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ABSTRACT OF THE DISSERTATION

Coverage and Capacity of Next Generation Cellular Radio

Systems: Bandwidth Sharing and Massive MIMO

by Narayanan Krishnan

Dissertation Director: Roy D. Yates and Narayan B. Mandayam

In the first part of the thesis we investigate bandwidth allocation in next generation

cellular systems employing relays similar to LTE advanced systems with type-I relays.

We jointly optimize the bandwidth and power usage under constraints on required

rate, bandwidth and transmit power. We study scenarios wherein, the relay acts as a

forwarder for multiple User Equipments (UEs/users) in both uplink and/or downlink.

This includes scenarios when the relay has its own data to send along with forwarding

the data of other users. We examine the weighted power minimization problem for

relaying with multiple users. We also show specific results with N user scenario and

also single user case in order to understand how the bandwidth and power are allocated.

Numerical evaluations with N users on a three sector LTE-A cell employing Fractional

Frequency Reuse (FFR) indicate that power savings of at least 3 dB can be achieved

by optimizing over both bandwidth and power.

Base stations with a large number of transmit antennas have the potential to serve

a large number of users simultaneously at higher rates. They also promise a lower

power consumption due to coherent combining at the receiver. However, the receiver

processing in the uplink relies on the channel estimates which are known to suffer

from pilot contamination. In the second part of the thesis, we perform an uplink
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large system analysis of multi-cell multi-antenna system when the receiver employs a

matched filtering and MMSE filtering with a pilot contaminated estimate. We find the

asymptotic Signal to Interference plus Noise Ratio (SINR) as the number of antennas

and number of users per base station grow large while maintaining a fixed ratio. To do

this, we make use of the similarity of the uplink received signal in a multi-antenna system

to the representation of the received signal in CDMA systems. The asymptotic SINR

expression for both matched filter and the MMSE filter explicitly captures the effect

of pilot contamination and that of interference averaging. This also explains the SINR

performance of receiver processing schemes at different regimes such as instances when

the number of antennas are comparable to number of users as well as when antennas

exceed greatly the number of users. Specifically, we explore the scenario where the

number of users being served are comparable to the number of antennas at the base

station. It is seen that MMSE filter is capable of suppressing the in-cell interference

and that the interference power due to pilot contamination is the same as in a matched

filter with a pilot contaminated estimate. We find the expression for the amount of

interference suppression obtained using an MMSE filter which is an important factor

when there are significant number of users in the system as compared to the number

of antennas. We validate the asymptotic expression through simulations and compare

with an MMSE filter with a perfect estimate. Simulation results for achievable rate is

close to theory for even a 10-antenna base station with 3 or more users per cell. In a

typical set up, in terms of the five percentile SIR, the MMSE filter is shown to provide

significant gains over matched filtering and is within 5 dB of MMSE filter with perfect

channel estimate. We also show that the achievable rates are within a 1 bit/symbol

of the MMSE with perfect estimate when the number of users is comparable to the

number of antennas.
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Chapter 1

Introduction and Scope of Thesis

Physical layer transmission in next generation cellular radio system is typically charac-

terized by the Orthogonal Frequency Division Multiplexing (OFDM). In the frequency

domain, OFDM is characterized by closely spaced orthogonal sub-carriers each loaded

with data symbols. OFDM is motivated by the fact that sinusoids - which are time

domain equivalent of sub-carriers, are eigenfunctions of linear time invariant system.

In effect this means that when sub-carriers are passed through underspread wireless

channels, the received signal is the same sinusoid altered in amplitude and phase. In

practice cyclix prefix is used to maintain eigenfunction property as the transmission

is time limited to a symbol duration of 71.4µs. In coherent reception, receive filters

make use of the amplitude and phase of the channel to reliably decode transmitted

data modulated by the sinusoid.

Typically the bandwidth available for a single cell system is divided into number

of sub-carriers and the transmission time into different time slots called frames. The

smallest unit of bandwidth and time that can be allocated is represented by Physical

Resource Blocks(PRBs). For example in LTE, the 12 sub-carriers each of bandwidth

∆f = 15 kHz over a period 0.5 milliseconds(ms) corresponding to 7 symbols constitute

one PRB. The PRBs in OFDM provide the flexibility to allocate resources in time axis

as well as frequency axis. For example, over a system bandwidth of 20 MHz and frame

duration 10ms, a total of 700 PRBs are available for a scheduler to allocate resources

to its users. In accordance with some utility maximization each user may be allocated

different number of orthogonal PRBs. For example in LTE-A provisions to allocate a

bandwidth of 1.25, 2.5, 5, 10 and 20 MHz per user is available while transmitting at

the same time slot. These correspond to allocations of 6, 12, 25, 50, 75, 100 PRBs
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respectively. When necessary, advanced schedulers may also consider incorporating

multiple users sharing at a PRB as along as the per user utility can be met. A great

deal of literature is devoted to the study of such multi-user systems in downlink as well

as uplink. For details see [46] and the references therein.

Even in orthogonal resource allocation numerous possibilities of assigning PRBs

to users arise. For example all users transmit simultaneously during a frame but in

different bands. At the other extreme in a time shared system users transmit in all

the sub-carriers but in non-overlapping times. Further many intermediate possibilities

are also conceivable where a set of users can transmit with no two users sharing the

same PRB. While PRBs represent the smallest unit of bandwidth and time that can be

allocated to a user, a Resource Element in OFDM is represented by the sub-carrier

of a symbol. Therefore, in a PRB there are 12× 7 = 84 resource elements.

Motivated by the flexibility in allocating PRBs in OFDM physical layer, this thesis

examines two relevant problems related to next generation cellular radio networks. The

first part is concerned with introducing relays into a cellular system. We address the

problem of a centralized base station flexibly allocating bandwidth in links such that

minimum weighted power is consumed by the system. Accordingly, the first part of

the thesis is described by the title - “Bandwidth Sharing for Relaying in Cellular

System”. Further we also examine a scenario where the allocation is based on a

time sharing and relate the results to bandwidth sharing in terms of weighted power

minimization.

The second part of the thesis investigates the performance of a cellular system with

large number of antennas at the base station. We focus on an arbitrary PRB consisting

of a coherence time and coherence bandwidth. We consider that multiple users within

the cell as well as in other cells may be scheduled to transmit in that PRB. Being a

multi-cell and a multi-user system it is necessary to deal with the inter-cell and intra-

cell interference, respectively. We primarily consider the performance of uplink linear

receivers although similar analysis can also be done for downlink linear precoders. From

a broad perspective, the multi-user MIMO system within a PRB can be considered as

behaving like CDMA systems where the channels gains of each user represent the unique
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signature sequence. Accordingly the second part of the thesis is described by the title

- “Multi-cell Multi-user Massive MIMO Systems: Large System Analysis

under Pilot Contamination”.

1.1 Bandwidth Sharing for Relaying in Cellular Systems

Fourth generation(4G) cellular standards such as LTE-A and IEEE802.16j are poised to

meet the requirements of International Mobile Telecommunications-Advanced (IMT-A)

standards [1]. These systems are promising to provide peak data rates of up to 100 Mbps

and 1 Gbps in high mobility environments and pedestrian environments respectively,

and hence provide high speed mobile broadband access [4,5]. One of the key technology

components of next generation cellular systems is relaying, which has been shown to

provide better throughput and increased coverage [6, 7].

Another aspect of 4G cellular systems is the physical layer OFDMA which enables

the centralized base station to flexibly allocate bandwidth to its users orthogonally by

partitioning the bandwidth into sets of sub-carriers [3]. This gives the base station

the dimension of bandwidth to exploit when optimizing its resources. Coupled with

the introduction of coverage extending relays, in this thesis we investigate the power

savings that a cellular system is capable of by flexibly allocating bandwidth and power.

We denote the term “Bandwidth Sharing” for the flexible allocation of bandwidth

depending on the demand on the links in the system.

We formulate a weighted power minimization problem, optimizing over both power

and bandwidth under rate, bandwidth and power constraints for serving multiple users.

We develop theoretical insights into the nature of optimal solution when the system

has unconstrained maximum power. We also examine the case when there are multiple

relays which although is mathematically cumbersome is conceptually simple extension

to the case of a single relay serving multiple users. A standard method of inter-cell

interference coordination in next generation cellular system is through the concept

of Fractional Frequency Reuse(FFR). With FFR, the total available bandwidth of a

single cell is divided into sub-bands. Users in the cell edge never transmit or receive in
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the same sub-band as adjacent cell edge users. However, FFR limits the flexibility in

allocation of bandwidth as the cell edge users will now be restricted to transmit from

a particular sub-band. Even in such a scenario it is seen that bandwidth sharing with

relays provides total power gain of about 3.5 dB as compared to baseline scheme of fixed

allocation of bandwidth per link. Further, in terms of power minimization we relate

the “Bandwidth Sharing” system with that of a time sharing system as represented in

LTE-A relaying standards. We show that when peak power constraints are active then

the time sharing system might perform worse than a bandwidth sharing system.

1.2 Massive Multi-cell Multi-user MIMO Systems: Large System Anal-

ysis

In view of large future demand for data, the general body of physical layer research in

next generation cellular systems focuses on small cells, massive MIMO, network MIMO

and combinations of these as potential technologies to increase the system throughput.

The goal is to increase the throughput in the physical layer to satisfy the large increase in

demand for data. In the second part of the thesis we focus on a Massive MIMO system

where it is assumed that the base station is equipped with hundreds of antennas as

compared to the conventional MIMO systems where the antennas deployed at the base

station is less than 10. Theoretically, within the constraints of bandwidth and power

the increase in capacity is brought about by the large increase in number of antennas.

For users in cellular radio system, the available coherence time during which the

channel can be considered constant is relatively small due to high mobility. Therefore,

it is necessary for the users to perform channel estimation at the start of every coherence

time for coherent reception of data in a multi-antenna system. The system considers

the estimate to be reliable for all the sub-carriers spanning the coherence bandwidth

and the coherence time. In the second part of the thesis, the set of sub-carriers spanning

the coherence bandwidth over the coherence time, during which the channel estimate

is reliable is considered a PRB. We assume a block fading model in which the channel

realizations are independent across the PRBs.
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The necessity to do channel estimation and having a large number of antennas

implies that the system be Time Division Duplexing(TDD) and use channel reciprocity

property. This is because in the downlink of a Frequency Division Duplexing(FDD)

system allocating as many orthogonal resources for channel training as the number of

antennas is prohibitive. The training and the Channel State Information(CSI) feedback

will then take up a significant portion of the PRB at the expense of data transmission.

Even in the uplink allocating mutually orthogonal training sequences for all users in

system might require as much number of resource elements as the number of users in

the system. For example, consider an LTE system with root mean square (r.m.s) delay

spread of Td = 4.76µs, and coherence time 500µs corresponding to coherence symbol

duration of Tc = 7 symbols. The number of coherent sub-carriers is then approximately

given by Nc = 1/∆fTd = 14 where we use the fact that coherence bandwidth is inverse

of the r.m.s delay spread. In such a system there are 98 resource elements in a PRB. If

we are considering a seven cell system with 14 users per cell, we can already see that

in uplink we require 98 resource elements for channel estimation with no time for data

transmission. Also, a 100 antenna system using FDD is out of question and we have

to rely on TDD and channel reciprocity for communication. This implies that non-

orthogonal pilot sequences are needed to employed so as to allow some time for data

transmission. As shown in [27], allocating non-orthogonal pilot training sequences for

the users in the system results in a fundamental limitation called pilot contamination.

Much of the research in large MIMO systems with Rayleigh channel can be borrowed

from the considerable literature for CDMA systems. The channel vector with indepen-

dent and identically distributed(i.i.d) entries for the large MIMO system is analogous

to signature sequence in a CDMA system so that antennas contribute to the processing

gain. For example, the uplink analysis of an asymptotic regime [35] with both users and

signature sequences tending to infinity translates directly to results in a large MIMO

system when signatures are replaced by antennas. In has been observed in CDMA

that the asymptotic analysis is a good approximation for practical number of users and

spreading factor of the signature sequences. While in a CDMA system we assume that

the signature sequences are known, there are practical limitations in channel estimation
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a mobile radio multi-antenna channel (antenna signatures) in a multi-cellular system.

In this work we explore this limitation when users simultaneously estimate the channel

and the estimates are subject to pilot contamination.

Recent work in [27] have analysed the effect of pilot contamination problem from a

large number of antennas perspective in order to show the pilot interference limitation

in the received SINR. When there is a large excess of antennas as compared to the

number of users, the channels between two users are asymptotically orthogonal by the

law of large numbers. As found in [35] even though the number of users per cell is

small as compared to the number of antennas the interference power contributed by

each interfering users during linear detection (matched filter and MMSE filter) sum up

to non-zero and significant value. We extend the results obtained in [27] and find the

asymptotic expression for the SINR when the number of users and the number of anten-

nas per cell go to infinity at a fixed ratio. We also observe that the asymptotic analysis

is a good approximation for training based MIMO systems with practical number of

antennas and users. Hence our results represent the SINR and achievable rate expres-

sion for practical scenarios of uses and antennas per cell for matched filter and MMSE

filter receivers employing a pilot contaminated channel estimate. In [35] the channel is

assumed to perfectly known, hence our work can also be considered as an extension of

asymptotic analysis when the channel estimate is impaired by pilot contamination. In

finding the asymptotic SINR we also characterize the effect pilot contamination power

and the interference averaging power for both the filters.

1.3 Thesis Organization

The thesis is organized into three chapters. Chapter 2 pertains to “Bandwidth Sharing

for Relaying in Cellular Systems”. After motivating the problem and presenting the

system model in section 2.1 the main results for Bandwidth Sharing are presented in

section 2.3. Section 2.4 presents results specific to single user system and section 2.5

relates bandwidth sharing to a time shared system with relays. Chapter 3 similarly

corresponds to the “Massive MIMO” systems. After motivating the scope of having a

large number of antennas at the base station in sections 3.1 and 3.2, section 3.3 presents
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the main results obtained in Massive MIMO systems. Finally section 3.5 concludes the

“Massive MIMO” with potential future directions of research.
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Chapter 2

Bandwidth Sharing for Relaying in Cellular Systems

2.1 Introduction

As mentioned in the introduction, one of the key technology components of next gener-

ation cellular systems is relaying, which has been shown to provide better throughput

and increased coverage [6, 7]. Typically, relays help in forwarding data and based on

their roles, they have been categorized into two types. The first type is used exclusively

to extend the coverage to remote User Equipment (UE), beyond the service range of

the base station (aka eNodeB in LTE-A jargon). These are called type-I relays by

LTE-A specifications and non-transparent relays in IEEE802.16j specifications. One of

the applications of “coverage extending” low powered relays is to provide coverage to

indoor or office environments where the signal strength is weak. Apart from providing

extended coverage, they also help in deployment of cells in areas where the cost of wired

backhaul is prohibitive. On the other hand, the second category of relays, are used to

help the UE within the service range of base station to improve its service quality

and link capacity. These are called type-II relays by LTE-A or transparent relays in

IEEE802.16j.

When relaying terminals aid the UE, they incur costs in the form of power expendi-

ture and usage of relay bandwidth. To compensate the relay for these costs, some well

known approaches include reputation based mechanisms, credit based incentives and

mechanisms based on forwarding games [10]. A novel approach of bandwidth exchange

was introduced in [11] in order to compensate the relay for its incurred costs. Here,

the relay node is offered a portion of bandwidth of the destination node as a compen-

sation for forwarding data. The relay can use the compensated bandwidth for purposes

that it deems fit, while ensuring forwarding the data of the destination. It was shown
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that bandwidth exchange provides significant rate gains and improved coverage areas.

In [14], a weighted power minimization problem was formulated for joint power, subcar-

rier allocation and subframe scheduling for downlink in-band [15] relaying systems with

a focus on developing efficient algorithms. Our thesis in contrast provides a theoretical

insights into the nature of optimal solution in an out-band relaying system using which

we intend to develop efficient algorithms.

In this work, we consider bandwidth sharing in the context of relaying in cellular

systems and study optimization problems involving both bandwidth and transmit power

under rate constraints. A key aspect of our work is that along with power, we consider

the bandwidths allocated to links as optimization variables in the relaying system. We

formulate a weighted power minimization problem under rate, bandwidth and power

constraints assuming out-band relaying system [15] and develop theoretical insights into

the nature of optimal solutions. We formulate the weighted power minimization problem

for a system involving a base station and a relay with multiple UEs to be served. We also

consider an in-band relaying system [15] in which the eNodeB-relay and relay-UE link

use the same set of carrier frequencies but transmits at different time slots. We show

that the problem of average power minimization in a time shared relaying system as

in [6] can be reformulated to an equivalent bandwidth sharing problem and depending

on the nature of power constraints the time sharing system performs worse or same as

the bandwidth sharing system. We find that optimizing across power and bandwidth

provides scope for better utilization of the available resources, such as minimizing the

total power consumption by half while improving the coverage area of the relays. While

the theoretical results of the relaying system apply to a wide range of systems which

employ multicarrier schemes, the terminology and numerical results used to describe

this work loosely conform to LTE-A standards.

2.2 System Model

We start with system with an eNodeB, a relay and N UEs or users who are to be

served. The relay can be a dedicated tower or another user that can potentially act as

an intermediate node to help users forward its data. We assume that the relays can
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forward data simultaneously in uplink and downlink in different carrier frequencies.

Our assumption is valid as the LTE-A and IEEE 802.16j standards [16] indeed has dual

radio out-of-band relay system in which the relay nodes have two RF chains in order

to transmit and receive simultaneously in different carriers. The system is allocated

a fixed bandwidth B. The users i ∈ {1, 2, . . . , N} are subject to transmit at power

below Pi,max. Also, every UE needs to be served at a rate of Rdi,min in the downlink

and Rui,min in the uplink. The link gains are of the form ρij = κd−βij , where κ is the

proportionality constant, dij is the distance between the ith transmitter and jth receiver

and the pathloss exponent is β = 3. The noise power spectral density is also absorbed

into the constant κ that is used to calculate the link gain. In general, any variable with

subscript (·)ij corresponds to the variable across the directed link (i, j) from transmitter

i to receiver j. We consider that the link gains ρij = ρji for any links (i, j) and (j, i).

Specifically, we denote the users with the subscript i, relay equipment by r and eNodeB

by 0, as shown in Fig. 2.1. We look into cases when the relay is employed to help the

users achieve its minimum data rate. We consider the transmit power at each node and

the bandwidth allocated to each link as a variable to be optimized. Our objective is

to minimize the weighted sum of power in the system. Optimizing over bandwidth is

relevant as we are employing a multicarrier system. This is because in a multicarrier

system like OFDMA the bandwidth allocated to each link is specified by a number

of subcarriers. We assume that the subcarrier spacing is small enough so that the

bandwidth variables can be approximated as to be continuous. We also assume in our

work that the eNodeB does a centralized resource allocation of bandwidth and power.

The relay r can be employed in various possible modes such as, providing only down-

link access to users, or providing only uplink access to users, or providing both uplink

and downlink access to users and also other intermediate scenarios such as providing

uplink support to some users while only downlink to other users. Along with the cases

above the relay r may have uplink information to send to the eNodeB, or it may have

downlink information to receive for its own. For example, the downlink and uplink

information for relay r could be the control information needed for dedicated relaying.

In this particular work, we formulate weighted sum power minimization problem when
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the relay is serving multiple users as shown in Fig. 2.2 and encompasses all possible

cases discussed above. We assume that the eNodeB has the knowledge of channel gain

between itself to the relays and between relays to UEs and solves the optimization prob-

lem in a centralized manner. Some special cases of the power minimization problem

which which are of interest include:

1. The out-band relay r helps the users in forwarding both their downlink and uplink

data.

2. The out-band relay r helps the users in forwarding both their downlink and uplink

data along with transmitting its own data to the eNodeB.

3. The in-band relay r helps the users in forwarding both their uplink and downlink

data.

4. The out-band relay r helps in forwarding both uplink and downlink data of a

single user.

In this chapter, these special cases are identified in Problems (2.1), (2.2), (2.23) and

(2.18). We consider the case of single user as a separate section 2.4 as it provides some

intuition on how the bandwidth is allocated in the uplink and downlink. Table 2.1

provides brief descriptions of these problems for quick reference.

A more generic system model arises when the eNodeB is serving directly some UEs

and is also be connected to UEs through more than a single relay. The system model in

that case might be represented as a tree structure with eNodeB as the root, the UEs as

leaf nodes and the relays as intermediate nodes. Although the mathematical formulation

and evaluation of the results is cumbersome, this is a straightforward extension of

a single hop scenario in the sense that the insights revealed by the weighted power

minimization for a multiple relay scenario is qualitatively similar to the case of single

relay system. Section 2.3.4, elaborates on this situation with a example.
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eNodeB Relay UE

0 r i

(r; 0) (i; r)

(r; i)(0; r)

Figure 2.1: Relay acts as forwarder in both directions: This corresponds to Problem
(2.18) where a single relay serves a user in both uplink and downlink directions.

eNodeB Relay

UE

UE

0 r

1

N

Figure 2.2: Relaying for multiple users: This corresponds to Problem (2.1) where a
single relay serves multiple users in both uplink and directions.

2.3 Single Relay serving Multiple Users

In this section we formulate a power minimization problem when a base station serving

multiple users equipments through a dedicated relay. We present the analytical results

and aided by the analytical results we then perform a numerical evaluation to quantify

the power savings using relays.

2.3.1 Relaying in Uplink and Downlink to Multiple User Equipments

We consider the case when a relay helps in forwarding data to N users in both uplink

and downlink directions. In terms of the power Pir, bandwidth Wir, the signal to noise
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Problem Description # of relays # of UEs Max. Power
Constraint

(2.1) Bidirectional Relaying 1 N Yes

(2.2) Bidirectional Relaying -
with relay uplink data

1 N Yes

(2.23) Bidirectional Relaying -
Time Sharing

1 N Yes

(2.18) Bidirectional Relaying 1 1 Yes

(2.1R) Bidirectional Relaying -
convex formulation

1 N Yes

(2.4) Bidirectional Relaying -
dual formulation

1 N No

(2.5) Link specific optimization
problem

1 N No

(2.13) Multiple Relays & multi-
ple UEs

M N No

Table 2.1: For each numbered optimization problems this table gives a brief description
of the problem for convenience. Here bidirectional means that the relay is supporting
data in both downlink and uplink for the UEs.

ratio given by

SNRir , ρirPir/Wir

and the rate function defined as

R(SNRir,Wir) ,Wir log(1 + SNRir)

across the corresponding links (i, r), we formulate the problem of weighted power min-

imization as

minimize

α0P0r + αr

(
N∑
i=1

Pri + Pr0

)
+

N∑
i=1

αiPir (2.1a)

subject to

R(SNRir,Wir) ≥ Rui,min i = 1, . . . , N , (2.1b)

R(SNRr0,Wr0) ≥
N∑
i=1

R(SNRir,Wir), (2.1c)
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R(SNRri,Wri) ≥ Rdi,min i = 1, . . . , N , (2.1d)

R(SNR0r,W0r) ≥
N∑
i=1

R(SNRri,Wri), (2.1e)

N∑
i=1

(Wir +Wri) +Wr0 +W0r ≤ B, (2.1f)

Pr0 +

N∑
i=1

Pri ≤ Pr,max, (2.1g)

P0r ≤ P0,max, (2.1h)

Pir ≤ Pi,max i = 1, . . . , N , (2.1i)

variables

Pr0, P0r, Pir, Pri,Wr0,W0r,Wir,Wri i = 1, . . . , N

In Problem (2.1), B is the total available bandwidth and α0, αi, αr are the weights

associated with the power spent by the nodes with

α0 +
N∑
i=1

αi + αr = 1.

For example, when αr = 1 the problem is just relay power minimization and when

α0 = αi = αr = 1/(N + 2)

implies that the power of all the nodes are equally important and we are interested in

system power minimization. Other values gives the engineer flexibility to design the

system as required. Here, the constraints (2.1b), (2.1c) and (2.1d), (2.1e) represent

the minimum rate requirement in the uplink and downlink simultaneously. By the

perspective of a function argument [17, chapter 3], the rate constraints (2.1b), (2.1d)

are convex in (Pir,Wir). The limited power constraints are represented by equations

(2.1g), (2.1h) and (2.1i). Here, constraint (2.1g) implies that the relay has to use its

limited power to provide the required rate in both the uplink and downlink directions

for all users. Pr,max is the maximum power constraint on the relay r.

In our formulation we also consider bandwidth to be a variable that is to be opti-

mized across the links. This is represented by the constraint (2.1f). Previous attempts
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in joint bandwidth and power optimization have been considered in the context of max-

imizing the achievable rates in relaying systems in [9]. In this problem we have a relay

r which is helping forward data to N users in both uplink and downlink directions. The

relaying problem is not convex because of the constraints (2.1c) and (2.1e). Although

the problem is not convex we will later show that the optimal solution is same as that

of an equivalent convex problem which enables us to exploit the advantages offered by

convexity.

An important variant of the Problem (2.1) arises when the relay along with for-

warding the data of the users has its own data to be sent to the eNodeB at some

required rate. For example, this scenario arises when a relay has to allocate some re-

sources (bandwidth and power) to send its control data at a rate of at least Rur,min. The

power minimization problem can then be formulated by replacing the constraint (2.1c)

in Problem (2.1) by

R(SNRr0,Wr0) ≥
N∑
i=1

R(SNRir,Wir) +Rur,min (2.2)

We denote this problem as Problem (2.2).

2.3.2 Results and Discussion

Lemma 2.3.1. When the constraint set is feasible, an optimal solution to the Problem

(2.1) has the following characteristics:

• The rate constraints given by (2.1b), (2.1c), (2.1d), (2.1e) for Problem (2.1) are

tight at optimum.

• The bandwidth constraint given by (2.1f) for Problem (2.1) is tight at the opti-

mum.

Proof. We will prove that the rate constraints are always tight for Problem (2.1) at

optimum by a simple contradiction statement. Assume that for Problem (2.1), the

constraint (2.1b) is slack at optimum. Therefore,

W ?
ir log

(
1 +

ρirP
?
ir

W ?
ir

)
> Rui,min
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However, if P ?ir exists then there always exists Pir < P ?ir ≤ Pi,max such that

W ?
ir log

(
1 +

ρirPir
W ?
ir

)
= Rui,min,

and also has a lesser objective value. Therefore, Pir is the optimum and not P ?ir and

at the optimum value the rate constraint is tight. This is true for all rate constraints

(2.1b) and (2.1d) in Problem (2.1). For constraint (2.1c), since

W ?
ir log

(
1 +

ρirP
?
ir

W ?
ir

)
= Rui,min, ∀i

and using the same arguments as before we can say that at optimum,

W ?
r0 log

(
1 +

ρr0P
?
r0

W ?
r0

)
=

N∑
i=1

Rui,min.

Similarly, for Problem (2.1) we have at optimum,

W ?
0r log

(
1 +

ρ0rP
?
0r

W ?
0r

)
=

N∑
i=1

Rdi,min.

Again, we prove that the bandwidth constraint is tight at optimum by contradiction.

Assume that the bandwidth constraint is not tight at optimum. Therefore,

N∑
i=1

(W ?
ir +W ?

ri) +W ?
r0 +W ?

0r < B.

Consider the constraint (2.1b) and from the earlier conclusion we know that at optimum

the rate constraints are tight. Therefore,

P ?1r = W ?
1r

(
e

Ru
1,min
W?

1r − 1

)
(2.3)

for user 1. Assume the optimal objective of the Problem (2.1) is p?. However, clearly

we can find another bandwidth allocation W ?
1r + δW1r with δW1r > 0 such that the

corresponding power P1r consumed to meet the rate Ru1,min is less than P ?1r and

N∑
i=1

(W ?
ir +W ?

ri) +W ?
r0 +W ?

0r + δW1r = B.

Consequently the new objective value p < p?. This implies that our initial assumption

that p? is the optimum is not true and any situation where the bandwidth constraint is

slack does not give the optimum solution. Hence, if an optimum solution exist for the

Problem (2.1) then at that solution the bandwidth constraint has to be tight.
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As a consequence of Lemma 2.3.1 we can formulate an equivalent convex formulation

for the Problem (2.1). This is explained in the following theorem.

Theorem 2.3.2. The optimal solution to Problem (2.1) is the same as that of the

optimal solution of Problem (2.1R) in which the constraints (2.1c) and (2.1e) are

replaced by,

R(SNRr0,Wr0) ≥
N∑
i=1

Rui,min, (1R-c)

R(SNR0r,W0r) ≥
N∑
i=1

Rdi,min, (1R-e)

respectively.

Proof. Let p? denote the optimal objective to Problem (2.1) and q? the optimal objec-

tive to the reformulated Problem (2.1R) with the constraint (2.1c) replaced by (1R-c)

and (2.1e) replaced by (1R-e). It follows that the feasible set of Problem (2.1) is a

subset of the feasible set of Problem (2.1R). Therefore, p? ≥ q?. However, from Lemma

2.3.1 since the rate constraints and the bandwidth constraints are tight at optimum,

the optimal solution to Problem (2.1R) is a feasible solution to Problem (2.1). This

implies that there is feasible solution for Problem (2.1) with objective value q?. As p?

is the optimal solution to Problem (2.1), by definition of an optimal solution q? ≥ p?.

Therefore, q? = p? and optimal points for both problems are identical.

Theorem 2.3.2 shows that the relaying problem for multiple UEs, which is non-

convex by nature can be solved optimally by an equivalent convex formulation. The

convex formulation allows the optimal solution to be obtained numerically. Although

convex, we have only limited analytical insights into the nature of the optimal solution

because of the power constraints (2.1g), (2.1h), (2.1i) on the individual nodes. However,

under most problem instances specified by relay and UE positions in the cellular system,

the nodes will be transmitting strictly below maximum power. In the next section we

look into the nature of the optimal solution assuming that the power constraints are

slack at optimum. The solution obtained to Problem (2.1) when the power constraints

are slack are the same as when we assume that each of the nodes have unlimited

maximum power.
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2.3.3 Power Minimization - Unlimited Maximum Power

In this section we consider a situation when the maximum power constraints in Prob-

lem (2.1) are eliminated. This is the same as assuming that each of the nodes have

unlimited maximum power at their disposal. Henceforth we denote Problem (2.1R) as

Problem (2.1) as both have the same optimal solution. We look into this problem to get

some insight into the optimal solution in situations when none of the power constraints

are tight at optimum. Writing the partial Lagrangian with respect to the bandwidth

constraint (2.1f) in Problem (2.1R) results in

g(λ) = minimize

α0P0r + αr

(
N∑
i=1

Pri + Pr0

)
+

N∑
i=1

αiPir

+ λ

(
N∑
i=1

(Wir +Wri) +Wr0 +W0r −B

)
(2.4a)

subject to

R(SNRir,Wir) ≥ Rui,min ∀i = 1, . . . , N , (2.4b)

R(SNR0r,W0r) ≥
N∑
i=1

Rdi,min, (2.4c)

R(SNRri,Wri) ≥ Rdi,min ∀i = 1, . . . , N , (2.4d)

R(SNRr0,Wr0) ≥
N∑
i=1

Rui,min, (2.4e)

where, we have assumed that there are no maximum power constraints. The partial

Lagrangian helps us to decouple the problem on a link by link basis where previously

it was coupled across the links because of the bandwidth constraint (2.1f). For a given

λ ≥ 0 we can split the problem into 2N+2 different Link Specific Optimization problems

of the form

minimize αlPl + λWl, (2.5a)

subject to R(SNRl,Wl) ≥ Rl, (2.5b)

variables Pl,Wl, (2.5c)
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corresponding to each directed link l ∈ {(i, r), (r, i)} in the system. The parameters

αl, ρl, Rl are link specific and αl corresponds to the weights in the weighted power

minimization and is associated with the transmitter of link l, ρl corresponds to the link

gain, and Rl is the minimum rate that needs to be supported on link l. For example, in

the link optimization problem corresponding to link (0, r), i.e. downlink from the base

station node 0 and relay node r, the parameters correspond to αl = α0, ρl = ρ0r and

Rl =
∑N

i=1R
d
i,min.

Since strong duality holds for Problem (2.1) we have at λ = λ?, that each Link

Optimization Problem (2.5) gives the primal optimal points. Lemma 2.3.1 implies that

the rate constraints are tight. Thus Problem (2.5) is the same as

min
Wl

αl
Wl

ρl

(
exp

(
Rl
Wl

)
− 1

)
+ λ?Wl

Therefore, at optimality for every link l in the system

exp

(
Rl
Wl

)(
Rl
Wl
− 1

)
+ 1− ρlλ?/αl = 0. (2.6)

From equation (2.6) we can gather that the spectral efficiency Rl/Wl depends only

the term ρlλ
?/αl. This suggests that all the three factors - ρl, the link gain, λ, the

dual bandwidth cost, and αl, the node weight decides the spectral efficiency of the link

l. This specific property of the Problem (2.5) enable us to prove the following claim

specified as Lemma 2.3.3. Also, equation (2.6) along with bandwidth constraint provide

N + 3 non-linear equations in N + 3 variables to solve the optimization problem.

Lemma 2.3.3. Symmetry of Spectral Efficiency: When the weights α0 = αr =

αi = α are the same then the optimal solution to Problem (2.1) satisfies∑N
i=1R

d
i,min

W ?
0r

=

∑N
i=1R

u
i,min

W ?
r0

, (2.7)

Rdi,min

W ?
ri

=
Rui,min

W ?
ir

∀i. (2.8)

Proof. The optimality conditions (2.6) imply

exp

(∑N
i=1R

d
i,min

W ?
0r

)(∑N
i=1R

d
i,min

W ?
0r

− 1

)
= exp

(∑N
i=1R

u
i,min

W ?
r0

)(∑N
i=1R

u
i,min

W ?
r0

− 1

)
(2.9)
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because, the links l ∈ {(0, r), (r, 0)} have equal weights αl = α and equal link gain ρl

= ρ0r=ρr0. Since ex(x − 1) is monotonic and positive derivative for all x ≥ 0, (2.9)

implies, ∑N
i=1R

d
i,min

W ?
0r

=

∑N
i=1R

u
i,min

W ?
r0

.

Similarly, using equation (2.6) corresponding to the links (r, i) and (i, r), we obtain

Rdi,min

W ?
ri

=
Rui,min

W ?
ir

(2.10)

for all i = 1, . . . , N .

Lemma 2.3.1 also implies that,∑N
i=1R

d
i,min

W ?
0r

=

∑N
i=1R

u
i,min

W ?
r0

= log(1 +
ρ0rP

?
0r

W ?
0r

) = log(1 +
ρr0P

?
r0

W ?
r0

), (2.11)

where log(1 + ρ0rP
?
0r/W

?
0r) is the spectral efficiency of the link (0, r). Therefore,∑N

i=1R
d
i,min/W

?
0r represents the spectral efficiency of the link (0, r), where

∑N
i=1R

d
i,min

is the rate that needs to be supported in that link. Similarly,
∑N

i=1R
u
i,min/W

?
r0 repre-

sent the spectral efficiency of the link (r, 0) where
∑N

i=1R
u
i,min is the rate that needs to

supported in that link.

Corollary 2.3.4. When the weights α0 = αr = αi = α are the same, the optimal

solution to Problem (2.2) has the property that∑N
i=1R

d
i,min

W ?
0r

=

∑N
i=1R

u
i,min +Rur,min

W ?
r0

. (2.12)

Proof. The result follows from Lemma 2.3.3.

The Symmetry of Spectral Efficiency is preserved even when the relay has its own

data to deliver to the eNodeB. As a consequence of Lemma 2.3.3 we can reduce the

number of equations in the optimality conditions (2.6) by half from 2N + 2 to N + 1.

2.3.4 Extension to Multihop Relays - An Example

Earlier in section 2.2 we had mentioned that the results that will be obtained for a single

relay can be extended to a generic system model represented by a tree structure with
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eNodeB Relay

UE

UE

r0 r1

N

1

Relay

rM

Figure 2.3: Example of a multihop relaying system

eNodeB as the root, the UEs being the leaf nodes and the relays as the intermediate

nodes. This follows from the above fact that we can formulate a link specific optimiza-

tion problem by taking the Lagrangian dual with respect to the bandwidth constraint

when we know the minimum rate that each link needs to transmit. This rate depends

upon the specific tree structure i.e. the route from eNodeB to different UEs through

the relays and the rate demanded in uplink and downlink by each UEs. Fig. 2.4 shows

the example of a three sector single cell system with one relay per sector serving the

edge UEs as in LTE-A system. The interior users are those who lie within a radius of

rint from the eNodeB and others which lie outside are the exterior users. We assume

that the interior UEs are served directly by eNodeB and the exterior UEs in a sector

are served by their corresponding relays. By defining the dual bandwidth cost λ ≥ 0

for the bandwidth constraint, this system can also be decomposed into link specific

optimization problems. In fact the same principle can be extended to a mesh network

where given that the routes from different sources to its destination are defined, we can

decompose the network into link specific optimization problems which are as many in

number as the number of links in the system, for bandwidth and power optimization.

However, we focus on the single relay system because as the main problem in larger

networks is the identification of the optimal relay node or the optimal route to reach the
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destination. Also, the insights for the single relay system which, hinge on Lagrangian

dual of the bandwidth constraint, can be easily extended into multihop networks. As

a specific and easy example, consider a set of N users that needs to served by a M

relays as shown in Fig. 2.3 (with all the users being served by the M th relay). If rj

is the index of relays with j = 1, 2, . . . ,M , Prjrj+1 the power transmitted by the jth

relay to j + 1th relay and Wrjrj+1 the bandwidth allocated to the link (rj , rj+1), the

optimization problem can be formulated as, Problem (2.13)

minimize

M−1∑
j=0

(
αrjPrj ,rj+1 + αrj+1Prj+1,rj

)
+ αrM

N∑
i=1

PrM i +
N∑
i=1

αiPirM (2.13a)

subject to

R(SNRirM ,WirM ) ≥ Rui,min i = 1, . . . , N , (2.13b)

R(SNRrM i,WrM i) ≥ Rdi,min i = 1, . . . , N , (2.13c)

R(SNRrj+1,rj ,Wrj+1,rj ) ≥
N∑
i=1

R(SNRirM ,WirM ) j = 0, . . . ,M − 1, (2.13d)

R(SNRrj ,rj+1 ,Wrj ,rj+1) ≥
N∑
i=1

R(SNRrM i,WrM i) j = 0, . . . ,M − 1, (2.13e)

N∑
i=1

(WirM +WrM i) +
M−1∑
j=0

(Wrj ,rj+1 +Wrj+1,rj ) ≤ B, (2.13f)

variables

P·’s,W·’s

The equations (2.13b), (2.13c) represent the rate constraints on the uplink and down-

link between the relay rM and UEs. The rate constraints (2.13d), (2.13e) represent the

relay to relay rate constraint requirements in which each relay has to support the end

UEs data rate requirement in uplink and downlink. The equation (2.13f) represent the

system bandwidth constraint. For the case when M = 1 this reduces to the Problem

(2.1). The conclusions made in lemma 2.3.1 and theorem 2.3.2 for a single relay system

can be extended to Problem (2.13) and based on the Lagrangian dual of the bandwidth

constraint lemma 2.3.3 can also be derived.
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B1

B2

B3

B0

rint

- relay

B1 B2 B3 B0

Figure 2.4: Three sector single cell LTE-A system with one relay per sector. The UEs
are classified as interior users and exterior users. The interior users are those who lie
within a radius of rint from the eNodeB and others which lie outside are the exterior
users. The interior UEs are served directly by eNodeB and the exterior users in a sector
are served by their corresponding relays. The relays in each sector are located at a point
of intersection of edge of the core radius circle and line which bisects the sector into
two equal halves.

2.3.5 Numerical Results for Downlink

In this section we provide the numerical simulation results to aN -user downlink scenario

and quantify the power saving due to the introduction of relays in a cellular radio

system. We consider a LTE-A system with strict Fractional Frequency Reuse (FFR)

scheme. Fig. 2.4 shows the diagram of a three sector single cell LTE-A system with

one relay per sector. The N users are assumed to be uniformly distributed within the

cell and they are classified as interior users and exterior users. The interior users are

those who lie within a radius of rint from the eNodeB and others which lie outside

are the exterior users. We assume that exterior users in a sector are served by their

corresponding relays. The relays in each sector are located at a point of intersection of

edge of the core radius circle and line which bisects the sector into two equal halves.

The total system bandwidth B is split into four chunks B0, B1, B2 and B3 as per the

LTE-A strict FFR schemes [22], [23]. B0 is the total bandwidth allocated to the cell

interior users and B1, B2, B3 corresponds to that allocated to the cell exterior users in
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sector 1, 2, 3 respectively. In [22], the fraction of the total bandwidth B, allocated to

the interior users (B0) is based on the area covered by the interior radius and is given

by

B0 = BAint/Atot

as a result of the uniform distribution of the users, where

Aint = πr2
int

is the interior area, Atot is the area of the cell and

Br = (B −B0)/3.

The eNodeB allocates bandwidth to the interior users flexibly from B0 and the relay

r allocates bandwidth flexibly to the exterior users in the corresponding sector r from

the band Br. While it is clear that the interior users are allocated bandwidth from B0

and the exterior users in each sector are served from Br, r = 1, 2, 3, it is not apparent

from where the bandwidth for the eNodeB-relay, (0, r) links should be allocated. In

one case, the three relays can be allocated bandwidth from B0 reserved for the interior

users as each relay can be viewed as another core user. While in another case the (0, r)

link can be allocated bandwidth from Br as each relays serves only the exterior users.

As it is not clear which is better in terms of minimizing the total power in the system,

we classify those into two allocation methods,

I The (0, r) links for r = 1, 2, 3 are allocated bandwidth from B0.

II The (0, r) link is allocated bandwidth from the exterior user bandwidth Br.

In method-I allocation scheme the eNodeB to the interior users link have to operate

at higher powers so as to compensate for the bandwidth lost to the (0, r) links. In

contrast, for Method-II B0 is used exclusively reserved to the interior users and Br is

used to support the sum of the data rate of the exterior users served by the relay r

in the (0, r) link in addition to the exterior users. This leads to a increase in total

power consumption for the exterior users. We compare the above two possible schemes
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using the bandwidth partition based on [22] for varying interior radius. The method-I

consumes more power than method-II when the interior area is small as compared to

the exterior area. This is because when rint is small B0 will be consequently less and

with the less availability of bandwidth the eNodeB has to support both the interior

users and the three relays. Coupled with the less availability of B0, since the number

of users classified as exterior is larger in number and that the (0, r) links also has to

support the sum of the exterior user rates makes method-I consume more power than

method-II. Method-II on the other hand clearly consumes more power when the interior

area is large as compared to the exterior area. As the interior area is large, Br is very

low and more power is required to satisfy the both (0, r) link (whose link gain is weaker

as the relay is in the edge of interior radius) and the corresponding exterior users in

sector-r. This obvious disadvantage of the simple area based bandwidth partitioning

can be mitigated by considering some additional bandwidth for (0, r) links given to B0

or Br depending on whether we employ method-I or method-II. This is given in the

next section.

Area Based Bandwidth Partition

Let δ be the expected number of users per unit area. Therefore the expected number

of users in the interior region can be given as

n0 = δAint,

and the expected number of users served by each relay can be given as

n1 = n2 = n3 = δ(Atot −Aint)/3.

Therefore, the expected number of links in the system is given by

n0 + 2

3∑
r=1

nr

with one link per directly-served users and two links per relay-served users. The band-

width allocation B0 is proportional to the number of links that is served by the eNodeB.

For method-I we have,

B0 = B
n0 +

∑3
r=1 nr

n0 + 2
∑3

r=1 nr
= B

1

2−Aint/Atot
(2.14)
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Figure 2.5: The plot shows the bandwidth partitioned for the interior region with link
based, area based as well as flexible allocation. For the flexible partition the sum of
bandwidth allocated to the interior users and the eNodeb to relay links is plotted.

and,

Br =
B

3

1−Aint/Atot

2−Aint/Atot
(2.15)

We denote the above partition “A-I” which stands for area based bandwidth partition

using method-I. Similarly, for method-II we have,

B0 = B
n0

n0 + 2
∑3

r=1 ni
= B

Aint/Atot

2−Aint/Atot
(2.16)

Br =
2B

3

1−Aint/Atot

2−Aint/Atot
(2.17)

We denote the above the partition as “A-II”. Fig. 2.5 shows the plots of total bandwidth

allocated to the interior region for different values of core radius. The bandwidth

partition “A-I” allocates sufficient bandwidth to the interior region even for low interior

radius by always considering that it is also used to support the (0, r) links. Also,

bandwidth for partition “A-II” reduces B0 when the interior area is large and hence
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ensures that there is sufficient bandwidth

Br = (B −B0)/3

to support the (0, r) links. We then compare this with a completely flexible bandwidth

allocation where B0, B1, B2 and B3 are also variables in the optimization process with

B0 +
3∑
r=1

Br ≤ B.

In contrast to the area based bandwidth partition, the flexible bandwidth allocation

scheme can be considered as a link gain based optimal allocation of bandwidth per links

for minimizing the system power. Fig. 2.5 also shows the sum of bandwidth allocated to

the direct links and eNodeB-relay links in a flexible scheme. It is observed that in A-I

the link based partition allocates more than optimal bandwidth to the interior region

when the interior radius is small but less than optimal bandwidth when the interior

radius is large. We also implement a fixed bandwidth allocation where each active links

is allotted a fixed bandwidth. In the fixed bandwidth allocation scheme B0 is given by

equation (2.16), Br, r = 1, 2, 3 is partitioned as in equation (2.15) and each (0, r) link is

assigned a third of the rest which in turn is equal to Br itself. Each of the links within

the partitioned region is assigned a fixed bandwidth equal to the ratio of bandwidth in

the region to the number of users in the region.

The simulations were done for 10 UEs in the system uniformly distributed in the cell.

The total bandwidth availability is 50 MHz and the minimum downlink rate require-

ment is uniformly distributed between 0− 10 Mbps. Fig. 2.6 shows the average power

consumption for A-I, A-II, flexible and fixed bandwidth allocation schemes. While is it

clear that a completely flexible bandwidth allocation should consume the least power,

it also achieves at least 3 dB reduction in average power than the fixed bandwidth allo-

cation for all values of interior radius. This is a direct extension and stronger result as

compared to the single user case where the gain was up to 3 dB (Fig. 2.9). At interior

radius of 200 m the fixed bandwidth allocation scheme seems to consume much more

power than for other values of interior radius. The behaviour is due to the fact that the

bandwidth allocated to interior users B0 according to equation (2.16) (same as “A-II’
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curve in Fig. 2.5) is very low resulting in high power consumption. Although the band-

width allocation is exactly same for “A-II” scheme the average power consumed is not

as much as the fixed scheme because within the interior region bandwidth is flexibly

allocated.

The average power consumption for area based method-I and II schemes lie be-

tween that of fixed and flexible schemes. They represent an intermediate and im-

plementable method for LTE-A systems as compared to flexible allocation and fixed

allocation schemes. The flexible allocation scheme may not be realistic to implement

and fixed allocation results in at least 3 dB additional power consumption which could

be avoided. The flexible scheme is unrealistic from the point of view that B0 and

Br, r = 1, 2, 3 are varying for every snapshot instance of the optimization problem

while the FFR in LTE-A requires it to fixed. From Fig. 2.6, it is found there is less

than 1 dB difference between the area based method-I and flexible allocation scheme for

values of interior radius between 500 to 800 m. This can be attributed to the fact that

in Fig. 2.5 there is not much difference in bandwidth allotted by the flexible scheme as

compared with the method-I. The area based method-II scheme on the other hand has

the average power consumption more than that of method-I primarily because of its

inherent bandwidth partitioning technique. In method-II the B0 allotted seems to be

more than enough for its direct links while Br is comparatively less to support the (0, r)

links as well as relay to UE links. A supporting viewpoint to this argument is that as

the interior radius increases B0 increases and difference in average power consumption

between method-I and method-II increases as seen in Fig. 2.6.

2.4 Single Relay serving Single User

2.4.1 Relaying Problem for a Single User on Uplink and Downlink

For simplicity and understanding of the bandwidth sharing process we also consider the

case of the weighted power minimization problem in relaying when there is only one

user i.e., N = 1. The relay r helps in forwarding data for the UE i in both uplink and

downlink direction as shown in the Fig. 2.1. We formulate the problem of minimizing
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Figure 2.6: The plot the shows the average power consumption for four different schemes
- Flexible, Fixed, A-I and A-II. It is seen that the flexible bandwidth allocation consumes
at least 3 dB less power as compared to fixed bandwidth allocation.

the weighted sum of powers spent by the system in ensuring the minimum required

data rates in both uplink and downlink for the UE i as

minimize α0P0r + αiPir + αr(Pri + Pr0) (2.18a)

subject to R(SNRir,Wir) ≥ Rui,min, (2.18b)

R(SNRr0,Wr0) ≥ Rui,min, (2.18c)

R(SNRri,Wri) ≥ Rdi,min, (2.18d)

R(SNR0r,W0r) ≥ Rdi,min, (2.18e)

Wir +W0r +Wri +Wr0 ≤ B, (2.18f)

Pri + Pr0 ≤ Pr,max, (2.18g)

P0r ≤ P0,max, (2.18h)

Pir ≤ Pi,max, (2.18i)

variables P0r, Pri, Pir, Pr0,W0r,Wri,Wir,W0r.
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2.4.2 Total Power Minimization

We consider the special case when there is only one user (N = 1) in the system and

develop an intuitive understanding of the bandwidth sharing mechanism. The weighted

power minimization problem for a single user is given by Problem (2.18) but without

the power constraints. We define the bandwidth allocated in the downlink for Problem

(2.18) to be

Bd = W0r +Wri

and similarly that allocated in the uplink to be

Bu = Wir +Wr0.

Theorem 2.4.1. Rate Proportional Bandwidth Allocation: When the weights

α0 = αr = αi = α are equal, the bandwidths allocated in the downlink and uplink at the

optimum for Problem (2.18) are independent of the link gains and are given by

Bd? =
Rdi,min

Rui,min +Rdi,min

B,

Bu? =
Rui,min

Rui,min +Rdi,min

B.

Proof. By Lemma 2.3.1 for N = 1, we have at optimality

(W ?
0r +W ?

r0) + (W ?
ri +W ?

ir) = B.

Similarly for N = 1, using Lemma 2.3.3 implies

(W ?
0r +W ?

ri)

(
1 +

Rui,min

Rdi,min

)
= B.

SinceBd? = W ?
0r+W

?
ri the result follows. Similarly, we getBu? fromBu? = B−Bd?.

Thus, since the optimal bandwidth split between uplink and downlink is known,

the Problem (2.18) can be split into two problems one for the downlink and other for

the uplink direction. Also, the bandwidth allocated to the downlink problem out of

the total available bandwidth, is proportional to that fraction of the downlink rate

requirement out of the total rate.
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Theorem 2.4.2. When the weights α0 = αr = αi = α are equal, the optimal bandwidth

allocated to each of the links for Problem (2.18) depends only on the ratio of link gains

ρ0r/ρri.

Proof. Using optimality conditions (2.6) for links (0, r), (r, i) and Theorem 2.4.1 we

get,

e
Rd
i,min
W0r

(
Rdi,min

W0r
− 1

)
+ 1 = β

{
e

Rd
i,min

Bd?−W0r

(
Rdi,min

Bd? −W0r
− 1

)
+ 1

}
. (2.19)

where β = ρ0r/ρri. Since, the LHS is a decreasing function and the RHS is an in-

creasing function in W0r, the above equation has only one point of intersection which

is dependent only on β. Therefore, the optimal W0r only depends on the ratio of the

link gains. Similarly, we get

e
Ru
i,min
Wr0

(
Rui,min

Wr0
− 1

)
+ 1 = β

{
e

Ru
i,min

Bu?−Wr0

(
Rui,min

Bu? −Wr0
− 1

)
+ 1

}
. (2.20)

The optimal bandwidth allocations W ?
0r,W

?
r0,W

?
ri,W

?
ir can be found numerically

from equations (2.19) and (2.20).

2.4.3 Minimizing the Relay Power

There may also arise situations when the relay power is precious and hence we only

intend to minimize the relay power. Again we show the results for a single user case

but the results for this section are easily extendible for the case for multiple users.

Minimizing Relay Power for Problem (2.18)

We set the value of αr = 1, α0 = 0 and αi = 0, i 6= r when we want to minimize the

relay power. When αr = 1, P ?0r = P0,max, P
?
ir = Pi,max. Consequently, W ?

0r and W ?
ir will

be the unique solution to,

W0r log

(
1 +

ρ0rP0,max

W0r

)
= Rdi,min and,

Wir log

(
1 +

ρirPi,max

Wir

)
= Rui,min, (2.21)
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respectively. Intuitively, the eNodeB and the UEs transmit at the maximum power so

that the least amount out of total available bandwidth is necessary to maintain the

minimum rate from eNodeB to relay and UE to relay links. The rest of the bandwidth

is used up by the relay so that it expends minimum power to maintain the minimum

rate constraint in uplink and downlink. The relay power minimization problem turns

out to be

minimize

Pri + Pr0 (2.22a)

subject to

R(SNRr0,Wr0) ≥ Rui,min, (2.22b)

R(SNRri,Wri) ≥ Rdi,min, (2.22c)

Wri +Wr0 ≤ B − (W ?
0j +W ?

ir) = B′, (2.22d)

Pri + Pr0 ≤ Pr,max, (2.22e)

variables

Pri, Pr0,Wr0,Wri.

This can be solved in a centralized manner at the relay.

2.4.4 Numerical Results

We solve the Problem (2.18) and plot the resulting bandwidth shared, and power con-

sumed by the links for maintaining a downlink rate of 7 Mb/s with 10 MHz bandwidth.

We fix the maximum eNodeB power at 43 dBm, and the maximum power limit for

relay and UE at 23 dBm which is the standard for LTE-A systems as given in [20,21].

Also, the type-I relay is fixed at a distance of 1000 m from the eNodeB. The bandwidth

allocation and power consumption is plotted for increasing ρ0i/ρri (dB) values until

the optimization problem becomes infeasible. Also, increasing sequence of ρ0i/ρri (dB)

values indicate increasing distance between relay r and UE i when the eNodeB to relay

distance is fixed. The optimization problem finds a feasible point at maximum relay
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Figure 2.7: Numerical Solution to Problem (2.18) showing bandwidth sharing among
links. Notice the increased bandwidth allocation Wr0 and Wri at ρ0r/ρri ≥ −18 dB.
This is because the relay power has reached its maximum prescribed limit and minimum
required rate is maintained by allocating more bandwidth to the links.

power untill the eNodeB reaches its maximum power and thereafter the system is infea-

sible. Figs. 2.7 and 2.8 plot the bandwidth partition and power expenditure at each of

the links. The plots are for increasing ρ0i/ρri (dB) values until the optimization problem

becomes infeasible. From Fig. 2.8 we can deduce that the reason for infeasibility is the

relay power constraint. While the eNodeB power for downlink P0r and UE i power Pir

in the uplink have not reached their maximum but the relay power (Pri +Pr0) is at its

maximum value of 23 dBm. Just before the system becomes infeasible the optimization

problem tries to allocate as much bandwidth as possible for the (r, i) and (r, 0) links,

so that even with the limited 23 dBm relay power the system can still maintain the

required data rate. This can be seen from the increasing Wri,Wr0 and the decreasing

W0r,Wir near the infeasibility region in the Fig. 2.7. This can also be verified from

Fig. 2.8 where the corresponding to points in Fig 2.7, where the bandwidth allocation

is decreasing for W0r and Wir there is a increase in power expenditure for P0r and Pir
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Figure 2.8: Numerical Solution to Problem (2.18) showing power consumption on indi-
vidual nodes. The relay power consumption is the sum Pr0 + Pri. Notice the increased
power consumption in eNodeB and UE after ρ0r/ρri ≥ −18 dB i.e. once the relay
power reached the maximum prescribed limit. This is because a large portion of the
bandwidth is allocated to links (r, 0) and (r, i) and consequently the links (0, r) and
(r, 0) are allocated less bandwidth out the total.

to maintain the required data rate. To summarize, the bandwidth sharing utilizes that

power that would otherwise be unused in the eNodeB and the UE i while transferring

some extra bandwidth to the relatively power constrained relay to maintain required

rate. When there is no bandwidth sharing, each link is given a fixed 2.5 MHz band-

width, and the relay power optimized between uplink and downlink. However, when

there is no bandwidth sharing, it is found to be infeasible after when ρ0i/ρri > −16 dB,

while with sharing infeasible region starts when ρ0i/ρri > −14 dB (Fig. 2.9). This is

because there is not enough relay power to maintain the required rate in uplink and

downlink. Converting to distances, this corresponds to UE being anywhere in the re-

gion of 293 m from relay when there is no bandwidth sharing and 342 m when there

is bandwidth sharing. Thus bandwidth sharing results in a 49 m increase in coverage

area. This is illustrated in Fig. 2.10. Also, when both the schemes are feasible the
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Figure 2.9: Numerical Solution to Problem (2.18) showing total Power consumption in
the system. P represents the total power consumed when bandwidth is shared and Pn

for fixed allocation of bandwidth.

total power consumption with bandwidth sharing is 3 dB less than when there is no

bandwidth sharing.

2.5 Relation to Time Shared System

In this section we consider the case of an in-band relaying system with an eNodeB, a

single relay and N users. We consider a frame structure similar to that employed in

LTE-A and IEEE802.16m schemes where the time is also shared between eNodeB-relay

and relay-UE links. Fig. 2.11 shows the typical frame structure of such a system with

total frame time T . We denote TBS as the time allocated to eNodeB to relay downlink

frame. Similarly T d
RS stands for downlink relay to UE frame size, TUE stands for UE

to relay uplink frame size, T u
RS stands for relay to eNodeB uplink frame size. We also

have

TBS + T d
RS + TUE + T u

RS ≤ T
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Figure 2.10: The diagram shows coverage extension when bandwidth is shared as com-
pared to fixed allocation of bandwidth. The relay is placed at position of 1000 m from
the eNodeB. We assume that the UE does not have direct access to or from the eN-
odeB and communicates only through the relay. Here rFB denotes the relay coverage
till infeasibility for fixed bandwidth allocation scheme (dark blue region) and rext the
coverage extension due to bandwidth sharing (light blue region). For Problem (2.18),
rFB = 293 m and rext = 49 m. Also within the region where both schemes are feasible
bandwidth sharing for Problem (2.18) consumes up to 3 dB less power.

and that all time slots be positive. During the time slot T d
RS relay transmits to all

the UEs simultaneously in orthogonal bandwidth allocations and similarly during the

time slot T u
RS all UEs transmit simultaneously to the relay in uplink in orthogonal

bandwidth allocations. All the available bandwidth can be used in the each of the time

slots. In terms of the instantaneous power Sir and bandwidth Bir across the link (i, r),

we formulate the problem of weighted power minimization as follows,

minimize

α0
TBS

T
S0r + αr

(
T d

RS

T

N∑
i=1

Sri +
T u

RS

T
Sr0

)
+
TUE

T

N∑
i=1

αiSir (2.23a)

subject to

T d
RSR(SNRri, Bri) ≥ TRdi,min∀i = 1 . . . N (2.23b)

TBSR(SNR0r, B0r) ≥ T d
RS

(
N∑
i=1

R(SNRri, Bri)

)
(2.23c)



37

TUER(SNRir, Bir) ≥ TRui,min∀i = 1 . . . N (2.23d)

T u
RSR(SNRr0, Br0) ≥ TUE

(
N∑
i=1

R(SNRir, Bir)

)
(2.23e)

B0r ≤ B (2.23f)

N∑
i=1

Bri ≤ B (2.23g)

N∑
i=1

Bir ≤ B (2.23h)

Br0 ≤ B (2.23i)

TBS + T d
RS + TUE + T u

RS ≤ T (2.23j)

variables

TBS, T
d
RS, TUE, T

u
RS, S0r, Sri, Sr0, Sir, B0r, Bri, Br0, Bir

∀i = 1 . . . N

In Problem (2.23), the rate constraints are given by (2.23b), (2.23c), (2.23d), (2.23e)

and the bandwidth constraints by (2.23g), (2.23f), (2.23h), (2.23i). The frame time con-

straint is given by (2.23j). The objective term corresponds to minimizing the weighted

average power in the system in a single frame. The power constraint in the system

can be either a peak power constraint or average power constraint. The peak power

constraints take the form,

S0r ≤ P0,max, (3k-P)

Sir ≤ Pi,max, (3l-P)

N∑
i=1

Sri ≤ Pr,max, (3m-P)

Sr0 ≤ Pr,max, (3n-P)
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Figure 2.11: The diagram shows the resource block division for a time shared system
represented by Problem (2.23). While the total frame time T is divided into uplink
and downlink subframe time zones each of them is further divided for enabling single
hop relaying. TBS is the time allocated to eNodeB for the downlink frame, T d

RS stands
for downlink relay to UE frame size, TUE stands for UE to relay uplink frame size,
T u

RS stands for relay to eNodeB uplink frame size. In the time slot when the relay
transmit to all UEs and also when all UEs transmit to relays the bandwidth is shared
orthogonally as shown in the figure.

while the average power constraints are,

TBS

T
S0r ≤P0,max (3k-A)

TUE

T
Sir ≤Pi,max (3l-A)

T d
RS

T

N∑
i=1

Sri +
T u

RS

T
Sr0 ≤ Pr,max (3m-A)

While peak power constraints are important from the point of view of avoiding RF

power amplifier non-linearities, the average power constraints becomes relevant when

there are energy consumption limitations in individual nodes on a per frame basis.

The power constraints for Problem (2.1) can be interpreted both in terms of peak and

average power limits.
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2.5.1 Bandwidth Shared System vs. Time Shared System

In this section we show the relation between weighted average power minimization in

time shared relaying (Problem 2.23) as in 4G systems and weighted power minimization

in bandwidth shared system as in Problem (2.1). As mentioned in section 2.5 the time

shared system with peak power constraints is represented by Problem (2.23) with the

constraints (3k-P), (3l-P), (3m-P) and (3n-P). The time shared system with average

power constraints is represented by Problem (2.23) with the constraints (3k-A), (3l-A)

and (3m-A). The behaviour of the two systems as compared to the bandwidth sharing

system is explained in the following theorem.

Theorem 2.5.1. In terms of minimizing the weighted transmit power in the system:

• Time sharing with average power constraints is equivalent to bandwidth sharing.

• Time sharing with peak power constraints will yield a weighted power objective at

least as large as bandwidth sharing.

Proof. We replace the instantaneous power variables S0r, Sri, Sr0, Sir and the band-

width variables B0r, Bri, Br0, Bir in Problem (2.23) by their time averaged power

variables P0r, Pri, Pr0, Pir and average bandwidth variables W0r, Wri, Wr0, Wir re-

spectively as shown in the following the two steps,

1. TP0r = TBSS0r, TPri = T d
RSSri, TPr0 = T u

RSSr0, TPir = TUESir

2. TW0r = TBSB0r, TWri = T d
RSBri, TWr0 = T u

RSBr0, TWir = TUEBir

The reformulation will result in a convex problem with the resulting objective and

the rate constraints the same as that of Problem (2.1). The bandwidth constraints in
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Problem (2.23) will be reformulated into,

W0r ≤
TBS

T
B,

N∑
i=1

Wri ≤
T d

RS

T
B,

N∑
i=1

Wir ≤
TUE

T
B,

Wr0 ≤
T u

RS

T
B. (2.24)

However, combining those with the frame time constraint (2.23j), will result in a single

constraint given by

N∑
i=1

(Wir +Wri) +Wr0 +W0r ≤ B

which is the same as equation (2.1f).

When the average power constraints given by equations (3k-A), (3l-A) and (3m-A)

are employed in the time sharing system, the above reformulation of variables will result

in Problem (2.1) implying that minimizing the weighted power in the time sharing

system with average power constraints will result in the same objective value as in

bandwidth sharing system.

When the peak power constraints given by equations (3k-P), (3l-P), (3m-P) and

(3n-P) are employed the power constraints will be reformulated into

P0r ≤
TBS

T
P0,max,

Pir ≤
TUE

T
Pi,max,

N∑
i=1

Pri ≤
T d

RS

T
Pr,max,

Pr0 ≤
T u

RS

T
Pr,max (2.25)

Clearly these power constraints result in a lesser search space for the reformulated time

sharing optimization problem than the power constraints in Problem (2.1). Therefore,

the optimal objective of the time sharing system of Problem (2.23) with peak power

constraints is at least as much as that obtained from the bandwidth sharing system of

Problem (2.1).
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When the nodes are transmitting for only a fraction of the frame time in a time

sharing system, the effective rate with which they need to communicate is higher than

the minimum prescribed rate to transmit the same amount of data in a frame duration.

For example, for the rate constraints (2.23b) the effective rate at which the system has

to download data in time slot T d
RS to the users is TRdi,min/T

d
RS and in order to accomplish

that the power has to be increased. In this situation the average power constraints will

not affect the system when compared with the bandwidth shared system. However,

with peak power constraints, increasing the power levels may result in hitting the power

constraints and may perform worse than a bandwidth shared system. Also when we

are not considering power constraints time sharing is equivalent to bandwidth sharing

and hence the lemma 2.3.1, theorem 2.3.2, and lemma 2.3.3 obtained for bandwidth

sharing is also relevant for time sharing system.

2.6 Concluding Remarks

In the first part of the thesis we introduced bandwidth and power optimization in a

cellular system employing type-I relaying system. We formulated a weighted power min-

imization problem, optimizing over both power and bandwidth under rate, bandwidth

and power constraints for serving multiple users We developed theoretical insights into

the nature of optimal solution when the system has unconstrained maximum power.

From the implementation perspective, it is also seen that bandwidth sharing provides

total power gain of about 3.5 dB as compared to baseline scheme of fixed allocation of

bandwidth per link. This is a significant gain in view of the actual amount of eNodeB

power in watts saved and fact that eNodeB power expenditure forms 80% of the total

power spent in the cellular system [12]. Future directions of interest include cases with

multiple cells and when Inter Cell Interference (ICI) is significant.



42

Chapter 3

Massive Multi-cell Multi-user MIMO Systems

3.1 Introduction

Cellular systems with large number of base station antennas have been found to be

advantageous in mitigating the fading effects of the channel [27] while increasing system

capacity. In the downlink, dense low-powered base stations operating with power in

the order of milliwatts have the potential to conserve power as compared to current

systems. In the uplink, coherent receiver processing with a large number of antennas

reduces the transmitted powers of the users. It is shown in [27] that in an infinite

antenna regime, and in a bandwidth of 20 MHz, a time division duplexing system has

the potential to serve 40 single antenna users with an average throughput of 17 Mbps

per user. However, any advantages offered by multiple antennas at the base station can

be utilized only by gaining the channel knowledge between the base station and all the

users. This requires training data to be sent from the users. In a typical system the time-

frequency resources are divided into Physical Resource Blocks (PRBs) of coherence-time

coherence-bandwidth product. For each user, it is necessary and sufficient to estimate

the channel in every PRB assigned to that user. Thus, some resources (time slots or

equivalently frequency channels) are used for channel estimation and the rest are used

for transmission in uplink or downlink. However, in [26], it has been shown that the

number of orthogonal pilot symbols required for channel estimation is proportional to

the total number of users in the system. Because of the orthogonality imposed on

training sequences of the users, as the system scales with the number of users, training

may take up a significant portion of the PRB. As this is undesirable, only a part of

the coherence time is utilized to learn the channel. In this case, the pilot sequences in

different cells overlap over time-frequency resources and, as a consequence, the channel
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estimates are corrupted. This pilot interference is found to be a limiting factor as we

increase the number of antennas [29].

It is shown in [27] that in the limit of large number of antennas, the SINR using

a matched filter receiver is limited by interference power due to pilot contamination.

While the result assumes a regime with finite number of users, we can also envision

a regime where the number of users may be comparable to the number of antennas

such as a system with 50 antenna base stations serving 50 users simultaneously. In this

work, we do a large system analysis of uplink multi-cell, multi-antenna system when the

receiver employs an MMSE filter as well as matched filter to decode the received signal.

We investigate the SINR in a regime where the number of users per cell is comparable

to the number of antennas at the base station. The matched filter and the MMSE

filter(which is designed to maximize the SINR) is evaluated in the following cases:

1. when there is a perfect channel estimate,

2. when we have a pilot corrupted channel estimate.

We let the number of antennas and the number of users per base station grow large

simultaneously while maintaining a fixed users/antennas ratio α and observe the SINR

for the above two cases as a function of α. To do so we make use of the similarity of

the uplink received signal in a MIMO system to that of the received signal in a CDMA

system [35]. Much of the research in large MIMO systems with Rayleigh channel can be

borrowed from the considerable literature for CDMA systems. The channel vector with

i.i.d entries for the large MIMO system is analogous to signature sequence in a CDMA

system so that antennas contribute to the processing gain. For example, the uplink

analysis of an asymptotic regime [35] with both users and signature sequences tending

to infinity translates directly to results in a large MIMO system when signatures are

replaced by antennas. In both systems it is observed that the asymptotic analysis is a

good approximation for practical number of antennas (signatures) and users. While in

a CDMA system we assume that the signature sequences are known, there are practical

limitations in learning a mobile radio multi-antenna channel (antenna signatures) in a

multi-cellular system, as shown in [27]. In this work we explore this limitation when
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users simultaneously estimate the channel and the estimates are subject to pilot con-

tamination. We focus our results in the regime α > 0.1 as opposed to recent works such

as [27, 32, 38, 40] which are found to be approximately in the regime of 0 ≤ α ≤ 0.1.

Further, we compare the results of the asymptotic SINR expression so obtained with

that of the performance of the matched filter.

3.1.1 Related Work

A similar large system analysis in the context of a Network-MIMO architecture was

presented in [44]. The authors concluded that high spectral efficiencies can be realized

even with 50 antennas in their architecture, paralleling the existing literature results in

CDMA systems. In [40], the results obtained suggest to scale the transmission power

by the square root of the number of base station antennas, as opposed to scaling by the

number of antennas. This assumes that the transmission power during training and data

are same. In general we take the approach in [25] where the transmission power can be

different for the training and data symbols during a coherence time. In the MU-MIMO

literature the asymptotic SINR is also called the “deterministic equivalent” of the SINR.

Recent work in [34] finds the deterministic equivalent of SINR with distributed sets of

correlated antennas in the uplink. Authors in [38], have done a considerable work in

providing the deterministic equivalent for beamforming and regularized zero forcing in

the downlink with a generalized channel model taking into account the effect of pilot

contaminated channel estimate. They find the number of antennas required to match

a fixed percentage of the rate of an infinite antenna regime. Also, the number of extra

of antennas required for the matched filter to equal the rate obtained out of the MMSE

filter is shown, implicitly showing the interference suppression capability of MMSE

filter. We derive in our work the exact amount by which MMSE filter suppresses the

interference for a Rayleigh fading channel and provide some fresh engineering insights

in the regime with α > 0.1. Further, details on our contributions is given in the next

section.

There have been significant attempts to mitigate pilot contamination in the recent
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works in “Massive MIMO” systems which are, however, specific to the case when an-

tennas far exceed the number of users served i.e. α < 0.1. In [32], time shifted pilot

schemes were introduced to reduce pilot contamination. There, simultaneous transmis-

sion of pilots was avoided by scheduling only a subset of base stations to transmit uplink

pilots. Simultaneously, other base stations transmit in the downlink to their users and

it is shown that the interference created by these downlink transmission can be can-

celled with a large number of antennas at the base station estimating the channel. Pilot

contamination is now restricted to base stations in a group that simultaneously trans-

mit uplink pilots. However, this requires that the number of antennas far exceed the

number of users. In their recent work, authors in [42,43] show that pilot contamination

can be avoided using subspace based channel estimation techniques. They show that

the eigenvalues corresponding to the other-cell interference subspace can be separated

from the in-cell users in a regime where α is below a threshold. However, their analyses

assume an ideal power controlled situation with strict user scheduling and antennas

far exceeding the number of users. By contrast, we examine the operating regime in

which 0.1 < α < 1 and determine the effect of pilot contamination on interference and

interference suppression capability of MMSE receiver. Also, even with power control,

pilot contamination is prevalent when linear MMSE channel estimation is employed.

3.1.2 Contributions of our Work

We develop a large system asymptotic expression for the SINR in a Rayleigh fading

environment when using an MMSE filter with a pilot contaminated channel estimate.

The SINR expression is dependent on the number of users and the number of anten-

nas only through their ratio. This expression for asymptotic SINR is also strikingly

similar to that obtained with matched filter in our earlier work [41]. This SINR ex-

plicitly captures the effect of pilot contamination and interference averaging. It is seen

that MMSE filter is capable of suppressing the in-cell interference and we derive the

exact expression for the interference suppression. As per the authors’ knowledge, these

contributions have not been reported yet in the literature.

Further, the interference power due to pilot contamination is the same as in a
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matched filter with a pilot contaminated estimate. We show that even a system with

50 base station antennas each serving some number of users sufficiently qualifies for

the term large system as the users’ SINRs are close to the asymptotic limit. Simula-

tion results for achievable rates are close to theory for even a 10-antenna base station

with 3 or more users per cell. Operating with a large number of antennas however

results in lower transmission power for the symbols and more number of users served

simultaneously. The theoretical results are derived assuming that the same set of in-

cell orthogonal training signals are repeated across the cells. However, we also show

through simulations that in the case of independently generated but non-orthogonal

training signals across the cells with orthogonal in-cell training results in similar SINR

performance close to the asymptotic limit. In an example seven cell set up, the MMSE

filter performs the best in the absence of pilot contamination. We also show an inter-

mediate regime where the MMSE filter with pilot contamination obtains around 7 dB

gain over the matched filter with a pilot contaminated estimate. In terms of the five

percentile SIR, the MMSE receiver is shown to provide significant gains over matched

filtering which is much below the threshold of detection for receivers. Also in most of

the operating points α, the performance of the MMSE receiver with pilot estimate is

within 5 dB of the MMSE filter with perfect estimate. We also show that the achiev-

able rates are within a 1 bit/symbol of the MMSE filter with perfect estimate when the

number of users are comparable to the number of antennas.

3.2 System Model

We consider a system similar to that in [27] with B non-cooperating base stations and

K users per base station. We assume that all KB users in the system are allocated the

same time-frequency resource. Also, each base station is equipped with M antennas.

The channel vector representing the small scale fading between user k in cell j and the

antennas in base station l is given by a M × 1 vector h
(l)
jk . The entries of h

(l)
jk are as-

sumed to be independent zero mean i.i.d Gaussian random variables with variance 1/M

corresponding to the scaling of transmit power by the number of receiver antennas at

the base station. This corresponds to an ideal and favourable propagation medium with
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rich scattering. A large scale fading coefficient, which represents the power attenuation

due to distance and effects of shadowing between base station l and kth user in jth cell

is given by β
(l)
jk . We assume that β

(l)
jk < 1 as we do not expect the received power to

be greater than what is transmitted. This is constant across the antennas of the cell l.

Accordingly, overall channel vector is given by
√
β

(l)
jkh

(l)
jk .

3.2.1 Uplink Transmission

We assume that all users’ transmission are perfectly synchronized. Also, while a user’s

transmission is intended for its own base station, other base stations also hear the

transmission. Defining qjk as the symbol transmitted by user k in cell j, w(l) as the

M × 1 noise vector with zero mean Gaussian entries with variance σ2, the received

signal at base station l is given by,

y(l) =
B∑
j=1

K∑
k=1

√
β

(l)
jkh

(l)
jkqjk + σw(l). (3.1)

In order to utilize the advantages offered by multiple antennas, the base station has to

have an estimate of the channel to all users prior to transmission of uplink information.

In a system employing an OFDM physical layer with time-frequency resources, we can

divide the resources into physical resource blocks (PRBs) contained in the coherence-

time coherence-bandwidth product. Although the channel vector h
(l)
jk of each user has

to be relearned by the base station at the start of PRB, once learnt for a subcarrier

it remains the same for all subcarriers within that PRB. Let the number of coherent

symbols be given by Tc and coherent subcarriers be Nc. Therefore, if we fix the number

of symbols used for estimation to be T such that T ≤ Tc, a total of NcT user’s channel

can be learnt. This observation was noted in [27]. We would like to point out that it

is relevant here as the number of users than can be supported depends on Nc and de-

pending on its value the number of users K that could be supported can be comparable

to M . Therefore, it is worthwhile to investigate not only the M � K scenario but also

the case when M and K large and comparable.
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3.2.2 Limitations in gaining Channel Knowledge

During each coherence time, users in a cell spend some pilot symbol times in each PRB

for channel estimation at the base station and then data transmission ensues until the

end of the block. At base station l, the number of channel vectors h
(l)
jk that needs to be

learnt is equal to the number of users in the system which is KB where K = NcT . In

order to accomplish that, the number of pilots required must at least be KB symbol

times in order for the pilot sequences to be orthogonal across the users in the system.

However, such a system will not be scalable as there exists some large B for which the

product KB will occupy all the coherence time. This is clearly undesirable as pilot

training is consuming a significant part of PRB.

In one of the approaches taken in [27], the base station is concerned with only

knowing the channel to its own K users and spends only K time-frequency resources

for channel estimation instead of KB. Every base station similarly spends its first

K time-frequency resources for channel estimation for its K users. The pilot symbols

are processed and an MMSE based channel estimate of the channel is formed. MMSE

channel estimation is the commonly employed in multiuser MIMO systems [25, 28,

39]. Let Ψjk ∈ CK×1 denote the training sequence of user k in cell j of duration K

symbols. Also assume that the in-cell training sequences are orthogonal i.e ΨH
jkΨjn = 0

if k 6= n and 1 otherwise. We assume that the training sequences across the cells are

independently generated and hence in general ΨH
jkΨin 6= 0 if i 6= j and for all k and n.

With N denoting the additive complex gaussian noise, and ρp the pilot transmission

power, the received signal across the K training symbols is given by,

Y =
√
ρp

B∑
j=1

K∑
k=1

√
βjkhjkΨ

H
jk + N. (3.2)

The MMSE channel estimate for user k in the first cell is then given by,

ĥ1k = Y

 I

ρp
+

B∑
j=1

K∑
k=1

βjkΨjkΨ
H
jk

−1

Ψ1k

√
β1k. (3.3)

Although it is not common in practice, we assume as in [27–29] that the in-cell pilots

are repeated across the cells, in order to get some analytic insight; this implies that
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Ψjk = Ψik for all k. Also for convenience we also assume that we have high pilot power.

The MMSE channel estimate [47] with pilot contamination when the in-cell orthogonal

pilots [28] are repeated across the cells is given by,

ĥ1k =

√
β1k

β(k)

B∑
j=1

√
βjkhjk (3.4)

where, β(k) =
∑B

j=1 βjk. This estimate is used to design linear detectors to filter the

received signal. Later we show that even with actual training given by equation (3.3) the

SINRs are very close to when in-cell pilots are reused across the cells. Assuming we have

high enough pilot power, we ignore the additive noise affecting the channel estimation

in order to focus our results on the pilot contamination problem. In practice, a finite

amount of energy is allocated to a coherence time transmission as in [25], then the

energy during data transmission is reduced by scaling it with the number of antennas

as in section 3.2.1, allowing the rest for pilot transmission power. Thus increasing the

number of antennas implies that more power is available for pilot transmissions.

3.2.3 Linear Receivers

Using the channel estimates for all users of the first cell, the MMSE filter for user 1 in

the cell 1 is defined as arg minc E
[
|q11 − cHy|2|ĥ1k∀k

]
. Defining

z =
B∑
j=2

K∑
k=1

√
βjkhjkqjk, (3.5)

which represents the other cell interference and h1k = ĥ1k + h̃1k the received signal can

be rewritten as,

y =
K∑
k=1

√
β1kĥ1kq1k +

K∑
k=1

√
β1k,h̃1kq1k + z + σw (3.6)

where, h̃1k is the result of pilot contamination. The MMSE filter is then given by the

expression,

ĉ =
(
E[yyH |ĥ1k∀k]

)−1
E[yq∗11|ĥ1k∀k]

= S−1
√
β11ĥ11, (3.7)
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where,

S =

K∑
k=2

β1kĥ1kĥ
H
1k + (θ1 + θ2 + σ2)I, (3.8)

and,

θ1I = E
[
zzH

]
= α

B∑
j=2

[
1

K

K∑
k=1

βjk

]
I, (3.9)

θ2I =
K∑
k=1

β1kE[h̃1kh̃
H
1k]

=

B∑
j=2

[
1

M

K∑
k=1

βjk

(
β1k

β(k)

)]
I. (3.10)

As seen from the expression for the filter in equation (3.7), the lack of channel knowledge

of other-cell users and only a partial channel knowledge of in-cell users shows up as

effective noise terms θ1 and θ2 respectively. In order to obtain the expression we also

use the properties of the MMSE estimate that E
[
ĥh̃H

]
= 0. In an ideal situation, the

channel estimation incurs no error and ĥ1k = h1k for all k, then

c* =

(
K∑
k=1

β1kh1kh
H
1k + (θ1 + σ2)I

)−1√
β11h11 (3.11)

This is an optimistic scenario which will serve as a benchmark for the performance of the

MMSE filter with pilot contamination. In this section we provide the expressions for

the SINR in a large system for MMSE and matched filter. We also provide simulation

results to show that performance in realistic scenarios is captured by the asymptotic

SINR expression.

3.3 SINR of Linear receivers under Pilot Contamination

We assume that the received signal is projected onto a linear filter c
(l)
lk ∈ CM×1 for

the kth user in the lth cell. Since the SINR analysis is identical for all users in the

system we focus only on user k = 1 in base station indexed l = 1. We also drop the

superscript (.)(1) for notational convenience. After processing the received signal using

the linear filter c, let Psignal, Pnoise, Ppilot, Pinter denote the signal power, noise power,
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pilot interference power and interference power respectively. It follows that,

Psignal = β11c
Hh11h

H
11c (3.12)

Pnoise = σ2cHc (3.13)

Ppilot = cH

 B∑
j=2

βj1hj1h
H
j1

 c (3.14)

Pinter = cH

 B∑
j=1

K∑
k=2

βjkhjkh
H
jk

 c (3.15)

The received SINR is then given by the expression,

SINR =
Psignal

Pnoise + Ppilot + Pinter
(3.16)

Define βj as the random variable representing the large scale fading gain from an

arbitrary user in the jth cell. Therefore, βjk can be interpreted as the realization of βj

for the user k and let

β =
B∑
i=1

βi .

Next, we state the main theorem of the paper which gives the expression of SINR for a

large system when an MMSE filter with a pilot contaminated estimate is used to decode

the received signal.

Theorem 3.3.1. As M,K → ∞, with K/M = α, the SINR at the output of filter ĉ

given in equation (3.7) converges almost surely to

ŜINR =

β11
1+(

∑B
j=2 βj1)/β11

σ2 +
(
∑B

j=2 β
2
j1)/β11

1+(
∑B

j=2 βj1)/β11
+ α(E[β]− C(α))

(3.17)

where, C(α), η1, η2 are given by

C(α) = E


(
β2
1
β

)2
η1

1 +
β2
1
β η1

+
η2

η1
E


β2
1
β

(∑B
j=2

β2
j

β

)
1 +

β2
1
β η1

+
η2

η1
E


β2
1
β

(∑B
j=2

β2
j

β

)
(

1 +
β2
1
β η1

)2

 ,(3.18)

η1 =

σ2 + αE[β]− αE


(
β2
1
β

)2
η1

1 +
β2
1
β η1



−1

, (3.19)

η2 =

η−2
1 − αE

 β2
1
β

1 +
β2
1
β η1

2−1

. (3.20)
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Proof. Proof given in Appendix A.2.

We will see in a large system that Theorem 3.3.1 characterizes the effect of pilot in-

terference power and interference averaging. Specifically, in order to put Theorem 3.3.1

into proper perspective we state two propositions which are the results for SINR of a

large system with MMSE filter employing a perfect estimate and a matched filter with

pilot contaminated estimate respectively.

Proposition 3.3.2. As M,K → ∞, with K/M = α, the SINR at the output of filter

c* given in equation (3.11) converges almost surely to

SINR* = β11η1 =
β11

σ2 + α
∑N

j=2 E[βj ] + αE
[

β1
1+β1 η

∗
1

] (3.21)

where, η∗1 =
(
σ2 + α

∑B
j=2 E[βj ] + αE

[
β1

1+β1 η
∗
1

])−1
.

Proof. We state the proposition without proof as it is straightforward to obtain it from

the large system analysis techniques used for CDMA systems in [35,37].

SINR* is the SINR with MMSE filtering with a perfect channel estimate to its own

users. This is best case scenario as compared to the MMSE with a channel estimate.

We do not expect the SINR of MMSE filter with estimate to exceed this SINR*.

Proposition 3.3.3. As M,K → ∞, with K/M = α, the SINR at the output of filter

ĥ11 converges almost surely to

SINR =

β11
1+(

∑B
j=2 βj1)/β11

σ2 +

[
(
∑B

j=2 β
2
j1)/β11

1+(
∑B

j=2 βj1)/β11
+ αE[β]

] . (3.22)

Proof. Proof given in Appendix A.3.

It is interesting to see that the expression for SINR converges to a similar expression

to the result in matched filtering ŜINR where, in both cases, we can separate the effect

of pilot interference and interference averaging term. The SINR expression in the

limit of infinite antennas but finite number of users per cell are obtained when we

put α = 0 in equations (3.17) and (3.22) and this corresponds to the expression for
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SINR in [27, 28]. It is seen that the SINR expression so obtained is limited by the

pilot interference powers at high SNRs. The expression for pilot interference power

remains the same irrespective of the system operating load α and α 6= 0 implies a non-

zero interference averaging power which further affects the SINR. However, as compared

SINR in expression (3.22), MMSE filter always obtains interference suppression given by

term C(α) in equation (3.18). The deterministic equivalent for SINR in Rayleigh fading

for MMSE filter and the corresponding expression C(α) representing the interference

suppression power are our main contribution of this paper. The terms E[β] and C(α) can

be computed offline for a system with the knowledge of large scale fading distribution. It

can also be estimated without the knowledge of the large scale fading distribution from

user realizations over time. Depending on the value of E[β] − C(α) and the operating

point α a decision can be made whether to use an MMSE filter or an matched filter. As

we will see in the next section, the interference suppression obtained with an MMSE

filter is necessary in increasing the outage SINR and achievable rate of the system,

when there are considerable number of users as represented by the ratio α > 0.1. This

is as opposed to the regime in which antennas far outnumber users. In this operating

point α ≈ 0, and then MMSE filter itself may not be necessary as pilot signals are the

main contributor to interference. This regime with α ≈ 0 has been well explored in

recent studies in [27,32,38,40]. As mentioned earlier most of our focus for performance

analysis is on the regime α > 0.1 although the results are perfectly valid for any

α ≥ 0. Across the users in the system the SINR is a random variable by virtue of

different received powers of both the signal and the interferers contributing to pilot

contamination. Also, the pilot interference power is random by virtue of the choice of

the interferers contributing to pilot contamination.

3.4 Performance Analysis

For the numerical evaluation, we consider hexagonal cells with users uniformly dis-

tributed in each of the cells, as shown in Fig. 3.1. We consider a scenario where 6

closest cells are interfering with the center cell. We assume β1k = 1 so that received

powers from all the users within a cell are unity. We consider a high SNR of 20 dB
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Figure 3.1: In the favourable case, the sum of the received powers of interferers con-
tributing to pilot contamination are very less as compared to that of the desired user.
User 1 in the center cell represents such a scenario. The SINR with a pilot corrupted
estimate is then comparable to that of perfect estimate. On the other hand for user
2 in the center cell, the pilot interferers received powers are comparable to that of the
desired user and represents the worst case scenarios.

and the received powers from all the users in other cells are assumed to take a constant

value of βjk = 0.001, or 0.01, or 0.1 for j 6= 1. These represent the contribution of other

cell interference for three different idealized scenarios. The interference from other cells

is strong as βjk is close to 1. We consider the SINR for the user one in the center cell.

Figs. 3.2, 3.3 plot the asymptotic SINR of the MMSE with a pilot corrupted estimate

given by ŜINR for the case of different received powers. Although in theory the effect

for small scale fading vanishes only an with infinite number of antennas it is seen in

Fig. 3.3 that even for a 50-antenna base station the actual SINR realizations obtained

through simulations are very near to the asymptotic limit. We also plot SINR and

SINR* as baseline for performance comparisons. In Fig. 3.2, it is seen that SINR* is

already affected by other cell interference due βjk = 0.1 for j 6= 1. Hence, the ŜINR is
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not expected to perform better than that and there is further 4 dB loss due to pilot

contamination. However, in the other extreme case when the other cell βjk’s are close

to zero, the channel estimate is already better and the ŜINR performs close to SINR*.

Useful gains employing an MMSE filter with pilot contaminated channel estimate can

be obtained when the other cell βjk’s are neither close to zero or close to unity. In this

example when the βjk = 0.01 for j 6= 1, around 7 dB gains are possible in comparison

with matched filter with pilot estimate when operating at α = 0.5 as seen from fig. 3.3.

While there is a loss of 3 dB with respect to the perfect MMSE due nature of channel

estimate, the reader is reminded that this is a worse case loss. The curves closes in as

we decrease α which represents the M � K scenario and also when α increases as in

that case the limitation is now the averaged interference term.

In fig. 3.4 we plot the achievable sum rate for users in the first cell. We assume

large enough coherence time so that the training time need not be taken into account.

This is because our focus is on the sum rate achievable with variation in α. However,

if necessary the sum rate can be easily adjusted based on training overhead when

coherence time is a significant factor. We fix the number of antennas and calculate

the sum rate with varying α as αM log2(1 + ŜINR). The three curves corresponds to

the received powers of all users from other cells being either βjk = 0.001, or 0.01, or

0.1 for j 6= 1 assuming unit received power from the in-cell users. Sum rates of over

20 bits/symbol are achieved for users when the other cell received powers are below

10 dB of the in-cell received powers. Also, the simulation with 50-antenna base station

is seen to match the theoretical rates predicted for this set up. The interference limited

system has the flexibility to serve a large number of users at low SINR or a few number

of users at a high SINR depending on the operating point α. The plot suggest a optimal

operating point α for which the sum rate is maximum. For example when βj = 0.01

and α = 0.8 gives a sum rate of around 88 bits/symbol. Larger α causes the ŜINR to

be lower so that the α term outside the log2 is ineffective to increase sum rate while

a lower α implies that less users are served and hence lesser sum rate. The peak and

the dip thereafter for the sum rate plot is due to the interference suppression action of

the MMSE filter. Although not shown, the peak and the dip will not there for a sum
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Figure 3.2: The plot shows the asymptotic SINR of the first user in the first cell when
MMSE filter with pilot contaminated estimate is used to decode the received signal
along with the baseline comparison criterion of MMSE with a perfect estimate and
matched filter with a pilot contaminated estimate for an idealized seven cell set up.
It is seen that when the other cell received power is just 10 dB of that in cell users
the MMSE filter with pilot contaminated estimate performs close to its corresponding
matched filter. This is because the limitation is now the other cell interference which
MMSE filter is not designed to suppress. Hence, we do not expect the MMSE filter
with pilot estimate to be useful when βj > 0.1

rate plot of the matched filter receiver. When the other-cell received powers are large,

the curve flattens and the sum rate is constant for most of the operating points α. In

fig. 3.5, we plot the difference of achievable rate per user between MMSE filter with a

perfect estimate and MMSE filter with a pilot estimate for different values of other cell

interference power. We do not take into account the training overhead for comparison

assuming we obtain the perfect estimate with the same training time. We limit ourselves

to βj < 0.1 since ŜINR is already close to SINR otherwise. Also in βj > 0.1 regime,

there is significant other cell interference which both the perfect estimate based and the

pilot based MMSE filter are not designed to suppress, thereby affecting the achievable
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Figure 3.3: The plot shows the asymptotic SIR of the first user in the first cell when
MMSE filter with pilot contaminated estimate is used to decode along with the baseline
comparison criterion of MMSE with a perfect estimate and matched filter with a pilot
contaminated estimate for an idealized seven cell set up. In this case when the other
cell received powers is 20 dB lower than that of in-cell received powers significant gains
are obtained wit respect using a matched filter with pilot contaminated estimate

rates. We plot five different curves corresponding to system operating points α. As

expected when the other cell interference is small, for all values of α the difference is

negligible, however for most of βj ’s, the rate difference is constant and is higher when

α is lower. Larger α leads to the effect of interference being pronounced and hence

the rate difference increases at a faster rate for the same change in βj . Although when

α = 1 there is only a 0.4 bits/symbol difference the sum rate will be affected differently.

For example in a 50-antenna base station with 50 users at βj = 0.1 this could mean

that sum rate with pilot contaminated MMSE filter is 20 bits/symbol lower than that

perfect MMSE filter. On the other hand when α = 0.2, the sum rate difference is

12 bits/symbol.
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Figure 3.4: The plot shows the sum rate of the users in first cell for different operating
points of α. The three curves correspond to three different received powers from other
cell users. The markers correspond to simulation with 50-antenna base stations and
match the theoretical predictions.

3.4.1 Effect of Pilot Contamination

Through a couple of typical possible realizations of user positions, we explain the effect

of pilot interference in ŜINR, SINR and compare it with that of the SINR with a perfect

estimate. For illustration, in Fig. 3.1 consider only distance based pathloss in large scale

fading although the result holds when shadowing is also present. This is applicable to

both matched filter and MMSE filter. Consider the first scenario when∑B
j=2 βj1

β11
� 1⇒

∑B
j=2 β

2
j1

β11
� 1 (3.23)

This corresponds to the fact that sum of received powers of the interferers are much

less that that of desired user power. Under these conditions the SINR of the received

signal in equation (3.22) is,

SINR ≈ β11

σ2 + α(E[β]− I)
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Figure 3.5: The plot shows the loss of rate due to pilot contamination when an MMSE
filter with pilot contaminated estimate is used to decode the received signal as compared
to perfect estimate MMSE filter. The different curves correspond to different values of
α from 0.2 to 1. It is seen that smaller the α the MMSE filter with pilot contaminated
estimate performs worse than the ideal MMSE filter. However, the sum rate for users
per base station is different.

where, I = 0 if matched filter is employed or I = C(α) if MMSE filter ĉ is employed. As

we will see in the next section, typically scenarios show that the interference suppression

power C(α) is almost same as what could have been with a filter c*. Hence the SINR

of the filter with the corrupt channel estimate is as good as the SINR with a perfect

channel estimate. In Fig. 3.1, the situation of user 1 in the center cell represents the

favourable scenario with the interferers contributing to the pilot contaminated channel

estimate are far such that the condition (3.23) is satisfied. On the other hand if gains

of all the interferers are comparable to that of the desired users, i.e.,∑B
j=2 βj1

β11
≈ B − 1 (3.24)

then pilot interference contributes negatively to the SINR in addition to interference

averaging. This is represented by realization of user 2 of the center cell in Fig. 3.1.
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α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Perfect Est. R (bits/symbol) 6.0 5.0 4.3 3.8 3.4 3.1 2.8 2.64 2.4 2.2

Pilot Est. R (bits/symbol) 4.7 4.0 3.4 3.0 2.7 2.5 2.3 2.1 1.9 1.9

Table 3.1: The table shows the achievable rate with MMSE filtering for a 50-antenna
base station serving different number of users. Both theory and simulations correspond
to the similar results.

α 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Perfect Est. R (bits/symbol) 4.4 4.0 3.6 3.3 3.0 2.7 2.4 2.3

Pilot Est. R (bits/symbol) 3.6 3.2 2.9 2.7 2.4 2.2 2.0 2.0

Table 3.2: The table shows the achievable rate with MMSE filtering for a 10-antenna
base station serving different number of users. Simulated results closely match with
theoretical predictions. This shows that even for a 10 antenna base station the large
system analysis gives accurate results for the achievable rate. For α < 0.3, there are
only 3 or less users which may not be sufficient for the expectation over the rate to
converge.

Therefore, we can conclude that, as compared to the linear filter with perfect estimate,

the filter with a pilot estimate has higher probability that it is less than a given SINR.

3.4.2 Five Percentile SINR

In the earlier section we showed that pilot contamination has the effect of reducing the

outage SINR. In order to get more intuition under practical scenarios of large scale

fading gains, we consider the seven cell model with cell radius is R = 1 km, and assume

a COST231 model for propagation loss between the base station and the users. The

noise power is assumed to be −174 dBm and user transmit power of 23 dBm. We

plot the five percentile of the SINR in Fig. 3.6 for the perfect MMSE filtering given

by SINR* and MMSE filter with pilot contamination given by ŜINR, for varying values

of α. To that extend, we compute the interference terms E[β] and C(α) offline by

averaging over a sufficient number of user positions. Also, η1 and η2 can be computed

offline for different values of α as they are constant for the system at a given α and

dependent on the distribution of large scale fading characteristics. Notice that ŜINR is

devoid of the small scale fading parameters. Also, for SINR* we compute the terms, η∗1
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and the average interference E[β]−E
[

β2
1 η

∗
1

1+β1 η
∗
1

]
. It is found that E[β]− C = 38 dB and

E[β]−E
[

β2
1 η

∗
1

1+β1 η
∗
1

]
= 36 dB. This shows that in terms of the interference suppression the

performance of both filters c* and ĉ are almost same. In order to compare the theoretical

expression we also plot the five percentile SINR which is generated using simulations.

These involves computing the SINRs for various small scale fading channel realizations

along with large scale fading. For the simulation we use 50 antenna base stations

each serving a different number of users corresponding to different α. The channel

estimate is based on same in-cell orthogonal training sequences being repeated across

the cells. Further, we also compare the five percentile SINR obtained out of actual

channel estimation. In order for that we assume different independently generated

in-cell orthogonal training sequences which are non-orthogonal across the cells. We

perform an MMSE estimation of the channel and generate MMSE filter using the actual

channel estimate given by equation (3.3). It is seen through Fig. 3.6, that ŜINR in

equation (3.17) matches the five percentile SINR obtained through simulation and is

typically less by about 0.3 dB of the theoretical expression. This is true for both in-cell

pilot sequences being repeated across the cells as well as different and independent pilot

training sequences across the cells. This also implies that the even a 50 antenna base

station is large enough for the theoretical predictions to be effective in addition to being

independent of the effect of small scale fading in the resulting SINR. As we increase

the number of antennas the theoretical expression exactly matches the SINR obtained

through simulation. Also, the MMSE filter with pilot contamination performs just 5 dB

below the MMSE filter with perfect channel estimate and this gap is unambiguously a

result of the pilot contaminated channel estimate. Also it is seen that even at α = 1,

which implies a heavily loaded system the five percentile ŜINR is −9 dB which is well

within the sensitivity of base station receivers.

Table 3.1 shows the achievable rates per symbol for a user in the central cell using

MMSE based detection with perfect estimate and pilot contaminated estimate. The

achievable rate is given byR = E[log(1+ŜINR)] which here is calculated by averaging the

instantaneous rate over 2×103 realizations of user positions for user 1. This is the same

for all users in the central cell. Both theory and simulations based on 50 base stations
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Figure 3.6: The plot shows the five percentile SIR of the first user in the first cell
for a seven cell set up in a non-idealized scenario. The received powers from users can
be different depending on their positions and shadowing and hence the received SIR is
random. The theoretical curves are matched with simulation. The details are described
in section 3.4.2.

antennas serving different number of users agree to the numbers shown in the table.

It is seen that the difference between them is approximately 1 bit/symbol for small

α > 0.1 and closes in when it increases. However, for α� 1, the difference between the

rates increases as effect of pilot interference will never let the SINR approach SNR.

Further, Table 3.2, shows the simulated results for the achievable rate for a 10-

antenna base station with 3 to 10 users. It is seen that even for a 10 antenna base

station, the simulated results agree closely to the earlier results obtained from theory

in Table 3.1. This highlights the usefulness of the large system analysis in providing

accurate predictions for achievable rates for not necessarily large number of antennas

but also contemporary MIMO systems. However, we would like to point out that with

more number of antennas we can serve more users at the same rate given below.
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3.5 Conclusion

In this work we found the expression for SINR for a large system when a MMSE

filter with a pilot contaminated estimate is employed to decode the received signal. We

validated the expression through simulations and showed that a 50-antenna base station

serving different number of users is sufficient enough to employ our large system results.

We characterized the effect of pilot contamination in that it has the effect of reducing

the five percentile SINRs as compared to the MMSE with perfect estimate for all values

of α. We also found an explicit expression for the interference suppression power due to

MMSE filter and compared it with that of matched filter. We showed that five percentile

SIR of the MMSE with a pilot contaminated estimate is within 5 dB of MMSE filter

with a perfect estimate. We also found that the results with actual channel estimation

match the theoretical results. It would also be interesting to see if the considerable work

done by the authors in [38], in getting a generalized expression for the deterministic

equivalent of the SINR can be further simplified into intuitive expressions for other

channel models. This will be of help in realizing engineering conclusions tailored for

different channels models like distributed antennas, correlated antennas, distributed

sets of correlated antennas [34] to name a few. A brief description of future possible

research directions in multi-cell multi-user massive MIMO systems are given in the next

section.

3.6 Future Work

3.6.1 Training Vs Antennas: Subspace based Channel Estimation

In this work we have assumed that the training time allocated to users is K symbols.

In future work, we wish to study the training overhead for different values of training

time and users depending on the coherence time. We believe this can be done through a

large system analysis of training time versus the number of antennas per cell. Further, it

would be interesting to investigate the relationship between the training time T versus

increasing the number of antennas M when both linear MMSE based channel estimation

as well as subspace based non-linear channel estimation techniques are employed. In
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their recent work, authors in [42, 43] show that pilot contamination can be avoided

using subspace based channel estimation techniques. If u is an arbitrary vector then

E
[
||uHy||2

]
represents the mean energy of the received signal in the direction of u.

The correlation matrix

R = E[yyH ]

of the received signals is encountered in the mean energy criterion given by E
[
||uHy||2

]
.

In practice the received signal obtained over T symbol periods is used to get an estimate

of the correlation matrix given by

R̂ =
1

T

T∑
t=1

y[t]yH [t].

Using the estimates, they show that the eigenvalues corresponding to the other-cell in-

terference subspace can be separated from the in-cell users when α is below a threshold.

Taking it a step further, I would like to investigate the influence of T/M in systems with

subspace based channel estimation. Techniques from Random Matrix Theory(RMT)

in [48] are the necessary tools to approach the problem.

3.6.2 Algorithms from MUD to combat Pilot Interference

Also, recent work has proposed that pilot contamination as an artefact of linear channel

estimation techniques [42]. While they have provided a theoretical understanding in an

ideal situation, practical solutions applicable to a regime with large number of users are

still to be found. Algorithms from multi-user detection for CDMA systems are a useful

tool when we have enough coherence time [45]. We are currently looking into such

adaptive algorithms that could be implemented for short coherence time scenarios. To

elaborate on the usefulness of such algorithms, consider adaptive MMSE filtering [45]

being employed for each user to decode its uplink data. Adaptive MMSE does not

require the explicit knowledge of the channel. Instead, pilot training sequences known

at the base station are sent by every user simultaneously so that each user converges to

its desired MMSE filter directly. The explanation for the implementation of adaptive

MMSE is as follows. Given the received signal in (3.1), we wish to design an MMSE filter



65

c11 for the first user in the first cell so that E[
∣∣q11 − cH11y

∣∣2] is minimized. From [45],

the filter which minimizes the mean square objective is given by

c11 = (E[yyH ])−1E[q∗11y].

In order to form the filter c11 directly, the channel knowledge hjk from the first base

station to all the users is required.

A way to overcome this difficulty is by using the stochastic gradient descent algo-

rithm, so that the filter adaptively converges to MMSE as proposed for CDMA sys-

tems [45]. With 0 < t ≤ T being the index of time-frequency resources spent for

training data, {ψ11[t]} the T length training sequence for user indexed one and µ > 0,

the progressively decreasing step size, a step in the algorithm is given by the equation,

c11[t] = c11[t− 1]− µ(ψ11[t]− cH11[t− 1]y[t])y[t]. (3.25)

It has been shown that there exist positive values of µ so that the iteration (3.25)

converges to the MMSE filter. Also, as long as the training data satisfies E[ψjkψ
∗
li] = 0

for {j, k} 6= {l, i} the filter converges to the MMSE of user 1 in cell 1. However, the real

challenge appears when implementing the algorithms in short coherence time scenarios

of 100 to 200 symbols. More research effort is required in this direction.
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Appendix A

Proofs of asymptotic SINR in Multi-cell Multi-user

MIMO

A.1 Results from Literature

In this section we briefly describe the necessary results from literature to derive the

asymptotic SINR expressions. These results were used previously used in the context

of CDMA systems in [35–37].

Lemma A.1.1. [37, Lemma 1] If S is a deterministic M ×M matrix with uniformly

bounded spectral radius for all M . Let q = 1√
M

[
q1 q2 . . . qM

]T
where qi’s are i.i.d

complex random variables with zero mean, unit variance and finite eight moment. Let

r be a similar vector independent of q. Then,

qHSq → 1

M
trace{S}, (A.1)

qHSr → 0 (A.2)

almost surely as M →∞.

Results in linear MMSE filters for large dimensions have been obtained using Stielt-

jes transform result on symmetric matrices in [35–37]. For completeness and clarity of

understanding of MMSE for multi-user MIMO with pilot contamination we first define

the Stieltjes transform of a random variable and state the result without proof here.

Definition A.1.2. Let a real valued random variable be given by the distribution G.

Then, the Steiljes transform m(z) with complex argument z and positive imaginary part

is defined as

m(z) =

∫
1

λ− z
dG(λ). (A.3)
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Theorem A.1.3. Let X ∈ CM×K be a matrix with independent and identically dis-

tributed complex entries each with variance 1/M . Also, let T ∈ CK×K be a random

hermitian non-negative definite matrix independent of X such that the empirical distri-

bution of its eigenvalues converges to a fixed distribution F as M → ∞. Then almost

surely the empirical distribution of eigenvalues of XTXH converges to a non-random

distribution function G whose Stieltjes transform m(z) satisfies,

m(z) =
1

−z + α
∫ p

1+pm(z)dF (p)
, (A.4)

for z ∈ C+

Next we state a corollary from [36] which is also a consequence of Steiltjes transform

result in Theorem A.1.3.

Corollary A.1.4.

αE

[
p d
dzm(z)

(1 + pm(z))2

]
=

∫
λ

(λ− z)2
dG(λ) (A.5)

Proof.

αE

[
p d
dzm(z)

(1 + pm(z))2

]
(a)
= α

d

dz
E
[
1− pm(z)

1 + pm(z)

]
,

= − d

dz
αE
[

pm(z)

1 + pm(z)

]
,

(b)
= − d

dz
(1 + zm(z)),

= − d

dz

∫
λ

λ− z
dG(λ), (A.6)

where (a) is due to dominated convergence theorem and (b) is due to equation (A.4).

A.2 Proof of Theorem 3.3.1

Let the overall channel matrix representing the system be defined as,

H =
[
H1 H2 . . . HK

]
,

where,

Hi =
[
h1i h2i . . . hBi

]
.
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Also define the large scale fading coefficient vector to be

ai =
[√

β1i
√
β2i . . .

√
βBi

]T
,

and ei ∈ CB×1 as a unit vector with 1 in the ith position for i ∈ {1, 2, . . . , B}. When

the filter in equation (3.7) is used to decode the received vector at the base station, the

signal power, noise power, and pilot interference power, are respectively given by,

Psignal = β11(aH1 HH
1 S−1H1e1)2 (A.7)

Pnoise = σ2aH1 HH
1 (S−1)2H1a1, (A.8)

Ppilot =
B∑
j=2

βj1
∣∣aH1 HH

1 S−1H1ej
∣∣2 . (A.9)

For further analysis let us define,

Z = S−1

 B∑
j=2

K∑
k=1

βjkhjkh
H
jk +

K∑
k=2

β1kh1kh
H
1k

S−1 (A.10)

then the interference power is given by

Pinter = aH1 HH
1 ZH1a1 (A.11)

Also, if

νk =

(
β1k

β(k)

)2

,

then define D1 ∈ R(K−1)B×(K−1)B and S1 ∈ CM×(K−1)B as

D1 = diag
{[
ν2a2a

H
2 , ν3a3a

H
3 , . . . νKaKaHK

]}
, and (A.12)

S1 =
[
H2 . . . HK

]
. (A.13)

Then the matrix S can be rewritten as,

S =

K∑
k=2

νkHkaka
H
k HH

k + (θ1 + θ2 + σ2)I = S1D1S
H
1 + (θ1 + θ2 + σ2)I. (A.14)

For the matrix D1 there are (K − 1)(B − 1) eigenvalues which are equal to zero and

K − 1 non-zero values given by
β2
1k

β(k) , for all k ∈ {2, . . . ,K}. Also, define βj as the

random variable representing the large scale fading gain from an arbitrary user in the
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jth cell. Therefore, βjk can be interpreted as the realization of βj for the kth user.

Therefore, Theorem A.1.3 takes the form

m(z) =

(
−z + αE

[
β2

1 /β

1 + β2
1m(z)/β

])−1

(A.15)

where, the expectation is now over the joint distribution of the βjs and β.

Also, notice that the spectral radius of S is bounded by (θ1 + θ2 +σ2)−1. Therefore,

with

β =
B∑
j=1

βj ,

θ̄1 = α

B∑
j=2

E
[
βj
]
,

θ̄2 = α
B∑
j=2

E
[
βj

(
β1

β

)]
and using Lemma A.1.1 we can conclude that,

HH
1 S−1H1 → 1

M
trace{S−1}I = η1I, (A.16)

HH
1 (S−1)2H1 → 1

M
trace{S−2}I = η2I (A.17)

almost surely as M → ∞ where, if G is the non-random limiting distribution of the

eigenvalues λ of the matrix S1D1S
H
1 , then

η1 =

∫
1

λ+ θ̄1 + θ̄2 + σ2
dG(λ) and (A.18)

η2 =

∫
1

(λ+ θ̄1 + θ̄2 + σ2)2
dG(λ). (A.19)

From equations (A.18), (A.19) and using the definition of Stieltjes transform [48] we

can find that

η1 = lim
z→−θ̄2−θ̄2−σ2

m(z),

and since m(z) is complex analytic

η2 = lim
z→−θ̄2−θ̄2−σ2

d

dz
m(z).
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The values of η1 and η2 can then also be from obtained from solving equation (A.15)

and its derivative. The equations are given by,

η1 =

σ2 + αE[β]− αE


(
β2
1
β

)2
η1

1 +
β2
1
β η1



−1

, (A.20)

η2 =

η−2
1 − αE

 β2
1
β

1 +
β2
1
β η1

2−1

. (A.21)

Similarly, in the expression for interference Pinter,

trace {Z} = trace


B∑
j=1

K∑
k=2

βjkS
−1Hkeje

H
j HH

k S−1 +
B∑
j=2

βj1S
−1H1eje

H
j HH

1 S−1

 (A.22)

(a)
=

B∑
j=1

K∑
k=2

βjke
H
j HH

k

(
S−1

)2
Hkej +

B∑
j=2

βj1e
H
j HH

1

(
S−1

)2
H1ej (A.23)

(b)
=

B∑
j=1

K∑
k=2

βjke
H
j HH

k S−2
k

(
I− 2

νkHkaka
H
k HH

k S−1
k

1 + ν2
ka

H
k HH

k S−1
k Hkak

+

ν2
kHkaka

H
k HH

k S−1
k Hkaka

H
k HH

k S−1
k

(1 + ν2
ka

H
k HH

k S−1
k Hkak)2

)
Hkej +

B∑
j=2

βj1e
H
j HH

1 S−2H1ej (A.24)

=
B∑
j=1

(
K∑
k=2

βjke
H
j HH

k S−2
k Hkej − 2

K∑
k=2

βjk
νke

H
j HH

k S−2
k Hkaka

H
k HH

k S−1
k Hkej

1 + νka
H
k HH

k S−1
k Hkak

+

K∑
k=2

βjk
ν2
ke

H
j HH

k S−2
k Hkaka

H
k HH

k S−1
k Hkaka

H
k HH

k S−1
k Hkej

(1 + νka
H
k HH

k S−1
k Hkak)2

)
+

B∑
j=2

βj1e
H
j HH

1 S−2H1ej (A.25)

where, in step (a) we use trace{qqH} = qHq and if

Sk =
∑
k 6=1,k

νkHkaka
H
k HH

k + (θ1 + θ2 + σ2)I (A.26)

then in step (b) use matrix inversion lemma as,

S−1 = S−1
k

(
I−

νkHkaka
H
k HH

k S−1
k

1 + νka
H
k HH

k S−1
k Hkak

)
. (A.27)

Notice that using Lemma (A.1.1), the terms HH
k S−1

k Hk
a.s.−→ η1I and HH

k S−2
k Hk

a.s.−→ η2I

and it appears repeatedly in equation (A.25). Therefore, in the limit of infinite number
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of antennas, again using Lemma A.1.1 we have

HH
1 ZH1

a.s.−→ 1

M
trace{Z}I

a.s.−→

α B∑
j=1

E

βj
η2 − 2

(
β1
β

)2
βj η1η2

1 + η1
β2
1
β

+

(
β1
β

)4
βj β η2η

2
1(

1 + η1
β2
1
β

)2



 I

=

α B∑
j=2

E
[
βj
]
η2 + α

B∑
j=2

E
[
βj

β1

β

]
η2 + αE

[
β2

1

β

]
η2

−αE


(
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β
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1
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1
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(A.28)

=

(∫ ∞
0

λ+ θ̄1 + θ̄2

(λ+ θ̄1 + θ̄2 + σ2)2
dG(λ)

−αE


β2
1
β

(∑B
j=2
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1
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− αE
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1
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(∑B
j=2

β2
j
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 I.

(A.29)

In equation (A.28) the third term E

 β2
1
β
η2(

1+
β2
1
β
η1

)2

 is equal to
∫∞

0
λ

(λ+θ̄1+θ̄2+σ2)2
dG(λ).

This follows from corollary A.1.4.

Using equations (A.16), (A.17), (A.29) in expressions (A.7), (A.8), (A.9) and (A.11)

the SINR given in equation (3.16) converges almost surely to ŜINR as in expres-

sion (3.17).

A.3 Proof of Proposition 3.3.3

Using the matched filter given by c = H1a1, the signal power, noise power, pilot

interference power is given by Psignal =
∣∣a1H

H
1 H1e1

∣∣2, Pnoise = σ2aH1 HH
1 H1a1, Ppilot =
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∑B
j=1 βj1

∣∣aH1 HH
1 H1ej

∣∣2. Since, HHH
a.s.−→ I as M → ∞, we have, Psignal

a.s.−→ β11,

Pnoise
a.s.−→ σ2

∑B
j=1 βj1, Ppilot

a.s.−→
∑B

j=2 β
2
j1. Using Lemma A.1.1 in the interference

term we have,

Pinter = a1H
H
1

 B∑
j=1

K∑
k=2

βjkhkh
H
k

H1a1 (A.30)

a.s.−→ a1

 1

M
trace


B∑
j=1

K∑
k=2

βjkhkh
H
k

 I

a1 (A.31)

= α

B∑
j=1

βj1
1

K

 B∑
j=1

K∑
k=2

βjkh
H
k hk

 (A.32)

= α

B∑
j=1

βj1

 B∑
j=1

E[βj ]

 (A.33)

Rearranging the terms in equation (3.16) we get the expression for SINR.
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