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ABSTRACT OF THE THESIS 

 

System Reliability and Maintenance Modeling with Changing and Uncertain Future  

 

Stress Profiles 

 

By: Akira Hada 

 

Thesis Director: 

 

Dr. David W. Coit 

The US Navy has increased interest in the reliability of aircraft launching and 

recovery equipment. Data is readily available and failure time distributions can be 

estimated; however, the aircraft equipment will not be operated with the same stress profile 

in the future as the data provided. In fact, the US Navy will increase the stress profile on 

the equipment by incorporating heavier aircraft into the fleet, while downsizing the lighter 

aircrafts. This creates an uncertain stress profile the aircraft carrier systems will be 

subjected to. Since the composition of the fleet is uncertain, determining reliability and 

component redundancy and/or replacement is difficult. Thus, new models and optimization 

algorithms are proposed involving data analysis at the component-level based on Weibull 

shape parameters modeled after using a general log-linear model based on the mean and 

variance of critical stress measures in a changing environment, and Weibull shape 

parameters modeled using a general log-linear model based on the distributional form of 

critical stress measures in a changing environment. 

Traditional system reliability considers a set of failure data which is analyzed to 

estimate a failure time distribution.  This failure time distribution can be utilized to estimate 

reliability at some point in time. This thesis pertains to design problems with a probabilistic 

future stress profile, but using models based upon the current failure data. Since a future 
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stress profile can be probabilistic and distinctly different, the traditional system reliability 

model will be unable to estimate future reliability from the existing failure data. Instead an 

estimate of the future failure time distribution must be made utilizing accelerated life 

concepts, and the optimal component reliability becomes difficult to determine. Depending 

on the level of usage, the optimal component redundancy might change. This research tries 

to develop a heuristic for system reliability optimization considering a probabilistic future 

stress profile in which the stresses can increase to different levels.  

A failure time distribution is determined for each system component as a function 

of usage stress distribution. The component models are then assembled into a system 

model. This system model tests different composition of fleet data based upon different 

probabilities. Although these probabilities are ambiguous it is certain that the stress profiles 

will increase. This system model was evaluated to determine what preventative 

maintenance or component replacement can be done in the present so that the unknown 

future stress profile will not cause high costs in labor and replacement parts. 
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1.0 Introduction 

 This thesis evaluates empirical data obtained from a discrete loading system with 

predictable, quantifiable and changing loading patterns. Every usage cycle can be different, 

due to a different load, pressure or force being applied to the system. Taking this cyclic 

data and forming a stress distribution only describes past occurrences. However, the future 

loads on the system are anticipated to be increasing due to changing user preferences or 

system requirements. This creates a shifting stress distribution with time. An example of 

this shift is depicted in Figure 1.  

This future stress profile represents a single possible future with a certain probability, 

and there are several possible future scenarios. In practice these probabilities would only be 

estimates, but consideration of this probabilistic future scenarios lend to more robust 

designs and maintenance plans. After different future stress profiles with different 

probabilities are determined, a simulation model was constructed and run to determine the 

optimal component replacement as well as preventive maintenance schedule for the system. 

 

 

 

 

Figure 1. Movement of the current stress profile  

to the future stress profile with time 
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1.1 Background   

 NAVAIR (Naval Air Systems Command) provides systems and material support 

for the US Navy. NAVAIR Headquarters is a tenant of the Naval Air Station in Patuxent 

River (Pax River) in Maryland. Ten other locations exist, eight within the United States and 

two international locations. The Lakehurst NJ, branch specializes in support equipment for 

both the Aircraft Launch and Recovery Systems.   

 The recovery gear or arresting system is designed to rapidly decelerate an aircraft 

when it lands on a naval vessel. The major systems used within a typical arresting system 

are the hook cable or pendant(s), purchase cables, sheaves, and arresting engine. The 

arresting engine absorbs and dispels the energies of a landing plane. The sheaves redirect 

the purchase cable and the hook cable or pendant attaches itself to a landing aircraft and is 

connected to the purchase cable.  

 The launcher or catapult system is an aircraft catapult device used to deploy 

aircrafts from the Navy aircraft carriers. It consists of a track, a large piston, and shuttle.  

To launch an aircraft, steam pressure is built up in the cylinders and then released. This 

causes the piston to release which in turn pulls nose gear assembly which is attached to the 

aircraft. The aircraft is dragged along a track and the velocity due to this release will be 

sufficient to allow the aircraft to take flight. 

1.2 Problem Statement 

Improvements in aircraft technology coupled with heavier equipment and the 

discontinuation of the lightweight T-45 aircraft will cause an increase in the average weight 

of an aircraft in the Navy air fleet. This expected increase in weight pushed Navy officials 

to consider that the extra weight may cause accelerated wear in both the arresting and the 

catapult systems.   Both systems will still be utilized for the next 20 years and the future 
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reliability of each must be calculated. In essence, the heavier air fleet and the responding 

heavier loads will cause reliability to decrease and in order to assure that the equipment can 

withstand the new stresses the reliability must be calculated.  After the future reliability is 

obtained a redundancy design as well as an optimal corrective and preventative 

maintenance policies are simulated. Figure 2 depicts the average cable tension per 

arrestment (landing) from 1976 to 2007. As shown in the graph, the gradual increase in 

tension is what Navy officials have concern over. The last three entries are projected future 

values of tension. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Projected Stress Increase on Pendant 
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2.0 Literature Review and Background Concepts 

There have been many different papers and articles written about component 

replacement, each with unique applications and methods.  

2.1 Component Replacement 

 A replacement of a component is optimal usually when the maximum useful life of 

a component has been consumed. Although preventive maintenance may prolong the useful 

life, the optimal replacement time is the time right before a component fails, as you have 

gotten the most usage out of the component without having to experience a failure or any 

unplanned downtime. Age replacement policy (ARP) is one method to try and optimize the 

replacement of a component. However, implementation of ARP requires continuous 

tracking of a component’s service life. Many industries with large systems, each having a 

number of components, find this difficult to achieve in practice. Another option for 

maximizing the useful life of components is to continuously monitor the condition using 

sophisticated on-line instruments and to replace them just before failure. However, such a 

proposition is expensive and the time indicated for immediate replacement may not be 

suitable for a plant shutdown, because of production conflicts or any other kind of 

scheduling (Das and Acharya, 2004). 

Two effective policies to be considered and compared are Age Replacement during 

Delay Time (ARDT) and Opportunistic Age Replacement during Delay Time (OARDT). 

Age replacement, as previously mentioned, is the policy where the component is replaced 

on failure or after a fixed period of service after the fault. Opportunistic failure utilizes the 

first random occurring opportunity for preventive replacement of a faulty component if it 

has given service for a fixed period after the fault. 
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Das and Acharya (2004) use the long run cost per unit time according to the 

renewal reward or,  

 

expected cost during life cycle ( )
( )

expected length of life cycle ( )

d d
d d

d d

C t
G t

L t
 

                               (1.1) 

Gd(td)  =  long run cost per unit time for ARDT policy 

Cd(td)  =  expected cost during the life cycle 

Ld(td)  =  expected length of the life cycle

    

 

td   =  time 
 

The expected cost in a renewal cycle is sum of the expected preventive replacement 

cost, the expected failure replacement cost, and the expected cumulative degradation cost 

per renewal cycle. This is expressed as : 

         min ,  pd d H d f H d r dC t   C 1 F t   C  F t   C H t                           (1.2)
 

    

Cp  =   cost  per preventive maintenance 

FH (td )  =   probability of failure due to degradation at time td 

Cf   =  cost per failure 

H  =  degradation 

td  =  time 

 

Cr(min(H,td)) =  expected cumulative degradation cost over a renewal cycle. 

 

These equations are used for the ARDT policy.
  

For the OARDT policy (Das and Acharya 2004) the long run cost per unit time is 

expected cost during the life cycle with opportunistic replacement ( )

expected length of the life cycle with opportunistic replacement ( )

od d

od d

C t

L t
                                   (1.3) 

God(tod )  =  long run cost per unit time for OARDT policy 

Cod(tod)    =  expected cost during the life cycle with opportunistic replacement 

 Lod (tod)   =  expected length of the life cycle with opportunistic replacement  

td             =  time 
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The renewal cycle cost is the sum of the expected cumulative degradation costs, and 

the expected replacement cost. By plotting the ARDT and OARDT long run cost per unit 

time and calculating both breakeven points, the authors suggest that one must prefer 

opportunistic age replacement during delay time policy to age replacement during delay 

time policy. 

When creating a preventive maintenance schedule or component replacement for 

anticipated future stress levels, Das and Archaya (2004) have noted that instead of 

replacing any age related component it might be more beneficial to follow an OARDT 

policy. 

Yamada and Osaki (1981) wrote a paper on optimal replacement policies for 

nonessential and essential units.  Many papers comparing age and block replacement 

policies have been written and published, one such paper is Barlow and Proschan (1965).  

In Barlow and Proscha’s model two costs are evaluated, one associated with a corrective 

action (replacing the unit) and one cost associated for a preventive maintenance cost (non-

failed unit being replaced). This paper concentrates on nonessential units and develops a 

method to estimate the appropriate numbers of spares that should be provided given both 

the preventive maintenance cost and corrective maintenance cost for a componen 

2.1.1 Architecture for Component Replacement 

While technology advances, software systems must evolve due to improved 

technology and changing requirements. Postma, America, and Aijnstra (2004) use a 

3RDBA (three cycles consisting of steps Requirements, Design, Build, and Analyze) 

approach that facilitates replacing a key component in a long-living architecture. The 

approach consists of an exploration, consolidation and migration cycle. Each cycle contains 

four steps: Requirements, Design, Build and Analyze (Postma et al., 2004). 
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The example Postma et al (2004) used to illustrate the 3RDBA approach was a 

medical imaging system, a system which would be in use for 15 years.  A decision making 

tool to decide whether a component should be replaced by a functionally similar 

component, one with extended functionality, or the same component.  3RDBA represents a 

different approach that could be utilized for aging systems with increased usage 

requirements. However, the approach is nonmathematical and only aids in a decision, and 

no actual quantitative methodology is provided. 

2.1.2 Markov Chains 

 

Albin and Chao (1992) utilize Markov chains to model a multi-component series 

system to determine the optimal preventive replacement in which the component 

deteriorates with time. The time causes the operational characteristics of the component to 

change and consequently increasing the failure rate of the component near the deteriorated 

one. The replacement policies involve inspections, and if the deterioration exceeds a critical 

level, replace the component, or continuously monitor the deteriorating component until 

failure. The replacement policies are evaluated by mean cost rate and by the ratio of the 

reduction in the number of failures to the number of preventive replacements. 

There are other sources for extensive bibliographies on maintenance models for 

deteriorating systems, including Barlow and Proschan (1965), McCall (1965), and 

Pierskalla and Voelker (1976). Much of the work focuses on one-component systems and is 

based on the original Markov chain model for describing the deterioration process. 

2.2 Stress Models with Covariates 

 A model to alter the life parameter in the Weibull distribution depending on the 

mean and standard deviation of the stress loads of the system was developed to access the 
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availability of a system due to future loads. Covariate models are used to represent the 

effect of different treatments or usage conditions in a lifetime model. A covariate is defined 

as a treatment or explanatory variable that influences the failure time of the component. 

Typical covariates include those that represent mechanical forces, material properties, and 

environmental factors. There are two rather popular approaches for linking these covariates 

to the failure time probability function. The first method, known as Accelerated Life 

Testing (ALT), is based on modifying the time axis of the survivor function. The original 

application of ALT was to reduce the time to test production components by increasing, or 

accelerating, the primary explanatory factors and using the resulting model to predict 

component lifetimes under standard in-service conditions. The premise of the second 

approach, called Proportional Hazard Model (PHM), is to modify the hazard rate function 

to include the covariates (Wallace, 2004).  

Wallace (2004) simulated and demonstrated a multi-response component failure 

distribution as a function of operational parameters. Although Wallace generated his data 

from a sophisticated system model, the data gathered in this thesis was simulated following 

a certain distribution. Furthermore for real applications, physical data is used to calculate 

the loads on the system. A significant difference is the use of joint probability models that 

Wallace utilized to represent the joint randomness. Assuming that z, the joint randomness 

term using a function of standard normal variants, is standard normal then the joint 

probability density function is given by 

1 1 2

( , ')
( ) ( )

( ) ( )... ( )
i

n

x i

i n

z C
f x f x

z z z



  


                                        

 ( 2.1) 

Where ( , ')z C is the n-dimensional standard normal probability density function of the 

standard normal variables, z, and C’ is the correlation coefficient matrix of the transformed 
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space with elements ρij . Wallace then further considers a joint covariate model and selects 

a turbine blade engine to test the reliability of the simulated data. First 10,000 simulations 

are used to determine appropriate parametric distribution for the overstress and fatigue life 

failure modes. The Anderson-Darling Test statistic was used to compare the fit for the data. 

An Accelerated Life Test is used with the log-quadratic link function to account for 

covariate models in the ALT model. A quadratic polynomial function is assumed for the 

exponential component of the link function is 

2 2
  2 21 1 11

( z) ( + + + + )(z) g z z z z z ze e          
                          

(2.2) 

Wallace demonstrated the use of simulated data as well as ALT testing for a design 

of experiment of a turbine blade engine. The use of a joint probability distribution and a 

quadratic polynomial are not used in this thesis. However, ALT and a covariate models are 

developed. 

2.3 Heuristics 

 

There are many heuristics to consider when trying optimizing parameters for design 

problems. Some of the most common are explained in this section. A metaheuristic is a 

method that optimizes a problem by iteratively trying to improve a feasible solution. 

Metaheuristics make few assumptions and search large areas of feasible solutions. 

The most recent metaheuristic is the cuckoo search by Yang and Deb (2009). 

However, the most common methods are simulated annealing (Kirkpatrick et al., 1983), 

Tabu search (Glover, 1983), genetic algorithms (Holland, 1975) and ant colony 

optimization (Dorigo et al., 1991). 
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2.3.1 Genetic Algorithms  

Genetic algorithms (Deb and Goel, 2001) are a population based search that can 

evaluate multiple solutions in each generation (i.e., run). The use of genetic algorithms 

stems from the versatility of the heuristic as well as the simplicity.  

The steps for a simple genetic algorithm are: 

1. Start with a randomly generated population or candidate solutions. 

2. Calculate the fitness or quality of the solutions (called chromosomes) in the 

populations. 

3. Repeat the steps until n off-springs have been generated 

a. Select a pair of parent chromosomes from the current population, with the 

probability of selection being an increasing function of fitness or quality. 

The same chromosome can be used more than once to become a parent. 

b. With another probability called the crossover rate, crossover a randomly 

chosen solution chromosome to form two off-spring solutions. If there is no 

crossover, then form two off-spring that are exact copies of the parents. 

c. Mutate the offspring at each locus with a mutation probability and place the 

new chromosome in the new population. If n is odd, one new population 

member can be discarded at random. 

4. Replace the current population with a new population. 

5. Go to Step 2 

These steps are from Mitchel (2005). For more on genetic algorithms Srinivas and Deb 

(1994) and Deb, Agrawal, Pratap and Meyrivan (2000) are a few relevant summaries 

among many papers written on genetic algorithms. There are many different variants and 

genetic algorithms can only produce a good solution and not the optimal. 
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2.3.2 Simulated Annealing 

 Simulated annealing is a local search for locating a good approximation of an 

optimum given a large space; it was introduced by Kirkpatrick (1983) and is based upon 

the annealing of metal. When metal is heated and then slowly cooled at a controlled pace, 

the number of defects in the crystal the metal forms can be reduced. The simulated 

annealing algorithm replaces the current solution for a problem with a solution closely 

related and then begins searching for a better solution in the neighborhood of the closely 

related solution.  

In some simple steps the simulated annealing process can be described: 

Step 1: Decide on the number of iterations for the program to run. 

Step 2: Start at an initial solution S0. 

Step 3: Calculate the objective function and store it. 

Step 4: Generate a neighborhood solution and calculate the objective  

function and store this new value. 

Step 5: Based upon the acceptance probability, accept or reject the new  

objective value. 

a.) If accepted, set the new solution or objective value as the best 

and update and store the value. 

b.) If not accepted, than disregard the new objective value. 

Step 6: Repeat steps 5 and 6 till the number of iterations is reached. 

These steps are a summary of Muralikrishnan (2008) which provides optimization 

of a portfolio. Muralikrishnan also compares simulated annealing to generic greedy 

algorithms and states that if the probability of acceptance is zero, then simulated annealing 

operates as a greedy algorithm and moves to all solutions with the highest objective 
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function value. When this greedy algorithm and the simulated annealing were compared, 

the simulated annealing outperformed the greedy algorithm in almost every case.  

Many other variations of simulated annealing have been created such as MOSA 

(Multiple Objective Simulated Annealing) developed by Ulungu, Ost and Teghem (1998) 

or Enhanced Simulated Annealing Algorithm (Loganantharaj, 1997). There are also a 

myriad of works that have compared and contrasted different types of simulated annealing 

as well as genetic algorithms. 

2.3.3 Tabu Search 

Tabu search is attributed to Glover (1986). It is a mathematical optimization 

procedure which is similar to simulated annealing involving a local search method. This 

method utilizes a memory in which solutions are put on a “taboo” list, a set of solutions 

that the algorithm does not revisit. There are three main strategies to Tabu search. The first 

is the forbidding strategy in which the algorithms control what enters the Tabu list. The 

second is a freeing strategy, which controls what exits the Tabu list. The final method is a 

short-term strategy that manages both the forbidden and free strategies to select a trial 

solution.  The basic components of a Tabu search consist of a memory or list to classify 

moves or searches that are Tabu. A neighborhood is calculated and identified for closely 

related solutions that can be reached from the current solution. The Tabu list can be 

overridden, this is called an aspiration criteria where the solution in a Tabu list is better 

than any visited.  

The Tabu search steps are explained below: 

Step 1: Start with an initial solution in a set. 

Step 2: Generate a subset of solutions such that either one of the Tabu  

conditions is violated or at least one aspiration condition holds.  
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Step 3: Choose the best solution in the subset. 

Step 4: If the best solution is better than the global best solution, then set  

the solution as a global solution. 

                        Step 5: Update the Tabu list and the aspiration conditions. 

                        Step 6: Count the iterations or go back to step 2.  

            The Tabu search may be terminated in many conditions such as, if there is no 

feasible solution, when the noted number of iterations has been reached. The number of 

iterations since the last improvement has been met. Figure 3 shows a simple flow chart 

(Lei, Liu, and Roberto, 2010) 

 

Figure 3.  Flow Chart of Tabu Search 

 

2.3.4 The Cuckoo Search 

The cuckoo search is based upon the cuckoo species which lay their eggs in the 

nests of other host birds (Yang and Deb, 2009). Each egg in a nest represents a solution, 

and a cuckoo egg represents a new solution. The aim is to use the new and potentially 

better solutions (cuckoos) to replace a mediocre solution in the nests. In a nest there are 
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multiple solutions, and a new solution or cuckoo egg is added. The objective is for a new 

and potentially better solution to replace a mediocre solution in the set. There may be 

multiple sets or only one solution in each set (Yang and Deb, 2010). 

The cuckoo search has three rules: 

1. Only one new solution can be inserted per cuckoo, and each new solution is placed 

in a randomly chosen set of solutions or nests; 

2. The best nests or set of solution with high quality of eggs will carry over to the next 

generation. 

The number of available host’s nests is fixed, and the egg laid by a cuckoo is 

discovered by the host bird with a probability from 0 to 1. Discovering the new solution 

depends on some set of inferior solutions. 

2.4 Availability  

The main focus of this research is to maximize availability given some constraints. 

A brief review of availability is presented here. Availability contains both reliability and 

maintainability, which makes it a valuable metric to industry. Availability can be classified 

either into the time interval consideration or the type of downtime (Elsayed, 2009). This 

review summarizes average up-time availability, steady-state availability and the inherent 

availability. 

In many systems it is vital to know the availability in certain time intervals. This is 

referred to as the average up-time availability and can be expressed as  

 𝐴(𝑇) =
1

𝑇
∫ 𝐴(𝑡)𝑑𝑡

𝑇

0
                                                                  ( 2.3) 

 A(T) =  average availability 

     T     =  time                                                           ( 2.4 ) 
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A(T) can be estimated by obtaining an expression for A(t) as a function of time or 

by numerically solving the probabilistic state transition states and summing the 

probabilities. The average uptime availability may be the most useful for systems whose 

usage is defined by a duty cycle. Steady-state availability is the system availability when 

the time interval is very large. Steady-state availability is a metric utilized for systems that 

operate indefinitely such as communication cables.  

The final availability described in this thesis is inherent availability, which only 

includes the corrective maintenance of the system and excludes ready time, preventive 

maintenance downtime, and logistics down time. This is expressed as 

i
MTBF

A
MTBF MTTR


                                                            (2.5)

 
 

MTBF  = Mean Time Between Failure 

 MTTR   = Mean Time To Repair 

 

The steady state and inherent availabilities are the same when all of other logistics 

times are ignored and only the corrective maintenance time is considered. 

There are many other types of availability, such as achieved availability, operational 

availability (includes the logistics time), mission availability, etc. The inherent availability 

is more widely used as logistics time and ready time can be difficult to determine. 

Choosing the proper availability and proper metric is necessary and determined by what 

key performance indicators are necessary. 

2.5 Accelerated Life Testing 

The purpose of accelerated life testing is to induce failures at a faster rate in a 

harsher environment. The underlying assumption in relating the failure data to the 

accelerated life is that the components operating under the normal conditions experience 
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the same failure mechanisms under normal conditions in the accelerated environments. In 

other words, the harsh environment should not impose entirely different failure modes.  

 An accelerated life model usually consists of a life distribution and a life-stress 

model. A life distribution is a distribution models failure time data. Some common life 

distributions are the normal or Gaussian distribution, the exponential distribution, a popular 

distribution where the failure rate is constant; and the Weibull distribution, in which 

parameters can be altered to mimic other distributions. Choosing a life distribution can be 

based upon previous data or physics models. Electrical systems are commonly modeled as 

exponential and mechanical fatigue as log-normal.  

 The life stress model relates the incremental increase in stress of the harsh 

environment in the environment to the failures; for example if an experiment is set up with 

three levels of humidity; normal, high, and intense. The failure for each will be recorded 

and observed and the life stress model relates the levels of humidity (stress) to the failure 

times (actual time). The most common accelerated conditions are temperature, humidity, 

and voltage. 

2.5.1 Arrhenius 

The Arrhenius relationship is commonly used for analyzing data for which 

temperature is the accelerated stress. The relationship is as follow: 

R(T ) = Ae-
Ea
KT

                                                                    
(2.6)  

where R is the speed of the reaction, A is a non-thermal constant, Ea  is the activation 

energy and K  is the Boltzmann constant and T is the absolute temperature. 
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2.5.2 Eyring  

 

The Eyring model is commonly used for analyzing data for which temperature or 

humidity is the accelerated stress. The model was formulated from quantum mechanics 

principles. The expression is as follows: 

1
( )

BA
VL V e

V

 
 

 



                                                        

(2.7)  

L represents a quantifiable life measure, such mean life, characteristic life, median life, B(x) 

life, etc. V represents the stress level (temperature values in absolute units, i.e. degrees 

Kelvin or degrees Rankine). A is one of the model parameters to be determined. B is 

another model parameter to be determined. 

2.5.3 General Log-Linear Relationship 

The general log-linear relationship describes a life characteristic as a function of 

vector of n stress.The mathematical relationship is given as: 

1( )
j j

n

j

x
L e





  
x

     
(2.8)  

αj are model parameters. x is a vector of n stresses. This relationship can be further 

modified through the use of transformations and can be reduced to the relationships 

discussed previously, if so desired. As an example, consider a single stress application of 

this relationship and an inverse transformation on x, such that v = 1/x or: 

 

1

( ) vL v e



 


         (2.9)  

ve e


 



         (2.10)  
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2.5.4 Life Stress Models Using Stress Strength Interference 

A unique portion of this research plan comes from deriving a future stress profile. 

While in this plan the method utilized is based upon the standard deviation and mean of the 

accumulated stress in previous data, there have been other approaches. A similar utilization 

of three types of usage data and their treatment for performing reliability predictions is 

explained by Mettas and Vassihiou (2002). He explains that the stress conditions depend on 

the way the product is used and not every customer uses the product in the same way. 

Certain customers operate the product at higher stress levels than others. For example, 

every user does not accumulate 12,000 miles a year on a vehicle and every user does not 

print the same number of pages per week on a printer (Mettas, 2005). 

Now if thought of differently, a future stress profile can be thought of as a different 

customer usage profile, one with higher stress and higher loads. Mettas (2005) explains the 

traditional theory of accelerated life models with a life-stress relationship. Represented in 

Table 1 are some of the common life-stress relationships  

Table 1. Common Life-Stress Relationships 

Relationship Model 

Arrhenius B
S

pt Ae  

Eyring 
1

BA
S

pt e
S

 
  
   

Inverse Power 
1

p nt
KS

  

 

The life characteristic, tp, can represent any percentile of the distribution. The 

percentile is selected according to the assumed underline distribution. Some typical life 
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characteristics are presented in Table 2 and by using the maximum likelihood estimator 

(MLE) the parameters for the distribution as well as the life characteristic can be obtained. 

Table 2. Typical Life Characteristics 

Distribution Parameters Life Characteristic 

Weibull β, η Scale Parameter (η) 

Exponential λ Mean Life (1/ λ) 

Lognormal µ, σ Median (T) 

 

In the following example is taken from a technical paper (Mettas and Zhao, 2005). 

An electric motor with a warranty of 1,000 cycles has three loads that are being tested; 6 

lbs., 8 lbs., and 12 lbs. loads. The Weibull-inverse power model was fitted to the data set 

and the life characteristic and Weibull parameters were calculated. It is stated that an 

average customer is assumed to use the 7 lbs. stress level. However, this is done purely 

through test data. Through surveys, Mettas (2005) collected additional data that showed the 

actual customer usage profile. 

With this new data a new problem developed, namely how to relate the new load 

distribution based upon the customer usage profile to the life of the different motors. In 

other words, if a percentage of the motors are utilized at stress level S what would be the 

calculated reliability? This needs to be repeated for all stress levels that are experienced in 

the field in order to estimate the overall percentage of units failing by time t. For this, a 

stress-strength interference analysis will be used to obtain the percentage failing during 

warranty from the whole range of load sizes applied in the field. The equation of stress-

strength interference is given by: 

2 1 12

0

( ) ( ) ( )P x x f x R x dx


  
                                                

(2.11)
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      where    x2    = stress 

        x1    = strength 

           f2(x)  = stress function 

                                                                R1(x)  = reliability of the strength of material 

 

 

Given a distribution that describes the different stress level (custom surveys), and a 

distribution that describes the strength of this unit, the probability of failure can be 

calculated as the probability of stress exceeding the strength. The test data on the motor of 

the different stress levels provides a strength distribution. Using these distributions, one 

distribution can gives the percentage of units operating at each load size, and another can 

give the percentage of units that fail at each load size during the warranty period of 1,000 

cycles. Using the stress-strength interference model, the probability of failure can be 

calculated for different customer profiles. 

Considering stress profiles and calculating reliability, this method provides solid 

quantifiable results. Stress-strength interference is the alternative method utilized together 

with an accelerated life method from empirical data. Mettas’ paper points out the 

alternative in developing a stress profile as well as calculating reliability through stress-

strength interference.  

3.0 Probabilistic Futures   

This thesis consists of several related tasks.  The first is to identify a correct stress 

usage profile from current data. This data is then utilized to create distinct future stress 

profiles. Each future stress profile has a probability associated with it.  Figure 4 describes 

the current data and the possible different stress distributions that can manifest in the 

future. The different composition of aircraft creates different loads which affect reliability. 
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The future air wing composition is unknown and thus, a future stress profile can only be 

estimated. 

 

Figure 4. Stress Profile and Possible Outcomes 

Once the stress profiles are estimated, reliability block diagrams are used to model 

the system. This block diagram represents an example arresting or launching gear system. 

With this model, the optimum preventive maintenance schedule as well as optimum 

component replacement strategy and layout can be determined. In short, with failure data 

currently available, a decision on how redundancy or system designs should be changed to 

meet the cost and manual restraints in anticipation of the future stress profiles.   

The basic steps to this research were 

1. Gather simulated data. 

2. Assign a probability to each stress profiles to accurately represent each possible 

future stress profiles. 

3. Estimate the overall stress profile. 

4. Use this profile to develop a preventive maintenance strategy as well as component 

replacement strategy. 

5. Utilize Tabu search or simulated annealing to develop the component replacement 

strategy as well preventive maintenance schedule. 
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3.1 Stress Profiles 

A review of research concerning distribution parameters with regard to loading and 

life conditions have revealed that concentrating on failure time might not always be the 

correct direction. The conventional method is to create a life distribution from failure or 

test data.  

  Every cycle can be different, due to a different load, pressure, or force being applied 

to the system. Taking this cyclic data and forming a stress distribution only mathematically 

describes past occurrences. In fact, the future loads on the system may be increasing due to 

user preferences or changing system requirements, which create a shifting stress 

distribution. The system would still be used in the foreseeable future, and the simulation 

model must predict system performance and the most unreliable components given the 

changing stresses associated with the new user requirements. 

The basic method for component reliability models considering stress cycle 

distribution counts all stress cycles regardless of any metric and acts as a baseline 

explanation. The basic method also would provide the same results as the conventional 

method of calculating a failure time distribution.  

3.1.1 Without Load Adjustment 

Assuming that a particular system or component or failure mechanisms are not 

impacted by stress and that stress would not account for any differences, a simple counting 

of the cycles would suffice as the rate of failure or where 

                      𝑡 = ∑ 𝑡𝑖𝑖 ,                                                                      (3.1)  

 where t = number of load with only one category  
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This is the conventional way to record failure data where there is no metric or 

measurement of force. The advantage of this method is that it provides a definite answer 

and provides a failure time distribution. However, there are many disadvantages. This 

method cannot account for a future stress profile as stress is not even considered.  This 

method also does not account for different levels of stress. In summary, the lack of stress 

cycles and profiles in this traditional method proves to be disadvantageous. 

3.1.2 Mean and Standard Deviation of Cycle Stress 

The mean and standard deviation method requires more data as well as a useful stress 

metric unit. By taking the standard deviation and average of each type of load, a Weibull 

parameter can be calculated to represent the failure distribution. When η is a function of the 

cycles or load and is altered by the mean and standard deviation, covariates η is shifted into 

a more appropriate value to represent the future stress profile.  

  

f e



 
   

 

    
 

 
          

                                      

(3.2)

 


 

 
 

 
 

    
                                                                   

(3.3)  

η       = η0 exp(-b1μstress  –  b2σstress) 

f(t)    = Weibull distribution probability density function 

β       = Shape parameter 

η       = Adjusted Life Parameter 

η0      = Initial Life Parameter 

t        = Failure Cycle 

μstress = average stress 

σstress = standard deviation of stresses 

b1        = coefficient for mean stress 

      b2      = coefficient for standard deviation 

 

Mathematically, an increased stress profile can be considered by adjusting the mean 

and standard deviation of every cycle to a higher level. As the mean and standard deviation 
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increase, the exponential function decreases, causing η to decrease. 

The advantages of this method is that impact of a force can be directly monitored and 

can distinguish the load on a component due to increased force. The disadvantage would be 

that a large and comprehensive data set is needed, large variability will also significantly 

affect results, and the mean and standard deviation might not be sufficient in describing 

different load profiles. 

3.1.3    Relative Frequency of Cycle Stress 

 This last failure model provides the most robust parameters by organizing the 

failure data, cyclic loads, or any other kind of metric unit into subcategories. Once these 

subcategories are determined, a percentage number is given to each subcategory or in this 

case xi. Any number of subcategories can exist and the load may increase or decrease 

reliability by the simple calculation of changing xi into either a positive or negative value. 

This method provides the most organized conditions as well as directly relates the 

increased force, or stress on the subcomponent. However, the data must be representative 

and excess variability impacts results.  This method also requires more failure data points 

than other methods. 

   

1

( ) 0, 0, 0

t
t

f t e t

    
 

 
      
                                     

(3.3)  

   

1

( )
t

t
 

 
  
                                                                                

(3.4)    

  𝜂 = 𝜂0 exp(𝑏0𝑥0 + 𝑏1𝑥1 + 𝑏2𝑥2 +  … . )    

     1i

i

x    
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    x0 = 1st relative frequency  

  x1 = 2nd relative frequency 

  x2 = 3rd relative frequency 

 

 

3.2  Examples 

Since each cycle causes a distinct stress, each failure is associated with a different 

stress profile. For example if an old Hornet airplane is launched, for that launch the stress 

on the system will be less than that of the new Hornet which is 7,000 lbs. heavier. Now if 

only the old Hornets were launched until failure, the system should last longer than that of 

the system which launched only the new Hornet aircraft. This example illustrates the 

simplest case of how a failure cycle must be adjusted for stress as the stress of each failure 

cycle contributes to accelerated failure times.  

3.2.1 Stress and Standard Deviation of Stress 

With each failure cycle, a stress and standard deviation is calculated. Table 3 is a 

truncated example of the mean and standard deviation of the simulated data 

Table 3. Truncated Data for Mean and Standard Deviation 

Cycles to Failure Mean Stress (lbs) * Standard Deviation 

184 635.98 200.22 

320 723.16 202.31 

377 599.88 226.54 

170 730.699 174.35 

540 478.50 200.03 

141 685.75 228.69 

369 508.51 227.00 

 

This is only a subset from an original example data set. From Table 3 each system use 

produced a unique stress and these stresses are averaged until a failure occurs. Once a 

failure occurs, the cycles between failure or failure count as well as the mean and standard 

                                                           
* This is simulated data and does not represent actual aircraft data. 
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deviation are recorded. The example data includes types of planes each with different 

stresses. A failure cycle was determined according to a Weibull distribution and the stress 

was assigned for one of the three planes at each cycle. 

With this data, the next step is to define the stress-life relationship. The future stress 

profile is calculated based upon this current data set according to the mean and standard 

deviation. Using accelerated life testing and the general log-linear model and a Weibull life 

distribution, the general log linear equation parameters bo and b1 are -0.0038 and -0.0014, 

and an η0 of 4,712 cycles. This new Weibull distribution represents the future stress profile 

as a function of the mean and standard deviation of the future aircraft fleet stress.  Figure 5 

is the Weibull plot of failure data as of the parameters mentioned. 
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Figure 5. Mean and Standard Deviation Weibull Life 

Distribution Plot for future Stress Profile 
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3.2.2 Relative Frequency 

The relative frequency method operates under the same principal as the mean and 

standard deviation but changes the input variables into a relative frequency; the relative 

frequencies of the stresses are used to categorize stress into three different ranges. The 

stresses are divided into proportions and are represented by the variables x1, x2 and x3. 

These relative frequencies must add up to one and can be divided even further, but for this 

example only three categories were used.  

The accelerated life model uses the relative frequencies to calculate an associated 

coefficient bi. In the case of the mean and standard deviation each failure cycle had an 

associated mean stress and deviation. Now each failure cycle has a proportion of categories 

assigned to a failure cycle. This proportion is used by the accelerated life model to 

calculate the necessary coefficients using the Maximum Likelihood Estimate (MLE) 

method. Table 4 is a small example of data analyzed. 

Table 4. Truncated Data for Relative Frequency Method 

 200-500 lbs  500-700 lbs 700-1000 lbs 

Cycle to Failure x1 x2 x3 

184 0.26 0.34 0.40 

320 0.20 0.10 0.70 

377 0.41 0.18 0.41 

170 0.12 0.24 0.64 

540 0.68 0.12 0.20 

141 0.16 0.34 0.50 

369 0.67 0.16 0.30 

 

For this example the stress levels were separated into three groups. One of high stress 

(700-1000 lbs.), moderate stress (500-700 lbs.) and low stress (200-500 lbs.). Each failure 

cycle has a composition of each category. In the first row, the component failed at 184 

cycles with 26% of cycles having low stress, 34% of cycles having moderate stress, and 
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Method 4
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40% having high stress. 

In this example, b2 is equal to 0, which means that stresses in the most central category 

do not increase or decrease η. The variables b1 and b3 are calculated using the MLE using 

software, and a log-linear model. The Weibull plot is shown in Figure 6. 

 

 

 

 

 

 

 

In Table 4 the relative frequencies as well as the failure cycles are presented and the 

data indicates that b1 and b3 are equal to 0.7 and -1.3 respectively. η0 is 467 cycles and β is 

equal to 2.53. The future Weibull stress plot is shown in Figure 6. 

Choosing a composition of only middle ranked stress cycles (x1 = 0 , x2 = 1, x3 = 0 ) 

produces the same mean stress as a mixed set (x1 = 0.2, x2 = 0.6 , x3 = 0.2); however this 

method may likely produce a lower η for the more diverse frequency set. The relative 

frequency method penalizes the heavier stresses and causes the η to decrease due to a 

negative exponential function. The lighter stress cycles cause η to increase; thus increasing 

life. 

Figure 6. Relative Frequency Weibull Plot 
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Both methods can create an accelerated life Weibull model based upon current data. 

For the mean and standard deviation model, a mean and standard deviation must be 

selected based on future operating profiles and an appropriate Weibull distribution 

represents the failure cycles of that particular future stress profile with those chosen set of 

values for the Weibull parameters. The relative frequencies also alter the current Weibull 

distribution data into a future distribution in which the stresses change into a selected 

frequency. Both methods are viable options when considering the overall stress because the 

mean shifts as heavier and heavier aircraft are introduced into the fleet. With the relative 

frequency method, the high stress category is increased, and thus, causing a shift in the 

distribution and changing the stress profile. 

4.0 Optimal Replacement Times 

For every component in the Reliability Block Diagram, there is a preventive 

maintenance schedule that must be calculated. However, when calculating the optimal time 

the decision maker must be careful to balance the risks of the failure versus the risks of 

performing very conservative maintenance. As with everything in the world today, excess 

maintenance costs money and time. This maintenance may not even be necessary. For 

example, if a car had to replace the brakes every time it was driven, it would become 

extremely expensive to maintain. This would be because of the constant purchasing of 

brake pads. However, the labor involved in installing the pads also takes time. While this 

will surely decrease the chance of the break pad being overused, it is not necessary for all 

the excess maintenance. Although the car brake example is an extreme case the underlying 

message was that for a preventive maintenance to be effective a balance must be found 

between the cost of unexpected repair and the cost of the preventive maintenance. 

“Maintenance experts agree that replacing a component before it fails (preventively) may, 



30 
 

 
 

under certain circumstances, make better economic sense than replacing the component 

when it fails (correctively). The key is to determine whether the preventive replacement of 

a specific component is appropriate and, if so, to identify the best time to replace the 

component. This article presents an examination of the simple concept of determining an 

optimum replacement time for a single component” (Reliasoft 2009). 

Although the preventive maintenance schedule is quickly calculated using a button 

in BlockSim, the calculation done by the program is balancing the cost factor of the 

unwanted repair and the preventive maintenance. Two conditions must be met for an 

optimal preventive maintenance time to be scheduled 

Once the failure distribution is known or assumed then a preventive maintenance 

schedule can be determined. However, the failure rates less than or equal to one. A Weibull 

shape parameter (β) of 1 or exponential failure distribution would mean that the doing 

preventive maintenance would serve no purpose as the failure rate would remain the same. 

A Weibull shape parameter (β) less than 1 means that the component seems to be more 

reliable as time passes and thus replacing the component is unwise. Of course when 

encountering problems in a practical setting data issues must be observed and accounted 

for. Once it is known that the Weibull shape parameter (β) is greater than 1 another 

condition must be satisfied before continuing. “The second requirement to justify 

preventive replacement depends on the component and can be satisfied if the cost of a 

planned or preventive replacement (CP) is less than the cost of an unplanned or corrective 

replacement (CU)” (Reliasoft 2009). If the cost of preventive maintenance is more than the 

cost of the failure, the wise and least expensive choice would be to just replace the 

components. 
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When the two conditions are met the optimum preventive maintenance time can be 

calculated. The corrective cost increases as time increases due to the failure rate increasing, 

thus indicating that as time passes the component is more likely to fail. “The preventive 

replacement costs will decrease as the time interval increases because the more time passes, 

the fewer preventive replacement actions will need to be performed. The total cost will be 

the sum of these two costs. At one point (time t), a minimum cost point exists that 

determines the optimum preventive replacement time for the component” (Reliasoft). 

Figure 7 is the graph that depicts the optimal replacement point. It is the point at which the 

corrective cost and the preventative cost meet. 

 

Figure 7. Operating Time Vs Cost Per Unit of Time 

Figure 7 is a representation of the following formula: 

𝑓(𝑡) =
𝑇𝑜𝑡𝑎𝑙𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝐶𝑜𝑠𝑡 𝑃𝑒𝑟 𝐶𝑦𝑐𝑙𝑒

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐶𝑦𝑐𝑙𝑒 𝑙𝑒𝑛𝑔𝑡ℎ
                                          (4.1)  

            =  
𝐶𝑝 ∙𝑅(𝑡)+𝐶𝑢[1−𝑅(𝑡)]

∫ 𝑅(𝑠)𝑑𝑠
𝑡

0

                                    (4.2)  



32 
 

 
 

Where Cp is the cost for a preventative action, Cu is the cost for each unplanned or 

unwanted repair, and R(t) is the reliability function of the particular component. The 

optimum replacement time can be obtained by solving for t when:  

𝜕[𝑓(𝑡)]

𝜕𝑡
= 0                                               (4.3)  

For every component in this thesis an optimal preventive maintenance schedule 

time has been calculated. Each preventive maintenance cost is independent of the cost for 

the system. Including the preventive maintenance with the unknown system configuration 

would be troublesome as the input criteria will expand thus exponentially increasing the 

search area for the objective function. No longer is there a single variable for cost. Now the 

redundancy cost and the preventive maintenance cost would have a relationship and make 

this problem a two variable neighborhood search, which may be too arduous for manual 

inputs. For this case, preventive maintenance costs are calculated separately and not 

included in the cost for system redundancy. 

5.0 Estimating and Optimizing System Availability 

If future stress distribution and the associated probability are known or can be 

estimated, the expected availability can be calculated. It is the metric used to calculate an 

optimal or acceptable solution, for a particular preventive maintenance time and 

redundancy level. 

An optimization problem is as follows: 

        max 𝐸[𝐴𝑠(𝐱, 𝝉)] 
 

 st i i

i

c x C  

 1,2,3,...ix   , 0                                     (5.1)  
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x  = ( x1, x2, x3,…..) 

τ  = (τ 1, τ 2, τ 3,…..)  

xi = the redundancy level for component i 

τi  = preventative maintenance for component  i in the environment 

 

Adding a stress level the expected availability is a function of a stress vector.  

max
𝒙,𝛕

 𝐸[𝐴𝑠(𝑺, 𝐱, 𝛕)]                                                    (5.2)  

The stress has an element which coincides with different probabilistic future with 

probability pi. Each S represents a different future stress profile. Each stress profile has a 

defined distribution with a mean or variance or is represented by a relative frequency of the 

composition of aircraft. 

𝑆 ∈ {𝑆1, 𝑆2, 𝑆3, 𝑆4, … … . . , 𝑆𝑟} 

 

𝑆1~ 𝐹𝑠1
(𝑆1),      𝜇1 = 𝐸[𝑆1],     𝜎1 = 𝑉𝑎𝑟[𝑆1] 

𝑆2~ 𝐹𝑠2
(𝑆2),      𝜇2 = 𝐸[𝑆2],     𝜎2 = 𝑉𝑎𝑟[𝑆2] 

. 

. 

. 

𝑆𝑟~ 𝐹𝑠𝑟
(𝑆𝑟),      𝜇𝑟 = 𝐸[𝑆𝑟],     𝜎𝑟 = 𝑉𝑎𝑟[𝑆𝑟]                                                                          (5.3)  

 

where Sr  = stress profile in future r 

µr = mean stress of future r 

σr = standard deviation of stress of future r 

 

The constraints are to minimize cost as each redundancy has an associated cost with 

parts and maintenance. To calculate the expected availability, the sum of the probable 

availabilities for each stress, redundancy, and preventive maintenance must be added and 

weighted to the probable outcome.                                       

𝐸[𝐴𝑠(𝑺, 𝐱, 𝝉)] = ,

1

  (
p

ii

i

p A S


 x,τ )                                                      (5.4)  
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6.0 Redundancy Allocation Problem 

Once all the reliability coefficients are calculated using accelerated life testing, a 

design decision must be made. Each component has a Weibull distributed time to failure, a 

preventive maintenance schedule, a corrective maintenance schedule, the cost for the 

component, and the cost for the repair. It is assumed that the cost for preventive 

maintenance is independent of the cost of redundancy. This is to assure that once a 

redundancy is chosen the preventive maintenance costs for a component is the same, 

although this might not be the case as less preventive maintenance may be necessary for the 

redundant system. The data is all collected into a simulation program, but all the 

redundancy levels are calculated manually. 

The Redundancy Allocation Problem (RAP) has been solved many times and in 

different ways. Mathematical programming techniques such as integer programming and 

dynamic programming have been used to solve a redundancy problem. This thesis utilizes a 

Tabu search method to solve the RAP for this paper. Two different types of RAP are 

presented in this paper. One is where only one vender is available for a component, the 

other RAP is where a choice can be made to purchase from a different vendor with a higher 

reliability.  

The most common RAP is the series system of s independent k-out-of-n:G systems. 

The subsystem is working if k out of the n components is operational. According to 

(Kulturel-Konak et al., 2003) this problem has been studied many times over and different 

approaches can be presented in (Tillman et al. 1997). This paper only deals with a Tabu 

Search Redundancy Allocation Problem (TSRAP) and thus the other approaches are not 

fully disclosed. 
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In the Tabu search approach the moves are deterministic which reduces variability 

in the search parameters. The approach for this paper is based upon the paper written by 

Kulturel-Konak et al. (2003). Some changes to Kulturel-Konak (2003) TSRAP and the 

problem presented in this paper are: 

 1.) the initial solution always starts from a simple 5 component series system  

 2.) there is a cost associated with each component and a budget. A solution that 

exceeds the budget is no longer a feasible solution. Taken from (Kulturel-Konak, 2003). 

The following terms are used to describe the problem: BEST MOVE (best solution that 

would be a result from taking any of the current available moves), BEST SO FAR (best 

solution so far in the search, it may be feasible or infeasible), BEST FEASIBLE SO FAR 

(best feasible solution found so far in the search.) These steps are altered to fit the needs of 

the paper and will thus reflect changes. An example will be provided in the later called 

simulation. This is a mathematical as well as theoretical explanation of TSRAP regarding 

this paper.  

Step 0: Start with an accelerated life altered Weibull distribution of the 5  

components in the system. 

Step 1: Search the neighborhood for all possible defined moves for each subsystem.

 For larger problems a list of candidate solutions may have used (Glover, 1997) Two 

kinds of moves are possible for this problem. For the TSRAP for only one component 

choice only includes the first move; however, the multiple component choice has two 

possible moves. The first type of move is to change the number of components by adding 

one ( xij → xij + 1 ). The second type of move is to change the type of component is to 

change the component choice (xij → xik for j ≠ k), for each subsystem. Any addition or 
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change in component is considered a singular move. Subsystems are changed out one at a 

time; thus the reliability in theory can be recalculated and updated accordingly. The moves 

are performed independently and compared to the best move so far. If this solution, the best 

move, is infeasible; due to over budget, or is on the Tabu list, then the move is disallowed 

and must be restarted. If the solution is not Tabu and is under the cost constraint, then the 

best so far solution is accepted. 

Step 2: Update the Tabu List 

The move is accepted and added into the Tabu list. If the Tabu list is full, the older 

Tabu list entry is deleted. To know if an entry on the Tabu list is feasible or infeasible, the 

system cost and weight are noted. 

 Step 3: Check the stopping criterion  

Finally the stopping criterion is checked. It is defined as the maximum 

number of iterations without finding an improvement in the BEST 

FEASIBLE SO FAR. If it is reached the search is concluded and the BEST 

FEASIBLE SO FAR solution is the TSRAP recommended solution. 

Again these steps are taken from (Kulturel-Konak et al, 2003) with alterations. In 

this TSRAP subtracting a component is not a feasible move because the initial solution 

always needs 5 components and subtracting a component will not add reliability. However, 

without the subtracting of a component the Tabu search cannot move as quickly and thus it 

may be useful to incorporate, but this leads to another dilemma. Simulation is done 

manually and thus takes an extraordinary amount of time. This factor leads to shorting the 

number of models that most calculated and accounted for. 
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For the stopping criterion, the assumed number of iterations was first set to 8 

solutions and then later changed to 5. It is noted in the simulation examples which 

examples and used the 8 iterations without improvement and which used 5 iterations. 

The basic rule of any simulation is to get the best and most accurate data possible. 

Since the simulation only runs on what inputs are given if the inputs have uncertainties the 

simulation will not give a result that will accurately depict future metrics. Thus the adage, 

“garbage in garbage out” comes from bad data. Bad data can be issues of data collection, 

clear on uncertain metric, data formatting, and even simple typos. Although it may be 

expensive, the best data might come from computer automated systems, as the human error 

component may be significantly reduced. 

Once the data is gathered and collected an Accelerated Life Test (ALT) will be run 

to model future stresses. The general log linear will be chosen to represent the life stress 

relationship because of the availability of multiple covariates to represent an increasing or 

decreasing life as a function of, in this case mean and standard deviation or frequency of 

the stresses of the present data.  

Once the stress profiles’ variables are determined the first part of the simulation 

begins. Since each component’s optimum component replacement time is determined by 

the cost of the part and the failure distribution, this is calculated first. Each component has 

an optimal preventive maintenance schedule in which preventive maintenance is performed 

to prolong the life of a component. This preventive maintenance schedule and the time for 

preventive and corrective maintenance to complete are strong factors in calculating the 

availability. 

When all of the stress profiles and preventive and corrective maintenance times are 

inputted, the redundancy level must be set.  To determine an acceptable redundancy level, a 
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certain cost threshold is chosen. In most cases the more reliable component will cost more 

and thus this simulation model will also follow that same concept.  Once all the redundancy 

is set in place, the optimal system configuration is complete but for only one possible 

future. The accelerated life test, preventive maintenance, corrective maintenance, and Tabu 

search must be repeated for any amount of possible futures desired. 

After creating a model for each possible future, the expected availability will be 

calculated using the sum of expected probabilities. Figure 8 is a flow chart which 

represents the steps in finding the availability of the system with an uncertain future stress 

profile from computing the times to failure to the final calculation of the expected future 

system availability. 

 

Figure 8. Flow Chart of Data to Simulation Model 
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7.0 Examples 

The general log linear life stress relationship is utilized to create a futuristic stress 

profile with data acquired in the present. This example uses the mean and standard 

deviation method as an example model. The inspiration of this comes from the Navy air 

fleet. As aircrafts land on a carrier, each landing impacts the arresting gear system and 

causes stress. Since the number of arrestments between each corrective action as well as the 

tension recorded both the mean and standard deviation of each time to failure can be 

recorded with relative ease. Shown in Figure 8 is a database that calculates the mean time 

to failure as well as a corresponding mean tension to failure and standard deviation to 

failure. 

 

Figure 9. Database Calculates Mean and Standard Deviation of Tension along with Frequency 

Once the Repair Time (Mean Time Between Failure), Mean (Average Force Unit to 

Failure), and Standard Deviation (Standard Deviation of Force Units) are calculated a 

futuristic baseline must be determined. As a general rule with any ALT the baseline should 

not cause any failure not caused by the original dataset.  For this example set, the raw data 

is shown in Table 5. The Repair Time, Mean, and Standard Deviation are calculated for the 
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raw data to be inputted into ALT software. The MTBF (Mean Time Between Failures) is 

the time between each repair not including logistics downtime and the actual repair time. 

This MTBF is counted in cycles or loads. In the Navy example one cycle would represent a 

single launch or single recovery. These launches/recoveries are counted until a failure 

occurs, the time between failures is the mean time to failure or the MTBF. However in each 

cycle there is a tension recorded.  Once a failure occurs all of these tensions are summed 

and averaged over the course of the failure cycle. This is the mean force unit recorded in 

the column.  

𝑇𝑒𝑛𝑠𝑖𝑜𝑛 

𝑀𝑒𝑎𝑛 𝑇𝑖𝑚𝑒 𝑇𝑜 𝑅𝑒𝑝𝑎𝑖𝑟
=  

∑ 𝑇𝑒𝑛𝑠𝑖𝑜𝑛𝑀𝑇𝑇𝑅
𝑥=1

𝑀𝑇𝑇𝑅
                                                 (6.1)  

The Std column is simply the standard deviation over the course of the cycles to failure 

(CTF).  

Table 5 Raw Data Table 

     CTF Mean  Std 

495  463* 443 

759 490 253 

333 536 643 

554 678 245 

547 905 543 

561 986 546 

682 1070 242 

611 1122 760 

345 1543 234 

250 1789 683 

 

After calculating the desired variable needed for the ALT, the a1 and a2 parameters 

must be calculated to shift the failure distribution according to an increasing stress load. 

                                                           
* Simulated data is all in pound and does not represent actual aircraft data. 
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This is done simply through software; however some check still must be made. The first 

check is to see the fit of the Weibull distribution with the parameters and the future stress 

chosen. Figure 9 is a probability plot of a the component raw data which is exposed to the 

future stresses of 2400 force units and a standard deviation of 600 units. The distribution 

parameters are β = 4.4889, α0 = 6.7852, α1= -0.0004 α2= -0.0002. By looking at Figure 9, 

one can deduce that the distribution fits the data accurately. 

 

Figure 10. Probability Plot of Table 5 

While the data in this paper shows simulated times, a thorough quality assessment 

should be performed on real data. A simple life versus stress plot should show that as the 

load increases the life parameter of the component should decrease. Depending on the type 

of product, an increase in the variance may or may not increase the life parameter. What 

must be determined beforehand is if the component is more durable for heavy loads. In 

most cases a heavier load will correspond to more wear than a lighter load. An increase in 

variance means that the component accrues a diverse set of stresses both heavier and 
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lighter. However, increasing stresses tend to impact a typical component more severely 

than a linearly related lighter load, although this might not be case all the time. For the 

arresting and launching systems of the Navy, a higher variance and higher mean of stress 

should decrease the life parameter. In Figure 10 the stress (Average Force Unit) is 

compared to the life and in Figure 11 another stress (Std of the Force unit) is shown. Figure 

10 depicts a cleaner and more comprehensible 3-dimensional graph of the pdf vs. force vs. 

life. 

 

Figure 11. Force Units (2400) vs Life 
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Figure 12. Standard Deviation vs Life 

 

 

Figure 13. 3D Model Standard Deviation vs Life 

After obtaining the accelerated life parameters and results, the optimal component 

replacement must be calculated. The basis of optimal component replacement takes the cost 

of the failure and compares that cost to the accumulated cost of preventive maintenance 
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accounting for the failure distribution. This optimal component replacement time is utilized 

to determine when a component should be replaced in the system. This is all done when 

creating a policy is created. 

After determining all the inputs to the availability metric for one possible future, the 

redundancy of the level of the system must be determined. In this example no component 

switching is assumed which means that only one component is available so the only 

possible action to improve reliability would be to add a redundancy. A cost unit will 

constrain the system and the objective is to maximize availability within the cost 

constraints. Multiple component switching has more possible actions due to the ability to 

choose a different more reliable component albeit at a higher price and also increases the 

iterations for the Tabu search.  

Some assumptions are made to simplify this problem. The preventive maintenance 

and optimal replacement schedules remain constant and do not change while adding the 

redundancy. This assumption is made to reduce the problem set, but in a typical scenario 

adding redundancy to certain systems can reduce the amount of preventive maintenance 

costs and also depending on the type of stand-by system the optimal replacement maybe 

different as well. Think for example of a cold stand-by system,  no preventive maintenance 

will be needed on the part that is not active as it does not accumulate any wear, the 

replacement component will also not be purchased if the first failure occurs but will 

probably be replaced sometime when the second fails. Although the optimal preventive 

maintenance times does not change mathematically as continually providing preventive 

maintenance on the non-redundant component will provide a longer life and a more cost 

efficient system. The slack provided by the redundancy might enable decision makes to 

hold off on preventive maintenance or purchasing a replacement due to the availability of 
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the redundancy. This may especially be true if the preventive maintenance is a long and 

arduous procedure or if the replacement component is expensive. However, the assumption 

in this paper is that all optimum replacement times and preventive maintenance schedules 

are independent of the redundancy levels and thus can be calculated separated.  In future 

possible works this issue may be addressed; however currently this is beyond the scope of 

this project.   

The redundancy level is determined by a Tabu search, for this example the Tabu list 

is made short and the Tabu list is set to 4 items because the solution set is rather small. 

After calculated all parameters and redundancy levels for one possible future, the process 

must be repeated for multiple futures.  For this example, the preventive maintenance times 

and repair times have been held constant but in a more realistic example these times will 

not be a constant value but a distribution of times as well as different components having 

different repair and preventive maintenance times. In other words, using a car as an 

example, the time it takes to change a tire will be significantly less than restoring a 

transmission. Later in this thesis other problems will demonstrate changes in the preventive 

maintenance times as well as the changes in the costs associated with the optimal 

replacement time. 

For all examples done, only three possible futures will be addressed.  Other possible 

profiles maybe be added to the method and would be done by simply repeating the steps 

explained above. The estimated availability is calculated as the sum of the weighted 

probabilities of each future.  The probability of each future is chosen on the likelihood of 

the event to occur; there is no absolute way to predict this occurrence, so one must choose 

wisely on either experience, intuition, or some other basis.  When calculating the future 

stresses the base or future stresses will be inputted and thus will change the parameters. 
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7.1 Tabu Search : Single Component 

 

Figure 14. Basic Reliability Block Diagram  

Figure 14 is designated as the initial solution because the system does not have any 

redundancy as this system is still in operation. All improvements are made to this initial 

system and the goal is to reduce the cost of the reliability while maintaining the maximum 

reliability allowed. The cost is set at a certain value. In other words a budget is given and 

the Tabu search will not find a solution in which the budget is exceeded. 

Each block has a Weibull failure time distribution determined by data collected at 

the component level. The failure time distribution is not the only important property 

inputted into the simulation. The corrective maintenance time as well as the preventive 

maintenance time is inputted as well. These times represent the length of time it takes for a 

corrective or preventive maintenance action to occur, which effects system availability for 

during maintenance components are being repaired. If the system must be taken down for 

repair, then this will affect availability. 

 In a previous section the move is mentioned for only one component choice.  

“The move is to change the number of components by adding one ( xij → xij + 1). 

Any addition or change in component is considered a singular move. Subsystems 

are changed out one at a time; thus the reliability in theory can be recalculated and 

update accordingly. The moves are performed independently and compared to the 

best move so far. If this solution, the best move, is infeasible; due to over budget, or 

is on the Tabu list, then the move is disallowed and must be restarted. If the solution 
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is not Tabu and is under the cost constraint than the best so far solution is 

accepted.” 

The initial system starts with 5 subsystems and adds a redundant component at each move. 

The first neighborhood is defined in Figure 15. (Dummy blocks are used to allow the 

software to complete the simulation.) 

 

Figure 15. Possible Solutions for One Iteration in One Possible Future 

Each component has a redundancy added iteratively and a simulation is run to 

calculate the reliability for each system. When a redundancy is added the cost of the 

component is noted. In the first few iterations the cost is not a factor as the budget is far 

below the limit. However, in as the redundancy levels increase the cost will increase as 

well and the eye must be kept on the budget to ensure that the cost is not greater than the 

budget. When running the simulation for this example adding a redundancy to component 2 

showed the greatest increase in availability to the system and thus the candidate solution 

now becomes Figure 16 or the solution which is under budget and has the greatest 

calculated availability. 

 

Figure 16. Optimal Solution for the First Iteration 
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The optimal solution does this is by no means surprising. The component, block 2, 

has the most unreliable failure distribution and providing redundancy to this component 

would seem intuitive. This BEST SO FAR system is now used as a basis for the Tabu 

search. However, adding the same component will now be forbidden and force a search to 

multiple neighborhoods. Each solution will then be compared and a new solution will be 

chosen as the BEST SO FAR system. Each BEST SO FAR system will eventually be 

compared until the stopping condition is met.  

The parameters for the Weibull are as follows, with a time to replace set at 100. 

This is depicted in the table below. The cost constraint used in the single case is 80. In a 

more robust model this cost would be defined either in monetary value, time, or some other 

predetermined metric.  

After inputting the variables in Table 6 below, the Tabu search was run. Then the most 

reliable solution of the iterations is chosen and the move added to the Tabu list.  

Table 6. Eta Values for Future Events 

Component Beta η1 η2 η3 

Block 1 3.4 305* 346 479 

Block 2 2.6 451 634 834 

Block 3 3.78 221 567 743 

Block 4 1.4 103 293 409 

Block 5 2.7 266 854 1002 

 

7.1.1 Single Component: Results 

The single component case is fairly simple as there is no competing component. 

Each subsystem only has one option and the stopping condition and cost constraint become 

                                                           
* Data used for this thesis was provided by the Navy. This data needed another conversion rate to get actual 
units. At the time of calculating these examples, the Navy did not authorize the release of actual units in this 
thesis and thus simulated or base line Navy units were used to calculate these results. 
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the main factors as the algorithm adds a redundant component to increase availability until 

the stopping condition is met. 

In this example, the eta and the beta parameter are already calculated for each 

future. Each future represents a possible loading condition. In this case, all futures 

experienced increasing loads. Future 1 is the mildest; however the force experienced on 

this system is still more than the current force the system is experiencing. Future 2 

represents a slightly heavier load and future 3 represents an even heavier load than future 2. 

 Noticing that in the single component case where the cost of a component is set 

equally a pattern begins to emerge when running future scenarios. Although this section’s 

intention was to go into detail of the single component case, there seemed to be no 

particularly interesting finding. The final structure of the component is shown in Figure 17. 

 

Figure 17. Single Component Final Structure 

All three futures converged to the same solution, a 2-2-2-3-2 system. For each future the 

configuration may be the same. Combining the availabilities and the probabilities, the 

probabilistic availability is calculated as 0.8841, which means that the system will be 

available 88.41% of the time.  

Table 7. Single Component Availability 

Future Availability Probability 

1 0.8904 0.8 

2 0.8607 0.1 

3 0.8569 0.1 
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7.2 Tabu Search: Multiple Components  

In this example a multiple component system represents a system in which there are 

two choices available for each component. One choice is the standard component in which 

the cost is the same; however, the designer may choose an alternative component with 

increased reliability but at a higher cost. Each component is different so there is no mixing 

of choices within the system; however, it is possible to mix within the subsystem.  

To identify the difference between the original component and the more expensive 

and reliable component, the original component is labeled with the name “Block” and the 

more reliable component is labeled with the name “Part”.  

Table 8. Original Component vs Alternative Component Costs 

 
Component 

Type 1 2 3 4 5 

Block  5 6 8 9 6 

Part 7 9 10 12 9 

 

Table 9 represents the difference between the costs from a block component 

(original) to a part component (more reliable). The cost represents a cost unit not associated 

with a dollar or currency value.  The first multiple component examples choose arbitrary 

cost with the only rule being that the more reliable component is more expensive than the 

original. In the second example, the cost of the more reliable component’s cost is reflected 

in the reliability increase of the component. 

All components are assumed to have a Weibull failure time distribution; thus all 

components have a Beta and Eta parameter. A larger numerical eta usually corresponds to a 

longer average life when holding the beta parameter constant. In Table 10, all the 
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equivalent components (i.e., Part 1 and Block 1) have equivalent betas. However, the more 

expensive component (Part) has a higher life parameter; thus making the component more 

reliable. The other columns in the table are the corrective times or the time it takes for a 

corrective action to be completed and the preventive time, the time it takes for a preventive 

action to be completed. The column values are not calculated nor were they pulled from a 

data source. However, in this paper these times were made to be consistent and followed 

the logic that a corrective maintenance action would take longer than a preventative 

maintenance action. The final column is the optimal replacement time of each component 

given the distribution parameters of the Weibull distribution and a 4 to 1 ratio of 

unexpected replacement cost to a planned replacement cost or the cost of a failure versus a 

replacement. 

Table 9. Information Used for Components 

Type Beta Eta 

Corrective 

Time 

Preventive 

Time 

Optimal 

Replacement 

Block 1 3.3 890 100 20 498.2027 

Block 2 2.6 1455 100 20 804.8099 

Block 3 3.9 247 100 20 142.2642 

Block 4 1.25 609 100 20 1014.3987 

Block 5 2.6 450 100 20 248.9103 

Part 1 3.3 1000 100 20 559.7783 

Part 2 2.6 1700 100 20 940.3277 

Part 3 3.9 800 100 20 460.7748 

Part 4 1.25 750 100 20 1249.2595 

Part 5 2.6 700 100 20 387.1937 

  

Once all the variables are entered into the reliability block diagram, the search for 

the optimal solution must be conducted. As stated in a previous section, every system starts 

with a 5 subcomponent system which contains the “Block” components. Similar to the 

single component choice, one by one a component has a redundant component added, 
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switched, or changed. However, a key difference in the multiple component example is 

more choices are available for each subsystem since the “Part” component can now be 

implemented. This widens the possible solutions that can be accessible as there are more 

possible combinations due to the availability of another choice. Figure 18 depicts the 

additional choices available for the multiple component case.  

 

Figure 18. "Block" Component is Replaced with a Single "Part" component 

 

In the multiple component case each neighborhood search has more solutions; 

however, the more reliable component is initially being compared with a redundant 

configuration of the original. Although not a dire problem for a computer, the manual Tabu 

search is slow moving and to get a fair comparison the Tabu search must have a high 

number of iterations; this also requires a proper stopping condition.   
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7.2.1 Greater Cost for Components with Higher Availability 

 As stated in the previous section, the initial solution starts with a complete system 

with no redundancy. Keeping everything consistent, the standard component is labeled 

“Block”, while the more reliable component is labeled “Part”. Table 9 is the information 

table that contains all the basic information obtained by test data or empirical data. The 

corrective distribution is the distribution of the repair time for an unexpected failure event. 

This corrective distribution is set for a constant of 20 units. The preventive distribution is 

the distribution of the repair time of an expected failure event. This preventive distribution 

is also set as a constant of 5 units. The assumption is that the system does not occur 

downtime while the redundant components are being worked upon, however when a 

subcomponent is down there is a downtime. This downtime is equivalent to the corrective 

distribution constant of 20 time units. The last column depicts the replacement policy. This 

can be altered to the user’s discretion but in this thesis the replacement policy is calculated 

by the individual component and replaced at an optimal condition explained in the optimal 

component replacement section.  

Table 10. Variables for Alta Model 

     

The original data is summarized in the Table 10. However, with the introduction of 

new stresses the ALTA software will calculate new parameters to reflect the predicted 
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stress profiles. In this example, there are three possible futures, a future in which no 

changes occur and the stress on the component remains the same; a future in which the 

mean and standard deviation of the component slightly increase; and finally a future in 

which the mean significantly rises and the variation also rises. The respected covariates for 

each future stress profiles are as follows in Table 11. 

Table 11. Mean and Standard Deviations of Loads 

Future Profile 1 Future Profile 2 Future Profile 3 

Mean Std Mean Std Mean Std 

58000 28000 65000 30000 80000 32000 

 

 Each component’s Weibull variables are recalculated to represent the three distinct 

futures. All components were checked to make sure that each mean vs. life and mean vs. 

std graph had a negative correlation. The results and the cost are depicted in Table 9. 

 Cost is calculated in two methods. The first method is to arbitrarily assign an 

increased cost to the more reliable component. For example, block1 can be replaced by 

part1, which has a higher availability. However, part1 is more expensive by some cost with 

no real basis aside from the higher availability. The second method used to calculate cost is 

by taking a relationship of the cost unit multiplied by the ratio of the reliability, or the 

Block reliability over the Part reliability. These costs were only determined using the 

multiple component examples, as the component has two options in which the price can be 

changed. In the previous example, (single component) there was only one cost. 
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7.2.2 Multiple Component Basic Model: Future 1 

 The first profile to go through the redundancy allocation Tabu search is the profile 

with a mean of 58,000 and a standard deviation of 28,000. This profile represents a future 

in which no additional force has been added and thus this profile mimics the present stress 

profile. The system model has 5 subsystems and each subsystem has a choice of 2 

components. The nomenclature used to describe this redundant system is simple, a 

numerical value represents the number of components from the less reliable component or 

the Block, an alphabetical value represents the more reliable component or the Part. The 

actual value of the number or letter determines how many of that particular component is in 

the subsystem. Each subsystem is also separated by b – or _ . For example a 1_b_2_bb 

system is a system in which the first subsystem has one block component, the second 

system one part component, the third subsystem having two part components. Table 12 is 

the first iteration of the first future profile example and the associated move added to the 

Tabu list. The stopping condition is 6 consecutive iterations without an improvement and a 

cost constraint of 80 units. 

The first future is a future with the lightest aircrafts. Although an increase is 

experienced, it is now one which is not too different from the current loads the system is 

facing now. The initial iteration and availabilities are given in the Table 12 below. 
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Table 12. Initial Iteration 

 

 The common factor among all systems in all futures is that intially redundancy is 

added to components 3 and 4. This is logical as these are the most unreliability components 

and are thus availability will increase more dramatically as redundancy is built for these 

components. Althought these are different possible futures with different calculated failure 

functions (different parameters) the change is not drastic enough to see an initial difference 

of the systems redundancy in any future. It is safe to say that these are components are the 

low hanging fruit of the system.  

Table 13. Iteration 2 

Structure Cost Availability 

1-1-1-1b-1 45 83.1672 

2-1-1-2-1 48 83.4027 

1-2-1-2-1 49 82.8337 

1-1-2-2-1 51 85.5401 

1-1-2-2-1 49 84.0462 

b-1-1-2-1 45 83.05973 

1-b-1-2-1 46 82.5971 

1-1-b-2-1 47 83.8725 

1-1-2-1-b 52 82.6232 
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A unique instance occurs during iteration 4, at this point the chosen feasible 

solution is 1-1-2-2-b with an availability of 87.2991. Table 14 shows iteration 3 and 4 with 

the structure and the availabilities of each system. Highlighted in red are the most reliable 

(highest availability) in this iteration. As seen the move that takes 1-1-2-2-b to 1-1-b-2-2 or 

from iteration 3 to iteration 4 is in actuality a switching of components. While this move is 

not significant in itself, in this project finding a better solution usually does not occur by 

switching. This is the first and only case in which switching the structure of the 

components gives a better solution. Switching the structure provides the Tabu search to 

change the searchable area so the algorithm is limited to the local area. In this case, the 

searchable region for the solution switched areas moving the local of the best solution for 

the problem. 

Table 14 Iteration 3 and 4 

it3 

 

it4 

 switch 

 

Switch to b 

 2-1-1-2-1 83.4027 b-1-2-2-b 87.2991 

1-2-1-2-1 82.8337 1-b-2-2-b 87.3609 

1-1-2-2-1 85.5401 1-1-b-2-b 87.7835 

1-1-1-2-2 84.0462 1-1-2-1b-1b 88.1295 

    switch to b 

comp 

 

Switch 

 b-1-2-2-1 86.2643 

  1-b-2-2-1 86.2812 b-1-2-2-1 86.3031 

1-1-1b-2-1 86.4706 1-b-2-2-1 86.3396 

1-1-2-1b-1 87.1935 1-1-b-2-2 88.5637 

1-1-2-2-b 87.2991 1-1-2-b-2 84.5036 

    add regular 

 

add regular 

 2-1-2-2-1 86.6421 2-1-2-2-1-b 87.9385 

1-2-2-2-1 85.798 1-2-2-2-b 87.6462 

1-1-2-2-2- 87.2823 1-1-2-2-b 88.326 
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Each iteration added a component to the least reliable subsystem until the 9th 

iteration, shown in Table 15. In the 9th iteration, any additionally component added to the 

feasible solution causes a violation of the cost parameter and thus no longer becomes a 

feasible solution. Switching provides no new benefit as those solutions have been explored 

or are over cost as well. Changing the component to an alternate component is the only 

method which can possibly allow the availability to increase and at the same time meet the 

constraint of 80 cost units, but this does not occur during the stopping condition. 

Table 15. Over Cost 

 

The Tabu search finds a good solution which has the structure,  2 – 1b-1b-1b-1b and an 

availability of 93.87 percent. 

7.2.3 Multiple Component Basic Model: Second Future 

The second possible future’s Tabu list is provided by Table 16 

Table 16 Tabu list 
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Iterations 1 to 3 follow a generic pattern, where the most unreliable component has 

redundancy added. It is not until Iteration 4 where a new component is introduced and is 

chosen as the best solution for that iteration. (Availabilities are listed on the right, all 

solutions are under cost). 

 

 

 

In iteration 5, a component is added to block 1 and the reliability is increased and in 

iteration 6 the block 1 component is changed into a part as availability increases. In 

iteration 8, 9 and 10 a few solutions have gone over the cost threshold and cannot be 

considered a feasible solution. These iterations are depicted in both Table 17 and 18. 

However, beyond iteration 12 the system is now too costly to improve and switching will 

not allow the system to go under cost. Thus out of the final solutions, bb – 1b – b – 3 – 2 

has the best availability at 0.8873 and is chosen as the best available solution. It may not be 

Table 17. Iterations of the Second Future 
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the most optimal but it represents a good reliability structure given the cost and the 

reliability parameters. This solution is met as the Tabu search conditions were exhausted. 

Table 18.  More Iterations of 2nd Future 

 

The 2nd future represents a heavier load of aircraft. The solution initially starts off in 

the same pattern as the first future by adding a block to the 3rd and the 4th components. This 

is not a surprise as the 3rd and 4th components are the least reliable components of the 

system. The Tabu search initially improves the availability of the system efficiently and 

cost effectively but once these moves are forbidden or Tabu, the efficient move is now 

unavailable. This may hinder the search for the best solution but it also forces the system to 

calculate different reliability structures that would otherwise not be developed till later in 

the algorithm.  
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7.2.4 Multiple Component Basic Model: Third Future  

In the 3rd future, the system structure diverges quickly from the first future’s 

structure relatively quickly. In the first future and the second future, the 3rd move was to 

change the 3rd component into a different more expensive (yet, more reliable) part. 

However, in the 3rd future, the 3rd move is to add redundancy to the 5th component. This 

shows that a component will deteriorate at a faster rate relative to different levels of stress, 

thus a system with 200 units of extra load maybe need to be built differently than a system 

which will experience only 100 units of extra load, as different components will have 

different failure functions and different expected lives and different rates of failures. 

The system structure diverges from the first future’s structure from the 3rd move. 

The Tabu list is shown in Table 19. 

Table 19. Tabu List 

 

In iteration 7, the system becomes very limited as movement is not restricted due to 

the high cost. Only a few solutions are now feasible without going over cost. The 

availabilities of the solutions are provided in Table 20. The best for now solution has 

reached a tipping point at a cost of 76 where only a few moves can be considered. Some of 
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these moves are infeasible as they are located on the Tabu list. This provides no issue as 

these feasible solutions have an availability lower than the best for now solution.  

Table 20. Iteration 7 

 

The feasible solutions are listed below. The only available move that can be made is 

replacing the 2nd component with a more reliable alternative. Some of these moves are 

unfeasible as they are on the Tabu list. All other solutions are over cost. 

Table 21. Final System 

 

Iteration 8 only has two moves. After choosing 2-b-1b-3-1b as the best for now 

solution, the search continues, however no better solution is found as all solutions are over 

cost or the availability never rises above this current solution. Once the stopping condition 

has been met the best for now solution is the solution of choice. 
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7.2.5 Multiple Component: Basic Model 

With all three future and availabilities calculated, the likely availability of the 

system across all futures is calculated (probability of future 1)(availability of future 1) 

+(probability of future 2)(availability of future 2) + (probability of future 3)(availability of 

future 3). These futures probabilities are to be chosen with an expert or decision maker to 

approximate the possibilities of each future. Table 22 shows the corresponding 

probabilities and availabilities with respect to the future it represents. 

Table 22. Final Step 

Future Probability Availability 

1 0.2 93.87% 

2 0.5 92.44% 

3 0.3 88.73% 

 

The final estimated availability across all futures is then calculated as 91.61%. This is the 

estimated availability for the multiple component case with cost units of 80. Although the 

more reliable components are more expensive, there is no actual formula which decided the 

cost or increased cost.  The next example demonstrates a slightly more complex model, as a 

cost ratio was used to balance the increased availability of the more reliable components 

with cost. 

7.3 Multicomponent: Cost Ratio 

 The previous examples showcased a situation in which the cost of a more reliable 

part was set as a higher amount with no mathematical basis. To make the problem a little 

more complex, the more reliable component is now equivalently priced. In other words, a 

5% increase in reliability of the component will cost 5% more. This differs from the 

previous situation in which the more reliable component was just set at a higher cost. The 
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table below depicts the cost of each block and component. The budget was minimized to 75 

due to simulations taking an excessive amount of time. 

Table 23. Original vs Alternative Costs 

 

Component 

Type 1 2 3 4 5 

Block  5 5 5 5 5 

Part 6.5 6.1 5.2 5.8 6 

 

Table 24. Raw Inputs of Weibull Model 

 

7.3.1 First future: 

The first possible future had some interesting occurrences during the simulations. In 

most instances having a more reliable component in the system actually decreased 

availability, this may be misleading due to the allowable moves defined in the solution 

neighborhood. In this neighborhood, a more reliability component was always compared to 

a component with redundancy. This makes a move to the more reliable component difficult 

as it is continually being evaluated against two redundant components. However, 

eventually the solution incorporates the more reliable parts and the end result of the Tabu 

search resulted in a system which had the configuration of 1B-2B-2B-2B-2B with the cost 

units of 74.6.  
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7.3.2 Second Future: 

The second possible future followed the same pattern as the first future, but strictly 

diverged towards the end of the Tabu search. The final system configuration was set to 1B-3-1BB-

1BB-2B with a cost of 74.5. The drastic difference comes from the usages of the more reliable 

components. Switching never provided a more optimal solution and thus never became a viable 

option. 

7.3.3 Third Future: 

The third future allow had a slightly different path, followed the same system configuration 

as the first future, with the same cost. From this one can infer that the Accelerated Life Testing may 

have the same relationship and thus future one and future three maybe linear related. The 

components will then wear at the same rate. The availability of the system drops to 88.98% but this 

is expected with the heavier load.  

7.3.4 Results 

The availability of the systems drastically differed in all three scenarios. As the load of the 

futures increased, the reliability of the system decreased. Table 24 shows the different futures and 

different probabilities associated with each future. 

Table 25. Cost Ratio Results 

Future Probability Availability 

1 0.2 99.83% 

2 0.5 99.65% 

3 0.3 89.39% 

 

Multiplying the probability by the availability and summing all possible futures together should net 

the average availability of the system, considering all three scenarios. In this case,  
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(0.2 *99.83) + (0.5*99.69) + (0.3*89.39) will produce a system with 96.608% availability across 

three possible futures.  

8.0 Future Research 

 This model can provide a good solution to a system which will incur an uncertainty 

of the future. For a move in depth analysis, different applicable future profiles can be 

developed, more complex reliability block diagrams can be introduces, or taking into 

account more variables such as the cost of increasing preventive maintenance or the cost of 

time. However, when running a study of a large magnitude, data management and data 

processing will become an issue. The researcher will have to take into account the logistics 

of the data as well as the processing of the simulation computer to ensure a timely result. 

This thesis shows the surface of what could be done modeling uncertain futures there is 

room to expand upon this model. Some of the areas that can be explored are: 

1. Timing of maintenance 

2. Preventive maintenance costs  

3. Corrective maintenance costs 

4. Different crew availability  

5. Tools and equipment  

6. Different reliability structures (i.e cold standby, 2 out of 3 sub-systems) 

7. Assigning costs to labor 

This model uses the optimal replacement theory but tolerances could be added and 

expanded on. Preventive maintenance time was set as a constant in this model, however it 

is possible to gather data and calculate an accurate distribution to model the preventive 

maintenance. The availability of the crew must also be accounted for, as well as the 
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different tools used to fix these components. The structure of the system itself may be 

altered to provide a more complex system. This model also assigns a fixed cost allotted to 

the cost of component; however, in reality there are more cots such as the cost of 

preventive maintenance, the cost of installing the new component. These costs can be 

added to make the model more complex.  While it may seems like a good idea to add more 

variables, there are other logistical issues that will occur. Some of these variables are not 

easily determined and others are subjective. These are just a few additional components to 

the simulation model that can be added. However, the additional variables will add 

significant simulation time and may take hours to run a single model, but these are factors 

to be considered when considering a complex system. 

Tabu search is a good search method used for many different applications. The one 

caveat that could be changed for this Tabu search method would be to allow a way for a 

component to be able to duplicate itself, so that a system such as 1-1-1-7-1 can exist. 

Extending the Tabu list to allow an optimal move twice may be a way to modify the search 

to allow duplicate components. However, this may trap the search in a localized area and it 

may make the solution unable to move to a drastically different structure.  
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9.0 Conclusion 

The examples in this thesis demonstrate how Accelerated Life Testing can be used 

to show the impact of loads on different components in different possible futures. Each 

future will change the component’s ALTA variables which will in turn change the 

reliability of the component for that particular future scenario. Since each component’s 

reliability is affected differently by the load, the system may develop drastically different 

reliability models depending on the future scenario. A safe availability metric can be 

obtained by combining all the availabilities across the different future scenarios. The 

problem can be made more complex by adding many different conditions. Thus the model 

in this thesis is a baseline model to illustrate how Tabu search in conjunction with ALTA 

can determine the availability of a system with uncertain stress profiles. 
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