heuristic, 

the results of 8 cases with different number of cells are provided in Table  3.3. In this setting, a 
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grid with 300 cells is used as the base case. For the sake of easier comparison for the various 

number of cells, the base grid is duplicated to build fields with larger number of cells; e.g. for the 

second row of Table  3.3, two base case grids are combined to obtain the grid for this instance (the 

objective before placement for the second row is slightly lower than twice the first row due to 

changes in aij of boundary cells when two grids are put together to build a bigger one). The same 

logic is used to build the rest of the cases in this table. That is why the total risk increases 

proportional to the number of cells.  For this set of instances the budget is set to be 300 and again 

three types of sonars are used. Again, for the sake of robustness of results, 5 similar scenarios are 

generated for each case and the results are averaged and given. The results of the heuristic and the 

solver are quite close, while the runtime of the solver is much more than the heuristic. The values 

of the objective function for the heuristic technique are even smaller than the ones for the solver 

for the lower rows of Table  3.3. This is again due to scarcity of sonars in such cases. Since the 

budget is kept fixed, as the number of cells increase the density of sonars in the field decreases 

and the greedy heuristic results in closer-to-optimal solutions. 
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Table  3.3. Comparison of solver and heuristic as number of cells increase 

No. of 

Cells (c) 

Objective before 

placement 

Solver  Heuristic 

Objective 

Value 
Time (sec)  

Objective 

Value 
Time (sec) 

300 21861 12701 962  14059 2 

600 41846 32253 17207  32527
3
 2 

900 61157 51294 12265  51389 3 

1200 83450 73580 490  73566 3 

1500 107838 97871 792  97561 4 

1800 127184 117189 824  117014 5 

2100 145824 135996 1160  135496 5 

2400 166914 157177 1296  156541 12 

 

The results of Table  3.3 are used in Figure  3.8 to illustrate the performance of the heuristic. The 

results from the solver and the heuristic should be projected on the left vertical axis and the 

objective difference needs to be read from the right vertical axis. The point in which the objective 

difference crosses zero and goes below that is where the heuristic starts to perform better than the 

solver. Notice that the three percent optimality gap is also enforced here to obtain results from the 

solver. 

                                                      

3
 The odd behavior of the runtime for the solver in Table 3.3 is due to the branching rules that the solver 

uses.  
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Figure  3.8. Performance of the heuristic algorithm as the number of cells increases 

 

3.6. Conclusion 

The optimization model that presented in Chapter 2 is NP hard and it is difficult to solve it for 

optimality for large-scale problems. A small example in the beginning of this Chapter shows how 

long it takes to solve this problem to reach the optimal solution. Then the complexity of the sonar 

allocation problem and the effect model parameters on the complexity is discussed. 

A heuristic algorithm is developed to achieve close to optimal solutions in a much shorter time. 

The heuristic works like the one used to solve the knapsack problem developed by (Dantzig 

1957). The difference is that in our approach the utility of each object type changes after 

assignment of a single object to the knapsack. This utility needs to be recalculated for each object 

type after each assignment. Hence, the method is iterative and it continues until the budget for 

sonar placement is exhausted. In order to show the performance of the algorithm, a number of test 

cases are generated and run with both the heuristic algorithm and a commercial Solver (CPLEX). 

The problem parameters such as number of cells and the budget constraint (number of sonars) are 

also varying in these test examples to show their effect on the runtime of the heuristic and the 
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Solver package. It is shown that the heuristic complexity is of order o(n
l
) , where n is the number 

of sonars to place and l is dependent on the sonar types. Since the number of sonar types to be 

allowed in the model is not large in real world problems, the heuristic can be applied to solve 

large-scale problems as well. A modified version of the heuristic is also presented that does not 

go over the last neighborhood search and it stops as the budget is depleted. The modified heuristic 

is of order O(n). 

The test cases show that the heuristic algorithms perform very well when the budget is limited 

and the density of sonars in the environment is low. As the number of sonars in the field increases 

the optimality gap for the heuristic algorithm increases as well. This observation makes the 

heuristic useful for real world large-scale problems. In such cases the budget is low and the 

operator seeks to reach the highest risk reduction with a limited budget in hand.   

  



56 

 

4. Background on Game Theory 
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4.1. Introduction 

The probabilistic modeling approach of Chapter 2 is a powerful resource allocation tool to protect 

a field of interest against potential undesirable events. As mentioned earlier, variations of this 

model have been widely used in the literature for resource allocation in different applications. 

However, the use of this approach in security risk analysis problems has come under scrutiny. 

Studies such as Golany et al. (2009), Bier, Cox, and Azaiez (2009) and Cox (2008) believe that 

the probabilistic risk approach does not model the intelligent behavior of the opponent (in case of 

a security threat). In other words, in most applications where the probabilistic resource allocation 

is used, the undesirable event is known a priori or at least it is predictable, while in security risk 

analysis this is not the case.  

In the context of security risk, the opponents are a group of people who decide where, when and 

how to attack to maximize the loss they are interested in. Clearly, it is not smart to treat such a 

plan as an event happening by chance (probabilistic risk models). A modeling approach that is 

able to consider the attackers interests can perform much better. Strategic modeling techniques 

are instances of such techniques. They are capable of modeling the behavior of the adversary 

based on his interests and propose defensive and preventive actions accordingly.  

A suitable strategic methodology is the game theoretic modeling approach. Due to its nature, a 

game is played by players who seek to win the game (obtain their interests) based on their 

wisdom and notion of other players’ actions. The security risk analysis problem has a similar 

structure. Consider a terrorist (attacker) as a player who tries to maximize his damage to an 

infrastructure and the defender as a player who seeks to minimize the chances and consequences 

of a terrorist attack. These two players have conflicting interests and they both seek to maximize 

their achievements based on their conception of each other. This setting matches the idea of a 
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game perfectly. Based on this rationale, the game theoretic modeling approach has been 

frequently used in the literature of security risk analysis. 

The rich literature of game theory empowers the application of this general modeling approach in 

security risk related problems. Recently, a great number of security risk analysis literature articles 

have utilized game theory in their studies in various settings and with different assumptions. 

Before getting into the literature review, a few game theoretic definitions are introduced in the 

next section. Then the literature review section discusses the selected articles of the literature 

which are more related to the subject of this study. Two basic though powerful concepts that are 

helpful in the modeling and solution process are then explained. The modeling effort which seeks 

to fit the problem of interest in this study to a well-known type of game is then followed by its 

solution methodology. A test case is presented at the end of this Chapter to show the operation of 

the presented model. This approach is extended later in Chapter 5 to reach the strategic model 

that is comparable with PRM.  

4.2.  Basics of the Game 

In general, a game consists of two (or more) players who compete with each other and try to 

maximize their benefits (minimize their losses) by taking actions at each stage of the game, based 

on the actions of the other players (or a perception of it). Each game is defined if the following 

four questions can be answered; who the players are, what are the possible actions, when each 

player gets to play, and how much is the gain. These factors are characterized by the rules of the 

game. In order to propose a strategy of how to play a game these factors need to be known. 

For a game, after specifying the players i=1,2,…,p the set of possible actions Ai for each player i 

(i=1,2,…,p) needs to be defined. The action set of a player at each stage of the game is the set of 

possible strategies (movements) that the player is allowed to play. Each action (move) of a player 

is associated with a payoff that may be negative or positive. This payoff is usually dependent on 
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the actions of the other players, too. Hence the payoff for each player is calculated after all the 

players have played; e.g. in Figure  4.1 if player 1 decides to take action 1, his payoff will not be 

completely specified until player 2 chooses his action. In this case if player 2 chooses to play 

action A, the payoff for player 1 is 30. Note that the first number in the duplet in each cell of the 

game matrix is the payoff for the first player (row player) and the second number is the payoff for 

the second player (column player) when the players take the corresponding row and column 

actions.  

The games can be classified based on various properties. From one perspective, if the players of 

the game are committed to a unique goal, the game is called a cooperative game, otherwise it is 

non-cooperative. Usually it is assumed that information transmission is allowed in cooperative 

games such that each player knows the actions of the other. From another point of view a game 

can be simultaneous or sequential. In a simultaneous game, the players perform their action at the 

same time or if they do not play simultaneously the later players are not aware of the actions of 

the earlier players. If the later player has some sort of information about the action of earlier 

players the game is called sequential.  

A game is called zero-sum if the sum of the payoffs for all players for any combination of actions 

is zero while in a general-sum game it can be any number. This categorization is important due to 

some characteristics of zero-sum games that make them easier to solve. Figure  4.1 illustrates the 

normal form of a two player game. Player 1 has two possible actions and player 2 can choose 

among three possible actions. Since the sum of payoffs for each cell of the table is zero, the game 

is called a zero-sum game. 

 While playing a game the players have the choice to either always perform the same action or 

choose among a set of actions according to a pre-specified probability distribution. The former 

strategy is called the pure strategy while the latter is the mixed strategy; e.g. in Figure  4.1 if 
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player 1 decides to play action 1 all the time he is following a pure strategy and if he chooses to 

play action 1 70% and action 2 30% of the time he is playing according to a mixed strategy. 

30,-30 -10,10 20,-20

-10,10 20,-20 -35,35

Player 1

Player 2

1

CBA

2

 

Figure  4.1. Normal form of a zero-sum two player game 

 

These definitions and classifications are useful in understanding the literature of game theory 

application in security risk and also the methodology that has been developed in this study. 

4.3. Literature Review 

In the security risk analysis literature most of the game theoretic models fit to the following 

settings: 

The game consists of a defender (or a set of defenders) that has some resource (budget) on hand 

and he is seeking the optimal way to allocate the resource among his assets to protect the assets 

against the attacks by an external intruder. The resources are expended on preparing the assets 

against potential attacks. Generally the more resources the defender assigns for one set, the less 

that asset is vulnerable to attacks. On the other hand, the attacker’s goal is to select an asset (a set 

of assets) among all and invade it (them). Hence the defender is trying to minimize his loss in 

case of a terrorist attack and the attacker wants to maximize his damage to the asset he chooses 

(Sandler and Lapan 1988; Golen, Mishra, and Shenoy 2010; Powell 2007; Golany et al. 2009; 

Zhuang and Bier 2007). Sandler and Lapan (1988) are among the first articles that model the 

security risk from a game point of view. They propose a simple solution technique for the case 
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with two targets to be attacked. They then discuss national and international terrorism and 

describes the role of information sharing between countries on the performance of each country 

against terrorist attacks.  

Powell (2007) proposes a framework for allocating scarce resources against intelligent terrorist 

attacks in four settings. First a baseline case which is a classical resource allocation against 

terrorist attacks (as discussed in the introduction) is presented. Then it is assumed that the 

defender can also allocate resources for border protection. In this case the solution will lead to the 

distribution of resources among the sites and the borders. The third scenario is the case where the 

threat has strategic and non-strategic components, the same as what is studied by Zhuang and 

Bier (2007). The last scenario discusses the case where the defender is not confident about the 

attacker’s preferences. 

Golany et al. (2009) present the generic forms of probabilistic risk models and strategic risk 

models and discuss the differences of these approaches using a real world example. Zhuang and 

Bier (2007) propose a game theoretic optimization model to decide how to allocate the resources 

to protect against both natural disasters and terrorist attacks. Based on their model, they claim that 

it is preferable for a defender to play a sequential game rather than a simultaneous one against an 

intelligent attacker. That is, the defender prefers to play first and advertise his preventive action 

instead of keeping it secret. The intuition is that in case the attacker knows the preventive actions 

of the defender, the optimal solution he reaches is worse than the case where he knows nothing 

about the defender actions. It is true because the defender’s actions work like constraints for the 

attacker’s problem and hence make the attacker’s optimization problem more constrained. On the 

other hand, if the attacker plans to attack without any prior information about the defender’s 

actions he will choose a site which is already protected by the defender with higher probability. In 

this case the attacker’s harm to the site will be less than he expected and it can be a benefit to the 

defender. Zhuang and Bier (2010) discuss these counter arguments. 
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Unlike the article by Zhuang and Bier (2007), most of the game theoretic models in security risk 

analysis are considered to be non-cooperative (Kardes 2005; Paruchuri, Pearce, and Kraus 2008). 

In such models, both the defender and attacker may benefit from the reliable information they 

might gather from the other party’s actions. Kardes (2005) introduces robust stochastic games and 

present robust optimization techniques for optimal strategies under uncertainty about the 

opponent. Paruchuri, Pearce, and Kraus (2008) provide a model where a defender plays the game 

against multiple attackers and optimizes resource allocation to protect against all attackers. In this 

article the authors use the MinMax approach and integrate the primal and dual problem into one 

optimization model. Kunreuther and Heal (2002) propose a game model with multiple defenders 

playing against an attacker. They also apply their model into airline security in a later work by 

Heal and Kunreuther (2005). 

 Although the settings defined in these articles are similar, they all make different assumptions 

and use various modeling and solution techniques. Golany et al. (2009) and Golen, Mishra, and 

Shenoy (2010) use the linear programming approach for solving the proposed optimization 

model. Sandler and Lapan (1988) utilize the concept of derivatives to solve their problem and 

Zhuang and Bier (2007) use the NE to obtain the optimal solution. Powell (2007) also uses the 

concept of NE to come up with solution ideas. 

Most of the aforementioned articles examine the numerous infrastructures of a nation as far apart 

nodes that do not have any effect on each other; e.g. they assume that allocating resources to one 

site has no effect on any other site. However in this study the body of water is the environment 

under study and it is discretized into relatively small cells. Clearly allocating resources (sonars) 

into one cell has a significant impact on the surveillance in an adjacent cell. To elaborate more on 

this issue let us discuss it considering the most relevant article of the literature to the work 

presented in this study. Golen, Mishra, and Shenoy (2010) propose a game theoretic solution 

technique to allocate sensors (sonars) in an underwater environment to protect a part of ocean or 
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open sea against terrorist attacks. In this article the environment is divided into sectors (cells) 

such that the acoustic characteristics of the water are homogeneous in each sector. The authors 

assume that the cells are large enough that allocating sonars in one cell has no effect on the 

protection of other cells. They also allow multiple sonars to be assigned to one cell. The usage of 

this model for protecting vast sections of oceans is reasonable, however it does not fit quite well 

in the context of protecting ports and waterways (due to their smaller size compared to large 

sections of the ocean).  

In order to obtain homogeneous acoustic characteristics within cells in coastal waters (ports and 

waterways) the cell size needs to be smaller, due to a faster transition in environmental 

characteristics that affect the sonar coverage in coastal waters compared to ocean water according 

to Knauss (2005). Smaller cell size conflicts with the assumption that a cell placed at one cell has 

no effect on the adjacent cells. Moreover, it is not reasonable anymore to allow multiple sonars 

per cell. Hence the model presented by Golen, Mishra, and Shenoy (2010) becomes deficient in 

this context. Instead, in our proposed model it is possible to decrease the cell size arbitrarily and 

capture water characteristic in great detail. Since the effect of placing a sonar in one cell in the 

coverage of adjacent cells is taken into account, the small cell size will not lead to any modeling 

deficiencies. 

Except for multiple sonar detection, all details that are included in the probabilistic risk model of 

Chapter 2 can be incorporated in the game theoretic model as well. However, to avoid 

ambiguities in the full-scale model, the modeling process is presented in several steps. First, a 

model with a few simplifying assumptions is proposed in this Chapter. These assumptions are 

relaxed in Chapter 5 to obtain the full-scale model that can be used for real world scenarios. 
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4.4. Preliminaries 

4.4.1.  Nash Equilibrium 

Formulating a real strategic problem as a game with the characteristics specified in the previous 

sections can be quite involved. However the more challenging and interesting part of the effort is 

to find a way to solve the game and reach a reasonable solution. This procedure may be hard to 

achieve in the case of some complex games, but in many game settings there exist straightforward 

ways to solve the game.  

The Nash Equilibrium (NE) is a famous solution concept proposed by Nash (1951) for the games 

for which the players are assumed to have a reliable perception of other players’ equilibrium 

strategies. NE is the state of the game where no individual player can increase his benefits by 

changing his own strategies given that the strategy of the other players remains the same; i.e. in a 

2 player game, if player 1 does his best action considering the decision of player 2 and player 2 

does his best action considering the decision of player 1, these players are playing the game in an 

NE. As a result NE is quite interesting and widely used in the context of non-cooperative games, 

where the players (may) know about the payoff of others, but they are not aware of the strategies 

of other players (and the players cannot agree on performing specific strategies). According to 

Nash (1951) any non-cooperative game with a finite set of actions has at least one mixed strategy 

NE. 

In order to better understand the concept of NE, consider the normal form of the game shown in 

Figure  4.2. Clearly this game is not zero-sum. Let us ignore the possibility of mixed strategy NEs 

and just focus on the pure strategy NEs. Finding pure NE strategies in a payoff matrix of a game 

is straightforward. Based on the definition of NE, player 1 needs to consider what player 2 may 

do. It is not reasonable for player 2 to play action Z, because by selecting a mixture of X and Y, he 

can reach higher payoffs. In the notations of game theory, it is said that strategy Z is a dominated 
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strategy for player 2. So player 1 should focus on maximizing his benefits in case player 2 plays 

either X or Y. If player 2 plays X, then the best choice for player 1 is to play B and if player 2 

chooses Y, then player 1 prefers to select A. Hence (A,Y) and (B,X) are the 2 (pure strategy) NEs 

for this game, because neither of the players can get higher payoffs if they just change their own 

decision and the decision for the other player remains the same.  

It is possible to provide a more direct way of finding (pure strategy) NEs based on the previous 

discussion. Consider all duplets of payoff values in the game matrix, if for one duplet the first 

element is the maximum value of that column and the second element is the maximum of that 

row then the corresponding strategy is the NE for that game. The first element should be the 

maximum of the column because player 1 wants to achieve the highest payoff if the action for 

player 2 is fixed. With the same logic, second element is needed to be the highest value of the 

row. It is easy to check that this condition holds for (A,Y) and (B,X) strategies in Figure  4.2. 

 

Figure  4.2. Nash Equilibriums (NE’s) of a game 

 

It is important to note that the NE does not always guarantee the maximum payoff for all players. 

In some games there are strategies for which if the players agree on playing them beforehand they 

will reach higher payoffs comparing to NE. To show this argument more clearly, let us change 

the payoff values when player 1 plays C and player 2 plays Z from (15,20) to (30,45) as shown in 

Figure  4.3. The NEs of the game do not change. However if player 1 and 2 can both agree 

beforehand to play (C,Z) then their payoffs will be more than what they get in NE. This is an 
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example of the case where players can earn more than NE if they share the information 

beforehand. Note that if either of players decide to play his last action (C for player 1 and Z for 

player 2) on his own and does not let the other player know about it, and if the other player plays 

reasonably, the average payoff for both of the players will be less than what they get out of NE. 

This is the reason why NE is so important in non-cooperative games, where both players want to 

maximize their payoff while trying to keep their information secret. 

 

Figure  4.3. Nash Equilibrium versus best action 

 

As mentioned before, most of the game theoretic models in the field of security risk are non-

cooperative and the usage of NE is quite common in the literature. As the game of interest in our 

study is non-cooperative, NE is utilized here as well. However, it is used together with the duality 

theory for zero-sum games that is presented next. 

4.4.2. Duality Theory for a Zero-sum Game 

Although it is straightforward to find the pure strategy NEs in a game, but in most cases a pure 

NE does not exist and one needs to find the mixed strategy NEs for such cases. On the other 

hand, finding a mixed strategy NE of a game is more involved than the pure strategy NE and may 

require extensive effort and time. However there exists a relationship between game theory and 

duality theory in linear programming that helps to find the mixed NE for zero-sum games. The 

application of linear programming theory in finding the solution for the zero-sum game is 
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discussed in this section. The reason for modeling the problem of interest with a zero-sum game 

is presented in the next section.  

Consider a two person zero-sum game; players are called player 1 and 2 and the payoff matrix for 

player 1 is Am×n (The payoff matrix for player 2 is clearly –A). Suppose we are after the mixed 

strategy NE for the players. Let us represent the mixed strategy for player 1 by vector   

(          ), where      and ∑   
 
      and the mixed strategy for player 2 by vector 

  (          ), such that      and ∑   
 
     . Note that xi’s and yj’s are the probabilities 

that player 1 and 2 will select actions i and j based on. Player 1 needs to care about the strategy of 

player 2. Player 2 is trying to maximize his own expected payoff which is  

 ∑    

 

   

 ( 4.1) 

Over all Y (Aj is the jth column of matrix A). For simplicity, it can be written in matrix form as -

AY
T
 (superscript T means the transpose operator). In other words he is trying to minimize AY

T
. 

Now player 1 tries to maximize his expected payoff based on what player 2 has done. So he needs 

to maximize the minimum of XAY
T
 over all X. The same logic works if we begin with player 2 

and we can write the expected payoff of the players as: 

Expected payoff for player 1:     (    (    )) 

Expected payoff for player 2:     (    (    )) 

When X is fixed XA=(t1,t2,…,tn), where tj is the expected value of the payoff for player 2 if he 

chooses pure strategy j. Since player 2 wants to minimize his payoff based on A (maximize his 

payoff based on –A) he chooses the minimum tj value. Based on this argument, the expected 

payoff for player 1 can be expressed as: 
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(   
 

(    ))     
 

   
 

(  ) (4.2) 

The right-hand side of the equation can be written as a linear program as follows: 

      ( 4.3) 

 (  )           ( 4.4) 

 ∑    

 

   

 ( 4.5) 

            ( 4.6) 

With the same logic the expected payoff for player 2 can be written as: 

    
 

(   
 

(    ))     
 

   
 

(   ) ( 4.7) 

and linearly modeled as: 

      ( 4.8) 

s.t.:   

 (   )           ( 4.9) 

 ∑    

 

   

 ( 4.10) 

            ( 4.11) 
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Analyzing these two linear models show that they are dual. Based on the strong duality theorem, 

if one of these problems has an optimal solution then the other one will have an optimal solution 

and the value of their objective function is equal; namely U=V. Hence for the zero-sum two 

player games, the expected payoff for both players is the same value and is called the game value. 

Moreover, solving the MaxMin linear problem (equations ( 4.3) through (( 4.6)) and the MinMax 

linear model (equations (( 4.8) through (( 4.11)) leads to the optimal solution for X and Y, 

respectively. In fact X and Y are the mixed strategy NE solution for the original game which are 

obtained from solving the linear program. 

Finding a solution for most linear programs with continuous variables can be done in polynomial 

time as a function of the size of the problem. Hence solving the linear programming equivalent 

form of the zero-sum game is an efficient way of finding the NE for the game. 

4.5. Proposed Risk Analysis Model in the Context of Game Theory 

Providing the preliminaries to game theory, in this section we attempt to fit our sonar allocation 

problem in a game theoretic modeling framework. Since the concept of the security risk analysis 

problem is a competition between a defender (who wants to protect the critical infrastructures 

surrounding a port) and an attacker (who tries to attack the port through water), it seems 

reasonable to model the problem with a game between these entities. As a result the players of the 

game will be the defender firm and the terrorists who plan to invade an infrastructure (or a set of 

them) in the port. 

In order to continue with the modeling approach, a number of simplifying assumptions are 

required to describe the methodology in a more straightforward way. Once the modeling 

technique is proposed, the simplifying assumptions (except one) are removed to reach the most 

general scale of the model. These assumptions are: 
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 The discrete nature of our sonar allocation problem is relaxed; it means that it is possible for 

each cell to allocate any proportion of total resources (although it may not be equivalent to an 

integer number of sonars) to it, such that the sum of all proportions adds up to one. Later in next 

Chapter, the integrality constraint is added to the model. It changes the optimization model from a 

linear program into a binary linear program. 

 Multiple coverage of sonars is relaxed; as a result, there is no advantage for a cell to be 

covered by multiple sonars. This assumption is critical for the modeling process. Due to 

limitations in the structure of the game theoretic model, it is not possible to integrate it back into 

the model. However, based on the conclusions of Chapter 3, this feature is not beneficial in the 

case of real world scenarios. In such scenarios due to budget limitations, the sonar density is 

expected to be low and the investor is more interested in increasing the coverage area and 

consequently multiple coverage of sonars is minimal. 

 A single type of sonar is allowed in the model. This assumption helps to decrease the size of 

the payoff matrix. This assumption is also removed in the next Chapter. 

 The payoff matrix of the proposed game is zero-sum. First, the general-sum version of the 

payoff matrix is discussed. Then an approximation is made to make it zero-sum and use the 

features of the zero-sum games. In the next Chapter, the solution methodology for the general-

sum game is presented as well. 

 Multi-cell coverage of sonars and range-dependent detection probability are relaxed; hence 

each sonar can cover just one cell. This assumption is removed later in this Chapter, such that 

each sonar can cover the cell that it is located at, as well as the adjacent cells that fall within the 

coverage range of sonar. Range-dependent detection probability is also brought to the model at 

the same time. 
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Now, it is possible to present the simplest case of the modeling technique. After specifying the 

players, the next step is to define the set of possible actions for the players. As described in 

Chapter 2, the body of water is divided into cells. Assuming the total number of cells to be c, the 

set of possible actions for the defender can be defined as Y=(y1,y2,…,yc), where ∑   
 
     , 

     and yj is the probability that defender chooses cell j to protect. The action set for the 

attacker is defined in the same fashion as   (          ), such that ∑   
 
     ,      and 

xi is the proportion of attacker effort to invade cell i. 

Defining the action sets for the player specifies the size of the payoff matrix. It will be a c·c 

matrix, for which the rows correspond to the actions of the attacker with respect to each cell and 

the columns refer to the actions of the defender with respect to each cell. Next the payoff values 

are needed to be defined. For simplicity, the cell index (i,j) is translated into a single index; that is 

instead of representing a cell with its coordinates, it is referred to by its assigned number; e.g. the 

hatched cell in Figure  4.4 is called cell number 1 instead of cell (2,2). Note that with this notation, 

we use index i,           for referring to attacker related parameters and index j,           

to represent defender related parameters. When i=j they both refer to the same cell, but with 

different perspectives. Now consider the grid of cells given in Figure  4.4. The payoff matrix for 

the three numbered cells will be discussed next. 

1 2 3

 

Figure  4.4. A grid with a sonar that covers one cell 
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In case the defender places a sonar in cell j, he undergoes cost      (cost of defender in cell j) 

which includes the sonar price and installation and maintenance costs. Now consider the case 

where the attacker chooses the same cell to attack (i=j). Since the defender has placed a sonar in 

this cell, the attack will be recognized with detection probability dp. Hence the defender will only 

experience the additional expected cost    (    ) and his total payoff is          (  

  ). If the attacker chooses to attack another cell (i≠j), that cell is not under surveillance and the 

attack is assumed to be successful. The defender will experience the expected cost    and his total 

payoff is         . 

Now let us consider the attacker’s payoff. Consider that the attacker chooses cell i to attack. He 

undergoes cost      (cost of attacker to invade cell i). If the defender puts a sonar in the same cell, 

then the expected advantage for the attacker will be    (    ) and his payoff becomes 

         (    ). If the defender does not invest on the same cell, the expected benefit for 

the attacker is   . The attacker’s payoff becomes          in this situation. 

-ca,1+a1(1-dp), -cd,1-a1(1-dp) -ca,1+a1, -cd,2-a1

Attacker

Defender

1

321

3

2

-ca,1+a1, -cd,3-a1

-ca,2+a2, -cd,1-a2 -ca,2+a2, -cd,3-a2-ca,2+a2(1-dp), -cd,2-a2(1-dp)

-ca,3+a3(1-dp), -cd,3-a3(1-dp)-ca,3+a3, -cd,1-a3 -ca,3+a3, -cd,2-a3

 

Figure  4.5. Payoff matrix for a grid of three cells 

 

Figure  4.5 shows the payoff matrix for a grid of three cells as defined above. The summation of 

payoff values for each combination of attacker-defender strategy (i,j) is           . Clearly, this 

is not a zero-sum game. However, the cost of initiating an invasion by the attacker (    ) and the 

cost of sonar placement in a cell by the defender (    ) are much smaller than the expected 
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consequences of a successful attack in real world scenarios (               ). Hence it is 

possible to ignore      and      compared to ai and aj. The payoff matrix can then be modified as 

shown in Figure 4.6. This game is indeed a zero-sum game. 

a1(1-dp), -a1(1-dp) a1, -a1

Attacker

Defender

1

321

3

2

a1, -a1

a2, -a2 a2, -a2a2(1-dp), -a2(1-dp)

a3(1-dp), -a3(1-dp)a3, -a3 a3, -a3

 

Figure 4.6. Revised payoff matrix for a grid of three cells 

 

Defining the payoff matrix for the game concludes the process of modeling and makes it ready 

for writing the LP equivalent (as described earlier) and solving it for the optimal solution. The 

next step is to find a way to use the solutions of the LP problems for the sonar placement 

problem. The solution to MaxMin problem is not of much interest here and it can be used later to 

generate intelligent attack scenarios for testing and comparison of our various solution 

approaches. Yet the MinMax solution can be used as the guideline for the defender to find the 

optimal allocation of sonars to cells. As mentioned before, the yj variable is the probability that 

defender chooses cell j to keep under surveillance. If we assume that the defender has a limited 

budget (b) in hand to protect the cells, the yj probabilities can be used as the proportion of total 

budget that the defender assigns to cell j for its surveillance. This is the basic idea of using the 

MinMax problem solutions as the guideline for sonar allocation problem. Hence the basic 

strategic sonar allocation model becomes the model of equations ( 4.8) through (( 4.11), where the 

matrix A is the payoff matrix as is described earlier. 
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However, this game theoretic model is pretty simple and there are issues with it; e.g. the sonar 

placement problem is a discrete resource allocation problem (the number of sonars is integer), 

while this model provides probabilities as the decision of defender. We need to modify the model 

or its solutions in order to be able to use its outputs. Another issue is that the current model lets 

each sonar to cover just one cell (the cell where it is placed). To be able to use this model for real 

world scenarios these simplifying assumptions and the others that are mentioned earlier in this 

Chapter are required to be removed. We deal with removing these assumptions in the next 

Chapter. Here a small example is presented to show the operation of the basic model. 

Consider a grid with six cells. The configuration of this grid and the cell characteristic values are 

given in Figure  4.7. Assume that each sonar can cover one cell, the cell where it is placed. The 

detection probability for the cell that the sonar is located at is dp=0.7.  

13 27 7 20 28 27

321 654

 

Figure  4.7. A six cell grid with characteristic values 

 

With this information we can populate the payoff matrix for the attacker and the defender. Since 

the game is assumed to be zero-sum, we just present the attacker payoff values in the matrix as 

shown in Figure  4.8. The numbers are rounded to the nearest integer for simplicity. The defender 

payoffs can be easily calculated by multiplying attacker’s payoff by -1. Solving the MinMax 

linear program of the defender with this payoff matrix results in Y = (0, 0.322, 0, 0, 0.356, 0.322). 

The objective function value becomes 20.88. This is the expected loss to the defender in the NE 

of the game. It can be interpreted as: allocate 32.2% of your resources to cell 2, 35.6% to cell 5 

and 32.2% to cell 6. As mentioned earlier, this output cannot be used for sonar placement 

immediately and it requires modifications. 
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Figure  4.8. Payoff matrix of the six-cell grid 

 

These results are in accordance with what we expected from the model. To minimize the 

maximum loss, the defender chooses the cells with highest characteristic values to allocate his 

resources to. In this case his expected maximum loss is v=20.88 which is the value of the 

objective function of equation ( 4.8) for this example. Note that this value makes the inequality of 

equation ( 4.9) binding (active) for i=2,5,6. 

 

4.6. Conclusion 

A background on game theory is provided in this chapter, before proposing a game theoretic 

modeling methodology for sonar allocation in ports and waterways against terrorist attacks in 

Chapter 5. A few preliminary concepts and definitions in game theory are discussed to make the 

notations and definitions more clear. These definitions help to understand some technical phrases 

in the literature review section. In literature survey, the focus is on the articles that study the 

security risk problem with a game theoretic perspective. 
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Then the concept of NE in games is introduced. It is a powerful solution concept for games and is 

widely used in literature articles as well. Since finding the NE for games with large payoff 

matrices is not easy, the duality theory for zero-sum games is discussed next. Duality theory 

results in two dual linear programs, the solutions of which are the mixed strategy NE for the 

game. These two concepts help to find the solution of the game once we define it. 

To simplify the modeling methodology, a few assumptions have been made. These assumptions 

are removed in the next Chapter to obtain the general game theoretic model that is comparable 

with probabilistic model in sense of the details both models include.  

The elements of the game such as who the players are, what are possible actions for them and 

what is the payoff of each action are introduced later. Providing this information, the dual linear 

programs are constructed based on the duality theory. The defender’s linear program is of interest 

for us. It is used as a guideline for the defender to allocate his resources. He assigns his resources 

to the cells proportional to the mixed strategy probabilities that he obtains from solving his linear 

program. 
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5. Extensions of Strategic Risk Model  
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5.1. Introduction 

The game theory model for the sonar allocation problem is developed in Chapter 4. This model 

included several simplifying assumptions; e.g., multi-cell coverage of a sonar was relaxed and 

each cell was allowed just to cover the cell that it is placed at, range-dependent detection 

probability was ignored and all sections of the cell were protected with the same detection 

probability, the sonar allocation problem is assumed to be continuous (non-discrete) meaning that 

any proportion of total the resource can be assigned to a cell and just one type of sonar was 

allowed in the model. 

In this Chapter we seek to relax these assumptions such that our model can be used in real world 

problems with minimal approximations and simplifications. Since multi-cell coverage of sonars 

and range-dependent detection probability are closely related, these two assumptions are added at 

the same time just by modifying the payoff matrix. Then the linear program of the defender is 

converted to a binary linear program so that it is possible to deal with the discrete nature of the 

sonar allocation problem.  

Next, allowance of multiple sonar types is integrated into the model. It lets the model to choose 

not only where to place the sonars but also which types of sonar to use. To allow multiple sonar 

types in the model both the payoff matrix and the defender’s binary program need to be modified. 

The size of payoff matrix becomes larger from c·c to c·k·c, where c is the number of cells and k 

is the number of sonar types to be allowed in the model. The decision variable in the binary 

program is redefined to allow multiple sonar types and the constraints of the problem also change. 

With the scope of generality that we reach up to here, it is possible to build game theoretic 

models that are comparable to the probabilistic risk model of Chapter 2; that is, both models have 

similar features such as range-dependent detection probability, multi-cell coverage of sonars and 

they both allow multiple sonar types to be used. Accordingly, we plan to run the game theoretic 
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model on the test cases that are developed for the probabilistic model in Chapter 4 such that the 

results of the two approaches are comparable. 

The last step to generalize our model is to allow the payoff matrix of the proposed game to be 

general-sum. Considering the zero-sum property for the payoff matrix lets us use the duality 

theory for zero-sum games as a modeling technique and solution mythology to reach Nash 

Equilibrium. However, this assumption decreases the generality of our model to such an extent 

that it cannot be used in most real world scenarios. In real world problems the payoff for defender 

and attacker may come from different sources and therefore do not necessarily add up to zero. 

Hence assuming a general-sum payoff matrix for our game model makes it more realistic and 

applicable. Clearly the duality theory cannot help as a modeling approach here. Instead, other 

solution techniques that can solve the general-sum games can be used from the literature.  

This final step will be applied to the basic model of Chapter 4, for which none of the 

generalization steps of this Chapter are not effective. Hence, the generalization steps (removing 

simplifying assumptions) will be applied to the general-sum game model again. This step 

involves more work than the other generalization steps and it will be discussed in a new Chapter 

and is left for future work. 
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5.2. Multi-cell Coverage by Sonars 

Single-cell coverage is one of the shortcomings of the basic model presented in Chapter 4. It is 

quite necessary for the sonars to be able to keep multiple cells under coverage in our model. 

Otherwise the size of cells should be selected so large that each sonar can cover one cell and a 

great amount of accuracy is going to be lost due to large cell size. Fortunately, it is possible to 

modify the payoff matrix and include the multi-cell coverage case of a sonar into the model. Also, 

we can bring the range dependency of detection probability to the payoff matrix at the same time. 

To explain this argument more clearly, consider the grid illustrated in Figure  5.1 on right. If 

placing a sonar in cell 1 leads to the coverage of an adjacent cell such as cell 2, then the payoff 

values of cell 2 for both attacker and defender need to be changed. Moreover, the detection 

probability for cell 2 is lower than cell 1; That is instead of using exactly the same detection 

probability (dp) for the adjacent cell (cell 2), it is possible to use a smaller detection probability 

(dp
*
<dp).  

1 2 31 2 3

 

Figure  5.1. Two grids, one with a sonar that covers one cell (left) and the other with a sonar that covers 

nine cells (right) 

 

To reproduce the payoff matrix with the new settings, assume that each sonar covers nine cells as 

shown in Figure  5.1. The cell that includes the sonar is covered with probability dp (dark 

highlight) and the surrounding cells (light highlight) with dp
*
. Also consider cells 1, 2 and 3 to be 

located as numbered in Figure  5.1. Then the payoff matrix for these three cells can be rewritten as 
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the lower matrix in Figure 5.2. Let us use pij as the attacker’s payoff if he chooses action i and the 

defender chooses action j. Since placing sonars in one cell still covers the same cell with highest 

detection probability, the pij values on the main diagonal (where i=j) of the payoff matrix do not 

change. To calculate p21 we need to think about the situation where the defender has allocated a 

sonar in cell 1, while the attacker chooses cell 2 to invade. Since the sonar covers the adjacent 

cells as well, it covers cell 2, too (as shown in Figure  5.1). However the detection probability at 

cell 2 is dp
*
 in this case. Thus the attack will be successful with probability 1-dp

*
 and the 

expected damage that the attacker will lead to is a2·(1-dp
*
). In the same way we need to update 

the payoff values for all the cells that fall inside the coverage of sonars to obtain the lower payoff 

matrix in Figure 5.2. Since the game is zero-sum, the defender payoffs are of course –pij. 
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Figure 5.2. Simple (upper matrix) and modified (lower matrix) payoff matrix of the proposed game 
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Then the dual optimization problems for this payoff matrix can be rewritten and solved to achieve 

the optimal solutions. However the optimal probabilities for the defender are still continuous and 

cannot be directly used for sonar allocation. Hence, the next step is to discretize the defender 

solutions so that the results can lead to the sonar allocation. 

5.3. Discrete Nature of Sonar Allocation Problem 

As mentioned earlier, the sonar allocation problem has a discrete nature, meaning that it is not 

possible to assign a proportion of a sonar to a cell. This issue does not let us use the defender 

probabilities for sonar allocation immediately. A discretization process is required to make the 

probabilities useful. Since one sonar type is assumed to be used (for now), it is possible to find 

the number of available sonars. The value is d= [b/s], where b is the budget, s is the sonar price 

and [ ] returns the integer part of the argument). Then it may seem reasonable to solve the linear 

MinMax problem and find the d highest probabilities and allocate sonars to the corresponding 

cells (since each probability is assigned to a cell). However, there are two issues with this 

heuristic method. First, the number of positive probabilities may be less than the number of 

sonars and we will have problems allocating the surplus sonars (as each cell can allocate at most 

one sonar to it in our model). The bigger problem is that the value of positive probabilities does 

not necessarily express any priority in selecting the corresponding cells for sonar allocation; that 

is sorting the positive probabilities decreasingly and selecting the d first ones does not guarantee 

the optimal solution. To elaborate more on these issues, consider the following example.  

Think of a grid with six cells the same as the one in Chapter 4. The configuration of this grid and 

the cell characteristic values are given in Figure  5.3. Also assume that the sonar type to be used 

for coverage can cover three cells (the cell that it is located at and the left-side and right-side cells 
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in case they exist). The detection probability for the cell that the sonar is located at is dp=0.7 and 

for the two other cells is dp=0.4. 

13 27 7 20 28 27

321 654

 

Figure  5.3. A six cell grid with characteristic values 

 

The payoff matrix for this game can be constructed as shown in Figure 5.4. The numbers are 

rounded to the nearest integer for simplicity (these are the payoff values for the attacker). If we 

solve the MinMax problem, the optimal solution is: Y = (0, 0.432, 0, 0, 0.326, 0.242) with the 

objective value of 18.806 (note that the objective value gets better than the example of Chapter 4 

due to multi-cell coverage of sonars). This means that the defender should allocate 43% of his 

resources to cell two, 33% to cell 5 and 24% to cell 6. Now if we decide to allocate four sonars to 

this grid, we will have problem where to put the fourth one. Now assume that our budget is 

limited and we can just put one sonar. Based on the above approach, since cell 2 has the highest 

probability, we have to allocate the sonar to cell 2. Since the highest characteristic value belongs 

to cell 5, we expect the sonar to be allocated to either of cells 4, 5 or 6 so that cell 5 is covered. 

Hence this solution methodology is not working as expected and we need to look for a more 

robust approach. 
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Figure 5.4. Payoff matrix of the six-cell grid 

 

Our goal is to make the solution of the MinMax problem compatible with the discrete nature of 

our resource allocation problem. This can be achieved through discretization of yj probabilities; 

that is, we need to force yj’s to be either zero or 1/d. In that case, equation (5.1) guarantees that d 

number of yj probabilities will get the value of 1/d. Then d sonars can be allocated to the 

corresponding cells. 

 ∑   

 

   

  (5.1) 

To make this argument more formal, a slight modification can be done to the model. We can 

multiply both sides of equation (5.1) with d. The right hand side becomes d. Taking the d on the 

left hand side into the summation results in  

 ∑     

 

   

  (5.2) 
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Since yj is either zero or 1/d, the term d·yj is either zero or one. Hence a new binary variable can 

be defined as zj = d·yj and be used instead of yj in the formulation. As d is a fixed positive 

number, multiplying it by the objective function will have no effect on the optimization model. 

To clean up the model, the term d·V is replaced by V
 
. These changes convert our model into a 

standard form of a binary linear program as given in equations (5.3) through (5.6).  

       (5.3) 

s.t.: 

 (   )            (5.4) 

 ∑    

 

   

 (5.5) 

     {   }       (5.6) 

Solving the binary program for the six cell example with d=3 yields Z = (0, 1, 0, 0, 1, 1). This 

solution is the same as what we obtained from the heuristic. Putting d=4 results in Z = (1, 1, 0, 0, 

1, 1) and d=1 gives Z = (0, 0, 0, 0, 0, 1). The two latter cases show the advantage of the binary 

program compared to the heuristic. In next section we will see that using the binary program 

model is the only choice for the case where multiple sonar types are allowed to be used. 

5.4. Multiple Sonar Types 

Using a single sonar type limits the capabilities of the resource allocation model to a great extent. 

Though in real world scenarios the firms may often choose a single resource (sonar) brand for 

allocation to reduce total cost, every brand of sonar have multiple types of sonars that differ in 
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many specifications. Hence it is necessary to allow multiple sonar types to be used in our 

methodology and let the model choose which types to use and how many of each. In this section 

we seek to remove the single sonar type assumption from our model so that it becomes a more 

realistic methodology that can be used real world problems. 

In case of single sonar type, the binary variable zj specifies if a sonar is placed at cell j or not. 

However, this information is not enough when multiple sonar types can be used. We need to 

know what type of sonar is assigned to cell j if any. To deploy this information zj is replaced by a 

new variable zjk, which is one when a sonar type k is placed at cell j and zero otherwise. Since the 

new variable has an additional index, all the equations of the binary program require 

modification. 

First, we start with equation (5.5) that determines the number of sonars. Since different sonar 

types have various specifications, it is reasonable to assume a distinct price for each type. Then it 

will not be possible to calculate the number of sonars beforehand even though the budget is 

known. Instead we need to define a budget constraint that reflect the sonar prices and the budget 

directly; that is  

 

∑(   ∑   

 

   

)   

 

   

 (5.7) 

Where sk is the price of sonar type k and q is the number of sonar types. However, for the specific 

case of our problem aij≥0, ∀i,j (as shown in the payoff matrix of Figure 5.2 for the attacker) and 

since the model of equations (5.3) through (5.6) is a minimization problem, the model decides to 

put zjk=0 ∀j,k. Hence equation (5.7) needs to be modified. Changing the “less than or equal” sign 

to equality is not practical. Since zjk’s are binary, this equation forces the model to find the 

combination of sonar prices that are exactly equal to the budget and narrows the feasible set to a 
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great extent (which is not desirable. Instead, one can change the sign to “greater than or equal to” 

and reduce a small value ε>0 from the right hand side. That is 

 

    ∑(   ∑   

 

   

)   

 

   

 (5.8) 

The choice of ε depends on the price of different sonar types. The maximum value of ε can be the 

highest sonar price smax. If ε=smax, then it is possible to add a sonar (with any price) to the solution 

and still the left hand side of equation (5.8) be less than or equal to b. One can run the model for a 

number of values of ε∈[0,smax) starting from zero and stop as soon as the value of the left hand 

side of inequality (5.8) becomes less than or equal to b. 

The next step is to modify the payoff matrix. Since the defender is the only player that deals with 

the sonar placement problem, only his actions set changes due to multiple sonar types (the 

attacker’s set of actions does not change). The actions set of the defender for the single sonar type 

is defined as Z=(z1,z2,…,zc), where ∑   
 
     ,    {   } where d is the number of sonars and zj 

is the binary variable that specifies whether the defender chooses cell j to protect or not. Letting 

multiple sonar types in the model, the defender needs to choose among the sonar types as well; 

that is he needs to choose the cells that he wants to protect and also select the type of sonars to 

place in those cells. Hence the idea of the two index variable zjk can be helpful here. The actions 

set can be redefined as Z=(z11,z12,…,z1c,z21,z22,…,z2c,…,zq1,zq2,…,zqc) where     {   } and zjk is 

defined as mentioned earlier. Note that inequality (5.8) limits the number of positive zjk’s. It is 

obvious that the number of possible actions for the defender increases from c to d·c and the size 

of the payoff matrix becomes c·d·c. To illustrate the payoff matrix let us get back to the three-cell 

example for which the payoff matrix for single sonar type is already presented. Suppose that two 

sonar types are allowed in the model. The first type is exactly the same as the one in the previous 

example. It covers three cells; the cell that it is located at with detection probability dp, plus the 
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cells on its left and right with detection probability dp
*
. The second type can cover two cells; the 

cell that it is located at with dp’ and the cell on its right with dp’
*
 (dp’

*
≤dp’). Also assume that the 

cells labeled as cells 1, 2 and 3 are located as shown previously in Figure  5.1. 
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Figure  5.5. The payoff matrix for the three-cell example with a single sonar type (on top) and two sonar 

types (at the bottom) 

 

The payoff matrices for the models with a single sonar type are presented in the top section of 

Figure  5.5. Note that the payoff values are just presented for the defender. Since the game is zero-

sum, the attacker’s payoffs can be calculated by removing the minus sign from the defender’s 

payoffs. The top left matrix is for the game with sonar type 1 and it is exactly the same as the 
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bottom matrix in Figure 5.2. The top right is for the game that just allows sonar type 2. Since 

sonar type 2 just covers two cells, the payoff matrix is a bit different from the matrix on left. It is 

easy to check how these modifications are done.  

The bottom payoff matrix is for the model that allows both sonar types to be used. It is clear that 

that the first three columns of the bottom payoff matrix are exactly duplicated from the top-left 

payoff matrix and the last three columns are the duplicates of the top-right matrix. In the same 

way the payoff matrix can be modified for as many sonar types that are allowed in the model. 

This payoff matrix is now conformable with the actions set or binary decision variable 

Z=(z11,z12,…,z1c,z21,z22,…,z2c,…,zd1,zd2,…,zdc) that is introduced earlier. In other words, the number 

of columns of the payoff matrix A and the number of elements of vector Z are equal and while 

calculating AZ
T
 the columns of A are multiplied with the correct elements of vector Z. Hence the 

left side of inequality (5.4) is still legitimate. 

We need to introduce a new set of constraints to conclude the integration of multiple sonar types 

into the model. A basic assumption in our approach is that we allow each cell to allocate at most 

one sonar to it. However with our current formulation up to q sonars can be assigned to a cell. To 

avoid this event we need to limit the number of sonars in each cell with a new constraint as: 

 ∑    

 

   

          (5.9) 

This means that at most one sonar type can be placed at location j. Putting these discussion points 

together yield our new binary linear program. This program can be written as: 

       (5.10) 

s.t.: 
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 (   )            (5.11) 

 

    ∑(   ∑   

 

   

)   

 

   

 (5.12) 

 

∑    

 

   

          (5.13) 

      {   }         (5.14) 

This model allows multiple sonar types to be used in it. The level of generality of this model is 

almost equivalent to the full probabilistic model of equations ( 2.8) through ( 2.14) in Chapter 2. 

The only difference is that the strategic risk model does not consider multiple coverage of sonars 

over a cell. This minor shortcoming is not of great importance in real case scenarios. Due to 

budget limitations that apply in such situations, the density of sonars is low and the case in which 

multiple sonars cover the same cell becomes scarce. Hence there is no need to worry about this 

defect. 

In future work, the test examples of Chapter 3 will be replicated for the strategic game model of 

equations (5.10) through (5.14) so that it becomes possible to compare the performance of both 

models. Moreover the zero-sum assumption for the payoff matrix will be removed and a more 

general case of the game called the general-sum game will be presented. 

5.5. Comparison of SRM and PRM 

This section seeks to exercise the strategic game model that is developed in this chapter. First, the 

game model will be tested with the test cases that were used for the probabilistic model in chapter 

3. In the second step, the NE solutions to the MaxMin problem (attacker’s problem) are used to 

build attack scenarios for the previous test cases. Then based on the sonar placement schemes 
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from both SRM and PRM, the expected damage of these attacks will be calculated and compared 

for the two approaches.  

The test cases that are going to be used in this section are the same as the ones used for exercising 

the PRM. Hence, the two approaches can be contrasted and their performance can be compared. 

In order to make the comparison more reasonable, the final SRM of equations (5.9) to (5.14) in 

Chapter 5 will be used for modeling the test cases. This model is the most detailed game model 

and is closest to the PRM in terms of the assumptions that they make (these assumptions are 

described in Chapters 3 and 4). 

The test case for which the results are shown in Table 3.2 is the one that is used for comparison. 

In summary, it includes five similar scenarios each having 300 cells (as shown in Figure 3.6). The 

results of these scenarios are averaged to reach more robust results. The same types of sonars 

(with 360˚, 180˚ and 90˚ coverages) are going to be utilized. The budget starts from zero (no 

sonar is placed) and increases in steps of 50 until it reaches 400. Going beyond 400 will result in 

long runtimes for both cases. Moreover, more than half of the cells (which are the ones with high 

aij values) are already covered by this budget. Increasing the budget will not cause much risk 

reduction for values above 400 for this test case.  

For consistency, the Solver results from PRM will be compared with the Solver results from 

SRM (the heuristic results are not used). The 3% optimality gap is enforced in both cases so that 

the results can be reached in a reasonable time.  

One measure of interest in comparing the two methods is the summation of risk over all cells 

after the sonar placement (objective function for PRM). This measure was used in Chapter 3 as 

well. However, here it is used with a slight change. The summation of risk over all cells is 

replaced by average risk per cell (via dividing the sum by the number of cells). It provides a 

better understanding for the range of characteristic values (aij) and conforms to the next 

performance measure (that is defined after this measure). The comparison of average risk per cell 
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is illustrated for SRM and PRM in Figure 5.6 for various budgets. As expected, in both cases, the 

average risk per cell decreases when budget increases. The PRM performs slightly better than 

SRM in decreasing average risk. This is due to the fact that the average risk per cell appears in the 

objective function for PRM while it is not the main focus in SRM. 

 

Figure 5.6. Comparison of average risk per cell for SRM and PRM 

 

The solver results for this test case are provided in Table 5.1. The measures in the second and 

third row are the ones for the average risk per cell and the following two rows are for another 

performance measure that is discussed next.  

Table 5.1. Solver results on Average risk per cell and maximum risk over all cells for SRM and 

PRM (for the test case with 300 cells) 

Measure Model 
Budget 

0 50 100 150 200 250 300 350 400 

Average Risk 

per Cell 

PRM 72.9 66.8 61.9 56.3 51.5 46.6 42.3 38.3 35.7 

SRM 72.9 69.8 64.2 59.4 55.0 51.6 48.7 45.1 45.0 

Maximum Risk 

over all Cells 

PRM 136 136 133.8 130 128 128 126.5 126 126 

SRM 136 129.2 126.8 123 117.8 115.6 114.4 113 112 
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In Chapter 5, the MinMax approach was utilized to reach the NE of the SRM. As suggested by 

the name, the MinMax approach looks for the highest payoffs of the attacker and provides 

strategies for the defender such that these payoffs (attacker’s) are minimized. In essence, it 

minimizes the maximum payoffs of the attacker. Looking at payoff matrices of the proposed 

game models of Chapters 4 and 5 reveals that the highest attacker payoffs are related to the cells 

with largest aij values. That is, the MinMax approach finds the cells with highest aij’s and 

decreases the attacker’s payoff by assigning sonars to these cells or in their vicinity. This is 

equivalent to say that the MinMax model minimizes the maximum aij value overall cells. 

This argument leads to the next measure that is of interest for the comparison of the models. As 

mentioned earlier, the “average risk per cell” measure is the objective function in the PRM and 

hence favors it. Based on the last discussion we can use the maximum risk over all cells as a 

measure that has a close relationship with the SRM objective and compare the performance of the 

two models according to this measure. The results for this measure are provided in the last two 

rows of Table 5.1 and illustrated in Figure 5.7. Clearly, the SRM accomplishes better results for 

this measure.  
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Figure 5.7. Comparison of maximum risk over all cells for SRM and PRM 

 

To clarify the workings of PRM and SRM for these two performance measures, let us present the 

following example. Consider the cases provided in Figure 5.8 below. Assume that we seek to 

place a single sonar (that covers 4 cells as shown in Figure 5.8, with dp = 0.9) in a grid of cells 

that includes both case 1 and case 2. The numbers shown in the cells are the characteristic values 

and the empty cells are the ones with negligible aij values. The PRM places the sonar in the 

location that is shown in Case 1, due to the fact that Case 1 yields a higher risk reduction over all 

cells (0.9×[80+90+95+85]=315) compared to Case 2 (0.9×[65+70+75+110]=288). If we choose 

SRM to place the sonar it allocates the sonar to the point that is given in Case 2 as it covers the 

cell with the highest characteristic value (the cell with aij = 110). Thus, allocating the sonar to the 

point in Case 1 leads to a lower average risk per cell but higher maximum risk over all cells 

compared to the point in case 2. This is the rationale for the behavior of the two models against 

each of the average risk per cell and maximum risk over all cells measures. 
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Figure 5.8. An example to compare SRM and PRM 

 

These results do not convey a great advantage for any of the two models. PRM achieves slightly 

better results for the average risk per cell and SRM leads to somewhat lower maximum risk over 

all cells. Based on the interest of the modeler, one can benefit from the features that each of these 

models provide. The PRM is able to accommodate more features of the soars while the SRM can 

integrate the attacker’s intelligence into the modeling effort. 

A more interesting and realistic performance measure can be defined by considering the level of 

damage in case an attack happens. That is, we can generate attack scenarios and calculate the 

expected damage to the environment for various sonar placement schemes developed by PRM 

and SRM. To achieve the expected damage (as a performance measure) we need to specify how 

to generate attack scenarios and how to calculate the expectation.  

As described in Section 4.5 of Chapter 4, two optimization models were developed as a result of 

the game theory approach; a MinMax model that leads to the NE strategies of the defender (and 

serves as a guideline for sonar placement) and a MaxMin model that solves the game for the 

attacker and provides his NE strategies. The MaxMin model and its results were not of interest in 

Chapter 4. However, they can be used here to generate attack scenarios. In other words, the 

outcome of solving the MaxMin model are the mixed strategy attack probabilities each 

corresponding to a cell of the environment. These probabilities are used by the intelligent attacker 

to choose potential regions of the environment among all cells for invasion. 
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To calculate the expected damage for a sonar placement scheme, the expected damage is 

conditioned on the cell to be attacked as given in equation (5.15). 

 

 (      )  ∑  (      |                  )   (                  )

               

   

 (5.15) 

and then equation (5.16) is used to calculate the conditional expectation. 

 (      |                  )  {
                                                                            

   (     )                                            
 

(5.16) 

Finally, the probability that cell i is attacked comes from the NE probabilities for the MaxMin 

model. In order to make this idea more clear, it is applied to a simple example. Consider the six-

cell grid that was provided as an example in section 5.3 of Chapter 5. The arrangement of cells 

and their characteristic values are shown in Figure 5.9. 

13 27 7 20 28 27

321 654

 

Figure 5.9. Arrangement of the six-cell grid 

 

The sonar type that is used for this example is assumed to cover 3 cells, the cell that 

accommodates it and the ones to its left and right. The detection probability for the cell that the 

sonar is located at is dp=0.7 and for the two other cells is dp=0.4. These specifications lead to the 

payoff matrix (for attacker) shown in Figure 5.10 (and described in Chapter 5). 
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Figure 5.10. Payoff matrix of the six-cell grid 

 

Table 5.2 shows the results for solving the defender binary program for this example with 

different number of sonars (d). 

Table 5.2. Six-cell example results 

Number of Sonars (d) Placement Scheme (Z) 

1 (0, 0, 0, 0, 0, 1) 

2 (0, 1, 0, 0, 0, 1) 

3 (0, 1, 0, 0, 1, 1) 

4 (1, 1, 0, 0, 1, 1) 

 

It is possible to solve the linear program for the attacker at the same time. This linear program is 

the same as the one that was developed in equations ( 4.3) through ( 4.6) in Chapter 4. The results 

for this linear program are: X = (0, 0.445, 0, 0, 0.261, 0.294). Each xi value represents the 

probability that cell is attacked by the attacker in NE. These probabilities can be used in the 

calculation of expected damage. Now we can calculate the expected damage for each of the sonar 
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placement schemes in Table 5.2. Before placing any sonar (d=0), the expected damage is 

calculated as: 

 (      )                                          )  

      . 

When d=1, a single sonar is placed in cell 6 that covers cell 6 with dp=0.7 and cell 5 with dp=0.4. 

The rest of cells are not covered and the expected damage becomes: 

 (      )                                  (     )    

       (     )         

For d=2 the expected damage decreases to 10.370. All the cells that are going to be attacked 

(based on NE) are covered up to this point. Hence, adding extra sensors to the grid leads to 

multiple coverage and yields minimal expected damage reduction. As can be seen via this 

example, the expected damage is a metric that integrates the attack scenarios into account and can 

be a more comprehensive measure for model comparisons. Hence a new comparison of SRM and 

PRM can be performed utilizing the expected damage as follows. 

Again, the same test case is going to be used with 300 cells as shown in Figure 3.6 and the budget 

constraint is relaxed step by step to compare the performance of the two models. As the results of 

Figure 5.11 suggest, the SRM outperforms the PRM. In fact, the SRM takes the intelligence of 

attacker into account and places the sonars accordingly, while the PRM seeks to minimize the 

overall risk in the field, regardless of where the attacker may choose to attack. This result reveals 

the advantage of SRM over PRM when the adversary is intelligent (which is the case in this 

study). 
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Figure 5.11. Comparison of expected damage for SRM and PRM 

It is also interesting to compare SRM and PRM in a field with roughly different configuration. 

That is, we can use the New York Harbor example that was introduced in Chapter 3. Comparing 

Figure  3.2 and Figure 3.6 show how different these cases are from various perspectives 

(geography, distribution of aij’s and etc.). 



100 

 

 

Figure 5.12. Comparison of expected damage for SRM and PRM in the New York Harbor 

example 

 

Although the results of Figure 5.12 look a bit different from the ones in Figure 5.11, they both 

share the same results; the SRM suites the context of security risk analysis better than the PRM. 

For low budget values both models place the sonars around the dark cells in the top right section 

of Figure 3.6 and they almost decrease the expected damage to the same extent. However, when 

the budget exceeds 100, both models start to place the extra sonars in other parts of the 

environment and from this point the SRM provides better results than PRM. Finally, when the 

sonars become abundant in the field (budget constraint becomes more relaxed), most of the 

critical cells will be covered and consequently PRM’s performance gets closer to SRM’s. 

The MinMax approach that we achieved while building the game theoretic framework has been 

widely used in the literature of risk analysis recently. In risk analysis, one of the significant 
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challenges is to assess the risk of various situations and find the ones peaking the risk. These 

peaks are then interpreted as the risk indicators. Then the goal is to investigate possible methods 

to mitigate the risk of such situations either through decreasing the probability of occurrence of 

such events or decreasing the consequences of them. In essence, the objective is to minimize the 

maximum risk values. 

In the context of our study, the MinMax model does exactly the same thing. It finds the cells with 

maximum risk indicators and mitigates the risk by placing the sonar in the proximity of these 

cells. Hence, the SRM fits the literature of security risk analysis better. 

Table 5.3 provides a short comparison of the SRM and PRM. 

Table 5.3. Comparison of SRM and PRM 

SRM PRM 

Integrates geographical details of the 

environment 

Integrates geographical details of the 

environment 

Allows multi-cell coverage of sonars Allows multi-cell coverage of sonars 

Features range-dependent detection probability Features range-dependent detection probability 

Allows multiple sonar types Allows multiple sonar types 

Does not allow multiple detection of sonars 

over a cell 
Allows multiple detection of sonars over a cell 

Minimizes the maximum risk over all cells Minimizes the maximum risk over all cells 

Considers intelligence of attackers Ignores intelligence of attackers 

 

5.6. Conclusion 

The fundamental ideas for developing the SRM were presented in Chapter 4. Based on this 

introduction, the simple version of the strategic risk model is proposed in this chapter. This model 

is too simple to be used in large scale real world problems. Hence, it needs to involve more 

realistic assumptions. We focused our efforts on removing a number of simplifying assumptions 
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that were made in the beginning of this chapter. That is, we sought to include multi-cell coverage 

of sonars, range-dependent detection probability, the discrete nature of sonar allocation problem 

and allowance of multiple sonar types in the model.  

Multi-cell coverage of sonars is added to the model just by modifying the payoff matrix. From 

previous Chapters we know that the detection probability of sonars decreases as the distance from 

the sonar increases. Hence, when a sonar covers multiple sonars, the cells which are farther from 

the sonar should receive less coverage (lower detection probability). We take this effect into 

consideration while modifying the payoff matrix and therefore add the range-dependent detection 

probability to the model at the same time. 

Considering the discrete sonar allocation problem leads to the change in the nature of the 

defender’s MinMax model. That is, we need to introduce a new binary decision variable instead 

of the continuous decision variable.  This makes the model a binary linear program. 

It required more effort to integrate multiple sonar types into the model. In this step, the model and 

the payoff matrix are required to be modified both. A new index is added to the decision variable 

to indicate sonar type. The constraint that defines the number of sonars is replaced by a budget 

constraint. A new constraint is added that limits the number of sonars per cell to at most one. 

Finally the payoff matrix becomes larger. In other words, for any new type of sonar, an extra c·c 

(c is the number of cells) sub-matrix is added to the old payoff matrix.  

Removing these assumptions make the model more real and allow it to be used as a game 

theoretic modeling technique for sonar placement in ports and waterways in real world problems. 

This model now includes the same level of details as the probabilistic risk model of Chapter 2 

does. Hence, we tried to provide a comparison between these models (SRM and PRM) using the 

test cases that were developed in Chapter 3. Three measures were proposed to quantify the 

performance of the models; namely average risk per cell, maximum risk over all cells and 

expected damage. The first and the second measure are the objective functions in SRM and PRM, 
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respectively. They just take the defender’s view into consideration, while the last measure 

calculates the expected damage for the defender regarding the attacker’s decisions. Hence, it is 

more reliable and more interesting.  

None of the models showed a considerable advantage over the other for the first two measures. 

However, the SRM outperforms the PRM for the last measure. This shows the advantage of the 

SRM (over PRM) due to integration of attacker’s intelligence in the model. 
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6. General-sum Game 
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6.1. Introduction 

Two modeling approaches have been used to develop mathematical models for sonar placement 

in ports and waterways in Chapters 2 through 5. The probabilistic model of Chapter 2 is exercised 

in Chapter 3 with a number of test cases. In Chapter 4 an introduction to game theory is provided 

to provide the preliminaries for the SRM model. Then the simplest case of this game theoretic 

model is presented. This model is then generalized in Chapter 5 and the final version of it is 

compared with the PRM of Chapters 2 and 3.  

One of the simplifying assumptions for the strategic game model in Chapter 5 was the zero-sum 

property of the payoff matrix for the game. This property allows the duality theory to be used for 

modeling the game. Based on duality theory, the zero-sum game becomes equivalent to a set of 

dual linear programs (one for the attacker and one for the defender). Solving each of the programs 

results in the NE strategies for the corresponding player. Since we are interested in the defender’s 

strategy, we just solve his linear program and use the solution as a direction for sonar placement. 

Despite having such nice properties, the zero-sum assumption is not realistic in many 

applications. In practice, the defender’s and the attacker’s interests may be entirely different. This 

means that the harm or damage to one of them is not necessarily the benefit of the other party and 

vice versa. A simple example of such a case is shown in the payoff matrix of Figure  4.5. As a 

result the sum of payoffs for various situations will not become zero. The final step to generalize 

the game theoretic model would be to make it general-sum. It means that the duality theory 

cannot be used anymore. Instead, other modeling and solution techniques are surveyed in the 

literature for the solution methodologies for finding NE for general-sum games. Moreover, since 

the modeling approach changes, the linear program of the defender will change as well and all the 

steps that we used to remove the simplifying assumptions (in Chapter 5) are needed again. 
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In this chapter, the literature of solution techniques for general-sum games is discussed. Then one 

of these techniques that suits the context of our study is utilized for modeling the attacker-

defender game. Once the basic model is developed, it is modified (as the SRM was generalized in 

Chapter 5) in order to fit in the context of sonar placement problem. At the end, a test example is 

generated and run by the final version of general-sum SRM to illustrate the performance of this 

model. 

6.2. Literature Review 

Since Nash (1951) proposed the existance of NE for any game with finite set of actions, lots of 

efforts have been dedicated to finding efficient techniques to calculate the NE for different types 

of games. Since games are defined in variuos settings and with different assumptions, most 

solution techniques are proposed for a specific type of game and they work best for that specific 

type. Two player games are not excluded form this fact. However, since it is among the less 

complex type of games, the two player games have been studied to a great extent in the literature.  

Various solution techniques are developed for this type of game. The most famous algorithm is 

proposed by Lemke and Howson (1964). They provide a constructive proof that a two player 

game has one equilibrium (at least). Since the proof is constructive, it provides a method for 

finding the equibrium. A number of other studies modify the Lemke-Howson algorithm to 

improve the performance for special cases. A survey of such studies is provided by Stengel 

(2002). Another group of researchers use Theorem 1 proposed by Nash (1951) and seek to find 

optimization techniques that satidfy the conditions of this theorem to reach the NE.  

Theorem 1 (Nash 1951):  

Consider a two player general-sum game as:  

Am×n : payoff matrix for player 1(attacker) 
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Bm×n : payoff matrix for player 2 (defender) 

xi : NE probabilities for player 1 (i=1,2,…, m) 

yj : NE probabilities for player 2 (j=1,2,…,n) 

Then for such a game has an NE X = (x1, x2, …, xm)  and Y = (y1, y2, …, yn) if and only if for 

suitable values of Umax and Vmax equations (6.1) through (6.8) hold. 

 ∑    
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 ∑    

 

   

 (6.2) 

      ∑      
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      ∑      

 

   

            (6.4) 

    (     ∑      

 

   

)             (6.5) 

    (     ∑      

 

   

)             (6.6) 

                (6.7) 

                (6.8) 

These conditions define the Linear Complementarity Problem as defined by Cottle and Dantzig 

(1968). According to Cottle et al. (1992), there are various solution techniques for solving LCP. 

Sandholm et al. (2005) propose a Mixed Integer Linear Program (MILP) to solve the system of 

equation (6.1) through (6.8) . Since this model can accommodate the objective and features of our 

sonar placement problem, it is used as the baseline for our modeling effort as it will be described 

next. 
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6.3. Proposed Risk Analysis Model in the Context of Game Theory 

As mentioned earlier, an MILP proposed by Sandholm et al. (2005) will be used as a foundation 

to build and solve our general-sum game. The feasible solutions of this MILP are the equilibriums 

of the game (there might be more than one NE for this game according to Lemke and Howson 

(1964)). Once the proposed model is described, it will be modified to adapt to the nature of our 

problem.  

Basically, this MILP forces equations (6.3) through (6.6) to hold by defining new binary variables 

zi and wj as follows. 

  

   {
                 
                 

 
( 6.9) 
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 ( 6.10) 

These variables are used in the following constraints to satisfy Complementarity. 

                   ( 6.11) 
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                 ( 6.12) 

                   ( 6.13) 
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                ( 6.14) 

Where M1 and M2 could be any large number, but to have a good formulation they are defined as: 

       
   

       
   

    ( 6.15) 

and  

       
   

       
   

    ( 6.16) 
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M1 and M2 are input parameters to the model and they are calculated based on the payoff matrices 

A and B. Replacing equations (6.3) through (6.6) by the equations (6.11) through (6.14) converts 

the problem into a MILP. The model that we reach with these modifications is the one that is 

proposed by Sandholm et al. (2005). The rest of the development procedure in this chapter is the 

contribution of this research to the literature (unless stated otherwise). 

For any specific NE of the game the corresponding values of Umax and Vmax have contextual 

meanings here. For a solution, Umax is the expected payoff for player 1 and Vmax is the expected 

payoffs for player 2.  

Clearly, this MILP does not have an objective function. It is possible to solve it and reach the 

feasible solutions which are the NE of the game. However, in order to decrease the solution time 

and reach desirable solutins, it is strongly suggested by Sandholm et al. (2005) to define an 

objective function for the MILP. The objective function is arbitrary. It can be any measure of 

interest that can guide the decision variables (xi’s and yj’s) to a specific section of the feasible 

region. A suitable objective function for this study is to minimize the expected payoff for the 

player 1 (attacker) which is Umax. Hence our MILP becomes: 

          ( 6.17) 

s.t.: 

 ∑    

 

   

 ( 6.18) 

 ∑    
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                   ( 6.20) 
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                   ( 6.22) 
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      ∑      

 

   

                ( 6.23) 

                ( 6.24) 

                ( 6.25) 

    {   }          ( 6.26) 

    {   }          ( 6.27) 

Equation (6.17) seeks to minimize the expected payoff for the attacker. Equations (6.18), (6.19), 

(6.24) and (6.25) assure that xi’s and yj’s are legitimate mixed strategy probabilities. 

Complementarity is satisfied by equations (6.20) through (6.23) as described before. Finally, 

equations (6.26) and (6.27) assert that zi’s and wj’s are binary. The solution to this model provides 

the NE of the game for which the expected payoff for the attacker is minimized. However, the 

solutions will not conform to the nature of our problem. The yj probabilities are continuous and 

cannot be used as a guideline for sonar placement as described in Chapter 5. Hence a 

discretization process is required. We use the approach that was developed in Chapter 5. 

6.4. Discretization Process Implementation 

For now let us assume that just one type of sonar is allowed in the model. Hence, using d= [b/s] 

(where b is the budget and s is the sonar price) we can specify the number of sonars (d). Then, in 

order to be able to use the defender decisions (yj’s) as a guideline for sonar placement, yj 

probabilities should be enforced to be either 0 or 1/d.  

 
   {  

 

 
} (6.28) 

Then we can define a new variable   
  such that 

   
       (6.29) 

and  



111 

 

   
  {   } (6.30) 

Where   
  is one if a sonar is placed at cell j and zero otherwise. Based on this modification, 

equations (6.18), (6.21) and (6.22) change to (6.31), (6.32), and (6.33), respectively. 
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                   (6.32) 

   
                 (6.33) 

This concludes the discretization process of the model. Now we can allow multiple sonar types in 

the model and modify the equations accordingly. Similar to what was done in Chapter 5, we will 

allow multiple sonar types in the model. Assume that q types of sonars are allowed to be used and 

each sonar of type k costs sk. First, the variable   
  is replaced by    

  (note that k is an index for j 

or in other words the index j is replaced by jk).    

  is one if a sonar of type k is placed at cell j and 

zero otherwise. 

Since it is not possible to specify the number of sonars anymore, we need to replace equation 

(6.31) with a budget constraint. That is 

 

∑(   ∑   
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   (6.34) 

But with the same rationale that we provided for equation (5.8), it needs to be converted to 
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   (6.35) 

Next, the payoff matrix needs to be modified. Since this process is exactly the same as what we 

did in Chapter 5, it is not going to be repeated here. Note that this process changes the size of the 

payoff matrices A and B from m×n to m×(n·q) and the decision variable of the defender Y
’
 

becomes    (   

     

       
     

     

       
       

     

       
 ). The parameters m and n are 
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the number of rows and columns of the payoff matrices, respectively. Since the number of cells in 

our study is c, then both m and n can be replaced by c in all equations. However, to maintain the 

generality of the model, m and n are kept in the formulations. Thus the final formulation 

becomes: 

 
         (6.36) 

s.t.: 
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          (6.43) 

                (6.44) 

    

     
 {   }            (6.45) 

    {   }          (6.46) 

Equation (6.40) is the modified version of equation (6.32). Since the number of sonars is not 

specified in case of allowing multiple sonar types, the variable d in equation (6.32) becomes 

useless. Instead, we can use any large number in the right-hand-side of the equation, but to have a 

good formulation it is better to use the smallest possible value. Hence we define a new variable 
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qmax and use it instead of d. This variable is defined as qmax = [b/smin] (where b is the budget and 

smin is the price for the cheapest sonar type) which is the maximum number of sonars allowed in 

the model. As a result of this modification, Umax is not the exact expected payoff for the attacker, 

but it intuitively expresses the same measure. Due to the addition of index k and the change in 

payoff matrix, equation (6.23) converts to (6.42). Equation (6.43) assures that no more than one 

sonar is placed in any cell and the rest of equations are the same as they were defined before. 

This formulation concludes the modeling effort for building the most general SRM model. This 

model allows  

1. a sonar to cover multiple cells with range-dependent detection probability 

2. multiple type of sonars in the model 

3. any payoff matrix (not necessarily zero-sum). 

In the next section this model will be exercised to show its performance. 

6.5. Test cases for General-sum Game 

The first payoff matrix that we developed in Chapter 5 (Figure  4.5) led to a non-zero sum game. 

Assuming attacker’s cost of initiating an attack (ca) and the defender’s cost of sonar placement 

(cd) to be negligible, the game resulted to be zero-sum. However, these costs are not necessarily 

insignificant in many cases. In fact, they may change the players’ decisions.  

In the following test case we seek to check whether these costs can modify the players’ decisions 

or not. To achieve this goal, we will use the same test case that was developed in Chapter 3 and 

used in Chapter 5. This test case is a grid of c = 300 cells (10 rows and 30 columns). In the test 

case, we assume that the cost of sonar placement for the defender is the same (zero) for all the 

cells of the environment , and just use different invasion costs (for the attacker) for the cells of the 

grid. To check the effect of different invasion costs on the player’s decision variables, the 
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invasion cost for cells is defined in three settings. Invasion costs are assumed to be zero for all 

cells in the first setting. This results to the zero-sum game that we have studied in Chapter 5. In 

the second and third setting, we assume that attacking the cells with high characteristic values is 

more difficult (due to the special preventive actions that the defender may incorporate). In the 

third setting, the level of difficulty is such that it inverts the payoff for the attacker for all cells. 

Let us use a small example to make this argument clear. Figure 6.1 shows a grid of three cells 

with their characteristic values. 

80 100 90

321

 

Figure 6.1. The six-cell grid 

Let us assume that just one sonar that covers a single cell (with dp = 0.6) is going to be used for 

this example. The payoff matrix for the defender (Figure 6.2) is calculated exactly in the same 

way as Chapter 5. 

 

Figure 6.2. Payoff Matrix for the defender for the three-cell example (the payoffs for the attacker 

are the same values but with positive sign for the zero-sum case) 

 

Now assume that initiating an attack to cell 1 costs $5 (       ) for the attacker and          

and         . Using the formula shown in Figure  4.5 for calculating the payoffs for the attacker 

we get the matrix of Figure 6.3. 
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Figure 6.3. Payoff Matrix for the attacker for the three-cell example (setting 3) 

 

As seen in Figure 6.3, the attacker’s preference in choosing a cell to invade is inverse the zero-

sum case; meaning that the cells with higher characteristic values has become less interesting for 

the attacker (the order of preference for the attacker in the zero-sum case is cell 2, cell 3 and cell 

1 from highest to lowest). 

Now let us explain the second setting. This is a setting in between settings 1 and 3; e.g. presume 

that initiating an attack to cell 1 costs $5 (       ) for the attacker and          and      

   . Figure 6.4 shows the new payoff matrix for the attacker. 

 

Figure 6.4. Payoff Matrix for the attacker for the three-cell example (setting 2) 

 

Setting 2 is an intermediate state in the sense that the preference for the attacker is the same as the 

zero-sum game in some cases and inverted in other situations (cell 2 has still the highest 

preference, but cell 1 and cell 3 has inverted their priorities). 
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The test case with 300 cells will be used for running these three settings for the formulation of 

equations (6.36) through (6.46). The settings described above cover a wide range of games and 

can show how sensitive the results of game can be to various payoff matrices. Since we are 

interested in the placement of sonars, we run the settings on a single scenario (rather than 

building 5 scenarios and averaging over scenarios) and compare the placement among settings. 

Moreover, the budget is fixed to $100 (which is almost equivalent to placing three sonars in the 

environment). 

Table 6.1 illustrates the results for the three settings. The left panel in this table shows the heat 

map of the attacker’s payoff for the three settings. The defenders payoff (which is the negative of 

attacker’s payoff for setting 1) is the same for all three settings. Although setting 1 is zero-sum, it 

can be solved using the general-sum model as shown in Table 6.1. Note that results are not 

guaranteed to be optimal; however they are within 3% gap of optimality.  In all three settings the 

sonars are placed such that they cover the cells with highest attacker payoffs. Since these 10 cells 

are located close to each other in setting 1, they are all covered. While in settings 2 and 3 these 

cells are distributed in the environment and hence cannot be covered by three sonars.  

Since the objective function of our general-sum game seeks to minimize the attacker’s expected 

payoff, most invaded cells are covered in all settings. It is also important to note that there might 

be other NE’s for these settings; however, these ones are the ones that minimize the attacker’s 

payoff. 
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Table 6.1. Comparison of sonar placement schemes for the three settings (the colored cells in left 

panel are the cells covered by sonars, the cells with thick borders are 10 cells with highest payoff 

for the attacker and the hatched cells are the cells that are invaded by the attacker) 

 Heatmapoftheattacker’spayoff Sonar placement scheme  

Original 

port 

  

Original 

port 

with 

noise 
  

Mirror 

image 

port 

  

Legend 

  

 

Comparing the sonar placement schemes in these settings reveals a notable fact. Although the 

defender’s payoffs are the same for all the settings, the allocation of sonars in settings 1 and 3 is 

completely different. Hence, the attacker’s interest is an important factor in the results of the 

game. Linking the heat maps (or cells with highest attacker payoffs) and sonar placement 

schemes in Table 6.1 indicates the sensitivity of the placement scheme to attacker’s interest. This 

example clarifies how different the results of a zero-sum game and nonzero-sum game can be. 

Hence, modeling the SRM as a general-sum game provides more degrees of freedom in defining 

the payoffs and consequently provides more reliable and accurate results. 
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The significance of attacker’s concern in driving the  sonar placement scheme also magnifies the 

advantage of SRM over PRM. In PRM, it is not possible to include attacker’s decisions into the 

modeling effort. 

6.6. Conclusion 

To wrap up the modeling approach, the last simplification assumption is removed from SRM in 

this chapter. That is, the game theory model is assumed to be general-sum rather than zero-sum. 

This allows the model to be used in a variety of general cases where the attacker and defender’s 

points of interest will not necessarily coincide. 

Since the game is not zero-sum, the duality theory becomes ineffective in this context. Instead, a 

number of other solution methodologies (that are developed in the literature) are utilized to model 

the general-sum game. Among all, a mixed integer linear program that can accommodate the 

features of our sonar placement problem is selected to be used. After introducing this model, it is 

modified to allow the discreteness of the sonar placement problem and also multiple sonar types. 

The final model has the same features as the zero-sum game. It is then tested using an example to 

show the flexibility of general-sum game in modeling any payoff matrix for the players. This 

example also emphasizes the advantage of SRM over PRM in considering attacker’s prospect in 

the modeling effort (by showing the notable change in sonar placement scheme as a result of 

variation in attacker’s interest). 
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7. Conclusions and Future Directions 
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7.1. Summary 

Two solution methodologies are proposed in this research study to mitigate maritime security 

risks. These models provide sonar placement schemes under the water (in ports and waterways) 

to detect anomalies such as divers, torpedoes and autonomous underwater vehicles. Both models 

integrate details about the geography of the environment, physics of sonars and etc. to a great 

extent. A number of test cases are developed and used though the study in order to text the 

proposed models and compare them. 

The description of the main question in this study and its significance to a nation is followed by 

the introduction about the nature of the problem and its limitations in Chapter 1. Then the 

contribution of this manuscript to the literature of maritime security risk is explained. A few notes 

that clarify the scope of work in the study are presented at the end of this chapter. 

The literature for the PRM is reviewed in the beginning of the second chapter. Introducing the 

discretization process allows us to get into more details of the model. Then the mathematical 

model for PRM is proposed in two steps. First, a simple version of the model is presented to show 

the underlying idea of the approach. Then the comprehensive optimization model follows. This 

model is revised to fit into a mixed integer linear program. A number of preprocessing steps are 

described afterwards. These steps explain the assumptions of our model and provide guidelines 

for preparing the parameters of the model.  

The New York harbor test example is introduced in Chapter 3. The workings of the model are 

presented in this example. It also remarks the computational complexity of the model. This model 

is NP hard and cannot be solved for optimality using the solver packages in a reasonable amount 

of time (for large scale problems). A heuristic solution methodology is proposed to overcome this 

obstacle. This heuristic is greedy and iterative. It selects a sonar and places it in a cell of the grid 

that leads to maximum risk reduction in each iteration until the budget is exhausted. A few notes 
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about the complexity of the heuristic method are also discussed. The results from a competitive 

commercial solver package are compared to the ones from the heuristic for a number of test 

cases. These results illustrate the performance of the heuristic in various situations and make 

recommendations when to use heuristic. This concludes the development of the PRM and its 

solution methodologies. 

The focus of research converts to the SRM form Chapter 4. A number of elements in game theory 

that are used later are defined and discussed in the beginning of this chapter. Then a literature 

review on the application of game theory in security risk is provided. The concept of Nash 

Equilibrium and its importance in game theory is presented in the next section. Since the SRM 

models in Chapters 4 and 5 are zero-sum, they can benefit from the link between duality theory 

and zero-sum games. Hence, the duality theory for zero-sum games is also argued. Setting a 

number of simplifying assumptions, allows us to present the simple version of the SRM for sonar 

placement. This model is then tested on a small test case. 

The focus of Chapter 5 is on removing the simplifying assumptions of Chapter 4 and converting 

the SRM into reasonable model for practical purposes. That is, to integrate multi-cell coverage of 

sonars, range-dependent detection probability of sonars, discrete nature of sonar placement 

problem and multiple sonar types in the SRM. These extensions are brought into SRM step by 

step and some modifications are made into the model so that it can accommodate these features.  

Reaching the final version of zero-sum SRM (which covers almost the same features as PRM) 

enables us to compare these models. Three measures are introduced to compare the performance 

of these models. These measures are compared for the test cases that were developed in Chapter 

3. The SRM provides better results than the PRM considering the overall performance of these 

models for the three measures. 

The final step in extending the SRM of Chapters 4 and 5 is to allow the payoff matrices to be 

general-sum (rather than zero-sum). This brings a great deal of flexibility to SRM as described in 
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Chapter 6. This chapter begins with a theorem from Nash (1951) that provides the conditions for 

reaching NE’s of a general-sum game. Various methods are used in the literature in order to 

satisfy these conditions for any game and reach the NE’s. Among all, a mixed integer linear 

program approach is selected. This model is able to integrate the features of the sonar placement 

problem into it. We extend this model step by step to integrate these features (as we did in 

Chapter5). Finally, the performance of the final general-sum SRM is tested via a test case. This 

test case illustrates the significance of attacker’s intelligence and interest in the final solution of 

the game. 

7.2. Research Contributions 

This study contributes to the literature of maritime security risk analysis and management via 

proposing two modeling methodologies for underwater surveillance at ports and waterways 

against security threats. These models aim to find the optimal placement of sonars under the 

water such that the most critical sections of the port fall under surveillance of sonars. A budget 

constraint limits the number of sonars to be used. Both models integrate environment-specific 

features of the problem to a great extent.  

The probabilistic risk model resembles the facility location problem, wireless sensor networks 

optimization or other general purpose sensor allocation problems to some extent. However, our 

probabilistic model incorporates many details that are specific to underwater sonar allocation, 

such as range-dependent detection probability, multiple coverage of sonars over a cell and 

angular coverage of sonars. The greedy heuristic that provides good solutions in linear time 

complexity is a great achievement in the study. Also, the test examples that are developed in 

Chapters 3, 5 and 6 are designed to test the models from various points of view. These test cases 

can be used in the literature as reference test cases for checking the performance of similar 

models. 
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To the best of our knowledge, the strategic risk model is the only game theoretic study for sonar 

allocation in ports and waterways in the literature. A similar game theoretic approach is proposed 

in the literature for sonar allocation in oceans. Yet, the assumptions of this study make it unusable 

for sonar allocation in ports. Moreover, the proposed model is just comparable to the basic game 

model of Chapter 4. Our SRM is quite comprehensive in the sense that it covers geographical 

features of the environment and physics of sonar place. Besides, it is presented in two versions; 

namely zero-sum and general-sum games. The zero-sum game is a special case that may not 

happen frequently in application. However, its solution methodology requires less effort.  

The performance measures to compare the performance of PRM and SRM are among the novel 

contributions of this study. Specially, the last measure, expected damage, takes the attacker’s 

action at NE into account is a very powerful measure as a result.  

On the other hand, the general-sum game does not have the limitations of the zero-sum game. It is 

able to accommodate any payoff matrices for the players. The final general-sum SRM integrates 

exactly the same features as the zero-sum one and it is shown how powerful it is to capture the 

attacker’s interests. 

Also, preprocessing steps for the resource allocation problem, such as the discretization process 

and evaluation of relative significance of grid points are discussed in this manuscript. Guidelines 

for specifying these parameters are also provided. Most literature studies do not provide insight 

how to prepare model parameters for their studies. 

7.3. Research Conclusions 

A probabilistic risk model is developed in Chapter 2 for sonar allocation against security threats 

in ports and waterways. This model integrates the environmental and sonar-specific features to a 

great extent. The model is a mixed integer linear program and is proved to be NP hard in the 

literature. The parameters that add to the complexity of the model and their effect are discussed in 
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Chapter 3. It is shown that it is not time-feasible to solve this model for optimality even for 

medium size problems.  

In order to use the model for real world large scale problems a heuristic algorithm is developed. 

The computational complexity of the heuristic is discussed as well. A number of test examples 

have been used to compare the performance of the heuristic with a solver package. These 

examples show the effect of parameter changes on the runtime and accuracy of results.  The 

outcomes show that the results of the heuristic are so close to optimal when the density of sonars 

is low in the environment (due to low budget). This observation makes the heuristic useful for the 

real world scenarios. In reality the budget is usually low for the operator and he seeks to minimize 

the risk with his limited budgets. Hence, the density of sonars in the field of interest is low and 

the heuristic results are expected to be close to optimal. 

A game theoretic model is developed in Chapter 4. This model is quite simple and does not 

feature much details of the sonar allocation problem. This model is then extended in Chapter 5 

through a number of steps. These steps make the model more general. The generalized model is 

equivalent to the probabilistic model from the level of features the both integrate. Hence it is 

reasonable to compare the performance of these models. This task is done via introducing three 

performance measures; namely average risk of all cells, maximum risk over all cells and expected 

damage. The expected damage has an advantage over the other measures. It considers the 

attacker’s action while doing the calculation and consequently is of more interest. It turns out that 

none of the models show any significant advantage over the other for the first two performance 

measures. However, the SRM performs much better than the SRM for the last measure.  

The general-sum SRM of Chapter 6 clarifies the significance of attacker’s concern in the sonar 

placement problem. Using this model, we showed that the sonar placement scheme is dragged 

towards the attacker’s points of interest. Hence SRM has a great advantage over PRM in this 

regard. Moreover, the examples show the flexibility of general-sum SRM in capturing any pattern 
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for the payoff matrices, while in the zero-sum case the payoff values for attacker and defender 

should add up to zero. Consequently, it seems that the General-sum SRM is the most appropriate 

method to model the sonar placement problem of this study. 
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