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ABSTRACT OF THE DISSERTATION

A Response Theory of Topological Insulators

by Wing Fung Leung

Dissertation Director: Piers Coleman

A time-reversal invariant topological insulator is defined by its topological magne-

toelectric response that is robust against disorder. The response formula, defined

on a Brillouin torus, defines a Z2 invariant and classifies the topological phase.

However, in the presence of disorder or the magnetic field, the notion of Bril-

louin torus is destroyed and the response formula is no longer well-defined. This

has been a challenging open problem, and it is essental in defining a topological

insulator. This thesis proposes a topological response theory that is free from

this fundamental deficiency. We derived the magnetoelectric response formula in

position space for a generic three dimensional model under disorder and finite

magnetic field. For time-reversal invariant systems, we connected the result to

the 2nd Chern number in Noncommutative Geometry. We developed the non-

commutative theory of Chern numbers and showed that the quantization of the

magnetoelectric response is robust against disorder. Numerical studies on serveral

disodered topological models in 1D and 3D are presented.
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Chapter 1

Introduction

There is a theory which states that if ever anybody discovers exactly what
the Universe is for and why it is here, it will instantly disappear and be
replaced by something even more bizarre and inexplicable. There is another
theory which states that this has already happened.

Douglas Adams

Time-reversal invariant topological insulators represent a new class of ma-

terials where the topology of the bulk electronic structure induces non-trivial

characters [10, 27, 35, 42, 44, 45, 50, 60]. These materials have been theoretically

predicted and then observed in laboratories. Many additional topological mate-

rials have been discovered since then [5, 37, 38, 81]. An up-to-date topological

materials are summarized on Table 1.1. This thesis mainly studies the 3D time-

reversal invariant strong topological insulators, and we will refer to them simply

as topological insulators.

The defining character of topological insulators is their topological magneto-

electric responses in the bulk [21, 79]. Metallic states exist on the surface of the

insulators, as a manifestation of the non-trivial bulk topology [37, 38, 81]. The

topological response is believed to be protected against disorder by time-reversal

symmetry, provided the spectral gap remains open. The robustness is at the

heart of many proposed technological applications, including quantum compu-

tation [37, 81]. Understanding the effect of disorder is also necessary since the

topological materials are “dirty” in the laboratory. As shown in Table 1.1, most

topological materials have a metallic bulk in the experiments, most probably due
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Type Material Band gap Bulk transport Remark

2D CdTe/HgTe/CdTe < 10 meV insulating high mobility

2D AlSb/InAs/GaSb/AlSb ∼4 meV weakly insulating gap is too small

3D Bi1−xSbx < 30 meV weakly insulating complex S.S.

3D Sb semimetal metallic complex S.S.

3D Bi2Se3 0.3 eV metallic simple S.S.

3D Bi2Te3 0.17 eV metallic distorted S.S.

3D Sb2Te3 0.3 eV metallic heavily p-type

3D Bi2Te2Se ∼0.2 eV reasonably insulating ρxx up to 6 Ωcm

3D (Bi,Sb)2Te3 < 0.2 eV moderately insulating mostly thin films

3D Bi2−xSbxTe3−ySey < 0.3 eV reasonably insulating Dirac-cone engineering

3D Bi2Te1.6S1.4 0.2 eV metallic n-type

3D Bi1.1Sb0.9Te2S 0.2 eV moderately insulating ρxx up to 0.1 Ωcm

3D Sb2Te2Se ? metallic heavily p-type

3D Bi2(Te,Se)2(Se,S) 0.3 eV semi-metallic natural Kawazulite

3D TlBiSe2 ∼0.35 eV metallic simple S.S., large gap

3D TlBiTe2 ∼0.2 eV metallic distorted S.S.

3D TlBi(S,Se)2 < 0.35 eV metallic topological P.T.

3D PbBi2Te4 ∼0.2 eV metallic S.S. nearly parabolic

3D PbSb2Te4 ? metallic p-type

3D GeBi2Te4 0.18 eV metallic n-type

3D PbBi4Te7 0.2 eV metallic heavily n-type

3D GeBi4−xSbxTe7 0.1–0.2 eV metallic n (p) type at x = 0 (1)

3D (PbSe)5(Bi2Se3)6 0.5 eV metallic natural heterostructure

3D (Bi2)(Bi2Se2.6S0.4) semimetal metallic (Bi2)n(Bi2Se3)m series

3D (Bi2)(Bi2Te3)2 ? ? no data published yet

3D TCI SnTe 0.3 eV (4.2 K) metallic Mirror TCI, nM = −2

3D TCI Pb1−xSnxTe < 0.3 eV metallic Mirror TCI, nM = −2

3D TCI Pb0.77Sn0.23Se invert with T metallic Mirror TCI, nM = −2

2D? Bi bilayer ∼0.1 eV ? not stable by itself

3D? Ag2Te ? metallic famous for linear MR

3D? SmB6 20 meV insulating possible Kondo TI

3D? Bi14Rh3I9 0.27 eV metallic possible weak 3D TI

3D? RBiPt (R = Lu, Dy, Gd) zero gap metallic evidence negative

Weyl SM? Nd2(Ir1−xRhx)2O7 zero gap metallic too preliminary

Table 1.1: Summary of 2D and 3D topological insulator materials that have be
experimentally addressed (reviewed in Ref. [5]). (S.S., P.T., and SM stand for
surface state, phase transition, and semimetal, respectively.)

to disorder. A great deal of effort has been dedicated to understanding the behav-

ior of the topological materials in the presence of disorder [20, 32–34, 43, 55, 64–

66, 73, 75, 77, 94, 110].

For a clean crystalline insulator, the topological properties is protected by its

spectral gap. It cannot go through a topological phase transition without closing

its spectral gap. It is well known that disorder can lead to electron localization.

When disorder is strong enough, the spectral gap is closed and filled with a dense

localized spectrum. The spectral gap is then replaced by a mobility gap. The
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conventional theory of robustness, which depends on a spectral gap, breaks down.

One important open question for topological insulators is if the robustness extends

to this regime.

The theory of topological magnetoelectric response was first developed for

prefectly perodic crystals [22, 79]. The topological response formula, defined on

a Brillouin torus, is robust against continuous deformations of the parameters of

the crystalline insulators. However, as soon as disorder or the magnetic field is

turned on, the perodicity is lost and the response formula “disappears.” Since the

defining character of a topological insulator is its robustness against disorder, it

is important to search for an alternative theory. The main result of this thesis is a

theory of topological magnetoelectric response using Noncommutative Geometry.

We obtain a magnetoelectric formula in the presence of disorder and magnetic

field. We show that the change in the magnetoelectric response can be connected

to the noncommutative 2nd Chern number. The latter is shown to be quantized

and invariant as long as the Fermi level lies in a mobility gap.

On the numerical side, an accurate and efficient method for computing topo-

logical invariants for disordered systems will be very valuable. Disorder can induce

topological phases in 2D and 3D [32, 34, 55] and strongly deform the topolog-

ical phase digram [43, 75, 110]. We investigate this issue numerically using a

3D Z2 topological index [74] with twisted boundary conditions. Beside being a

well-defined disordered topological invariant, the noncommutative Chern formu-

lae have been proven to be numerically effective. Their computations were suc-

cessfully done for topological models that have significantly larger lattice sizes,

compared to the twisting boundary method [73, 75, 77, 108].

The main Chapters of this thesis develop the noncommutative response theory

of topological insulators and Chern numbers. Chapter 1 reviews the conventional

theory of topological responses. To include disorder and magnetic field, aperiodic
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crystals and covariant observables are defined in Chapter 2. We review an im-

portant formalism developed by Bellissard to extend Brillouin torus to aperiodic

crystals. This is known as the noncommutative Brillouin torus [7].

Chapter 3 develops the noncommutative theory of magnetoelectric response

[54]. To understand the strong disorder effect, we develop the noncommutative

theory of Chern numbers in chapter 4 [78]. The physical meaning of the Chern

numbers is also discussed.

Chapter 5 studies the physical implications of the noncommutative polariza-

tion formula [91], numerical studies are presented [98]. Chapter 6 covers the

numerical studies of strong disorder effect in a topological insulator model. A

projector formulation of Z2 invariant [74] is computed for disordered model with

twisted boundary conditions, and the topological phase diagram is constructed

[53]. Together with the level statistics analysis, the results suggest the robustness

of the topological index remains in the strong disorder regime.

1.1 Topological responses

What is a topological insulator? A topological insulator is characterized by its

topological magnetoelectric response that is robust against disorder. The topo-

logical response defines a Z2 classification, distinguishing a topological insulator

from a trivial insulator.

The canonical picture of topological theory begins with a lattice model with

translational symmetry: a periodic crystal. In the absence of a magnetic field

and disorder, a periodic lattice Hamiltonian takes the form:

H0 =
∑
x,α

∑
y,β

tαβx−y|x, α〉〈y, β|. (1.1)

where x ∈ ZD is a site of the lattice and α = 1, . . . , Q labels the atomic or

molecular orbitals associated with that site. We will assume that tx−y 6= 0 only if



5

|x− y| < R (finite hopping range), with R arbitrarily large but finite and fixed.

It is convenient to fix the Fermi level at zero by introducing an additive constant

to the Hamiltonian. We will label Fermi level with EF throughout the thesis.

A material-specific lattice model can be generated from ab-initio computations

using Wannier function representations or simply by fitting the measured band

structure [57].

Because of the translation symmetry, Bloch theory allows us to compute the

band structure of the crystals in k-space. Using Bloch transformation, we can

define the model over a Brillouin torus T D = S1× . . .×S1, where the Hamiltonian

is represented by a family of Q×Q Bloch Hamiltonian Hk. If H0 has a spectral

gap at the Fermi level, and consequently we can define an analytical k-dependent

projector P̃k = χ(−∞,EF ](Hk) on the Brillouin torus T D. The analytic family of

projectors {P̃k}k∈T D defines the Berry curvature for the occupied Bloch states:

F = P̃k dP̃k ∧ dP̃k. (1.2)

The classical nth Chern number over a Brillouin 2n-torus is then defined by the

formula [6]:

Chn :=
(−1)n

(2πi)nn!

∫
T 2n

tr{Fn}. (1.3)

where tr{} represents a trace over the orbital index α and i =
√
−1. It is a

standard result in differential topology that, as long as P̃k remains globally smooth

in k, the Chern numbers take integer values and remain constant under smooth

deformations of the {P̃k}k∈T 2n family [61]. In the present context, the smoothness

of P̃k is protected by the spectral gap of H0.

Bloch theory has been a canonical tool for understanding the physical prop-

ertites of crystalline solids. In particular, Chern numbers sets the fundation for
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our understanding of physical responses and the classification for topological mat-

ters. In two dimensions, the 1st Chern number reveals the topological origin of

the integer quantized Hall effect. TKNN showed that the Hall conductivity can

be expressed as the 1st Chern number [103]:

σxy = −e
2

h

1

2πi

∫
T 2

tr{F}. (1.4)

As a topology consequence, the right hand side is always an integer multiple

of e2/h, given that a finite spectral gap exists. This quantization allows us to

distinguish the topologically distinct phases of this system. The robustness of the

Chern number ensures that the value of Hall response remains unchanged upon

continuous deformations of the parameters of the crystal, unless the system goes

through a transition by closing the insulating gap.

The topological magnetoelectric response in a topological insulator describes

the induced quantized polarization (magnetization) by an external magnetic (elec-

tric) field. As we shall see, the magnetoelectric response connects to the 2nd

Chern number. For an adiabatic path γ(t) connecting a trivial phase (t = 0) and

a topologically non-trivial phase (t = π), the topological magnetoelectric response

can be computed using [21, 79]:

α =
e2

h

1

16π2

∫
T 3×γ

tr{F2
t }. (1.5)

where Ft := P̃k(t)dP̃k(t) ∧ dP̃k(t) and the spectral gap is maintained along the

adiabatic path. For a time-reversal system, the expression is equal to half of the

second Chern number. Just like in the integer quantum Hall effect, a change in

the Chern number for the system cannot happen without closing the spectral gap

and crossing a metallic region. As a result, the magnetoelectric coupling Eq. 1.5

is quantized as a half-integer multiples of e2/h for topological insulators, and the

quantization is topologically protected for bulk insulating systems.
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The main challenge of the topological response theory is that Bloch theory

fails in the presence of some physical effects. For example, both magnetic field and

disorder break translational symmetry, and no Brillouin torus can be constructed.

The conventional formulae presented in this section are no longer well-defined.

Since both effects are fundamental in our understanding of quantized Hall and

magnetoelectric responses, the response theory of periodic crystals cannot be the

end of the story. This points us to the main theme of this thesis: a topological

reponse theory of aperiodic crystals.
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Chapter 2

Noncommutative Brillouin Torus

We introduce the aperiodic lattice models which are used throughout the the-

sis. We define the covariant Hamiltonians and noncommutative Brillouin torus.

The formalism was first introduced by Bellissard to generalize Bloch theory to

aperiodic crystals in the 80s. The classical theory of Chern numbers can also be

extended to this framework. It provides a natural language to describe topolog-

ical responses and to classify the topological phases in the presense of disorder

and an arbitrary magnetic field.

2.1 Aperiodic crystals

In this section, we consider aperiodic lattice models that include disorder and

an uniform magnetic field. Traditionally, an on-site random disorder potential is

added to study disorder effect, but we also include the disorder that couples be-

tween two sites and different orbitals. This could represent a disordered displace-

ment of the atomic positions in a crystal, which introduces a random component

in the hopping amplitudes. A D-dimentional disordered lattice Hamiltonian is of

the form:

Hω =
∑
x,α

∑
y,β

tαβx,y(ω)|x, α〉〈y, β|. (2.1)

with
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tαβx,y(ω) = tαβx−y + λωαβx,y, (2.2)

where ωαβx,y are independent random variables, uniformly distributed in the interval

[−1
2
, 1

2
]. The collection of all random variables ω = {ωαβx,y} can be viewed as a

point in an infinite dimensional disorder configuration space:

Ω =
⊗
x,α;y,β

[−1

2
,
1

2
], (2.3)

which is metrizable and can be viewed as a probability space. It is equipped with

the probability measure:

dP (ω) =
∏
x,y

∏
αβ

dωαβx,y. (2.4)

Furthermore, there is a natural action of the discrete ZD additive group on Ω:

(taω)αβx,y = ωαβx−a,y−a, a ∈ ZD, (2.5)

acts ergodically and leaves dP (ω) invariant. The ergodicity assumption implies

the Birkhoff’s ergodic theorem. For an ergodic translation tn, it states that:

lim
N→∞

1

N

N−1∑
n=0

f(t−1
n ω) =

∫
Ω

dP (ω) f(ω) (2.6)

where f is a function depending on the configuration ω. It means that averaging

over the infinite successive lattice translations is equivalent to the ensemble av-

erage over the entire configuration space. For a covariant observable Fω, we can

translate it to the following:
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lim
V→∞

1

|V|
∑
x∈V

〈0|Ft−1
x ω|0〉 =

∫
Ω

dP (ω) 〈0|Fω|0〉 (2.7)

where V is a box and |V| is its volume. The physical meaning of this quantity

will be clear after we introduced the noncommutative trace in the next section.

Now, we will include the effect of the magnetic field. For a 2D lattice model

under an uniform magnetic field, the effect can be included using Peierls substi-

tution [68]:

tαβx,y(ω)→ e
−i

∫Rx
Ry

dl·A
tαβx,y(ω) = e

i
2
B·(x∧y)tαβx,y(ω), (2.8)

where ~ = e = 1 is set and the area of unit cell is set to 1. We can gener-

alize this to higher dimensions. For example in three dimensions, the Peierls

phase is e
i
2
B1(x2y3−x3y2)e

i
2
B2(x3y1−x1y3)e

i
2
B3(x1y2−x2y1). The magnetic field can be

parametrized as a 3× 3 antisymmetric tensor Bij:

Bij =


0 B3 −B2

−B3 0 B1

B2 −B1 0

 . (2.9)

and the phase factor can be written as e
i
2
xiBijyj . In general, under a fixed magnetic

field and disorder, our D-dimensional aperiodic model takes the form:

Hω =
∑
x,α

∑
y,β

e
i
2
xiBijyj tαβx,y(ω)|x, α〉〈y, β|. (2.10)

The magnetic translations by lattice a are given by Ua:

Ua|x, α〉 = e−
i
2
aiBijxjTa|x, α〉 = e−

i
2
aiBijxj |x+ a, α〉, (2.11)
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where Ta is lattice translation by a. It is straightforwards to show that Eq. 2.10

satisfies the following relation:

UaHωU
−1
a =

∑
x,α

∑
y,β

e
i
2

(xi+ai)Bij(yj+aj)tαβx,y(ω)|x+ a, α〉〈y + a, β|

=
∑
x,α

∑
y,β

e
i
2
xiBijyj tαβx−a,y−a(ω)|x, α〉〈y, β|

=
∑
x,α

∑
y,β

e
i
2
xiBijyj tαβx,y(taω)|x, α〉〈y, β|

= Htaω,

where a change of coordinates and Eq. 2.5 are used. The equality UaHωU
−1
a =

Htaω is called the covariant relation, and the Hamiltonian Eq. 2.10 forms a family

of covariant operators {Hω}ω∈Ω. The triplet (Ω, t, {Hω}ω∈Ω) defines a homoge-

nous system [7]. Taking the magnetic field and disorder to zero, the relation

reduces to TaHT
−1
a = H which defines the translational invariant Hamiltonian

for a periodic crystal.

For perfectly periodic systems we are primarily concerned with the transla-

tionally invariant Hamiltonians. The main difficulty in studying aperidoic crystals

is the lack of transational symmetry, Bloch theory is then not applicable. How-

ever, the aperiodic crystals are still homogenous in space, macrosopically, and

the physical properties are translationally invariant. The idea is that for such

homogenous systems we consider all translates of the Hamiltonian, the covariant

family of Hamiltonians.

2.2 Algebra of covariant observables

The basic idea of noncommutative geometry comes from the duality between al-

gebra and geometry [15]. Our classical thinking of spaces relies on the notion of

geometric manifolds. However, there is another half of the story: the algebraic
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way. In its simplest form: the information about a classical space can be en-

coded in the commutative algebra of functions on that space. We can look at a

classical space from two different but equivalent points of view: algebra or geom-

etry. Noncommutative geometry relaxes the commutative restriction and extends

the duality to noncommutative algebra, i.e. the C∗-algebra of functions on the

noncommutative space.

The conventional theory of topological insulators begins by going into momen-

tum space, defining topological invariants on the Brillouin torus. As emphazied

before, this preassumes the existence of the Brillouin manifold, hence translational

symmetry in the system. We will follow the noncommutative approach and study

the algebra of covariant observables. Such algebra, together with calculus tools,

defines the noncommutative Brillouin torus [7]. It provides a natural theoretical

framework for the study of aperiodic crystals. The response and thermodynamic

functions for a homogeneous model can be computed within the algebra generated

by the covariant families of operators.

For a covariant family of operators {Fω}ω∈Ω, all the information is encoded

in the matrix elements:

fα,β(ω,x) = 〈0, α|Fω|x, β〉, (2.12)

All the other matrix elements can be obtained from fα,β(ω,x) using magnetic

translations. As such, the entire family of covariant operators can be described

using a single function:

f : Ω× ZD →MQ×Q, (2.13)

where MQ×Q is the space of Q × Q complex matrices. This definition leads to

the following addition and multiplication algebraic operations:
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(f + g)(ω,x) = 〈0, α|Fω +Gω|x, β〉 (2.14)

= f(ω,x) + g(ω,x),

(f ∗ g)(ω,x) = 〈0, α|FωGω|x, β〉 (2.15)

=
∑
y∈ZD

e
i
2
xiBijyjf(ω,y)g(t−1

y ω,x− y).

Each element from the algebra A0 defines a family of covariant bounded operators

on `2(ZD,CQ), through the representation:

(πωf)|x, α〉 =
∑
y∈ZD

Q∑
β=1

e
i
2
xiBijyjfβα(t−1

y ω,x− y)|y, β〉. (2.16)

A direct calculation using the definition shows that the representation πωF is

just the covariant operator Fω. For example, it is easy to show that the element

hαβ(ω,x) = tαβ0,x(ω) = tαβ0−x + λωαβ0,x (2.17)

generates the covariant Hamiltonian Eq. 2.10. If we furthur introduce the follow-

ing norm on A0:

‖f‖ = sup
ω∈Ω
‖πωf‖, (2.18)

and the ∗-operation:

f ∗(ω,x) = f(t−1
x ω,−x)†, (2.19)

then the completion ofA0 under the norm of Eq. 2.18 becomes a C∗-algebra, which

will be denoted byA. The advantage of the algebraic approach is that it remains a

valid description even when the translational symmetry is absence. With defined

noncommutative calculus, the algebra generalized the Brillouin torus, and is called

the noncommutative Brillouin torus [7].
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2.3 Noncommutative calculus

The classical differential manifolds are completely determined by the algebra of

smooth functions defined over the manifold and by the differential calculus with

these functions. In the noncommutative setting, we replace the commutative alge-

bra of smooth functions over the classic Brillouin torus with the noncommutative

algebra A, and then build a noncommutative differential calculus over A. The

k-derivations are given by linear automorphisms of algebra A:

(∂jf)(ω,x) = ixjf(ω,x), (2.20)

where j = 1, . . . , D, and the classical integration on a Brillouin torus is replaced

by a trace over A:

T (f) =

∫
Ω

dP (ω) tr{f(ω,0)}, (2.21)

where tr is trace over MD×D space, and 0 is the origin of the lattice. Together

with the algebra, the triplet (A, T , ∂) defines the noncommutative Brillouin torus.

The derivations are not defined over the entire algebra A but only over the

subalgebra of “differentiable” functions:

C1(A) = {f ∈ A, ‖∂jf‖ <∞, j = 1, . . . , D}. (2.22)

More general, the subalgebra of Nth differentiable functions is defined as:

CN(A) = {f ∈ A, ‖∂α1
1 ∂α2

2 ∂α3
3 f‖ <∞, α1 + α2 + α3 = N}. (2.23)

We will only work with C∞(A) elements, so from now all elements will be assumed

to be part of this subalgebra. The operator representations of the derivations can
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be derived by using the Eq. 2.16 and 2.20:

πω(∂jf) = −i[Xj, πωf ] = −i[Xj, Fω], (2.24)

where X = (X1, . . . , XD) is the position operator. For homogenous systems, the

physical meaning of T can be understood in the operator representation:

T (f) =

∫
Ω

dP (ω) tr〈0|Fω|0〉 (2.25)

= lim
V→∞

1

V
tr
∑
x∈V

〈0|Ft−xω|0〉

= lim
V→∞

1

V
tr
∑
x∈V

〈x|Fω|x〉,

where the ergodic theorem and covariant relation are used in the second and third

line respectively. It means that moving through the infinite sample is equivalent

to moving through the entire disorder configuration space. In general, we can

show that:

T (f ∗ g . . .) =

∫
Ω

dP (ω) tr〈0|FωGω . . . |0〉, (2.26)

and

T (f ∗ g . . .) = lim
V→∞

1

V
TrV{FωGω . . .} := τ(FωGω . . .), (2.27)

where the trace TrV means the trace over the quantum states inside the box V .

Therefore, given a specific disorder realization, the trace of covariant operators

per unit volume is equivalent to its disorder average at the origin:

τ(FωGω . . . ) =

∫
Ω

dP (ω) tr{f ∗ g . . . (ω,0)} (2.28)
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which means the observables are self-averaging.

In the translational invariant limit, they both have natural correspondence

to the classical k-space calculus. For periodic crystals, a translational invariant

operator F corresponds to a k-derivative on a Brillouin torus:

[Xj, F ] −→ i
∂

∂kj
F̃k, (2.29)

and only a single unit cell is needed for consideration due to translational symme-

try. Due to translational symmetry, the trace per volume is equivalent to “trace

per Brillouin torus”:

τ(FG . . .) = lim
V→∞

1

V
TrV{FωGω . . .} (2.30)

=
1

(2π)D

∫
T D

dDk tr{F̃kG̃k . . .}.

And we conclude the correspondence for the traces:

T (f ∗ g . . .) −→ 1

(2π)D

∫
T D

dDk tr(F̃kG̃k . . .). (2.31)

Next, we collect below a list of well-known calculus rules (j, k = 1, 2, 3):

1. The derivations commute:

∂j∂kf = ∂k∂jf. (2.32)

2. The derivations are *-derivations:

∂j(f
∗) = (∂jf)∗. (2.33)

3. The derivations satisfy the Leibniz rule:
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∂j(f ∗ g) = (∂jf) ∗ g + f ∗ (∂jg). (2.34)

4. For f invertible in A, then:

∂jf
−1 = −f−1 ∗ (∂jf) ∗ f−1. (2.35)

5. The trace satisfies positivity:

T (f ∗ f ∗) ≥ 0. (2.36)

6. The trace are cyclic:

T (f ∗ g) = T (g ∗ f). (2.37)

7. The boundary vanishes:

T (∂jf) =

∫
Ω

dP (ω)
∑
α

〈0, α|i[Xj, Fω]|0, α〉 = 0. (2.38)

8. Combining with the Leibnitz rule, we get the partial integration rule:

T (∂jf ∗ g) = −T (f ∗ ∂jg). (2.39)

In addition, we need to define the following notions of norm. For 1 ≤ s <∞, the

following equation:

‖f‖Ls = T
(
{f ∗ f ∗}

s
2

) 1
s (2.40)

defines a norm on A0. The completion of A0 under this norm is called the

noncommutative Ls-space and is denoted by Ls(A, T ). Let α = (α1, . . . , αD) be
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a multi-index, |α| = α1 + . . . αD, and ∂α = ∂α1
1 . . . ∂αDD . Then, for 1 ≤ s <∞ and

k a positive integer, the following equation:

‖f‖W s,k =
∑

0≤|α|≤k

‖∂αf‖Ls (2.41)

defines a norm on A0. The completion of A0 under this norm is called non-

commutative Sobolev space and is denoted by W s,k(A, T ). The noncommutative

Sobolev space WD,1(A, T ) will play a special role in what follows. Since this is

the only Sobolev space used in this thesis, we will use the simplified notation

W (A, T ) for it. It is useful to explicitly write its norm:

‖f‖W = T
(
|f |D

) 1
D +

D∑
i=1

T
(
|∂if |D

) 1
D , (2.42)

where |f | = (f ∗ f ∗) 1
2 .

2.4 Magnetic derivative

The traditional linear response calculus with respect to the magnetic field can also

be extended to this formulism [7, 82]. It allows us to take derivatives with respect

to the magnetic field in the algebra A. It has been successfully used to derive

Streda formula [91] and magnetoelectric response [54]. The derivatives acting on

f ∈ A can be computed using:

∂BjT (f) = T (δjf), (2.43)

where δj’s, j = 1, . . . , D are the algebraic derivatives with respect to the magnetic

field. For 3D, they satisfy the following algebraic relationships (with j taken mod

3):

α.) δj∂if = ∂iδjf
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β.) δjf
∗ = (δjf)∗

γ.) δj(f ∗ g) = (δjf) ∗ g + f ∗ (δjg) + i
2
(∂j+1f ∗ ∂j+2g − ∂j+2f ∗ ∂j+1g)

δ.) δj[f, g] = [δjf, g] + [f, δjg] + i
2
([∂j+1f, ∂j+2g]− [∂j+2f, ∂j+1g]

ε.) δj(f
−1) = −f−1 ∗ δjf ∗ f−1 + i

2
f−1 ∗ [∂j+1f ∗ f−1, ∂j+2f ∗ f−1]

They can be checked using the relations in the previous section. α.) follows

directly by applying Eq. 2.20 and 2.43. To be explicit:

(δj∂if)(B,ω,x) = ixi(δjf)(B,ω,x)

= ixi
∂

∂Bj
f(B,ω,x)

= (∂iδjf)(B,ω,x)

While β.) follows from the fact that B is real, γ.) can be shown by first applying

∂B3 to the right hand side of Eq. 2.15:

δ3(f ∗ g) =
∂

∂B3
(
∑
y∈Z3

f(ω,y)g(t−1
y ω,x− y)e

i
2
xiBijyj)

=
∑
y∈Z3

( ∂

∂B3
f(ω,y)

)
g(t−1

y ω,x− y)e
i
2
xiBijyj

+
∑
y∈Z3

f(ω,y)
( ∂

∂B3
g(t−1

y ω,x− y)
)
e
i
2
xiBijyj

+
i

2

∑
y∈Z3

f(ω,y)g(t−1
y ω,x− y)(x1y2 − x2y1)e

i
2
xiBijyj

= (δ3f) ∗ g + f ∗ (δ3g) +
i

2
(x1y2 − x2y1)f ∗ g

= (δ3f) ∗ g + f ∗ (δ3g) +
i

2
(∂2f ∗ ∂1g − ∂1f ∗ ∂2g)

where the last line is reached by observating (x1y2 − x2y1) = (x1 − y1)y2 − (x2 −

y2)y1 and applying Eq. 2.20. Permutating on x, y, z, γ.) is concluded. Next, δ.)

immediately follows from γ.). Finally, ε.) can be shown directly using δj(f
−1∗f) =
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0, γ.) and Eq. 2.35. These rules of calculus allow us to compute any response

function involving magnetic field.
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Chapter 3

Topological Magnetoelectric Response

Here, the magnetoelectric response in position space is derived in the framework

of noncommutative Brillouin torus. The formula is well-defined for an arbitrary

magnetic field and disorder. The connection between the quantization of the

magnetoelectric response and second noncommutaive Chern number are shown

for three dimensional time-reversal topological insulators.

3.1 Introduction

The magnetoelectric effect in insulating materials consists in the appearance of

a finite electric bulk polarization P when a sample is subjected to an external

magnetic field B, and in the appearance of a finite bulk magnetization M when

the sample is subjected to an external electric field E. It is described by the

magnetoelectric response tensor:

αij =
∂Pi
∂Bj

=
∂Mj

∂Ei
, (3.1)

where the derivatives are not necessarily taken at zero B or E fields. The last

equality only holds in the absence of dissipation and dispersion. Therefore, they

are only valid for a low frequency, low temperature response of an insulator. The

effect has been observed in a variety of materials and its technological applications

can be tremendous [25, 99].

Originally, the effect was sought in materials with broken time-reversal and
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inversion symmetries, but recently it was also shown that topological insulators

can display large magnetoelectric responses [79, 104] due to topological charac-

teristics of their electronic structures. It was shown that the three dimensional

topological insulators can be classified by their magnetoelectric response.

For perfectly periodic, time-reversal invariant insulators, the magnetoelectric

response induces a Z2 topological classification [79] and the topological part of

the magnetoelectric tensor, which defines an invariant for this classification, was

shown [106] to equal the previously introduced [28, 60, 88] Z2 invariants. This

was an important development in the field because it provided a measurable bulk

effect which sets apart the trivial and topological three dimensional time-reversal

invariant insulators [56].

The magnetoelectric response has ionic, spin and orbital contributions. Here

we discuss only the orbital component, which can be decomposed into isotropic

and traceless parts. Both components are experimentally measurable quantities

but we will focus exclusively on the isotropic component:

α =
1

3

3∑
j=1

αjj, (3.2)

for it contains the topological response. For perfectly periodic, time-reversal or

inversion invariant crystals in the absence of external fields, α was derived and

explicitly computed in Refs. [21, 41, 79] for several insulator models, showing that

indeed α can take non-trivial quantized values. For perfectly periodic systems

without time-reversal and inversion symmetries, Refs. [22, 59] showed that α has

additional contributions besides the topological component.

Our goal here is to extend the above mentioned works to the case when dis-

order and magnetic field are present, maintaining the assumption of a gap in the

energy spectrum at the Fermi level. The main challenges arising in this more

general setup are the breaking of the translational symmetry and the tedious
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linear response calculus with respect to the magnetic field. Both challenges are

overcome using noncommutative geometry [15].

The starting point for our work is Ref. [91] where noncommutative formulae

for P and M have been reported. Given these results, we could have proceeded

along two routes, one relying on the variation of P with B and the other one

relying on the variation ofM with E. We chose the first route because computing

the variation of P with B fits better into the noncommutative geometry of the

Brillouin torus [7], which provides us a tool to compute the derivatives with

respect to the magnetic field (see Chapter 2).

3.2 Isotropic magnetoelectric response

The modern polarization begins with the realization that it is the change of po-

larization that is a well-defined bulk property and an experimental observable

[46, 83]. Instead of polarization itself, we should define the difference in polari-

ation between two states that can be connected via an adiabatic change of the

Hamiltonian H(t), where the parameter t is the adabatic parameter. While keep-

ing the spectral gap opens, the differnce in polarization can be computed by the

integrated bulk current density j(t) in the j direction as the system evolves from

t = 0 to t = T adabatically:

∆Pj = Pj(T )− Pj(0) =

∫ T

0

dt j(t) (3.3)

Ref. [91] proved the following result: The change of the electric polarization

during an adiabatic variation of the Hamiltonian at a fixed magnetic field is given

by:

∆Pj = i

∫
γ

dt T
(
p ∗ [∂tp, ∂jp]

)
, (3.4)
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where p := p(t) = χ(−∞,EF ](h(t)) is the projector onto the occupied states. The

noncommutative formula for polarization can be thought of as a generalization

of the King-Smith and Vanderbilt formula [46]. It shows that the polarization

formula is well-defined even in the presense of a magnetic field and disorder.

It was noted by Thouless, that for a T-periodic Hamiltonian, the polarization

is in fact, a topological quantity [102]. Physically, this implies the quantization

of charge transported during a cyclic deformation of the Hamiltonian. This rea-

soning suggests a connection between Eq. 3.4 to the noncommutative 1st Chern

number. It implies that the quantization is stable in the presense of disorder,

provided the spectral gap remains open.

The key observation is that applying the algebraic magnetic derivative to

Eq. 3.4 leads to the topological magnetoelectric response [54]. The magnetoelec-

tric tensor is well-defined only when referenced from a “standard” system. We

will denote the reference system by h0 and we will consider adiabatic time vari-

ations of the Hamiltonian h(t) which originate at this h0. The main assumption

is that the Fermi level is always in a spectral gap during the adiabatic variation.

For a 3D homogenous lattice Hamiltonian Eq. 2.10, the variation in isotropic

magnetoelectric response can be computed as:

∆α =
1

3

3∑
j=1

∂∆Pj
∂Bj

= i

∫
γ

dt
1

3

3∑
j=1

T
(
δj(p ∗ [∂tp, ∂jp])

)
, (3.5)

Our main task is to compute:

3∑
j=1

T
(
δj(p ∗ [∂tp, ∂jp])

)
. (3.6)

Using the rule of calculus from Sec. 2.4, we have:
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δj(p ∗ [∂tp, ∂jp]) = δjp ∗ [∂p, ∂jp] + p ∗ δj[∂tp, ∂jp]

+
i

2
∂j+1p ∗ ∂j+2[∂tp, ∂jp]−

i

2
∂j+2p ∗ ∂j+1[∂tp, ∂jp]. (3.7)

The contributions to ∆α from the last two terms above identically cancel out, as

it can be easily seen by using an integration by parts. The magnetic derivative

of the commutator is:

δj[∂tp, ∂jp] = [δj∂tp, ∂jp] + [∂tp, δj∂jp]

+
i

2

(
[∂j+1∂tp, ∂j+2∂jp]− [∂j+2∂tp, ∂j+1∂jp]

)
. (3.8)

The contribution to the integrant in Eq. 3.5 from the last two terms of Eq. 3.8 is

zero while the first from the first two terms of Eq. 3.8 gives:

3∑
j=1

T
(
p ∗ ([δj∂tp, ∂jp] + [∂tp, δj∂jp])

)
= 2

3∑
j=1

T
(
[∂tp, ∂jp] ∗ δpj

)
+
d

dt

3∑
j=1

T
(
χ(h− EF ) ∗ ∂jp ∗ δjp

)
. (3.9)

So far the calculation stands as:

3∑
j=1

T
(
δj(p ∗ [∂tp, ∂jp])

)
= 3

3∑
j=1

T
(
[∂tp, ∂jp] ∗ δjp

)
+
d

dt

3∑
j=1

T
(
χ(h− EF ) ∗ ∂jp ∗ δjp

)
. (3.10)

Now:
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T
(
[∂tp, ∂jp] ∗ δjp

)
= T

(
[∂tp, ∂jp] ∗ δjp ∗ p) + T

(
[∂tp, ∂jp] ∗ δjp ∗ (1− p)

)
= T

(
p ∗ [∂tp, ∂jp] ∗ δjp ∗ p)

+T
(
(1− p) ∗ [∂tp, ∂jp] ∗ δjp ∗ (1− p)

)
,

where in the last line we used the cyclicity of the trace and the idempotency of

p and 1 − p. Given the fact that p and (1 − p) commute with [∂tp, ∂jp], we can

continue as:

. . . = T
(
[∂tp, ∂jp] ∗ (p ∗ δjp ∗ p+ (1− p) ∗ δjp ∗ (1− p))

)
(3.11)

=
1

2i
T ((2p− 1) ∗ [∂tp, ∂jp] ∗ [∂tp, ∂jp])

=
1

i
T (p ∗ [∂tp, ∂jp] ∗ [∂tp, ∂jp]), (3.12)

where in the second line we used the following identites for projectors [91]:

p ∗ (δjp) ∗ p = − i
2
p ∗ [∂j+1p, ∂j+2p] ∗ p (3.13)

and

(1− p) ∗ (δjp) ∗ (1− p) =
i

2
(1− p) ∗ [∂j+1p, ∂j+2p] ∗ (1− p). (3.14)

We conclude:
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i

3

3∑
j=1

T
(
δj(p ∗ [∂tp, ∂jp])

)
=

3∑
j=1

T
(
p ∗ [∂tp, ∂jp] ∗ [∂j+1p, ∂j+2p]

)
+
i

3

d

dt

3∑
j=1

T
(
χ(h− EF ) ∗ ∂jp ∗ δjp

)
, (3.15)

and the first term on the left side can be anti-symmetrized and brought to the

desired form:

∆α =
1

2

∫
γ

dt εαβγδT
(
p ∗ ∂αp ∗ ∂βp ∗ ∂γp ∗ ∂δp

)
+
i

3
T
(
χ(h− εF ) ∗ ∂jp ∗ δjp

)∣∣∣final

initial
, (3.16)

where summation over the repeating indices is assumed. The indices α,. . . , δ run

through t and j = 1, 2, 3, and ε is the signature of the permutation. The first (sec-

ond) term on the right hand side of Eq. 3.16 is called topological (non-topological)

for reasons to be discussed shortly. Just like the polarization formula, the change

in magnetoelectric response for T -periodic Hamiltonian will be protected against

disorder [91]. We would like to point out that the computation of this section

remains valid even in the regime of strong disorder where the insulating gap is

closed and is replaced by a mobility gap (provided we accept the formula Eq. 3.4

for the electric polarization).

3.3 Quantization and invariance

For the purpose of this discussion, it is more convenient to view the adiabatic

time evolution from an initial to a final configuration as an adiabatic interpo-

lation between two points in the parameter space of the model. The adiabatic
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Figure 3.1: (a) Various adiabatic interpolations between the initial (h0) and final
(h) systems. (b) Here h0 and h are time-reversal symmetric (TRS), but they are
adiabatically interpolated via paths that are not necessarily time-reversal sym-
metric (Θγ 6= γ). The shaded regions represents regions in the model’s parameter
space where the spectral gap closes. The TRS line is invariant to the time-reversal
operation.

interpolations will be represented as curves in this parameter space and the time-

integral can be viewed as an integral along such curve. We automatically assume

that the spectral gap at the Fermi level remains open during the adiabatic in-

terpolations. We will use the notations γ + γ′ to denote the interpolation path

obtained by joining the interpolation paths γ and γ′, −γ to denote the interpo-

lation path γ when taken in reverse, and ∆α[γ] to indicate that the variation in

the magnetoelectric response depends on the interpolation path γ.

The first question we want to address is what happens to the variation of

the isotropic magnetoelectric response when we consider different interpolation

paths, γ(t) and γ′(t), between the reference and the final systems. Since:

∆α[γ]−∆α[γ′] = ∆α[γ − γ′], (3.17)

we can write:

∆α[γ]−∆α[γ′] =
1

2

∮
γ−γ′

dt εαβγδT
(
p ∗ ∂αp ∗ ∂βp ∗ ∂γp ∗ ∂δp

)
, (3.18)
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and the important observation here is that the t-integral is now taken over a closed

loop. We can then recognize on the right-hand side the expression of the second

Chern number Ch2 over the space (γ − γ′) × noncommutative Brillouin torus,

written in the position space rather than in the k-space. Because of the finite gap

assumption, the second Chern number is quantized, due to a general argument

by Connes [14], which says that the pairing between the projectors and cyclic

cocycles is a homotopy invariant. Hence the quantization occurring in the clean

limit persists when the disorder is turned on, at least as long as the spectral gap

remains open.

Therefore, the answer to our first question is that the difference in ∆α[γ], when

computed along different adiabatic evolutions, is always an integer number (we

recall that our units were taken such that e = ~ = 1). We illustrate in Fig. 1(a)

various possible situations. For example, if the interpolating paths γ(t) and γ′(t)

can be deformed into each other without closing the spectral gap, then Ch2 is

necessarily zero and ∆α[γ] is identical for the two interpolation paths. But, if

the interpolating paths cannot be deformed into each other without closing the

spectral gap, such as it happens for γ(t) and γ′′(t) in Fig. 1(a), then Ch2 may take

non-trivial integer values so ∆α[γ] and ∆α[γ′′] cannot be expected to be identical,

but we know that the difference between the two will be an integer number.

We now turn our attention to adiabatic interpolations between time-reversal

invariant systems, in which case we need to turn the magnetic field off. Symmetry

considerations can be used to show that only the topological part of ∆α survives

for such such systems [22, 59]. The time-reversal operation is given by the map:

Θ : A|B=0 → A|B=0, (Θf)(ω,x) = eiπsyf(ω,x)e−iπsy , (3.19)

where sy is a matrix from MD×D representing the y-component of the spin op-

erator, and the line at the top represents complex conjugation. Some immediate
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properties of time-reversal map Θ are:

Θ(f ∗ g) = (Θf) ∗ (Θg), (3.20)

and

∂jΘf = −Θ(∂jf). (3.21)

Now, let h0 and h be two time-reversal invariant Hamiltonians, Θh0 = h0 and

Θh = h. The key observation is that, if γ(t) is an adiabatic interpolation between

h0 and h, then Θγ is also an adiabatic interpolation between h0 and h (with a

strictly positive spectral gap), and furthermore:

∆α[γ] = ∆α[−Θγ]. (3.22)

This can be seen from the explicit formula of Eq. 3.16 and the properties of the

time-reversal map stated in Eqs. 3.20 and 3.21. We already established that:

∆α[γ]−∆α[Θγ] = Ch2[γ −Θγ], (3.23)

and this together with Eq. 3.22 leads to an important conclusion for this section:

∆α[γ] =
1

2
Ch2[γ −Θγ]. (3.24)

This shows the quantization of topological magnetoelectric response is robust

against disorder.

In Fig. 3.1(b) we illustrate several possible situations. If γ can be deformed

to a time-reversal invariant path, Θγ = γ, then Ch2 = 0 and ∆α[γ] is necessary

zero. But if h0 and h cannot be connected with a time-reversal invariant path
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without closing the spectral gap at the Fermi level, then γ must be taken as

in Fig. 3.1(b) so that to avoid the closing of the spectral gap. In this case,

Ch2[γ−Θγ] can take non-trivial integer values and consequently ∆α[γ] can take

non-trivial values, which are either integer or half-integer numbers. If we take a

different interpolation path, such as γ′ in Fig. 3.1(b), then ∆α[γ′] may change

but only by an integer number, as it was already established above. As such,

for all possible adiabatic interpolation paths, ∆α[γ] is either an integer number

or a half-integer number. In other words, the integer or half-integer character of

∆α[γ] is topologically stable.

3.4 Z2 classification

The results of the last section can be further developed into a Z2 classification

of three dimensional disordered time-reversal invariant insulators. We can take

the reference systems to be the insulators with zero hopping amplitudes between

different lattice sites. These systems can be called “trivial” since they do not

display any magnetoelectric response as there are no Peierls factors when a mag-

netic field is turned on. As such, we can postulate α = 0 for the trivial systems.

Then, the time-reversal invariant insulators fall into two classes (here we assume

that all time-reversal symmetric insulators can be adiabatically connected to a

representative from the trivial class): one for which α = integer and another for

which α = half-integer, and we can be sure that an insulator from the first class

and an insulator from the second class cannot be connected by a time-reversal

invariant interpolation path without closing the insulating gap.

An insulator from a given symmetry class is generally called topological [41]

if it cannot be adiabatically connected with its atomic limit (obtained by turning

off the hopping terms between distinct lattice sites) via an interpolation path that

respects the symmetry of the class and without closing the insulating gap. If we
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follow this definition, then the class of three dimensional disordered time-reversal

invariant insulators with α = half-integer contains only topological insulators.

Of course, our analysis does not rule out additional, more refined topological

sub-classifications of either α = integer or α = half-integer classes.

A Z2 classification of the disordered inversion symmetric insulators is also

possible via similar arguments. This is the case because the inversion operation

satisfies the properties written in Eqs. 3.20 and 3.21, which are at the core of

the Z2 classification of time-reversal insulators. However, for inversion symmetric

insulators, it is explicitly known [41] that the Z2 classification is not the end of

the story as it can be furtherly refined.

3.5 Position formulae

The physical meaning of the algebraic formulae becomes the transparent in Hilbert

space, where its connection to the k-space formula can be estisbalished. Using

the operator representations, the algebraic polarization formula Eq. 3.4 can be

translated to:

∆Pj = e

∫
γ

dt τ
(
Pω[∂tPω, [Xj, Pω]]

)
, (3.25)

where Pω := χ(−∞,EF ](Hω(t)) is the “global” projector and the physcial constant

e is recovered. This is simply a position formula for the polarization. For a trans-

lational symmetric system, using the correspondences for translational invariant

operators F and G:

[Xj, F ]→ i
∂F̃k
∂kj

(3.26)

and
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τ(FG)→ 1

(2π)D

∫
T D

dDk tr{F̃kG̃k}, (3.27)

we can recover the King-Smith and Vanderbilt in k-space [46]:

∆Pj = ie

∫
γ

dt

∫
T 1

dk

2π
tr
(
P̃k[∂tP̃k, ∂kj P̃k])

)
, (3.28)

Similarly, we can write down the position representation for our magnetoelec-

tric formula,

∆α =
e24πi

h

∫
γ

dt εijkτ
(
Pω[∂tPω, [Xi, Pω]][[Xj, Pω], [Xk, Pω]]

)
, (3.29)

where repeated indices are summed over the spatial direction and the physical

constants are recovered. In addition, if we assume the reference Hamiltonian to

be trivial insulator and take the “k-space limit”:

α =
e2

h

∫
γ

dt

∫
T 3

d3k

2π2
εijktr

(
P̃k[∂tP̃k, ∂kiP̃k][∂kj P̃k, ∂kkP̃k]

)
(3.30)

=
e2

h

∫
γ

dt

∫
T 3

d3k

8π2
εαβγδtr

(
FαβFγδ

)
.

where in the last line we used the definiton of the Berry curvature for Bloch states,

Fij = 〈uk|P̃k[∂kiP̃k, ∂kj P̃k]|uk〉, and the identity εijkFtiFjk = 1
8
εαβγδFαβFγδ. This

shows that the position space formula reduces to the 2nd Chern number [6] for

peridoic crystals. Integrating out the adabatic parameter, the magnetoelectric

coupling can be reduced to the Chern-Simons integral [21, 61, 79]:
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α =
e2

h

∫
γ

dt

∫
T 3

d3k

8π2
εαβγδtr

(
FαβFγδ

)
=

e2

h

∫
γ

dt

∫
T 3

d3k

2π2
εαβγδ∂αtr

(
Aβ∂γAδ +

2

3
AβAγAδ

)
,

=
e2

h

∫
T 3

d3k

2π2
εijktr

(
Ai∂jAk +

2

3
AiAjAk

)
. (3.31)

where Ai = 〈uk|∂ki |uk〉 is the Berry connection defined in k space. Eq. 3.31 is

directly connected to the theta term [79] via:

α =
e2

h

θ

2π
, (3.32)

where θ is quantized to be 0 and π for trivial and topologicla insulators respec-

tively.

An important observation is that the position formulation is independent of

the existence of Brillouin torus, in contrast to the k-space formula. When we turn

on disorder, the formula Eq. 3.29 and its topological stability remains valid. In

general, it assure us that, given a finite spectral gap along t, any random disorder

configuration cannot change the physical response. Therefore, the topological

magnetoelectric is independent of any disorder configurations.

3.6 Numerical computation

In this section, we compute the topological magnetoelectric coupling for a three

dimensional time-reversal symmetric topological insulator model. We consider

the Fu-Kane-Mele model on a diamond lattice with a staggered Zeeman term

[21, 28] and on-site disorder potential:
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Figure 3.2: For the following parameters: W = 0, γ = 1, λSO = 0.125, h = sin(t)
and δ = cos(t), the adiabatic parameter t connects the trivial phase (t = 0)
and the topological phase (t = π) of the model Eq. 3.33. On the time-reversal
symmetric (TRS) line, the gap closes and a topological phase transition occurs
at the orgin. The time reversal symmetry is broken and a spectral gap is ensured
along the adiabatic path.

Hω =
∑
〈x,y〉

txy|x〉〈y|+ i
4λSO
a2

∑
〈〈x,y〉〉

σ · (d1
xy × d2

xy)|x〉〈y|

+h · (
∑
x∈A

σ|x〉〈x| −
∑
x∈B

σ|x〉〈x|)

+W
∑
x

ωx|x〉〈x|, (3.33)

The first term is the first neighbors hopping where its amplitude depends on the

bond direction. We take txy = 3γ + δ for direction [111] (in the conventional

fcc unit cell of size a) and txy = γ for the other three bonds. The spin-orbit

interaction connects pairs of second neighbors, where d1
ij and d2

ij connects the

first neighbor legs and σ′s are the Pauli spin matrices. The staggered Zeeman

term is added to break time-reversal symmetry. It has opposite signs on the

two fcc sublattices A and B, and h is chosen to be in the [111] direction. For
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Figure 3.3: The topological magnetoelectric response is computed for Fu-Kane-
Mele model with a lattice size 14×14×14. The calculations are done for different
disorder strengths W and the following parameters are chosen: γ = 1, λSO =
0.125, δ = cos(t) and h = sin(t). The path γ is discretized using 10 points and
the time derivative is computed using the 5-point finite difference formula. Only
one disorder configuration is used for each calculation.

the calculations, we choose γ = 1 and λSO = 0.125. The computation shown in

Fig. 3.3 are done using our magnetoelectric formula Eq. 3.29. δ is set to be cos(t),

so that in the absence of disorder, it connects the trivial (t = 0) and the strong

topological (t = π) phase. The term h is chosen to be sin(t) to keep the spectral

gap open along the adiabatic interpolation.

In Fig. 3.3, the magnetoelectric response is computed for the model with and

without disorder. In the clean limit, the energy gap is about 2 for the chosen

parameters. As it can be seen in the figure, the magnetoelectric response is quan-

tized to e2/2h. This agrees with the calculation for the clean model using the

k-space formula in Ref. [21]. We have also done calculations for the model with
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two different disorder strengths. Our results confirm that the topological magne-

toelectric response remains quantized and robust in the presence of disorder.

3.7 Summary

We have obtained a formula for the topological magnetoelectric response in po-

sition space. The topological quantization of our formula, which is defined on a

noncommutative Brillouin torus, is well-defined even in the presense of disorder.

This result also produces a position-space formulation of the topological invariant.

The noncommutative magnetoelectric formula was numerically using the meth-

ods developed in Ref. [76]. The results confirmed that the topological magneto-

electric response is robust against disorder. As such, we now have a practical tool

to explore the physics of disordered topological insulators. It is worth stressing

that our calculation was carried out using a 14 × 14 × 14 lattice model. This

is significantly larger than previous disordered Z2 calculation which used twisted

boundary conditions [53]. Our position space formula is self-averaging, hence only

one disorder configuration is required for an accurate prediction.
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Chapter 4

Noncommutative Chern numbers

Motivated by the connection between the noncommutative 2nd Chern number and

the magnetoelectric response, we develop the noncommutative theory of Chern

numbers. The quantization and robustness are shown by connecting it to a Fred-

holm index. What makes noncommutative Chern numbers fundamental is their

generality, in particular their robustness against disorder and variations of the

magnetic field. We will only focus on the results and their physical meanings and

present the mathematical details and proofs in the Appendix. Interested readers

can also refer to Ref. [9, 15, 78].

4.1 Introduction

The noncommutative 1st Chern number [9] can be viewed as a generalization of

the TKNN invariant [103] to the the case of aperiodic systems. While the TKNN

invariant is protected by a spectral gap and can be defined only for an uniform

magnetic field satisfying the “rational-flux” condition, the noncommutative 1st

Chern number is protected by a mobility gap and can be defined for an arbitrary

uniform magnetic field. These special properties of the 1st Chern number played

a decisive role in our understanding of the integer quantum Hall effect.

In the new field of topological insulators, the noncommutative 1st Chern

number was successfully used to characterize and compute the phase diagram

of strongly disordered two dimensional Chern insulators [73, 77]. The noncom-

mutative 1st Chern number also played an instrumental role in the definition of



39

the noncommutative spin Chern number [71]. The latter proved to be an effec-

tive tool in the characterization and computation of the phase diagram of strongly

disordered two dimensional quantum spin Hall insulators [73, 75, 108].

The theory of topological insulators is on a rigorous footing for perfectly peri-

odic crystals [28, 60, 88], but little progress has been made for strongly disordered

crystals. Some of the important theoretical open questions for the latter case are:

Do the topological invariants, defined for the periodic case, continue to make

sense at strong disorder when the Fermi level is embedded in a dense localized

spectrum? Do bulk extended states exist at strong disorder, like in the integer

quantum Hall effect? Are the metallic surface states robust against strong disor-

der? Some of these open questions have been numerically investigated [53] and the

available results hint to positive answers. On the analytical front, it was recently

noted [54] that a rigorous theory of the noncommutative 2nd Chern number in

four dimensions could provide an answer to the first two open question.

4.2 Topological insulators and Chern number

The second Chern number enters the picture in the following way. Let us consider

first the perfectly periodic three dimensional insulators (see Eq. 1.1). Suppose a

quantum system, described by a Hamiltonian Hλ which depends on a set of

parameters λ = {λ1, . . .}. The key physical property to consider is the isotropic

part of the magnetoelectric response of the system:

α =
1

3

3∑
j=1

∂Pj
∂Bj

=
1

3

3∑
j=1

∂Mj

∂Ej
, (4.1)

where P and M are the vectors of electric polarization and magnetization, re-

spectively, and B and E are the magnetic and electric fields, respectively. Let

λ1 and λ2 be two points in the parameter space defining two Hamiltonians that

are time-reversal symmetric, and consider a path γ, not necessarily time-reversal
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invariant, connecting λ1 and λ2 such that the Fermi level of Hλ is in a spec-

tral gap for all λ ∈ γ. Under these conditions, the variation of the isotropic

magnetoelectric response along γ is given by [21, 41, 79]:

∆α[γ] =
1

2
Ch2[γ − θγ]. (4.2)

Here, C2(γ− θγ) is the 2nd Chern number (see Eq. 1.3) over the manifold gener-

ated by the closed path γ − θγ times the three dimensional Brillouin torus. The

symbol θ represents the time-reversal operation in the parameter space of the

Hamiltonian. Choosing a standard reference system, it follows from Eq. 4.2 that

the time-reversal insulators fall into two topologically distinct classes, according

to the integer or half-integer character of α (a property that is path-independent).

This is the well established Z2 classification of periodic, time-reversal symmetric

insulators [28, 60, 79, 88]. Two systems from the two different classes cannot be

connected by a time-reversal path (i.e. θγ = γ) without the continuum energy

spectrum crossing the Fermi level.

In the previous Chapter, we have computed the topological magnetoelectric

response in the presence of disorder and under the gap condition [54]. It can be

shown that via an interpolation arguments similar to the periodic case, the result

can be expressed as:

∆α[γ] =
1

2
Ch2[γ − θγ], (4.3)

where Ch2[γ−θγ] is the noncommutative 2nd Chern number over a closed loop γ−

θγ times the noncommutative Brillouin torus of the three dimensional aperiodic

crystal. Our hope is that the theory of noncommutative Chern numbers developed

in this Chapter will enable new progress on the classification of the topological

insulators in the presence of disorder, that goes beyond the limitations imposed

by the spectral gap condition.
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4.3 Fredholm module

To show the quantization of noncommutative Chern numbers, we need to first

introduce the Fredholm module [15]. Let:

H = `2(Z2n,CD)⊗ Cliff(2n). (4.4)

The C∗-algebra A can be represented on H by πω ⊗ id, ω ∈ Ω. We will denote

these representations by the same symbols πω. We will also use the same symbol

tr for the trace over the Hilbert space H. Let γ1, . . . , γ2n be the generators of the

Clifford algebra and:

γ0 = inγ1 . . . γ2n. (4.5)

It is clear that πω(f)γ0 = γ0πω(f). Furthermore, let:

D =
2n∑
i=1

xiγi (4.6)

be the Dirac operator, acting by multiplication on H. We will use the shorthands

x · γ =
∑2n

i=1 x
iγi and x̂ = x/|x|. Also,

Da = (x+ a) · γ (4.7)

will denote the translated of the Dirac operator.

Now, let x0 be a fixed point in R2n such that 0 ≤ xi0 ≤ 1, i = 1, . . . , 2n. If

x0 /∈ Z2n, we define:

D̂x0 =
Dx0

|Dx0 |
, (4.8)

which acts on H by multiplication with x̂+ x0 · γ. If x0 ∈ Z2n, we define:
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D̂x0 =


x̂+ x0 · γ, if x 6= −x0

1√
2n

∑2n
i=1 γi if x = −x0.

(4.9)

Clearly, for all cases, D̂x0 has the following properties:

(D̂x0)2 = 1, D̂x0γ0 = −γ0D̂x0 . (4.10)

The triple (H, D̂x0 , γ0) is an even Fredholm module over A, as defined by

Connes [15]. For n = 1, the index of the Fredholm module is equal to noncom-

mutative first Chern number for the integer quantum Hall effect [9].

4.4 Noncommutative Chern numbers

In this section, we propose the definition of noncommutative Chern numbers.

They are basically the algebraic way of defining Chern numbers, therefore a more

appropriate name is algebraic Chern numbers. Discussions on its physical mean-

ing will be given in Sec. 4.6. They allow an application for topological responses

when a Brillouin manifold ceases to exit.

On the noncommutative Brillouin torus (A, T , ∂) of the homogeneous lattice

system Eq. 2.10. Let p = χ(−∞,EF ](h) be the projection which generates the

covariant family of the spectral projectors Pω (= πωp) onto the occupied states.

Based on the form of classical Chern numbers [6, 9, 54], we propose the following

definition of the noncommutative nth Chern number:

Chn
def
=

(2πi)n

n!

∑
σ

(−1)σT

(
p

2n∏
i=1

∂σip

)
. (4.11)

We now post the main question of this section: Under what conditions does

the quantity defined in Eq. 4.11 display quantization and homotopy invariance?

The answer is given by using Fredholm index and techniques in noncommutative
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geometry. We present the theorem here and leaves the index calculation in the

Appendix A.1.

Theorem [9, 78] If:

Λn =
2n∑
i=1

T
(
|∂ip|2n

) 1
2n <∞, (4.12)

then the operator π−ω (p)D̂x0π
+
ω (p) is a Fredholm operator. Its Fredholm index is

independent of ω or x0, and is equal to the algebraic nth Chern number:

Index
(
π−ω (p)D̂x0π

+
ω (p)

)
=

(2πi)n

n!

∑
σ

(−1)σT

(
p

2n∏
i=1

∂σip

)
. (4.13)

As a consequence, the algebraic nth Chern number stays quantized and constant

under continuous homotopies of p, where the continuity is considered with respect

to the Sobolev norm ‖ ‖W of W (A, T ) (see Eq. 2.42).

Remark. Λn has the unit of length and can be interpreted as a natural definition

of the localization length. It will be further discussed later on.

The theorem states the conditions needed for topological quantization of nth

Chern numbers to occur. For n = 1, it represents the celebrated result for the

integer quantum Hall effect [9]. For n = 2, it represents the 2nd Chern number

for topological insulators, which is our main interest [54, 78].

4.5 Localization and stability

Two remarkable facts about the integer quantum Hall effect are the integer quan-

tization and its stability with respect to changes in the parameters. The first

fact has a topological orign and the second is due to Anderson localization in

the sample [9, 85]. It has been proven that on the parameter space (λ,EF ), the

Hall conductance is constant whenever it is in the localization regime [85]. We
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will generalize this result to all even dimensions. The main motivation is to pro-

vide physical conditions under which the noncommutative Chern numbers stay

quantized.

The quantization and homotopy invariance of an noncommutative Chern num-

ber both hold for smooth deformations of the lattice model itself (as opposed to

deformations of p), as long as the Fermi level is in a region of localized spectrum.

This is characterized by the Aizenman-Molchanov bound on the fractional powers

of the Green’s function [4]:

∫
Ω

dP (ω) |(h− EF )−1(ω,x)|s ≤ Cse
−sβ|x|. (4.14)

Here, s is any positive number strictly smaller than one, β is a strictly positive

parameter which generally depends on EF , and Cs is a constant that generally

depends on s. The symbol | · | on the left hand side, and throughout this section,

denotes the matrix norm on MQ×Q.

The technique based on the fractional powers of the Green’s function is one

of the most effective tools in the analysis of the localization problem. The bound

of Eq. 4.14 has been established for all cases where the localization is known to

occur [3], such as at large disorder strength [4] or at the edges of the energy

spectrum [1]. Furthermore, the bound can be established algorithmically, in a

finite number of steps [2]. This means we can use a computer [70] to explore the

localization problem beyond the typical situations mentioned above. We mention

that all the characteristics of the localization phenomenon, such as the dynamical

localization of the time-evolution operator, spectral localization (i.e the pure point

nature of the energy spectrum) or the exponential decay of the eigenstates and

of the projector onto the occupied electron states, follow from the bound on the

fractional powers of the Green’s function [2]. Now, we state the main results in

this section:
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Proposition 1 [78, 85]. Let h be the random lattice Hamiltonian defined in

Eq. 2.10.

1. Assume that the energy spectrum near and at the Fermi level is localized.

Then ‖p‖W <∞ and the localization length Λn defined in Eq. 4.12 is finite.

2. Let h′ = h+ δh be a deformation of the Hamiltonian h induced by a contin-

uous change of the hopping amplitudes of h0, of the Fermi energy and of the

disorder strength. If the spectrum near and at the Fermi level stays local-

ized, then the deformation of the model generates a continuous homotopy

between p and p′ in the topology induced by the Sobolev norm ‖ ‖W .

The above proposition, combined with the theorem in previous section, im-

mediately allows us to state the physical condition for when the topological quan-

tization of noncommutative Chern numbers is guaranteed.

Corollary [9, 78, 85]. Whenever the Fermi level lies in a region of localized

states, the localization length Λn (see Eq. 4.12) stays bounded. Then the nth

noncommutative Chern number is an integer, its value coincides with the case

when disorder and the magnetic field are absense. More, the integer character is

robust under smooth deformations of the parameters of the Hamiltonian.

Another way to say this is that: A Noncommutative Chern number is quan-

tized and robust against disorder and the variations of parameters of the Hamil-

tonian, i.e. B field, hopping terms, as long as the electron states are localized.

4.6 Operator representations

The noncommutative Chern numbers may look exotic, but they can be understood

intuitively in the Hilbert space. To see that, we derive their operator representa-

tions. A direct use of Eq. 2.16, 2.24 and 2.27 shows that an nth noncommutative

Chern number has an operator representation:
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Chn =
(2πi)n

n!

∑
σ

(−1)στ
(
Pω

2n∏
i=1

(
i[Xσi , Pω]

))
(4.15)

=
(−2πi)n

n!
εσ1σ2...σ2nτ

(
Pω[Xσ1 , Pω][Xσ2 , Pω] . . . [Xσ2n , Pω]

)
,

where Pω = χ(−∞,0](Hω) is the projector onto the occupied states of the Hamil-

tonian Hω. The expression here gives us a clear physical picture of the noncom-

mutative Chern numbers. They are nothing but the postion space formulation

of the classical topological invariants. In the periodic limit, we see that the non-

commutative Chern number reduces to (see Section 2.3):

Chn =
(−2πi)n

n!
εσ1σ2...σ2n

∫
T 2n

d2nk

(2π)2n
tr
{
P̃k

∂P̃k
∂kσ1

∂P̃k
∂kσ2

. . .
∂P̃k
∂kσ2n

}
(4.16)

=
(−1)n

(2πi)nn!
εσ1σ2...σ2n

∫
T 2n

d2nk tr
{
P̃k

∂P̃k
∂kσ1

∂P̃k
∂kσ2

. . .
∂P̃k
∂kσ2n

}
,

which is exactly the classical Chern number on a Brillouin 2n-torus [6] (See

Sec. 1.1).

Unlike the k-space experssions which can only be obtained from Bloch Hamil-

tonians, Eq. 4.15 can be computed directly using the real space Hamiltonians

Eq. 2.10.

4.7 Summary

In this Chapter, we developed the theory of Chern numbers for aperiodic crys-

tals. This allows us to write down topological invariants that are robust against

disorder. They also allow a position operator formulation of Chern numbers. The

topological responses can then be computed directly in position space, allowing

classification of topological phases in the presense of disorder and an magnetic
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field.

As mentioned in the begining of the Chapter, a goal is to understand topolog-

ical robustness in the strong disorder regime and the existence of bulk extended

states. The theory we developed provides the answer to these questions, but

only to even dimensions. Since Chern numbers are even dimensional invariants,

an interpolation argument between trivial and topological phases are needed to

describe odd dimensional systems. For example, in the case of 1D and 3D, polar-

ization and magnetoelectric response are described by 1st and 2nd Chern number

via the adiabatic path method. An ambigurity exists in this method regarding

to the mobility gap. While disorder can localize states in spatial dimensions,

this mechanism is also needed along adiabatic path. This issue are disscussed in

details for 1D sytem in next Chapter.

A noncommutative theory of odd dimensional invariants should provide the

final answer to this issue. We suggest a way to obtain the Chern-Simons invariant

in position space. We can start with the noncommutative magnetization of Schulz-

Baldes and Teufel and apply the definition of magnetoelectric coupling ∂M j/∂Ei

[91]. Afterwards, developing the Freholm theory for odd dimensions would sheld

light on the existence of 3D extended states in topological insulators.

The classical Chern numbers have been used to classify some topological

phases in the classification table [47, 89, 90]. It is natural to expect that the

noncommutative numbers could be used to classify these sytems in the presence

of disorder. It will be interesting to work out the explicit connections and write

down the noncommutative formulae for the corresponding classes in the table.
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Chapter 5

Polarization

We discuss the noncommutative polarization formula of Schulz-Baldes and Teufel

[91]. The formula was derived and proven for disordered lattice model under a

finite magnetic field. It extends our understanding of polarization to aperiodic

systems. In the presence of disorder, we show that the quantization of polarization

for an inversion symmetric system can be protected. Numerical confirmations on

our arguments are given.

5.1 Introduction

The electric polarization of an inversion-symmetric one dimensional insulator,

when counted modulo 2π, can take the trivial value 0 or the non-trivial value π.

These values cannot be changed as long as the insulating gap remains open. We

demonstrate that the polarization of such system remains quantized and topo-

logical in the presence of a generic on-site disorder, which preserves the inversion

symmetry only on the average. These topologically robust properties are shown

to exist only as long as the spectral gap remains open. Furthermore, we demon-

strate that a non-trivially quantized polarization does not require the presence

of extended states. In fact, the numerical tests on the Rice-Mele model indicate

that all the quantum states become localized immediately after the disorder is

turned on, yet the non-trivially quantized polarization survives.



49

5.2 Settings

We consider a generic disordered one dimensional lattice model Hω = H0 + Vω

described by Eq. 2.10, but in the absence of a magnetic field. The translational

invariant piece of the Hamiltonian is assumed to depend on a set of N parameters

ξ = (ξ1, . . . , ξN). When needed, we write this dependence explicitly as H0(ξ)

or Hω(ξ). The random potential Vω depends on the disorder configuration ω,

which is seen here as a point in a disorder configuration space Ω equipped with

a probability measure dP (ω). The system is assumed to be homogeneous, that

is, TaHωT
−1
a = Htaω for any lattice translation Ta. Recall ta’s represent the

action of the translations on Ω, assumed ergodic and probability preserving so

that Birkhoff’s ergodic theorem applies a function f(ω):

lim
V→∞

1

V
∑
a∈V

f(taω) =

∫
Ω

dP (ω) f(ω). (5.1)

The inversion operation, which has the generic form:

I|x, α〉 =
∑
α′

Rαα′ | − x, α′〉, (5.2)

I2 = 1, (5.3)

generates an action on the parameter space: IH0(ξ)I−1 = H0(Iξ), and an action

on the disorder configuration space: IVωI−1 = VIω. It is assumed that the latter

is probability preserving: dP (ω) = dP (Iω). As such, the total Hamiltonian

obeys:

IHω(ξ)I−1 = HIω(Iξ). (5.4)

These are the generic settings for our studies on polarization. The crucial detail



50

here is that at the inversion-symmetric points ξ = Iξ, Hω(ξ) is not inversion-

symmetric. However, the disorder average of Hω(ξ) and of any function of Hω(ξ)

will be inversion symmetric, as it can be formally seen from:

I
(∫

Ω

dP (ω) χ
(
Hω(ξ)

))
I−1 =

∫
Ω

dP (ω) χ
(
HIω(ξ)

)
, (5.5)

where a change of variable Iω → ω leads to:

. . . =

∫
Ω

dP (I−1ω) χ
(
Hω(ξ)

)
=

∫
Ω

dP (ω) χ
(
Hω(ξ)

)
. (5.6)

An explicit yet very general model (see Chapter 2.1) which satisfies all the above

conditions is:

Hω =
∑
x,α;y,β

(tαβx−y(ξ) +Wωαβx,y)|x, α〉〈y, β|, (5.7)

where ωαβx,y are independent random variables, uniformly distributed in the interval

[−1
2
, 1

2
]. The collection of all random variables ω = {ωαβx,y} can be viewed as a

point in an infinite dimensional configuration space Ω, which can be equipped

with the probability measure: dP (ω) =
∏
dωαβx,y. There is a natural action of the

lattice translations on Ω:

(taω)αβx,y = ωαβx−a,y−a, a ∈ ZD, (5.8)

which acts ergodically and leaves dP (ω) invariant. The inversion operation in-

duces the action:

(Iω)αβxy =
∑
α′β′

ωα
′β′

−x,−yRα′αR
∗
ββ′ , (5.9)
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and we can verify explicitly that:

dP (Iω) = dP (ω). (5.10)

5.3 Quantization

By definition, the change in the electric polarization of an adiabatic deformation

Hω(ξt) of the Hamiltonian is [46, 83]:

∆Pω =

∫ T

0

dt jω(t), (5.11)

where jω(t) is the density of the charge-current:

jω(t) = lim
V→∞

1

V
TrV{ρω(t)Jω(t)}. (5.12)

Assuming that the adiabatic deformation starts from the thermodynamic equilib-

rium state, the density of states operator at time t is ρω(t) = UtχFD(Hω(ξ0))U−1
t ,

with Ut being the unitary time evolution generated by Hω(ξt) and χFD being the

Fermi-Dirac distribution. Note that, because the fundamental formula in Eq. 5.11

involves the density of the current, a trace over volume appears in Eq. 5.12. This is

an important observation because we are going to use Birkhoff’s ergodic theorem

to demonstrate that ∆Pω is independent of the disorder configuration ω.

Recall for any covariant operator Fω satisfies TaFωT
−1
a = Ftaω, where Ta is

any lattice translation. Then,

lim
V→∞

1

V
∑
x∈V

〈x|Fω|x〉 = lim
V→∞

1

V
∑
x∈V

〈0|Ft−1
x ω|0〉 (5.13)

=

∫
Ω

dP (ω) 〈0|Fω|0〉.
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The conclusion is that ∆Pω is self-averaging, and its macroscopic value is equiv-

alent to an average over the disorder configuration space. As such, we can drop

the subscript ω in ∆Pω.

We consider now infinitely slow deformations, which are better visualized as

paths γ in the parameter space, parametrized as {ξt}t∈[0,1]. By employing the

adiabatic theorem, Ref. [91] showed that in the extreme adiabatic limit and when

temperature goes to zero:

∆P [γ] = i
∫ 1

0
dt
∫

Ω
dP (ω) 〈0|Pω(ξt)[∂tPω(ξt), [X, Pω(ξt)]]|0〉, (5.14)

where the sum over α is implicit and Pω(ξ) = χ(−∞,EF ](Hω(ξ)) is the projector

onto the occupied states, and X is the position operator. Above, we assumed

that the spectral gap of Hω(ξt) remains open for all t ∈ [0, 1]. Based on this

formula, we can demonstrate that the change in the electric polarization along

the path Iγ is:

∆P [Iγ] = −∆P [γ]. (5.15)

This equality is remarkable because the computation is done at an arbitrary

disorder configuration. The proof goes as follows:

∆P [Iγ] = i
∫ 1

0
dt
∫

Ω
dP (ω) 〈0|Pω(Iξt)[∂tPω(Iξt), [X, Pω(Iξt)]]|0〉, (5.16)

and observe that Pω(Iξt) = IPI−1ω(ξt)I−1. Then a change of variable I−1ω → ω

and some manipulations lead to:
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∆P [Iγ] = i
∫ 1

0
dt
∫

Ω
dP (Iω) 〈0|IPω(ξt)[∂tPω(ξt), [−X, Pω(ξt)]]I−1|0〉. (5.17)

The probability measure is invariant: dP (ω) = dP (Iω), and, since the trace

is over the orbital degrees of freedom, the action of the remaining I operators

have no effect. Then Eq. 5.15 follows.

We are now ready to assemble the final piece of the argument. Assume that

the initial and final Hamiltonians are inversion symmetric. Then any path γ

joining the two Hamiltonians can be closed by augmenting it by −Iγ, where the

minus sign imply that the path is walked in reverse. Using Eq. 5.15, we see:

∆P [γ] =
1

2

(
∆P [γ] + ∆P [−Iγ]

)
=

1

2
∆P [γ − Iγ]. (5.18)

But as already noted in [91], the change in the polarization along a closed

loop leads to the noncommutative Chern number [9]. The conclusion is:

∆Pj[γ] =
1

2
Ch1[(γ − Iγ)× Tj], j = 1, . . . , D, (5.19)

where Ch1[(γ −Iγ)×Tj] is the Chern number over the space (γ −Iγ) times the

section of the noncommutative Brillouin torus along the jth direction. This proves

the quantization of the electric polarization in our general settings. Similarly, we

can immediately see that charge transported in one cycle ∆Q is quntized without

the use of symmetry [91, 101]:

∆Qj = Ch1[S1 × Tj] (5.20)
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5.4 Invariance

In two dimensional models, the quantization and the homotopy invariance of the

noncommutative Chern number is protected by the mobility gap [9]. This means

the Ch1 can take non-fluctuating integer values even after the spectral gap was

closed and the Fermi level is buried in a dense localized spectrum. Does this imply

that the quantization and the homotopy invariance of the electric polarization

holds as long as a mobility gap stays open? Then, a standard argument will show

that extended states must exist whenever a Pj is half-integer.

Unfortunately, a simple but mostly overlooked fact prevents this to happen.

The Chern number appearing in Eq. 5.19 is that of a fictitious two dimensional

system, described by the Hamiltonian H2d = Hω(ξt), acting on wave-functions

ψ(t, nj). The crucial observation is that the disorder is only on the nj variable,

while the t variable is smooth. This imply that, regardless of the disorder strength

in the physical system, the spectrum of H2d will always be continuous. As a result,

if the Fermi level touches the spectrum of the physical system, it will be auto-

matically in the continuous spectrum of the the two dimensional fictitious system

and Ch1 will loose its topological properties. This leads us to two conclusions:

1. The polarization cannot be expected to stay quantized once the spectral

gap of the physical system closes.

2. Non-trivial quantized values of the polarization can occur even if all the

states of the physical model are localized.

5.5 Numerical confirmation

For a one dimensional topological system, it is associated with the existence of

end states or a zero energy mode. Here we consider a disordered Rice-Mele model

[84]:
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Figure 5.1: For the following parameters: δ = 0.1cos(t) and ∆ = 0.1sin(t), the
adiabatic parameter t connects the topological phase (t = 0) and the trivial phase
(t = π) of the model Eq. 5.21. IS line represent the inversion symmetric line where
the Hamiltonians are inversion symmetric. Along the axis, the gap closes at the
orgin where a topological phase transition occurs. The inversion symmetry is
broken and a finite spectral gap is ensured by ∆ along the adiabatic path.

H =
∑
j

(1

2
+ (−1)j

δ

2

)
(|j〉〈j + 1|+ h.c.) +

(
∆(−1)j +Wωj

)
|j〉〈j|, (5.21)

where j is a lattice site, δ is the dimerization order and ∆ is a staggered sublattice

potential. ωj represents a random number belonging to [−1
2
, 1

2
] and W denote the

disorder strength. Note that when ∆ = 0 this Hamiltonian reduces to the Su-

Shrieffer-Heeger model [100].

In Fig. 5.2, the Chern number, polarization and the spectral gap are mapped

as function of disorder strength. Note that the Chern number is obtained by an

adiabatic deformation where the spectral gap is kept open and the polarization

is in fact the polarization difference between a topological phase and a trivial

phase (see Fig. 5.1). In Fig. 5.2(a), in the case of lattice size N = 100 the Chern

number and polarization present clear quantum plateaus at the weak disorder,

which are 1 and π, respectively. By increasing the disorder strength, both the
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Chern number and polarization plateaus begin to get worse at W = 0.6 and

deviate from the quantized value. It is worth noting that the quantization of

the Chern number and polarization is destroyed exactly when the spectral gap

is closing in Fig. 5.2(b), which is fully computed along the adiabatic loop of the

parameter t. In Fig. 5.2(c), the varying range of the spectrum gap along the t

parameter from 0 to 2π is also given.

Figure 5.2: (a) Computation of the Chern number and polarization, and (b) of
the spectral gap in the space of the t parameter, (c) represents the variation of
the gap with changing t from 0 to 2π in the case of the lattice size N = 400. The
other parameters are set as: δ0 = −0.10, ∆0 = 0.10, δ = δ0 cos t, ∆ = ∆0 sin t,
and the gap is averaged over 100 disorder configurations.
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A general concept is that a topological quantized number in a 2D system

is always accompanied by the extended bulk states and disappears when the

mobility gap closes at strong disorder. A intriguing question is whether or not

we can forward this conclusion to 1D system. To find the answer, in Fig. 5.3 we

studied the variance of the energy level statistics (EnS) due to disorder, which

has been prove to be an effective tool to characterize the extended state.

More importantly, as shown in Fig. 5.2(a), the quantized plateau of the Chern

number and polarization do not change when increasing the lattice site from

N = 100 to 400. Moreover, the spectral gap closing point or the transition point

gradually approaches W = 0.6 with increasing the lattice size to N = 400. This

scaling simulation illustrates that in the thermodynamic limit a topological phase

transition will happen and the phase transition point is fixed at about W = 0.6.

As show in Fig. 5.3(a) with N = 1000, the variance of EnS at a weak disor-

der W = 0.03 almost touches the ideal value of 0.178 (the dotted line) at about

EF = −1(1) which is nearby the bottom (top) of the valence (conduction) band.

By increasing the disorder strength further, this touching point moves gradu-

ally toward the spectral gap. However at the disorder strength W = 0.15 the

variance of EnS begins to move away from the dotted line of 0.178 and this de-

viation becomes more obvious for W = 0.20 and 0.25. A subsequent question is

why the levitation and annihilation between the ’extended states’ of valence and

conduction bands never happens like in 2D case.

More intriguingly, the variance of EnS exhibits obvious changes when increas-

ing the lattice size to 3000 (b) and 8000 (c). In particular, the variance of EnS

deviates from the ideal value of 0.178 for the stronger disorder beyond W = 0.08

in Fig. 5.3(b) with N = 3000. Furthermore, this critical disorder strength is de-

creased to W = 0.05 when changing the lattice size to N = 8000. Comparing all

corresponding lines in the cases of N = 1000, 3000 and 8000, it is not difficult

to get a conclusion: In the thermodynamic limit the entire variance of Ens will
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move away from the ideal line of 0.178, which exactly implies that no extended

state exists in this 1D disordered Hamiltonian.

In Fig. 5.4, we study the variance of the level statistics for different δ. Based on

the simple discussion above, the topological property of the Su-Shrieffer-Heeger

model is completely determined by the sign of δ. In principle, the variance of EnS

should behave differently in the two cases, namely with a negative and positive

δ. Unexpectedly, when changing δ from −0.1 to 0.1 and meanwhile keeping

W = 0.5 in Fig. 5.4, the variance of EnS keeps almost invariant. Moreover, this

result holds true even increasing the lattice size from N = 1000 to 8000. It is

worth noting that the Chern number and polarization are still quantized at the

disorder strength W = 0.5 in Fig. 1. Fig. 5.3 and Fig. 5.4 demonstrates that

there are indeed no extended states in the present 1D model, when the Chern

number and polarization manifest a nonzero quantized value.

5.6 Summary

In summary, we studied the disordered Rice-Mele model numerically. We found

that by increasing the disorder strength, the Chern number and polarization grad-

ually change from a quantized value to zero. It exhibits a clear phase transition

from the topological phase to the trivial phase. In sharp contrast to what is be-

lieved that a quantized topological number is always carried by extended states,

no such bulk states appears in our model Eq. 5.21. All quantum states become

localized immediately after the disorder is turned on, yet the non-trivial quantized

polarization remains.
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Figure 5.3: The variance of energy level spacing are given in three cases: (a)
N = 1000, (b) N = 3000, and (c) 8000, respectively. The parameters are set as:
δ = −0.1, ∆ = 0, and the average is over 100 disorder configurations.
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Figure 5.4: The variance of energy level spacing are given in three cases: (a)
N = 1000, (b) N = 3000, and (c) 8000, respectively. The parameters are set as:
W = 0.5, ∆ = 0, and the average is over 100 disorder configurations.
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Chapter 6

Robustness of Z2 invariant

We study the effect of strong disorder in a three dimensional topological insulators

with time-reversal symmetry and broken inversion symmetry. First, using level

statistics analysis, we demonstrate the persistence of delocalized bulk states even

at large disorder. The delocalized spectrum is seen to display the levitation

and pair annihilation effect, indicating that the delocalized states continue to

carry the Z2 invariant after the onset of disorder. Second, the Z2 invariant is

computed via twisted boundary conditions using an efficient numerical algorithm.

We demonstrate that the Z2 invariant remains quantized and non-fluctuating

even after the spectral gap becomes filled with dense localized states. Our results

indicate that the Z2 invariant remains quantized until the mobility gap closes

or until the Fermi level touches the mobility edges. Based on such data, we

compute the phase diagram of the Bi2Se3 topological material as function of

disorder strength and position of the Fermi level.

6.1 Introduction

In the presence of time-reversal symmetry, topological insulators follow a Z2 topo-

logical classification. The strong Z2 invariant that renders an insulator as either

trivial or topological was computed in various ways, but in general the compu-

tations were quite demanding because they had to be carried out with special
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smooth gauges. The difficulty introduced by this requirement has been docu-

mented in Ref. [74]. For example, the original expressions of the Z2 invariant [26–

28, 45], require special smooth gauges and were computed only for analytically

solvable band models. These expressions have been reformulated in an almost

gauge invariant fashion by Fukui and his collaborators [29, 40]. The method still

requires a time-reversal adapted gauge at the boundary of half of the Brillouin

zone, but nevertheless it became the method of choice when computing the Z2

invariant [20, 23, 24, 97, 105, 107]. An application of the method to the disordered

case exists only in 2D [20]. The Chern-Simons integral of the quantized magne-

toelectric polarization also requires a globally smooth gauge [79]. The difficulties

introduced by this requirement were highlighted in Ref. [13].

The issue was recently reconsidered and gauge-independent formulations of

the weak and strong Z2 invariants are now available [74, 86, 96, 97, 112]. Here

we will follow Ref. [74] and argue here that this new formulations bring certain

numerical advantages which open the possibility of directly computing the Z2

invariants for systems with large unit cells, particularly for disordered samples.

We present a numerical analysis of the strong Z2 invariant for a system without

inversion symmetry, computed in the weak and strong disorder regimes via the

twisted boundary conditions technique combined with the new formulation of the

invariant. The use of the twisted boundary conditions was advocated by Kane and

Mele in their original discussion of the 2D Z2 invariant as an effective procedure for

tackling the effect of disorder and electron-electron interaction [45]. Numerically,

this method is equivalent to computing the Z2 invariant for a periodic system with

a very large unit cell, leading to thousands of occupied energy bands. Finding

smooth special gauges for such complex band structures is prohibitively difficult,

which is why computing the Z2 invariant is notoriously difficult for disordered

3D topological insulators (the parity analysis was done for a system and disorder

with inversion symmetry [33]).
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Working with a tight-binding model for the 3D topological material Bi2Se3,

we provide compelling evidence that the strong Z2 invariant remains well-defined

and quantized even after the insulating gap becomes filled with a dense localized

spectrum. Our various mappings of the Z2 invariant indicate that the quantiza-

tion holds as long as the Fermi level remains in the mobility gap. Furthermore, we

use level statistics analysis to map the localized or extended character of the en-

ergy spectrum for a wide range of disorder strength. The results show compelling

evidence that there are bulk metallic states that persist even at strong disorder

and we derive the phase diagram of the 3D model as function of Fermi level and

disorder strength. The phase diagram consists of the strong topological phase,

which is completely surrounded by a metallic phase, which is again surrounded by

the trivial insulating phase. Computations of the Z2 invariant along paths that

cross from the topological into the trivial insulating phase reveal strict quanti-

zation of the invariant to ±1 values in the topological/trivial insulating phases,

respectively, and strong fluctuations between ±1 inside the metallic phase.

The motivation behind the present study was three-fold. First, there is no

theory of the Z2 invariant for aperiodic systems (except for the trivial case when

the Fermi level is in a spectral gap, i.e. a region that is void of any energy

spectrum). For example, for Chern and spin Chern invariants we have theories

that provide explicit and specific conditions, which can be written in one line,

that tells us when these invariants take quantized values even if the Fermi level

is not in a spectral gap [9, 73]. Furthermore, we have position formulations of

these two invariants [73, 77], which allows us to compute them in “one shot”

without involving twisted boundary conditions. Nothing like that exists for the

strong Z2 invariant, despite some sustained efforts. This makes us to question

that the strong Z2 invariant does indeed remain quantized once the spectral gap

is closed. Our numerical study provides the first direct evidence that the strong

Z2 invariant behaves similarly with these other two invariants, which can be a
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strong motivation for people to continue searching for a theory of the strong Z2

invariant for aperiodic systems.

Second, it is known that disorder can strongly deform the phase boundary

of the topological state [32, 34, 55, 75]. It is highly desired to devise quantita-

tive methods that can accurately pinpoint the extent of the topological phases.

Previously, the strong topological phase was identified by probing the metallic

character of the surface states via transport calculations in a long bar geome-

try [34]. For the special case when the system and the disorder have inversion

symmetry, the topological phase was identified using the parities of the states

[33]. Ideally, it will be to directly map the strong Z2 invariant and our study

demonstrates that this is indeed possible for 3D materials.

Last, we want to state that our numerical simulations probe uncharted terri-

tories. Our method, and for that matter all the established methods, are easily

seen to produce quantized and non-fluctuating Z2 values, if a spectral gap between

the occupied and non-occupied levels remains open at all times while twisting of

the boundary conditions. However, at strong disorder, the spectral gap not only

closes but the levels can change their ordering when twisting the boundary con-

ditions. Thus, levels that once were occupied become unoccupied and vice-versa.

Different disorder configurations can no longer be connected adiabatically. While

our numerical procedure can still be applied in these situations, the available

theoretical arguments can no longer assure us that the output remains the same

from one disorder configuration to another (this also applies to the Bott index of

Refs. [39, 58]).

6.2 Z2 invariant

We start our discussion with a review of the Z2 invariant [74]. The connection

between this formulation and the existing ones can be found in the reference.
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Figure 6.1: Example of a time-reversal invariant path in the Brillouin torus and
its discretization.

Instead, we will give a detailed discussion of the numerical advantages brought in

by this new method.

The method goes as follows. Let Pk denote the projector on to the states of

Hω(k) below the Fermi level EF , and let θ denote the time-reversal operation and

assume the time-reversal invariance:

θHω(k)θ−1 = Hω(−k). (6.1)

We consider a closed, time-reversal invariant path (i.e. a path which is mapped

into itself by θ) on the Brillouin torus,

[−π, π] 3 k → k(k), (6.2)

parametrized by the variable k (we chose the notation on purpose because in prac-

tice this variable will often be kz for example). Then we integrate the differential

equation (with the initial condition Uk′,k′ = Pk(k′)):
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i d
dk
Uk,k′ = i[Pk(k), ∂kPk(k)]Uk,k′ . (6.3)

We will use the simplified notation: Pk(k) = Pk. The result of the integration

gives the unitary time evolution operator Uk,k′ corresponding to the process of

adiabatically changing the k-vector along the chosen path in the Brillouin torus.

It is assumed that the path starts (k = −π) and closes (k = π) at a time-reversal

invariant k-point. Necessarily, the path will cross another time-reversal invariant

point at midway k = 0 (see Fig. 3.1). Next, we consider arbitrary bases {e0
α}

and {eπα} for the occupied spaces at the time-reversal invariant points k = 0 and

k = π, respectively, and we define the following matrices:

Ûαβ = 〈eπα|Uπ,0|e0
β〉,

θ̂0
αβ = 〈e0

α|θ|e0
β〉,

θ̂παβ = 〈eπα|θ|eπβ〉.

(6.4)

These matrices satisfy the following fundamental relation [74]:

Pf{θ̂π}−1 det{Û}Pf{θ̂0}√
det{Uπ,−π}

= ±1. (6.5)

The left hand side of Eq. 6.5 will be called a pseudo Z2 invariant for the

following reasons. The left hand side is gauge independent. Given the trans-

formation properties of the Pfaffians and determinants under the conjugation

with unitary matrices, we can easily see that the numerator is independent of

the bases {e0
α} and {eπα} [74]. At the denominator, inside the square root, Uπ,−π

maps the k = ±π occupied space into itself, so at a change of {eπα} basis we

have Uπ,−π → EUπ,−πE
−1, with E a unitary matrix, so the determinant remains

unchanged. However, the sign in Eq. 6.5 depends on which branch of the square

root is used, but once a choice is made the value of the left-hand side cannot
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be changed by smooth deformations of the Bloch Hamiltonians that keep the

insulating gap opens.

The adiabatic evolution operators is computed by discretizing the paths and

taking the product of projectors onto the occupied spaces at these discrete k-

points. Since the path is time-reversal invariant, we can choose the discretization

points so as k0, k1, . . . , kn discretizes the path from k = 0 to k = π, while −kn,

−kn−1,. . . ,k0 discretizes the path from k = −π to k = 0. In this case:

Uπ,−π = lim
n→∞

PknPkn−1 . . . Pk0 . . . P−kn−1P−kn . (6.6)

In practice, we have to stop limit at some n = n̄ and work with an approximation:

Uπ,−π = Pkn̄Pkn̄−1 . . . Pk0 . . . P−kn̄−1P−kn̄ , (6.7)

and similar for Uπ,0:

Uπ,0 = Pkn̄Pkn̄−1 . . . Pk0 . (6.8)

We are going to show in the following that the quantization in Eq. 6.5 remains

exact even for finite n̄’s.

Using the elementary fact that θPkjθ
−1 = P−kj , we have:

Uπ,−π = Pkn̄Pkn̄−1 . . . Pk0θPk0 . . . Pkn̄−1Pkn̄θ
−1 (6.9)

Inserting the identity operator
∑

α |e0
α〉〈e0

α| at the appropriate places, we obtain:

〈eπα|Uπ,−π|eπβ〉 = 〈eπα|Pkn̄Pkn̄−1 . . . Pk0|e0
δ〉〈e0

δ|θ|e0
γ〉

×〈e0
γ|Pk0 . . . Pkn̄−1Pkn̄|eπξ 〉〈eπξ |θ−1|eπβ〉

= 〈eπα|Pkn̄Pkn̄−1 . . . Pk0|e0
δ〉(θ̂0)δγ

×〈eπξ |Pkn̄Pkn̄−1 . . . Pk0|e0
γ〉(θ̂−1

π )ξβ.

(6.10)
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Summation over repeating indices was assumed above. At this step, the conclu-

sion is:

Uπ,−π = Û θ̂0Û
T θ̂−1

π . (6.11)

Taking the determinant and using the elementary properties of the determinants

and pfaffians we obtain:

det{Uπ,−π} = [Pf{θ̂π}−1 det{Û}Pf{θ̂0}]2, (6.12)

which is precisely Eq. 6.5.

The significance of the above conclusion for the numerical calculations is that

it allows us to use relatively small number of discretization points when evaluating

Eq. 6.5. One question that could be asked is if the result of such calculation,

while indeed quantized, it really equals the result in the n̄→∞ limit? To answer

this question, we imagine a calculation with a dense number of discretization

points and then adiabatically collapsing pairs of adjacent discretization points

into a single discretization point. In this way we can adiabatically transform

the original computation into a computation with half the number of discretized

points. Repeating the same action we can adiabatically reduce the number of

discretization points even further, by 4, 8 and so on. Since Eq. 6.5 is quantized, it

cannot change its value during such adiabatic deformations, if all the quantities

remain well-defined.

What can go wrong? In the n̄ → ∞ limit, Uπ,−π is a true unitary operator

so its determinant is a complex number on the unit circle. For finite n̄, Uπ,−π

is no longer unitary and its determinant moves inside the unit circle. As the

number of discretization points is reduced, the determinant moves closer to the

origin so there is the possibility that det{Uπ,−π} actually becomes equal to zero.

At such instance, the calculation breaks down and the quantized value of Eq. 6.5
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can change. So the conclusion is that Eq. 6.5 can be indeed evaluated using

a relatively small number of discretization points, as long as we make sure that

det{Uπ,−π} does not touches the origin. For our computation, we choose the num-

ber of discretized points so that | det{Uπ,−π}| ≈ 0.5, which reduces the number

of required k-points by an order of magnitude in our calculations, when compare

with the case when | det{Uπ,−π}| ≈ 0.9.

Eq. 6.5 cannot define a Z2 invariant by itself. That is because we don’t have

a canonical way to choose the branch of the square root at the denominator of

Eq. 6.5. An important observation is that if we consider a pair of paths, then

there is a canonical way to choose the same branch of the square root and genuine

Z2 invariants can be defined. This has been detailed in Ref. [74]. The following

lines explain how the procedures were explicitly implemented in our calculations.

For a 3D system, we consider 4 independent time-reversal invariant paths. If

Pkx,ky denotes the path along kz direction that intersects the plane kz = 0 at

(kx, ky), then we choose the following 4 paths:

P0,0 : (0, 0,−π)→ (0, 0, π)

P0,π : (0, π,−π)→ (0, π, π)

Pπ,0 : (π, 0,−π)→ (π, 0, π)

Pπ,π : (π, π,−π)→ (π, π, π),

(6.13)

We interpolated between the paths P0,0 and P0,π using the process:

[0, π] 3 ky → P0,ky . (6.14)

By computing the adiabatic evolution

U(0,ky ,−π)→(0,ky ,π) (6.15)
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for the path P0,ky , we continuously interpolate between the determinants

det{U(0,0,−π)→(0,0,π)} ↔ det{U(0,π,−π)→(0,π,π)}, (6.16)

using the process:

[0, π] 3 ky → det{U(0,ky ,−π)→(0,ky ,π)}. (6.17)

This allows us to monitor how the determinant moves on the Riemann surface

of the square root function, and to determine the location of det{U(0,π,−π)→(0,π,π)}

relative to the location of det{U(0,0,−π)→(0,0,π)} on the Riemann surface. If the

semi-axis (−∞, 0) is crossed by the det{U(0,ky ,−π)→(0,ky ,π)} an odd number of times,

then the determinants are located on opposite Riemann sheets and we have to

use different branches of the square root, that is, we will have to use ±
√
z for one

determinant and ∓
√
z for the other determinant in Eq. 6.16 when we evaluate the

denominator of Eq. 6.5. If det{U(0,ky ,−π)→(0,ky ,π)} crosses the semi-axis (−∞, 0)

an even number of times, then the determinants are located on the same Riemann

sheet and we have to use ±
√
z for one determinant and same ±

√
z for the other

determinant. There is still a sign ambiguity remaining (originally we had two sign

ambiguities) but that becomes irrelevant if we form the product of two pseudo-

invariants. Indeed, the following quantity:

Ξ0 =
Pf{θ̂(0,0,π)}−1 det{Û(0,0,0)→(0,0,π)}Pf{θ̂(0,0,0)}√

det{U(0,0,−π)→(0,0,π)}

×
Pf{θ̂(0,π,π)}−1 det{Û(0,π,0)→(0,π,π)}Pf{θ̂(0,π,0)}√

det{U(0,π,−π)→(0,π,π)}

is a genuine invariant taking the quantized values ±1, which are independent of

the branch of the square roots used in the calculation, as long as they are chosen

consistently using the interpolating procedure described above. We can repeat
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the same construction for the pair of paths Pπ,0 and Pπ,π and define the invariant:

Ξπ =
Pf{θ̂(π,0,π)}−1 det{Û(π,0,0)→(π,0,π)}Pf{θ̂(π,0,0)}√

det{U(π,0,−π)→(π,0,π)}

×
Pf{θ̂(π,π,π)}−1 det{Û(π,π,0)→(π,π,π)}Pf{θ̂(π,π,0)}√

det{U(π,π,−π)→(π,π,π)}
.

The invariants Ξ0 and Ξπ are two of the four independent weak Z2 invariants.

We can define two more weak invariants by pairing the paths in different ways, but

that is not necessary because at this point we can define the strong Z2 invariant

as:

Ξ = Ξ0Ξπ (6.18)

If we count the strong Z2 invariant, then there are only 3 independent weak Z2

invariants remaining. We will concentrate entirely on the strong invariant.

We have already discussed the numerical aspects related to computing the Z2

pseudo-invariants for each of the four paths of Eq. 6.13. There is another impor-

tant numerical aspect about determining the correct branch of the square roots.

We should note that computing the pseudo-invariants involves one dimensional

calculations, in the sense that we only need to integrate along the kz direction

and not on a surface as it is the case when applying, for example, the popular

algorithm of Fukui et al from Ref. [40]. However, we still have to perform the

interpolation along the ky direction, so the calculations become two dimensional.

The key observation is that the number of ky points required by a successful

interpolation is usually an order of magnitude smaller than the number of kz

points needed in the computation of the pseudo-invariants. This is because all

we need is to determine how the determinants wind around the origin during the

interpolation and to trace these paths we can indeed use a relatively small number

of ky points. Therefore, our algorithm, while not strictly one dimensional, it can
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be regarded as quasi-one dimensional.

To summarize, the application to the disordered system was possible because

of the following numerical advantages of the present algorithm:

1. The algorithm is gauge independent. Finding a smooth gauge for a unit

cell containing thousands of quantum states would have been practically

impossible.

2. The quantization of the pseudo-invariants remain exact when the paths are

discretized, allowing a drastic reduction of the number of the discretization

points.

3. The interpolation between the different time-reversal invariant paths can be

accomplished with a small number of k-points, transforming the algorithm

into a quasi-one dimensional one.

6.3 The model

The model used in our numerical simulations is an effective lattice Hamiltonian

fited to the topological material Bi2Se3. This H0 was used in the previous studies

of disordered Bi2Se3 in Refs. [33, 34]. The H0 has inversion symmetry and, since

we want to exemplify the algorithms for systems without such symmetry, we will

include an additional term in the Hamiltonian that strongly breaks the inversion

symmetry. This term can be thought as the effect of a mechanical strain applied

along the z axis.

In the momentum space:
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H0(k) = d4(k) +



d0(k) d3(k) 0 d−(k)

dz(k) −d0(k) d−(k) 0

0 d+(k) d0(k) −d3(k)

d+(k) 0 −d3(k) −d0(k)


(6.19)

where

d0(k) = ε− 2t
∑

i cos ki,

di(k) = −2λ sin ki, i = 1, 2, 3

d4(k) = 2γ (3−
∑

i cos ki)

(6.20)

and

d±(k) = d1(k)± id2(k). (6.21)

The added term that preserves the time-reversal symmetry but breaks the inver-

sion symmetry is:

VI = R



0 0 0 e−ik3

0 0 −eik3 0

0 −e−ik3 0 0

eik3 0 0 0


(6.22)

The following parameters will be fixed at these values throughout the Chapter:

ε = 134 meV, λ = 30 meV, γ = 16 meV, R = 15 meV. We will use t = 40 meV

for the topological insulator and t = 14 meV for the trivial insulator (the two

values lead to comparable insulating gaps). The insulating gap in our study is

larger than the empirical insulating gap of the Bi2Se3 material, and the reason we

chose to proceed this way was to be able to better showcase the behavior of the
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strong Z2 invariant in the presence of disorder (the insulating and the mobility

gaps would have closed too fast if the gap was fixed at the empirical value). This

modification does not break the bridge with the experimental reality because it is

known that a mechanical strain may increase the insulating gap of the material.

The real space representation of the translational invariant Hamiltonian can

be constructed on cubic lattice where each vertex n carries four quantum states

|n, α, σ〉. Here, α = ±1 (= isospin) labels the s or the p angular momentum

character of a state the bands and σ = ±1 the spin up and down configurations.

On the Hilbert space spanned by |n, α, σ〉, we define di,j,k, σ̂, α̂, rα and rσ as the

translation, spin, isospin and flipping operators as follows:

d̂i,j,k|n1, n2, n3, α, σ〉 = |n1 + i, n2 + j, n3 + k, α, σ〉

σ̂|n, α, σ〉 = σ|n, α, σ〉, α̂|n, α, σ〉 = α|n, α, σ〉r

rσ|n, α, σ〉 = |n, α,−σ〉, rα|n, α, σ〉 = |n,−α, σ〉

(6.23)

Then, the real space representation of H0 takes the form

H0 = εα̂ + 6γ + λ
∑
s=±1

sd̂0,s,0rασ̂rσ

+iλ
∑
s=±1

s(d̂s,0,0rαrσ + d̂0,0,srασ̂)

−t(α̂ + γ)
∑
s=±1

(d̂s,0,0 + d̂0,s,0 + d̂0,0,s)

(6.24)

and the inversion symmetry breaking term takes the form:

VI = R
2
σ̂(α̂− 1)(d̂0,0,1rα − d̂0,0,−1)rσ. (6.25)

As it is now well established, the topological properties of the clean model are

revealed when restricting the total Hamiltonian H0 + VI on a slab: 0 < n3 < N ,

where N is taken large enough so that the tunneling between the two surfaces of
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Figure 6.2: (a-c) The band structure of the model for a slab configuration 0 <
n3 < 30, plotted as function of k1 with k2 fixed at k2 = 0. The hopping parameter
t takes the values t = 14 meV in panel (a), t = 22.6 meV in panel (b) and t = 40
meV in panel (c). Panel (d) reports a calculation of the strong Z2 invariant as t
was varied from 14 to 40 meV.
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the slab is negligible. The slab Hamiltonian takes the form:

H0(k1, k2) = −t
∑
s=±1

d̂00sα̂ + iλ
∑
s=±1

sd̂00srασ̂

−γ
∑
s=±1

(d̂00s) + d′4(k1, k2) + d′0(k1, k2)α̂

+d1(k1)rαrσ − id2(k2)rασ̂rσ

(6.26)

where d′4(k1, k2) = 2γ
(
3 −

∑
1,2 cos(ki)

)
and d′0(k1, k2) = ε − 2t

∑
1,2 cos(ki). For

such configuration, the parallel component to the surfaces of the momentum is

conserved, so we can plot the energy spectrum as function of k1 and k2. In

Fig. 6.2(a-c) we show sections of such plots, by holding k2 at k2 = 0, for three

different values of t. The dense band spectra seen in all three plots correspond

to the bulk and we can see a bulk energy gap in panels (a) and (c). The bulk

gap is closed in panel (b) and that marks the transition from the trivial to the

topological insulator. Indeed, in panel (c) we can observe chiral bands connecting

the valence and the conduction bands, and in panel (a) these bands are missing

entirely. The chiral bands in panel (c), if plotted as function of k1 and k2, will

give rise to a Dirac cone. The transition point between the phases is at t = 22.6

meV.

A straightforward test of the algorithm described in the previous section con-

sists of computing the strong Z2 invariant for the clean system as function of

parameter t, and comparing the output with the appearance or disappearance

of the surface states in the slab calculations in Fig. 6.1. Fig. 6.1(d) shows these

calculations, and both the Z2 invariant and the slab calculations predict a trivial

insulator for t < 22.6 meV and a topological insulator for t above this value. The

strong Z2 invariant was computed using the twisted boundary conditions on a

4×4×4 lattice. The size of the lattice is irrelevant for the clean systems, and we



77

just chose a convenient lattice size in order to test the twisted boundary condi-

tions method. We used X number of kz points to compute the pseudo-invariants,

in which case | det{Uπ,−π}| ≈ ZZZ, and Y number of ky points to perform the

interpolations.

6.4 Twisted boundary conditions

To include disorder, we consider a generic 3D quantum lattice model with quan-

tum states α per site n. The periodic Hamiltonian is given by:

H0 =
∑

n,p,α,α′

|n, α〉hαα′p 〈n+ p, α′| =
∑
n,p

|n〉ĥp〈n+ p|, (6.27)

where p runs over first, second, etc., neighbors of the origin and the α′s indices are

suppressed in the last equality. For our disordered Hamiltonian Hω = H0 + Vω,

we consider an on-site random potential:

Vω = W
∑
n,α

ωnα|n, α〉〈n, α| = W
∑
n

|n〉v̂ω〈n| (6.28)

where ωnα are randomly independent amplitudes uniformly distributed in the

interval [−1
2
, 1

2
].

The twisted boundary conditions technique was first introduced to compute

Hall conductance for disordered system [63] . We apply this technique to compute

our Z2 topological invariant. The method consists basically in a translation of

the system size Lj by an additional phase factor eiφj , where φj is the twisting

angle. We could then replace the Brillouin torus with the “twisting angles torus.”

On the finite size supercell with a size Lx × Ly × Lz, a physical phase boundary

conditions is replaced by a phase twisting φ = (φx, φy, φz) on a single particle

wave function ψ(x):
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ψ(ni + Li) = eiφiψ(ni) (6.29)

where i = x, y, z. If we identify the opposite boundaries of the twisting space

[−π, π] × [−π, π] × [−π, π], the space is a 3-torus. For a supercell S with a size

N ×N ×N , the disordered Hamiltonian can be written as:

Hω(φ) =
∑
n∈S

∑
p

|n〉 ĥ′np(φ) 〈(n+ p)modN|

+W
∑
n∈S
|n〉v̂ω〈n|

(6.30)

with

ĥ′np(φ) = e
−i

3∑
α=1

φα(δnα+pα,N−δnα+pα,−1)
ĥp. (6.31)

The phase factor above occurs only for the lattice points n at the boundary.

At this point we obtained a family of Bloch Hamiltonians indexed by a point on

the 3-torus. The same construction can be achieved by wrapping the supercell

S into a 3-torus and by threading magnetic fluxes through the 2D sections of

this torus. The effect of such magnetic fluxes is captured by the same twisted

boundary conditions.

It was argued that a bulk response may not be affected by the boundary

conditions [63]. However, this method is probamatic since the boundary of the

supercell is hard to define rigorously. We also note that the twisted boundary

conditions method is defined for a finite volume, but we are really interested in

an infinite bulk sample. Strictly speaking, we have to take the volume of the

supercell to infinity.

6.5 Level statistics analysis

The total Hamiltonian will include a random potential:
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H = H0 + VI + Vω, (6.32)

where Vω is a non-magnetic random potential:

Vω = W
∑
n,α,σ

ωnα|n, α, σ〉〈n, α, σ| (6.33)

with ωnα random entries uniformly distributed in the interval [−1
2
, 1

2
].

For level statistics analysis, we diagonalized the disordered Hamiltonian on a

14×14×14 lattice with periodic boundary conditions and for 500 random disorder

configurations. We sampled the energy spectrum at 100 equally spaced energy

levels E. For each such E, we identified, for each disorder configuration, the unique

energy levels Ei and Ei+1 satisfying: Ei < E < Ei+1, and we recorded the level

spacings: ∆E = Ei+j+1 − Ei+j, letting j take consecutive values between −5

and 5. Note that j indexes the levels and that each level is doubly degenerate.

In this way, we have generated ensembles containing 5500 level spacings for each

energy E. Fig. 6.3 reports the variance 〈s2〉/〈s〉2−1 of these ensembles as function

of energy E and disorder strength W . It also reports the integrated density of

states (IDOS), which counts the number of eigenvalues below an energy E and

normalizes this number by the dimension of the Hilbert space. When plotted as

function of E, the IDOS remains flat in the spectral gaps, so it is a useful and

effective tool for identifying the spectral gaps in the energy spectrum. We will be

particularly interested to see when the insulating gap is closing.

The level spacings follow a Poisson distribution when E is in the localized

spectrum and the localization length is smaller than the size of the system. The

Poisson distribution has a variance equal to 1. In the spectral regions where the lo-

calization length exceeds the size of the system, the statistics of the level spacings

coincides with that of a random Gaussian Symplectic Ensemble (GSE):[18, 19]

PGSE(s) = 218

36π3 s
4e−

64
9π
s2 . The variance of this distribution is 0.104. We can study
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Figure 6.3: Level statistics analysis for (left column) the topological insulator
t = 40 meV and (right column) the trivial insulator t = 14 meV. Each panel
displays the variance of the level spacings ensembles as function of the energy
where the level spacings were collected. The gray lines in each panels represent
the integrated density of states (IDOS), which can be used to assess the evolution
of the spectral gap, corresponding to the flat IDOS, and especially to determine
when the gap is closing and becoming completely filled with localized states. The
horizontal dash lines mark the value 0.104, the variance of the GSE ensemble.
The vertical range in each panel goes from 0 to 1. The shaded regions represent
the emerging phase diagram of the topological model.
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the trends as the system size is increased, and if the size of the system reached a

limit where the variance is seen to stabilize (which we have verified that it does),

the level spacing analysis can be used quite effectively to identify the regions

of localized and de-localized spectrum. This will be done after we discuss the

qualitative behavior of the energy spectrum in response to disorder.

In three dimensions, extended states can exist even in trivial disordered mod-

els. The qualitative behavior of the spectrum in trivial models is as follows. Usu-

ally, the edges of the bands starts to localize the moment the disorder is turned on

(for systems displaying large variations in the density of states, additional patches

of localized spectrum can occur deep inside the band). At moderate disorder, ex-

tended states still survive deep within the bands. As such, there are usually two

mobility edges forming per band, flanking the region of extended states, and these

mobility edges moves towards each other when the disorder is increased until they

merge and disappear. At that point, all the states become localized, as it should

be the case at large disorder [4].

In a topological model, the behavior of the spectrum is markedly different. The

edges of the bands are the first parts of the spectrum to become localized and the

extended states are still located in the middle of the bands. But, if a band carries

a nontrivial topological number that is robust against disorder, the two mobility

edges flanking the extend states in a band cannot merge and disappear like in the

trivial case because that will lead to a sudden change of the topological number

carried by the bands, from a nontrivial to a trivial value. So what happens when

increasing the disorder? The energy spectrum will eventually become entirely

localized as the disorder is being steadily increased,[4] and the only way this can

happen is through a scenario where the bands carrying topological numbers collide

with each other and in the process they neutralize their topological numbers. This

leads to one of the hallmarks of the topological models where, when increasing

the disorder, the spectral regions of extended states are seen to drift towards each
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Figure 6.4: Illustration of the phase diagram of the model as derived in Fig. 6.3,
and the two paths used in the mapping of the Z2 invariant.

other until they merge and disappear, usually at very large disorder strengths.

The levitation of the Chern-number carrying extended states in the integer

quantum Hall effect is well known from the works of Halperin and Laughlin

[36, 52], and the pair annihilations of the topological states in lattice models

of quantum Hall effect was discussed in Refs. [87, 111]. The levitation and pair

annihilation picture was instrumental for the understanding of the global phase

diagram of integer quantum Hall effect [48], and that is also the case for our study.

In Fig. 6.3 we report the variance of the level spacings ensembles collected at

various energies and for increasing disorder strengths. However, the level statistics

have been exhaustively researched for topological models [12, 73, 77, 95], and the

correlation between the histograms and the value of the variance has been already

firmly established.

Examining the panels in Fig. 6.3, we can observe energy regions where the

variance is large (and becomes unity at large disorder) but also energy regions
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where the variance remains pinned at the 0.104 value. These later regions will be

identified with the spectral regions of extended states, while the former ones with

the spectral regions of localized states. In panels (a1)-(a11) we can clearly see the

two extended states regions drifting and merging with each other as the disorder

is increased. The extended states survive even at extreme values of disorder

W = 1000 meV; this value is about twice the width of the entire clean energy

spectrum. No such behavior is observed for the trivial case in panels (b1)-(b11),

where the valance band is seen to become entirely localized already at W ’s as

small as 200 meV, and the whole spectrum becomes localized before W reaches

700 meV.

Based on the results in Fig. 6.3(a1)-(a11), we can draw the phase diagram

of the topological model in the (W,EF ) plane with quite accurate precision. It

consists of a strong topological insulating phase surrounded by a metallic phase,

which at its turn is surrounded by a trivial insulating phase (see Fig. 6.3). Exam-

ining the integrated density of states, we can see that the spectral gap is already

closed at W = 300 meV but the topological phase extends beyond this W value.

This phase diagram will be reconfirmed by a direct mapping of the Z2 invariant.

6.6 Maps of the Z2 invariant

The Z2 invariant will be mapped along the two paths shown in Fig. 6.4. Due to the

computational costs of such calculations, we had to settle for a somewhat smaller

lattice size of 8×8×8. We have used 400 k-points in the kz direction to compute

the monodromies, and 25 k-points in the ky direction for the interpolation. As

such, each Z2 invariant computation requires 20,000 exact diagonalizations of the

disordered Hamiltonian. A number of 10 disorder configurations were considered

for each point chosen along the paths shown in Fig. 6.4. We have also implemented

the fortran routine PfaffianH [31] for our very large matrices calculations.
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Figure 6.5: The upper panels show the Z2 invariant computed along the path (1)
of Fig. 6.4, on a 8×8×8 unit cells lattice via twisted boundary conditions. The
dimension of the occupied space was slowly reduced from 1024 to 124, as indicated
in the figure. Each Z2 the calculation was repeated for 10 random disorder con-
figurations and the output is shown by the full dots, exactly how it occur in the
actual calculation. The percentages of the Z2 = ±1 occurrences is displayed in
each panel. The lower panel shows the variance of the level spacings for W = 300
meV, and the averaged Fermi levels (see the vertical lines) corresponding to each
Z2 calculation.
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Fig. 6.5 reports the map of the Z2 invariant along the path (1). The calcula-

tions were performed with a fixed number of occupied states rather than a fixed

Fermi level. By doing so, we ensured that all the projectors in the monodromy

formula Eq. 6.7 have the same dimension but in this case the Fermi level displays

small fluctuations which disappear in the thermodynamic limit. The dimension

of the occupied states was slowly reduced from 1024 (half-filled) to 50, as illus-

trated in Fig. 6.5, and for each dimension we have computed the average Fermi

level, defined as half between the last occupied and lowest unoccupied states. The

averaged Fermi levels are shown as vertical lines, over-imposed on the variance

plot at W = 300 meV. And the Fermi levels sample the entire spectrum below

the gap.

We want to point out again that the spectral gap is already closed at W = 300

meV but, according to the level statistics analysis, there is still a mobility gap.

We have verified this statement by direct check of the eigenvalue files. When

the Fermi level was inside this mobility gap, we found absolute no fluctuations

in the Z2 invariant, which turned out to be −1 for all 10 random configurations.

As the Fermi level is lowered, it enters the region of extended states and here we

observed large fluctuations. Even in this regime the Z2 continue to take quantized

±1 but there is no way to tell which we will be so the output fluctuates between

the two allowed values. This remains the case for as long as the Fermi level is in

the region of extended states and, as soon as the Fermi level emerges back into

the region of localized states, the Z2 invariant is seen to take a non-fluctuating

quantized value of +1.

A similar behavior is observed when considering the path (2) of Fig. 6.4

for which the calculations are reported in Fig. 6. While increasing the disor-

der strength, the Z2 invariant is seen to take the quantized and non-fluctuating

value of −1 until the mobility gap closes. From there on, the values fluctuate

between ±1, and the Z2 stabilizes once again when the path enters the trivial
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Figure 6.6: This figure reports the results of a computation of the strong Z2

invariant along the path (2) of Fig. 6.4, completed on a 8×8×8 unit cells lattice via
twisted boundary conditions. The disorder strength was increased from W = 100
to 1200 meV, as indicated in the figure. Each Z2 the calculation was repeated
for 10 random disorder configurations and the output is shown by the full dots,
exactly how it occur in the actual calculation. The percentages of the Z2 =
±1 occurrences are displayed in each panel. The accompanying panels show
the variance of the level spacings at the corresponding W ’s, from where we can
determine when the Fermi level is in a region of localized/delocalized spectrum.
The Fermi level, represented by the dotted vertical line, was kept at 68 meV
during these calculations.
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insulating state where it assumes the value +1.

6.7 Summary

A previously introduced gauge independent formulation of the strong Z2 invariant

was found to bring significant numerical advantages, allowing direct computations

of the invariant for large supercells with twisted boundary conditions. The numer-

ical algorithm was applied to a disordered model of Bi2Se3 topological material

and maps of the strong invariant were given as function of either Fermi level or

disorder strength. The behavior of the strong Z2 invariant seen in our calcula-

tions is exactly what we will expect if this invariant was indeed robust to disorder.

We observed the strong Z2 invariant taking quantized and non-fluctuating values

whenever the Fermi level was in an energy region of localized states, and fluc-

tuating values (between the only two possible values of ±1) whenever the Fermi

level was in an energy region of delocalized states. The fact that our numerical

maps of the strong Z2 invariant were in good agreement with the phase diagram

constructed from the level statistics analysis leaves little doubt that the strong

topological phase survives beyond the point where the spectral gap closes, and

that it extends all the way to the point where the mobility gap closes.

Our algorithm, combined with accurate tight binding models that can be ap-

plied to any material either via first principles calculations or by simple empirical

means [57], providing accurate quantitative simulations of the real experimental

samples. Recently, twisted boundary conditions were successfully used to compute

the Chern invariant of an interacting two dimensional fractional Chern insulator

[93]. Since the algorithm for computing the Z2 invariants is less demanding than

the algorithm for the Chern invariant, we have high hopes that we will soon be

able to map the Z2 invariants in the presence of electron interaction for accurate

complex models of topological materials. Both disorder and electron interactions
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are expected to strongly influence the phase diagram of a topological material.

The results of our study may be of interest for experimentalists. So far,

all topological materials fabricated in the labs display metallic bulk properties,

a feature that is attributed to the imperfections of the materials. Our study

has revealed the interesting fact that, due to the very topological nature of the

materials, the disorder pulls the valance and the conduction mobility edges closer

to each other. In fact, within our tight-binding model for Be2Se3, we saw a

rapid reduction of the mobility gap with disorder and the closing of the mobility

gap when the disorder strength reached about 350 meV. This suggests that the

topological materials have to be much “cleaner” than their trivial counterparts

in order to see an insulating phase.
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Appendix A

Lemmas and proofs

A.1 Proof of the theorem

Proof. The conditions of the Theorem together with Lemma 4 (see below), assure

that, with probability one in ω, the operator [D̂x0 , πω(p)] belongs to the q-Shatten

class, for any q > 2n. This in turn, implies that the operators:

π∓ω (p)− π∓ω (p)D̂x0π
±
ω (p)D̂x0π

∓
ω (p) = π∓ω (p)[D̂x0 , πω(p)]2π∓ω (p) (A.1)

are in the q-Shatten class for any q > n. As such, π−ω (p)D̂x0π
+
ω (p) belongs to the

Fredholm class and its Fredholm index is well-defined for all ω ∈ Ω, except for a

possible zero-measure subset.

Next, we establish three key properties of the Fredholm index of π−ω (p)D̂x0π
+
ω (p):

1) it is, with probability one, independent of ω, 2) it is independent of x0, and

3) it is independent of what exactly is inserted at the second line of Eq. 4.9.

Indeed, for 1), since the translations act ergodically on Ω, it is enough to inves-

tigate what happens when we replace ω with an arbitrarily translated taω. And

since the Fredholm index is invariant to unitary transformations, and due to the

covariance of πω, we only need to compare the indices of π−ω (p)D̂x0π
+
ω (p) and

π−ω (p)D̂x0+aπ
+
ω (p). But these two operators differ by a compact operator so their

Fredholm indices coincide. Property 2) follows from the same arguments and 3)

is evident.
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We now start the actual computation of the Fredholm index. We will use

Connes’ Chern characters [15] for the Fredholm module. Given that [πω(p), D̂x0 ]

is in the q-Shatten class with q > 2n, the lowest Chern character we can use is

τ2n+2:

Index
(
π−ω (p)D̂x0π

+
ω (p)

)
= τ2n+2

(
πω(p), . . . , πω(p)

)
, (A.2)

where the righthand side can be computed by the formula [15]:

τ2n+2

(
πω(p), . . . , πω(p)

)
= tr{γ0πω(p)[D̂x0 , πω(p)]2n+2}. (A.3)

This formula can be processed to the following form:

−
∫
R2n

dx

∫
Ω

dP (ω) tr{γ0πω(p)[D̂x, πω(p)]2nχ0}, (A.4)

where it is understood that the equality holds for all x0 and all ω ∈ Ω, with

possible exceptions that occur with zero probability. Since this last expression

brings significant simplifications, it is worth presenting details of the derivation.

First, using identities such as:

[
D̂x0 , [D̂x0 , πω(p)]2

]
= 0,

[
πω(p), [D̂x0 , πω(p)]2

]
= 0, (A.5)

and generic properties of D̂x0 and γ matrices, we can write:

tr{γ0πω(p)[D̂x0 , πω(p)]2n+2} =
1

2
tr
{
γ0[D̂x0 , πω(p)]2n+1D̂x0

}
. (A.6)

Since, with probability one, the index is independent of ω, we can average over
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this variable. Expanding the trace and using the translations:

. . . =
1

2

∫
Ω

dP (ω)
∑
x∈Z2n

tr
{
γ0[D̂x+x0 , πtxω(p)]2n+1D̂x+x0χ0

}
. (A.7)

Since the sum over x is absolutely convergent, we can move the integration inside

the sums. We then perform a change of variable ω → txω and use the invariance

of the measure P (ω) to write:

. . . =
1

2

∑
x∈x0+Z2n

∫
Ω

dP (ω) tr
{
γ0[D̂x, πω(p)]2n+1D̂xχ0

}
. (A.8)

Since the index is independent of x0, we can integrate x0 over the unit cell and

transform the discrete sum over x into an integral over the whole space. Next, we

open one commutator and use the cyclic properties of the trace and the identities

in Eqs. 4.10 and A.5 to arrive at Eq. A.4.

We continue the calculation from Eq. A.4. Let p̃ ∈ A0 be an approximation of

p (hence p̃ has compact support). Since A0 is dense in the Soboleev space, we can

always find a sequence of such approximations that converges to p in the Sobolev

norm ‖ ‖W . We will evaluate the righthand side of Eq. A.4 with p replaced by p̃.

Eq. A.4 can be expended to:

−
∫
R2n

dx

∫
Ω

dP (ω)
∑

xi′s∈Z2n

tr
{
γ0πω(p̃)

2n∏
i=1

χxi [D̂x, πω(p̃)]χxi+1

}
, (A.9)

where x2n+1 = 0. One important observation is that, due to the compact support

of p̃, the sums over xi’s involve a finite number of zero elements. As such, we can

interchange the sums and the integrals and, after the commutators are evaluated

explictely, we obtain:
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. . . = −
∑

xi′s∈Z2n

∫
R2n

dx trγ
{
γ0

2n∏
i=1

(
x̂i + x− ̂xi+1 + x

)
· γ
}

×
∫

Ω

dP (ω) tr
{
πω(p̃)

2n∏
i=1

χxiπω(p̃)χxi+1

}
, (A.10)

Using the key identity from Lemma 3, this is the same as:

. . . = −(2πi)n

n!

∑
xi′s∈Z2n

∑
σ

(−1)σ
2n∏
i=1

(xσii )

∫
Ω

dP (ω) tr
{
πω(p̃)

2n∏
i=1

χxiπω(p̃)χxi+1

}
,

where σ’s denote permutations of 1, . . . , 2n. This can be conveniently written as:

. . . = −(2πi)n

n!

∫
Ω

dP (ω)
∑
σ

(−1)σtr
{
πω(p̃)

2n∏
i=1

[Xσi , πω(p̃)]χ0

}
, (A.11)

and using the rule of calculus from Eq. 2.24, we finally obtain:

. . . = −(2πi)n

n!

∑
σ

(−1)σT

(
p̃

2n∏
i=1

∂σi p̃

)
. (A.12)

We now can take the limit of p̃ towards p in the Sobolev space and the statement

follows. Regarding the homotopy invariance, we only need to observe that if p is

varied continuously with respect to the Sobolev norm ‖ ‖W , then the right-hand

side of Eq. 4.13 varies continuously and, as a consequence, it cannot jump from

one quantized value to another. Q.E.D.

A.2 Lemma 1

Lemma 2. Let x1, . . . ,x2n+1 be points of R2n with x2n+1 = 0. Then the following

identity holds:
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∫
R2n

dx trγ
{
γ0

2n∏
i=1

(
x̂i + x− ̂xi+1 + x

)
· γ
}

= −(2π)n

inn!

∑
σ

(−1)σ
2n∏
i=1

xσii . (A.13)

Proof. The proof of this key identity relies on the well known geometric interpre-

tation of the following trace:

trγ{γ0(y1 · γ) . . . (y2n · γ)} = −i−n2n+1Vol[0,y1, . . . ,y2n], (A.14)

where [y0,y1, . . . ,y2n] is the simplex with vertices at y0, y1, . . ., y2n. Vol denotes

the oriented volume of the simplex. Note that y0 = 0 in Eq. A.14. Expanding

the lefthand side of Eq. A.13, we obtain:

. . . = −i−n2n+1

∫
R2n

dx
2n+1∑
j=1

(−1)j+1Vol[0, x̂1 − x, . . . , x̂j − x, . . . , ̂x2n+1 − x],

(A.15)

where the underline means the term is omitted. In Eq. A.15, it is convenient to

translate the simplexes and move the first vertex to the proper place. As such,

we will work with:

Sj(x) = [x+ x̂1 − x, . . . ,x, . . . ,x+ ̂x2n+1 − x], j = 1, . . . , 2n+ 1, (A.16)

where x is located at the j-th position. We will also denote by S the simplex:

S = [x1, . . . ,x2n+1], (A.17)

where we recall that x2n+1 coincides with the origin. To summarize, we arrived

at:
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∫
R2n

dx trγ
{
γ0

2n∏
i=1

(
x̂i − x− ̂xi+1 − x

)
· γ
}

= −2(−2i)n
∫
R2n

dx

2n+1∑
j=1

Vol{Sj(x)}.

(A.18)

Note that the sign factor (−1)j+1 disappeared because we changed the order of

the vertices. Furthermore, if x is located inside S, then the orientations of the

simplexes Sj (j = 1, 2n+ 1) are the same as that of S. This is the case because

each Sj can be continuously deformed into S without sending its volume to zero.

Such deformation can be achieved by moving x at xj and x+x̂i − x at xi (i 6= j),

along straight paths. One such deformation process is illustrated in Fig. 1(a) for

the 2-dimensional case.

If we look closer at the simplexes Sj(x), we see that all vertices that are

different from x are located on the unit sphere centered at x. As such, for any

given simplex Sj(x), the facets stemming from x define a sector of the unit ball

B2n(x) centered at x. This sector will be denoted by Bj(x). This construction is

illustrated in Fig. 1(b) for the 2-dimensional case. The orientation of Bj(x)’s are

considered to be the same as that of Sj(x)’s. Now, one important observation is

that:

Vol{Sj(x)} − Vol{Bj(x)} ∼ |x|−(2n+1) (A.19)

in the asymptotic regime |x| → ∞. Consequently, we can write:

∫
R2n

dx

2n+1∑
i=1

Vol{Sj(x)} =

∫
R2n

dx

2n+1∑
i=1

Vol{Bj(x)} (A.20)

+
2n+1∑
i=1

∫
R2n

dx
(
Vol{Sj(x)} − Vol{Bj(x)}

)
,

with the integrals in the second line being absolutely convergent. There are two
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Figure A.1: (a) Illustration of the simplexes S = (x1,x2,x3) (light gray) and
S1(x) = (x,x + x̂2 − x,x + x̂3 − x) (darker gray), together with the interpo-
lation process that takes S1(x) into S. (b) Illustration of the ball sector B1(x)
corresponding to the simplex S1(x). (c) Illustration of the inversion operation
on x relative to the center of the segment (x2,x3). The volume of B1(x)−S1(x)
(shaded in gray) changes sign after this operation because x crosses the segment
(x2,x3) (the volume becomes zero at the crossing and changes sign after that).
(d) The ball sectors B1(x), B2(x) and B3(x) have same orientation and they add
up to the full unit disk when x is inside S. (e) When x is outside of S, the ball
sector B1(x) has the opposite orientation of B2(x) and B3(x) (because x crossed
the segment (x2,x3)) and, as a consequence, B1(x), B2(x) and B3(x) add up to
zero.
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extraordinary facts taking place, simultaneously:

∫
R2n

dx
(
Vol{Sj(x)} − Vol{Bj(x)}

)
= 0, for all j = 1, 2n+ 1, (A.21)

and

2n+1∑
i=1

Vol{Bj(x)} =


Vol(B2n) if x inside S,

0 if x outside S.

(A.22)

Eq. A.21 follows from the fact that the integrand is odd under the inversion of x

relative to the center of the facet {x1, . . . ,xj, . . . ,x2n+1} of the simplex S. This

property is illustrated in Fig. 1(c) for the 2-dimensional case. Eq. A.22 is a simple

geometric fact. It is illustrated in Figs. 1(d) and 1(e) for the 2-dimensional case.

Then Eq. A.18 reduces to:

∫
R2n

dx trγ
{
γ0

2n∏
i=1

(
x̂i − x · γ − ̂xi+1 − x · γ

)}
= −2(−2i)nVol{B2n)}Vol{S},

(A.23)

and the statement follows. Q.E.D.

A.3 Lemma 2

Lemma 3. Let p be an element from the Sobolev space W (A, T ) and let TrDix

denote the Dixmier trace [17]. Then, with probability one in ω, the following

identity holds:

TrDix

{(
i[D̂x0 , πω(p)]

)2n
}

=
1

2n

∫
S2n−1

dx̂ T ⊗ trγ

{(
γ(x̂) ·∇p

)2n
}
. (A.24)
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In particular, the Dixmier trace of (i[D̂x0 , πω(p)])2n is finite for any p ∈ W (A, T ),

a fact that follows immediately from the noncommutative version of the Holder

inequality [51, 92]. In Eq. A.24, x̂ is the unit vector in R2n which is integrated

over the (2n-1)-sphere S2n−1, and

γi(x̂) = γi − x̂i(x̂ · γ), i = 1, . . . , 2n, (A.25)

are the generators of the Clifford algebra:

{γi(x̂), γj(x̂)} = 2(δij − x̂ix̂j). (A.26)

Remark. From a standard property of the Dixmier trace [9], it follows that(
i[D̂x0 , πω(p)]

)2n
belongs to the qth-Schatten classes with q > 2n, whenever p ∈

W (A, T ).

Proof. We will derive the identity in Eq. A.24 for an element p from A0 (hence

with compact support). Since A0 is dense in the Sobolev space W (A, T ), the

identity extends by continuity over this space. First, it is easy to establish that

any translation of ω leads to a trace-class perturbation and, as such, the Dixmier

trace remains unchanged. Since the translations act ergodically on Ω, this tells

that the Dixmier trace in Eq. A.24 is independent of ω, except for cases that

occur with zero probability. Using the arguments from Ref. [9], we only need to

consider the diagonal part of the operator:

Diag
(
i[D̂, πω(p)]

)2n
= (−1)n

∑
x∈Z2n

Q∑
α=1

trγ

{
〈x, α|[D̂, πω(p)]2n|x, α〉

}
χx,α,

(A.27)

where χx,α = |x, α〉〈x, α|. We expand the righthand side in the following way:
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· · · = (−1)n
∑
x∈Z2n

Q∑
α=1

∑
x′is∈Z2n

trγ
{
〈0, α|

2n∏
i=1

χxi−1
[D̂x, πtxω(p)]χxi |0, α〉

}
χx,α,

(A.28)

where x0 = x2n = 0 and the summation over these variables is omitted. The

commutators can be evaluated explicitly and note that, since p has a compact

support, there are only a finite number of non-zero terms in the sums over xi

variables. We have:

. . . = (−1)n
∑
x∈Z2n

Q∑
α=1

∑
x′is∈Z2n

〈0, α|
2n∏
i=1

χxi−1
πtxω(p)χxi |0, α〉 (A.29)

× trγ
{ 2n∏
i=1

(
̂xi−1 + x− x̂i + x

)
· γ
}
χx,α.

In the asymptotic limit |x| → ∞, we have:

(
̂xi−1 + x− x̂i + x

)
· γ =

1

|x|
(xi−1 − xi) · γ(x̂

)
+O(|x|−2). (A.30)

Hence, apart from terms that are in the trace-class and don’t count for the Dixmier

trace [9], the diagonal part of our operator is:

Diag
(
i[D̂, πω(p)]

)2n
=

Q∑
α=1

∑
x∈Z2n

trγ
{
〈0, α|

(
γ(x̂) · i[X, πtxω(p)]

)2n|0, α〉
} χx,α
|x|2n

.

(A.31)

Then the statement follows from the following Lemma. Q.E.D.
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A.4 Lemma 3

Lemma 4. Let f : Ω→ C and ϕ : S2n−1 → C be bounded measurable functions.

Consider the operator:

∑
x∈Z2n

f(txω)ϕ(x̂)
χx,α
|x|2n

, (A.32)

and assume that any translation of ω in Eq. A.32 leads to a trace-class perturba-

tion. Then:

TrDix

∑
x∈Z2n

f(txω)ϕ(x̂)
χx,α
|x|2n

=
1

2n

∫
Ω

dP (ω) f(ω)

∫
S2n−1

dx̂ ϕ(x̂). (A.33)

Proof. One of the main ingredients of the proof is Lemma 3 of Ref. [9], which

says:

TrDix

∑
x∈Σ

χx,α
|x|2n

=
s2n−1

2n
Dens Σ, (A.34)

where s2n−1 is the area of the (2n-1)-sphere, and the density of a set Σ ∈ Z2n is

defined as:

Dens Σ = lim
N→∞

1

N2n

∑
x∈Σ∩C2n

1, (A.35)

with C2n being the cube
[
−N

2
, N

2

]2n
. To use this general result, we partition

the space according to the level sets of ϕ and f . First, let us partition the

configuration space Ω:

Ωj = {ω ∈ Ω | fj−1 ≤ f(ω) < fj}, (A.36)

where fj = (j + 1
2
)δ and δ is a small positive number. Since f is bounded, only a
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finite number of Ωj’s are non-empty. Then let Σj(ω) be the sets in Z2n, defined

as:

Σj(ω) = {x ∈ Z2n | txω ∈ Ωj}. (A.37)

These sets have finite densities in Z2n, and in fact Birckhoff’s theorem tells us

that, with probability one:

Dens Σj(ω) = P (Ωj). (A.38)

The unit vector x̂ takes values on the S2n−1 unit sphere in R2n, and we par-

tition the sphere into level sets of ϕ:

Sk = {x̂ ∈ S2n−1 | ϕk−1 ≤ ϕ(x̂) < ϕk}, (A.39)

where ϕk = (k+ 1
2
)δ. Since ϕ is bounded, there are a finite number of non-empty

such sets. We then refine our partition of Z2n to:

Σj,k(ω) = Σj(ω) ∩ {x ∈ R2n | x̂ ∈ Sk}. (A.40)

This partition is still finite, hence we can write:

TrDix

∑
x∈Z2n

f(txω)ϕ(x̂)
χx,α
|x|2n

=
∑
j,k

TrDix

∑
x∈Σj,k(ω)

f(txω)ϕ(x̂)
χx,α
|x|2n

. (A.41)

Furthermore, from the definition of the partition:

TrDix

∑
x∈Σj,k(ω)

f(txω)ϕ(x̂)
χx,α
|x|2n

= fjφk TrDix

∑
x∈Σj,k(ω)

χx,α
|x|2n

, (A.42)

plus corrections that are of second order in δ. We arrive at:
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TrDix

∑
x∈Σj,k(ω)

f(txω)ϕ(x̂)
χx,α
|x|2n

= fjφk
s2n−1

2n
Dens Σj,k(ω), (A.43)

plus the corrections we mentioned. Our next task will be to compute the density

of Σj,k(ω). However, instead of working directly with Σj,k(ω), we recall that the

original Dixmier trace remains unchanged when we translate ω. As such, we can

replace Dens Σj,k(ω) with the average M−2n
∑
m∈CM Dens Σj,k(tmω). The latter

can also be written as:

M−2n
∑
m∈CM

Dens
{

[m+ Σj(ω)] ∩ {x ∈ R2n | x̂ ∈ Sk}
}
. (A.44)

We will work in the limit M → ∞, where we consider the following measure on

the sphere:

ν(S ⊂ S2n−1) = lim
M→∞

M−2n

P (Ωj)

∑
m∈CM

Dens
{

[m+ Σj(ω)] ∩ {x ∈ R2n | x̂ ∈ S}
}
.

(A.45)

From this expression, one can derive two immediate properties. First, ν(S2n−1) =

1, hence ν is a probability measure, and second, ν is invariant to rotations. Hence

ν must be equal to:

ν(S ⊂ S2n−1) =
|S|
s2n−1

, (A.46)

where |S| denotes the area of S. Consequently:

lim
M→0

M−2n
∑
m∈CM

Dens Σj,k(tmω) =
P (Ωj)|S|
s2n−1

. (A.47)

Putting everything together, we demonstrated that, apart from corrections that

vanish as δ → 0:
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TrDix

∑
x∈Z2n

f(txω)ϕ(x̂)
χx,α
|x|2n

=
1

2n

∑
j,k

fjφkP (Ωj)|Sk|, (A.48)

and the statement follows by taking the limit of δ goes to zero. Q.E.D.

A.5 Proof of proposition 1

We will use the bound on the fractional powers of the Green’s function in the

following way. First, let us note that, under the localization assumption, the

projector onto the occupied states can be written as:

p =
i

2π

∫
C
dξ (h− ξ)−1, (A.49)

where C is a contour in the complex plane surrounding the energy spectrum below

the zero-energy level. This is the case because, even though the spectrum is dense

near the origin, with probability one, the contour C will miss the point spectrum

of h. Since the resolvent (h− ξ)−1 decay exponentially when ξ is away from the

real axis, we can always extend the bound to the entire C:

∫
Ω

dP (ω) |(h− ξ)−1(ω,x)|s ≤ Cse
−sβ|x|, for all ξ ∈ C. (A.50)

Proof. We will use the following simple estimate: If f1, . . ., f2n are elements from

the algebra A, then:

|tr{(f2n ∗ . . . ∗ f1)(ω,0)}| ≤ Q
∑

x′js∈Z2n

2n∏
j=1

|fj(t−1
xj
ω,xj−1 − xj)|, (A.51)

with x0 and x2n fixed at the origin (which is imposed throughout this section).

(i) We consider only the terms of the Sobolev norm that contain derivations,
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because the remaining term can be treated similarly. We take for all j’s fj = ∂ip

in Eq. A.51, and observe that:

|fj(ω,x)| ≤ |x|
2π

∫
C
|dξ| |Im ξ|−1+s

∣∣(h− ξ)−1(ω,x)
∣∣s. (A.52)

Then:

T
(∣∣∂ip∣∣2n) ≤ ( 1

2π

)2n

Q

∫
C
|dξ1| |Im ξ1|−1+s . . .

∫
C
|dξ2n| |Im ξ2n|−1+s

×
∑

x′js∈Z2n

∫
Ω

dP (ω)
2n∏
j=1

|xj−1 − xj|
∣∣(h− ξj)−1(t−1

xj
ω,xj−1 − xj)

∣∣s.
Holder inequality enables us to continue:

. . . ≤
(

1

2π

)2n

Q

∫
C
|dξ1| |Im ξ1|−1+s . . .

∫
C
|dξ2n| |Im ξ2n)|−1+s (A.53)

×
∑

x′js∈Z2n

2n∏
j=1

|xj−1 − xj|
[∫

Ω

dP (ω)|(h− ξj)−1(t−1
xj
ω,xj−1 − xj)|2ns

] 1
2n

.

If we take s < 1
2n

, we can use the bound in Eq A.50 on the fractional powers of

the resolvent. Noting that the remaining integrals over ξj’s are convergent, the

inequality reduces to:

T
(∣∣∂ip∣∣2n) ≤ ct.

∑
x′js∈Z2n

2n∏
j=1

|xj−1 − xj|e−sβ|xj−1−xj |,

and the remaining sums are evidently convergent.

(ii) For all j’s, we take
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fj = ∂i(p
′ − p) =

i

2π

∫
C
dξ ∂i

(
(h′ − ξ)−1 − (h− ξ)−1

)
(A.54)

in Eq. A.51, and observe again that:

∣∣fj(ω,x)
∣∣ ≤ |x|

2π

∫
C
|dξ| |Im ξ|−1+s

∣∣((h′ − ξ)−1 − (h− ξ)−1
)
(ω,x)

∣∣s. (A.55)

Using the resolvent identity, the condition |δh(ω,x)| ≤ δh χR(x), and the generic

inequality |a1 + a2 + . . . |s ≤ |a1|s + |a2|s . . ., we can continue:

. . . ≤ (δh)s

2π
|x|
∑
y,z

χR(y − z)

∫
C
|dξ| |Im ξ|−1+s (A.56)

×
∣∣(h′ − ξ)−1(ω,y)

∣∣s∣∣(h− ξ)−1(t−1
z ω,x− z)

∣∣s.
Then, from Eq. A.51 we obtain:

T
(∣∣∂i(p′ − p)∣∣2n) ≤ (δh)2ns

(2π)2n

∫
C
|dξ1| |Im ξ1|−1+s . . .

∫
C
|dξ2n| |Im ξ2n|−1+s

×
∑

(xj ,yj ,zj)′s

∫
Ω

dP (ω)
2n∏
j=1

|xj−1 − xj|χR(yj − zj)(A.57)

×
∣∣(h′ − ξj)−1(t−1

xj
ω,yj)

∣∣s∣∣(h− ξj)−1(t−1
xj+zj

ω,xj−1 − xj − zj)
∣∣s.

Holder inequality enables us to continue as:
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. . . ≤ (δh)2ns

(2π)2n

∫
C
|dξ1| |Im ξ1|−1+s . . .

∫
C
|dξ2n| |Im ξ2n|−1+s

×
∑

(xj ,yj ,zj)′s

2n∏
j=1

|xj−1 − xj|χR(yj − zj) (A.58)

×
[∫

Ω

dP (ω)
∣∣(h′ − ξj)−1(t−1

xj
ω,yj)

∣∣4ns] 1
4n

×
[∫

Ω

dP (ω)
∣∣(h− ξj)−1(t−1

xj+zj
ω,xj−1 − xj − zj)

∣∣4ns] 1
4n

If s < 1
4n

, then we can use the bound in Eq A.50 on the fractional powers of the

resolvent, in which case:

. . . ≤ ct.
(
δh
)2ns

∑
(xj ,yj ,zj)′s

2n∏
j=1

|xj−1−xj|χR(yj−zj)e−sβ(|yj |+|xj−1−xj−zj)|), (A.59)

and the remaining sums are evidently convergent. The statement follows. Q.E.D.
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