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I studied the decomposition of leaf material at the hyphal scale of resolution and the 

chemical and physical changes occurring at the fungal/substrate interface using Fourier 

transform infrared (FTIR) spectroscopy and atomic force microscopy (AFM).  The chemical 

composition of 20 fungal isolates was determined using FTIR and FTIR-attenuated total 

reflectance (FTIR-ATR) microscopy, with the intention of subtracting fungal FTIR spectra from 

decomposing leaf spectra in a separate experiment.  I found fungi are difficult to differentiate 

using FTIR spectra. 

I performed a twelve month decomposition study placing leaves of white oak, black 

huckleberry, and pitch pine in leaf litter of the New Jersey pinelands.  FTIR-ATR spectra of the 

leaves at 10x10 micron areas were taken at 0, 6, and 12 months.  I found leaf chemistry of oak 

and huckleberry was similar, but different from pine, prior to decomposition.   As decomposition 

progressed, the chemistry of the leaves appeared to become more similar.  Subtracting fungal 

spectra from the leaf spectra was not possible and complicated analysis of leaf spectra. 

AFM was combined with FTIR-ATR to study the fungal hypha/leaf interface at the level 

of an individual hypha.  It was not possible to scan a leaf on the AFM, so a flatter substrate was 

required.  I attempted to cast starch:lignin biofilms as a simple leaf model using published 
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methods, however it was found that during the film making process the lignin may have been 

degraded.  Instead, manufactured cellophane was used as a model for cellulose.  Three fungal 

species were grown on cellophane squares, and AFM and FTIR-ATR imaging utilized to 

determine the chemical and physical properties of the cellophane adjacent to the hyphae.  

Fungal species capable of producing cellulase caused a change in the physical characteristics and 

chemistry of cellophane adjacent to fungal hyphae. 

These experiments demonstrate the chemistry of fungal hyphae and decomposing 

leaves using FTIR-ATR and chemical and physical changes occurring in a substrate during fungal 

decomposition using FTIR-ATR and AFM.  The novel use of FTIR-ATR and AFM to investigate the 

fungus/substrate interface at the scale of an individual fungal hypha introduces new methods 

for studying fungi at this scale of resolution. 
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CHAPTER 1 

Introduction 

Located on the Atlantic coastal plain in New Jersey, The Pinelands National Reserve is 

one of the largest continuous tracts of preserved land on the east coast of the United States, 

comprised of 1.1 million acres of unique habitats.  The NJ Pinelands are characterized by porous, 

sandy acidic soils with high rates of nutrient turnover and very little humus.  Upland forest 

canopies are dominated by pitch pine, oak, or both with understories dominated by blueberry, 

huckleberry and mountain laurel (Boyd, 1991).  Due to the acidic nature of Pinelands soils, fungi 

dominate the saprotrophic community, and leaf litter decomposition by fungi is a major means 

to replenish depleted nutrients in the soil.  This dissertation aims to investigate fungal 

decomposition of pinelands leaf litter at the microscale by utilizing unique techniques not often 

thought of as options for ecologists.  Observations of fungal decomposition at this scale may 

provide a better understanding of fungal foraging strategies and community assembly. 

 

Leaf Litter Decomposition and Fungal Succession 

Decomposer communities include a variety of soil and litter organisms including 

bacteria, fungi, protozoa, and representatives of nearly all terrestrial invertebrate classes 

including nematodes, mites, and collembola (Swift, Heal and Anderson, 1979).  Decomposition is 

a process achieved by the entire community; no one organism can completely degrade the 

mixture of complex molecules found in a single leaf (Osono and Takeda, 2002).  However, fungi 

are known to be the primary decomposers of the chemical constituents of detrital plant 

material, primarily due to their wide variety of degradative enzymes (SInsabaugh, 2005).  Plants 

produce a number of large biopolymers such as pectin, hemicelluloses, cellulose, and lignin.  

Cellulose is the most abundant biological polymer on Earth, with estimated total annual biomass 
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production of 1.5 x 1012 tons, followed by lignin, the second most abundant biopolymer and 

most abundant aromatic polymer on Earth (Klemm et al., 2005; Leisola, Pastinen, and Axe, 

2012).  Although both are highly recalcitrant (lignin more so), there is a relatively wide 

assortment of fungi, particularly in the Ascomycotina and Basidiomycotina, that produce the 

enzymes necessary to decompose cellulose (e.g. hydrolytic cellulases and lytic polysaccharase 

monooxygenases).  Much fewer in numbers and diversity are the species of fungi that produce 

lignin-degrading enzymes (lignin peroxidases and manganese peroxidases).  Lignin decomposers 

are primarily Basidiomycotina, but do include a small number of Ascomycotina genera, 

particularly Xylaria spp. (Dix and Simpson, 1984; Osono and Takeda, 2002; Sinsabaugh, 2005).  

The dominance of fungi in the decomposition process of leaf material makes them a key 

participant in the carbon cycle, the importance of which cannot be understated (Sinsabaugh, 

2005).   

Fungal decomposition of plant material is intimately connected to succession of the 

fungal community on the leaf.  Until now, the decomposition of leaves has been observed in 

bulk studies of litter bags or individual leaves (Jensen, 1974; Ponge, 1991; Frankland, 1998; 

Osono and Takeda, 2002; Osono, Hirose, and Fujimaki, 2006). Compositional changes within the 

leaf and the successive changes in the decomposer community within and on the leaf are well 

documented in such studies.  Ponge (1991) broke down the decomposition process into four 

successive stages of macroscale community and resource changes, in which fungi play a pivotal 

role in each.  In many cases, fungi act to condition a substrate long before other organisms, 

including bacteria and soil fauna, are able to utilize the resource (Romani et al., 2006).  

 A freshly fallen leaf is composed of numerous organic compounds, which act as 

substrates for decomposition.  Nucleic acids, proteins, and lipids will all be present, but 

carbohydrates will dominate the leaf constituents.  There will be small mono-, di-, and 
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oligosaccharides, as well as the larger polymers: pectin, hemicelluloses, cellulose, and lignin.  

Most fungal taxa, as well as a good number of other organisms, are capable of breaking down 

the non-carbohydrate and small carbohydrate compounds.  These easily degraded components 

of the leaf allow early colonization by a large number of organisms resulting in relatively rapid 

depletion, leaving behind the more recalcitrant substrates for the fungi producing cellulolytic 

and lignolytic enzymes.  These serial changes in the resource result in a predictable pattern of 

succession in the fungal community. 

In general, fungal succession on a newly fallen oak leaf in a temperate forest should 

follow the phases listed below (Frankland, 1998; Kendrick, 2001): 

i. First, phylloplane fungi and early saprobes attack.  Some phylloplane fungi may have 

been weak parasites or epiphytic fungi that can now capitalize on the fallen leaf.  The 

early saprobes are leaf litter fungi, usually r-strategists, and can utilize the simple sugars 

and oligosaccharides of the leaf material.  This stage is dominated by the Zygomycotina, 

few of which are capable of producing cellulose or lignin degrading enzymes. 

ii. Next, common leaf litter saprotrophs invade.  Ascomycotina dominate, although other 

fungi may be present as well.  They will attack more recalcitrant substances such as 

pectin, hemicellulose, and cellulose. 

iii. By 6 months, Basidiomycotina are present.  These tend to be slower-growing K-

strategists producing a much more complex suite of enzymes, including enzymes that 

degrade relatively simple organic compounds and those that degrade more recalcitrant 

compounds including cellulose and lignin.  They can degrade the most recalcitrant plant 

substances, cellulose and lignin. 

iv. After 2 years, the leaf material is well incorporated into the soil and soil fungi compose 

the fungal community.   
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There are multiple factors that affect fungal succession patterns including location and 

environment (Frankland, 1998). In addition to the substrate on which it’s growing (location) and 

the microclimate and the presence/absence of other fungi (environment), fungal succession on 

a leaf should be determined by the enzymes a fungus possesses and the effects of those 

enzymes on the leaf material.  By tracking the physical and chemical changes in the leaf and 

relating that to information about which fungi possess which enzymes will shed light on the 

successional trends in the fungal community and how interactions between fungi occur at the 

hyphal scale in relation to resource quality.  

 

Fungal Growth Patterns and Foraging 

Oak, pine, and huckleberry are all found within the NJ Pinelands, and each species 

should possess a distinct complement of plant polymers (Ribeiro da Luz, 2006), making them 

perfectly suited to act as varied substrate choices for the assembly of a fungal community.  In 

addition to differences between species, there is also considerable heterogeneity within a 

species (Estell et al., 1994) and presumably within individual leaves.  The presence of a variety of 

cell types with varying levels of secondary cell wall development implies that the entire leaf is 

itself a mosaic of chemical resource patches that are observable only at the microscale. There 

appear to be no known studies that investigate how a fungus degrades a highly complex 

substrate such as a leaf at the hyphal level; however, research at the gross scale of individual 

leaves or mass of leaves or through assays of entire microbial community enzyme suites does 

exist (Smart and  Jackson, 2009).  Hyphal branching patterns and rates of growth have been 

shown to vary depending on resource quality in contrived heterogeneous environments using 

defined media (Ritz, 1995). Ritz demonstrated that in high-nutrient media, hyphal growth is slow 

and dense, yet in low-nutrient media, hyphal growth is fast and effuse.  By differing foraging 
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strategies as the mycelium explores a heterogeneous substrate, the fungus allows for 

conservation of energy.  Whereas the fungus will grow many hyphae to increase surface area on 

high quality resources, but grow few hyphae on low quality resources. 

Optimal foraging theory (OFT) is largely an ecological theory applied to an animal’s 

selection of food in relation to the balance between energy expended on the search and energy 

gained by consumption of the food item (Van Nest and Moore, 2012).  Although OFT was first 

developed in animal behavioral ecology (MacArthur and Pianka, 1966; Emlen, 1966) and based 

on the hypothesis that animals will maximize their energy intake per unit of foraging time, a 

large body of research, including proposed mathematical models, has appeared since the 

introduction of optimal foraging theory addressing the foraging behaviors and energetic trade-

offs in animals (Charnov, 1976; Pyke, Pulliam, and Charnov, 1977; Pyke, 1984), plants (Cahill and 

McNickle, 2011; Gleason and Fry, 1997; Kelly, 1990), and more recently, mycorrhizal fungi 

(Gavito and Olsson, 2008a & 2008b; Johnson, 2009) at a large scale of resolution.  Of the models 

of mycelium growth of saprotrophic fungi, none appear to address optimal foraging theory. 

The modus operandi of fungi is to present the largest possible surface area to the 

environment through which it can secrete enzymes and recover end products of enzyme activity 

for growth. This activity not only changes the chemical structure of the substrate, but also alters 

the physical structure by solubilization along with the deposition of proteinaceous material 

(enzymes).  The “zone of influence” of an individual hypha would be the area over which the 

secreted enzymes exert an effect on the substrate and from which the hypha can garner 

resources.  An optimal foraging strategy for fungi would be to maximize fungal hyphal length 

and to organize branching patterns to optimize the surface area covered but to minimize 

overlap of zones of influence between adjacent hyphae. The fact that fungal mycelia can alter 

their foraging strategy between rich and poor resource bases has been shown (Rayner, 1991; 
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Ritz 1995), however the interaction between the hypha, its underlying substrate, and the 

immediate effect of the hypha on substrate physical and chemical changes has only recently 

started to be investigated (Oberle-Kilic, Dighton, and Arbuckle-Keil, 2013).   

With advances in microscopy, imaging, and methods to determine chemical 

composition, we now have the ability to monitor changes in leaf chemistry as a fungal hypha 

forages across its surface.  Combining tools commonly used in analytical chemistry (Fourier 

transform infrared spectroscopy (FTIR) and FTIR-ATR (attenuated total reflectance)) and physics 

(atomic force microscopy (AFM)) may enable measurement of the precise effects that a fungal 

hypha induces in the carbohydrate chemistry and surface structure of a substrate.  Determining 

the physical and chemical changes to the substrate at this scale will identify the unique 

contribution of individual fungal species to the decomposition process. These changes in the 

resource will then influence changes in the fungal community over time, allowing a greater 

understanding of the resource control (bottom up regulation) of assembly rules for saprotrophic 

fungal communities during resource succession (Jumpponen and Egerton-Warburton, 2005).   

 

Fourier Transform Infrared (FTIR) Spectroscopy 

Fourier transform infrared spectroscopy (FTIR) is a tool traditionally used in the field of 

analytical chemistry, but is increasingly being applied in the biological sciences in analyzing 

complex biological systems (Movasaghi, Rehman, Rehman, 2008; Duygu et al., 2009). FTIR 

spectroscopy involves the absorption of infrared radiation by the sample resulting in molecular 

vibrations (i.e. bending or stretching of covalent bonds and/or groups of atoms in a molecule).  

The molecular vibration can be observed if there is an overall change in the dipole moment of 

the chemical bond and/or groups of atoms as a result of the vibration.  Each observable 

chemical group in a molecule will vibrate at a specific frequency characteristic of its structure.    
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The resulting IR spectrum is a plot of the intensity of IR radiation absorbed (y axis) at specific 

wavelengths (x-axis) in units of wavenumber (cm-1), which is commonly used for this region of 

electromagnetic radiation. The complex pattern of peaks produced by a sample, its IR spectrum, 

can then be analyzed to obtain compositional information. 

In polyatomic covalent molecules, there exists a permanent dipole due to the fact that 

positive and negative charges within the molecule rarely perfectly overlap.  This makes most 

covalent molecules at least slightly polar.  For IR radiation and matter to interact, the matter 

must have a permanent dipole.  Homonuclear diatomic molecules, by contrast, have no 

permanent dipole, therefore are not IR active.  With the absorption of IR radiation, there is a 

change in the permanent dipole of a chemical bond.  The normal modes of vibration include 

symmetrical stretching, asymmetrical stretching, twisting, scissoring, rocking, and wagging 

(Mayo, Miller, and Hannah, 2004).  When IR radiation is absorbed by a molecule the permanent 

dipole (normal vibration) of that molecule changes.  The larger the change in the molecular 

dipole of the molecule, the greater the intensity of the peak (commonly referred to as an 

absorption band) on the IR spectrum at that wavenumber will be.  Peak intensity, however, can 

also be attributable to the amount of a functional group within a sample, in accordance with 

Beer’s law (A=εbc). Where A is absorption, ε (molar absorptivity) is dipole dependent, b is path 

length, and c is concentration.  Relative intensities of peaks at different wavenumbers cannot be 

considered quantitatively, but can be compared qualitatively.  However, comparisons of 

intensities at a particular wavenumber between related spectra may be considered 

quantitatively if sufficient information is known about the sample (Mayo et al., 2004). 

The infrared region is divided into the near-IR (14,000-4,000 cm-1), the mid-IR (4,000 – 

400 cm-1), and the far-IR (400-10 cm-1).  The mid-IR is the most commonly used region in IR 

spectroscopy.  The region below 1500 cm-1 (1500-400 cm-1) is known as the fingerprint region.  
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Many functional groups absorb IR radiation in this range, resulting in a unique, characteristic 

spectrum (fingerprint) of a pure substance.  Therefore, this region is central in determining 

compositional information about complex biological mixtures. 

Fourier transform infrared (FTIR) spectroscopy is based on the principle of interference 

between two infrared beams producing an interferogram.  It utilizes mathematics (the Fourier 

transform) to convert the interference pattern into a spectrum, and therefore requires an 

interferometer in the IR bench. The interferometer produces the interferogram that contains all 

of the spectral information about the sample.  The Michelson interferometer consists of two 

perpendicular mirrors, one of which is capable of movement, and a beamsplitter (Fig. 1).  

Ideally, 50% of the IR radiation passes through the beamsplitter to the moving mirror, while 50% 

is reflected to the stationary mirror.   The two mirrors then reflect these beams back to the 

beamsplitter, where they combine and interfere.  The beam that is reflected from the non-

moving mirror is transmitted through the beamsplitter, but 50% is reflected back to the source.  

This beam that is transmitted through the beamsplitter (from the stationary mirror) is the beam 

that will interact with the sample and subsequently be detected.  The most common IR detector 

is DTGS (deuterium triglycine sulphate), but the IR microscope detector is MCT (mercury 

cadmium telluride) which requires liquid nitrogen. (Stuart, George, and McIntyre, 1996)  

The moving mirror plays a key role in forming the interference pattern, and as such 

must be properly aligned.  As the mirror moves back and forth, there is a highly sensitive laser 

(often helium-neon) that is used to control and measure the mirror movement precisely (Stuart 

et al., 1996).  It is these measurements that are used when computing an infrared spectrum 

using the Fourier transform.  

There is a selection of sampling techniques available using FTIR spectroscopy.  In the 

studies that follow three different methods were utilized. 
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i. Transmission spectra were obtained using potassium bromide (KBr) pellets, consisting of 

<5% sample and >95% KBr ground together then pressed.  The IR beam passes through 

the pellet resulting in transmission spectra. 

ii. Reflection spectra were obtained using Attenuated total reflectance (ATR) microscopy 

using a single point of contact.  FTIR-ATR (attenuated total reflectance) microscopy 

utilizes a microscope in conjunction with a traditional FTIR bench.  This enables the 

infrared spectrum to be obtained from a point located under the microscope 

approximately 10 x 10 microns in size.  There is a crystal (in this case, germanium-Ge) 

attached to the rotating nosepiece of the microscope.  This crystal is brought into 

contact with the sample, where the beam of IR radiation penetrates it and is reflected 

back into the crystal. The depth of penetration of the IR beam is dependent upon the 

refractive indices of the Ge crystal and the sample; it varies with wavelength.  The 

reflected IR beam is then sent to the detector (MCT) in the head of the microscope.  This 

process generates an average FTIR spectrum of the area in contact with the ATR crystal.  

iii. ATR microscopic imaging using a focal plane array (FPA) detector that generates a 

chemical map at a single point.  Micro-ATR-FTIR imaging utilizes a similar microscope, 

but with a focal plane array detector in conjunction with a traditional FTIR bench.  This 

enables the infrared spectrum to be obtained from an image area located under the 

microscope, composed of 64 x 64, 1.1 μm2 pixels, resulting in a spectral map composed 

of 4096 spectra.  Each pixel, therefore, is its own spectrum, not an average of spectra 

over the entire contact area.  Micro-ATR-FTIR imaging has recently been used as a tool 

to investigate chemical composition of biological samples (surface of skin, cross-section 

of blood vessels, hair) with higher resolution than was previously allowed using 

traditional IR methods. (Kazarian and Chan, 2010) 
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The transmission spectra were obtained using an FTIR bench as described above with no 

additional attachments, whereas ATR and ATR imaging require specialized microscopes. 

The chemical composition of leaves is an array of complex biopolymers including pectin, 

lignin, cellulose and hemicelluloses.  During decomposition these polymers are attacked by a 

variety of fungi capable of breaking the bonds found within these recalcitrant biological 

compounds.  As the compounds in the leaf material are decomposed, the type of functional 

groups present and their relative ratios will change, thus leading to temporal changes in the IR 

spectrum.  FTIR-ATR microscopy will allow the tracking of those changes occurring at the scale of 

the fungal hyphae.  

FTIR and FTIR-ATR have been utilized in investigating leaf litter changes under the 

influence of enzymatic degradation (Mascarenhas, Dighton, and Arbuckle, 2000) and under the 

influence of burning (Lammers, Dighton, and Arbuckle-Keil, 2009).  FTIR-ATR has recently been 

used to successfully distinguish between leaf species (Ribeiro da Luz, 2006). 

 

Atomic Force Microscopy 

The atomic force microscope is an imaging and analysis tool that operates by ‘feeling’ 

with a probe, as opposed to ‘looking’ with lenses on an optical microscope (Morris, Kirby, and 

Gunning, 2010).  The AFM probe is a small tip (nm in size) suspended from a cantilever (microns 

in size). Probes (tips) and cantilevers vary in size, composition, and flexibility; some of which are 

specially made for an intended purpose (e.g. biological samples) and others are general purpose. 

  In tapping mode, the probe taps transversely across the surface, as a laser is reflected 

off the top of the cantilever and onto a photodiode screen, allowing for generation of a height 

image based on the deflection of the cantilever (Fig. 2).  This height image can then be analyzed 

to measure surface roughness of different areas of the image by utilizing the root mean squared 
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(RMS) values.  In addition to producing images of the surface and measurements of surface 

roughness, the AFM also has the capability to measure other physical properties of the surface 

through a series of force curves.  Force curves are plots produced as the AFM probe goes 

through one cycle of down and up (Fig. 3).  These curves provide data on the hardness, 

elasticity, and adhesion of a small area of the sample.  When a number of force curves are taken 

in adjacent regions, a pixelated force map may be generated, where each pixel represents a 

different force curve (Fig. 4). 

Atomic force microscopy is a physical microscopy technique that can be used for 

measuring surface topography, adhesion, and elasticity in living cells (Kaminskyj and Dahms, 

2008).  AFM has been used to visualize changes in shape and surface structure of germinating 

Aspergillus fumigatus spores  (Dague et al., 2008) and to test adhesive properties of Beauveria 

bassiana’s different reproductive cell types: aerial conidia, blastospores and submerged conidia  

(Holder and Keyhani, 2005). 

Using the atomic force microscope in conjunction with the FTIR- ATR microscope, we 

now have the capability of observing changes in substrate chemistry at or near the resolution of 

action of a single fungal hypha.  The results of these experiments may be the first record of the 

effects of fungal activity on the chemical structure of leaf material at the scale of resolution of 

fungal hyphae. The unique combination of data that can be generated using these microscopy 

methods will allow integration of tools traditionally used in the chemical and physical sciences 

to determine changes occurring at the micro scale on a substrate during decomposition. 
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Figures 

 

 

Figure 1.  A Michelson interferometer of an IR spectrometer, including major components and beam 
pathways (after Stuart et al.,1996).  Essentially, the source emits a beam of IR radiation that is split, 
reflected off mirrors at 90 degrees, and then recombined.  When they recombine, they interfere with one 
another.  This beam is then directed at the sample.  In transmission mode it is transmitted through the 
sample to a detector; in reflection mode the beam is reflected off the sample to a detector.  
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Figure 2. The optical lever sensor of an atomic force microscope.  As the cantilever bends (during contact 
with the sample), the position of the laser spot on the detector (photodiode) will change, generating a 
height image of the sample (after Eaton and West, 2011). 
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Figure 3. A force curve generated by atomic force microscopy.  The area of adhesion work, the red area 
between the curve and the x-axis, allows for quantitative analysis between varying pixel shading in the 
force map (Fig. 4) (after Asylum Research Manualette, courtesy of S. Vinzelberg, PhD, AFFE) 
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Figure 4. Adhesion force map of the biopolymer polyhydroxyalkanoate (PHA) measuring 1x1 micron.  Each 
pixel represents a force curve similar to the schematic diagram shown on the above.  The extent of 
shading represents the adhesion work of the sample in nanoNewtons.   
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CHAPTER TWO 
 

Characterization of fungal isolates using Fourier transform infrared (FTIR) spectroscopy 

and Fourier transform infrared-attenuated total reflectance (FTIR-ATR) 

microspectroscopy 

 

Introduction 

Fourier Transform Infrared (FTIR) spectroscopy involves the absorption of infrared 

radiation by the sample resulting in several molecular vibrations within each atom or group of 

atoms.  Microscopic FTIR-ATR (attenuated total reflectance) utilizes a microscope in conjunction 

with a traditional FTIR spectrometer, allowing an infrared spectrum to be obtained from a point 

approximately 10 x 10 microns in size (Salzer and Siesler, 2009). 

When IR radiation is absorbed, each functional group in a molecule vibrates at specific 

frequency regions depending on its chemical structure and the structures to which the 

functional group is bound.  It should be recognized that different functional groups may vibrate 

at similar frequencies, making them indistinguishable during IR spectral analysis.  This is often 

the case in complex molecules and mixtures, such as those found in living organisms; however, 

useful compositional data may still be obtained. 

In addition to the ability to examine biological samples at the microscopic scale using 

transmission techniques (Stewart 1996), numerous advances have occurred in FTIR micro-

spectroscopy over the past two decades, and a number of methodologies have been developed 

to observe or differentiate microbes using FTIR or FTIR-ATR. Kansiz et al. (1999) used FTIR micro-

spectroscopy to discriminate between different strains of cyanobacteria.  Naumann et al. (2005) 

were able to differentiate two fungi: Trametes verisicolor and Schizophyllum commune growing 

in wood blocks. Dogan et al. (2007) observed changes in mouse liver tissue infected with 
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candidiasis, and Johnson et al. (2009) were able to differentiate between vegetative cells and 

sporulated cells of Bacillus bacteria based on their unique IR signatures.   

The use of FTIR in the biological sciences has recently been reviewed by Movasaghi, 

Rehman, and Rehman (2008) and Duygu et al. (2009).  Mowasaghi et al. (2008) published a 25 

page correlation table in their review assigning peak numbers to only biological functional 

groups, and made tentative assignments to distinct biological molecules in some cases (e.g. 

1419 cm-1 is attributable to (COO¯) found in polysaccharides and pectin). 

 Using synchrotron FTIR micro-spectroscopy, Szeghalami, Kaminskyj, and Gough (2007) 

identified differences in IR spectra between hyphae of Aspergillus, Neurospora and Rhizopus and 

slight spectral changes in each of these when grown in sub-optimal conditions. Jilkine et al. 

(2008) similarly used synchrotron FTIR to develop methods for whole-cell biochemical 

composition using spores of Neurospora and Rhizopus.  Synchrotron FTIR differs from traditional 

IR in that it utilizes a powerful synchrotron source, which enables the user to overcome 

resolution problems at the lower wavenumbers.  According to Jilkine et al. (2008), the most 

distinctive carbohydrate signatures are found at the longer infrared wavelengths, but the 

diffraction limit is 5-10 microns, resulting in poor resolution using a traditional IR source. 

In this study, traditional FTIR and FTIR-ATR methods were used to determine significant 

differences in spectral properties of a number of fungal species analyzed using three different 

methods.  FTIR-ATR allows for investigation into surface chemistry; this was used to determine 

the surface chemistry of (i) living fungal hyphae versus (ii) dried fungal hyphae.  The use of 

transmission FTIR required the (iii) grinding of dried hyphal cells with KBr, allowing the internal 

cellular chemistry to be investigated.  Thus, the ground samples were a mixture of surface (cell 

wall) and internal material. An in depth statistical analysis was performed, examining minute 
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differences between fungal spectra using full-spectrum IR analysis.  Unique differences were 

found for both transmission and reflectance (ATR) mode IR spectra. 

 

Methods 

Sample Preparation 

Twenty species of fungi were obtained as either stock cultures from the laboratory of 

Dr. Jim White (Rutgers SEBS Department of Plant Pathology) or through direct culture and 

isolation from NJ Pinelands leaf litter (Table 1).  The species or descriptions are given as well as 

the abbreviations which will be used for simplicity.  Selection of fungal species was targeted at 

those similar to fungi found on decomposing leaf material, primarily Ascomycetes and 

Basidiomycetes. Therefore, there is not a broad taxonomical range of fungi represented in this 

study. 

Oak and huckleberry leaves were collected from upper and lower layers of the forest 

floor leaf litter.  Leaves were placed on potato dextrose agar (PDA)(Fisher Scientific, Pittsburgh, 

PA) plates, malt extract agar (MEA) plates, and in damp chambers.  After one week at room 

temperature, colonies that could be sub-cultured from the PDA and MEA were transferred to 

new PDA and MEA plates. If any contaminants remained, these were then sub-cultured again to 

isolate.  

Damp chambers were prepared by lining empty petri plates with moist paper towels 

and sterilizing in an autoclave.   Damp chambers were moistened as necessary using 1.0 ml of 

sterile water.  After 30 days, leaves were removed and moved to PDA and MEA plates.  After 

one week at room temperature bacterial contaminants were present.  Colonies were then 

transferred to tap water agar to attempt to separate out the fungal colonies from bacterial 
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colonies, as the fungal hyphae will grow out allowing isolation.  After two weeks of growth on 

tap water agar, fungal colonies were isolated and transferred back to PDA. 

After isolation, fungi were kept in pure culture on PDA plates.  They were  transferred to 

potato dextrose broth, a liquid media composed of potato infusion and dextrose (Fisher 

Scientific, Pittsburgh, PA).  Once a pure broth culture was maintained, three broth sub-cultures 

were made per fungal isolate.  After the colonies reached approximately 1 cm in diameter, they 

were removed from the broth culture and rinsed thrice in sterile water to remove excess broth.  

The colonies were placed on MirrIR™ slides (Kelvey Technologies, Chesterland, OH) and allowed 

to slightly air dry for 30 minutes.  This was enough time to allow excess water to evaporate 

while leaving the colony slightly moist and alive. 

The three replicates of the living samples were analyzed using the FTIR-ATR microscope.  

All ATR spectra were obtained on an Agilent (formerly Bio-Rad) FTS 6000 infrared 

spectrophotometer with an attached UMA 500 microscope with a germanium (Ge) ATR crystal. 

Sixty-four scans were averaged at a resolution of 4 cm-1 with air as the background spectrum.  

Between collections of each average spectrum, the Ge crystal was cleaned with isopropanol.  

After collecting spectra from the surface of the living hyphae, the sample slides were 

placed on a metal block partially submerged in liquid nitrogen (-190 C), freezing the fungus 

quickly to preserve the intracellular components.  Following thirty minutes on the metal block, 

samples were placed in a drying oven at 25 C for 24 hours to remove excess water (Heike 

Bucking, personal communication of methods).  Once the colonies dried, they were analyzed on 

the FTIR-ATR microscope using the same settings as the live fungal samples (outlined above). 

Following FTIR-ATR spectra collection from living and dried colonies, the dried material 

of each sample replicate was individually scraped from the MirrIR™ slide and added to ground 

KBr in approximately a 1:20 ratio of sample:KBr.  The mixture was finely ground using a mortar 



24 
 

 

and pestle, transferred to a KBr press, and pressed into a transparent pellet.  Each pellet was 

placed in the internal sample compartment of the Agilent FTS 6000 and transmission FTIR 

spectra were obtained. 

 

Spectral Analysis 

Spectral databases were created using KnowItAll® (Bio-Rad, Hercules, CA) spectral 

analysis software.  Each database consists of the three replicate spectra of each of the 20 

species of fungi (9 identified species and 11 unidentified samples).  The three primary spectral 

databases were created for each treatment: ATR spectra of living fungi, ATR spectra of dried 

fungi, and KBr transmission spectra of dried-ground fungi.   

Upon importing the databases into KnowItAll®, all spectra were normalized and baseline 

corrected (linear fit).  Additionally, the spectra from the KBr samples were smoothed (linearly 

over 5 points) to remove noise as a result of water in the sample spectra.  Following creation of 

the databases, principal component analysis (PCA) was performed in KnowItAll®.  The PCA was 

mean-centered with 3 factors and included only the CH-region (3050-2800 cm-1) and the 

fingerprint region (1800 – 700 cm-1) of the spectra. The region above 3050 cm-1 is a very large, 

broad band due to OH vibrations.   This region is present in all spectra, but the band itself can 

shift by 50 or so wavenumbers between spectra.  Using such a large band in a full-spectrum 

analysis causes it to outweigh the smaller, more significant bands in the CH-region and 

fingerprint regions.  The region between 2800 and 1800 consists of few spectral vibrations, 

except for the CO2 bands 2390-2285 cm-1, present in air.  Below 700 cm-1, there is another CO2 

band that must be excluded at 672-664 cm-1, as well as considerable noise in this region.  

Additionally, the germanium crystal cannot be used at wavelengths below ~570 cm-1. 
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The databases were then exported to another informatics software package, Pirouette® 

(Infometrix, Inc. Bothell, WA).  Pirouette® is not exclusively a spectroscopy software package, 

but it offers the ability to generate spreadsheets of the PCA coordinate scores (KnowItAll does 

not).  The coordinate scores on axes 1, 2, and 3 from the PCA analysis in Pirouette® were 

imported into SAS® (SAS Institute, Inc.) and one-way ANOVA was performed with a Tukey’s post 

hoc test on the coordinate scores on each of the three primary PC axes.  In all data sets, axis 

three did not contribute significantly to spectral separation, and therefore, it was not analyzed 

in detail.  The coordinate scores were then entered into Graphpad Prism®(GraphPad Software, 

Inc.) to generate each PCA plot including error bars. 

The spectra of each species deemed to be significantly different from the PCA analysis 

were further analyzed using their x-residuals to determine which spectral peaks were causing 

separation in the analysis.  For example, in the living fungi database, the ANOVA resulted in 

samples D and S pulling in the positive direction and R pulling in the negative direction on axis 1 

– the x axis (Fig. 1).  

The x-residual is a result of subtracting each spectrum from the average of all the 

spectra in the database.  These are plotted together with residuals from all 60 spectra on the 

same graph (Fig. 2).  The spectra with the most deviation from the group at certain 

wavenumbers coincide with the species of fungi responsible for the most separation in the PCA 

analysis, as they are most different from the average of all the spectra.   

The x-residuals of each replicate of these key fungi were then analyzed.  Any peak, 

positive or negative, that separated out from the dark black center of overlapping spectra of the 

plot was recorded (Fig. 2).  A peak on the x-residual was determined to be relevant if 5 or fewer 

spectra of other species extended further from the zero line (Fig. 3).  If a peak separated in all 

replicates of the same species, this was considered a significant peak for that data set.  If two of 
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the three replicates had a distinct peak, that wavenumber was considered important.  This list of 

significant and important peaks was then compared to the factor loading plots generated in 

KnowItAll®.   

The factor loading plots are essentially line graphs centered on a zero line.  They are 

generated from the PCA analysis in KnowItAll, and reflect the peaks that contribute to 

separation in the overall analysis of all 20 species’ spectra.  If there is deviation on the positive 

side (upward peak) at a wavenumber, then that wavenumber is responsible for “pulling” 

positively along that axis in the PCA analysis.  Conversely, if there is a negative deviation 

(downward peak) at a specific wavenumber, then that wavenumber is responsible for “pulling” 

in the negative direction along that axis (Fig. 4). 

The important and significant IR peaks identified from analysis of the x-residuals should 

be present on the factor loading plots.  It is important to recognize that the factor loading plots 

include the entire database of 60 spectra, so there will be other peaks on the plots that are not 

found on the x-residuals of the species that ANOVA deemed statistically different from the 

others, for example, D, S, and R in the living fungi dataset. 

Following analysis of the PCA scores, x-residuals, and factor loading plots, these results 

were compared to the actual IR spectra.  The three IR spectral replicates for each fungal species 

that separated using the ANOVA analysis were averaged to result in one IR spectrum.  The CO2 

region was flattened, and peaks with a minimum intensity of 8% and maximum noise of 1% 

were identified by the software (Fig. 5).  Peaks within 5 wavenumbers of each other are 

considered to be essentially the same peak for the purpose of this analysis. 

A comparison of the peaks present in each average IR spectrum was cross-checked with 

the list of significant and important peaks for that dataset based on the x-residual and factor 

loading analyses.  All significant peaks (those present in all replicates) and important peaks 
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(those present in two of the three replicates) from axis 1 were included, whereas only significant 

peaks from axis 2 are included. 

 

Results 

FTIR-ATR of living fungi 

Spectral collection of living fungal hyphae using FTIR-ATR and subsequent statistical 

analysis resulted in a Principal Component Analysis (PCA) in which  axis 1 accounted for 72.2% of 

the variability, axis 2 for 18.5%, and axis 3 for 8.1%.  ANOVA of the PCA scores determined 

species D and S to be significantly different from 7 out of 20 other fungal species and species R 

to be significantly different from 5 out of20 other species along axis 1 (see ANOVA and Tukey’s  

post hoc report in the Appendix).  Species D & S separated in the positive direction and species R 

separated in the negative direction.  On axis 2, An was significantly different from 5 out of 20 

species, separating in the positive direction, and Tv was significantly different from 4 out of 20 

species, separating in the negative direction.  In contrast to the ANOVA results, the PCA plot 

(Fig. 1) visually indicates a different pattern of separation.  On the plot, it appears that: (i) D, S, 

Q, E, Tv, and M may form a group; (ii) Af and P another group; (iii) Pi, Pc, N, A, Cc, and Cg form a 

third group; (iv)O, R, Th, and Flf may form a fourth group; (v)and An and Po are probably unique.  

Although ANOVA recognized D, S, and R as significantly different, the clustering of the PCA plots 

indicate otherwise. 

Analysis of the x-residuals obtained from species previously selected by the ANOVA 

analysis on axis 1 resulted in 5 significant and 2 important peaks for species D, 4 significant and 1 

important peaks for species S, and 1 important peak for species R (Table 2).  X-residuals of 

important species on axis 2 resulted in 2 significant and 3 important peaks for An and no 

significant or important peaks for Tv (Table 3). 
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In evaluating the IR spectra for the 3 species listed (D, S, and R) on axis 1, it was found 

that it may be the presence, absence, and/or intensity of significant peaks, and whether those 

peaks are shared, that is responsible for the separation in the PCA.  The average IR spectrum of 

species D has IR peaks at 1738 and 1407 which are not present in any of the other species; it 

also lacks peak 1380, which is present in the other 2 species.   The average IR spectrum of 

species S has peaks 2980, 2970, and 2890, which are not present in the average spectra of other 

ANOVA-selected species. Species R has peaks at 1655 and 1080 in its average spectrum; these 

peaks are not present in any of the other ANOVA-selected species.  Peaks 1596, 1458, 1276, 

1174, and 1116 were not picked on any of the spectra using criteria described above (Table 4).  

However, it is possible that the absence of these peaks separates them from some of the other 

17 out of 20 species that did not statistically exhibit high levels of separation on axis 1.  In 

evaluating the spectra for the 2 species pulling on axis 2, none of the peaks identified are 

present on the average IR spectra of either species. 

 

FTIR-ATR of dried fungi 

The PCA resulted in axis 1 accounting for 67.2% of the variability, axis 2 for 15.5%, and 

axis 3 for 6.5%.  ANOVA of the PCA scores determined species Cc and E to be significantly 

different from 2 out of 20 other species and species Q and Po to be significantly different from 2 

out of 20 other species along axis 1.  Species Cc and E separated in the positive direction, and 

species Q and Po separated in the negative direction on axis 1.  On axis 2, species O and Flf were 

significantly different from 5 out of 20 species, separating in the positive direction, and species E 

and P were significantly different from 6 out of 20 species, separating in the negative direction 

(Fig. 6).  Visual interpretation of the PCA plot (Fig. 6) indicates that: (i) Cc, E, and P may form a 
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cluster; (ii) Cg, Po, and Q may form a group; (iii) Flf may cluster with Th and Tv; (iv) and An 

appears to be unique. 

Analysis of the x-residuals of ANOVA-selected fungal species on axis 1 (Cc, E, Q, Po) 

resulted in 6 significant and 4 important peaks for species Cc, 2 significant and 0 important 

peaks for species E, 0 significant and 2 important peaks for species Q, and 3 significant and 5 

important peaks for species Po (Table 5).  X-residuals of ANOVA-selected species on axis 2 (O, 

Flf, E, P) resulted in 0 significant and 2 important peaks for species O, 1 significant and 3 

important peaks for species Flf, 2 significant and 0 important peaks for species E, and 0 

significant and 2 important peaks for species P (Table 6). 

In evaluating the average IR spectra for the 4 species listed (Cc, E, Q, Po), it may be the 

presence, absence, and/or intensity of significant peaks and whether those peaks are shared 

that is responsible for the separation in the PCA.  The average IR spectrum for Cc has peaks at 

2980, 2885, and 933 which are not present in any of the ANOVA-selected species; Cc also shares 

peak 1156 with E.  Species Cc lacks peaks at 2930 and 772, which are present in E, Q, and Po. 

The average IR spectrum for species E has peaks 1745 and 1265 which are not present in Cc, Q, 

and Po.  Species E shares 1628 with Po, 1156 with Cc, and 2930 and 772 with Q and Po. Species 

Q shares 2930 and 772 with E and Po and 1410 with Po.  Species Po shares 2930 and 772 with E 

and Q, 1410 with Q, and 1628 with E.  Peaks at 1770, 1721, 1658, 1583, 1520, 1242, 1060, 1010, 

986, and 960 were not picked based on the criteria used (explained above) on any of the 

spectra.  However, it is possible that the absence of these peaks separates them from some of 

the other 16 out of 20 fungi that did not exhibit high levels of separation on axis 1.   

Evaluation of the average IR spectra for the 4 species selected by ANOVA (O, Flf, E, P) on 

axis 2 found that it may be the presence, absence, and/or intensity of significant peaks, and 

whether those peaks are shared, that is responsible for the separation in the PCA.  The average 
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IR spectrum of species O, E, and P share the same significant and important peaks with peaks 

present at 2850 and 1745.  They exhibit no unique or unshared peaks.  Species Flf has a peak at 

2980 (unshared), 1745 (shared) and lacks the shared peak at 2850.  Peaks at 1776, 1520, 1119, 

and 1012 were not identified on any of the spectra using the criteria noted above.  However, it 

is possible that the absence of these peaks separates them from some of the other species that 

did not exhibit high levels of separation on axis 2 (Table 8). 

 

KBr Transmission IR of dried fungi 

The PCA of dried, KBr-ground fungi resulted in axis 1 accounting for 57.8% of the 

variability, axis 2 for 20.5% , and axis 3 for 6.8%.  ANOVA of the PCA scores determined species 

Q to be significantly different from 4 out of 20 other species and species E to be significantly 

different from 2 out of 20 other species along axis 1, with species Q pulling in the positive 

direction, and species E pulling in the negative direction.   On axis 2, no species were 

significantly different than any others.  Visual interpretation of the PCA plot (Fig. 7) indicates 

high levels of overlap between many species, as there are high levels of variability within species 

in this data set.  However, it appears that: (i) E, Flf, and S may form a group (possibly including 

D); (ii) Th and Af may form a cluster; (iii) and Q is probably unique.   

Analysis of the x-residuals of important species on axis 1 (Q, E) resulted in 2 significant 

and 7 important peaks for species Q, and 0 significant and 2 important peaks for species E (Table 

9).   

Upon evaluation of the average IR spectra for species Q and E, it was found that it may 

be the presence, absence, and/or intensity of significant peaks, and whether those peaks are 

shared, that is responsible for the separation in the PCA.  The average IR spectrum of species Q 
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and E share a peak at 2925.  All other selected peaks were not found on either spectrum (Table 

10). 

 

Discussion 

Among the three data sets (living FTIR-ATR, dried FTIR-ATR, and dried-KBr-transmission 

FTIR) of fungal spectra, there is considerable variation in which fungal species’ spectra 

statistically separate as being different from the others.  In the living FTIR-ATR data set, species 

D, S, R, An and Tv are responsible for separation in the PCA analysis.  In the dried FTIR-ATR data 

set, an entirely different group of fungal spectra account for the separation on the PCA plot: Cc, 

E, Q, Po, O, FLF, and P. In the dried-KBr-ground fungal data set, Q and E are responsible for 

differences in the spectra.  The only species that cause separation in more than one data set are 

Q and E, both in the dried treatment and the dried-KBr-ground transmission spectra.  This may 

be attributable to the similar chemistry of fungal wall materials and internal cellular 

components across all fungi, whereas living fungi will often produce unique secondary 

metabolites, particularly when stressed.  

Further, there does not appear to be any grouping together of morphologically similar 

fungi (i.e. species M and S).  Fungi isolated from the leaf litter, whether it was oak or huckleberry 

or from the upper or lower layer of litter, did not separate distinctly from one another or the 

known species obtained from lab cultures.  There appears to be no pattern to the separation in 

any of the three data sets that is attributable to macroscopic features or microhabitat (upper or 

lower leaf litter).  However, statistical analysis provides evidence that in each treatment, there 

are fungi whose spectra are significantly different from the others.  If there is no macroscale 

pattern to account for these differences, perhaps it is at the microscale that the differences are 

important. 
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In addition to general differences in spectra between the treatments, there is 

considerable variation within each treatment with 5 (living FTIR-ATR) and 7 (dried FTIR-ATR) 

species being significantly different on the first 2 axes.  The exception is the dried-KBr-ground 

transmission IR data set, which resulted in only 2 significantly different fungal species on axis 

one and no significantly different species on the second axis.  This lack of separation may be 

explained by the process of KBr sample preparation and similarity of internal cellular 

components.  During the FTIR-ATR sample collection procedure, only the external surface of the 

hyphae was being analyzed.  This should result in chemical signals originating from exudates, cell 

wall material, and plasma membrane components.  In the preparation of KBr sample pellets the 

fungal mycelium is ground, releasing the intracellular components. 

When analyzing the results of all three datasets and determining the significant and 

important peaks within each data set, it became clear that the absence of peaks within spectra 

was as critical to separation of PCA results as the presence of particular peaks.  Therefore, it is 

not only a matter of the peaks present on an IR spectrum, but also a matter of the peaks that 

are not present on an IR spectrum in comparison to the entire dataset that determines its 

uniqueness.   

The factor loading plots generate an overall view of which peaks caused the PCA 

separation across all species, but the x-residuals identify what peaks were key in causing 

separation of specific species.  Although the factor loading plots are informative, one of the 

major drawbacks is the relative commonness of very large band widths.  For example, in figure 4 

there is a large section of the factor loading plot between 1733 cm-1 and 835 cm-1 that is entirely 

above the zero line.  It is impossible to tell from the loading plot alone which sections of this 

were actually meaningful in separation of species spectra without deconvolution.  Essentially, 

there are peaks within peaks that cannot be distinguished (Fig. 8).  
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By examining the x-residuals, it is possible to determine which peaks are specifically 

responsible for the uniqueness of the species’ spectra that did separate using ANOVA.  When 

these peaks are compared with the factor loading plots, they are present, but not necessarily as 

distinct peaks.  Figure 4 represents the factor loading plot of axis 1 for the dried-KBr-ground 

transmission IR data set.  ANOVA interpretation indicates that species Q and E (positive and 

negative, respectively) are responsible for separation along that axis.  Upon x-residual analysis 

of the Q replicates, all 3 replicates have a positive peak at 1776 and all 3 replicates have a 

negative peak at 1610.  The x-residuals from species Q also indicate that 2 out of 3 replicates 

have positive peaks at 1184, 1140, and 935 and negative peaks at 1636, 1586, 1427, and 1220. 

All of these peaks, except 1776 fall within the range of 1733 cm-1 – 835 cm-1, and many of them 

are located WITHIN other broader peaks.  X-residual analysis of E resulted in 2 wavenumbers, 

2925 and 2980, both present in 2 out 3 replicates pulling in the positive direction.  Both are 

present as distinct peaks on the factor loading plot, however, the 2925 peak is essentially at the 

zero line.  Even more interesting, 2925 is the ONLY peak of the selected wavenumbers that is 

present on the actual IR spectra of both Q and E. 

  Recall that positive peaks on the x-residuals indicate a higher intensity of that peak is 

present on the actual IR spectrum than the other 59 spectra and negative peaks on the x-

residual indicate a lower intensity of that peak on the actual IR spectrum compared to the other 

59 spectra in the data set.  This leads to the incorrect assumption that if a peak is positive on the 

x-residual it will be present on the actual IR spectrum.  For both Q and E, none of the positive 

peaks from the x-residual analysis were present on the actual IR spectrum except 2925 cm-1.  

This is an indication that separation may be more an artifact of peaks that are not distinctly 

present, but differ in intensity.  A difference in intensity (absorbance, y-axis) on the original IR 
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spectrum may be present due to slopes, shoulders, or distinct peaks being obscured within 

broader peaks.   

Most fungal spectra within all the datasets were remarkably similar along a continuum 

in their major peaks (those with high intensities); however, it was the minute differences at 

particular wavenumbers in the extreme spectra that resulted in separation of spectra of specific 

species.  For example, figure 9 shows two average spectra from the ATR-Living data set: average 

D and average R. Spectra are shown overlaid (Fig. 9a) and stacked (Fig. 9b) for ease of viewing 

peak numbers.  There are clear differences between the average spectra of these two species, 

however when the average spectrum of each of the twenty fungi are overlaid (Fig. 10), it is clear 

that there is a continuum connecting one extreme to the other.  It is this range of spectral 

overlap that accounts for the little variation found in whole-spectrum analysis of fungal species. 

 The functional groups represented by the IR peaks that resulted in separation in all 

datasets are fairly common in organic compounds, making it nearly impossible to determine 

specific compounds responsible for the differences between fungal spectra (Table 11).  The 

structures for the most common fungal compounds, chitin, trehalose, and ergosterol (Figs. 11-

13) are evidence of this similarity. All three compounds include ring structures and OH groups.  

Chitin and trehalose contain ether linkages (C-O-C), but ergosterol does not.  Chitin also contains 

NH groups and carbonyls, trehalose and ergosterol do not.  Many fungi are known to have 

melanin in their cell walls, a brown or black pigment that protects from UV radiation or may aid 

in pathogenicity.  Fungal melanin structures have been difficult to precisely determine 

(Casadevall et al., 2012), however it is known that they form by the oxidation of phenolic 

precursors, for example 3, 4-dihydroxyphenylalanine (Hanson, 2008).  Without clear, known 

structures of the fungal melanins produced by the species being investigated, it is not possible 

to compare their structure with those of chitin, ergosterol, and trehalose in terms of presence 
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or absence of major functional groups.  However, Paim et al. (1990) investigated the FTIR 

spectra of fungal melanin obtained directly from the cell or culture medium.  Cell-derived 

melanin was obtained from 3 species of fungi.  The results of this experiment indicated (i) a 

strong band at 1650 cm-1 (C=O of Amide I) was present in 2 out of 3 species’ cell melanin; (ii) a 

band at 2940-2870 cm-1 (aliphatic CH) was strong in 2 out of 3 and weak in 1 out of 3 species’ 

cell melanin; (iii) a band at 1530 cm-1 (NH of Amide II) was strong in 2 out of species’ cell 

melanin; and (iv) a band at 1020-1030 cm-1 (C-O of carbohydrates) was strong in 2 out of 3 and 

weak in 1 out of 3 species’ cell melanin.  This study indicates that fungal melanins may contain 

carbonyl groups (as does chitin), aliphatic CH groups (as do many organics), NH groups (as does 

chitin), and C-O groups, most likely the C-O bond found in O-glycosidic linkages (C-O-C) of 

carbohydrates (as found in chitin and trehalose).  Unfortunately, the bands of most organics are 

far from unique, and this information does not aid in indicating which fungal compounds are 

present or deciding what the similarities and differences are between species. 

 

ATR of Living Fungi 

 Comparing published correlation charts with the peaks determined as significant or 

important produces information about what functional groups are meaningful in the ANOVA 

separation of the key species.  In the living fungi treatment, species D, S, & R separated on axis 

one and An and Tv separated on axis two.  The significant peaks on the first axis include those 

for carbonyls (C=O), amides I & II (C=O, NH), aliphatic alkanes (CH, CH2, CH3), end ethyls and 

methyls of lipids (CH2, CH3) and carboxylic acids (COOH).  The peaks with lesser impact, 

important on axis one and significant on axis two, include those for esters of aromatic acids (C-

O-C), aromatics (CH), and amide III (NH).  These functional groups are consistent with 
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compounds expected to be found in a living fungus, such as lipids, chitin, and proteins (including 

enzymes). 

 The ANOVA analysis provides interesting information in terms of the statistical 

separation of species, however, visual analysis of the PCA plot (Fig. 1) highlights additional 

species that may be notable despite the lack of separation using ANOVA.  In this data set, D and 

S separated in the positive direction of axis one, and R separated in the negative direction.  On 

the PCA plot, species D and S are the furthest species on the right of axis one, however, they 

appear to form a group with E and Q along that axis.  Additionally, M and Tv also appear to form 

a group close to the D-S-E-Q group, as do P and Af.  In the negative direction on axis one, R is 

one of two species found furthest to the left, joined by Flf.  Interestingly, the mean of Flf is 

slightly further to the left than R, however ANOVA does not recognize Flf as significantly 

different, although they appear to group together on the PCA plot. 

 The ANOVA resulted in An pulling in the positive direction on axis two and Tv in the 

negative direction.  On the PCA plot, An is the largest positive on axis two, however Tv is not the 

lowest.  Tv is positioned clearly above M and at the same level as Po.  On axis two, there appears 

to be a higher level of overlap than axis one in all groups, yet An and Po appear to be unique. 

 There also appears to be a high level of variance between the replicates of some 

species, particularly E, Cg, and Af, whereas, species N exhibits very little variability between 

replicates. 

 

ATR of dried fungi 

 The peaks that are observed to be significant on axis 1 for the dried treatment include 

the following functional groups: carbonyls (C=O), amides (II and III) (NH), aliphatic alkanes (CH, 

CH2), carboxylic acid salts (COO—), amine salts (NH2
+), carboxylic acids (COOH), and esters of 
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aromatics (C-O-C).  The peaks with lesser impact, those important on axis one or significant on 

axis two, include functional groups as follows: amide I (C=O), carbonyls, including those of y-

lactones (C=O), esters of aromatic esters OR saturated aliphatic ethers (C-O-C), aromatic ring 

vibrations (CH ring), aromatic-bound methyl group (Ar-CH3), and interestingly vinyls (CH), trans 

(CH), and alkyl phosphates (P-O-C). 

 It is possible that during the drying process, some of the proteins formed carboxylic acid 

salts and amine salts, thus explaining their importance in this particular treatment group, but 

their lack of importance in the living fungi.  There also appears in this group the carbonyl of γ-

lactones, cyclic esters that are said to form spontaneously in the presence of a dilute acid at 

room temperature through condensation due to the stability of their 5-membered ring.   Many 

fungi are known to produce polyketide lactones, including Penicillium and Cladosporium species 

(Hanson, 2008).  The appearance of a vinyl CH band was also interesting in this group, however, 

further investigation revealed fungal secondary metabolites may possess a vinyl ether functional 

group, including griseofulvin (Hanson, 2008). 

 The ANOVA analysis resulted in Cc and E pulling in the positive direction on axis one and 

Q and Po on axis two.  Visual interpretation of the PCA plot indicates that Cc and E are the most 

positive representative on axis one, however, Po and Q are both less negative than Cg.  It 

appears that Po, Q, and Cg form a cluster on the plot.  Further, species P seems to be unique, 

but near the Cc-E group.  

 Visual separation on the axis two of the PCA plot supports the ANOVA results with O and 

Flf being the most positive and E and P being the lowest.   In addition to the cluster formed by 

Po, Q, and Cg, several other distinct groups seem to form.  Cc, E, and P may be a group, as may 

Flf, Th, and Tv.  This would be the first example of a group clustering that included two 

individuals of the same genus, Trichoderma.  An and O are probably unique, although O and Flf 
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separated together in ANOVA.  Although they do not cluster exclusively with one another, it is 

important to note that Pi and Pc are near one another on the PCA plot; both are representatives 

of the genus Penicillium.  In this data set, A, M, P, and E all exhibit high levels of variance 

between replicates, and species S exhibits very little variance.  

 

Dried-KBr-ground transmission IR fungi 

 Peaks observed as important or significant on axis one indicate the importance of the 

following functional groups in this dataset: carbonyl of γ-lactones (C=O) and primary amines 

(NH).  The peaks of lesser significance found to be important on axis one or significant on axis 

two include carboxylic acids (COOH), carboxylic acid salts (COO—), amine salts (NH2
+), amide III 

(NH), benzenes or higher esters (CH, C-O of R(C=O)OC, respectively), esters of aromatic acids (C-

O-C), aromatic ring vibrations (CH ring), aromatic-bound methyl group (Ar-CH3), and aliphatic 

alkanes (CH). 

 In the dried-KBr-ground dataset, γ-lactones, carboxylic acid salts, and amine salts are all 

considered important based on analysis.  This is not surprising considering this sample is merely 

the dried sample pulverized.  However, the appearance of a large number of aromatic groups 

(esters of aromatic acids, aromatic rings, and aromatic-bound methyl groups), and the smaller 

number of carboxylic acids, amides, alkanes, and carbonyls compared to the living and dried 

datasets is interesting, if not confounding. 

 On the PCA plot, Q is the most positive on axis one (in accordance with ANOVA results), 

however D is the most negative.  The ANOVA results indicate that E is most responsible for 

separation in the negative direction; E is closely clustered with D and Flf on the negative side.  

The ANOVA resulted in no separation on axis two in this data set; however the PCA plot 

indicates that Af, Th, S, Flf, and perhaps E may form a group on the positive side of this axis.   
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 All species have relatively high variance between replicates, however species Pi, Af, Pc, 

and Tv have very high levels.  No species exhibit the low levels of variance seen in N (ATR-Living 

set) or S (ATR-Dried set). 

 

Conclusions 

 When visually comparing the FTIR spectra of different fungi, they are remarkably similar, 

although statistical analysis of the spectra does indicate subtle differences.  There is little 

congruence in the separation of species between each of the methods used, suggesting that 

different chemistries are being exposed and detected by each method.  It is possible that the 

slight drying of the living fungi triggered a stress response causing the production of unique 

secondary metabolites.  The method of freezing the fungi in liquid nitrogen would not allow for 

the fungus to respond to the stress in a timely manner.  This would require the fungus to sense 

the change in temperature then activate the gene expression pathways to produce stress-

mediated secondary metabolites.  There was simply not enough time before the organism was 

completely frozen.  Considering this, and the known structures of chitin, ergosterol, and 

trehalose, these two treatments were expected to group similarly, yet they did not.  Perhaps the 

drying process caused salts to form, as evidenced by their presence in this treatment group, and 

perhaps the removal of water from the system concentrated any small amounts of organic acids 

produced by the fungus, enough for γ-lactones to form spontaneously.  The ground samples 

offered less separation between species, again, most likely due to the similarities of the internal 

cellular components.  However, the separation of ground samples was more dependent on 

aromatic structures than others.  Perhaps this is a result of greater membrane material 

(including ergosterol) being exposed upon pulverizing the cells. 
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 FTIR and FTIR-ATR are excellent tools for determining components of molecular 

compounds; however, their use in investigating complex mixtures of biological compounds 

(whole organisms, in this case) is hindered by the sheer variety of carbon-based molecules.  

Based on the above analysis, it is clear that there are unique and interesting chemistries 

occurring on the surface and within different fungal species, but FTIR and FTIR-ATR may not be 

the best option for separating out these differences. 
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Tables 
 

Table 1.  Fungal Isolates used for spectral analysis, including their  description or species name 
(if known), abbreviation used, and source. 
 

Isolate Abbreviation Species or Description Source 

An Aspergillus niger JW stock 

Af Aspergillus fumigatus JW stock 

Cc Cladosporium cladosporoides JW stock 

Cg Curvularia geniculate JW stock 

Pc Penicillium citreonigrum JW stock 

Pi Penicillium implicatum JW stock 

Po Pleurotus ostreatus JW stock 

Th Trichoderma harzianum JW stock 

Tv Trichoderma viride JW stock 

Flf Fusarium-like fungus JW stock 

A Small white colonies, covered in green conidia, 
thin light edges, dense, non-aerial, does not 
penetrate the agar, fast growth rate on PDA 

Huckleberry leaf 
Upper litter layer 

D Pink colony, light edges, dense hyphae, non-
aerial, penetrates the agar slightly, average 
growth rate on PDA 

Oak leaf 
Lower litter layer 

E Brown colony, light edges, dense, non-aerial, 
penetrates the agar slightly, average growth 
rate on PDA 

Oak leaf 
Upper litter layer 

M White colony, diffuse hyphae, somewhat aerial, 
does not penetrate agar, fast grower on PDA 

Oak leaf 
Lower litter layer 

N White hyphae, green conidia isolated to very 
center of colonies, dense, non-aerial, does not 
penetrate the agar, fast grower on PDA 

Oak leaf 
Upper litter layer 

O White colony, diffuse hyphae, somewhat aerial, 
does not penetrate agar, fast grower on PDA 

Oak Leaf 
Lower litter layer 

P White and tan colony, slightly diffuse, aerial, 
penetrates agar slightly, fast grower on PDA 

Oak Leaf 
Lower litter layer 

Q Appearance of A. niger.  White colony, dense 
hyphae, slightly aerial, penetrates agar slightly, 
fast grower on PDA, black conidia 

Huckleberry leaf 
Lower litter layer 

R Light pink/yellow colony, white edges, dense, 
aerial, penetrates agar slightly, causes PDA to 
change to a dark magenta, fast grower on PDA 

Huckleberry 
Lower litter layer 

S White colony, diffuse hyphae, somewhat aerial, 
does not penetrate agar, fast grower on PDA 

Huckleberry 
Lower litter layer 
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Table 2. FTIR-ATR analysis of living fungal samples significant on axis 1 of the PCA. Significant 

(present in all replicates) and important (present in 2 out of 3 replicates) IR peaks are listed.  (+) 

denotes pulling in the positive direction on the x-residual, meaning the residual spectrum has a 

higher intensity at that wavenumber than the average of all the spectra. (-) denotes pulling in 

the negative direction on the x-residual, meaning the residual spectrum has a lower intensity at 

that wavenumber than the average of all the spectra. 

Fungal Species Significant IR Peaks (present 
in all 3 replicates) 

Important IR Peaks (present 
in 2 out of 3 replicates) 

D 1738 (+) 1174 (+) 

 1655 (-) 1276 (+) 

 1596 (+)  

 1458 (-)  

 1407 (+)  

S 2980 (+) 1596 (-) 

 2970 (+)  

 2890 (+)  

 1380 (+)  

R  1080 (+) 

  1116 (+) 
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Table 3. FTIR-ATR analysis of living fungal samples significant on axis 2 of the PCA. Significant 

(present in all replicates) and important (present in 2 out of 3 replicates) IR peaks are listed.  (+) 

denotes pulling in the positive direction on the x-residual, meaning the residual spectrum has a 

higher intensity at that wavenumber than the average of all the spectra. (-) denotes pulling in 

the negative direction on the x-residual, meaning the residual spectrum has a lower intensity at 

that wavenumber than the average of all the spectra. 

Fungal Species  Significant IR Peaks (present 
in all 3 replicates) 

 Important IR Peaks (present 
in 2 out of 3 replicates) 

An 1600 (-) 1662 (+) 

 1405 (-) 1067 (-) 

  965 (-) 
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Table 4. Presence or absence of significant and important peaks in the living fungus dataset 
found in the FTIR spectra of D, S, and R (species separated on axis 1 of PCA) . X denotes the peak 
is present in the average IR spectrum of each species.  Several peaks identified as causing 
separation were not present on any of the average spectra; these peaks have been included in 
the table with all three columns blank. 
 

Peak Present in D Avg. 
spectrum 

Present in S Avg. 
spectrum 

Present in R Avg. 
spectrum 

2980  X  

2970  X  

2890  X  

1738 X   

1655   X 

1596    

1458    

1407 X   

1380  X X 

1276    

1174    

1116    

1080   X 
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Table 5. FTIR-ATR analysis of dried fungal samples significant on axis 1 of the PCA. Significant 

(present in all replicates) and important (present in 2 out of 3 replicates) IR peaks are listed.  (+) 

denotes pulling in the positive direction on the x-residual, meaning the residual spectrum has a 

higher intensity at that wavenumber than the average of all the spectra. (-) denotes pulling in 

the negative direction on the x-residual, meaning residual the spectrum has a lower intensity at 

that wavenumber than the average of all the spectra. 

Fungal Species Significant IR Peaks (present 
in all 3 replicates) 

 Important IR Peaks (present 
in 2 out of 3 replicates) 

Cc 2980 (+) 1658 (+) 

 1583 (+) 1628 (+) 

 1410 (-) 1156 (+) 

 1265 (+) 933 (+) 

 1242 (+)  

 1060 (-)  

E 1745 (+)  

 1520 (+)  

Q  1770 (+) 

  1721 (+) 

Po 2885 (+) 2930 (-) 

 1745 (-) 1010 (+) 

 1156 (+) 986 (+) 

  960 (-) 

  772 (+) 
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Table 6. FTIR-ATR analysis of dried fungal samples significant on axis 2 of the PCA. Significant 

(present in all replicates) and important (present in 2 out of 3 replicates) IR peaks are listed.  (+) 

denotes pulling in the positive direction on the x-residual, meaning the residual spectrum has a 

higher intensity at that wavenumber than the average of all the spectra. (-) denotes pulling in 

the negative direction on the x-residual, meaning the residual spectrum has a lower intensity at 

that wavenumber than the average of all the spectra. 

Species  Significant IR Peaks (present 
in all 3 replicates) 

 Important IR Peaks (present 
in 2 out of 3 replicates) 

O  2980 (+) 

  1776 (+) 

Flf 2850 (-) 1745 (+) 

  1119 (-) 

  1012 (-) 

E 1745 (+)  

 1520 (+)  

P  1458 (-) 

  1032 (+) 
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Table 7. Presence or absence of significant and important peaks of the dried fungi dataset found 

in the FTIR spectra of Cc, E, Q and Po (species separated on axis 1 of PCA). X denotes the peak is 

present in the average spectrum.  Several peaks identified as causing separation were not 

present on any of the average spectra; these peaks have been included in the table with all 

three columns blank. 

Peak Cc Average E Average Q Average 
 

Po Average 

2980 X    

2930  X X X 

2885 X    

1770     

1745  X   

1721     

1658     

1628  X  X 

1583     

1520     

1410   X X 

1265  X   

1242     

1156 X X   

1060     

1010     

986     

960     

933 X    

772  X X X 
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Table 8. Presence or absence of significant and important peaks found in the FTIR spectra of O, 

Flf, E and P (species separated on axis 2 of PCA) . X denotes the peak is present in the average 

spectrum.  Several peaks identified as causing separation were not present on any of the 

average spectra; these peaks have been included in the table with all three columns blank. 

 

Peak O Average Flf Average E Average 
 

P Average 

2980  X   

2850 X  X X 

1776     

1745 X X X X 

1520     

1119     

1012     
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Table 9. FTIR analysis of dried-KBr ground fungal samples significant on axis 1 of the PCA. 

Significant (present in all replicates) and important (present in 2 out of 3 replicates) IR peaks are 

listed. (+) denotes pulling in the positive direction on the x-residual, meaning the residual 

spectrum has a higher intensity at that wavenumber than the average of all the spectra. (-) 

denotes pulling in the negative direction on the x-residual, meaning the residual spectrum has a 

lower intensity at that wavenumber than the average of all the spectra. 

Species Significant IR Peaks (present in 
all 3 replicates) 

Important IR Peaks (present in 
2 out of 3 replicates) 

Q 1776 (+) 1636 (-) 

 1610 (-) 1586 (-) 

  1427 (-) 

  1220 (-) 

  1184 (+) 

  1140 (+) 

  935 (+) 

E  2925 (+) 

  2980 (+) 
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Table 10. Presence or absence of significant and important peaks found in the FTIR spectra of Q 

and E (species separated on axis 1 of PCA. X denotes the peak is present in the average 

spectrum.  Several peaks identified as causing separation were not present on any of the 

average spectra; these peaks have been included in the table with all three columns blank. 

 

Peak Q Average E Average 

2925 X X 

2980   

1776   

1636   

1610   

1586   

1427   

1220   

1184   

1140   

935   
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Table 11. Band assignments for peaks thought to be responsible for PCA/ANOVA separation of 
spectra, includes all three data sets. 

Wavenumber 
(cm-1) 

Significant 
functional 
group(s) 
responsible for 
vibrations  

Proposed band 
assignment 

Reference Data set 
including this 
wavenumber 

2980 CH Aliphatic alkane Socrates (2001) ATR Living 
ATR Dry 
KBr 

2970 CH  Aliphatic alkane Pretsch et al. (1983); 
Socrates (2001) 

ATR Living 

2930, 2925 Ar-CH3 Aromatic-methyl 
group 

Pretsch et al. (1983); 
Socrates (2001) 

ATR Dry 
KBr 

2890, 2885 CH  Aliphatic alkane Socrates (2001) ATR Living 
ATR Dry 

2850 CH2 Aliphatic alkane Socrates (2001) ATR Dry 

1770, 1776 C=O γ-lactones Socrates (2001) ATR Dry 
KBr 

1745 C=O Saturated 
aliphatic ketones 

Socrates (2001) ATR Dry 

1738 C=O 
 

Aliphatic 
aldehydes, 
conjugated 
carbonyl 
structures 

Socrates (2001) ATR Living 

1721 C=O Saturated 
aliphatic ketones 
or aldehydes 

Socrates (2001); ATR Dry 

1655, 1658 C=O 
 

Amide I  Mantsch & Chapman 
(1996) 

ATR Living 
ATR Dry 

1628, 1636 C=O o-Hydroxy- and 
o-amino-aryl 
aldehydes 

Socrates (2001); ATR Dry 
KBr 

1610 NH 
 
C=C 

Primary amine 
 
aromatic 

Socrates (2001) 
 
Socrates (2001) 

KBr 

1596, 1600 NH 
 
C=C 

Primary amine 
 
aromatic 

Socrates (2001) 
 
Socrates (2001) 

ATR Living 

1583, 1586 NH2
+ 

 
CO2¯ 

Amine salts 
 
Carboxylic acid 
salts 

Socrates (2001) 
 
Socrates (2001) 

ATR Dry 
KBr 

1520 NH Amide II Socrates (2001) ATR Dry 

1458 CH2 or CH3  Aliphatic alkane Pretsch et al. (1983); 
Vane (2003) 

ATR Living 
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1427 CH  carboxylic acid, 
aliphatic 
aldehyde 

Socrates (2001) KBr 

1407, 1405, 
1410 

OC-OH 
 
CH3  

Carboxylic acid 
 
Lipids (bending 
of end ethyl 
groups and 
branched methyl 
groups of lipids) 

Pretsch et al. (1983) 
 
Erukhimovitch et 
al.(2007) 

ATR Living 
ATR Dry 

1380 CH3  
 
 

End methyl Pretsch et al. (1983); 
Mantsch & Chapman 
(1996) 

ATR Living 

1276 C-O 
 
 
C-O-C 
 
NH 

Carboxylic acid 
dimers 
 
Aromatic ester 
 
Amide III 

Pretsch et al. (1983); 
Socrates (2001) 

ATR Living 

1265 C-O 
 
 
C-O-C 
 
NH 

Carboxylic acid 
dimers 
 
Ester 
 
Amide III 

Pretsch et al. (1983); 
Socrates (2001) 

ATR Dry 

1242 C-O 
 
 
C-O-C 
 
NH 

Carboxylic acid 
dimers 
 
Ester 
 
Amide III 

Pretsch et al. (1983); 
Socrates (2001) 

ATR Dry 

1220 C-O 
 
 
NH 

Carboxylic acid 
dimers 
 
Amide III 

Pretsch et al. (1983); 
Socrates (2001) 

KBr 

1184 CH 
 
 
C-O 

p-substituted 
benzenes 
 
propionates and 
higher esters, 
formates 

Socrates (2001) KBr 

1174 CH  
 
C-O 

aromatic 
 
propionates and 
higher esters, 
formats 

Pretsch et al. (1983); 
Socrates (2001) 

ATR Living 

1156 C-O-C Esters of Socrates (2001) ATR Dry 
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aromatic acids  
 
Saturated 
aliphatic ethers 

1140 C-O-C 
 
 
 
 

Esters of 
aromatic acids  
 
Saturated 
aliphatic ethers 

Socrates (2001) KBr 

1116 CH 
 
 
C-O 
 
 
 
 

p-substituted 
benzenes 
 
Esters of 
aromatic acids  
 
Saturated 
aliphatic ethers 

Pretsch et al. (1983); 
Socrates (2001) 

ATR Living 

1080 CH  
 
C-O 
 
 
 
 
 
C-O, C-C, COH  
 

aromatic  
 
Esters of 
aromatic acids  
 
Saturated 
aliphatic ethers 
 
Carbohydrates 
 

Pretsch et al. 
(1983);Mantsch & 
Chapman (1996); 
Socrates (2001) 
 
 
 
 
Erukhimovitch et al. 
(2007) 

ATR Living 

1060 C-O Esters of 
aromatic acids  
 
Saturated 
aliphatic ethers 
 

Socrates (2001) ATR Dry 

1010 P-O-C 
 
C-O 

Alkyl phosphates 
 
Carbohydrate (at 
1020, shifted) 

Socrates(2001) 
 
 

ATR Dry 

986 CH vinyls Socrates (2001) ATR Dry 

960 CH Trans Socrates(2001) ATR Dry 

933, 935 CH ring aromatic Socrates (2001) ATR Dry 
KBr 

772 CH ring Aromatic, o-
substituted 
benzenes, 
monosubstituted 
benzenes 

Socrates (2001) ATR Dry 
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Figures 
 

 
Figure 1. PCA plot of coordinate scores of living fungi in microscopic ATR FT-IR spectral 
space dataset. Error bars represent standard errors. For Axis 1 F=5.56, P < 0.0001. For 
Axis 2 F=4.76, P<0.0001. 
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Figure 2.  A sample x-residual with one spectrum highlighted for contrast. The black 
background is formed from overlapping the other 59 spectra in the dataset. 
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Figure 3. A region of an x-residual illustrating how relevant peaks were determined.  
Relevant peaks for a spectrum are those exceeding in intensity at a given wavenumber 
by 5 or fewer different spectra. 
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Figure 4.  The factor loading plot of axis 1 generated using the ATR-Living data set in 
KnowItAll®.  Deviation on the positive side (upward peak) at a specific wavenumber 
indicates “pulling” positively along the axis in the PCA analysis, whereas a negative 
deviation (downward peak) at a specific wavenumber indicates pulling in the negative 
direction along that axis.  The arrows indicate distinct peaks that were identified as 
either significant or important wavenumbers during x-residual analysis of the 2 species 
responsible for separation on this axis (Q and E, positively and negatively, respectively).  
The circles also indicate wavenumbers deemed important upon x-residual analysis, yet 
they do not form distinct peaks in the factor loading plot. 
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Figure 5. The average spectrum for species D; peaks selected by KnowItAll software.  
Peaks with a minimum intensity of 8% and maximum noise of 1% are labeled. 

  



59 
 

 

 

 
Figure 6. PCA plot of coordinate scores of dried fungi in microscopic ATR-FTIR spectral space. 
Error bars represent standard errors. For Axis 1 F=3.68, P = 0.0003. For Axis 2 F=5.79, P<0.0001. 
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Figure 7. PCA plot of coordinate scores of dried-KBr-ground fungi in transmission FTIR spectral 
space. Error bars represent standard errors.For Axis 1 F=3.77, P = 0.0002. For Axis 2 F=2.47, 
P=0.0080. 
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Figure 8.  An example showing how large, broad peaks may obscure smaller, more distinct peaks 
on a FTIR spectrum, from Ahting et al. (2001). 
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Figure 9. A comparison of the average IR spectra of D and R from the ATR-Living data set. This 
illustrates the overall similarities of spectra, even those that are statistically the most different.  
Spectra are shown overlaid (Fig. 9a) and stacked (Fig. 9b) for ease of viewing peak numbers.  
There are clear differences between the average spectra of these two species, however when 
the average spectrum of each of the twenty fungi are overlaid (see Fig. 10), it is clear that there 
is a continuum connecting one extreme to the other.   
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Figure 10. The three replicates for each species of fungi were averaged together to produce one 
average spectrum per species.  This figure shows the twenty average spectra overlaid with one 
another.  Although there are clearly spectra that represent the extremes, there is a steady 
continuum connecting those extremes. 
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Figure 11. (a)The chemical structure of N-acetylglucosamine, the monomer of chitin.  (b) Two 
monomers of N-acetylglucosamine linked together through an ether linkage to form the chitin 
polymer.  Note the presence of ether linkages, carbonyls, NH groups in chitin.   
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Figure 12. The chemical formula of trehalose, a common sugar produced by many species of 
fungi.  Note that trehalose lacks carbonyl groups and NH groups that are present in chitin. 
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Figure 13. The chemical formula of ergosterol, a sterol found exclusively in the plasma 
membranes of nearly all fungi. Note the structure is primarily CH groups; ergosterol lacks ether 
linkages (as found in chitin and trehalose) and carbonyl and NH groups (as found in chitin). 
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CHAPTER THREE 

Temporal changes in chemical composition of three litter species during field 

decomposition using Fourier transform infrared-attenuated total reflectance 

microspectroscopy 

Introduction 

Decomposition of leaf litter is the primary process for nutrient cycling in terrestrial 

ecosystems, with a large proportion of the products of primary productivity being respired by 

the decomposer food chain (Satchell, 1974).  Litter quality (i.e. composition of the litter) has 

long been known to influence decomposition rates (Dickinson and Pugh, 1974; Cadish and Giller, 

1997), and different species of plant produce leaf litter of varied quality (Daubenmire and 

Prusso, 1963; Johansson, 1995; Melillo, Aber, and Muratore, 1982). The decomposition of leaves 

has been observed in bulk studies of litter bags or individual leaves. In these studies, the 

compositional changes within the leaf and the successive changes in the decomposer 

community within and on the leaf are well documented (Ponge, 1991; Frankland, 1998; Jensen, 

1974; McTiernan et al., 2003, Fioretto et al., 2005). 

White oak (Quercus alba), pitch pine (Pinus rigida), and black huckleberry (Gaylussacia 

baccata) are common plant species found in the NJ Pinelands.  Although the exact chemical 

composition (and ratios) of their leaf litters are not known, it can be inferred that each species 

produces a distinct complement of organic molecules that vary in relative quantities based on 

previous studies.  Lammers, Dighton, and Arbuckle-Keil (2009) used FTIR to investigate the 

chemical composition of these exact species during thermal decomposition as part of a larger 

study on the effects of prescribed burning in the NJ pine barrens.  That study found that 

unburned leaves of these species produced FTIR spectra with several shared chemical 

signatures, but were overall chemically different from one another.    In addition to differences 
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between species, there is heterogeneity within a species and within individual leaves or needles.  

This multi-tier chemical heterogeneity renders them perfectly suited to act as variable substrate 

choices for the assembly of a decomposer community.  

Fourier Transform Infrared (FTIR) spectroscopy and microscopic FTIR-ATR (attenuated 

total reflectance) were utilized in chapter 2 to investigate fungal chemical signatures.  In this 

chapter, FTIR-ATR is applied to leaf litter decomposition over a 12 month period.  There exists a 

large body of research using FTIR or FTIR-ATR to produce spectra of plant-produced 

macromolecules or plant tissues.   Xiao, Sun, and Sun (2001) extracted lignin and hemicelluloses 

from de-waxed maize stems, rye straw, and rice straw to determine chemical structure of those 

compounds.  Kubo and Kadla (2005) obtained commercially produced hardwood and softwood 

lignin to investigate differences in the lignin of different wood types. Michell (1990) studied 

celluloses from algae, bacteria, cotton, ramie, and wood, and found those celluloses separated 

into two primary chemical groups, algal-bacterial cellulose and cotton-ramie-wood cellulose.   

In addition to studies using plant extracted macromolecules, a number of studies have 

been performed on whole plant tissues.  Stewart (1996) used FTIR to analyze flax (Linum 

usitatissimum) hypocotyls, potato tubers (Solanum tuberosum), bamboo (Thamnocalamus 

spathaceus) stems, and several species of nutshells. Gorgulu, Dogan, and Severcan (2007) 

ground leaves of the genera Astragalus and Ranunculus to characterize higher plants using FTIR.  

In contrast to these studies, but similar to the research of Lammers et al. (2009), the research 

presented here attempts to characterize the macromolecular components of leaves at the level 

of the individual fungal hypha and track changes in those components during a 12-month field 

decomposition study.  Determining the chemical changes occurring within leaves during natural 

field decomposition using microscopic FTIR-ATR lays the ground work for the potential to relate 
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microscale heterogeneity and serial changes in the resource (the leaf) to changes in the 

decomposer community (particularly, the fungal community) of the NJ Pinelands. 

 

Methods 

Sample Preparation 

White Oak (Quercus alba), pitch pine (Pinus rigida), and black huckleberry (Gaylussacia 

baccata) leaves were collected from trees just before senescence in a mixed pine-oak section of 

the NJ Pinelands.  Individual leaves were collected, placed in brown paper bags and transported 

to Rutgers Camden for analysis. A random number table was generated and gridded 

transparency  paper was used to number quadrats on a microscope slide.  This was used to 

randomly select sample areas on the leaves.  Leaves were mounted to a slide, oak and 

huckleberry leaves were mounted with the abaxial side exposed.  

Initially, fifteen individual leaves from each species were analyzed using the FTIR-ATR 

microscope.  On each oak and huckleberry leaf, three replicate regions of the vein and three of 

the lamina were processed using the FTIR-ATR microscope.  Three locations on each pine needle 

were analyzed, as there are no separate lamina and vascular regions on the needle.  All spectra 

were collected using an Agilent (formerly Bio-Rad) FTS 6000 infrared spectrophotometer with an 

attached UMA 500 microscope with a germanium (Ge) ATR crystal. Sixty-four scans were 

averaged at a resolution of 4 cm-1 with air as the background spectrum.  Between collections of 

each spectrum, the Ge crystal was cleaned with isopropanol to remove any residual material.  

Following the initial collection of spectra, leaves were placed individually in litter bags 

constructed of aluminum 1mm mesh screen (unbranded) purchased at a local hardware store.  

Bags measured approximately 15 x 15 cm and were sealed with standard staples.  The litter bags 

were placed within the litter in a mixed oak-pine section of the forest. Litter bags were collected 
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every 60 days for 15 months, placed in plastic bags to prevent drying, and taken to Rutgers 

Camden for IR spectral analysis.  In the laboratory, leaves were removed from the litter bags and 

spectra were collected using the same methods as at the initial collection.  Spectra were 

obtained within the first 1-2 days and leaves were returned to the litter within 48 hours of 

collection.  After 15 months, many of the leaves had considerable degradation, were possibly 

eaten by invertebrates or otherwise, and were no longer in the mesh bag.  At 12 months, 5 

leaves of each species remained intact for analysis (for this reason, the spectra at 15 months 

were not included in this analysis).  Spectra at 0 months, 6 months, and 12 months were used in 

the analysis.   

 

Spectral Analysis 

Six spectral databases were created using KnowItAll® (Bio-Rad) spectral analysis 

software.   Five databases were created based on leaf species/location on leaf: huckleberry 

lamina spectra, huckleberry vein spectra, oak lamina spectra, oak vein spectra, and pine needle 

spectra.  Each database consisted of the average spectrum of three replicate spectra of each leaf 

species/location on an individual leaf. This resulted in 15 average spectra per database.  The 

sixth database combined the other five into one large database consisting of 75 spectra (5 

sample average spectra x 3 times x 5 species/location).  

Upon importing the databases into KnowItAll®, all spectra were ATR-corrected, 

smoothed to 5 points, normalized, and baseline corrected (linear fit).  Following creation of the 

databases, principal component analysis (PCA) was performed in KnowItAll®.  The PCA was 

mean-centered with 3 factors and excluded the wavenumber ranges 2800-1800 cm-1 and 700-

400 cm-1 of the spectra.  The former region was excluded due to the lack of spectral vibrations in 

this range and the presence of the CO2 band at 2390-2285 cm-1.  The latter was excluded due to 
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a second CO2 band at 672-664 cm-1 and the presence of excess noise in the region (Fig. 1).  The 

databases were then exported to another informatics software package, Pirouette® (Infometrix, 

Inc.).  Pirouette® is not exclusively a spectroscopy software package, but it offers the ability to 

generate spreadsheets of the PCA coordinate scores (KnowItAll does not).  The coordinate 

scores on Axes 1, 2, and 3 from the PCA analysis in Pirouette® were imported into SAS® (SAS 

Institute, Inc.) and one-way ANOVA was performed with a Tukey’s post hoc test on the 

coordinate scores on each of the three primary PCA axes.  In instances where Axis 3 contributed 

less than 10% to the variance, no further analysis was conducted on data from that axis.  

The initial analysis was to review the x-residuals of each dataset to determine which 

spectral peaks were causing individual spectra to separate from the rest, similar to the analysis 

performed in chapter 2.  However, the datasets were not large enough for this method to be 

useful, as the sample size was 25% the size.as the larger dataset in chapter 2.  The 15 x-residuals 

of each average spectrum in the database were analyzed.  Any peak, positive or negative, that 

separated out from the dark black center of overlapping spectra of the plot was recorded.  A 

peak on the x-residual was determined to be relevant if it was one of the two furthest from the 

zero line(see Fig. 3, chapter 2). In the sixth database (with all 75 average spectra), the analysis is 

solely based on the factor loading plots and coordinate scores generated from the PCA; x-

residuals are not included due to the lack of information provided from residual spectra. 

The list of x-residual peaks for each leaf/location was then compared to the factor 

loading plots from the PCA.  By cross-checking the factor loading plot peaks with the x-residual-

obtained peaks, it was possible to create a list of those peaks that should have contributed 

significantly to the separation of spectra in the PCA.  There were a number of peaks on the 

factor loading plots that were not identified by x-residual analysis.  It is important to note that x-

residual analysis may indicate peaks that are different from the average of all the spectra in the 
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database.  If all the spectra have the same peak with similar intensities, or lack the same peak, 

this peak will not be evident on the x-residuals.  However, the factor loading plot is not a 

comparison of each spectrum to the average.  The factor loading plot is a result generated by 

the PCA which indicates which wavenumbers are responsible for the separation seen along a 

specific axis; again it does not necessarily indicate peaks that are present.  As was found in 

chapter 2, it may be the presence or absence of particular peaks, or the intensity of those peaks 

that results in the particular wavenumbers found on a given factor loading plot. 

The wavenumbers found on both the x-residuals and factor loading plots were then 

added to the PCA plot to visualize which wavenumbers were contributing to pulling on each 

axis.  Wavenumbers are listed in decreasing order of importance on the PCA plots.  These 

wavenumbers were then compared to the actual IR spectra in each data set.  The five average 

spectra per leaf species/location/time were overlaid and the listed peaks were selected to 

compare changes in those peaks between times.  Peaks within five wavenumbers of each other 

are considered to be essentially the same peak for the purpose of this analysis.  Additionally, a 

visual analysis of the spectra was performed to identify other peaks or ranges of peaks that may 

have changed over time, but were not identified by the statistical analysis.  Table 1 lists all of the 

important wavenumbers (as identified on the six separate PCA plots) and their corresponding 

functional groups.  This table was used to evaluate which functional groups may be changing 

during decomposition. 

 

 

Results 

Huckleberry Lamina (HL dataset) 
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The principal component analysis of the huckleberry lamina dataset resulted in Axis 1 

accounting for 52.4% of the variability between sampling times, axis 2 for 35.3%, and axis 3 for 

3.3%.  ANOVA of the PCA scores on Axis 1 resulted in time 0 and 12 months being significantly 

different from each other, but neither was significantly different from 6 months.  On axis 2, 

ANOVA of the PCA indicated that time 0 and 6 months were both significantly different from 12 

months, but not from each other.  However, the PCA plot does not appear to represent any 

overlap on either Axis 1 or Axis 2 between all three times (Fig. 2). 

The x-residuals for three leaves at time 0, one leaf at 6 months, and one leaf at 12 

months did not possess any peaks that were determined to be relevant, indicating these five 

spectra were more similar to the average of all spectra in the dataset.  The remaining ten leaves 

all had at least one peak that was one of the two most extreme at a given wavenumber.  Sixty 

specific peaks were determined from the x-residuals and compared to the factor loadings.   

On Axis 1 there were twelve strong peaks on the factor loading plot 3430(OH,NH), 

2918(CH, CH2)*, 2850(CH2)*, 1735(C=O)*, 1600, 1462(CH2, CH3)*, 1370, 1322, 1173, 1093*, 

1034(C-O, C-OH) *, and 713*), seven of which were on the list of x-residual wavenumbers, 

denoted by asterisks above ( throughout the paper, the asterisk will indicate the peak was found 

on both the x-residuals and factor loading plots).  The absence of the remaining five peaks on 

the x-residual analysis indicates that at those wavenumbers, all spectra were likely similar.  On 

Axis 2 there were thirteen strong peaks on the factor loading plot (3360*, 2918(CH, CH2)*, 

2850(CH2)*, 1735(C=O)*, 1650(C=O)*, 1530*, 1462*, 1300*, 1167, 1128*, 1034(C-O, C-OH)*, 

950*, and 746), eleven of which were found on the list of x-residual wavenumbers.  Table 2 lists 

the peaks that were found on both the x-residual analysis and factor loading plots and the 

sampling times at which each peak appeared on the x-residual. 
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The wavenumbers determined above were added to the axes of the PCA plot ranked in 

order from most important to least important on each axis (positive and negative sides) as 

determined by the factor loading plots. The PCA plot illustrates the direction of influence on 

each axis and which sampling times were being influenced by these peaks.  On Axis 1, 

wavenumber 713 was important in the positive direction, and wavenumbers 2918(CH, CH2), 

2850(CH2), 1034(C-O, C-OH), 1093, 1462, and 1735(C=O) were important peaks in the negative 

direction (in order of decreasing importance).  On Axis 2, 2918(CH, CH2), 2850(CH2), 1034(C-O, C-

OH), 1735(C=O), and 1462 were the important peaks in the positive direction, and wavenumbers 

1650(C=O), 3360, 1530, 1300, 1128, and 950 were important in the negative direction.  Based on 

the location of the 3 sampling times on this plot, it appears that wavenumbers 2918(CH, CH2), 

2850(CH2), 1034(C-O, C-OH), 1093, 1462, and 1735(C=O) strongly influenced time 0 on both 

axes. Time 6 months appears to be weakly influenced on Axis 1 by 713, and weakly influenced 

by 2918(CH, CH2), 2850(CH2), 1034(C-O, C-OH), 1735(C=O), and 1462 on axis 2.  Time 12 months 

was weakly influenced by 2918(CH, CH2), 2850(CH2), 1034(C-O, C-OH), 1093, 1462, and 

1735(C=O) on Axis 1, but strongly influenced on axis 2 by 1650(C=O), 3360, 1530, 1300, 1128, 

and 950.  Although there does not appear to be overlap of the error bars of the sampling times, 

the weak influence of Axes 1 and 2, and the large variability on Axis 1 at 6 months correlates 

with the ANOVA results that time 6 months was not significantly different from time 0 or time 

12 months. 

The wavenumbers pulling on the PCA plots were then compared to the actual spectra.  

The five average leaf spectra for each sampling time were overlaid, and the peaks listed on the 

PCA plots were labeled on each (Figs 3-5).  At wavenumber 3360, there was an increase in 

intensity from 0 to 6 months to 12 months. At wavenumbers 2918(CH, CH2) and 2850(CH2), 

there was a clear decrease in intensity from 0 to 6 months to 12 months. At time 0, the intensity 
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of the peak at 1735(C=O) appeared to be relatively similar between the five spectra, however at 

6 months and 12 months, there was more variability at this wavenumber.  Wavenumber 

1650(C=O) did not appear as a specific peak, but on the slope of another larger peak at time 0 

and 6 months, yet at 12 months it appeared as a distinct peak.  At 1530, the time 0 spectra did 

not appear to have a distinct peak, rather a somewhat flat region that became increasingly 

defined at 6 months and more so at 12 months.  Wavenumber 1462 did not appear to change 

much between times.  At 1300, there appeared to be a small peak at times 0 and 6 months, but 

at 12 months this small peak was no longer visible.  The peak at 1128 increased from time 0 to 6 

months, but then decreased from 6 months to 12 months.  At 1093, there appeared to be a 

slight shoulder on the higher-wavenumber side (left slope) of the larger peak at 1034(C-O, C-

OH).  The peak at 1034(C-O, C-OH) seemed to decrease in intensity and broaden in range from 

time 0 to 6 months to 12 months.  Wavenumber 950 appeared to be a slight shoulder on the 

lower-wavenumber side (right-side) slope of the large 1034(C-O, C-OH) peak across all three 

times, however in one spectrum at 12 months, there was a clear, distinct peak.  At time 0, there 

was no peak at 713, but at 6 months and 12 months there appeared to be distinct peaks, despite 

the presence of considerable noise in the lower wavenumbers of the 6 month spectra.  

Wavenumbers, their correlating functional groups, and proposed biological assignments are 

found in Table 1 and addressed in more detail in the discussion. 

 

Huckleberry Vein (HV dataset) 

The principal component analysis of the huckleberry lamina dataset resulted in Axis 1 

accounting for 51.8% of the variability between sampling times, axis 2 for 22.1%, and axis 3 for 

11.8%.  ANOVA of the PCA scores on Axis 1 resulted in time 0 and 12 months being significantly 

different from each other, but neither was significantly different from time 6 months.  On Axis 2, 
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there was no significant difference between times, and on axis 3 times 0 and 6 months were 

similar, but significantly different from 12 months.  The PCA plot does not appear to represent 

any overlap of the error bars on axis 1, however there is a large amount of variability at 6 and 12 

months along Axis 1.  On Axis 2 there is a large region of overlap of times 6 and 12 months due 

to the large amount of variability found within the 6 month samples.  Although the ANOVA of 

PCA coordinate scores indicates no significant difference on axis 2, the PCA plot indicates that 

time 0 does separate along this axis (Fig. 6). 

The x-residuals for two leaves at time 0 and one leaf at 6 months did not possess any 

peaks that were determined to be relevant, indicating these 3 spectra were more similar to the 

average of all spectra in the dataset.  The remaining twelve leaves all had at least one relevant 

peak.  Fifty-four specific peaks were determined from the x-residuals and compared to the 

factor loadings.   

On Axis 1 there were thirteen strong peaks on the factor loading plot (3460, 2918(CH, 

CH2)*, 2850(CH2)*, 1735(C=O)*, 1650(C=O)*, 1580, 1465, 1364, 1320, 1252, 1167*, 1106(C-O, C-

C ring)*, and 1038), however only six of those wavenumbers were on the list of x-residual peaks.  

The absence of the remaining seven peaks on the x-residual analysis indicates that at those 

wavenumbers, all spectra were likely similar.  On Axis 2 there were sixteen strong peaks on the 

factor loading plot (2918(CH, CH2)*, 2850(CH2)*, 2807*, 1774*, 1735(C=O)*, 1700, 1650(C=O)*, 

1632, 1556*, 1542*, 1397, 1288*, 1128*, 1090, 1029(C-O, C-OH)*, and 784), and eleven of 

which were found on the list of x-residual wavenumbers.  For Axis 3, the factor loading plot 

identified fifteen strong peaks (3640, 2980(CH3)*, 2918(CH, CH2)*, 2850(CH2)*, 1774*, 

1735(C=O)*, 1633 1556*, 1520, 1442*, 1307, 1221*, 1128*, 950*, and 817), and ten of those 

were also selected from the x-residual analysis (Table 2).  
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The wavenumbers were added to Axes 1 and 2 of the PCA plot (Fig. 6) to better illustrate 

the direction of influence on each axis and which sampling times were being influenced by these 

wavenumbers.  These values are listed in decreasing order from most important to least, as 

determined by their intensity on the factor loading plots.  On Axis 1, wavenumbers 2918(CH, 

CH2), 2850(CH2), 1167, 1106(C-O, C-C ring), and 1735(C=O) influence the positive side, and 

wavenumber 1650(C=O) influences the negative side.  On Axis 2, in the positive direction 

2918(CH, CH2), 2850(CH2), 1029(C-O, C-OH), and 1735(C=O) have strong influence, and 

wavenumbers 1650(C=O), 1556, 1542, 1288, 2807, 1128, and 1774 have a strong influence in 

the negative direction.  This indicates that time 0 is strongly influenced by those wavenumbers 

positive on Axis 1 and negative on Axis 2.  Time 6 months is only slightly influenced by those 

numbers on the positive side of Axis 1 and the positive side of Axis 2.  The error bars for the 6 

month samples are quite large, covering both positive and negative regions of both axes, 

although the sample mean is located slightly positive on both.  At 12 months, there appears to 

be a relatively strong influence by the wavenumbers on the negative side of Axis 1 and the 

positive side of Axis 2, although there is high variability (large error bar) along Axis 1.  The large 

amount of error within 6 months data supports the ANOVA analysis that does not separate 6 

months from either time 0 or 12 months on both Axis 1 and Axis 2.  

The peaks influencing Axes 1 and 2 of the PCA plot were then compared to the actual 

spectra.  The five average leaf spectra for each sampling time were overlaid as they were in the 

huckleberry lamina dataset, and the peaks listed on the PCA plots were labeled (Figs. 7-9).  At 

wavenumbers 2918(CH, CH2) and 2850(CH2), there was a clear relative decrease in intensity 

from time 0 to 6 months to 12 months. No distinct peak could be identified at wavenumber 

2807 on any of these spectra.  At time 0 and 6 months, no specific peaks were present at 

wavenumber 1774.  At 12 months, one discernible peak appeared in one spectrum at 1774.  The 
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intensity of the peak at 1735(C=O) initially (time 0) appears to be relatively similar between the 

five spectra; at 6 months the intensities of 1735(C=O) all decreased, however at 12 months, 4 

spectra continued to lose intensity, but one increased dramatically, perhaps due to the baseline 

correction.  There was variability at this wavenumber in the huckleberry lamina dataset as well.  

At time 0, wavenumber 1650(C=O) appeared on the higher wavenumber side of a peak at 1635.  

At 6 months and 12 months, 1650(C=O) was present in all spectra as an increasingly dominant 

peak.  At wavenumber 1556, one spectrum at time 0 had a very small peak, and two spectra at 

12 months had a small peak.  No distinct peak could be identified at wavenumber 1556, 

however at 6 months there may have been a peak obscured by a broader peak.  For 

wavenumber 1542, there were no peaks on the time 0 spectra, but small broad peaks were 

noted on the 6 months spectra, and narrower, more intense peaks identified on four of the five 

12 month spectra.  At all three times, no distinct peak could be identified at wavenumber 1288; 

it was located on the higher-wavenumber side of a small peak, although after 12 months a small 

shoulder appeared at this wavenumber on all 5 spectra.  Wavenumber 1167 was present as a 

distinct peak at time 0, decreasing in intensity at 6 months and no more than a small peak (on 3 

spectra) or shoulder (on 2 spectra) at 12 months.  There was no identifiable peak at 1128 on any 

time 0 or 6 months spectra.  At 12 months, there was a slight rise in intensity, and one spectrum 

had a peak at 1128.  Wavenumber 1106(C-O, C-C ring) was present on all spectra at all times as 

a barely discernible shoulder on the much larger, dominant peak at 1029(C-O, C-OH).  All spectra 

at all times had a large peak at 1029.  This peak had similar intensity at times 0 and 6 months 

and increased considerably (from 0.6 to 0.9) from time 0 to 6 months.  At 12 months there was 

considerable variation at this peak, as all spectra changed intensity differently, resulting in a 

range of intensities from 0.4-0.9.  Wavenumbers, their correlating functional groups, and 
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proposed biological assignments are found in Table 1 and are addressed in greater detail in the 

discussion. 

 

Oak Lamina (OL dataset) 

The principal component analysis of the oak lamina dataset resulted in Axis 1 accounting 

for 54.8% of the variability between sampling times, Axis 2 for 26.5%, and Axis 3 for 3.6%.  

ANOVA of the PCA scores on axis 1 resulted in time 0 and 6 months being significantly different 

from 12 months but not each other.  On axis 2, ANOVA of the PCA indicated that times 6 months 

and 12 months were significantly different from time 0 but not from each other.  However, the 

PCA plot indicates separation of time between all three times on Axis 1, but time 0 and 6 

months overlap on Axis 2 (Fig. 10). 

The x-residuals for two leaves at time 0 and two leaves at 6 months did not have any 

peaks that were determined to be relevant, indicating these four spectra were more similar to 

the average of all spectra in the dataset.  The remaining eleven leaves all had at least one peak 

that was considered relevant based on the analysis.  Fifty-four specific peaks were determined 

from the x-residuals and compared to the factor loadings.   

On Axis 1 there were fifteen strong peaks on the factor loading plot (3407, 2980(CH3)*, 

2918(CH, CH2)*, 2850(CH2)*, 2807, 1774*, 1683*, 1542*, 1485, 1390*, 1301, 1180*, 1135, 

1043*, and 839), and nine of those wavenumbers were on the list of x-residual wavenumbers.  

The absence of the remaining six peaks on the x-residual analysis indicates that at those 

wavenumbers all spectra were likely similar.  On Axis 2 there were sixteen strong peaks on the 

factor loading plot (3450, 3021, 2918(CH, CH2)*, 2850(CH2)*, 1774*, 1740, 1650(C=O)*, 1542*, 

1458, 1305, 1261*, 1195*, 1106(C-O, C-C ring)*, 1043*, 922*, and 784), and ten of those were 

found on the list of x-residual wavenumbers (Table 2).   
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These wavenumbers were added to the axes of the PCA plot (Fig. 10) to better illustrate 

the direction of influence on each axis and which sampling times were being influenced by these 

peaks.  The wavenumbers were listed in decreasing order of influence.  The PCA plot indicates 

that wavenumbers 2918(CH, CH2), 2850(CH2), and 1043 had a strong influence in the positive 

direction on Axis 1, and wavenumbers 1774, 1542, 1390, 1683, 1180, and 2980(CH3) had a 

strong influence in the negative direction on Axis 1.  On Axis 2, 2918(CH, CH2), 2950, 1106(C-O, 

C-C ring), 1043, 1195, 1261, and 922 had a strong influence in the positive direction and 

wavenumbers 1650(C=O), 1542, and 1774 in the negative direction.   Time 0 was strongly 

influenced by those peaks influencing positively on Axis 1 and negatively on Axis 2.  At 6 months, 

wavenumbers influencing negatively on Axes 1 and 2 were most important.  At 12 months, 

wavenumbers pulling positively on Axis 2 had the most influence and neither set of 

wavenumbers (positive or negative)on Axis 1 appeared to have greater influence than the other. 

The wavenumbers noted on the PCA plots were then compared to the actual spectra.  

The five average leaf spectra for each sampling time were overlaid, and the wavenumbers  listed 

on the PCA plots were labeled on each (Figs. 11-13).  Wavenumber 2980(CH3) was not present at 

time 0, but at 6 months and 12 months was present in 2 spectra.  At wavenumbers 2918(CH, 

CH2) and 2850(CH2), there is no change in intensity from time 0 to 6 months, with a small 

decrease at 12 months.  Wavenumber 1774 did not have a peak at time 0 or 6 months, but there 

was an increase in 1 spectrum at 12 months.  The IR spectra had no identifiable peak at 1683 at 

all three times. The peaks at wavenumbers 1650(C=O) and 1542 were not present at time 0 and 

are barely discernible at 6 months, but they developed into distinct peaks at 12 months. At time 

0, there were no peaks at 1390; at 6 months and 12 months there were 2 and 4 spectra 

(respectively) with small peaks.  At 1261, there were small peaks or shoulders at all times.  At 

wavenumber 1195, there were no peaks at time 0 or 12 months, but one spectrum at 6 months 
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had a small peak.  At 1180, there were no distinct peaks across all spectra at all times.  At 

wavenumber 1106(C-O, C-C ring), there was little change between times, as there were barely 

discernible shoulders on all spectra at all times.  At wavenumber 1043, there was a considerably 

large peak in all spectra at all times.  This peak remained similar in times 0 and 6 months, but 

increased in intensity at 12 months.  At wavenumber 922, only 1 spectrum at 6 months had a 

small peak, no other spectra at any time had a notable peak at this wavenumber.   

 

Oak Vein (OV dataset) 

The principal component analysis of the oak vein dataset resulted in Axis 1 accounting 

for 64.2% of the variability between sampling times, Axis 2 for 25.1%, and Axis 3 for 3.7%.  

ANOVA of the PCA scores on both Axis 1 and Axis 2 resulted in time 0 being significantly 

different from both 6 and 12 months.  Time 6 and 12 months are not significantly different from 

each other.  The PCA plot indicates separation between all three times on Axis 2, but time 0 and 

12 months appear to overlap on Axis 1 (Fig. 14). 

The x-residuals for three leaves at time 0 did not possess any peaks that were 

determined to be relevant , indicating these three spectra were more similar to the average of 

all spectra in the dataset.  The remaining twelve leaves all had at least one relevant peak.  Fifty 

specific peaks were determined from the x-residuals and compared to the factor loadings.   

On Axis 1 there were thirteen strong peaks on the factor loading plot (3440, 2918(CH, 

CH2)*, 2850(CH2)*, 1735(C=O)*, 1584, 1512, 1462*, 1355, 1247, 1166, 1106(C-O, C-C ring)*, 

1036, and 718*), however only six of those wavenumbers were on the list of x-residual peaks.  

The absence of the remaining seven peaks on the x-residual analysis indicates that at those 

wavenumbers, all spectra were likely similar.  On Axis 2 there were eighteen strong peaks on the 

factor loading plot (3430, 3220, 2980(CH3)*, 2918(CH, CH2)*, 2850(CH2)*, 2790, 1780*, 
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1735(C=O)*, 1650(C=O)*, 1555(NH)*, 1534, 1462*, 1256, 1175, 1106(C-O, C-C ring)*, 1056*, 

950*, and 784), and eleven of those were found on the list of x-residual wavenumbers (Table 2).  

The wavenumbers were added to the axes of the PCA plot (Fig. 14) to better illustrate the 

direction of influence on each axis and which sampling times were being influenced by these 

peaks.  The peaks are listed in decreasing order from most important to least for each direction 

on each axis.  Here the PCA plot indicates that wavenumbers 2918(CH, CH2), 2850(CH2), 1106(C-

O, C-C ring), 1462, and 1735(C=O) had a strong influence on in the positive direction on Axis 1, 

and wavenumber 718 had a strong influence in the negative direction Axis 1.  On Axis 2 

wavenumbers 2918(CH, CH2), 2850(CH2), 1462, 1056, 1106, and 1735(C=O) influence the 

positive side, and wavenumbers 1650(C=O), 1555(NH), 1780, 2980(CH3), and 950 were 

responsible for separation in the negative direction.  At time 0, peaks on the negative sides of 

both Axes 1 and 2 had a strong influence in separation.  At 6 months, the wavenumbers on the 

positive side of Axis 1 had a strong influence, and the wavenumbers on the negative side of Axis 

2 appear to have a slight influence on separation.  Time 0 and 6 months have small error bars 

about the mean, but 12 months had larger error bars indicating more variability between 

replicates at this time.  The samples at 12 months were influenced most strongly by those in the 

negative direction on Axis 1 and the positive direction on Axis 2.   

The wavenumbers noted on the PCA plots were then compared to the actual IR spectra.  

The five average leaf spectra for each sampling time were overlaid, and the peaks listed on the 

PCA plots were labeled (Fig. 15-17).  At wavenumber 2980(CH3), there are no identifiably distinct 

peaks present at time 0, yet at 6 months two of the five spectra and at 12 months four of the 

five spectra have small peaks at this wavenumber.  At wavenumbers 2918(CH, CH2) and 

2850(CH2), there is a clear decrease in intensity from time 0 to 6 months to 12 months.  At 1780, 

there were no clear peaks on any of the spectra at any of the sampling times, however the 
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intensity in this region increased from time 0 to 6 months, then fell from 6 months to 12 

months.  This may be attributable to changes in the baseline intensity.  At time 0, the intensity 

of the peak at 1735(C=O) appeared to be relatively similar between the five spectra, however at 

6 months the 1735(C=O) peak had clearly broadened and lessened in intensity.  At 12 months, 

wavenumber 1735(C=O) increased in intensity in three spectra, but lost intensity in two spectra; 

there was an overall narrowing of the peak in those that had increased intensity.  At time 0, 

wavenumber 1650(C=O) was a barely discernible shoulder on the side of a larger peak, but as 

time progressed, the peak increased in intensity and became more defined.  At 12 months there 

was a clear strong peak at 1650(C=O).  At times 0 and 6 months, there were no clear peaks at 

1555(NH), however at 12 months, a small peak had appeared in the spectra.  At all three times, 

there was a peak of moderate intensity present at 1462 which remained relatively unchanged 

between times.  At time 0, two of the five spectra had peaks at 1106 (C-O, C-C ring), but at 6 and 

12 months no distinct peaks were found although a broader peak was present in this range.  

Wavenumber 1056 was obscured by a larger, broad peak (1060-1020) at time 0.  At 6 months, 

this large peak seemed to shift up a bit in wavenumber, as the point at 1056 was nearer the top 

of this peak.  By 12 months, 1056 was very close to the top of this peak on 4 spectra and at the 

peak tip in one spectrum.  Wavenumber 950 was located on the opposite side of this peak; 

however there was no discernible peak in this region at any of the sampling times.  At time 0 

there were no peaks at 718; at 6 months there were large distinct peaks that decreased slightly 

at 12 months.  Wavenumbers, their correlating functional groups, and proposed biological 

assignments are found in Table 1 and addressed further in the discussion. 

Pine Needle (P dataset) 

The principal component analysis of the pine needle dataset resulted in Axis 1 

accounting for 49.4% of the variability between sampling times, Axis 2 for 27.8%, and Axis 3 for 
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10.0%.  ANOVA of the PCA scores on Axes 1 and 2 resulted in times 0 and 6 months being 

significantly different from 12 months but not each other.  On Axis 3, there was no significant 

difference between times.  However, the PCA plot does not appear to represent any overlap of 

the error bars on either Axis 1 or Axis 2, although on Axis 2, times 0 and 6 months do appear to 

be very close to overlapping (Fig. 18). 

All x-residual spectra had at least one peak that was determined to be relevant.  This 

resulted in seventy-three specific peaks being determined from the x-residuals which were 

subsequently compared to the factor loading plots.   

On Axis 1 there were twenty-three strong peaks on the factor loading plot (3465, 

2918(CH, CH2)*, 2850(CH2)*, 1787*, 1735(C=O)*, 1665, 1650(C=O), 1560(NH)*, 1550*, 1474, 

1413, 1342, 1323, 1300*, 1237*, 1218, 1194*, 1090, 1074*, 1044*, 967*, 942*, 800), and 

thirteen of those wavenumbers were on the list of x-residual peaks.  The absence of the 

remaining ten peaks on the x-residual analysis indicates that at those wavenumbers, all spectra 

were likely similar.  On Axis 2 there were also twenty-three strong peaks on the factor loading 

plot (3030, 2918(CH, CH2)*, 2850(CH2)*, 2807*, 1787*, 1735(C=O)*, 1630*, 1579*, 1509, 1429*, 

1401, 1344, 1329*, 1312*, 1259, 1168*, 1099, 1034(C-O, C-OH)*, 986, 951*, 920, 729*, and 

721*), and fifteen of those were found on the list of x-residual wavenumbers.  For the third axis, 

the factor loading plot identified twenty-eight strong peaks (2973, 2918(CH, CH2)*, 2850(CH2)*, 

2807*, 1735(C=O)*, 1644*, 1579*, 1528, 1489*, 1439, 1429*, 1388*, 1352, 1335*, 1312*, 

1288*, 1266, 1249*, 1227, 1207*, 1187, 1133, 1105, 1066*, 967*, 942*, 830*, and 715*), and 

nineteen of these were also found on the x-residual table of wavenumbers (Table 2). The 

wavenumbers were added to Axes 1 and 2 of the PCA plot (Fig. 18) to better illustrate the 

direction of influence on each axis and which sampling times were being influenced by these 

peaks.  Wavenumbers were listed in decreasing order of importance on each direction of each 
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axis.  The PCA plot indicates that wavenumbers 942 and 967 had a strong influence on the 

positive side of Axis 1 and, wavenumbers 2918(CH, CH2), 2850(CH2), 1735(C=O), 1194, 1237, 

1300, 1560(NH), 1550, 1787, and 1044 influenced the negative side of Axis 1.  Axis 2 was most 

strongly influenced in the positive direction by wavenumbers 1168, 2918(CH, CH2), 1735(C=O), 

721, 729, 1034(C-O, C-OH), 951, and 2850(CH2) and in the negative direction by wavenumbers 

2807, 1787, 1579, 1630, 1429, 1329, and 1312.  Based on the PCA plot, spectra at time 0 were 

most strongly influenced by those wavenumbers on the negative side of Axis 1 and the positive 

side of Axis 2.  At 6 months, there was strong influence by the wavenumbers on the positive side 

of Axis 1 and a slight influence by those wavenumbers pulling on the positive side of Axis 2.  

There was little pull in either the positive or negative direction on Axis 1 at 12 months, but a 

clear separation in the negative direction on Axis 2 was present at that time.  In contrast to the 

ANOVA analyses, which indicated time 0 and 6 months were not significantly different from 

each other but were different from 12 months on both axes, the PCA plot indicates that along 

Axis 1 time 0 and 6 months are very different from one another and 12 months falls between 

them.   

The peaks influencing Axes 1 and 2 of the PCA plot were then compared to the actual 

spectra.  The five average leaf spectra for each sampling time were overlaid, and the peaks listed 

on the PCA plots were labeled on each (Figs. 19-21).  At wavenumbers 2918(CH, CH2) and 

2850(CH2), there are sharp peaks that are fairly consistent in intensity from time 0 to 6 months.  

At 12 months, three of the five spectra exhibit a sharp decrease in intensity, while the remaining 

two spectra still have intense peaks.  There is no distinct peak at wavenumber 2807on any of 

the spectra.  At time 0 and 6 months, no peaks are present at wavenumber 1787, but at time 12, 

at least 3 spectra have a small, yet discernible peak.  At wavenumber 1735(C=O) there are sharp, 

intense peaks at time 0 and 6 months.  At 12 months, 1 spectrum has a considerably smaller 
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peak, but the four remaining spectra maintain a large intense peak.  At wavenumbers 1630, 

there are broad peaks at time 0 that decrease in intensity at time 6 months.  At 12 months, the 

intensity increases, but the wavenumber value  is on the shorter-wavenumber (right) side of a 

peak at 1650(C=O). At wavenumber 1579, there are no peaks at time 0 and 6 months, but at 12 

months small peaks are present.  At 1560(NH), there are small peaks at time 0, no peaks at 6 

months, and small peaks again at 12 months.  There are no peaks at 1550 at any of the times, 

however, it appears that this peak in found on the larger peak at 1560(NH).  At wavenumbers 

1429, 1329, and 1312 there are small peaks at time 0, but no peaks at 6 or 12 months.  At 

wavenumber 1300 there are small peaks at time 0 and 6 months, but at 12 months only 2 of the 

5 replicate spectra still have clear peaks, 2 have small shoulders, and 1 has neither.  At 

wavenumbers 1237 all three times exhibit small peaks.  Wavenumber 1194 at time 0 and 6 

months has clear peaks, but at 12 months only 2 of the 5 replicates have clear peaks.  The 

remaining 3 spectra have what appear to be small peaks or shoulders on the side of the peak at 

1168.  Wavenumber 1168 has intense, sharp peaks at time 0 and 6 months that are relatively 

consistent in intensity across replicates.  At 12 months, there is more variability at this 

wavenumber with 2 replicates maintaining intense peaks, 2 with rather weak, broad peaks, and 

1 with a moderate-intensity peak.  At wavenumber 1074 there are shoulders at time 0, 1 peak 

and 1 shoulder at 6 months, and 3 shoulders and 2 peaks at 12 months.  The presence of a peak 

or shoulder at this wavenumber becomes more apparent over time, but it appears to be 

somewhat hidden by the presence of the broad neighboring peak at 1034. (C-O, C-OH)  

Wavenumber 1044 is almost completely indiscernible on the spectra across all three times, as it 

is also located on the longer-wavelength side of the large, broad peak at 1034(C-O, C-OH).  This 

peak at 1034(C-O, C-OH) is intense but broad at time 0, less intense at 6 months, yet increases in 

intensity again at 12 months.  At wavenumber 967 there are no peaks at time 0, 1 shoulder and 
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no peaks at 6 months, and 3 peaks and 1 shoulder at 12 months.  There is a small peak at 951 at 

all times which seems to include wavenumber 942 on the longer-wavelength (right) side of the 

peak.    The peak at 951 decreases in clarity at 12 months; it appears on four of the five spectra.  

At time 0, there is no peak at 721 or 729. At 6 months a large broad peak is present with 729 

and 721 at the top on all spectra.  At 12 months, this peak broadens in 4 of the 5 replicates, 

increases in intensity in 3 of those 4, and is lost in 1 replicate.  Wavenumbers, their correlating 

functional groups, and proposed biological assignments are found in Table 1 and are addressed 

in greater detail in the discussion. 

 

All Spectra (ALL dataset) 

The principal component analysis of all leaves together, resulted in Axis 1 accounting for 

58.0% of the variability between sampling times, Axis 2 for 22.1%, and axis 3 for 8.2%.  The PCA 

plot of the coordinate scores resulted in clear clustering together of HL, HV, OL, and OV at time 

0. Within each cluster, the lamina and vein of the same species also appear closer together than 

to the others in that cluster.  Pine at time 0 appears to be unique from all other species and 

times.  All 5 datasets (HL, HV, OL, OV, and P) at 6 months clustered together, as did all the 12 

month datasets (Fig. 22).   

ANOVA of the PCA indicated that on Axis 1, P at time 0 and OV and OL at 6 months were 

statistically the most different.  This corroborates with the actual PCA plot, whereas P at time 0 

is the most extreme in the positive direction on Axis 1 and OL and OV are the most extreme 

means on the negative side of Axis 1. Scores on Axis 1 resulted in P at time 0 being statistically 

different from all of the 6 month samples, as well as from P and OL at 12 months.  OL and OV at 

6 months were also highly separated, being statistically different from all time 0 samples and OV 

at 12 months.  On Axis 2, ANOVA of the PCA indicated that HL, HV, OL, and OV at time 0 and HL 
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at 12 months were statistically the most different.  This also correlates with the PCA plot of 

coordinate scores in which HL, HV, OL, and OV are the most positive on Axis 2, and HL at 12 

months is the most negative on Axis 2.  HL, HV, OL, and OV at time 0 were significantly different 

from all the 12 months samples and P at time 0.  HL at 12 months was found to be significantly 

different from all the time 0 and all the 6 month samples, being only similar to the other 12 

month samples.   

The wavenumbers obtained from the factor loading plots were added to the axes of the 

PCA plot and ranked in order from most important to least important on each axis (positive and 

negative sides) as determined by the intensity of the significant, distinct peaks on the factor 

loading plots. The PCA plot illustrates the direction of influence on each axis and which sampling 

times/locations on the leaf/species combinations were being influenced by these wavenumbers.  

On Axis 1, wavenumbers 2918(CH, CH2), 2850(CH2), 1174, 1195, 1040, 1101(C-O, C-C ring), 1467, 

1735(C=O), 1323, and 1574 were important in the positive direction, and wavenumbers 3460, 

721, 809, 704, and 1650(C=O) were important peaks in the negative direction (in order of 

decreasing importance).  On Axis 2, 2918(CH, CH2), 2850(CH2), 1040, 1101(C-O, C-C ring), and 

1170 were the important peaks in the positive direction, and wavenumbers 778, 809, 751, 

1650(C=O), 713, 704, 1560(NH), 1537, 2810, 1780, 1394, 951, 936, 1297, and 1242 were 

important in the negative direction. Based on the PCA plot, spectra at time 0 were most strongly 

influenced by those wavenumbers on the positive side of Axis 1 and the positive side of Axis 2 

except pine.  At time 0 on Axis 2, pine appears to be slightly influenced in the negative direction.  

At 6 months, there was influence by the wavenumbers on the negative side of Axis 1 and a slight 

influence by those wavenumbers pulling on the positive side of Axis 2.  At 12 months, there was 

pulling in both the positive and negative direction on Axis 1, but only in the negative direction 
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on Axis 2.  Wavenumbers, their correlating functional groups, and proposed biological 

assignments are found in Table 1 and addressed in more detail in the discussion. 

 

Discussion 

The investigation of the fine-scale changes in leaf litters during decomposition, using 

FTIR spectroscopy, has demonstrated that three contrasting litter types have similar overall 

chemistries throughout, with small differences being most notable. Only freshly fallen pine 

needles appeared to have different spectral attributes than freshly fallen oak or huckleberry, 

and these differences tended to be lost as decomposition proceeded over a 12 month period.  

Despite this general observation, specific chemical signatures, indicated by particular 

wavenumbers on the FT-IR spectra, were identified from the spectral analysis using principal 

component analysis.  Using these wavenumbers, it is possible to determine general trends in the 

changing chemistry as decomposition progresses and identify slight differences in the process of 

decomposition for pine litter compared to huckleberry and oak litters, particularly during the 

early stages of decomposition. 

Pine needles at the initial time were a clear outlier in the ALL dataset; this corroborates 

with the large number of unshared wavenumbers found only in the pine needle spectral 

analysis.  The last column of Table 1 indicates the datasets in which each wavenumber was 

found on the factor loading plots and the x-residuals.  Each dataset (excluding pine) possess a 

small number of unique wavenumbers that are unshared in the other datasets.  There are 3 

wavenumbers unique to HL, 2 to HV, 4 to OL, and 2 to OV.  In contrast, there are 17 

wavenumbers found only in the pine analysis.   

To determine general trends within all litter types, peaks shared by three, four, or five of 

the five litter types investigated were identified.  The vein and lamina regions of the same 
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species (e.g. huckleberry vein vs huckleberry lamina) are considered different litter types as they 

are discussed below.    All five litter types shared peaks 2918(CH, CH2) and 2850(CH2).  Four of 

the five datasets shared peaks 1735(C=O) and 1650(C=O), and three of the five datasets shared 

peaks 2980(CH3), 1555-1560(NH), 1101-1106(C-O, C-C ring), and 1029-1034(C-O, C-OH).  Of 

these eight wavenumbers, seven were present on the factor loading plots in the compiled “ALL” 

database (1029-1034 range was not). 

In all litter types, peaks 2918 and 2850 change similarly.  Both bands are found in the CH 

region of the spectrum (3000-2800 cm-1), but are more specifically linked to aliphatic 

methylenes (straight chain molecules with -CH2- units). Smidt et al. (2005) reported these bands 

decreased during decomposition of biowaste as the macromolecules’ aliphatic skeletons were 

breaking down.  In both huckleberry lamina and vein and the oak vein, these peaks decreased in 

intensity from time 0 to 6 months to 12 months. In the oak lamina and pine, there was little to 

no change in intensity from time 0 to 6 months, but a decrease in intensity from 6 to 12 months.  

Considering these wavenumbers both represent CH bonds, particularly aliphatic methylenes, it 

is not surprising that they trend similarly within each dataset.   

Wavenumbers 1735 and 1650 were present in four of the five litter types.  Although 

both bands represent C=O, it is important to realize that the band at 1735 probably represents 

the carbonyl of saturated esters (C-C(=O)-O) of phospholipids, hemicellulose, or pectin (Gorgulu 

et al., 2007), whereas  1650 most likely represents the carbonyl of a protein or polypeptide 

(known as the amide I band) (Socrates, 2001)  or possibly of fatty acids or aldehydes.  This band 

is only considered to represent fatty acids or aldehydes if bands at 1000-700 are also present 

(Stewart, 1996).  Bands in this region are present in some spectra, but not all.  This leads to the 

conclusion that the band at 1650 (at least in some spectra) is a result of different, diverse 

substances with the same functional group, the carbonyl (C=O).  
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Wavenumber 1735 was present in HL, HV, OV, and P, whereas 1650 was present in HL, 

HV, OL, and OV.  The peaks at 1735 were relatively sharp with consistent intensity at time 0 

within each dataset, however at 6 months this peak varied in intensity in both huckleberry 

datasets and became a broad peak in the oak vein data set. At 12 months, all datasets exhibit 

variability in intensity at 1735. As the intensity changes at this wavenumber, it is likely due to 

the changes in the amount of phospholipids, hemicellulose, or pectin present.  Phospholipids 

were likely decomposed at a higher rate earlier (between 0 and 6 months), pectin with the next 

highest decomposition rate in the early months, and hemicelluloses decomposing the slowest of 

the three.  This may explain the increasing variability found at the wavenumbers measured from 

leaves decomposed for 6 and 12 months.  The large amount of variability at 12 months may also 

be due to a higher concentration of biological contaminants on the leaf (i.e. bacteria, protozoa, 

fungi, invertebrate fecal material, etc.)   

The peak at 1650(C=O) was either not present or was noted as a very small, barely 

discernible shoulder on a larger peak at time 0 in all datasets.  From time 0 to 6 to 12 months, 

the peak increased in intensity consistently.  At 12 months, all spectra had a distinct peak at 

1650, although they varied in intensity between litter types (not within).  This increase at 

wavenumber 1650 is very interesting, and may help further determine its molecular assignment.  

The appearance of the band over time implies that either proteins/polypeptides or fatty 

acids/aldehydes are increasingly present, however, one would expect that during 

decomposition of the leaf material, these compounds would decrease quickly leaving behind the 

more recalcitrant polysaccharides (pectin, hemicellulose, cellulose, lignin).  Perhaps this increase 

is due to the presence of the microbial community and microbial decomposer-derived 

molecules (e.g. enzymes) on the leaves at 6 and 12 months, as living organisms would consist of 

and produce all of these compounds.   
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Yet another possibility is the presence of water in the samples.  Increased water in the 

sample would be evident as a large increase in the broad -OH band at 3500-3300cm-1 and, 

according to Socrates (2001), the bands that correlate with the –OH deformation of water occur 

at 1630 to 1600 (not 1650).  However, Xiao et al. (2001) attributed a peak at 1645 in both 

hemicellulose and lignin to be due to residual water absorption in their extractions.   

Wavenumber correlation charts in Socrates (2001) do not indicate an -OH band at wavenumber 

1650, but there are nearby OH bands for crystallized water at 1630-1600 and the weak –OH of 

cellulose at 1635-1600.  The lack of any assigned OH bands at 1650 appears to rule out the 

possibility that this band is increasing due to the presence of water, cellulose, or the action of 

hydrolytic enzymes’ decomposition of the large macromolecules.  During hydrolysis enzymes 

attach an –OH to one side of the cleavage site, and it is expected that this would increase the –

OH signal in the spectra.  On the contrary, the large –OH region at 3500-3300 does increase 

overtime providing evidence of increased –OH in the sample.   

To further complicate the issue, hydrogen bonding can cause shifts in wavenumber 

(Kubo and Kadla, 2005; Socrates, 2001).  In the presence of water it is expected that hydrogen 

bonding would occur in hydroxyl groups (and among others, e.g. carbonyl groups).   This could 

be an explanation of an -OH peak being present at wavenumber 1650.  If this is the case, then 

the source of the –OH may be the presence of water, hydrolysis, or the weak –OH deformation 

of cellulose growing in intensity.  As other less recalcitrant molecules are decomposed, could the 

signal from cellulose be increasing?  Clearly, there are multiple substances that may contribute 

to this peak. 

In addition to the peaks shared by 5/5 and 4/5 litter types, there were four 

wavenumbers shared by 3/5 litter types (2980(CH3), 1555-1560(NH), 1101-1106(C-O, C-C ring), 

and 1029-1034(C-O, C-OH) These wavenumbers do not follow clear patterns in their changes 
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over time, nor do they occur in the same three databases  Wavenumber 2980 appears to follow 

the general trend of being absent at time 0, but grows in intensity at 6 and 12 months in 

datasets HV, OL, and OV.  This is interestingly in contrast to 2918 and 2850 which decrease in 

intensity over time.  This appears to indicate there is a shifting of the types of CH bonds in the 

sample.  The decreasing peaks at 2918 and 2850 are primarily associated with aliphatic 

methylenes (-CH2-), however 2980 is primarily associated with CH3.  This shift in intensity could 

occur as fatty acids chains are cleaved through β-oxidation.  The relative ratios of CH2:CH3 

should change as the fatty acid chain is shortened (lessening the number of CH2 groups), but the 

number of end methyl (CH3) groups would decrease more slowly.  It is possible that this change 

in the CH2:CH3 ratio contributes to the decreasing intensity of the CH2 bands and increasing the 

intensity of the CH3 band.   

The 1555-1560(NH) peaks are either very small or not present at both time 0 and 6 

months, and are present in only a subset of each dataset (HV, OV, P) at 12 months.  This follows 

a pattern of increasing intensity over time (albeit a less pronounced increase) as is seen for 

1650.  Recall that among other possibilities, 1650 is the amide I band (present in proteins), and 

1555-1560(NH) is the amide II band of proteins.  It was previously mentioned that the strong 

bands at 1650 and their presence in all the spectra are likely due to vibrational contributions 

from multiple functional groups (not only the amide), however with the presence of both the 

amide I and amide II bands, this appears to confirm that at least a portion of the amide I band at 

1650 is due to the presence of proteins.  If the slight increase over time is occurring at both the 

amide I and amide II bands (as it appears to be), this implies that the presence of proteins in the 

litter is, in fact, increasing from time 0 to 6 to 12 months.  This would not be expected due to 

the leaf material itself; however, the increased presence of microbial decomposers and their 

proteinaceous products on the leaf could contribute to the increase in intensity of these bands. 
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The peak at 1106(C-O, C-C ring) is present on all spectra within the HV and OL datasets 

as a shoulder on the larger 1029-1034 peak, but in the OV dataset, 2 spectra have peaks at time 

0 and none at 6 and 12 months.  The ring mode in pectin has been tentatively linked to this 

wavenumber, as it indicates the presence of aromatics (Wilson et al., 2000).  From a biological 

perspective, the veins of plant leaves should possess lower levels of pectin compared to the 

lamina.  However, it is in the OV litter that peaks decrease over time.  In the HV and OL litters, 

the peak is consistent over time. 

At wavenumbers 1029-1034(C-O, C-OH), there is a large peak in all spectra in the HL, HV, 

and P datasets, and is considered a strong cell wall polysaccharide band (Gorgulu et al., 2007), 

but also more specifically appearing in cellulose (Ribeiro da Luz, 2006). In the HL dataset, this 

peak decreases in intensity and broadens from 0 to 6 to 12 months, but in the HV spectra it 

increases slightly from 0 to 6 months, then becomes quite varied in intensity at 12 months.  In 

the pine dataset, this peak starts as intense and broad, decreasing in intensity at 6 months, but 

increasing in intensity at 12 months.   There is no consistent pattern that appears to be tied to a 

general increase or decrease over time.  As this band has been assigned to several cell wall 

polysaccharides, perhaps it is also present in non-plant derived polysaccharides, such as those 

found in bacterial or protozoan cell walls.  Based on the wavenumber analysis in chapter 2 of 

this dissertation, it is not a band dominant in fungi.   

Although there are only 8 important wavenumbers that three or more litter types  

share, 7 of those are found to be important in the PCA analysis of the ALL dataset that includes 

all the average litter spectra: (2918(CH2), 2850(CH2), 1735(C=O), 1650(C=O), 2980(CH3), 1555-

1560(NH), and 1101-1106(C-O, C-C ring).  However, this does not imply that these are the only 

important wavenumbers.  The remaining wavenumbers from the factor loading plots, as seen on 

Fig. 22, must also be considered. In addition to the seven wavenumbers above, the following 
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were determined to be important in separation on the PCA plot: 3460, 2810, 1780, 1574, 1537, 

1467, 1394, 1323, 1297, 1242, 1195, 1174, 1170, 1040, 951, 936, 809, 778, 751, 721,  713, and 

704.  The overlaid spectra from the ALL dataset and a grid with these wavenumbers and their 

relative intensities are presented in Figure 23. 

The band at 3460 corresponds to the very large –OH stretch between 3500-3300, 

however there could also be a sharper NH band that is obscured by the large –OH stretch.  If 

present, this NH band correlates with the presence of the amide bands (I, II, & III).  Within all 

litter types, this band increases greatly from time 0 to 12 months.  This increase may be 

attributable to the presence of water, alcohols, polysaccharides or action of hydrolytic enzymes.  

As hydrolytic enzymes degrade polymers, they add an –OH group to one side, therefore a 

collection of small oligomers and polymers will have a greater number of –OH groups than 

groups of large polymers. 

The band at 2810 is included in the CH region.  As was discussed earlier, there appears 

to be a shift in the types of CH vibrations over time (i.e. methylene vs end-methyl).  The band at 

1780 is associated with vinyl and phenyl esters, both of which may be found in the cuticular 

waxes of plants, particularly in cutins and suberins (Kolattukudy, 1980).  The band at 1574 is 

associated with the C=C vibrations of aromatics and phenols; these may be found in cutins, 

suberins, as well as lignin.  Another band commonly found in cutins, suberins, and lignin is 1467, 

the CH ring vibrations.  Wavenumber 1537 is associated with the amide II band, as 1560(NH) 

(discussed above).  Wavenumbers 1394 and 1323 are both associated with various alkanes (C-H 

vibrations).  Wavenumbers 1297 and 1242 are both associated with the NH Amide III band.  

Wavenumber 1195 is an unspecified ester band, and the combination of 1174 with 1249 and 

1207 is associated with methyl esters of fatty acids.  Although 1249 and 1207 are not on the PCA 

plot, they are present in the spectra of pine needles, perhaps associated with the unique waxes 
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present in a pine needle.  Wavenumbers 1170 and 1040 are both assigned to cellulose; 1170 is 

the band for the β-1, 4 glycosidic linkage, and 1040 is associated with the C-O and C-C ring 

vibrations of cellulose.  Wavenumbers 951 and 936 are associated with CH ring vibrations as 

well, but have not been assigned to a particular molecule in the literature.  Wavenumbers 809 

and 704 are associated with C-O and CH ring vibrations of cellulose, and 713 are associated with 

the C-OH vibration of cellulose.  Wavenumbers 778, 751, and 721 are all associated with fatty 

acids and aldehydes (in the presence of 1650).  Table 1 lists all of the wavenumbers that were 

determined to be important within all the litter types, comparison of the band assignments, the 

actual spectral wavenumbers from the 6 datasets, and tentative assignments of the molecules. 

Wavenumbers from Table 1 that were specifically identified in the literature as being 

associated with a particular type of biological molecule were further analyzed for temporal 

trends in the spectra of each species/location dataset.  There appears to be several general 

trends in the biology of the decomposing litters investigated.  There is no clear trend across all 

polysaccharides, however for the most part, bands associated with i) cellulose and lignin 

decrease over time; ii)hemicellulose decrease initially, then increase; pectin increase initially, 

then decrease.  The decrease in plant cell wall material over time is easily explained by loss of 

those compounds; an initial increase then decrease can be explained by the early exposure of 

more material as the surface waxes are decomposed. In contrast an early decrease is not readily 

explained, as it would not be expected for the surface waxes to increase nor would it be 

expected for the amount of hemicellulose in the sample to increase relatively.  Presence of 

microbial decomposers, however, could have impacted those results.   

Bands associated with fatty acids all initially decrease, but the 1249, 1207, 1174 

combination increases later, again, perhaps due to the colonization of microbial decomposers.  

Suberin and cutin decreases initially in 1 band, but exhibits no clear pattern in the other.  It 
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would be expected that both bands would decrease with time.  The amide I and II bands both 

increase with time, and the amide III band exhibits no clear pattern.  The amide III band is in a 

region with much overlap of band assignments, whereas the amide II band has fewer potential 

biomolecular assignments (see discussion of wavenumber 1650 above) and the amide I band is 

primarily assigned to polypeptides and proteins.  This appears to indicate a general trend of 

increasing proteinaceous material over time, likely due to the colonization of the leaf material 

by microbial decomposers and their subsequent secretion of products (e.g. enzymes). 

This analysis is based on both the existing band assignments for biomacromolecules in 

the literature, as well as functional group assignment.  It is clear, based on the sheer possibilities 

of band assignments in certain spectral regions, that many of the tentative band assignments to 

specific molecules in the literature may be attributable to other molecules as well.  Several 

literature sources (Xiao et al., 2001; Kubo and Kadla, 2005; Michell, 1990) utilized isolated 

extracts of plant cell wall material in their studies.  Although one must consider that  a band was 

assigned to a pure extract of a biomolecule, that does not necessarily imply that the presence of 

that band in a complex sample (such as a leaf) is actually due to the presence of (or solely the 

presence of) that particular compound.  Perhaps, then, the FTIR studies of whole plant tissues 

would be useful for comparison. However, the fallacy in this is that all of these studies refer to 

band assignments from the literature based on studies of pure extracted substances (e.g. lignin, 

cellulose).   

FTIR-ATR has enabled the investigation of leaf material at the 10 x 10 micron scale, 

however the complex nature of a decomposing leaf makes compositional determination 

indistinct.  The attempt to characterize the macromolecular components of leaves at the level of 

the individual fungal hypha could enable a much greater understanding of that vague area of 

scale between the truly microbial (at level a bacterium may experience, <1 micron) and the 
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macroscopic (at level of an entire leaf).  Although this attempt to characterize decomposing leaf 

material at the micro scale was successful in these studies, it did not result in the amount of 

detail originally planned.  However, it will enable others to develop further studies utilizing 

additional or different methods of micro-scale substrate changes.   

 

 

 

 

 

 

 

 

 

 

  



101 
 

 

Tables 

Table 1. List of specific wavenumbers identified in the analyses, their corresponding functional 

groups, the wavenumber ranges of those functional groups, and tentative band assignments 

based on the current literature.  

Wavenumber 
Ranges (cm-1) 

Functional 
Group 

Specific 
Wavenumbers 

(cm-1) 

Tentative band 
assignments 

References 

3500-3300 OH 3360, 3460 Polysaccharides, 
alcohols 

Socrates (2001) 

3000-2800 C-H (CH, CH2, 
and/or CH3) 
 

2980 Aliphatic 
alkanes, often 
associated with 
hydrocarbon 
regions of lipids 
 

Socrates 
(2001), 
Ribeiro da Luz 
(2006) 

2918 

2850 

2807, 2810 

1850-1590 C=O 
 

1787, 1780, 
1774 
 

Vinyl and 
phenyl esters, 
such as those 
found in cutins 
and suberins 

Socrates 
(2001), 
Kolattukudy 
(1980) 

1735 Saturated esters 
of 
phospholipids, 
hemicellulose, 
and pectin 

Gorgulu et al. 
(2007) 

1683 Unconjugated 
carbonyl, lignin 

Kubo and Kadla 
(2005) 

1650, 1644 Amide I: 
Primarily 
proteins and 
peptides 
 
Possibly fatty 
acids or 
aldehydes if 
bands at 1000-
700 are also 
present 

Mantsch and 
Chapman 
(1996), 
Movasaghi et 
al. (2008) 
 
 
 
 
 
Stewart (1996) 

1630 Non-esterified 
carboxyl of 
pectins 

Chatjigakis et 
al. (1998) 

1590-1575 C=C ring 1579, 1574 Phenols or 
aromatics, 
found cutins, 
suberins, lignin, 

Socrates 
(2001), 
Movasaghi et 
al. (2008) 



102 
 

 

1570-1515 N-H 1560, 1556, 
1555, 1550 
1542, 1537 
1530 

Amide II: 
primarily 
proteins and 
peptides 

Socrates (2001) 

1490-1300 C-H (CH, CH2,  
CH3 or CH ring) 

1489, 1394 
1390, 1388 
1323, 1312 

Various alkanes Movasaghi et 
al. (2008) 

1462, 1467 Lignin 
 
 
 
 
 
cutin/suberin  

Boeriu et al. 
(2004), Kubo 
and Kadla 
(2005), Xiao et 
al. (2001) 
 
Stewart (1996) 

1442 Various plant 
cell wall 
polysaccharides 

Gorgulu et al. 
(2007) 

1429 Cellulose, other 
plant cell wall 
polysaccharides 

Movasaghi et 
al. (2008), 
Wilson et al. 
(2000), Oh et 
al. (2005) 

CH ring 1335 Cellulose, pectin Wilson et al. 
(2000) 

1329 Phenyl ring 
 
 
Lignin 

Movasaghi et 
al. (2008) 
 
Kubo and Kadla 
(2005), Boeriu 
et al. (2004) 

1305-1200 
 
 

N-H, C-N 
 
 
 
 
C-O 

1300, 1297 
1288, 1261, 
1249, 1242, 
1237 
 

Amide III: 
primarily 
proteins and 
peptides  
 
Ester 

Socrates (2001) 
 
 
 
Pretsch et al. 
(1983) 

1300-1000 C-O 1194, 1195, 
1180 

Ester Pretsch et al. 
(1983) 

Three band 
combination: 
~1250, ~1205, 
and  ~1175 

C-O 1249, 1207, 
1174 

Methyl esters of 
fatty acids 

Silverstein and 
Webster (1998) 

1228-1215 C-O, C-C, C=O 
(combined) 

1221 Lignin Boeriu et al. 
(2004), Xiao et 
al. (2001) 
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1170-1150 C-O-C 1170 Cellulose, β-1,4 
glycosidic link 

Michell (1990) 

1168 C-O-C 1167, 1168 Hemicellulose Xiao et al. 
(2001),  

1130-1050 Intense 
Polysaccharide 
Vibrations 
C-O, C-C ring 

1128, 1093, 
1074, 1066 

Polysaccharides, 
primarily 
cellulose 

Stewart (1996), 
Wilson et al. 
(2000) 

~1107 C-O, C-C ring 1106, 1101 Pectin Wilson et al. 
(2000) 

~1055 C-O, C-C, C-OH 1056 Pectin Wilson et al. 
(2000) 

~1042 C-O, C-C, C-OH 1043, 1044, 
1040 

Hemicellulose Xiao et al. 
(2001) 

1035-1025 C-O, C-OH 1029, 1034 Cellulose and 
other cell wall 
polysaccharides 

Ribeiro da Luz 
(2006), Gorgulu 
et al. (2007) 

1000-700 CH (out of 
plane bending) 

729, 778, 718, 
721 

Fatty acids and 
aldehydes (with 
1650 also 
present) 

Stewart (1996) 

~963 C-O 967 Cellulose ester Wilson et al. 
(2000) 

900-650 CH ring 950, 951, 942, 
936, 922 

aromatics Socrates (2001) 

~831 
 
 

unknown 830 Tentatively 
assigned to 
phenolic 
compounds in 
Cutin 

Ribeiro da Luz 
(2006) 

800-500 C-O 
CH ring 

809, 704 Cellulose Michell (1990) 

~713 C-OH 713, 715 Cellulose  Oh et al. (2005) 
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Table 2. List of peaks identified from both the x-residual analysis and PCA factor loading plots for 

all 5 datasets (HL, HV, OL, OV, and P). The numbers (0, 1, and 2) indicate if the peak was present 

on the x-residuals for their respective times (time 0: initial; time 1: 6 months; time 2: 12 

months). The final column summarizes which datasets possessed specific peaks; it also indicates 

if the peak was present in the PCA factor loading plots of the compiled ALL database. 

Specific 
Wavenumbers 

(cm-1) 

HL Dataset 
Times 
peaks 
were 

present 

HV Dataset 
Times 
peaks 
were 

present 

OL Dataset 
Times 
peaks 
were 

present 

OV Dataset 
Times 

peaks were 
present 

Pine Dataset 
Times 

 peaks were 
present 

Data sets 

3360, 3460 1, 2     HL, ALL 

2980  0, 1, 2 1, 2 1, 2  OL, OV, 
HV 

2918 0, 1, 2 1, 2 0, 1, 2 0, 1, 2 1 HL,HV, 
OL, OV, 
P, ALL 

2850 0, 1, 2 0, 1, 2 0, 1, 2 0, 1, 2 1 HL, HV, 
OL, OV, 
P, ALL 

2807, 2810  1   0, 1 HV, P, 
ALL 

1787     1, 2 P 

1780    1  OV, ALL 

1774  1, 2 0, 2   HV, OL 

1735 1 1, 2  0, 2 1 HL, HV, 
OV,P, ALL 

1683   2   OL 

1650 1, 2 1, 2 0, 1, 2 0, 1  HL, HV, 
OL, OV, 
ALL 

1644     1 P 

1630     0 P 

1579, 1574     1 P, ALL 

1555, 1556, 
1560 

 1  1 1 HV, OV, 
P, ALL 

1550     0, 1 P 

1542, 1537  1, 2 2   HV, OL, 
ALL 

1530 1, 2     HL 

1489     0, 1 P 

1462, 1467 2   1  HL, OV, 
ALL 

1442  2    HV 

1429     1 P 

1394      ALL 
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1390, 1388   1, 2  2 OL, P 

1335     1 P 

1329     1 P 

1323      ALL 

1312     1, 2 P 

1300, 1297 2    1 HL, P, 
ALL 

1288  2   1 HV, P 

1261   2   OL 

1249     1, 2 P 

1237, 1242     1 P, ALL 

1221  1    HV 

1207     1 P 

1194, 1195   2  1, 2 OL, P, 
ALL 

1180   2   OL 

1174      ALL 

1167, 1168, 
1170 

 1   0, 1, 2 HV, P, 
ALL 

1128 2 1, 2    HL, HV 

1106, 1101  1 1, 2 2  HV, OL, 
OV, ALL 

1093 1     HL 

1074     0, 2 P 

1066     1 P 

1056    1  OV 

1043, 1044, 
1040 

  0  0 OL, P, 
ALL 

1029, 1034 1 2   0 HL, HV, P 

967     1 P 

950, 951 2 2  1, 2 1, 2 HL, HV, 
OV, P, 
ALL 

942     1, 2 P 

936      ALL 

922   2   OL 

830     2 P 

809      ALL 

778      ALL 

729     1 P 

718, 721    1 1 OV, P, 
ALL 

713, 715 0,1, 2    2 HL, P, 
ALL 

704      ALL 
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Table 3.  Summary of the major groups of biological compounds expected in a leaf 

(Polysaccharides, Lipids/fatty acids, cutin/suberin, and proteins) and subgroups of 

polysaccharides, the wavenumbers that are unique or highly correlated with that compound-

type, and the trends occurring in the spectra at those wavenumbers over time. 

Biological Compound Specific Wavenumbers (cm-1) General Trend of Intensity 
Over Time 

Polysaccharides (general-
mixed) 

1442 Increases, then decreases 

1130-1050 Increases, then decreases 

             Pectin 1630 Increases  

1106, 1101 Consistent or decreases 

1056 Increases, then decreases 

             Hemicellulose 1167, 1168 Decreases, then increases 

1040, 1043, 1044 Decreases, then increases 

             Cellulose 1170 Decreases then increases 

967 Decreases 

809 Decreases 

704 Decreases 

713, 715 Decreases 

             Lignin 1683 Decreases 

1329 Decreases 

1221 Decreases, then increases 

Lipids/Fatty Acids 1249, 1207, and 1174 
combined 

Decreases, then increases 

778, 751, 729, 718, 721 Decreases 

Cutin/Suberin 1787, 1780, 1774 No clear pattern 

830 Decreases 

Proteins 1650, 1644 (Amide I) Increases 

1555-1560 (Amide II) Increases 

1305-1200 (Amide III) No clear pattern 

 

 

 

 

 

 

 

 

 



107 
 

 

 

Figures 

 

Figure 1. Sample FTIR-ATR spectrum highlighting regions 2800-1800cm-1 and 700-400cm-1 

(respectively) that were excluded from the analysis.  The former was excluded due to the lack of 

spectral information in this region, and the latter was excluded due to intense noise in many 

spectra probably a result of the functional wavelength range of the germanium ATR crystal, CO2 

signals, and water. 
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Figure 2. PCA plot of huckleberry lamina data set.  Wavenumbers are listed on the axes and 

direction (positive or negative) on which they influenced the spatial distribution of the data.  

Wavenumbers are ranked from most important to least. Error bars represent standard errors.  

For Axis 1 F=5.75, P = 0.0178. For Axis 2 F=42.65, P<0.0001. 
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Figure 3. Huckleberry lamina spectra at time 0.  Wavenumbers found to be important on the x-

residuals and factor loading plots have been labeled. 
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Figure 4. Huckleberry lamina spectra at 6 months.  Wavenumbers found to be important on the 

x-residuals and factor loading plots have been labeled. 
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Figure 5. Huckleberry lamina spectra at 12 months.  Wavenumbers found to be important on the 

x-residuals and factor loading plots have been labeled. Negative absorbance values are relative, 

not empirical. 
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Figure. 6 PCA plot of huckleberry vein data set.  Wavenumbers are listed on the axes and 

direction (positive or negative) on which they influenced the spatial distribution of the data.  

Wavenumbers are ranked from most important to least. Error bars represent standard errors. 

For Axis 1 F=6.19, P = 0.0142. For Axis 2 F=2.52, P=0.1222. 
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Figure 7. Huckleberry vein spectra at time 0.  Wavenumbers found to be important on the x-

residuals and factor loading plots have been labeled.  
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Figure 8. Huckleberry vein spectra at 6 months.  Wavenumbers found to be important on the x-

residuals and factor loading plots have been labeled. 
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Figure 9. Huckleberry vein spectra at 12 months.  Wavenumbers found to be important on the x-

residuals and factor loading plots have been labeled. 
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Figure 10. PCA plot of oak lamina data set.  Wavenumbers are listed on the axes and direction 

(positive or negative) on which they influenced the spatial distribution of the data.  

Wavenumbers are ranked from most important to least. Error bars represent standard errors. 

For Axis 1 F=13.73, P = 0.0008.   For Axis 2 F=37.29, P<0.0001 
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Figure 11. Oak lamina spectra at time 0.  Wavenumbers found to be important on the x-

residuals and factor loading plots have been labeled.  
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Figure 12. Oak lamina spectra at 6 months.  Wavenumbers found to be important on the x-

residuals and factor loading plots have been labeled. 
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Figure 13. Oak lamina spectra at 12 months.  Wavenumbers found to be important on the x-

residuals and factor loading plots have been labeled. 
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Figure 14.  PCA plot of oak vein data set.  Wavenumbers are listed on the axes and direction 

(positive or negative) on which they influenced the spatial distribution of the data.  

Wavenumbers are ranked from most important to least. Error bars represent standard errors. 

For Axis 1 F=26.46, P < 0.0001. For   Axis 2 F=15.63, P=0.0005. 
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Figure 

15. Oak vein spectra at time 0.  Wavenumbers found to be important on the x-residuals and 

factor loading plots have been labeled. 

  

(a
rb

it
ra

ry
 u

n
it

s)
 



122 
 

 

 

 

Figure 16. Oak vein spectra at 6 months.  Wavenumbers found to be important on the x-

residuals and factor loading plots have been labeled. 
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Figure 17. Oak vein spectra at 12 months.  Wavenumbers found to be important on the x-

residuals and factor loading plots have been labeled. 
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Figure 18. PCA plot of pine needle data set.  Wavenumbers are listed on the axes and direction 

(positive or negative) on which they influenced the spatial distribution of the data.  

Wavenumbers are ranked from most important to least. Error bars represent standard errors. 

For Axis 1 F=13.23, P = 0.0009. For Axis 2 F=12.06, P=0.0013. 
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Figure 19. Pine needle spectra at time 0.  Wavenumbers found to be important on the x-

residuals and factor loading plots have been labeled. 
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Figure 20. Pine needle spectra at 6 months.  Wavenumbers found to be important on the x-

residuals and factor loading plots have been labeled.  Negative absorbance values are relative, 

not empirical.  
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Figure 21. Pine needle spectra at 12 months.  Wavenumbers found to be important on the x-

residuals and factor loading plots have been labeled. 
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Figure 22. PCA plot of all leaf data sets.  Wavenumbers are listed on the axes and direction 

(positive or negative) on which they influenced the spatial distribution of the data.  

Wavenumbers are ranked from most important to least.  Means are coded as follows: T0=initial, 

T1=6 months, T2= 12 months; HL=huckleberry lamina, HV=huckleberry vein, OL=oak lamina, 

OV=oak vein, P=pine.  For example, T2HL represents the huckleberry lamina spectra at 12 

months. Error bars represent standard errors. For Axis 1 F=6.61, P < 0.0001. For Axis 2 F=12.91, 

P<0.0001. 
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Figure 23. The 15 average spectra from the ALL dataset are overlaid.  The accompanying chart 

lists the important wavenumbers from the PCA analysis (columns) and their relative intensities 

(rows) as found on the y-axis of the spectra (T0=initial, T1=6 months, T2=12 months). 
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CHAPTER FOUR 

Chemical characterization of starch and starch: lignin films using micro-

attenuated total reflectance Fourier transform infrared spectroscopy (micro-ATR FTIR) 

Previously published Trends in biomaterials and artificial organs (2012) 26(2):107-109  

 

Abstract  

Micro-attenuated total reflectance Fourier transform infrared spectroscopy (micro-ATR 

FTIR) was used to investigate the chemical composition of biodegradable films produced from 

starch and starch: lignin in a 90:10 ratio.  Preparation of the starch and lignin solutions followed 

that of  Vengal & Srikumar [1] in which tensile strength of films was investigated.  After testing 

the chemical composition of these films by FTIR, it was found that the films identified as starch: 

lignin were chemically  similar to those of starch alone.  During the manufacture of biopolymeric 

films, it is likely that compositional changes may occur in one or more components that renders 

the end product significantly different from the intended composition.  As a result of this 

research, we suggest caution in the preparation of mixed component films.  

Introduction 

Biodegradable polymeric films are a possible alternative to the synthetic plastics so 

common in modern life.  Most synthetic plastics are known to degrade at incredibly slow rates 

and are a known contributor to landfill mass.  As an alternative to these synthetic plastics, 

research in the last decade or so has attempted to develop biodegradable polymer films from 

natural sources, such as starch, pectin, cellulose, and lignin [2,3,4]. 
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In addition to the biodegradable nature of these films, they also offer important benefits 

to researchers requiring homogenous, smooth biological substrates for study of decomposition 

patterns in microbes and fungi. These materials represent analogous sub-sets of the more 

complex chemistry of plant leaves and stems, allowing more detailed investigation of selective 

enzyme activities on these chosen substrates [5,6]. In our studies, we required such a substrate 

to investigate the relative enzymatic activities of various fungi on lignin containing substrates.  It 

was important that the substrate was a flat film that could be analyzed using both atomic force 

microscopy (AFM) and micro-attenuated total reflectance Fourier transform infrared 

spectroscopy (micro-ATR FTIR).  

Fourier transform infrared (FTIR) spectroscopy involves the absorption of infrared 

radiation by the sample resulting in molecular vibrations (i.e. stretching or bending of infrared 

active covalent bonds in the mid-IR region of 4000 and 400 cm-1).  Each type of molecular 

vibration absorbs IR radiation at a specific spectral wavelength thereby providing qualitative and 

quantitative chemical information about the sample.  The complex pattern of peaks produced 

by a sample, its IR spectrum, can then be analyzed to obtain compositional information.  Peaks 

can be correlated with bonds (e.g. C-H stretch vs. O-H stretch), while the fingerprint region 

(~1500 – 400 cm-1) exhibits a unique signature including many overlapping vibrations from 

various parts of each distinct molecule in the sample.  FTIR-ATR (attenuated total reflectance) 

microscopy utilizes a microscope in conjunction with a traditional FTIR bench.  This enables the 

infrared spectrum to be obtained from a specific point located under the microscope 

approximately 10 x 10 microns in size.  Spectral information from the surface of the sample is 

obtained by the ATR sampling method; the sample must be in good contact with the internal 

reflectance element, generally Ge.   
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Atomic force microscopy (AFM) is a physical microscopy technique that can be used for 

measuring surface topography, adhesion, and elasticity.  This is accomplished by deflecting a 

laser off a scanning probe that rapidly taps the surface of the sample and onto a photodiode 

that detects the surface characteristics [7].  Atomic force microscopy measures these 

characteristics at the m and nm scales with limited height variability.  It is this limitation in 

height that requires the use of flat films as the substrate for the fungal decomposition. 

Our proposed study was to evaluate the extent of influence of enzymes produced by an 

individual fungal hypha growing across defined substrates using a combination of ATR-FTIR and 

AFM at a resolution of µm to nm away from the hyphal surface. However, after reproducing 

starch: lignin  films according to the process of Vengal & Srikumar [1] it was found that lignin 

was not present in the starch: lignin films. Further research indicates that the process of 

preparing the lignin as a dissolved solute in sodium hydroxide (NaOH) causes alkaline hydrolysis 

of the molecule.  The resulting film, therefore, had no lignin present, as is supported by our ATR-

FTIR spectra. 

It is imperative that the films produced via the method of Vengal & Srikumar [1] are 

composed of the materials published, as other researchers depend upon this accuracy for their 

continuing studies. 

Methods 

The methods of Vengal & Srikumar [1] were followed in preparation of starch: lignin and 

starch-only films, with exception of the lignin source.  Vengal & Srikumar extracted their own 

lignin from wood, whereas we obtained lignin from Sigma Aldrich. Starch: lignin films were 90% 

starch, 10% lignin, whereas the starch-only films were 100% starch.  Tapioca starch was used to 

produce the starch solution. The starch: lignin polymer films (90:10) were cast from a solution of 
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4g of tapioca starch with 75 ml of water at 100o C until the starch was dissolved. Glycerol (5 

drops) was added to the mixture (as a plasticizer) and 10 ml of lignin solution (3g / 75 ml NaOH).  

The resulting solution was cast on plastic cover slips and allowed to cure. Starch only films were 

cast in the same manner excluding the addition of the lignin/NaOH solution.   

Following curing, the films were analyzed on an Agilent (formerly Bio-Rad) FTS 6000 

infrared spectrophotometer with an attached UMA 500 microscope with a germanium ATR 

crystal.  256 scans were averaged at a resolution of 4 cm-1 ; background was air.  As spectra were 

compared to each other, no ATR correction was applied.  All spectra were normalized.  Spectra 

were obtained from 3 replicates of the 90:10, starch: lignin films and 3 replicates of the starch 

only films.  Spectra of pure lignin were also obtained by pressing lignin into a pellet and 

contacting the pressed lignin pellet against the  ATR crystal. The pellet was prepared by grinding 

lignin in a mortar and pestle then loading a small amount into a KBr pellet press to produce a 

solid pellet of lignin. 

Results 

The infrared spectra of the starch: lignin and the starch-only films are nearly identical, 

see Fig. 1.  Both films generated spectra with peaks at 1457, 1151, 1079, 1019, 931, and 852 

cm1.  Table 1 shows the main spectral peaks in the lignin pellet and both the starch: lignin and 

starch only films. It can be seen that other than a peak at 1079 cm-1, there are no common peaks 

between the lignin and starch: lignin film. The starch: lignin film has complete congruence of 

major peaks with the spectrum of starch alone.  
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Conclusion 

The results outlined above and in figure 1 and table 1 indicate that during the 

preparation of the starch: lignin films, there appears to be a reaction resulting in the loss of 

lignin from the system.  The strong similarities of the starch and starch: lignin spectra, as well as 

their overwhelming contrast to the lignin spectra clearly indicate that there is no lignin present 

in the resulting starch: lignin films.  According to Miller et al. [8], when exposed to an alkaline 

solvent lignin depolymerizes.  This coincides with the known process of alkaline degradation of 

polysaccharides as outlined in Kennedy & White [9].  The only spectral peak that is common 

between the lignin and starch: lignin film is that at 1079 cm-1. This peak at 1079 cm-1 is common 

in many polysaccharides [10], so it would be expected to still be present in the NaOH degraded 

lignin. 

As a result of this research, we suggest caution in the manufacture of mixed component 

films. During the manufacture of films it is likely that compositional changes may occur in one or 

more components that renders the end product significantly different from the intended 

composition. The original intent of use of films by Vengal & Srikumar [1] was different from ours 

and may not have been influenced as much by the actual chemical composition of the end 

product of film casting. However, if one is attempting to produce films of known composition of 

the identical chemistries of component parts, caution must be taken to ensure that the end 

product does indeed have the desired components. For example the films created by the Vengal 

& Srikumar [1] process are inappropriately named as starch: lignin films, when the films are 

more representative of starch alone. 
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Tables 

Table 1. Comparison of main spectral peaks between lignin, starch, and 90:10 starch: lignin 
films. X’s indicate the presence of a peak within the spectrum and blank boxes indicate the 
absence of a peak.  Starch only and starch: lignin films share the same peaks , but contrast with 
lignin in all peaks, with exception of 1079. 
 

Wavenumber (cm-1) Lignin Starch Starch Lignin 

1594 X   

1512 X   

1457  X X 

1453 X   

1368 X   

1266 X   

1214 X   

1151  X X 

1139 X   

1130 X   

1079 X X X 

1030 X   

1019  X X 

931  X X 

852  X X 
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Figures 

 

Figure 1. Overlaying spectra from the three films highlights similarities in peak presence 
between the starch and the starch: lignin films that contrasts from those of lignin. 
  



140 
 

 

References 

1. J.C. Vengal and M. Srikumar, Processing and Study of Novel Lignin-Starch and Lignin-

gelatin Biodegradable Polymeric Films, Trends in Biomaterials and Artificial Organs, 237-

241 (2005). 

2. L. Mariniello, P. Di Pierro, C. Esposito, A. Sorrentino, P. Masi, and R. Porta, Preparation 

and Mechanical Properties of Edible Pectin-Soy Flour Films Obtained in the Absence or 

Presence of Transglutaminase, Journal of Biotechnology, 191-198 (2003). 

3. R. Singh, S. Singh, K.D. Trimukhe, K.V. Pandare, K.B. Bastawade, D.V. Gokhale, and A.J. 

Varma, Lignin-Carbohydrate Complexes from Sugarcane Bagasse: Preparation, 

Purification, and Characterization, Carbohydrate Polymers, 57-66 (2005). 

4. D. Tapia-Blacido, P. J. Sobral, and F.C. Menegalli, Development and Characterization of 

Biofilms Based on Amaranth Flour (Amaranthus caudatus), Journal of Food Engineering, 

215-223 (2005). 

5. P.M. Latter and D.W.H. Walton, The Cotton Strip Assay for Cellulose Decomposition 

Studies in Soil: History of the Assay and Development, Cotton Strip Assay: An Index of 

Decomposition in Soils,7-10 (1988). 

6. J.C. Went and F. De Jong, Decomposition of Cellulose in Soils, Antonie van 

Leeuwenhoek, 39-56 (1966). 

7. V.J. Morris, A.R. Kirby, and A.P. Gunning, Atomic Force Microscopy for Biologists, 2nd 

edition  (Imperial College Press, 2010) p 1-33. 

8. J. E. Miller, L.R. Evans, J.E. Mudd, and K.A. Brown, “Batch Microreactor Studies of Lignin 

Depolymerization by Bases”, Sandia National Laboratories, SAND2002-1318, (2002) 

9. J.F. Kennedy and C.A. White, Bioactive Carbohydrates (Ellis-Horwood Publishers, 1983) 

p66-76. 



141 
 

 

10. H.H. Mantsch and D. Chapman, Infrared Spectroscopy of Biomolecules (John Wiley and 

Sons, Inc., Publications, 1996) p 207-210. 

 

  



142 
 

 

CHAPTER FIVE 

Atomic force microscopy and micro-ATR-FT-IR imaging reveals fungal enzyme activity at 

the hyphal scale of resolution 
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Abstract 

We have combined the use of atomic force microscopy (AFM) and micro-attenuated 

total reflectance Fourier transform infrared (micro-ATR-FT-IR) imaging to show the extent of 

exoenzyme influence around individual hyphae of three fungal species growing on cellophane. 

AFM data shows that surface roughness of the cellophane substrate is significantly lower 

adjacent to hyphae of Armillaria and Aspergillus, which produce cellulase enzyme, than for 

Mucor, which has lower cellulase activity. Additionally, the adhesive properties of the 

cellophane surface are significantly altered within the sphere of influence of the hyphae of 

Armillaria and Aspergillus. Micro--ATR-FT-IR imaging indicates that the cellophane substrate 

changes composition immediately adjacent to the hypha of Armillaria and Aspergillus, but 

similar spectral changes do not occur in the presence of Mucor. This is consistent with the 

difference in cellulase enzyme activity in these fungal species.  The appearance of new spectral 

peaks, consistent with those expected in the presence of enzymes and the minor decrease in 

peaks associated with cellophane adjacent to these hyphae are consistent with the hypothesis 

that the changes observed by AFM are due to local effects of enzyme action around individual 

hyphae.   
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Introduction 

Atomic force microscopy (AFM) has been used in biology (excluding molecular and 

biochemical studies), to measure surface morphology of structures (Morris et al. 2010) and 

surface and elastic properties of hyphal cell walls (Ma et al. 2005; Zhao et al. 2005a; 2005b; Paul 

et al. 2011) . The  application of AFM to mycology has been extensively discussed by Ma et al. 

(2006) and Kaminskyj & Dahms (2008) who show the benefits of this technique by providing not 

only visualization of the fungal structures, but also information about the physicochemical 

nature of the fungal structures.  We present here preliminary data to show changes in the 

physical properties of substrates affected by individual fungal hyphae at the micrometer scale of 

resolution using a combination of AFM and micro-attenuated total reflectance Fourier transform 

infrared (micro-ATR FT-IR) microspectroscopic imaging. These are initial investigations of a 

larger study to evaluate the functional relationships between fungal hyphae of contrasting 

species and the underlying leaf substrates they are decomposing at the hyphal scale.  

In mycology, AFM has largely been used for observational studies of fungal structures. 

Holder & Keyhani (2005) and Holder et al. (2007) imaged fungal spores and germinating hyphae. 

Kim (2006) and Kim et al. (2007) imaged spores of the smut Ustilago and basidiospores of 

puffballs, Kaminskyj & Dahms (2008) imaged fungal cell walls and Zhao et al. (2005a; 2005b) 

measured topography and elasticity of Aspergillus spores. Dague et al. (2008) showed changes 

in the shape and surface physicochemical structure of germinating spores of Aspergillus 

fumigatus. Holder et al. (2007) studied germinating conidiospores of the entomopathogenic 

fungus Beauvaria bassiana and Kaminskyj & Dahms (2008) provided good images of germinating 

Aspergillus conidia. Closely related to our study is the work of Ma et al. (2005) who investigated 
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the adhesion forces along developing fungal hyphae by AFM. One of their conclusions was that 

the rigidity of the fungal hypha increased proximally from the tip as elasticity decreased.  

Examination of the enzymatic effects on substrate surfaces using AFM have often used 

commercially available fungal-derived enzymes to follow changes in surface characteristics of 

substrates. However, these studies have not been conducted in association with fungal hyphae. 

Studies have included the esterase activity on water soluble wheat xylans (Adams et al. 2005) 

and laccase and tyrosinase effects on polymeric phenolics. Desentis-Mendoza et al. (2006) show 

changes in the physical structure of quercetin and kaempferol due to the effects of laccase and 

tyrosinase enzymes at the 5 μm scale of resolution. Effects of xylanase activity on kraft pulp 

bleaching (Medeiros et al. 2007), Penicillium derived depolymerases action on poly[(R)-3-

hydrobutyric acid] (Numata et al. 2007), Trichoderma derived cellulose hydrolysis of cotton 

fibers (Wang et al. 2006), lipase degradation of poly(trimethylene carbonate) (Zhang et al. 2005) 

and adsorption of laccase from Trametes and Melanocarpus on cellulose and lignin (Saarinen et 

al. 2009) have also been investigated. Yokata et al. (2008) also appliedAFM to investigate the 

cellulose-binding domain/cellulose interface in paper pulp.  

Our interest lies in the fungal decomposition of plant remains. There are a limited 

number of AFM studies of plant material, which  include surface morphology of ivy leaves (Canet 

et al. 1996), morphology and chemistry of Prunus leaves (Perkins et al. 2005) and leaf surface 

topography for microbial habitats (Mechaber et al. 1996) and barley straw (Wiśniewska et al. 

2003). These studies have highlighted the problems of interference from surface wax layers of 

leaves, restricting observation of the underlying cellulose cell wall (Koch et al. 2003; 2004; 

2006).  

FT-IR spectroscopy is a well-known analytical method for the analysis of biological 

materials. The IR spectrum contains both useful group frequency vibrational information that 
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provides clues to the chemical structure of the substance as well as unique ‘fingerprint’ peaks 

whereby an unknown compound can be matched against that of an authentic sample (Socrates 

1994).  The extremely complex spectra of biological samples which are by their nature a mixture 

of substances can be probed at the micro-scale using micro-FT-IR spectroscopy.  More recently, 

FT-IR micro imaging has emerged as a tool to analyze heterogeneous materials (Kidder et al. 

2002).  The advancements in multi-pixel IR detectors (focal plane array or FPA detector) provide 

fast imaging due to the ability to simultaneously record thousands of spectra (Lewis et al. 1995).  

In addition, the use of Attentuated Total Reflection (ATR) FT-IR spectrochemical imaging in 

conjunction with an interferometer coupled to the FPA, results in a significantly higher spatial 

resolution with good signal to noise since the spatial resolution is not achieved by passing the 

infrared through an aperture that is isolating the area of interest but by making use of the small 

size of the native detector pixels to achieve the high spatial resolution.  In addition in the ATR 

experiment, there is a magnification effect of the germanium internal reflection element in 

contact with the sample (Milosevic 2004). 

Numerous advances have occurred in FT-IR microspectroscopy over the past two 

decades. In addition to the ability to examine biological samples at the microscopic scale using 

transmission techniques (Stewart 1996), micro-ATR (attenuated total reflectance) imaging 

provides enhanced spatial resolution as a result of the germanium internal reflection element 

(IRE) (Griffiths 2009). Micro-ATR-FT-IR imaging utilizes a Ge ATR crystal in contact with the 

sample.  Micro-ATR-FT-IR imaging has recently been used as a tool to investigate chemical 

composition of biological samples (surface of skin, cross-section of blood vessels, hair) with 

higher resolution than was previously possible using traditional IR methods (Kazarian & Chan 

2010).  
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Using synchrotron FT-IR microspectroscopy (transmission mode) Szeghalmi et al. (2007) 

identified differences in IR spectra between hyphae of Aspergillus, Neurospora and Rhizopus and 

slight spectral changes in each of these when grown in sub-optimal conditions. Similarly, we 

have identified significant differences in spectral properties of a number of fungal species, using 

a Bio-rad FTS 6000 FT-IR with attached UMA 500 ATR microscope (Ge IRE) in single point mode.  

These differences existed in both transmission and ATR mode in our studies. (Oberle-Kilic et al. 

unpublished).   

In this study we have combined the utility of AFM to measure surface physical 

properties of a substrate with Micro-ATR-FT-IR imaging which analyzes chemical characteristics. 

Micro-ATR FT-IR imaging illustrates changes at the micro-scale which can be attributed to the 

influence of contrasting fungal species on the substrate in the immediate vicinity of specific 

hypha. The degree of substrate surface change correlates with the enzymatic competency of the 

fungi. In this study, we reduced the complexities of both chemical and physical heterogeneity by 

observing hyphal growth over cellophane films, which have long been used for studies of the 

decomposition of cellulose in soil (Went & DeJong 1966; Nilsson 1974; Moore et al. 1979). The 

particular fungi growing on these films were selected for their enzyme production, with 

Aspergillus and Armillaria possessing cellulase activity, while Mucor has limited enzymatic 

ability. 

Materials and Methods 

Three fungal species were selected to represent fungi with contrasting enzymatic 

capabilities. Mucor sp. was selected for its limited enzyme capacity since its ecological niche is 

mainly in the utilization of readily available carbon sources from simple sugars. Aspergillus niger 

and Armillaria mellea were selected as they have known cellulase activity, allowing them to 

degrade more complex carbohydrates than Mucor (Frankland 1966).  The Armillaria and 
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Aspergillus cultures were obtained from Carolina Biological Supply Company.  The Mucor culture 

was isolated from cranberries in the NJ Pinelands and identified in Dr. Jim White’s plant 

pathology laboratory at Rutgers University. Each culture was grown on cellulose agar to confirm 

the presence or absence of a clearing zone (Rautela & Cowling 1996).  Aspergillus and Armillaria 

were confirmed to clear the cellulose agar, and Mucor did not clear cellulose (as expected). The 

three fungal species were grown on optimal media; the Mucor and Aspergillus were grown on 

potato dextrose agar and Armillaria on bread crumb agar.   A square piece of cellophane film (1 

cm x 1cm) was mounted to a glass microscope slide as a substrate and a small agar cube of 

fungal inoculum was placed on the corner of the cellophane square. The entire slide was placed 

in a sterile damp chamber consisting of a sterile glass Petri plate containing sterilized moist filter 

paper and sealed with Parafilm. Three replicate cellophane films were prepared for each fungal 

species; from these, one hyphal tip per replicate was analyzed. After 48 hours, the agar cube 

and hyphae growing out from it were severed and the agar cube was removed.  Hyphal growth 

was permitted for an additional 24 hours in the damp chamber to allow the fungus to be 

released from the nutrient and carbon source provided by the agar and to stimulate enzyme 

activity that might affect the cellophane. At the end of the incubation period the slide and 

cellophane were air dried at room temperature. Samples were not washed before drying as we 

wanted to retain any solubilized end products of decomposition and enzymes in situ.  

Each sample was processed on an Asylum Research MFP-3D Atomic Force Microscope 

using an Olympus AC240TS silicon tip of spring constant 2 (0.5-4.4) N/m and resonance 

frequency of 70 (50-90) kHz. A 20x20 micron scan was performed on a randomly selected 

individual hyphal tip at 0.22 Hz with 1024 scan points and 1024 scan lines in AC (tapping) mode. 
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Following the scan, a force map was generated using 40 scan points on 40 lines, or 1 

force measurement every 0.5 µm2. All scans and their associated force maps were performed 

with the same tip within the same image to ensure that different areas of individual force maps 

could be compared even though the tip was not calibrated against an infinitely hard surface as a 

reference. Frequency histograms of force measurements adjacent to the fungal hypha and at a 

distance from the hypha were plotted to determine differences in force characteristics of the 

cellophane film as influenced by the hyphal presence.  

Surface roughness of the cellophane was measured adjacent to the hypha (between 0 to 

5 µm of the hyphal cell wall) and at a distance from the hypha (10 – 15 µm away from the cell 

wall) using the height trace image. The root mean squared (RMS) height was calculated from an 

area outside the perceived area of influence of the hypha as determined by the AFM image by 

masking out the hypha and area immediately around it which showed changes in texture.  This 

was compared with the area influenced by the hypha, which was masked out both from the 

hypha proper and from the outside area.  

 Roughness was calculated, by the Asylum MFP-3D software, using the root mean 

squared (RMS) method (Morris et al. 2010).  This calculation produces a measure of variance 

between the maximum and minimum heights over the surface area, resulting in a positive 

correlation; higher RMS values mean higher variation in surface topography (Eaton & West 

2010). The differences between the RMS values were compared between locations near and far 

from each hypha using one way ANOVA. These were then compared to RMS data from 

unmanipulated cellophane.   

 Micro-ATR-FT-IR images were collected from each sample of fungus growing on 

cellophane with a continuous scan spectrometer, Agilent 680 FT-IR  interfaced to a 620  infrared 
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microscope with a 64 x 64 focal plane array (FPA) detector and Ge ATR objective for micro-ATR.   

Each pixel obtains a full IR spectrum for a total of 4096 spectra. Background spectra were 

collected from a clean ATR crystal (i.e. without sample). The germanium crystal of the ATR 

microscope was lowered onto the surface of each sample for a contact area of approximately 

100 x 100 µm.  Spectra were collected at 8 cm-1 resolution.  Chemical images shown in Figure 5 

were obtained from samples of each fungus.  The standard IR imaging technique, in which the 

spectra are ratioed against an unchanged peak, was applied to the entire image.  The fingerprint 

region is shown from ~1800 cm-1; the FPA cuts off at 950 cm-1. 

 (at 1,000 

cm-1 or 10 microns) can be achieved. The spatial resolution varies with wavelength according to 

the Rayleigh criterion. The depth of penetration resulting from ATR imaging is also wavelength 

dependent. The use of the germanium crystal (refractive index = 4) in contact with the surface 

of the sample increases the resolution approximately four-fold (Griffiths 2009).   

Results and Discussion 

 AFM has been used for observing topographical and other physical surface phenomena 

at the micro- to atomic scale. Other than its application to molecular and biochemical studies, its 

use in biology has largely been for the observation of surface structures of organisms. In the 

field of mycology, a number of topographical observations of fungal hyphae and spores have 

been made along with some measures of the surface properties of these entities (Ma et al. 

2005; Zhao et al. 2005a; 2005b; Paul et al. 2011). In this article we show that this technique can 

address functional aspects of mycology. Our application is to the fine scale of interaction 

between fungal hyphae of contrasting species and enzymatic capabilities and the substrate they 

are colonizing.  
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AFM height images of each fungal species on cellophane are shown in Figure 1.  The 

cellophane surface immediately surrounding the Aspergillus and Armillaria hypha (for 

approximately 5 μm) are visibly different in the height images, suggesting changes proximal to 

the hypha in both the cellophane surface and accumulation of hyphal exudates not present in 

Mucor.  

The area proximal to the hypha of Aspergillus and Armillaria appears to be much 

smoother than the general matrix of cellophane distant from the hypha. Indeed, measures of 

surface roughness (RMS values) of the cellophane indicate that there is a statistically significant 

difference (Table 1) in surface roughness between the areas near the hypha and those far from 

the influence of the hypha in both Aspergillus and Armillaria; this is not observed in Mucor. This 

is supported by the RMS data of unmanipulated cellophane where there is no significant 

difference in surface roughness between pure cellophane and cellophane located away from the 

hyphae on our samples. These results support observations in the height images in which the 

area surrounding both Aspergillus and Armillaria appear different than the remainder of the 

image; again, this is not found in the AFM image of Mucor. Although they did not report RMS 

values, Zhang et al. (2005) showed increased heterogeneity in height of a poly (trimethylene 

carbonate) film during decomposition by lipase.  Similarly, Wang et al. (2006) showed increasing 

RMS values from 23.7 through 30.9 to 91.5 nm in cotton microfibrils at zero, 6 and 12 d 

incubation in cellulase from Trichoderma.  In contrast, a decrease in RMS was detected over 

time as kraft lignin pulp was degraded by xylanase (XYL III) (Medeiros et al. 2007).  Examples of 

transects of height trace across hyphae into the outlying cellophane are given in Fig. 2. For 

Aspergillus and Armillaria, these traces show a smooth connection between the hyphae and the 

substrate. We hypothesize that the fungus secreted enzymes which dissolved cellophane.  

Preliminary micro-ATR-FT-IR imaging is consistent with this hypothesis and a more detailed IR 
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analysis is planned.  We attribute the changes found via AFM to the solubilizing action of 

cellulase enzymes secreted by these fungi as no such changes are evident in the Mucor image 

where the cylindrical hypha appears to sit directly on the cellophane with minimal changes to 

the neighboring cellophane surface. This is somewhat consistent with data from Ma et al. (2005) 

who showed decreasing elasticity of fungal hyphae distally from the tip. Elastic areas are 

presumed to be sites where enzyme secretions occur, depending on the substrate and enzyme 

production potential of the fungal species. 

Beneath each image (Fig. 1) is its respective force map indicating contrasting areas of 

adhesion work (see Fig. 4). For example, dark red squares represent surfaces with low adhesion 

and dark blue squares surfaces with higher adhesive properties. Significant differences in the 

pattern of forces can be seen adjacent to the hyphae of Aspergillus and Armillaria, but not so for 

Mucor. Fig. 3 shows examples of frequency distribution histograms of adhesion work from 

stratified random pixels selected adjacent to and distant from hyphal surfaces. These show that 

there are differences close to and distant from hyphal surfaces in Aspergillus and Armillaria, but 

not for Mucor. Again we attribute these differences to the changes in the physical properties of 

cellophane and the presence of cellulase enzymes secreted by Aspergillus and Armillaria; similar 

enzymes are not produced by Mucor. Fig. 4 shows examples of force curves for the extreme 

conditions of dark red and dark blue pixels for Armillaria, along with the intermediate force 

curve colored light yellow. The predominance of blue pixels on the force map occurring distant 

to the hypha show the greatest adhesion work required to pull the tip from the surface. In 

contrast, the red pixels predominant around the hyphal surface exhibit very little adhesion work 

required.  
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In addition to the AFM results, the IR spectra obtained from the micro-ATR-FT-IR images 

of Armillaria and Aspergillus on cellophane indicate spectrochemical differences between areas 

adjacent to and distant from the hypha (Fig. 5). A representative point adjacent to the hypha 

(black star) and distant from the hypha (red star) for each fungal species has been selected to 

show representative spectra at these positions (Fig. 5).  Spectra obtained from the Mucor 

sample indicate little difference between locations adjacent to the hypha or at a distance from 

the hypha.  IR peaks of interest are labeled in Figure 5 and summarized in Table 2. These IR 

bands may be attributable to cellophane (1020, 1155cm-1), cellophane degradative products or 

conjugated carbonyl structures (1732 cm-1), and enzymes (1252, 1420, 1650 cm-1) (Table 2).  

These spectra can be compared to the ATR FT-IR spectrum of cellophane alone (Fig. 6). 

Aspergillus and Armillaria spectra obtained near the hypha indicate a reduction in intensity of 

1020 cm-1 (cellophane peak), loss of peak 1155 cm-1 (cellophane peak), and the appearance of 

peak 1732 cm-1consistent with cellophane decomposition. Furthermore, Armillaria and 

Aspergillus spectra indicate the presence of enzymes adjacent to the hypha with increased 

intensity of peaks 1252 cm-1 (Amide III, N-H ), 1420 cm-1 (CH of carboxylic acid or aliphatic 

aldehyde), and 1650 cm-1 (Amide I, C=O). The increase in the band at 1420 may be due to a 

combination of factors, including protein exudates as well as a number of organic acids that 

fungi are known to produce as secondary metabolites.   In Mucor, there was a slight increase at 

wavenumber 1650 cm-1, that may be attributable to very small amounts of enzyme secretion, 

but there appears to be no evidence of cellophane degradation (Fig. 5). This may indicate that 

what little enzyme Mucor may have produced was not capable of cellophane degradation.  

Recalling that different functional groups may vibrate at similar frequencies, the pattern 

of peaks produced by many complex organic mixtures may be used to obtain basic 

compositional information with regards to specific functional groups, but it does not provide 
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enough information to positively identify specific compounds.  It is clear from the spectra taken 

near the hypha and far from the hypha that changes are occurring in the substrate, however, 

these changes are difficult to characterize. 

 We show that we can observe changes in surface roughness and adhesion work in the 

surface of a model cellophane film as influenced by enzymes secreted by fungal hyphae. These 

changes have been mapped at the micrometer scale along the length of the advancing hyphae 

and perpendicular to its direction of growth. Thus we feel we are able to interpret the sphere of 

influence of an individual hypha on a substrate.   

Our results show significant changes in the cellophane surface within 3 – 5 μm of the 

hyphal surface which we attribute to enzymatic activity. This activity is species specific, being 

found in Aspergillus and Armillaria, which are known to possess cellulase enzyme activity, and 

not in Mucor, which has more limited enzymatic competence. Fungal decomposition of 

resources has been studied by measuring gross chemical changes in resource chemistry over 

time (Norby et al. 2001). Until recently methodology to measure changes in resource chemistry 

at the scale of resolution of individual fungal hyphae (of the order of 5 – 10 μm) has not been 

available.  

Although we have simplified our experimental conditions to investigate changes in a 

relatively homogenous resource, there is interest in identifying changes in heterogenous 

resource quality during fungal decomposition (Rayner 1991; Ritz 1995).  It is possible to detect 

changes in resource carbohydrate chemistry due to a variety of fungal enzyme activities 

(Mascarenhas et al. 2000) using microscopic ATR FT-IR; the complexities of mixed carbohydrate 

skeletons within the matrix of leaf tissues can be de-convoluted near the scale of resolution of 

fungal hyphae (approximately 100 x 100 μm) (Dighton et al. 2001). The patchiness of diverse 
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resources in dead leaves results in a micro-scale mosaic which is exploited by individual fungal 

hyphae capable of secreting appropriate enzymes to utilize the resources and whose chemistry 

changes over time (Swift et al. 1979). Such micro-scale patchiness in enzyme production has 

been reported by mapping enzymes on 5 mm diameter disks decomposing American Sycamore 

leaves in aquatic systems (Smart & Jackson 2009). They provided krigged maps of enzyme 

activity (β-glucosidase, cellobiohydrolase and of the combination of phenol oxidase and 

peroxidase) across leaf surfaces. This mapping of enzyme activity suggested areas of microbial 

activity, but were neither related to actual microbial presence, nor to the nature and changes of 

the leaf chemistry at the locations of high enzyme activity. 

In this paper, we are able to make the connection between fungal hyphae, the resource 

over which they are growing and the influence of their enzymes at the appropriate scale of an 

individual fungal hypha.  Although the chemical complexity of the substrate, fungus, and 

enzymes makes specific chemical characterization difficult, we absolutely observe changes in 

both the physical and chemical properties surrounding hyphae of Armillaria and Aspergillus 

growing on cellophane, but not Mucor.  There are still considerable problems in de-convoluting 

the complexity of a mixed organic system where FT-IR is not specific in its analysis of discrete 

molecules. The same band can be interpreted as belonging to a variety of compounds and each 

molecule can have hundreds or more signatures; an average protein molecule can have up to 

20,000 vibrational degrees of freedom (Barth & Zscherp 2002). FPA methods and the tight 

association between spectral acquisition and small spatial scale resolution is the only way in 

which some degree of understanding of changes in chemical composition can be made.  We 

have made an initial step in this direction by looking at both the physical and chemical changes 

at the micro-scale of resolution between fungal hyphae and their resources (substrates). 
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Our next challenge is to measure similar effects of hyphae that are growing over a leaf 

surface and are producing enzymes that decompose the resources within that leaf. We are in 

the position now to address questions of the functionality of growth patterns of fungal hyphae 

(Rayner 1991; Ritz 1995). We predict that hyphal branching patterns and space filling by fungal 

hyphae colonizing and utilizing resources is energetically efficient with minimal overlap of areas 

into which enzymes are secreted; i.e. fungal hyphae of the same individual do not compete for 

resources.  
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Tables 

Table 1. Mean surface roughness (RMS) difference between cellophane surface within 5μm of 

the hypha and > 10 μm away.  Different superscript letters indicate significant differences at 

α=0.05 between means (Tukey’s Honestly Significant Difference Test) with like letters being not 

significantly different.   

Species Mean RMS (µm) difference (± SE)  

Armillaria 0.180 ± 0.025 A 

Aspergillus 0.176 ± 0.027 A 

Mucor -0.026± 0.018 B 

ANOVA between species F = 24.4 (2,6) , P = 0.0013 
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Table 2. Interpretation of the specific wavenumbers shown to vary significantly due to the 

influence of fungal hyphae (Fig. 5). 

Wavenumber (cm-1) Functional Group Associated Compound Reference 

1732 C=O Aliphatic aldehydes, 

conjugated carbonyl 

structures 

Socrates, 1994; Cohen 

& Gabriele, 1982 

1650 C=O Amino acid-protein 

(Amide I) 

Mantsch & Chapman, 

1996 

1420 C-H  Carboxylic acid, 

aliphatic aldehyde 

Socrates, 1994 

1252 N-H  Amino acid-proteins 

(Amide III) 

Socrates, 1994 

1155 C-O-C Cellulose (cellophane) Stewart, 1995 

1020 C-OH Complex sugar ring 

modes (cellophane) 

Mantsch & Chapman, 

1996 
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Figures 

 

Figure 1. Three-dimensional height images (20 x 20 μm areas) obtained from the AFM scans of 
cellophane overgrown with Armillaria, Aspergillus and Mucor hyphal tips (upper row) and 
corresponding force maps (lower row). Colors on force map indicate adhesive force (nN) from 
low (red) to high (blue) as seen in Figure 4. 
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Figure 2. AFM Height traces of transverse sections of Armillaria, Aspergillus and Mucor hyphae 
growing on cellophane showing defined shoulders on Armillaria and Aspergillus, which is 
interpreted as dissolution of the cellophane by fungal enzymes and which is absent in Mucor.  
The region between arrows in Armillaria and Aspergillus highlights the area of interest where 
the cellophane has been influenced by the hyphae and is smoother than the rest of the 
cellophane, but does not exist in Mucor (hence a single arrow at the edge of the hypha). The Y-
axes of the traces are scaled relative to the maximal height (Z-axis) encountered in the scan. 
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Figure 3. Frequency distributions of adhesive force of cellophane films adjacent to the approach 
(white), departing (gray) side of hyphae and distant to hyphae (black) for Armillaria, Aspergillus 
and Mucor.  
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Figure 4. Representative force curves for the areas on Armillaria force map with the right curve 
being for the dark red pixel, middle curve for light yellow and left curve for the dark blue pixels. 
Measure of adhesive force sensu Morris et al. (2010). 
  



162 
 

 

 

 

Figure 5. Micro-ATR-FT-IR chemical maps of fungal hyphae grown on cellophane (left column) 
and associated IR spectra taken at highlighted points (right column).  The red star corresponds 
with the red spectrum on the right, taken at distance from the hypha and the black star 
corresponds with the hashed blue spectrum on the right, taken adjacent to the hypha. In the 
images, red indicates higher intensity and blue lower intensity of the map obtained at the 
specific wavenumber (1650 cm-1). The X-axis of the spectra are wavenumbers within the 
fingerprint region and the Y-axis the normalized absorbance values. Peaks of interest that 
changed in intensity, appeared, or diminished are labeled.  Italicized labels are associated with 
changes in carbohydrate chemistry (decomposition of cellophane).  Remaining peaks are 
associated with the appearance of proteins (enzymes) in the sample. 
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Figure 6. Micro-ATR-FTIR spectrum of normal (unmanipulated) cellophane.  Spectral peaks are 

consistent with those peaks present in cellophane areas far from fungal hyphae (figure 5). 
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CHAPTER SIX 

Conclusions 

 

The initial aims of this dissertation were to investigate decomposition of leaf material at 

the hyphal scale of resolution, and investigate the changes occurring both chemically and 

physically at the fungal/leaf interface.  With success in these investigations, the results were to 

be used to develop methods to further investigate and model fungal decomposition of leaf 

material in terms of the fungal foraging and community structure development through 

competitive interactions of fungi at the hyphal level. 

With a better understanding of how a fungus “experiences” its environment as that 

environment changes through resource succession, we could then begin to develop methods to 

understand fungal foraging at the level of an individual hypha.  Questions such as: How much 

overlap is there in enzyme secretion between neighboring hypha?  What is the trade-off 

involved in the overlap (or lack thereof)? Is hyphal branching correlated with resource quality at 

the microscale? If so, is there a certain point (chemical or physical state of the litter) during 

decomposition that the fungus changes its foraging strategy? 

Two main analytical tools were used in these studies.  Microscopic ATR FTIR to assess 

the chemistry of leaves and fungal hyphae at the scale of tens of micrometers and atomic force 

microscopy to measure changes in the physical properties of leaves at the nano- to micro-meter 

scale.   

In order to attempt to separate fungal chemistry from that of the leaf material they 

were to be grown upon, the analysis (chapter 2) of FTIR and FTIR-ATR spectra of different fungal 

species yielded interesting results.  Although the methods used had their limitations with 
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regards to detailed chemical interpretation at the molecular level, useful information was 

obtained.  It was unexpected that there would be so few differences between fungal species, 

particularly living fungi producing enzymes, organic acids, and other secondary metabolites.  

Metabolically active fungal cells have been shown to produce FTIR spectra rich in lipid, protein, 

and nucleic acid signatures that differ between species and were dependent on environmental 

stresses including changes in pH and temperature (Szeghalmi, Kaminskyj, and Gough, 2007; 

Jilkine et al., 2008) 

A second aspect of the dissertation was to investigate the changes occurring in the 

chemistry of leaves decomposing over time in the field (Chapter 3). The research presented here 

was successful in investigating the chemical and physical changes occurring on a substrate 

during decomposition.  FTIR and FTIR-ATR enabled an in depth analysis of the chemistry of a 

decomposing leaf.  Unfortunately, much of the data obtained from the use of FTIR and FTIR-ATR 

is difficult to interpret.  Whereas, chemical changes in leaf litter were clearly evidenced through 

statistical and visual interpretation of the FTIR spectra, those changes were ambiguous in many 

cases.  The assignment of particular functional groups can be redundant (multiple bands for 

multiple functional groups), and the majority of biological molecules share many functional 

groups.  

Unexpectedly, when oak, pine, and huckleberry leaves were compared through time, 

they did not separate by species, but by the amount of decomposition time.  All of the initial leaf 

spectra clustered together in PCA analysis, except pine.  After 6 and 12 months, all litters were 

more similar to other litters at the same decomposition time.  It was determined that it was not 

possible to subtract fungal spectra from those of leaves, so an additional complexity of 

interpreting the FTIR from naturally decomposing leaves is the presence of other organisms 
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(bacteria, fungi, protozoa, etc.) and the fecal material of larger grazers such as collembola and 

mites. 

In chapters 4 and 5, the objective was no longer to investigate only the chemistry of a 

substrate at the fungal/leaf interface, but to also investigate the physical changes to the 

substrate occurring around individual hypha using the AFM and FTIR.  Initially, leaves were to be 

scanned on the AFM, fungal hyphae were to be grown across the leaf surface, and AFM images 

(and background physical data) would be collected.  These same leaves would then be analyzed 

using FTIR-ATR imaging to correlate chemical changes to the observed physical changes 

obtained from the AFM. 

There were a few setbacks to this plan; probably the most substantial was the difficulty 

in scanning a leaf on the AFM.  The AFM requires a flat surface to scan, so leaves were soaked in 

sterile water and pressed flat before scanning.  Although leaves are generally thought of as flat, 

which they are to an organism almost 2 meters in height, they are not even remotely close to 

being flat at the micron scale.  Many broken tips (AFM probes) later, it was decided that a flat 

film composed of one or a few leaf components should be developed as a leaf model substrate.  

This led to the research described in chapter 4; the development of starch:lignin biofilms.  It was 

very exciting to find a paper that successfully created films partially composed of lignin, as lignin 

is notoriously difficult to get into solution.  Biofilms were cast using the methods in the 

published literature (Vengal & Srikumar, 2005) (starch:lignin, starch:lignin:gelatin, and starch 

only), and using modifications to add other compounds to the films (cellulose, pectin, and 

hemicellulose).  The modified films were never truly successful, with exception of a few pectin 

films.  The films from the published literature appeared to be a perfect substrate for AFM 

scanning; they were much flatter than a leaf surface.  Before inoculating the biofilms with fungi, 
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they needed to be chemically and physically characterized.  AFM scans and data were collected 

on starch only and starch:lignin biofilms, followed by the collection of FTIR-ATR spectra.  As soon 

as the spectral data from both films was overlaid on the computer screen, it was clear they were 

identical.  There was no trace of lignin in the starch:lignin films!  This was disappointing at best, 

considering it was the lignin component of the film that was desired.  This led to the publication 

of chapter 4 (Oberle-Kilic et al., 2012).  Although this chapter did not contribute to the initial 

aims of this dissertation, it certainly contributed to my education and is counted fairly high on 

my list of lessons learned. 

This led to the idea of using cellophane as a model for cellulose films on the AFM 

(Chapter 5).  Initial scans on the AFM were successful.  Preliminary studies degrading cellophane 

in varying cellulase enzyme concentrations then scanning on the AFM were encouraging.  

Cellophane films were attached to microscope slide, inoculated with individual fungal species, 

and incubated in damp chambers.  They were dried, and then processed on the AFM.  We were 

successful in not only scanning fungal hypha, but also scanning fungal hypha on a flat 

carbohydrate substrate, and observing the regions around the hyphal tip that was influencing 

the substrate.  After processing cellophane degraded by three fungal species on the AFM, the 

samples were analyzed using FTIR-ATR imaging.  The results of the FTIR-ATR images provided 

evidence that there were physical changes occurring adjacent to the hyphae.  These 

measurements allowed us to measure the zone of influence of individual hypahe on their 

underlying substrate, which could be used in the future to model optimal foraging of fungal 

hphae and may explain resource specific hyphal growth and branching patterns.  This led to the 

publication of chapter 5 (Oberle-Kilic et al. 2013). 
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Publication of chapter 5 was difficult, and met with much resistance regarding the 

interpretation of the FTIR portion.  At the time, there appeared to be one or two biased 

reviewers.  After completing my own analysis on chapters 2 and 3 of this dissertation, I now 

have a much better understanding of the reviewers’ comments on that paper.  I now 

understand the complexity of assigning IR bands to specific molecules, and the inherent 

limitations of using FTIR to study complex biological molecules. 

Although many of the studies included in this dissertation were based on chemical and 

physical data collected, the overall theme was to use this data to better understand the ecology 

of a fungus as it operates at the hyphal level.  Unfortunately, we did not accomplish that 

particular goal on the scale originally intended.  Now armed with more information, preliminary 

data, and experience, we can move forward to develop better techniques that will enable us to 

reach that goal.  With the possibility of obtaining an AFM/Raman IR bench, we could 

simultaneously scan the same region of the hyphal tip on a leaf collecting both AFM and IR data.  

Additionally, after over two years of using the AFM and many failed attempts at scanning plant 

material (blades of grass, onion skin, leaves, and leaves soaked in acetone to remove waxes, 

etc.), I have finally obtained the skill to scan a leaf on the AFM. 

Now, with the capability to scan leaves on the AFM and the potential to have access to a 

combination AFM Raman IR, we could continue to investigate the physical changes occurring on 

a leaf during decomposition.  The AFM has a moisture chamber, which three years ago I was not 

able to use due to my own lack of knowledge and skill.  Using this moisture chamber now, with 

more experience, we could image a fungus, in real time, foraging across a leaf surface and track 

the physical changes occurring in that leaf at the fungus proceeds.  This will bring us one step 

closer to developing better theories on exactly how a fungus interacts with its substrate as it 
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forages, and how the changing substrate, in turn, impacts the foraging of the fungus, all at the 

level of the individual fungal hypha. 
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Appendix A 

 

Figure A.1. General structure of a protein molecule highlighting the C=O and N-H of the peptide 

bond, as well as the presence of hydrogen bonding within a protein molecule between different 

peptide bonds. 
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Figure A.2. The chemical structure of homogalacturonan, a common pectin.  The presence of 

methyl esters and O-acetyl esters are noted (from Ridley et al., 2001). 
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Figure A.3. Chemical structures of two different hemicellulose molecules composed of D-xylans 

(from Ebringerova et al., 2005). 
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Figure A.4. Chemical structure of a cellulose chain(a) and a cellulose network (b) (from Baccaro 

et al., 2013). 
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Figure A.5. Proposed chemical structure of a softwood lignin (from Cody and Saghi-Szabo, 1999). 
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Appendix B 

 

Figure B.1. Images of leaves at 0, 6, and 12 months (left to right) of natural decomposition. Top: 

huckleberry sample #7; middle: oak sample # 7; bottom: pine sample #9. 

 

 

 


