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Stress Profiles
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Thesis Director:

Dr. David W. Coit

The US Navy has increased interest in the reliability of aircraft launching and
recovery equipment. Data is readily available and failure time distributions can be
estimated; however, the aircraft equipment will not be operated with the same stress profile
in the future as the data provided. In fact, the US Navy will increase the stress profile on
the equipment by incorporating heavier aircraft into the fleet, while downsizing the lighter
aircrafts. This creates an uncertain stress profile the aircraft carrier systems will be
subjected to. Since the composition of the fleet is uncertain, determining reliability and
component redundancy and/or replacement is difficult. Thus, new models and optimization
algorithms are proposed involving data analysis at the component-level based on Weibull
shape parameters modeled after using a general log-linear model based on the mean and
variance of critical stress measures in a changing environment, and Weibull shape
parameters modeled using a general log-linear model based on the distributional form of
critical stress measures in a changing environment.

Traditional system reliability considers a set of failure data which is analyzed to
estimate a failure time distribution. This failure time distribution can be utilized to estimate
reliability at some point in time. This thesis pertains to design problems with a probabilistic

future stress profile, but using models based upon the current failure data. Since a future



stress profile can be probabilistic and distinctly different, the traditional system reliability
model will be unable to estimate future reliability from the existing failure data. Instead an
estimate of the future failure time distribution must be made utilizing accelerated life
concepts, and the optimal component reliability becomes difficult to determine. Depending
on the level of usage, the optimal component redundancy might change. This research tries
to develop a heuristic for system reliability optimization considering a probabilistic future
stress profile in which the stresses can increase to different levels.

A failure time distribution is determined for each system component as a function
of usage stress distribution. The component models are then assembled into a system
model. This system model tests different composition of fleet data based upon different
probabilities. Although these probabilities are ambiguous it is certain that the stress profiles
will increase. This system model was evaluated to determine what preventative
maintenance or component replacement can be done in the present so that the unknown

future stress profile will not cause high costs in labor and replacement parts.
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1.0 Introduction

This thesis evaluates empirical data obtained from a discrete loading system with
predictable, quantifiable and changing loading patterns. Every usage cycle can be different,
due to a different load, pressure or force being applied to the system. Taking this cyclic
data and forming a stress distribution only describes past occurrences. However, the future
loads on the system are anticipated to be increasing due to changing user preferences or
system requirements. This creates a shifting stress distribution with time. An example of

this shift is depicted in Figure 1.

Current Stress Profile .~ Future Stress Profile

\ /
\( )

Figure 1. Movement of the current stress profile
to the future stress profile with time

This future stress profile represents a single possible future with a certain probability,
and there are several possible future scenarios. In practice these probabilities would only be
estimates, but consideration of this probabilistic future scenarios lend to more robust
designs and maintenance plans. After different future stress profiles with different
probabilities are determined, a simulation model was constructed and run to determine the

optimal component replacement as well as preventive maintenance schedule for the system.



1.1 Background

NAVAIR (Naval Air Systems Command) provides systems and material support
for the US Navy. NAVAIR Headquarters is a tenant of the Naval Air Station in Patuxent
River (Pax River) in Maryland. Ten other locations exist, eight within the United States and
two international locations. The Lakehurst NJ, branch specializes in support equipment for
both the Aircraft Launch and Recovery Systems.

The recovery gear or arresting system is designed to rapidly decelerate an aircraft
when it lands on a naval vessel. The major systems used within a typical arresting system
are the hook cable or pendant(s), purchase cables, sheaves, and arresting engine. The
arresting engine absorbs and dispels the energies of a landing plane. The sheaves redirect
the purchase cable and the hook cable or pendant attaches itself to a landing aircraft and is
connected to the purchase cable.

The launcher or catapult system is an aircraft catapult device used to deploy
aircrafts from the Navy aircraft carriers. It consists of a track, a large piston, and shuttle.
To launch an aircraft, steam pressure is built up in the cylinders and then released. This
causes the piston to release which in turn pulls nose gear assembly which is attached to the
aircraft. The aircraft is dragged along a track and the velocity due to this release will be
sufficient to allow the aircraft to take flight.

1.2 Problem Statement

Improvements in aircraft technology coupled with heavier equipment and the
discontinuation of the lightweight T-45 aircraft will cause an increase in the average weight
of an aircraft in the Navy air fleet. This expected increase in weight pushed Navy officials
to consider that the extra weight may cause accelerated wear in both the arresting and the

catapult systems. Both systems will still be utilized for the next 20 years and the future



reliability of each must be calculated. In essence, the heavier air fleet and the responding
heavier loads will cause reliability to decrease and in order to assure that the equipment can
withstand the new stresses the reliability must be calculated. After the future reliability is
obtained a redundancy design as well as an optimal corrective and preventative
maintenance policies are simulated. Figure 2 depicts the average cable tension per
arrestment (landing) from 1976 to 2007. As shown in the graph, the gradual increase in
tension is what Navy officials have concern over. The last three entries are projected future
values of tension.
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Figure 2. Projected Stress Increase on Pendant



2.0 Literature Review and Background Concepts

There have been many different papers and articles written about component

replacement, each with unique applications and methods.

2.1 Component Replacement

A replacement of a component is optimal usually when the maximum useful life of
a component has been consumed. Although preventive maintenance may prolong the useful
life, the optimal replacement time is the time right before a component fails, as you have
gotten the most usage out of the component without having to experience a failure or any
unplanned downtime. Age replacement policy (ARP) is one method to try and optimize the
replacement of a component. However, implementation of ARP requires continuous
tracking of a component’s service life. Many industries with large systems, each having a
number of components, find this difficult to achieve in practice. Another option for
maximizing the useful life of components is to continuously monitor the condition using
sophisticated on-line instruments and to replace them just before failure. However, such a
proposition is expensive and the time indicated for immediate replacement may not be
suitable for a plant shutdown, because of production conflicts or any other kind of
scheduling (Das and Acharya, 2004).

Two effective policies to be considered and compared are Age Replacement during
Delay Time (ARDT) and Opportunistic Age Replacement during Delay Time (OARDT).
Age replacement, as previously mentioned, is the policy where the component is replaced
on failure or after a fixed period of service after the fault. Opportunistic failure utilizes the
first random occurring opportunity for preventive replacement of a faulty component if it

has given service for a fixed period after the fault.



Das and Acharya (2004) use the long run cost per unit time according to the

renewal reward or,

expected cost during life cycle  Ca(ta)

Gu(ta) = - =
expected length of life cycle  La(ta) (1.1)
Ga(ta) = long run cost per unit time for ARDT policy
Cu(ta) = expected cost during the life cycle
La(ta) = expected length of the life cycle
tq = time

The expected cost in a renewal cycle is sum of the expected preventive replacement
cost, the expected failure replacement cost, and the expected cumulative degradation cost

per renewal cycle. This is expressed as :

Cy(ty) = C[1-Fy(ty)] + C Fy(ty) + {C (min(H.t,))} (1.2)
Cp = cost per preventive maintenance
Fr(td) = probability of failure due to degradation at time tq
Cs = cost per failure
H = degradation
tq = time

Cr(min(H,tq)) = expected cumulative degradation cost over a renewal cycle.
These equations are used for the ARDT policy.

For the OARDT policy (Das and Acharya 2004) the long run cost per unit time is

expected cost during the life cycle with opportunistic replacement  Cou(ta) (1.3)
expected length of the life cycle with opportunistic replacement  Lod(td)

God(tod ) long run cost per unit time for OARDT policy

Cod(toa) = expected cost during the life cycle with opportunistic replacement
Lod (tod) expected length of the life cycle with opportunistic replacement
ta = time



The renewal cycle cost is the sum of the expected cumulative degradation costs, and
the expected replacement cost. By plotting the ARDT and OARDT long run cost per unit
time and calculating both breakeven points, the authors suggest that one must prefer
opportunistic age replacement during delay time policy to age replacement during delay
time policy.

When creating a preventive maintenance schedule or component replacement for
anticipated future stress levels, Das and Archaya (2004) have noted that instead of
replacing any age related component it might be more beneficial to follow an OARDT
policy.

Yamada and Osaki (1981) wrote a paper on optimal replacement policies for
nonessential and essential units. Many papers comparing age and block replacement
policies have been written and published, one such paper is Barlow and Proschan (1965).
In Barlow and Proscha’s model two costs are evaluated, one associated with a corrective
action (replacing the unit) and one cost associated for a preventive maintenance cost (non-
failed unit being replaced). This paper concentrates on nonessential units and develops a
method to estimate the appropriate numbers of spares that should be provided given both
the preventive maintenance cost and corrective maintenance cost for a componen
2.1.1 Architecture for Component Replacement

While technology advances, software systems must evolve due to improved
technology and changing requirements. Postma, America, and Aijnstra (2004) use a
3RDBA (three cycles consisting of steps Requirements, Design, Build, and Analyze)
approach that facilitates replacing a key component in a long-living architecture. The
approach consists of an exploration, consolidation and migration cycle. Each cycle contains

four steps: Requirements, Design, Build and Analyze (Postma et al., 2004).



The example Postma et al (2004) used to illustrate the 3RDBA approach was a
medical imaging system, a system which would be in use for 15 years. A decision making
tool to decide whether a component should be replaced by a functionally similar
component, one with extended functionality, or the same component. 3RDBA represents a
different approach that could be utilized for aging systems with increased usage
requirements. However, the approach is nonmathematical and only aids in a decision, and

no actual quantitative methodology is provided.

2.1.2 Markov Chains

Albin and Chao (1992) utilize Markov chains to model a multi-component series
system to determine the optimal preventive replacement in which the component
deteriorates with time. The time causes the operational characteristics of the component to
change and consequently increasing the failure rate of the component near the deteriorated
one. The replacement policies involve inspections, and if the deterioration exceeds a critical
level, replace the component, or continuously monitor the deteriorating component until
failure. The replacement policies are evaluated by mean cost rate and by the ratio of the
reduction in the number of failures to the number of preventive replacements.

There are other sources for extensive bibliographies on maintenance models for
deteriorating systems, including Barlow and Proschan (1965), McCall (1965), and
Pierskalla and Voelker (1976). Much of the work focuses on one-component systems and is
based on the original Markov chain model for describing the deterioration process.

2.2 Stress Models with Covariates
A model to alter the life parameter in the Weibull distribution depending on the

mean and standard deviation of the stress loads of the system was developed to access the



availability of a system due to future loads. Covariate models are used to represent the
effect of different treatments or usage conditions in a lifetime model. A covariate is defined
as a treatment or explanatory variable that influences the failure time of the component.
Typical covariates include those that represent mechanical forces, material properties, and
environmental factors. There are two rather popular approaches for linking these covariates
to the failure time probability function. The first method, known as Accelerated Life
Testing (ALT), is based on modifying the time axis of the survivor function. The original
application of ALT was to reduce the time to test production components by increasing, or
accelerating, the primary explanatory factors and using the resulting model to predict
component lifetimes under standard in-service conditions. The premise of the second
approach, called Proportional Hazard Model (PHM), is to modify the hazard rate function
to include the covariates (Wallace, 2004).

Wallace (2004) simulated and demonstrated a multi-response component failure
distribution as a function of operational parameters. Although Wallace generated his data
from a sophisticated system model, the data gathered in this thesis was simulated following
a certain distribution. Furthermore for real applications, physical data is used to calculate
the loads on the system. A significant difference is the use of joint probability models that
Wallace utilized to represent the joint randomness. Assuming that z, the joint randomness
term using a function of standard normal variants, is standard normal then the joint

probability density function is given by

F0 =TT fulx 9(z.C) 21
Q=180 o) (1)

Where ¢(z,C")is the n-dimensional standard normal probability density function of the

standard normal variables, z, and C’ is the correlation coefficient matrix of the transformed



space with elements pij . Wallace then further considers a joint covariate model and selects
a turbine blade engine to test the reliability of the simulated data. First 10,000 simulations
are used to determine appropriate parametric distribution for the overstress and fatigue life
failure modes. The Anderson-Darling Test statistic was used to compare the fit for the data.
An Accelerated Life Test is used with the log-quadratic link function to account for
covariate models in the ALT model. A quadratic polynomial function is assumed for the

exponential component of the link function is

\IJ(Z) — eg(ﬂz) — e(ﬁlzl+ﬂ222+ﬂ32122+ﬂAZf+ﬁ4212 ) 2.2)

Wallace demonstrated the use of simulated data as well as ALT testing for a design
of experiment of a turbine blade engine. The use of a joint probability distribution and a
quadratic polynomial are not used in this thesis. However, ALT and a covariate models are
developed.
2.3 Heuristics

There are many heuristics to consider when trying optimizing parameters for design
problems. Some of the most common are explained in this section. A metaheuristic is a
method that optimizes a problem by iteratively trying to improve a feasible solution.
Metaheuristics make few assumptions and search large areas of feasible solutions.

The most recent metaheuristic is the cuckoo search by Yang and Deb (2009).
However, the most common methods are simulated annealing (Kirkpatrick et al., 1983),
Tabu search (Glover, 1983), genetic algorithms (Holland, 1975) and ant colony

optimization (Dorigo et al., 1991).
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2.3.1 Genetic Algorithms
Genetic algorithms (Deb and Goel, 2001) are a population based search that can
evaluate multiple solutions in each generation (i.e., run). The use of genetic algorithms
stems from the versatility of the heuristic as well as the simplicity.
The steps for a simple genetic algorithm are:
1. Start with a randomly generated population or candidate solutions.
2. Calculate the fitness or quality of the solutions (called chromosomes) in the
populations.
3. Repeat the steps until n off-springs have been generated

a. Select a pair of parent chromosomes from the current population, with the
probability of selection being an increasing function of fitness or quality.
The same chromosome can be used more than once to become a parent.

b. With another probability called the crossover rate, crossover a randomly
chosen solution chromosome to form two off-spring solutions. If there is no
crossover, then form two off-spring that are exact copies of the parents.

c. Mutate the offspring at each locus with a mutation probability and place the
new chromosome in the new population. If n is odd, one new population
member can be discarded at random.

4. Replace the current population with a new population.

5. Goto Step 2

These steps are from Mitchel (2005). For more on genetic algorithms Srinivas and Deb
(1994) and Deb, Agrawal, Pratap and Meyrivan (2000) are a few relevant summaries
among many papers written on genetic algorithms. There are many different variants and

genetic algorithms can only produce a good solution and not the optimal.
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2.3.2 Simulated Annealing
Simulated annealing is a local search for locating a good approximation of an
optimum given a large space; it was introduced by Kirkpatrick (1983) and is based upon
the annealing of metal. When metal is heated and then slowly cooled at a controlled pace,
the number of defects in the crystal the metal forms can be reduced. The simulated
annealing algorithm replaces the current solution for a problem with a solution closely
related and then begins searching for a better solution in the neighborhood of the closely
related solution.
In some simple steps the simulated annealing process can be described:
Step 1: Decide on the number of iterations for the program to run.
Step 2: Start at an initial solution So,
Step 3: Calculate the objective function and store it.
Step 4: Generate a neighborhood solution and calculate the objective
function and store this new value.
Step 5: Based upon the acceptance probability, accept or reject the new
objective value.
a.) If accepted, set the new solution or objective value as the best
and update and store the value.
b.) If not accepted, than disregard the new objective value.
Step 6: Repeat steps 5 and 6 till the number of iterations is reached.
These steps are a summary of Muralikrishnan (2008) which provides optimization
of a portfolio. Muralikrishnan also compares simulated annealing to generic greedy
algorithms and states that if the probability of acceptance is zero, then simulated annealing

operates as a greedy algorithm and moves to all solutions with the highest objective
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function value. When this greedy algorithm and the simulated annealing were compared,
the simulated annealing outperformed the greedy algorithm in almost every case.

Many other variations of simulated annealing have been created such as MOSA
(Multiple Objective Simulated Annealing) developed by Ulungu, Ost and Teghem (1998)
or Enhanced Simulated Annealing Algorithm (Loganantharaj, 1997). There are also a
myriad of works that have compared and contrasted different types of simulated annealing
as well as genetic algorithms.

2.3.3 Tabu Search

Tabu search is attributed to Glover (1986). It is a mathematical optimization
procedure which is similar to simulated annealing involving a local search method. This
method utilizes a memory in which solutions are put on a “taboo” list, a set of solutions
that the algorithm does not revisit. There are three main strategies to Tabu search. The first
is the forbidding strategy in which the algorithms control what enters the Tabu list. The
second is a freeing strategy, which controls what exits the Tabu list. The final method is a
short-term strategy that manages both the forbidden and free strategies to select a trial
solution. The basic components of a Tabu search consist of a memory or list to classify
moves or searches that are Tabu. A neighborhood is calculated and identified for closely
related solutions that can be reached from the current solution. The Tabu list can be
overridden, this is called an aspiration criteria where the solution in a Tabu list is better
than any visited.

The Tabu search steps are explained below:

Step 1: Start with an initial solution in a set.
Step 2: Generate a subset of solutions such that either one of the Tabu

conditions is violated or at least one aspiration condition holds.



13

Step 3: Choose the best solution in the subset.

Step 4: If the best solution is better than the global best solution, then set
the solution as a global solution.

Step 5: Update the Tabu list and the aspiration conditions.

Step 6: Count the iterations or go back to step 2.

The Tabu search may be terminated in many conditions such as, if there is no
feasible solution, when the noted number of iterations has been reached. The number of
iterations since the last improvement has been met. Figure 3 shows a simple flow chart
(Lei, Liu, and Roberto, 2010)

Flowchart of a Standard Tabu
Search Algorithm

Initial solution Create a candidate EalEn sTis
(iin ) / list of solutions

Update Tabu &
Aspiration
Conditions

Choose the best
admissible solution

Stopping conditions
satisfied ?

Yes

Final solution

Figure 3. Flow Chart of Tabu Search

2.3.4 The Cuckoo Search

The cuckoo search is based upon the cuckoo species which lay their eggs in the
nests of other host birds (YYang and Deb, 2009). Each egg in a nest represents a solution,
and a cuckoo egg represents a new solution. The aim is to use the new and potentially

better solutions (cuckoos) to replace a mediocre solution in the nests. In a nest there are
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multiple solutions, and a new solution or cuckoo egg is added. The objective is for a new
and potentially better solution to replace a mediocre solution in the set. There may be
multiple sets or only one solution in each set (Yang and Deb, 2010).

The cuckoo search has three rules:

1. Only one new solution can be inserted per cuckoo, and each new solution is placed
in a randomly chosen set of solutions or nests;

2. The best nests or set of solution with high quality of eggs will carry over to the next
generation.

The number of available host’s nests is fixed, and the egg laid by a cuckoo is
discovered by the host bird with a probability from 0 to 1. Discovering the new solution
depends on some set of inferior solutions.

2.4 Availability

The main focus of this research is to maximize availability given some constraints.
A brief review of availability is presented here. Availability contains both reliability and
maintainability, which makes it a valuable metric to industry. Availability can be classified
either into the time interval consideration or the type of downtime (Elsayed, 2009). This
review summarizes average up-time availability, steady-state availability and the inherent
availability.

In many systems it is vital to know the availability in certain time intervals. This is

referred to as the average up-time availability and can be expressed as
1 T
A(T) = ;fo A(t)dt (2.3)

A(T) = average availability
T = time (2.4)
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A(T) can be estimated by obtaining an expression for A(t) as a function of time or
by numerically solving the probabilistic state transition states and summing the
probabilities. The average uptime availability may be the most useful for systems whose
usage is defined by a duty cycle. Steady-state availability is the system availability when
the time interval is very large. Steady-state availability is a metric utilized for systems that
operate indefinitely such as communication cables.

The final availability described in this thesis is inherent availability, which only
includes the corrective maintenance of the system and excludes ready time, preventive

maintenance downtime, and logistics down time. This is expressed as

o MTBF
MTBF + MTTR (2.5)
MTBF = Mean Time Between Failure
MTTR = Mean Time To Repair

The steady state and inherent availabilities are the same when all of other logistics
times are ignored and only the corrective maintenance time is considered.

There are many other types of availability, such as achieved availability, operational
availability (includes the logistics time), mission availability, etc. The inherent availability
is more widely used as logistics time and ready time can be difficult to determine.
Choosing the proper availability and proper metric is necessary and determined by what
key performance indicators are necessary.

2.5 Accelerated Life Testing

The purpose of accelerated life testing is to induce failures at a faster rate in a

harsher environment. The underlying assumption in relating the failure data to the

accelerated life is that the components operating under the normal conditions experience
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the same failure mechanisms under normal conditions in the accelerated environments. In
other words, the harsh environment should not impose entirely different failure modes.

An accelerated life model usually consists of a life distribution and a life-stress
model. A life distribution is a distribution models failure time data. Some common life
distributions are the normal or Gaussian distribution, the exponential distribution, a popular
distribution where the failure rate is constant; and the Weibull distribution, in which
parameters can be altered to mimic other distributions. Choosing a life distribution can be
based upon previous data or physics models. Electrical systems are commonly modeled as
exponential and mechanical fatigue as log-normal.

The life stress model relates the incremental increase in stress of the harsh
environment in the environment to the failures; for example if an experiment is set up with
three levels of humidity; normal, high, and intense. The failure for each will be recorded
and observed and the life stress model relates the levels of humidity (stress) to the failure
times (actual time). The most common accelerated conditions are temperature, humidity,
and voltage.

2.5.1 Arrhenius
The Arrhenius relationship is commonly used for analyzing data for which

temperature is the accelerated stress. The relationship is as follow:

R(T)=Ae™ (2.6)
where R is the speed of the reaction, A is a non-thermal constant, E, is the activation

energy and K is the Boltzmann constant and T is the absolute temperature.
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2.5.2 Eyring
The Eyring model is commonly used for analyzing data for which temperature or
humidity is the accelerated stress. The model was formulated from quantum mechanics

principles. The expression is as follows:

L(V)= \%e(AVBJ 27)

L represents a quantifiable life measure, such mean life, characteristic life, median life, B(X)
life, etc. V represents the stress level (temperature values in absolute units, i.e. degrees
Kelvin or degrees Rankine). Ais one of the model parameters to be determined. B is
another model parameter to be determined.
2.5.3 General Log-Linear Relationship

The general log-linear relationship describes a life characteristic as a function of

vector of n stress.The mathematical relationship is given as:

n

L) =€ 5 29
ajare model parameters. x is a vector of nstresses. This relationship can be further
modified through the use of transformations and can be reduced to the relationships
discussed previously, if so desired. As an example, consider a single stress application of

this relationship and an inverse transformation on x, such that v = 1/x or:

o4

L(V)Zem)v 2.9)

=e®e’ (2.10)
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2.5.4 Life Stress Models Using Stress Strength Interference

A unique portion of this research plan comes from deriving a future stress profile.
While in this plan the method utilized is based upon the standard deviation and mean of the
accumulated stress in previous data, there have been other approaches. A similar utilization
of three types of usage data and their treatment for performing reliability predictions is
explained by Mettas and Vassihiou (2002). He explains that the stress conditions depend on
the way the product is used and not every customer uses the product in the same way.
Certain customers operate the product at higher stress levels than others. For example,
every user does not accumulate 12,000 miles a year on a vehicle and every user does not
print the same number of pages per week on a printer (Mettas, 2005).

Now if thought of differently, a future stress profile can be thought of as a different
customer usage profile, one with higher stress and higher loads. Mettas (2005) explains the
traditional theory of accelerated life models with a life-stress relationship. Represented in
Table 1 are some of the common life-stress relationships

Table 1. Common Life-Stress Relationships

Relationship | Model
Arrhenius B
th= AeS
(aB
Eyring to S [ ]
S
o 1
Inverse Power | ** KS"

The life characteristic, tp, can represent any percentile of the distribution. The

percentile is selected according to the assumed underline distribution. Some typical life
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characteristics are presented in Table 2 and by using the maximum likelihood estimator
(MLE) the parameters for the distribution as well as the life characteristic can be obtained.

Table 2. Typical Life Characteristics

Distribution | Parameters | Life Characteristic
Weibull B,y Scale Parameter (7)
Exponential A Mean Life (1/ 4)

Lognormal W, o Median (T)

In the following example is taken from a technical paper (Mettas and Zhao, 2005).
An electric motor with a warranty of 1,000 cycles has three loads that are being tested; 6
Ibs., 8 Ibs., and 12 Ibs. loads. The Weibull-inverse power model was fitted to the data set
and the life characteristic and Weibull parameters were calculated. It is stated that an
average customer is assumed to use the 7 Ibs. stress level. However, this is done purely
through test data. Through surveys, Mettas (2005) collected additional data that showed the
actual customer usage profile.

With this new data a new problem developed, namely how to relate the new load
distribution based upon the customer usage profile to the life of the different motors. In
other words, if a percentage of the motors are utilized at stress level S what would be the
calculated reliability? This needs to be repeated for all stress levels that are experienced in
the field in order to estimate the overall percentage of units failing by time t. For this, a
stress-strength interference analysis will be used to obtain the percentage failing during
warranty from the whole range of load sizes applied in the field. The equation of stress-

strength interference is given by:

P(X > X)= j f, (X)Ry(X)dx (2.11)
0
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where x = stress
X1 = strength
f2(x) = stress function
R1(x) = reliability of the strength of material

Given a distribution that describes the different stress level (custom surveys), and a
distribution that describes the strength of this unit, the probability of failure can be
calculated as the probability of stress exceeding the strength. The test data on the motor of
the different stress levels provides a strength distribution. Using these distributions, one
distribution can gives the percentage of units operating at each load size, and another can
give the percentage of units that fail at each load size during the warranty period of 1,000
cycles. Using the stress-strength interference model, the probability of failure can be
calculated for different customer profiles.

Considering stress profiles and calculating reliability, this method provides solid
quantifiable results. Stress-strength interference is the alternative method utilized together
with an accelerated life method from empirical data. Mettas’ paper points out the
alternative in developing a stress profile as well as calculating reliability through stress-
strength interference.

3.0 Probabilistic Futures

This thesis consists of several related tasks. The first is to identify a correct stress
usage profile from current data. This data is then utilized to create distinct future stress
profiles. Each future stress profile has a probability associated with it. Figure 4 describes
the current data and the possible different stress distributions that can manifest in the

future. The different composition of aircraft creates different loads which affect reliability.



21

The future air wing composition is unknown and thus, a future stress profile can only be

estimated.

fals) |

7
3

\ fuls) )

Figure 4. Stress Profile and Possible Outcomes

Once the stress profiles are estimated, reliability block diagrams are used to model

the system. This block diagram represents an example arresting or launching gear system.

With this model, the optimum preventive maintenance schedule as well as optimum

component replacement strategy and layout can be determined. In short, with failure data

currently available, a decision on how redundancy or system designs should be changed to

meet the cost and manual restraints in anticipation of the future stress profiles.

The basic steps to this research were

1.

2.

Gather simulated data.

Assign a probability to each stress profiles to accurately represent each possible
future stress profiles.

Estimate the overall stress profile.

Use this profile to develop a preventive maintenance strategy as well as component
replacement strategy.

Utilize Tabu search or simulated annealing to develop the component replacement

strategy as well preventive maintenance schedule.
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3.1 Stress Profiles

A review of research concerning distribution parameters with regard to loading and
life conditions have revealed that concentrating on failure time might not always be the
correct direction. The conventional method is to create a life distribution from failure or
test data.

Every cycle can be different, due to a different load, pressure, or force being applied
to the system. Taking this cyclic data and forming a stress distribution only mathematically
describes past occurrences. In fact, the future loads on the system may be increasing due to
user preferences or changing system requirements, which create a shifting stress
distribution. The system would still be used in the foreseeable future, and the simulation
model must predict system performance and the most unreliable components given the
changing stresses associated with the new user requirements.

The basic method for component reliability models considering stress cycle
distribution counts all stress cycles regardless of any metric and acts as a baseline
explanation. The basic method also would provide the same results as the conventional

method of calculating a failure time distribution.

3.1.1 Without Load Adjustment
Assuming that a particular system or component or failure mechanisms are not
impacted by stress and that stress would not account for any differences, a simple counting

of the cycles would suffice as the rate of failure or where

t = Zl’ ti, (31)

where t = number of load with only one category
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This is the conventional way to record failure data where there is no metric or
measurement of force. The advantage of this method is that it provides a definite answer
and provides a failure time distribution. However, there are many disadvantages. This
method cannot account for a future stress profile as stress is not even considered. This
method also does not account for different levels of stress. In summary, the lack of stress
cycles and profiles in this traditional method proves to be disadvantageous.

3.1.2 Mean and Standard Deviation of Cycle Stress

The mean and standard deviation method requires more data as well as a useful stress
metric unit. By taking the standard deviation and average of each type of load, a Weibull
parameter can be calculated to represent the failure distribution. When # is a function of the
cycles or load and is altered by the mean and standard deviation, covariates 7 is shifted into

a more appropriate value to represent the future stress profile.

pleY o)
f(r)z—[—) e\, 7>0,>0,n>0 (3.2
n\n
f£-1
A(r)= ﬁ[ij (33)
n\n
n =TMNo eXp('blustress - bZGstress)
f(t) = Weibull distribution probability density function
B = Shape parameter
n = Adjusted Life Parameter
no = Initial Life Parameter
t = Failure Cycle

Ustress = average stress

ostress = Standard deviation of stresses

b1 = coefficient for mean stress

b, = coefficient for standard deviation

Mathematically, an increased stress profile can be considered by adjusting the mean

and standard deviation of every cycle to a higher level. As the mean and standard deviation
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increase, the exponential function decreases, causing # to decrease.

The advantages of this method is that impact of a force can be directly monitored and
can distinguish the load on a component due to increased force. The disadvantage would be
that a large and comprehensive data set is needed, large variability will also significantly
affect results, and the mean and standard deviation might not be sufficient in describing
different load profiles.

3.1.3 Relative Frequency of Cycle Stress

This last failure model provides the most robust parameters by organizing the
failure data, cyclic loads, or any other kind of metric unit into subcategories. Once these
subcategories are determined, a percentage number is given to each subcategory or in this
case xi. Any number of subcategories can exist and the load may increase or decrease
reliability by the simple calculation of changing x; into either a positive or negative value.
This method provides the most organized conditions as well as directly relates the
increased force, or stress on the subcomponent. However, the data must be representative
and excess variability impacts results. This method also requires more failure data points

than other methodes.

f(t)=E(£]B_le(‘:j, t>0,>0,n>0 (3.3

n\n

A1) :E(ljﬁ_l (3.4)
nwn

n =noexp(boxo + byxy + byx, + ....)

e



Xo = 1% relative frequency
X1 = 2nd relative frequency
X2 = 3rd relative frequency

3.2 Examples
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Since each cycle causes a distinct stress, each failure is associated with a different

stress profile. For example if an old Hornet airplane is launched, for that launch the stress

on the system will be less than that of the new Hornet which is 7,000 Ibs. heavier. Now if

only the old Hornets were launched until failure, the system should last longer than that of

the system which launched only the new Hornet aircraft. This example illustrates the

simplest case of how a failure cycle must be adjusted for stress as the stress of each failure

cycle contributes to accelerated failure times.

3.2.1 Stress and Standard Deviation of Stress

With each failure cycle, a stress and standard deviation is calculated. Table 3 is a

truncated example of the mean and standard deviation of the simulated data

Table 3. Truncated Data for Mean and Standard Deviation

Cycles to Failure Mean Stress (Ibs) Standard Deviation
184 635.98 200.22
320 723.16 202.31
377 599.88 226.54
170 730.699 174.35
540 478.50 200.03
141 685.75 228.69
369 508.51 227.00

This is only a subset from an original example data set.

produced a unique stress and these stresses are averaged

From Table 3 each system use

until a failure occurs. Once a

failure occurs, the cycles between failure or failure count as well as the mean and standard

* This is simulated data and does not represent actual aircraft data.
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deviation are recorded. The example data includes types of planes each with different
stresses. A failure cycle was determined according to a Weibull distribution and the stress

was assigned for one of the three planes at each cycle.

With this data, the next step is to define the stress-life relationship. The future stress
profile is calculated based upon this current data set according to the mean and standard
deviation. Using accelerated life testing and the general log-linear model and a Weibull life
distribution, the general log linear equation parameters b, and b; are -0.0038 and -0.0014,
and an o of 4,712 cycles. This new Weibull distribution represents the future stress profile
as a function of the mean and standard deviation of the future aircraft fleet stress. Figure 5

is the Weibull plot of failure data as of the parameters mentioned.
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Beta=2.5091; A=4712.2971; b=-0.0014; Phi=-0.0038

Figure 5. Mean and Standard Deviation Weibull Life
Distribution Plot for future Stress Profile
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3.2.2 Relative Frequency

The relative frequency method operates under the same principal as the mean and
standard deviation but changes the input variables into a relative frequency; the relative
frequencies of the stresses are used to categorize stress into three different ranges. The
stresses are divided into proportions and are represented by the variables xi, x> and xs.
These relative frequencies must add up to one and can be divided even further, but for this

example only three categories were used.

The accelerated life model uses the relative frequencies to calculate an associated
coefficient bi. In the case of the mean and standard deviation each failure cycle had an
associated mean stress and deviation. Now each failure cycle has a proportion of categories
assigned to a failure cycle. This proportion is used by the accelerated life model to
calculate the necessary coefficients using the Maximum Likelihood Estimate (MLE)
method. Table 4 is a small example of data analyzed.

Table 4. Truncated Data for Relative Frequency Method

200-500 Ibs 500-700 Ibs 700-1000 Ibs
Cycle to Failure X1 X2 X3
184 0.26 0.34 0.40
320 0.20 0.10 0.70
377 0.41 0.18 0.41
170 0.12 0.24 0.64
540 0.68 0.12 0.20
141 0.16 0.34 0.50
369 0.67 0.16 0.30

For this example the stress levels were separated into three groups. One of high stress
(700-1000 Ibs.), moderate stress (500-700 Ibs.) and low stress (200-500 Ibs.). Each failure
cycle has a composition of each category. In the first row, the component failed at 184

cycles with 26% of cycles having low stress, 34% of cycles having moderate stress, and
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40% having high stress.

In this example, bz is equal to 0, which means that stresses in the most central category
do not increase or decrease 7. The variables b; and bz are calculated using the MLE using

software, and a log-linear model. The Weibull plot is shown in Figure 6.

Method 4
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Beta=2.5308; A=467.0917; b=-1.3348; Phi=0.7391

Figure 6. Relative Frequency Weibull Plot

In Table 4 the relative frequencies as well as the failure cycles are presented and the
data indicates that b; and bz are equal to 0.7 and -1.3 respectively. 7o is 467 cycles and B is

equal to 2.53. The future Weibull stress plot is shown in Figure 6.

Choosing a composition of only middle ranked stress cycles (x1 =0, x2=1,x3=0)
produces the same mean stress as a mixed set (x1 = 0.2, X2 = 0.6 , x3 = 0.2); however this
method may likely produce a lower # for the more diverse frequency set. The relative
frequency method penalizes the heavier stresses and causes the # to decrease due to a
negative exponential function. The lighter stress cycles cause # to increase; thus increasing

life.
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Both methods can create an accelerated life Weibull model based upon current data.
For the mean and standard deviation model, a mean and standard deviation must be
selected based on future operating profiles and an appropriate Weibull distribution
represents the failure cycles of that particular future stress profile with those chosen set of
values for the Weibull parameters. The relative frequencies also alter the current Weibull
distribution data into a future distribution in which the stresses change into a selected
frequency. Both methods are viable options when considering the overall stress because the
mean shifts as heavier and heavier aircraft are introduced into the fleet. With the relative
frequency method, the high stress category is increased, and thus, causing a shift in the

distribution and changing the stress profile.

4.0 Optimal Replacement Times

For every component in the Reliability Block Diagram, there is a preventive
maintenance schedule that must be calculated. However, when calculating the optimal time
the decision maker must be careful to balance the risks of the failure versus the risks of
performing very conservative maintenance. As with everything in the world today, excess
maintenance costs money and time. This maintenance may not even be necessary. For
example, if a car had to replace the brakes every time it was driven, it would become
extremely expensive to maintain. This would be because of the constant purchasing of
brake pads. However, the labor involved in installing the pads also takes time. While this
will surely decrease the chance of the break pad being overused, it is not necessary for all
the excess maintenance. Although the car brake example is an extreme case the underlying
message was that for a preventive maintenance to be effective a balance must be found
between the cost of unexpected repair and the cost of the preventive maintenance.

“Maintenance experts agree that replacing a component before it fails (preventively) may,
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under certain circumstances, make better economic sense than replacing the component
when it fails (correctively). The key is to determine whether the preventive replacement of
a specific component is appropriate and, if so, to identify the best time to replace the
component. This article presents an examination of the simple concept of determining an
optimum replacement time for a single component” (Reliasoft 2009).

Although the preventive maintenance schedule is quickly calculated using a button
in BlockSim, the calculation done by the program is balancing the cost factor of the
unwanted repair and the preventive maintenance. Two conditions must be met for an
optimal preventive maintenance time to be scheduled

Once the failure distribution is known or assumed then a preventive maintenance
schedule can be determined. However, the failure rates less than or equal to one. A Weibull
shape parameter ($) of 1 or exponential failure distribution would mean that the doing
preventive maintenance would serve no purpose as the failure rate would remain the same.
A Weibull shape parameter () less than 1 means that the component seems to be more
reliable as time passes and thus replacing the component is unwise. Of course when
encountering problems in a practical setting data issues must be observed and accounted
for. Once it is known that the Weibull shape parameter (5) is greater than 1 another
condition must be satisfied before continuing. “The second requirement to justify
preventive replacement depends on the component and can be satisfied if the cost of a
planned or preventive replacement (Cp) is less than the cost of an unplanned or corrective
replacement (Cu)” (Reliasoft 2009). If the cost of preventive maintenance is more than the
cost of the failure, the wise and least expensive choice would be to just replace the

components.
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When the two conditions are met the optimum preventive maintenance time can be
calculated. The corrective cost increases as time increases due to the failure rate increasing,
thus indicating that as time passes the component is more likely to fail. “The preventive
replacement costs will decrease as the time interval increases because the more time passes,
the fewer preventive replacement actions will need to be performed. The total cost will be
the sum of these two costs. At one point (timet), a minimum cost point exists that
determines the optimum preventive replacement time for the component” (Reliasoft).

Figure 7 is the graph that depicts the optimal replacement point. It is the point at which the

corrective cost and the preventative cost meet.

Cost Per Operating Unit of Time

Corrective Cost

Operating Time

Figure 7. Operating Time Vs Cost Per Unit of Time

Figure 7 is a representation of the following formula:

__ TotalExpected Replacement Cost Per Cycle
f(t) - Expected Cycle length (41)
Cp "R(£)+Cy[1—R(t)]
Sp. = (4.2)

f(fR(s)ds
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Where C;, is the cost for a preventative action, Cy is the cost for each unplanned or
unwanted repair, and R(t) is the reliability function of the particular component. The

optimum replacement time can be obtained by solving for t when:

a[f(t)]
ot

=0 (4.3)

For every component in this thesis an optimal preventive maintenance schedule
time has been calculated. Each preventive maintenance cost is independent of the cost for
the system. Including the preventive maintenance with the unknown system configuration
would be troublesome as the input criteria will expand thus exponentially increasing the
search area for the objective function. No longer is there a single variable for cost. Now the
redundancy cost and the preventive maintenance cost would have a relationship and make
this problem a two variable neighborhood search, which may be too arduous for manual
inputs. For this case, preventive maintenance costs are calculated separately and not

included in the cost for system redundancy.

5.0 Estimating and Optimizing System Availability

If future stress distribution and the associated probability are known or can be
estimated, the expected availability can be calculated. It is the metric used to calculate an
optimal or acceptable solution, for a particular preventive maintenance time and
redundancy level.

An optimization problem is as follows:
max E[As(X, T)]
st ZCiXi <C

xie{l,23.}, =0 (5.0
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X =(X1,X2, X3,.....)

T =(T1,T2, T3,.....)

Xi = the redundancy level for component i

7i = preventative maintenance for component i in the environment

Adding a stress level the expected availability is a function of a stress vector.

max E[As(S,x,T)] (5.2

The stress has an element which coincides with different probabilistic future with
probability pi. Each S represents a different future stress profile. Each stress profile has a
defined distribution with a mean or variance or is represented by a relative frequency of the

composition of aircraft.

S €{51,52,53,S4, e evevr, Sr}

S1~ Fs1(51), w = E[S;], o =Var[S]
S~ Fsz(Sz), py = E[S;], o0, =Var([S,]

Sy~ Fsr(Sr)1 Uy = E[Sr]: Op = Var[Sr] (53)
where S, = stress profile in future r
Mr = mean stress of future r
or = standard deviation of stress of future r

The constraints are to minimize cost as each redundancy has an associated cost with
parts and maintenance. To calculate the expected availability, the sum of the probable

availabilities for each stress, redundancy, and preventive maintenance must be added and

weighted to the probable outcome.

E[A,(S,x,T)] = ipi A(Si X, 7) (5.4)
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6.0 Redundancy Allocation Problem

Once all the reliability coefficients are calculated using accelerated life testing, a
design decision must be made. Each component has a Weibull distributed time to failure, a
preventive maintenance schedule, a corrective maintenance schedule, the cost for the
component, and the cost for the repair. It is assumed that the cost for preventive
maintenance is independent of the cost of redundancy. This is to assure that once a
redundancy is chosen the preventive maintenance costs for a component is the same,
although this might not be the case as less preventive maintenance may be necessary for the
redundant system. The data is all collected into a simulation program, but all the
redundancy levels are calculated manually.

The Redundancy Allocation Problem (RAP) has been solved many times and in
different ways. Mathematical programming techniques such as integer programming and
dynamic programming have been used to solve a redundancy problem. This thesis utilizes a
Tabu search method to solve the RAP for this paper. Two different types of RAP are
presented in this paper. One is where only one vender is available for a component, the
other RAP is where a choice can be made to purchase from a different vendor with a higher
reliability.

The most common RAP is the series system of s independent k-out-of-n:G systems.
The subsystem is working if k out of the n components is operational. According to
(Kulturel-Konak et al., 2003) this problem has been studied many times over and different
approaches can be presented in (Tillman et al. 1997). This paper only deals with a Tabu
Search Redundancy Allocation Problem (TSRAP) and thus the other approaches are not

fully disclosed.
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In the Tabu search approach the moves are deterministic which reduces variability
in the search parameters. The approach for this paper is based upon the paper written by
Kulturel-Konak et al. (2003). Some changes to Kulturel-Konak (2003) TSRAP and the
problem presented in this paper are:

1.) the initial solution always starts from a simple 5 component series system

2.) there is a cost associated with each component and a budget. A solution that
exceeds the budget is no longer a feasible solution. Taken from (Kulturel-Konak, 2003).
The following terms are used to describe the problem: BEST MOVE (best solution that
would be a result from taking any of the current available moves), BEST SO FAR (best
solution so far in the search, it may be feasible or infeasible), BEST FEASIBLE SO FAR
(best feasible solution found so far in the search.) These steps are altered to fit the needs of
the paper and will thus reflect changes. An example will be provided in the later called
simulation. This is a mathematical as well as theoretical explanation of TSRAP regarding

this paper.

Step 0: Start with an accelerated life altered Weibull distribution of the 5

components in the system.

Step 1: Search the neighborhood for all possible defined moves for each subsystem.
For larger problems a list of candidate solutions may have used (Glover, 1997) Two
kinds of moves are possible for this problem. For the TSRAP for only one component
choice only includes the first move; however, the multiple component choice has two
possible moves. The first type of move is to change the number of components by adding
one ( xij — Xij + 1 ). The second type of move is to change the type of component is to

change the component choice (xij — Xik for j # k), for each subsystem. Any addition or
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change in component is considered a singular move. Subsystems are changed out one at a
time; thus the reliability in theory can be recalculated and updated accordingly. The moves
are performed independently and compared to the best move so far. If this solution, the best
move, is infeasible; due to over budget, or is on the Tabu list, then the move is disallowed
and must be restarted. If the solution is not Tabu and is under the cost constraint, then the
best so far solution is accepted.

Step 2: Update the Tabu List

The move is accepted and added into the Tabu list. If the Tabu list is full, the older
Tabu list entry is deleted. To know if an entry on the Tabu list is feasible or infeasible, the
system cost and weight are noted.

Step 3: Check the stopping criterion

Finally the stopping criterion is checked. It is defined as the maximum
number of iterations without finding an improvement in the BEST
FEASIBLE SO FAR. If it is reached the search is concluded and the BEST
FEASIBLE SO FAR solution is the TSRAP recommended solution.

Again these steps are taken from (Kulturel-Konak et al, 2003) with alterations. In
this TSRAP subtracting a component is not a feasible move because the initial solution
always needs 5 components and subtracting a component will not add reliability. However,
without the subtracting of a component the Tabu search cannot move as quickly and thus it
may be useful to incorporate, but this leads to another dilemma. Simulation is done
manually and thus takes an extraordinary amount of time. This factor leads to shorting the

number of models that most calculated and accounted for.
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For the stopping criterion, the assumed number of iterations was first set to 8
solutions and then later changed to 5. It is noted in the simulation examples which
examples and used the 8 iterations without improvement and which used 5 iterations.

The basic rule of any simulation is to get the best and most accurate data possible.
Since the simulation only runs on what inputs are given if the inputs have uncertainties the
simulation will not give a result that will accurately depict future metrics. Thus the adage,
“garbage in garbage out” comes from bad data. Bad data can be issues of data collection,
clear on uncertain metric, data formatting, and even simple typos. Although it may be
expensive, the best data might come from computer automated systems, as the human error
component may be significantly reduced.

Once the data is gathered and collected an Accelerated Life Test (ALT) will be run
to model future stresses. The general log linear will be chosen to represent the life stress
relationship because of the availability of multiple covariates to represent an increasing or
decreasing life as a function of, in this case mean and standard deviation or frequency of
the stresses of the present data.

Once the stress profiles’ variables are determined the first part of the simulation
begins. Since each component’s optimum component replacement time is determined by
the cost of the part and the failure distribution, this is calculated first. Each component has
an optimal preventive maintenance schedule in which preventive maintenance is performed
to prolong the life of a component. This preventive maintenance schedule and the time for
preventive and corrective maintenance to complete are strong factors in calculating the
availability.

When all of the stress profiles and preventive and corrective maintenance times are

inputted, the redundancy level must be set. To determine an acceptable redundancy level, a
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certain cost threshold is chosen. In most cases the more reliable component will cost more
and thus this simulation model will also follow that same concept. Once all the redundancy
is set in place, the optimal system configuration is complete but for only one possible
future. The accelerated life test, preventive maintenance, corrective maintenance, and Tabu
search must be repeated for any amount of possible futures desired.

After creating a model for each possible future, the expected availability will be
calculated using the sum of expected probabilities. Figure 8 is a flow chart which
represents the steps in finding the availability of the system with an uncertain future stress
profile from computing the times to failure to the final calculation of the expected future

system availability.

Calculate Run through

Gather » the ALT » software toreceive » Check the life ys
Data . .. stress graphs
variable coefficients

Choose the baseline

Calculate Run redundancy
Availability of — protacol with tabu stress or stresses
for the possible

good solution search
futures

Average availability
over all possible
futures

Figure 8. Flow Chart of Data to Simulation Model
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7.0 Examples

The general log linear life stress relationship is utilized to create a futuristic stress
profile with data acquired in the present. This example uses the mean and standard
deviation method as an example model. The inspiration of this comes from the Navy air
fleet. As aircrafts land on a carrier, each landing impacts the arresting gear system and
causes stress. Since the number of arrestments between each corrective action as well as the
tension recorded both the mean and standard deviation of each time to failure can be
recorded with relative ease. Shown in Figure 8 is a database that calculates the mean time

to failure as well as a corresponding mean tension to failure and standard deviation to

failure.
All Access Objects v « || 3 Force
Tables e Mean - STD - F/s = |Repair Time = ship ~ Cat_Numbel ~
2| Braking_Coefficients 53.1714 674141 F 353 21853 1
B Buttress Reading Sheet 203.8778 78.6838 F 122 21853 1
B cattTos CVNTS 195.95 82.8814 F 110 21853 1
186.2473 78.3255 F 245 21853 1
B catapult Track Channel Measurement 1585358 1007785 F ol 71553 1
=3 Catapult Track Channel Upper Flange Measurement 129.2778 34.8389 F 691 21853 1
=] Catapult Track Channel Upper Flange Measurement_Inboard 146.9643 67.9061 F 565 21853 1
j Catapult Track Channel Upper Flange Measurement_Outboard 1348163 98.8434 F 5421853 1
j Catapult Track Caver Channel Measurement 222152 04022 F 4 21853 L
131.863 317944 F 95 21853 1
=i} Catapult Track Caver Channel Measurement_Inboard 137.2673 29.9541 F 174 21853 1
B Catapult Track Cover Channel Measurement_Outboard 139.0579 37.4282 F 176 21853 1
B on_uic 94.0448 49.902 F 261 21853 1
j Cylinder Slot Measurement 93.1268 54.8359 F 734 21853 1
B cylinder sliot Measurement_Inboard 264159 0.1847 F 321853 L
182.7766 53.8641 F 331 21853 1
B cylinder Slot Measurement_Outboard 76.8051 66,648 F 10 21853 1
B e 141.293 38.4068 F 50 21853 1
B Ec eseription 180.0164 65.5755 F 422 21853 1
B Force 144.0221 52.7349 F 620 21853 1
2 Hydraulic Fluid History Report 162.0819 89.6176 F 1399 21853 1
135.0244 46.4496 F 640 21853 1
B buriraulic Dimn Darfarmanra Nata

Figure 9. Database Calculates Mean and Standard Deviation of Tension along with Frequency

Once the Repair Time (Mean Time Between Failure), Mean (Average Force Unit to
Failure), and Standard Deviation (Standard Deviation of Force Units) are calculated a
futuristic baseline must be determined. As a general rule with any ALT the baseline should
not cause any failure not caused by the original dataset. For this example set, the raw data

is shown in Table 5. The Repair Time, Mean, and Standard Deviation are calculated for the
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raw data to be inputted into ALT software. The MTBF (Mean Time Between Failures) is
the time between each repair not including logistics downtime and the actual repair time.
This MTBF is counted in cycles or loads. In the Navy example one cycle would represent a
single launch or single recovery. These launches/recoveries are counted until a failure
occurs, the time between failures is the mean time to failure or the MTBF. However in each
cycle there is a tension recorded. Once a failure occurs all of these tensions are summed
and averaged over the course of the failure cycle. This is the mean force unit recorded in
the column.

Tension _ SMITR Tension (6 1)

Mean Time To Repair MTTR

The Std column is simply the standard deviation over the course of the cycles to failure

(CTF).

Table 5 Raw Data Table

CTF Mean Std
495 463" 443
759 490 253
333 536 643
554 678 245
547 905 543
561 986 546
682 1070 242
611 1122 760
345 1543 234
250 1789 683

After calculating the desired variable needed for the ALT, the a; and a; parameters

must be calculated to shift the failure distribution according to an increasing stress load.

* Simulated data is all in pound and does not represent actual aircraft data.
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This is done simply through software; however some check still must be made. The first
check is to see the fit of the Weibull distribution with the parameters and the future stress
chosen. Figure 9 is a probability plot of a the component raw data which is exposed to the
future stresses of 2400 force units and a standard deviation of 600 units. The distribution
parameters are f = 4.4889, ao = 6.7852, a1= -0.0004 o= -0.0002. By looking at Figure 9,

one can deduce that the distribution fits the data accurately.

Akira Hzds Bxample 1
Use Level Probabiity Weibull

99.000

50,000

Unreliability

5,000

e 1000.000
Time
Beta=4.4889; Alpha(0)=6.7852; Alpha(1)=-0.0004; Alpha(2)=-0.0002

Figure 10. Probability Plot of Table 5

While the data in this paper shows simulated times, a thorough quality assessment
should be performed on real data. A simple life versus stress plot should show that as the
load increases the life parameter of the component should decrease. Depending on the type
of product, an increase in the variance may or may not increase the life parameter. What
must be determined beforehand is if the component is more durable for heavy loads. In
most cases a heavier load will correspond to more wear than a lighter load. An increase in

variance means that the component accrues a diverse set of stresses both heavier and
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lighter. However, increasing stresses tend to impact a typical component more severely
than a linearly related lighter load, although this might not be case all the time. For the
arresting and launching systems of the Navy, a higher variance and higher mean of stress
should decrease the life parameter. In Figure 10 the stress (Average Force Unit) is
compared to the life and in Figure 11 another stress (Std of the Force unit) is shown. Figure
10 depicts a cleaner and more comprehensible 3-dimensional graph of the pdf vs. force vs.

life.

Akira Hada Example 1
Life vs Stress
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Figure 11. Force Units (2400) vs Life
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Figure 12. Standard Deviation vs Life
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Figure 13. 3D Model Standard Deviation vs Life
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After obtaining the accelerated life parameters and results, the optimal component

replacement must be calculated. The basis of optimal component replacement takes the cost

of the failure and compares that cost to the accumulated cost of preventive maintenance
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accounting for the failure distribution. This optimal component replacement time is utilized
to determine when a component should be replaced in the system. This is all done when
creating a policy is created.

After determining all the inputs to the availability metric for one possible future, the
redundancy of the level of the system must be determined. In this example no component
switching is assumed which means that only one component is available so the only
possible action to improve reliability would be to add a redundancy. A cost unit will
constrain the system and the objective is to maximize availability within the cost
constraints. Multiple component switching has more possible actions due to the ability to
choose a different more reliable component albeit at a higher price and also increases the
iterations for the Tabu search.

Some assumptions are made to simplify this problem. The preventive maintenance
and optimal replacement schedules remain constant and do not change while adding the
redundancy. This assumption is made to reduce the problem set, but in a typical scenario
adding redundancy to certain systems can reduce the amount of preventive maintenance
costs and also depending on the type of stand-by system the optimal replacement maybe
different as well. Think for example of a cold stand-by system, no preventive maintenance
will be needed on the part that is not active as it does not accumulate any wear, the
replacement component will also not be purchased if the first failure occurs but will
probably be replaced sometime when the second fails. Although the optimal preventive
maintenance times does not change mathematically as continually providing preventive
maintenance on the non-redundant component will provide a longer life and a more cost
efficient system. The slack provided by the redundancy might enable decision makes to

hold off on preventive maintenance or purchasing a replacement due to the availability of
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the redundancy. This may especially be true if the preventive maintenance is a long and
arduous procedure or if the replacement component is expensive. However, the assumption
in this paper is that all optimum replacement times and preventive maintenance schedules
are independent of the redundancy levels and thus can be calculated separated. In future
possible works this issue may be addressed; however currently this is beyond the scope of
this project.

The redundancy level is determined by a Tabu search, for this example the Tabu list
is made short and the Tabu list is set to 4 items because the solution set is rather small.
After calculated all parameters and redundancy levels for one possible future, the process
must be repeated for multiple futures. For this example, the preventive maintenance times
and repair times have been held constant but in a more realistic example these times will
not be a constant value but a distribution of times as well as different components having
different repair and preventive maintenance times. In other words, using a car as an
example, the time it takes to change a tire will be significantly less than restoring a
transmission. Later in this thesis other problems will demonstrate changes in the preventive
maintenance times as well as the changes in the costs associated with the optimal
replacement time.

For all examples done, only three possible futures will be addressed. Other possible
profiles maybe be added to the method and would be done by simply repeating the steps
explained above. The estimated availability is calculated as the sum of the weighted
probabilities of each future. The probability of each future is chosen on the likelihood of
the event to occur; there is no absolute way to predict this occurrence, so one must choose
wisely on either experience, intuition, or some other basis. When calculating the future

stresses the base or future stresses will be inputted and thus will change the parameters.
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7.1 Tabu Search : Single Component

Block 1 Block2 Block3 Block4  Block 5

Figure 14. Basic Reliability Block Diagram

Figure 14 is designated as the initial solution because the system does not have any
redundancy as this system is still in operation. All improvements are made to this initial
system and the goal is to reduce the cost of the reliability while maintaining the maximum
reliability allowed. The cost is set at a certain value. In other words a budget is given and
the Tabu search will not find a solution in which the budget is exceeded.

Each block has a Weibull failure time distribution determined by data collected at
the component level. The failure time distribution is not the only important property
inputted into the simulation. The corrective maintenance time as well as the preventive
maintenance time is inputted as well. These times represent the length of time it takes for a
corrective or preventive maintenance action to occur, which effects system availability for
during maintenance components are being repaired. If the system must be taken down for
repair, then this will affect availability.

In a previous section the move is mentioned for only one component choice.

“The move is to change the number of components by adding one ( xi; — Xij + 1).

Any addition or change in component is considered a singular move. Subsystems

are changed out one at a time; thus the reliability in theory can be recalculated and

update accordingly. The moves are performed independently and compared to the
best move so far. If this solution, the best move, is infeasible; due to over budget, or

is on the Tabu list, then the move is disallowed and must be restarted. If the solution
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is not Tabu and is under the cost constraint than the best so far solution is
accepted.”
The initial system starts with 5 subsystems and adds a redundant component at each move.
The first neighborhood is defined in Figure 15. (Dummy blocks are used to allow the

software to complete the simulation.)

Figure 15. Possible Solutions for One Iteration in One Possible Future

Each component has a redundancy added iteratively and a simulation is run to
calculate the reliability for each system. When a redundancy is added the cost of the
component is noted. In the first few iterations the cost is not a factor as the budget is far
below the limit. However, in as the redundancy levels increase the cost will increase as
well and the eye must be kept on the budget to ensure that the cost is not greater than the
budget. When running the simulation for this example adding a redundancy to component 2
showed the greatest increase in availability to the system and thus the candidate solution
now becomes Figure 16 or the solution which is under budget and has the greatest

calculated availability.

L <Bluck2\ L L
Start  Block 1 /Elock3 Block4 Block 5

Block 2

Figure 16. Optimal Solution for the First Iteration
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The optimal solution does this is by no means surprising. The component, block 2,
has the most unreliable failure distribution and providing redundancy to this component
would seem intuitive. This BEST SO FAR system is now used as a basis for the Tabu
search. However, adding the same component will now be forbidden and force a search to
multiple neighborhoods. Each solution will then be compared and a new solution will be
chosen as the BEST SO FAR system. Each BEST SO FAR system will eventually be
compared until the stopping condition is met.

The parameters for the Weibull are as follows, with a time to replace set at 100.
This is depicted in the table below. The cost constraint used in the single case is 80. In a
more robust model this cost would be defined either in monetary value, time, or some other
predetermined metric.

After inputting the variables in Table 6 below, the Tabu search was run. Then the most

reliable solution of the iterations is chosen and the move added to the Tabu list.

Table 6. Eta Values for Future Events

Component Beta 1 2 3
Block 1 34 305" 346 479
Block 2 2.6 451 634 834
Block 3 3.78 221 567 743
Block 4 1.4 103 293 409
Block 5 2.7 266 854 1002

7.1.1 Single Component: Results
The single component case is fairly simple as there is no competing component.

Each subsystem only has one option and the stopping condition and cost constraint become

* Data used for this thesis was provided by the Navy. This data needed another conversion rate to get actual
units. At the time of calculating these examples, the Navy did not authorize the release of actual units in this
thesis and thus simulated or base line Navy units were used to calculate these results.
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the main factors as the algorithm adds a redundant component to increase availability until
the stopping condition is met.

In this example, the eta and the beta parameter are already calculated for each
future. Each future represents a possible loading condition. In this case, all futures
experienced increasing loads. Future 1 is the mildest; however the force experienced on
this system is still more than the current force the system is experiencing. Future 2
represents a slightly heavier load and future 3 represents an even heavier load than future 2.

Noticing that in the single component case where the cost of a component is set
equally a pattern begins to emerge when running future scenarios. Although this section’s
intention was to go into detail of the single component case, there seemed to be no

particularly interesting finding. The final structure of the component is shown in Figure 17.

Block 4

Figure 17. Single Component Final Structure
All three futures converged to the same solution, a 2-2-2-3-2 system. For each future the
configuration may be the same. Combining the availabilities and the probabilities, the

probabilistic availability is calculated as 0.8841, which means that the system will be

available 88.41% of the time.

Table 7. Single Component Availability

Future Availabili Probabilit
1 0.8904 0.8
2 0.8607 0.1

3 0.8569 0.1
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7.2 Tabu Search: Multiple Components

In this example a multiple component system represents a system in which there are
two choices available for each component. One choice is the standard component in which
the cost is the same; however, the designer may choose an alternative component with
increased reliability but at a higher cost. Each component is different so there is no mixing
of choices within the system; however, it is possible to mix within the subsystem.

To identify the difference between the original component and the more expensive
and reliable component, the original component is labeled with the name “Block™ and the

more reliable component is labeled with the name “Part”.

Table 8. Original Component vs Alternative Component Costs

Component
Type 1 2 3 4 5
Block 5 6 8 9 6
Part 7 9 10 12 9

Table 9 represents the difference between the costs from a block component
(original) to a part component (more reliable). The cost represents a cost unit not associated
with a dollar or currency value. The first multiple component examples choose arbitrary
cost with the only rule being that the more reliable component is more expensive than the
original. In the second example, the cost of the more reliable component’s cost is reflected
in the reliability increase of the component.

All components are assumed to have a Weibull failure time distribution; thus all
components have a Beta and Eta parameter. A larger numerical eta usually corresponds to a

longer average life when holding the beta parameter constant. In Table 10, all the
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equivalent components (i.e., Part 1 and Block 1) have equivalent betas. However, the more
expensive component (Part) has a higher life parameter; thus making the component more
reliable. The other columns in the table are the corrective times or the time it takes for a
corrective action to be completed and the preventive time, the time it takes for a preventive
action to be completed. The column values are not calculated nor were they pulled from a
data source. However, in this paper these times were made to be consistent and followed
the logic that a corrective maintenance action would take longer than a preventative
maintenance action. The final column is the optimal replacement time of each component
given the distribution parameters of the Weibull distribution and a 4 to 1 ratio of
unexpected replacement cost to a planned replacement cost or the cost of a failure versus a

replacement.

Table 9. Information Used for Components

Corrective | Preventive Optimal
Type Beta Eta Time Time Replacement
Block 1 3.3 890 100 20 498.2027
Block 2 2.6 1455 100 20 804.8099
Block 3 3.9 247 100 20 142.2642
Block 4 1.25 609 100 20 1014.3987
Block 5 2.6 450 100 20 248.9103
Part 1 3.3 1000 100 20 559.7783
Part 2 2.6 1700 100 20 940.3277
Part 3 3.9 800 100 20 460.7748
Part 4 1.25 750 100 20 1249.2595
Part 5 2.6 700 100 20 387.1937

Once all the variables are entered into the reliability block diagram, the search for
the optimal solution must be conducted. As stated in a previous section, every system starts
with a 5 subcomponent system which contains the “Block” components. Similar to the

single component choice, one by one a component has a redundant component added,
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switched, or changed. However, a key difference in the multiple component example is
more choices are available for each subsystem since the “Part” component can now be
implemented. This widens the possible solutions that can be accessible as there are more
possible combinations due to the availability of another choice. Figure 18 depicts the

additional choices available for the multiple component case.

Figure 18. ""Block™ Component is Replaced with a Single *"Part" component

In the multiple component case each neighborhood search has more solutions;
however, the more reliable component is initially being compared with a redundant
configuration of the original. Although not a dire problem for a computer, the manual Tabu
search is slow moving and to get a fair comparison the Tabu search must have a high

number of iterations; this also requires a proper stopping condition.
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7.2.1 Greater Cost for Components with Higher Availability

As stated in the previous section, the initial solution starts with a complete system
with no redundancy. Keeping everything consistent, the standard component is labeled
“Block”, while the more reliable component is labeled “Part”. Table 9 is the information
table that contains all the basic information obtained by test data or empirical data. The
corrective distribution is the distribution of the repair time for an unexpected failure event.
This corrective distribution is set for a constant of 20 units. The preventive distribution is
the distribution of the repair time of an expected failure event. This preventive distribution
is also set as a constant of 5 units. The assumption is that the system does not occur
downtime while the redundant components are being worked upon, however when a
subcomponent is down there is a downtime. This downtime is equivalent to the corrective
distribution constant of 20 time units. The last column depicts the replacement policy. This
can be altered to the user’s discretion but in this thesis the replacement policy is calculated
by the individual component and replaced at an optimal condition explained in the optimal
component replacement section.

Table 10. Variables for Alta Model

Number of Identical Blocks| Block FBaIicl)Lf:(e FBaIicl)L?:(e Corrective | Preventive Pravaitie: Preventive:

Block Name | Identical Series (Y) Failure Distr Distr Distr Distr Policy ’ Misc. Cost
Blocks Parallel (N) Distr P1 P P1 P1 Per Action

1 |Block1 N/A N/A WBL 2.5 1100 20 5 Preventive Policy6 0
2 |Block 2 N/A N/A WBL 1.6 637 20 5 Preventive Policy7 0
3 |Block3 N/A N/A WBL 4.3 583 20 5 Preventive Policy8 0
4 |Block 4 N/A N/A WBL 3.7 820 20 5 Preventive Policy9 0
5 |Block 5 N/A N/A WBL 1.8 358 20 5 Preventive Policy10 0
6 |Partl N/A N/A WBL 2.5 1200 20 5 Preventive Policyl 0
7 |Part2 N/A N/A WBL 1.6 700 20 5 Preventive Policy2 0
8 |Part3 N/A N/A WBL 4.3 650 20 5 Preventive Policy3 0
9 |Part4 N/A N/A WBL 3.7 890 20 5 Preventive Policy4 0
10 |Part5 N/A N/A WBL 1.8 450 20 5 Preventive Policy5 0

The original data is summarized in the Table 10. However, with the introduction of

new stresses the ALTA software will calculate new parameters to reflect the predicted
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stress profiles. In this example, there are three possible futures, a future in which no
changes occur and the stress on the component remains the same; a future in which the
mean and standard deviation of the component slightly increase; and finally a future in
which the mean significantly rises and the variation also rises. The respected covariates for
each future stress profiles are as follows in Table 11.

Table 11. Mean and Standard Deviations of Loads

Future Profile 1 | Future Profile 2 | Future Profile 3
Mean Std Mean Std Mean Std

58000 | 28000 | 65000 | 30000 | 80000 | 32000

Each component’s Weibull variables are recalculated to represent the three distinct
futures. All components were checked to make sure that each mean vs. life and mean vs.
std graph had a negative correlation. The results and the cost are depicted in Table 9.

Cost is calculated in two methods. The first method is to arbitrarily assign an
increased cost to the more reliable component. For example, blockl can be replaced by
partl, which has a higher availability. However, partl is more expensive by some cost with
no real basis aside from the higher availability. The second method used to calculate cost is
by taking a relationship of the cost unit multiplied by the ratio of the reliability, or the
Block reliability over the Part reliability. These costs were only determined using the
multiple component examples, as the component has two options in which the price can be

changed. In the previous example, (single component) there was only one cost.
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7.2.2 Multiple Component Basic Model: Future 1

The first profile to go through the redundancy allocation Tabu search is the profile
with a mean of 58,000 and a standard deviation of 28,000. This profile represents a future
in which no additional force has been added and thus this profile mimics the present stress
profile. The system model has 5 subsystems and each subsystem has a choice of 2
components. The nomenclature used to describe this redundant system is simple, a
numerical value represents the number of components from the less reliable component or
the Block, an alphabetical value represents the more reliable component or the Part. The
actual value of the number or letter determines how many of that particular component is in
the subsystem. Each subsystem is also separated by b — or _ . For example a 1_b 2 bb
system is a system in which the first subsystem has one block component, the second
system one part component, the third subsystem having two part components. Table 12 is
the first iteration of the first future profile example and the associated move added to the
Tabu list. The stopping condition is 6 consecutive iterations without an improvement and a

cost constraint of 80 units.

The first future is a future with the lightest aircrafts. Although an increase is
experienced, it is now one which is not too different from the current loads the system is

facing now. The initial iteration and availabilities are given in the Table 12 below.



Table 12. Initial Iteration

Structure Awvailability
2-1-1-1-1
1-2-1-1-1
1-1-2-1-1
1-1-1-2-1
1-1-1-1-2
b-1-1-1-1
1-b-1-1-1
1-1-b-1-1
1-1-1-b-1
1-1-1-1-b

74,2451
73.8604
75,7653
52.65232
74,7439
74.01
73.5959
75,7653
79.0843
74,2716
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The common factor among all systems in all futures is that intially redundancy is

added to components 3 and 4. This is logical as these are the most unreliability components

and are thus availability will increase more dramatically as redundancy is built for these

components. Althought these are different possible futures with different calculated failure

functions (different parameters) the change is not drastic enough to see an initial difference

of the systems redundancy in any future. It is safe to say that these are components are the

low hanging fruit of the system.

Table 13. Iteration 2

Structure
1-1-1-1b-1
2-1-1-2-1
1-2-1-2-1
1-1-2-2-1
1-1-2-2-1
b-1-1-2-1
1-b-1-2-1
1-1-b-2-1
1-1-2-1-b

Cost
45
48
49
51
49
45
46
47
52

Availability
83.1672
83.4027
82.8337
85.5401
84.0462

83.05973
82.5971
83.8725
82.6232
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A unique instance occurs during iteration 4, at this point the chosen feasible
solution is 1-1-2-2-b with an availability of 87.2991. Table 14 shows iteration 3 and 4 with
the structure and the availabilities of each system. Highlighted in red are the most reliable
(highest availability) in this iteration. As seen the move that takes 1-1-2-2-b to 1-1-b-2-2 or
from iteration 3 to iteration 4 is in actuality a switching of components. While this move is
not significant in itself, in this project finding a better solution usually does not occur by
switching. This is the first and only case in which switching the structure of the
components gives a better solution. Switching the structure provides the Tabu search to
change the searchable area so the algorithm is limited to the local area. In this case, the
searchable region for the solution switched areas moving the local of the best solution for

the problem.

Table 14 Iteration 3 and 4

it3 it4

switch Switchto b

2-1-1-2-1 83.4027  b-1-2-2-b 87.2991
1-2-1-2-1 82.8337  1-b-2-2-b 87.3609
1-1-2-2-1 85.5401  1-1-b-2-b 87.7835
1-1-1-2-2 84.0462 1-1-2-1b-1b = 88.1295
switchto b

comp Switch

b-1-2-2-1 86.2643

1-b-2-2-1 86.2812 b-1-2-2-1 86.3031
1-1-1b-2-1 86.4706 1-b-2-2-1 86.3396
1-1-2-1b-1 87.1935  1-1-b-2-2 88.5637
1-1-2-2-b 87.2991 | 1-1-2-b-2 84.5036
add regular add regular

2-1-2-2-1 86.6421 2-1-2-2-1-b  87.9385
1-2-2-2-1 85.798 1-2-2-2-b 87.6462

1-1-2-2-2- 87.2823 1-1-2-2-b 88.326
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Each iteration added a component to the least reliable subsystem until the 9™
iteration, shown in Table 15. In the 9" iteration, any additionally component added to the
feasible solution causes a violation of the cost parameter and thus no longer becomes a
feasible solution. Switching provides no new benefit as those solutions have been explored
or are over cost as well. Changing the component to an alternate component is the only
method which can possibly allow the availability to increase and at the same time meet the

constraint of 80 cost units, but this does not occur during the stopping condition.

Table 15. Over Cost

Iteration & 2 2 1b 1b 1b

add all over cost

change

1b 2 1b 1b_1b 78 93.59
2_1b_1b_1b_1b 79 93 87

rest over cost

switching will have no effect
adding will have no effect
changing will go over

The Tabu search finds a good solution which has the structure, 2 —1b-1b-1b-1b and an

availability of 93.87 percent.

7.2.3 Multiple Component Basic Model: Second Future

The second possible future’s Tabu list is provided by Table 16

Table 16 Tabu list

Tabu

add to 4th release
add to 3rd release
cthange 3to b release
add 5th release
add to first release
change lstto b release

add to 4th

second componentto b
change 3tc b

switch 3rd with 1st
switch 2nd with third
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Iterations 1 to 3 follow a generic pattern, where the most unreliable component has

redundancy added. It is not until Iteration 4 where a new component is introduced and is

chosen as the best solution for that iteration. (Availabilities are listed on the right, all

solutions are under cost).

Iteration 4
add

2-1-1b-2-1
1-2-1b-2-1
1-1-1b-2-2

change to b
b-1-1b-2-1
1-b-1b-2-1
1-1-1b-1b-1
1-1-1b-2-b

switch

1b-1-1-2-1
1-1b-1-2-1
1-1-2-1b-1
1-1-1-2-1b

Table 17. Iterations of the Second Future

82.308
79.8618

B2.795

80.9623
186777
79.8256

0.7808

78.0805
71.2589
0.7983
71.605

iteration 5
2-1-1b-2-2
1-2-1b-2-2

change to b
b-1-1b-2-2
1-b-1b-2-2
1-1-1b-1b-2
1-1-1b-2-1b

switch

2-1-1b-2-1
1-2-1b-2-1
1-1-2-2-1b
1-1-2-1b-2

W

0.845%

0.731
0.75326
0.8326

0.8234
0.7986

0.79
0.7946

Iteration & I
2-2-1b-2-2 0.B707
1
change to b 1
1b-1-1b-2-2 0.8721
2-1-1b-2-2 0.B638
2- 1-bb-2-2 0.B643 E
2-1-1b-1b-2 0.8201 1
2-1-1b-2-1b 0.B736 1
1
switch 2-1-1b-2-: 1
1-2-1b-2-2 0.8342
1b-1-2-2-2 0.B133 s
3

a

In iteration 5, a component is added to block 1 and the reliability is increased and in

iteration 6 the block 1 component is changed into a part as availability increases. In

iteration 8, 9 and 10 a few solutions have gone over the cost threshold and cannot be

considered a feasible solution. These iterations are depicted in both Table 17 and 18.

However, beyond iteration 12 the system is now too costly to improve and switching will

not allow the system to go under cost. Thus out of the final solutions, bb —1b —b -3 -2

has the best availability at 0.8873 and is chosen as the best available solution. It may not be
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the most optimal but it represents a good reliability structure given the cost and the

reliability parameters. This solution is met as the Tabu search conditions were exhausted.

Table 18. More Iterations of 2" Future

1 K L ] N 0
Iteration 8 Iteration 9 It11
1b-1-1b-3-2 adding over cost adding overcost
1b-2-1b-3-2 ovwer cost change b overcost
1b-1-2b-3-2 over cost changeto b |
bb-b-1b-3-2 08903 switch i
change to b 1b-b-bb-3-2 0.8945 bb-1b-b-3-2 0.8588 i
bb-1-1b-3-2 08667 1b-b-1b-2b-2 over cost bb-b-3-1b-2 08359 4
1b-b-1b-3-2 0.8944 1b-b-1b-3-1b  ower cost bb-b-2-3-1b owvercost i
1b-1-bb-3-2 08877 b-bb-1b-3-2 overcost !
1b-1-1b-2b-2 0.88B6 switch 3-b-1b-bb-2 overcost i
1b-1-1b-3-1b 08892 b-1b-1b-3-2 0.8703 2-b-1b-3-bb |overcost ]
1b-1b-b-3-2 0.B583 ]
switch 1b-3-1b-b-2 0.7838
31-1b-1b-2 0.8714 1b-2-1b-3-b 08232 It12
1b-3-1b-1-2 0.7927 itlD adding overcost
1b-1-3-1b-2 0.8305 adding overcost change to b overcost
1b-1-1b-2-3 0.B6BE changing to b

bb-b-bb-3-2  overcost switch
1b-b-bb-2b-2 overcost
1b-b-bb-3-1b overcost

switching
bb-b-1b-3-2 0.8873
1b-bb-b-3-2 0.8595

The 2" future represents a heavier load of aircraft. The solution initially starts off in
the same pattern as the first future by adding a block to the 3™ and the 4" components. This
is not a surprise as the 3™ and 4" components are the least reliable components of the
system. The Tabu search initially improves the availability of the system efficiently and
cost effectively but once these moves are forbidden or Tabu, the efficient move is now
unavailable. This may hinder the search for the best solution but it also forces the system to
calculate different reliability structures that would otherwise not be developed till later in

the algorithm.
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7.2.4 Multiple Component Basic Model: Third Future

In the 3 future, the system structure diverges quickly from the first future’s
structure relatively quickly. In the first future and the second future, the 3 move was to
change the 3" component into a different more expensive (yet, more reliable) part.
However, in the 3" future, the 3™ move is to add redundancy to the 5" component. This
shows that a component will deteriorate at a faster rate relative to different levels of stress,
thus a system with 200 units of extra load maybe need to be built differently than a system
which will experience only 100 units of extra load, as different components will have

different failure functions and different expected lives and different rates of failures.

The system structure diverges from the first future’s structure from the 3™ move.

The Tabu list is shown in Table 19.

Table 19. Tabu List

Tabu

add 4th

add 3rd

add 5th
change 5thto b
add to 1st

add ath
change 3rdto b
change 2ndto b
overcost
overcost

In iteration 7, the system becomes very limited as movement is not restricted due to
the high cost. Only a few solutions are now feasible without going over cost. The
availabilities of the solutions are provided in Table 20. The best for now solution has

reached a tipping point at a cost of 76 where only a few moves can be considered. Some of
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these moves are infeasible as they are located on the Tabu list. This provides no issue as

these feasible solutions have an availability lower than the best for now solution.

Table 20. Iteration 7

it7

2-2-2-3-1b

switch

3-1-2-2-1b 89.31
2-3-2-1-1b 89.5
2-1-3-2-1b 89.4963
2-1-2-1b-3 #9.44
change

1b-1-2-3-1b 90.16
2-b-2-3-1b S0

2-1-1b-3-1b 92.21
2-1-2-2b-1b 89.25

The feasible solutions are listed below. The only available move that can be made is
replacing the 2" component with a more reliable alternative. Some of these moves are

unfeasible as they are on the Tabu list. All other solutions are over cost.

Table 21. Final System

1b-1-1b-3-1b 92.257 78
2-b-1b-3-1b 092.4369 79
2-1-bb-3-1b 89.89 78
2-1-1-2b-1b 85.99 79
2-1-1b-3-bb 90.93 79

Iteration 8 only has two moves. After choosing 2-b-1b-3-1b as the best for now
solution, the search continues, however no better solution is found as all solutions are over
cost or the availability never rises above this current solution. Once the stopping condition

has been met the best for now solution is the solution of choice.
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7.2.5 Multiple Component: Basic Model

With all three future and availabilities calculated, the likely availability of the
system across all futures is calculated (probability of future 1)(availability of future 1)
+(probability of future 2)(availability of future 2) + (probability of future 3)(availability of
future 3). These futures probabilities are to be chosen with an expert or decision maker to
approximate the possibilities of each future. Table 22 shows the corresponding

probabilities and availabilities with respect to the future it represents.

Table 22. Final Step

Future  Probability Availability

1 0.2 93.87%
2 0.5 92.44%
3 0.3 88.73%

The final estimated availability across all futures is then calculated as 91.61%. This is the
estimated availability for the multiple component case with cost units of 80. Although the
more reliable components are more expensive, there is no actual formula which decided the
cost or increased cost. The next example demonstrates a slightly more complex model, as a
cost ratio was used to balance the increased availability of the more reliable components

with cost.

7.3 Multicomponent: Cost Ratio

The previous examples showcased a situation in which the cost of a more reliable
part was set as a higher amount with no mathematical basis. To make the problem a little
more complex, the more reliable component is now equivalently priced. In other words, a
5% increase in reliability of the component will cost 5% more. This differs from the

previous situation in which the more reliable component was just set at a higher cost. The
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table below depicts the cost of each block and component. The budget was minimized to 75

due to simulations taking an excessive amount of time.

Table 23. Original vs Alternative Costs

Component
Type 1 2 3 4 5
Block 5 5 5 5 5
Part 6.5 6.1 5.2 5.8 6

Table 24. Raw Inputs of Weibull Model

-“_“M-

Block 1 14 -2.0705E-D6 -0.0002 3943.84 2605.60 1693.17

Block 2 113 -0.000013117 -0.0001 2296.67 1715.39 1153.60 5
Block 3 153 -0.0000512 -0.0002 B37.48 392.29 122.00 5
Block 4 10.205 -0.0000175 -0.00005589 B668.53 458.24 309.98 5
Block 5 17.7 -0.0000827 66 -0.0002 1479.67 555.69 107.62 5
Fartl 14.2632 -2.0705E-D6 -0.0002 5157.00 3407.10 2214.01 6.5
Part2 115 -0.000013117 -0.0001 2805.15 2095.18 1409.01 6.1
Part3 15.34 -0.0000512 -0.0002 B871.66 408.30 126.98 A
Part4 10.3603 -0.0000175 -0.00005589 780.85 570.26 362.06 5.8
Part5 17.89 -0.0000827 66 -0.0002 1789.29 671.97 120.15 &

7.3.1 First future:

The first possible future had some interesting occurrences during the simulations. In
most instances having a more reliable component in the system actually decreased
availability, this may be misleading due to the allowable moves defined in the solution
neighborhood. In this neighborhood, a more reliability component was always compared to
a component with redundancy. This makes a move to the more reliable component difficult
as it is continually being evaluated against two redundant components. However,
eventually the solution incorporates the more reliable parts and the end result of the Tabu
search resulted in a system which had the configuration of 1B-2B-2B-2B-2B with the cost

units of 74.6.
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7.3.2 Second Future:

The second possible future followed the same pattern as the first future, but strictly
diverged towards the end of the Tabu search. The final system configuration was set to 1B-3-1BB-
1BB-2B with a cost of 74.5. The drastic difference comes from the usages of the more reliable
components. Switching never provided a more optimal solution and thus never became a viable

option.

7.3.3 Third Future:

The third future allow had a slightly different path, followed the same system configuration
as the first future, with the same cost. From this one can infer that the Accelerated Life Testing may
have the same relationship and thus future one and future three maybe linear related. The
components will then wear at the same rate. The availability of the system drops to 88.98% but this

is expected with the heavier load.

7.3.4 Results
The availability of the systems drastically differed in all three scenarios. As the load of the
futures increased, the reliability of the system decreased. Table 24 shows the different futures and

different probabilities associated with each future.

Table 25. Cost Ratio Results

Future Probability Awvailability

1 0.2 99.83%
2 0.5 99.65%
3 0.3 89.39%

Multiplying the probability by the availability and summing all possible futures together should net

the average availability of the system, considering all three scenarios. In this case,
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(0.2 *99.83) + (0.5*99.69) + (0.3*89.39) will produce a system with 96.608% availability across

three possible futures.

8.0 Future Research

This model can provide a good solution to a system which will incur an uncertainty
of the future. For a move in depth analysis, different applicable future profiles can be
developed, more complex reliability block diagrams can be introduces, or taking into
account more variables such as the cost of increasing preventive maintenance or the cost of
time. However, when running a study of a large magnitude, data management and data
processing will become an issue. The researcher will have to take into account the logistics
of the data as well as the processing of the simulation computer to ensure a timely result.
This thesis shows the surface of what could be done modeling uncertain futures there is

room to expand upon this model. Some of the areas that can be explored are:

1. Timing of maintenance

2. Preventive maintenance costs

3. Corrective maintenance costs

4. Different crew availability

5. Tools and equipment

6. Different reliability structures (i.e cold standby, 2 out of 3 sub-systems)

7. Assigning costs to labor

This model uses the optimal replacement theory but tolerances could be added and
expanded on. Preventive maintenance time was set as a constant in this model, however it
is possible to gather data and calculate an accurate distribution to model the preventive

maintenance. The availability of the crew must also be accounted for, as well as the
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different tools used to fix these components. The structure of the system itself may be
altered to provide a more complex system. This model also assigns a fixed cost allotted to
the cost of component; however, in reality there are more cots such as the cost of
preventive maintenance, the cost of installing the new component. These costs can be
added to make the model more complex. While it may seems like a good idea to add more
variables, there are other logistical issues that will occur. Some of these variables are not
easily determined and others are subjective. These are just a few additional components to
the simulation model that can be added. However, the additional variables will add
significant simulation time and may take hours to run a single model, but these are factors

to be considered when considering a complex system.

Tabu search is a good search method used for many different applications. The one
caveat that could be changed for this Tabu search method would be to allow a way for a
component to be able to duplicate itself, so that a system such as 1-1-1-7-1 can exist.
Extending the Tabu list to allow an optimal move twice may be a way to modify the search
to allow duplicate components. However, this may trap the search in a localized area and it

may make the solution unable to move to a drastically different structure.
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9.0 Conclusion

The examples in this thesis demonstrate how Accelerated Life Testing can be used
to show the impact of loads on different components in different possible futures. Each
future will change the component’s ALTA variables which will in turn change the
reliability of the component for that particular future scenario. Since each component’s
reliability is affected differently by the load, the system may develop drastically different
reliability models depending on the future scenario. A safe availability metric can be
obtained by combining all the availabilities across the different future scenarios. The
problem can be made more complex by adding many different conditions. Thus the model
in this thesis is a baseline model to illustrate how Tabu search in conjunction with ALTA

can determine the availability of a system with uncertain stress profiles.
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