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ABSTRACT OF THE DISSERTATION

Importance Sampling Methods with Multiple Sampling

Distributions

by Wentao Li

Dissertation Director: Dr. Rong Chen and Dr. Zhiqiang Tan

The complexity of integrands in modern scientific, industrial and financial problems

increases rapidly with the development of data collection technologies. Monte Carlo

method is widely used for complicated integration. In Monte Carlo integration, it is a

natural and flexible method to consider multiple simulation mechanisms instead of one

to address di↵erent aspects of the integrand. New methods are needed to combine the

multiple mechanisms e�ciently.

Monte Carlo integration methods are reviewed, with focus on importance sampling

methods (IS) and sequential Monte Carlo methods (SMC). The former is commonly

used for low-dimension problems. The latter is a variation of IS, which has been de-

veloped to be a new branch itself in the recent two decades, and promising for high-

dimension problems with sequential nature.

For IS, techniques for combining multiple proposal distributions have been well de-

veloped, including Owen and Zhou (2000) and Tan (2004). Important implementation

issues are needed to be resolved, including the allocation of sample budgets and the

selection of proposals. A two-stage procedure is proposed to optimize the sample allo-

cation, and although little theoretical investigation has been done for such a two-stage
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procedure in literatures, its optimality among current approaches is theoretically justi-

fied. The choice of the first stage sample size is also discussed through investigating the

high order performance of estimators. About the construction of proposals, suggestions

are given to approximate the perfect case.

For SMC, only the plain vanilla combination of multiple proposals has been used in

literatures. A novel SMC filtering scheme is proposed to combine the multiple proposals

through the control variates approach in Tan (2004). Control variates are used in both

resampling and estimation. The new algorithm is shown to be asymptotically more

e�cient than the direct use of multiple proposals and control variates. The guidance

for selecting multiple proposals and control variates is also given. Numerical studies of

the AR(1) model observed with noise and the stochastic volatility model with AR(1)

dynamics show that the new algorithm can significantly improve over the bootstrap

filter and auxiliary particle filter.
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Chapter 1

Introduction

1.1 Statistical Integration

Since the introduction of calculus by Newton and Leibnitz, the evaluation of integrals

stays in the central role of many science and engineering problems. Without exception,

the proper interpretation and evaluation of integrals is the key to many fundamental

problems of statistics. For examples, the cumulative distribution function and moments,

which characterize and sometimes identify the probability distribution, are in the form

of integrals; the posterior density, which is the central topic in Bayesian statistics,

requires to integrate the joint density. Integrals in statistical problems are usually in

the following form:

µ =

Z

⌦
h(x)⇡⇤(x)dx

where ⇡⇤(x) is a probability density with domain ⌦ and h(x) is a real function. µ can be

treated as the expectation of h(x) with respect to density ⇡⇤(x). Even some statistical

integrals that seldom interpreted as expectations can be written in this form. For

examples, the standard normal CDF at x0 can be treated as the normalizing constant

of standard normal density truncated in (�1, x0); the posterior density can be treated

as the expectation of likelihood function with prior density.

In most practical problems, integrals are evaluated by numerical approximation,

since only a few simple functions can be integrated analytically with techniques taught

in the college calculus course. The approximation is usually in the form of weighted

average of integrands evaluated at multiple points {x1, · · · , xn}, such as the midpoint

rule for univariate integration. In other words, the underlying Lebesgue measure is

approximated by discrete counting measure with {x1, · · · , xn} as support and weights
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as measures. Based on the choice of {x1, · · · , xn}, approximation methods have two

categories: deterministic method and Monte Carlo method. The former makes the se-

lection in deterministic way, including Newton-Cotes rules, Gaussian quadrature, quasi

Monte Carlo method and etc. See Press et al. (2007) for an overview. The latter gen-

erates {x1, · · · , xn} from some probability distributions, including MCMC, importance

sampling, acceptance-rejection methods and etc. See Robert and Casella (2004) for an

overview. None of them has overwhelming advantages over the other. The determin-

istic method usually takes into account the analytical characteristic of the integrand,

e.g. gradient or Lipschitz continuity, and can give more accurate results for regular

and small dimension problems (Geweke, 1996). But as a result, strong assumptions are

needed for the integrand, and if multiple integrals are of interest, separate implemen-

tations are needed. In contrast, the Monte Carlo method usually involves less or no

analytical characteristics of the integrand and may be inferior in analytically tractable

problems. But due to its milder assumptions, it is more robust for non-regular or high-

dimension problems (Geweke, 1996). For multiple integrals, Monte Carlo method can

also be designed in flexible way so that one batch of random sample can be applied to

di↵erent integrals. For more comparison and examples, see Robert and Casella (2004)

and Caflisch (1998).

Due to its probabilistic nature, Monte Carlo method can be designed specifically to

consider the statistical aspect of the integral. For the target integral µ, the basic idea

of Monte Carlo integration is to generate random sample {x1, · · · , xn} from ⇡⇤(x) and

approximate µ by

1

n

n

X

i=1

h(x
i

) (1.1)

where the average converges to µ by the law of large number. From the expression of

µ, it is easy to see that its value is mostly contributed by integrating the area where

the product h(x)⇡⇤(x) is large. Since the majority of {x1, · · · , xn} falls in the high

density area of ⇡⇤(x), the average avoids to evaluate h(x) in the less important area

for the integral. In the case that the support of h(x) overlaps with the low density

area of ⇡⇤(x), such as evaluating tail probability, importance sampling method can
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be employed to generate {x1, · · · , xn} from density emphasizing the support of h(x)

instead of ⇡⇤(x). Compared to the grid-based deterministic methods, Monte Carlo

method can be adapted better to the practical background of problems and therefore

is well accepted by practitioners like physicists, systems engineers and statisticians.

In addition, the Monte Carlo method requires much less sophisticated mathematics

compared to the deterministic methods and is straightforward to be implemented given

developed random number generators (Caflisch, 1998).

1.2 State Space Form

Originated in engineering, the state space form is used to model dynamic systems with

time-varying inputs and outputs. Examples of input-output pair in a dynamic system

include the market volatility and stock price, original and received signal in wireless

communication, running speed and position in a real-time tracking, and many others.

Assume x
t

is the underlying signal input at time t, y
t

is the measurable output, and

the system runs from time 1 to n. Let x1:t = {x1, · · · , xt} and y1:t = {y1, · · · , yt}. The

state space form contains two equations, with one modeling the signal process x1:t and

the other modeling the measurements y1:t, as following:

x
t

= F (x1:t�1, wt

) or x
t

⇠ f(·|x1:t�1),

y
t

= G(x1:t, vt) or y
t

⇠ g(·|x1:t),

where w
t

is the innovation, v
t

is the measurement noise and all are independent (Chen,

2005). At time t, given the previous signals, x
t

is evolved through the equation F or

the conditional density f , and the output of system is measured with y
t

through G or

the conditional density g.

In practice, the Markovian state space form is usually employed:

x
t

= F (x
t�1, wt

) or x
t

⇠ f(·|x
t�1), (1.2)

y
t

= G(x
t

, v
t

) or y
t

⇠ g(·|x
t

), (1.3)
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where the underlying state x
t

is a Markov process and the distribution of the obser-

vation y
t

can be determined solely by the current signal. Not only because of the

simplicity, the widespread application of the Markovian form is also due to the Markov

chain observed with noise structure well described in many real problems. For example,

in a target-tracking problem, the actual position and speed are underlying states and

the noisy position in the device is the observation. The current position only depends

on the position and speed of last time point, and the device only measures the current

position (Haug, 2012). In the capture-recapture problem in population study, suppose

the moving pattern of some species is of interest. Their resident location is the under-

lying state and the capture record is the observation. Then their current resident only

depends on the previous resident and the capture record only depends on their current

location (Dupuis, 1995). Another well-known terminology, “Hidden Markov Model”,

also describes the same Markovian structure, and is often used when the state takes

discrete values (Cappé et al., 2005). In some cases, a non-Markovian signal process

can be reparameterized to be have the Markovian structure. In Fearnhead (1998), the

AR(2) model is reformulated to have AR(1) structure, therefore the noisy AR(2) model

has the following equivalent state space forms:
8

>

>

<

>

>

:

x
t

+ a1xt�1 + a2xt�2 = ✏
t

y
t

= bx
t

+ ⌘
t

()

8

>

>

<

>

>

:

⇥
t

= A⇥
t�1 +W

t

y
t

= B⇥
t

+ ⌘
t

,

where ⇥
t

=

0

@

�a2xt�1

x
t

1

A , W
t

=

0

@

0

"
t

1

A , A =

0

@

0 �a2

1 �a1

1

A and B = (0, 1).

Another example which is about the blind deconvolution of wireless communication can

be seen in Miguez and Djuric (2002).

1.2.1 Integration Problems in State Space Form

The main goal of state space form is to make inference for the unobservable state x
n

conditional on the given observations {y1, · · · , yt}. Intuitively, it is natural to select the

conditional density p(x
n

|y1:t) as the inference target. From the perspective of Bayesian

analysis, if the state equation (1.2) is treated as the prior information of x
t

, p(x
n

|y1:t) is
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the posterior density and the posterior mean is the Bayesian solution of minimizing the

mean square error of estimating x
n

with y1:t available (Fearnhead, 1998). Depending

on the observations given, the inference tasks can be divided into three categories,

and the target posterior density of each is closely related to the joint posterior density

p(x1:t|y1:t) (Chen, 2005).

1. Filtering: The aim is to update the knowledge of state when new observations

come in, i.e. t = n. The posterior density p(x
t

|y1:t) can be obtained by marginal-

izing p(x1:t|y1:t) over x1:t�1;

2. Smoothing: The aim is to estimate the previous state with all available observa-

tions, i.e. t > n. The posterior density p(x
n

|y1:t) can be obtained by marginalizing

p(x1:t|y1:t) over xn+1:t�1 and x1:n�1;

3. Predicting: The aim is to predict the future state with currently available obser-

vations, i.e. t < n. Let n = t+k. The posterior density p(x
n

|y1:t) can be obtained

by marginalizing

p(x1:t+k

|y1:t) = p(x1:t|y1:t)p(x
t+1:t+k

|x1:t, y1:t)

= p(x1:t|y1:t)
k

Y

i=1

p(x
t+i

|x1:t+i�1, y1:t)

= p(x1:t|y1:t)
k

Y

i=1

p(x
t+i

|x
t+i�1),

where the last equation holds by the Markovian property in (1.2).

Therefore, the treatment of p(x1:t|y1:t) stays the central role of these three tasks. The

related work in this thesis only considers estimation with p(x1:t|y1:t) and the filtering

task. For treatments on the other two tasks, see Durbin and Koopman (2012) and

Cappé et al. (2005). Kitagawa (1996), Briers et al. (2010) and Doucet and Johansen

(2009) also give some reviews of the smoothing task. In this thesis it is assumed that

the state and observation densities f and g are fully known, i.e. inference is only needed

to be made on x
t

. The inference problem for unknown parameters of f and g is totally

di↵erent from filtering. Since unknown parameters can be treated separately, one can
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first estimate parameters then apply any filtering method in this thesis with estimated

parameters. For treatment of parameter estimation, see Liu and West (2001), Cappé

et al. (2007), Pitt and Shephard (1999) and Gilks and Berzuini (2001).

The target integral of filtering is the posterior expectation of some real function

h(x
t

), i.e. E[h(x
t

)|y1:t]. While in most cases the target function h has only x
t

as

the argument, the algorithms in later chapters can be applied to more general cases.

Therefore we assume h takes x1:t as arguments. Also for the ease of representation,

assume there is an initial state x0 following p(x0) and the integration is over x0:t, i.e.

the target integral is

E[h(x1:t)|y1:t] =
Z

h(x1:t)p(x0:t|y1:t)dx0:t. (1.4)

The integration requires evaluation of the joint posterior density, and by standard

Bayesian theorem,

p(x0:t|y1:t) / p(x0:t)p(y1:t|x0:t), (1.5)

where “/” means “proportional to” and the scale is a constant with respect to x0:t.

Since t is usually very large, it would be expensive to evaluate the density jointly hence

alternative evaluation is needed.

1.2.2 Recursive Solution

With the standard conditional theorem, the RHS of (1.5) can be expanded as following:

p(x0:t)p(y1:t|x0:t) = p(y
t

|y1:t�1, x0:t)p(xt|y1:t�1, x0:t�1)p(y1:t�1, x0:t�1)

= p(x0)
t

Y

k=1

p(y
k

|y1:k�1, x0:k)p(xk|y1:k�1, x0:k�1)

By the Markovian properties in (1.2) and (1.3), the last expression above can be sim-

plified and (1.5) is equivalent to

p(x0:t|y1:t) / p(x0)
t

Y

k=1

p(y
k

|x
k

)p(x
k

|x
k�1), (1.6)
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where both p(y
k

|x
k

) and p(x
k

|x
k�1) are known in the models. The sequential expression

has two benefits. Firstly, it is computationally easier to be programmed and evaluated.

Secondly, since at time t the value is equal to the product of densities of x
t

and y
t

and

the value at time t � 1, it can be calculated recursively as new observations come in,

which is an ideal expression for the filtering task.

1.3 Outline of Thesis

For integration problems mentioned in previous sections, Monte Carlo method is heav-

ily employed in the practical computation due to the benefits indicated in Section 1.1.

Among the many developed Monte Carlo algorithms, importance sampling (IS) is a

classical scheme, dated back to the era of the first modern computer (Kahn, 1949;

Kahn and Harris, 1949), and has been employed by many practitioners since then.

For a low-dimension problem, with a properly designed sampling distribution, which is

called the proposal distribution, the standard importance sampling can have promising

performance. The particle filter method is a high-dimension variation of importance

sampling, with initial idea in Rosenbluth and Rosenbluth (1955) and formally intro-

duced in Gordon et al. (1993). Initially it was designed for the state space form and

now can accommodate wider range of high-dimension problems (Del Moral et al., 2006).

It has been developed to be a whole new branch of computational methods, generally

called sequential Monte Carlo (SMC).

Section 2 reviews these two main Monte Carlo integration methods and focuses on

the design of proposal distribution which is a central implementation issue. The design

of a satisfactory sampling mechanism has several requirements which pose di�culties

in practice. The practice of considering multiple proposal distributions is reviewed,

including many literatures of IS and SMC. Then for combining multiple proposals, the

implementation issues in IS and limitations in SMC of current approaches are summa-

rized, according to which new methods are proposed in later chapters to make significant

improvement. Section 3 reviews the historical approaches to combine multiple proposals

in IS and SMC and their limitations in details.
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For the state-of-art approaches in IS including, including Owen and Zhou (2000)’s

regression estimator and Tan (2004)’s MLE estimator, the main implementation is-

sues are the sample allocations for multiple proposals and the selection of proposals.

Section 4 proposes a two-stage procedure to optimize the sample allocation and inves-

tigates its theoretical properties. At the first stage, the optimal mixture proportions of

the sampling proposals are estimated using pilot sample; at the second stage, formal

sample is generated according to the optimal mixture proportions and the estimator is

constructed using samples from both stages. It is shown that the two-stage estimator

achieves the best performance among the up-to-date approaches. The suggestions on

constructing proposals to approximate the perfect case are also given.

When designing the proposal distributions in SMC, how to handle the multimodal-

ity of target distribution or how to control the tails of proposals often remains unsolved.

Section 5 proposes a novel algorithm to combine multiple proposals into SMC meth-

ods through the control variate approach in Tan (2004), which is called the likelihood

approach, so that the previous issues can be easily handled by including multiple pro-

posals addressing di↵erent aspects. It is shown that the likelihood approach has the

exclusive benefit that control variates can be included in the resampling step, which

makes the algorithm makes significant improvement over the standard algorithms. We

also give the suggestions on constructing proposals and control variates to approximate

the perfect case, making the new algorithm practical to use.



9

Chapter 2

Monte Carlo Integration

Consider the target integral µ and the Monte Carlo estimator (1.1), the key problem is

how to simulate from the target density ⇡⇤(x). If the inverse CDF of ⇡⇤(x) is available,

the simulation can be done by standard inverse transformation method, or accept-

reject method if appropriate instrumental density q(x) can be found so that the ratio

⇡⇤(x)/q(x) is bounded by a not too large constant (Robert and Casella, 2004). For

many non-regular or high-dimension target densities, it is di�cult to implement these

two methods. The importance sampling (IS) and the sequential Monte Carlo (SMC)

are two classes of methods widely used in such more complicated situations. They

generate sample from alternative densities instead of ⇡⇤(x) and adjust the di↵erence by

assigning weights to observations. SMC is a method originating from high-dimension

IS and has become a new branch itself in the recent two decades. The review below

focuses in the selection of sampling mechanism which is critical to the performance of

both methods.

2.1 Importance Sampling

The idea of IS for approximating µ is based on the identity

Z

⌦
h(x)⇡⇤(x)dx =

Z

⌦

h(x)⇡⇤(x)

q(x)
q(x)dx,

where q(x) is a probability density, called the proposal density. Through the addition of

q(x), µ can be treated as the expectation with respect to density q(x) instead of ⇡⇤(x).

With a sample (x1, · · · , xn) from q(x), µ can be approximated by the sample average

bµ =
1

n

n

X

i=1

h(x
i

)w
i

, (2.1)
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where w
i

= ⇡⇤(x
i

)/q(x
i

) is called the importance weight. IS is usually applied to the

following two variations of µ:

(I) Z =
R

⌦ ⇡(x)dx, where ⇡(x) / ⇡⇤(x) is an unnormalized density;

(II) µ, where only ⇡(x) / ⇡⇤(x) can be evaluated.

Z can be treated as the normalizing constant of ⇡(x). Although Z is a special case

of µ, the estimator (1.1) does not work since h(x) is an unknown constant, therefore

it can not be estimated by methods generating sample from ⇡⇤(x), such as MCMC,

accept-reject method and etc. The need of calculating Z arises in many areas, includ-

ing missing data analysis, marginal likelihood calculation, estimation of free energies in

physics(Gelman and Meng, 1998), and communication system (Smith et al., 1997). The

second form is frequently of interest in Bayesian analysis in many fields, where ⇡⇤(x)

is the posterior density, such as rare event simulation (Denny, 2001), reliability (Hes-

terberg, 1995), computational finance (Owen and Zhou, 1999) and computer graphics

(Veach and Guibas, 1995). Since ⇡⇤(x) can only be evaluated up to a constant, (2.1)

does not apply. Instead, by expressing µ as

µ =

R

⌦ h(x)⇡(x)dx
R

⌦ ⇡(x)dx
,

the ratio of two IS estimators, estimating the numerator and denominator respectively,

can be used instead. It also converges to µ in proper conditions. This is called the ratio

estimator.

Compared to the basic Monte Carlo, IS has great potential to achieve much better

accuracy since it can take the target function h(x) into consideration. One important

application of IS is to estimate the rare event probabilities, such as the bit error rate

of communication system Smith et al. (1997) and important market risk measures

Hoogerheide and Van Dijk (2010). IS also benefits from the flexible design of q(x)

and mild conditions of convergence which makes it possible to be well adapted and

robust in complex problems such as multimodality. Examples include Hesterberg (1995)

which evaluates industrial strategies for public utility system and Binder and Heermann

(2010) which calculates spectral densities of a physics system. Compared to MCMC,



11

IS is straightforward to be implemented and easy to be interpreted, since it generates

i.i.d sample and the standard error can be easily estimated. See Fearnhead (2008)

for more comparisons. A further advantage of IS is that through resampling the i.i.d

sample according to w
i

, IS can be used to generate sample from ⇡⇤(x), which is called

sampling importance resampling (SIR) (Rubin, 1988). In Bayesian problems, SIR is

practical to simulate from the posterior distribution. For examples, see McAllister and

Ianelli (1997) and Raftery et al. (1995). SIR is also a central component in SMC. See

the introduction in the next section.

One criticism of IS is that the selection of the proposal density is too arbitrary

and lack of considering important information of the integrand h(x)⇡⇤(x), such as

derivatives (O’Hagan, 1987). Techniques are developed to combine IS with other Monte

Carlo methods, including the control variates and antithetic variates, which can utilize

the analytical form of the integrand. In Hesterberg (1996), the linear approximation

of the integrand was selected as control variate. in Evans and Swartz (1995), Laplace

approximation of the integral was used to construct the control variates. In Evans

and Swartz (1995) and Evans and Swartz (1996), the antithetic variates method was

generalized to involve multiple parametrization of the integrand and combined with IS.

The selection of the proposal density q(x) is critical to the performance of IS. Di↵er-

ent choices can result in the estimation variance ranging from 0 to infinity (Robert and

Casella, 2004). Roughly speaking, a good q(x) should satisfy several criteria. Firstly,

the support of q(x) should cover the support of the integrand. Secondly, in the high

value support of the integrand, q(x) should have high density so that the simulated

sample can focus on the “important” areas for the integration. Thirdly, when ⌦ is not

compact, q(x) should decrease slower than the integrand in the tail areas, i.e. have

“heavier” tail than the integrand. However, in practice it is usually challenging to

design a satisfactory q(x). One reason is that the complexity of the integrand makes

it di�cult to find a q(x) that covers all its important parts. For example, when the

integrand is multimodal, a unimodal q(x) will not be e�cient. Examples of multimodal

integrand can be found in Owen and Zhou (1999). Another well known reason is that

when q(x) has a “lighter” tail than the integrand, i.e. ⇡(x)/q(x) or h(x)⇡⇤(x)/q(x) are
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unbounded, IS estimator can have infinite variance. When there is a lack of knowledge

of the integrand in some regions, unexpected large values of integrand may result in

inaccurate results. See Ford and Gregory (2007) for an example.

For both problems, a general remedy is to consider multiple proposal distributions to

address di↵erent aspects of the integrand. For multimodal integrands, Oh and Berger

(1993) used a family of student’s t distributions and Owen and Zhou (1999) used a

family of beta distributions to model each mode of integrand individually. West (1993)

and Givens and Raftery (1996) used a kernel estimate of the integrand as the proposal

which is a mixture of normal or t distributions. Even for a unimodal target distribution,

one can construct a mixture of two proposals where one mimics the center of target

and the other dominates the tail. Such a construction was used in Giordani and Kohn

(2010), although in a di↵erent scenario. The requirement that the tail of integrand needs

to be dominated by the proposal distribution can be met by including some heavy-tailed

distributions in the mixture as “protection”. For example, Hesterberg (1995) included

the target distribution itself as one of the components to provide an upper bound for

the estimation variance, and Owen and Zhou (2000) used uniform distribution to bound

the sample weights in a bounded domain case. Liang et al. (2007) divided the state

domain into subregions and used the mixture of truncated target distributions in all

subregions as the proposal, which leads to bounded importance weights. In Bayesian

analysis, the prior density of the parameters can serve as the heavy-tailed component,

as utilized in Ford and Gregory (2007). Other choices of heavy tail distributions can

be found in Geweke (1989).

Given multiple potentially useful proposals, a straightforward combination method

is to use their mixture as the new proposal. This method has two issues. One is that

the mixture proposal may contaminate the good components in the mixture. Owen and

Zhou (2000) shows that a mixture can lose e�ciency by several orders of magnitude if

the original proposal is nearly perfect. Another problem is that the mixture proportions

need to be determined. Proper mixture proportions can increase the e�ciency by an

order of magnitude, as shown in Emond et al. (2001).
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For the contamination problem, Owen and Zhou (2000) suggested a regression

method to combine the mixture importance sampling proposal approach with some

control variates. Control variate is a useful technique for variance reduction. For a

review, see Rubinstein and Kroese (2008). Additional to variance reduction, Owen and

Zhou’s method has the property that it will not perform worse than using the best of

component proposals individually, if the sample size assigned to it is the same as in the

mixture case. Therefore, if half of the sample is assigned to the best proposal, the re-

gression estimator’s e�ciency is at least half of the e�ciency of using the best proposal’s

e�ciency when it is used alone. Such a lower bound lessens the contamination problem.

Tan (2004) proposed to use nonparametric maximum likelihood estimation in placed

of regression and showed that the MLE method is the most e�cient among several

classes of estimators including those in Owen and Zhou (2000), Hesterberg (1995) and

Veach and Guibas (1995). Some important implementation issues of Owen’s regression

method and Tan’s MLE method are left to be discussed, including the determination

of mixture proportions and the selection of proposals.

To determine appropriate proportions, Fan et al. (2006) and Hesterberg (1995)

followed some heuristic rules derived from experience or interpretation of proposals. A

more sophisticated approach is to use a pilot study to determine the optimal proportions

via minimizing some criterion. The estimated proportions are then used to generate the

sample and construct the estimators. The criterion was selected to be the asymptotic

variance of IS estimator with mixture proposal in Raghavan and Cox (1998), and the

variation coe�cient of pilot sample in Oh and Berger (1993). However, few theoretical

properties have been investigated.

2.2 Sequential Monte Carlo

In the dynamic system with state space form (1.2)-(1.3), the integration problem in

filtering (1.4) is often of high dimension. Due to the curse of dimensionality, the high

density area of the target distribution is like “a needle in a haystack”(Liu, 2008). Im-

portance sampling in high-dimension problem can hardly focus the observations in the

important area and su↵ers from heavy skewness of sample weights, i.e. the weights of
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a few observations are much larger than all others, and therefore large estimation vari-

ance. The sequential importance sampling (SIS) (Liu et al., 2001) allows to design the

proposal of IS sequentially according to the recursive expression (1.6) of target density

p(x1:t|y1:t), but still can not avoid the weights degeneracy problem as t increases.

The particle filtering method, initially introduced in Gordon et al. (1993) as “boot-

strap filter”, implements the resampling regularly in the course of SIS, which miti-

gates the degeneracy of sample weights. The basic resampling method applies multi-

nomial sampling on the samples with probabilities proportional to the sample weights,

then drops out observations with small weights and duplicates observations with large

weights. Therefore regularly implementing resampling can avoid too many samples

have too small weights. Since then, the simulation-based methods for on-line filtering

of dynamic systems are widely used in various fields, including target tracking (Chen

and Liu, 2000), signal processing (Wang et al., 2002), estimation of economical model

(Shephard, 2005) and counting contingency tables (Chen et al., 2005). Various e↵orts

have been devoted to improve the basic particle filtering method, including improving

the sampling mechanism (Doucet et al., 2006), increasing the diversity of samples (Gilks

and Berzuini, 2001) and adaptively choosing the resampling schedule (Liu and Chen,

1995). Most of these techniques are unified in the sequential Monte Carlo framework

(Doucet et al., 2000; Liu and Chen, 1998), with SIS with resampling in the central role,

where SIS generates weighted particles from proposal distributions and resampling mit-

igates the degeneracy of sample weights. Reviews of the related techniques can be seen

in Doucet and Johansen (2009), Cappé et al. (2007) and Chen (2005).

Design of proposal distributions is essential to the SMC methods. In Gordon et al.

(1993), p(x
t

|x
t�1) is used to generate particles at time t based on particles from time

t�1, which is called bootstrap filter. The e�ciency of bootstrap filter is usually limited

since the sampling mechanism does not consider the information of observations y
t

.

When the system meets an observation outlier, since all information of observation is

included in the sample weights, the particles may degenerate, i.e. the sample weights of

a few particle dominate the others. But this method is popular due to its simplicity and

computational e�ciency. Another simple choice is the independent particle filter in Lin
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et al. (2005) which uses p(y
t

|x
t

) to generate particles based on y
t

. It can be more e�cient

than bootstrap filter when the observational noise is small. The probability density

p(x
t

|x
t�1, yt) is known as the optimal proposal density, in the sense that the variance of

its importance weights conditional on x
t�1 is equal to 0. Intuitively, it includes the full

information of both state and observation equations. But except in a few scenarios, the

optimal proposal density and the corresponding sample weights are usually analytically

unavailable due to the nonlinear form of the observation equation. Suboptimal choices

include the probability densities constructed by approximating p(x
t

|x
t�1, yt) through

local linearization or moment approximation. See Doucet et al. (2000), Guo et al.

(2005), Saha et al. (2009) and Pitt and Shephard (1999) for examples.

There are several limitations for the proposal distributions mentioned above. First,

the approximation to p(x
t

|x
t�1, yt) may not have bounded variance since the local ap-

proximation does not provide control on the tails of the proposal density. Second,

the above approaches usually construct unimodal densities which are ine�cient for a

multimodal target density. Finally, although p(x
t

|x
t�1, yt) includes both the informa-

tion of state and observation equations, it does not consider the target function, which

can make the filtering computationally expensive in some cases such as estimating the

probability of rare event.

For the third limitation, specific cases such as estimating the tail probability have

been discussed (Chan and Lai, 2011; Cérou et al., 2012). However, there is no guideline

to deal with general target functions. For the first two limitations, a general remedy

is to consider multiple proposal distributions which can include proposals for control-

ling tails or concentrating on multiple modes. While the usage of multiple proposals

for importance sampling, which can be treated as a special case of SMC containing

only one step filtering, has been well discussed in the literature as mentioned in the

previous section, it is natural to consider this strategy for SMC. Meanwhile, since it

has been shown in Tan (2004) and Owen and Zhou (2000) that combining multiple

proposals with appropriate control variates can significantly increase the e�ciency and

decrease the contamination brought by mixing poor proposal distributions with good

proposal distributions, control variates can also be considered in SMC. However, in
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SMC framework, the usage of multiple proposals and control variates only receives lim-

ited discussions and is case-dependent. Elinas et al. (2006) and Fox et al. (2001) applied

mixture proposal distribution in Monte Carlo localization of robot to combine infor-

mation from camera or laser observations and the motion model. Singh et al. (2004)

and Singh et al. (2007) applied the control variates to particle filter for target tracking

sensor management, by replacing the target function h(x
t

) by h(x
t

) + ���Tggg(x1:t) where

ggg(x1:t) is the vector of control variates and ��� is the coe�cients.
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Chapter 3

Review of Advanced Importance Sampling Methodologies

3.1 Importance Sampling with Multiple Proposals

Assume the target integral is in the form of (I) or (II) and h(x) and ⇡(x) can be

evaluated exactly. In this section we only consider estimating Z. The extension of

estimating µ is straightforward for the first two methods, and will be discussed in the

next chapter for the last two methods.

3.1.1 Mixture Importance Sampling

Assume observations {x1, · · · , xn} are taken i.i.d from a proposal distribution q(x). The

integral Z =
R

⇡(x)dx can be estimated by

bZ
IS

=
1

n

n

X

i=1

⇡(x
i

)

q(x
i

)
. (3.1)

Under mild conditions, the asymptotic variance is V ar
q

[⇡(x)/q(x)] where V ar
q

is the

variance under distribution q(x) (Robert and Casella, 2004). The optimal proposal is

⇡(x)/Z, suggesting that the proposal q(x) should be chosen to mimic the shape of ⇡(x)

so that the high and low density regions of q(x) coincide with those of ⇡(x). With such a

proposal, the majority of Monte Carlo sample from q(x) fall in the high density region of

⇡(x), the importance region. In some scenarios, more than one q(x) may be needed. For

example, for a multimodal ⇡(x), it is helpful to use several proposal distributions, each

targeted at one importance region. Suppose q1(x), · · · , qp(x) are p probability densities

serving as proposals. Given a mixture proportion vector ↵ = (↵1, · · · ,↵p

) satisfying
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P

p

k=1 ↵k

= 1, we can use the mixture distribution as the proposal and estimate Z by

bZ
MIS

=
1

n

n

X

i=1

⇡(x
i

)

q↵(xi)
, (3.2)

where q↵ =
P

p

k=1 ↵k

q
k

(x) and {x1, · · · , xn} are generated from q
↵

. In addition, the

variance of bZ
IS

also demands that the ratio ⇡(X)/q(X) have a finite variance. A mix-

ture distribution certainly makes it easier to satisfy such a condition as one can simply

include a proposal distribution q1(X) having Var[⇡(X)/q1(X)] < 1, such as a uniform

distribution if the domain is bounded. Such a proposal distribution sets an upper bound

to the estimating variance and therefore plays the role of “safeguard” in importance

sampling, which is the key idea of defensive importance sampling (Hesterberg, 1988).

3.1.2 Stratified Sampling

Instead of generating samples directly from the mixture distribution as that in (3.2),

stratified samples {x
k1, · · · , xkn

k

} can be taken with deterministic size n
k

= ↵
k

n from

the k-th proposal q
k

, which leads to the estimator in Hesterberg (1988)

bZ
SIS

(↵) =
1

n

p

X

k=1

n

k

X

i=1

⇡(x
ki

)

q↵(x
ki

)
. (3.3)

Veach and Guibas (1995) consider the following estimator

p

X

k=1

1

n
k

n

k

X

i=1

!
k

(x
ki

)
⇡(x

ki

)

q
k

(x
ki

)
, (3.4)

where {!
k

(x)}p
k=1 is a group of coe�cient functions for the sample weights and sat-

isfies
P

p

k=1 !k

(x) = 1. They showed that bZ
SIS

is a suboptimal choice in this large

class. Raghavan and Cox (1998) proposed a two-stage algorithm to construct bZ
SIS

with estimated optimal mixture proportions in the sense of minimizing the asymptotic

variance.

3.1.3 Importance Sampling with Control Variates

One problem of using a mixture proposal distribution is the possible loss of e�ciency

due to mixing of good proposal distributions with poor ones (Owen and Zhou, 2000). It
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is a premium to pay for the insurance of valid importance sampling, but can be reduced

by combining importance sampling and control variates. Given an unbiased estimator

X
n

of Z, improvement can be gained by constructing a proper control variate vector Y

and using X
n

� �

T (Y � E[Y ]) to estimate Z. The optimal � can be estimated using

a regression approach to minimize asymptotic variance (Cochran, 1977). In Owen and

Zhou (2000), combining bZ
SIS

and control variates g(x) = (q2(x) � q1(x), · · · , qp(x) �

q1(x))T results in the estimator

bZ
Reg

(↵) =
1

n

p

X

k=1

n

k

X

i=1

⇡(x
ki

)� b�
T

↵g(xki)

q↵(x
ki

)
, (3.5)

where

b

�↵ = gV ar



g(X)

q↵(X)

��1
gCov

T



⇡(X)

q↵(X)
,
g(X)

q↵(X)

�

,

and gV ar and gCov denote the pooled-sample variance and covariance. There are two

appealing properties of bZ
Reg

. First, its asymptotic variance is zero when ⇡(x) is a linear

combination of the proposals. Second, bZ
Reg

has smaller asymptotic variance than every

importance sampling estimator constructed solely with q
k

with n
k

samples, k = 1, . . . , p.

That is, bZ
Reg

is always at least as good as the best one among the individual proposals.

3.1.4 Likelihood Approach

All previous integration methods directly approximate the target integrals. On the

other hand, in Kong et al. (2003), Monte Carlo integration is treated as a statistical

inference problem where the Monte Carlo sample serves as observations, the underlying

measure in target integral, usually Lebesgue measure or counting measure, is treated

as an unknown nonnegative measure, and the Monte Carlo sample is modeled using

a semiparametric model. Then by nonparametric maximum likelihood, the unknown

measure is estimated by a discrete measure with the Monte Carlo sample as support,

and the target integral is estimated by the integration over the discrete measure. As

an example, with {x1, · · · , xn} generated identically and independently from q1 un-

der Lebesgue measure, the model assumes that x
i

is distributed as q1(x)d⌫/
R

q1(x)d⌫

where ⌫ is an unknown nonnegative measure. The nonparametric maximum likelihood
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estimator of ⌫ is

b⌫ /
bP ({x})
q1(x)

,

where bP has the support on {x1, · · · , xn} with mass n�1 at each point. Then Z =
R

q(x)d⌫ can be estimated by

R

q1(x)db⌫
R

q(x)db⌫
=

1

n

n

X

i=1

q(x
i

)

q1(xi)

This is the same as the importance sampling estimator with proposal distribution q1(x).

Given multiple proposals q1, · · · , qp and control variates g(x), Tan (2004) proposed

to restrict the measure ⌫ in the set
�

⌫ :
R

q
k

(x)d⌫ =
R

q1(x)d⌫, k = 1, · · · , p
 

. The

nonparametric MLE of ⌫ under such a restriction is

b⌫ /
bP ({x})

q↵(x) + b⇣
T

g(x)
, where b⇣ = argmax

⇣

p

X

k=1

n

k

X

i=1

log
⇥

q↵(x
ki

) + ⇣

T

g(x
ki

)
⇤

,

and the integral estimator is given by:

bZ
MLE

(↵) =
1

n

p

X

k=1

n

k

X

i=1

⇡(x
ki

)

q↵(x
ki

) + b⇣
T

g(x
ki

)
. (3.6)

It is shown that bZ
Reg

is a first order approximation of bZ
MLE

and hence has the

same asymptotic e�ciency (Tan, 2004). The estimator bZ
MLE

also achieves the highest

asymptotic e�ciency among the class of estimators in the form of

p

X

k=1

1

n
k

n

k

X

i=1

!
k

(x
ki

)
⇡(x

ki

)� �

T

k

(x
ki

)g(x
ki

)

q
k

(x
ki

)
, (3.7)

where !1(x), · · · ,!p

(x) and �1(x), · · · ,�p

(x) satisfy that !
k

(x) = 0 when q
k

(x) = 0,
P

p

i=1 !k

(x) = 1 and
P

p

i=1 !k

(x)�
k

(x) = b for some constant vector b, and therefore

dominates the class of estimators in (3.4).

Because bZ
Reg

and bZ
MLE

asymptotically dominate the other estimators, we will only

discuss the two stage procedure for these two estimators. Furthermore, there is another

important benefit of using bZ
Reg

and bZ
MLE

in that their asymptotic variance is a convex

function of ↵ and hence can be easily minimized. See remark 4.1.
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3.2 SMC for Filtering

3.2.1 Basic SMC Method

For the state space model (1.2)-(1.3), at time n, denote the random vector (x1, · · · , xn)

by x1:n and observations (y1, · · · , yn) by y1:n. Assume the target integral is (1.4). In

(1.6), let ⇡⇤
n

(x0:n) = p(x0:n|y1:n) and

⇡
n

(x0:n) ⌘ p(x0)
n

Y

k=1

p(y
k

|x
k

)p(x
k

|x
k�1).

Then ⇡
n

(x0:n) / ⇡⇤
n

(x0:n). Due to the high dimension of ⇡⇤
n

, direct application of

ratio estimator of IS may result in few random draws lying in the high likelihood

area of ⇡⇤
n

and low estimating e�ciency in most cases. By combining the sequential

importance sampling (SIS) and resampling algorithms as follows (Chopin, 2004), the

high dimensional problem can be mitigated:

Basic SMC method:

At time n, assume weighted particles {(ex(j)0:n�1; ew
(j)
n�1)}Nj=1 are available. For j =

1, · · · , N ,

1. Mutation: Generate x
(j)
n

from the proposal distribution q(x
n

|ex(j)0:n�1) and let

x
(j)
0:n = (ex(j)0:n�1, x

(j)
n

).

2. Correction: Assign x
(j)
0:n with weight

w(j)
n

= ew
(j)
n�1

p(x(j)
n

|ex(j)
n�1)p(yn|x

(j)
n

)

q(x(j)
n

|ex(j)0:n�1)
. (3.8)

3. Selection: If the condition for resampling is satisfied, resample {x(j)0:n}Nj=1 according

to {w(j)
n

}N
j=1 to obtain new weighted particles {(ex(j)0:n; e!

(j)
n

)}N
j=1 where e!(j)

n

= 1/N ;

If the condition for resampling is not satisfied, let (ex(j)0:n; e!
(j)
n

) = (x(j)0:n;!
(j)
n

).

After the correction step, µ
n

can be estimated by

bµ
n,basic

=

P

N

j=1 h(x
(j)
1:n)!

(j)
n

P

N

j=1 !
(j)
n

.
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The SIS algorithm, containing the mutation and correction steps, divides the sampling

into sequential steps, which can be seen from the following equation

⇡
n

(x0:n)

q(x0:n)
=
⇡
n�1(x0:n�1)

q(x0:n�1)

⇡
n

(x0:n)

⇡
n�1(x0:n�1)q(xn|x0:n�1)

,

where q(x0:n) = ⇡0(x0)
Q

n

t=1 q(xt|x0:t�1) and ⇡n(x0:n)/⇡n�1(x0:n�1) = p(x
n

|x
n�1)p(yn|xn).

This sequential implementation is appropriate for on-line analysis. The di�culty of SIS

is that as n goes large, a few particles will have dominating weights and the e↵ective

sample size will be small. The selection step performs resampling to drop the samples

with low weights and duplicate the samples with large weights, to avoid the sample de-

generacy. The schedule of performing resampling can be either fix or adaptive according

to some quality indictor of particles (Liu, 2008). After resampling, the distribution of
n

ex
(j)
0:n

o

N

j=1
converges to ⇡⇤

n

(x0:n) as N ! 1 (Crisan and Doucet, 2002) and therefore

equal sample weights are assigned. The algorithm may be initialized by generating i.i.d

samples
n

x
(j)
0

o

n

j=1
from ⇡0(x0) and setting w

(j)
0 = 1/N for all j.

In the algorithm, one needs to choose the proposal density q(x
n

|x0:n�1). A simple

choice is the prior density p(x
n

|x
n�1). but since the sampling does not depend on

y1:n, the algorithm may loss e�ciency when the observations has outliers. The density

p(x
n

|y
n

, x
n�1), which is the normalized p(x

n

|x
n�1)p(yn|xn) taking x

n�1 as fixed, is

considered as the optimal proposal (e.g. Doucet et al., 2000 and Pitt and Shephard,

1999), in the sense that the variance of w(j)
n

conditional on {ex(j)0:n�1}Nj=1 is 0. Since the

analytical form of p(x
n

|y
n

, x
n�1) is usually unavailable, approximation to p(x

n

|y
n

, x
n�1)

by linearizing log(p(x
n

|x
n�1)) or log(p(yn|xn)) may be used instead.

The central limit theorem of bµ
n,basic

is given in Chopin (2004) and stated here

as the preliminary for the theoretical result of new algorithm. Assume multinomial

resampling is performed at every step. Denote the domain of x0:n by ⇥
n

. Consider

following conditions:

(C1)
R

|h(x1:n)|⇡⇤
n

(x0:n)dx0:n and
R

|h(x1:n)|⇡⇤
n�1(x0:n�1)q(xn|x0:n�1)dx0:n < 1;

(C2) E
⇡

⇤
n

[h2(x1:n)] < 1;

(C3) Let �0 to be the set of square integrable functions with respect to ⇡0(x0) and
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�
n

= {h : ⇥
n

! R
�

�

�

�

E
⇡

⇤
n�1q

h

⇡

⇤
n

⇡

⇤
n�1q

h
i2+�

< 1, E
q

h

⇡

⇤
n

⇡

⇤
n�1q

h|x0:n�1

i

2 �
n�1 } for

some positive �. Then h(x1:n) 2 �
n

;

(C4) The unit function I
n

: ⇥
n

! 1 belongs to �
n

.

Theorem 3.1. (Chopin, 2004) Let V3,0(h) = V ar
⇡0(h) and by induction, define

V1,n(h) = V3,n�1 (Eq

[h(x1:n)|x0:n�1]) + E
⇡

⇤
n�1

(V ar
q

[h(x1:n)|x0:n�1]) , n > 0,

V2,n(h) = V1,n

✓

⇡⇤
n

(x0:n)(h(x1:n)� µ
n

)

⇡⇤
n�1(x0:n�1)q(xn|x0:n�1)

◆

, n � 0,

V3,n(h) = V2,n (h) + V ar
⇡

⇤
n

(h) , n � 0.

Suppose conditions (C1)-(C4) are satisfied. Then for any n, µ
n

, V2,n(h) and V3,n(h)

are finite and the following convergence hold:

p
N

"

P

N

j=1 h(x
(j)
n

)w(j)
n

P

N

j=1w
(j)
n

� µ
n

#

L�! N(0, V2,n(h)), (3.9)

p
N

2

4

1

N

N

X

j=1

h(ex(j)1:n)� µ
n

3

5

L�! N(0, V3,n(h)) (3.10)

Specifically,

V2,n(h) =

Z

⇡⇤
n

(x0:1)2(µ1(x0:1)� µ
n

)2

⇡0(x0)q(x1|x0)
dx0:1 +

n

X

t=2

⇡⇤
n

(x0:t)2(µt

(x0:t)� µ
n

)2

⇡⇤
t�1(x0:t�1)q(xt|x0:t�1)

dx0:t,

(3.11)

where µ
t

(x0:t) =
R

h(x1:n)⇡⇤
n

(x
t+1:n|x0:t)dxt+1:n and ⇡⇤

n

(x0:t) is the marginal density of

⇡⇤
n

(x0:n).

Condition (C1) is required for the law of large number of triangular array h(x1:n)

conditional on x0:n�1. Conditions (C2) to (C4) ensure the asymptotic variances are

finite. By Johansen and Doucet (2008), each term in (3.11) can be interpreted as an

Importance Sampling variance where the target integral is
R

µ
t

(x0:t)⇡⇤
n

(x0:t)dx0:t and

the importance distribution is ⇡⇤
t�1(x0:t�1)q(xt|x0:t�1).
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3.2.2 Generalized SMC

In order to include the information from both state and observation equations in gener-

ating new particles, a mixture of two proposal distributions, one derived from the state

equation and the other depending on the most recent observation, can be used as an

alternative to p(x
n

|y
n

, x
n�1). Elinas et al. (2006) and Thrun et al. (2001) applied this

strategy for the Monte Carlo localization problem of robot. Control variate is a general

method to reduce the variance of Monte Carlo estimation. Given an unbiased estimator

X of some target value Z, improvement can be gained by constructing a proper control

variate vectorY and usingX����T (YYY � E [YYY ]) to estimate Z. The optimal ��� can be esti-

mated by least squares to minimize the asymptotic variance (Cochran, 1977). Although

the control variate approach has been studied extensively for importance sampling, few

discussions are devoted to the SMC framework where importance sampling is a special

case, possible due to the lack of selection guideline for appropriate control variates and

theoretical understand of control variates under SMC framework. In the basic SMC

method, one implementation of control variates is to introduce control variates SSS(x1:n)

satisfying
R

SSS(x1:n)⇡⇤
n

(x0:n)dx0:n = 0 and replace the target function h(x1:n) in bµ
n,basic

with h(x1:n) + b���
T

n

SSS(x1:n) where b���
n

is the estimated optimal coe�cients (Singh et al.,

2004). In this setting the estimator is still asymptotically unbiased.

One well-known limitation of using p(x
n

|y
n

, x
n�1) as a proposal density is that it

may lose e�ciency if the discrepancy between the successive densities ⇡⇤
n�1(x0:n�1) and

⇡⇤
n

(x0:n�1) is large. This is because after resampling, the particles which reside in the

high likelihood area of ⇡⇤
n�1(x0:n�1) may have low values of ⇡⇤

n

(x0:n�1) due to the large

discrepancy. Its impact can be seen from (3.8),

w(j)
n

= ew
(j)
n�1

⇡
n

(x(j)0:n)

⇡
n�1(ex

(j)
0:n�1)q(x

(j)
n

|ex(j)0:n�1)
= ew

(j)
n�1

⇡
n

(ex(j)0:n�1)

⇡
n�1(ex

(j)
0:n�1)

·
⇡
n

(x(j)
n

|ex(j)0:n�1)

q(x(j)
n

|ex(j)0:n�1)
,

where ⇡
n

(x
n

|x0:n�1) = p(x
n

|y
n

, x
n�1). Larger discrepancy results in small sample

weights after mutating and increases the variance. Pitt and Shephard (1999) and Car-

penter et al. (1999) proposed a look ahead method, named auxiliary particle filter,
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by adjusting the distribution of ex(j)0:n�1 according to the new observation y
n

. Specifi-

cally, since ⇡
n

(x0:n�1)/⇡n�1(x0:n�1) does not depend on x
n

, by resampling according

to {w(j)
n�1⇡n(x

(j)
0:n�1)/⇡n�1(x

(j)
0:n�1)} instead of {w(j)

n�1} in the selection step, the selected

{ex(j)0:n�1} can reside in the high likelihood area of ⇡⇤
n

(x0:n�1) and therefore will not in-

crease the skewness of w(j)
n

. The analytical form of ⇡
n

(x0:n�1)/⇡n�1(x0:n�1) is usually

unavailable in practice and some approximation ⌘(x0:n�1), named auxiliary variable, is

used instead.

Then with ⌘(x0:n) being the auxiliary variable, SSS(x0:n) being the control vari-

ates and q
↵

↵

↵

(x
n

|x1:n�1) being the mixture proposal density where q
↵

↵

↵

(x
n

|x1:n�1) =
P

p

k=1 ↵k

q
k

(x
n

|x1:n�1) given p proposal densities q1(xn|x1:n�1), · · · , qp(xn|x1:n�1) and

mixture proportion vector ↵↵↵ at every time n, we have a more general SMC algorithm

as follows:

Generalized SMC method:

At time n, assume weighted samples {(ex(j)0:n�1; ew
(j)
n�1)}Nj=1 are available. For j =

1, · · · , N ,

1. Mutation: Generate x
(j)
n

from the proposal distribution q
↵

↵

↵

(x
n

|ex(j)0:n�1) and let

x
(j)
0:n = (ex(j)0:n�1, x

(j)
n

).

2. Correction: Assign x
(j)
0:n with weight

w(j)
n

= ew
(j)
n�1

p(x(j)
n

|ex(j)
n�1)p(yn|x

(j)
n

)

q
↵

↵

↵

(x(j)
n

|ex(j)0:n�1)
. (3.12)

3. Selection: If the condition for resampling is satisfied, resample {x(j)0:n}Nj=1 accord-

ing to {⌘(x(j)0:n)w
(j)
n

}N
j=1 to obtain new weighted particles {(ex(j)0:n; e!

(j)
n

)}N
j=1 where

e!
(j)
n

= 1/⌘(ex(j)0:n); If the condition for resampling is not satisfied, let (ex(j)0:n; e!
(j)
n

) =

(x(j)0:n;!
(j)
n

).

After the correction step, µ
n

can be estimated by

bµ
n,generalized

=

P

N

j=1

h

h(x(j)
n

) + b���T
n

SSS(x0:n)
i

!
(j)
n

P

N

j=1 !
(j)
n

.
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3.2.3 Limitations of the Generalized SMC Method

Although p(x
n

|y
n

, x
n�1) is well accepted as the optimal proposal density and in principle

the proposal should be close to p(x
n

|y
n

, x
n�1), several concerns may limit the usage of

a proposal that is more sophisticated than the prior density p(x
n

| x0:n�1).

First, it is necessary for q(x
n

|x0:n�1) to have heavier tails than p(x
n

|x
n�1)p(yn|xn) so

that sample weight w(j)
n

has a bounded variance. But it is di�cult to obtain an accurate

approximation of p(x
n

|y
n

, x
n�1) with heavier tails, except in some special cases such as

a log-concave p(x
n

|x
n�1)p(yn|xn) approximated by a first order Taylor expansion.

Second, p(x
n

|y
n

, x
n�1) is not the real optimal proposal distribution. In (3.11), it

is not possible to design a sequence of proposal distributions to minimize V2,n(h) for

every n, since the optimal proposal for each term of V2,n(h) changes when n increases.

A reasonable strategy is to construct q(x
n

|x0:n�1) by minimizing the last term in (3.11)

which is

Z

⇡
n

(x0:n)2(h(x1:n)� µ
n

)2

⇡
n�1(x0:n�1)q(xn|x0:n�1)

dx0:n,

since all the early terms contain “future” information. The early terms are expected to

decay over time in some ergodic system, which makes this strategy valid (Johansen and

Doucet, 2008). Then the minimizer is the density proportional to p(x
n

|x
n�1)p(yn|xn)|h(x1:n)�

µ
n

|. In this sense, p(x
n

|x
n�1, yn) is only suboptimal, even when used with the auxiliary

variable p(y
n

|x
n�1), since it does not consider the target function h(x1:n). Sometimes,

using p(x
n

|x
n�1, yn) as a proposal can be outperformed by the bootstrap filter (Jo-

hansen and Doucet, 2008).

Although the above strategy suggests the use of a density proportional to

p(x
n

|x
n�1)p(yn|xn)|h(x1:n)� µ

n

|,

it requires the knowledge of µ
n

which is the purpose of filtering in the first place

and therefore cannot be used. On the other hand, the proposal choice tells that it

might be beneficial to consider the target function h(x1:n) when selecting the proposal

distribution.
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Chapter 4

Two-stage Importance Sampling with Mixture Proposals

This chapter proposes a two-stage procedure to optimize the sample allocation among

multiple proposals and investigate its theoretical properties. In the first stage, pilot

sample is drawn from a mixture proposal with predetermined proportions. The opti-

mal mixture proportions are then estimated by minimizing the estimated asymptotic

variance of Owen and Zhou (2000)’s regression estimator or Tan (2004)’s MLE es-

timator. In the second stage, the sample is drawn from the mixture proposal with

the estimated proportions. Integral estimators are constructed using all observations,

including those from the pilot stage. Then we establish a theoretical framework of

such a two-stage procedure. It is shown that under very weak conditions, the integral

estimators constructed by the two-stage procedure are consistent and asymptotic nor-

mal with minimum asymptotic variance over all mixture proportions. Therefore, the

two-stage procedure is adaptive towards using the optimal mixture proportions. The

optimal sample size used for the pilot stage is also discussed in the sense of minimizing

an approximated mean square error in higher order. Furthermore, we extend Owen’s

regression estimator and Tan’s MLE to the ratio estimators of IS. When estimating µ,

if one can evaluate ⇡⇤(x) only up to a normalizing constant, a ratio estimator is used,

with the numerator being the estimated unnormalized integral and the denominator

being the estimated normalizing constant. We show that the two-stage procedure for

this extension also has the desirable asymptotic properties.

4.1 Two Stage Procedure

Suppose p proposal distributions q1, · · · , qp are given and the sample size is budgeted

at n. Let ⇥ = [�, 1� �]p where � is some constant close to 0. The following algorithm
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is proposed to select mixture proportions ↵ and construct estimators:

1. First stage: Given a p dimensional vector � satisfying
P

p

k=1 �k = 1, generate n0

independent stratified observations {x
i

}n0
i=1 from q�(x) =

P

p

k=1 �kqk(x), i.e. n0�
k

observations from q
k

(x), k = 1, · · · , p. Obtain b↵ by minimizing

b�2
Z

(↵) =
1

n0

n0
X

i=1

h

⇡(x
i

)� b�
T

↵g(xi)
i2

q↵(xi)q�(xi)
(4.1)

where

b

�↵ =

 

1

n0

n0
X

i=1

g(x
i

)g(x
i

)T

q↵(xi)q�(xi)

!�1 

1

n0

n0
X

i=1

⇡(x
i

)g(x
i

)

q↵(xi)q�(xi)

!

and g(x) = (q2(x)� q1(x), · · · , qp(x)� q1(x))T , with respect to ↵ over ⇥.

2. Second stage: Generate n�n0 independent stratified observations {x
i

}n
i=n0+1 from

qb↵(x) =
P

p

k=1 b↵k

q
k

(x). Estimate integral Z by bZ(e↵) with all n observations,

where

e

↵ =
n0

n
� +

n� n0

n
b

↵ (4.2)

and bZ(e↵) can be either bZ
Reg

(e↵) or bZ
MLE

(e↵).

Some rationale and implementation remarks are as follows:

(i) Criterion of selecting ↵: In the first stage, the optimal ↵ is estimated using the n0

samples and it is desirable to select ↵ that gives the smallest asymptotic variance

of the final estimator. Let V ar↵ denotes the variance taken with respect to q↵(x).

We set the following conditions:

(C1) The union of supports of q
k

(x) contains the support of ⇡(x);

(C2) ↵
i

> 0 for i = 1, · · · , p;

(C3) V ar↵ [⇡(X)/q↵(X)] < 1 for some ↵ 2 ⇥.

Owen and Zhou (2000) and Tan (2004) showed that, under the above conditions,

bZ
Reg

(↵) and bZ
MLE

(↵) are asymptotic normal and have the same asymptotic
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variance

�2
Z

(↵) = V ar↵



⇡(X)� �

T

↵g(X)

q↵(X)

�

=

Z

�

⇡(x)� �

T

↵g(x)
�2

q↵(x)
dx� Z2 (4.3)

where

�↵ = V ar↵



g(X)

q↵(X)

��1

CovT↵



⇡(X)

q↵(X)
,
g(X)

q↵(X)

�

=

✓

Z

g(x)g(x)T

q↵(x)
dx

◆�1✓Z
⇡(x)g(x)

q↵(x)
dx

◆

.

Conditions (C1) to (C3) are satisfied when we have at least one proposal compo-

nent dominating the tail of ⇡(x). With the sample {x
i

}n0
i=1 from the pilot stage,

�2
Z

(↵) + Z2 is estimated by the importance sampling estimator b�2
Z

(↵) in (4.1)

and the optimal ↵ is obtained by minimizing b�2
Z

(↵).

(ii) Optimization range for ↵: The purpose of restricting ↵ in [�, 1 � �]p for some

small � is to avoid unreliable estimators of �2
Z

(↵) or �↵. When ↵
i

= 0 for

some i,
R

⇡(x)2/q↵(x)dx can be infinite if q
i

is the only proposal that dominates

certain part of ⇡(x)’s tail, or
R

g(x)g(x)T /q↵(x)dx and
R

⇡(x)g(x)/q↵(x)dx can

be infinite if q
i

is the only proposal that dominates some other proposals. In this

case, if ↵
i

is too close to 0, the estimator b�2
Z

(↵) or b�↵ is unreliable. Experience

shows that � = .001 is a reasonable choice.

(iii) Choice of the initial proportions �: � is preferred to be close to the optimal pro-

portion vector ↵⇤. If there is no any prior knowledge about ↵⇤, it is recommended

to use � with equal components in the first stage so that pilot sample is generated

from each proposal equally.

(iv) bZ in second stage: Instead of using n�n0 observations to construct the estimator

bZ(b↵), we utilize all n observations to construct the estimator bZ(e↵) where the

mixture proportions e↵ account for the proportions of the combined sample.
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4.2 Theoretical Properties

Let ↵

⇤ be the minimizer of �2
Z

(↵) under restriction ↵ 2 ⇥. We assume the following

additional conditions:

(C4) n0 = o(n) and n0 ! 1 as n ! 1;

(C5) ⇡(x) is not a linear combination of q1(x), · · · , qp(x);

(C6) ↵

⇤ is in the interior of ⇥, that is, ↵⇤ 2 (�, 1� �)p.

Condition (C4) ensures e↵ converges to ↵

⇤. Condition (C5) is necessary since if ⇡(x) is

a linear combination of q1(x), · · · , qp(x), �2(↵) will be 0 for all ↵1. Some discussions of

condition (C6) are given in Remark 7.

4.2.1 First Order Properties

Theorem 4.1. Under conditions (C1) to (C5), bZ
Reg

(e↵) and bZ
MLE

(e↵) are consistent

and

p
n
⇣

bZ
MLE

(e↵)� Z
⌘

L�! N(0,�2
Z

(↵⇤))

and
p
n
⇣

bZ
Reg

(e↵)� Z
⌘

L�! N(0,�2
Z

(↵⇤)).

Therefore, the two-stage procedure achieves the minimum asymptotic variance that

Owen and Zhou’s and Tan’s estimators can achieve among all possible mixture propor-

tions. Furthermore, since bZ
Reg

(↵) and bZ
MLE

(↵) are better than the stratified sampling

estimator bZ
SIS

(↵), the two-stage procedure outperforms all estimators introduced in

Section 3.1 in asymptotic variance. The proof is given in the last section of this chapter.

Remark 4.1. It is important to point out that �2
Z

(↵) and its estimator b�2(↵) are

strictly convex by Lemma 1 in the last section of this chapter. This guarantees

a unique solution and applicability of convex optimization algorithms in the pilot

stage. This property, or equivalently the strict convexity of the function �2(↵,�) =

V ar↵
⇥�

⇡(X)� �

T

g(X)
�

/q↵(X)
⇤

, also ensures the consistency and asymptotic normal-

ity with convergence rate
p
n0 of random proportion vector b↵ under mild conditions,
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by asymptotic theory for M-estimation with a convex criterion function (Haberman,

1989). Therefore larger n0 gives more reliable b↵.

Remark 4.2. For bZ
SIS

(↵), the optimal mixture proportions are the ones that make

the mixture proposal q↵ the closest to the target distribution ⇡. Therefore knowledge

about the target density surface can help to find an approximate choice of ↵. However,

the optimal mixture proportions ↵⇤ for �2
Z

(↵) sometimes can be counterintuitive. For

instance, in Example 1(B2) of Section 4.5, the target distribution is a mixture of a nor-

mal distribution and a t distribution, with mixing probability 0.8 and 0.2 respectively.

When the same normal distribution is used as one of the proposal distributions, its

optimal mixture proportion is only .1%. This is due to the fact that, for bZ
Reg

(↵) and

bZ
MLE

(↵), the numerator of �2
Z

(↵) involves �↵, a function of ↵, which complicates the

determination of the optimal proportions. Hence, an automatic selection for mixture

proportions becomes necessary for bZ
Reg

(↵) and bZ
MLE

(↵).

Remark 4.3. If e↵ in (4.2) can be replaced by some other random proportion vector, as

long as it is consistent to ↵

⇤ as n ! 1, the same asymptotic results hold. For example,

one can choose the mixture proportions of the second stage so that the combined sample

(of both the pilot stage and second stage) is as close to the estimated optimal proportion

vector b↵ as possible. For example, if n0�
k

< nb↵
k

for all k = 1, . . . , p, one can use

(nb↵� n0�)/(n� n0) in the second stage which results in the combined sample having

the exact estimated optimal proportion b↵. In this case, actually one should use n0 as

large as possible until it violates the above condition.

Remark 4.4. Similar asymptotic properties for bZ
MIS

(e↵) and bZ
SIS

(e↵) are presented

in Lemma 3 in the technical proof. They are always inferior to the control-variate based

estimators and hence of less interest.

4.2.2 High Order Properties

Theorem 1 shows that the selection of the pilot sample size n0 does not a↵ect the

first order property of bZ
Reg

(e↵) and bZ
MLE

(e↵) as long as n0 = o(n) and n0 ! 1.

Therefore an optimal choice of n0 needs to be determined by higher order properties of
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bZ
Reg

(e↵) and bZ
MLE

(e↵). Consider the convergence rate of e↵ � ↵

⇤, a weighted average

of � � ↵

⇤ and b↵ � ↵

⇤ with weights n0/n and 1 � n0/n. Since � � ↵

⇤ is biased, one

would want to have a smaller n0. However, a large n0 makes b↵ � ↵

⇤ closer to 0, at

the rate O
�

1/
p
n0
�

. Therefore the optimal n0 is chosen to balance the e↵ects of these

two rates. The following proposition gives the higher order asymptotic expansions of

eZ
Reg

(e↵) and eZ
MLE

(e↵).

Proposition 4.1. Under conditions (C1)-(C6), eZ
Reg

(e↵) and eZ
MLE

(e↵) can be ex-

panded as bZ⇤ + o (n0/ (n
p
n)) + o (1/ (n0

p
n)) and bZ⇤ = Z + g1(e↵) + g2(e↵), where

g1(e↵) =
1

n

n

X

i=1

⇡(x
i

)� �↵⇤g(x
i

)

q↵⇤(x
i

)
�
Z

⇡(x)� �↵⇤g(x)

q↵⇤(x)
qe↵(x)dx, and

g2(e↵) = O

✓

n0

n
p
n

◆

+O

✓

1

n0
p
n

◆

.

The explicit forms of g2(e↵) are tedious and therefore presented in the technical

proof. The selection of optimal n0 is based on minimizing the mean square error of bZ⇤,

which is an approximation of the mean square error of bZ
Reg

(e↵) and bZ
MLE

(e↵). Such an

approximation of moments, as the criterion of second order optimality, has been widely

used in higher-order asymptotic theory, e.g. Rothenberg (1984).

Theorem 4.2. Under conditions (C1)-(C6) and

(C7)
R

⇡(x)4/q↵(x)4dx < 1 for some ↵ 2 ⇥,

it holds that

E
h

bZ⇤ � Z
i

= O

✓

1

n

◆

and V ar
h

bZ⇤ � Z
i

=
1

n
�2
Z

(↵⇤) +O
⇣n0

n2

⌘

+O

✓

1

nn0

◆

.

Therefore MSE
h

bZ⇤
i

� n�1�2
Z

(↵⇤) = O
�

n0
n

2

�

+O
⇣

1
nn0

⌘

.

The above result gives the approximate mean squared error with higher order terms

beyond the usual asymptotic variance n�1�2
Z

(↵⇤). The order can be attributed to three

sources of variability. See the technical proof for details. One source of variability is

due to using the pilot sample with mixture proportions � 6= ↵

⇤, which leads to terms

of order O
�

n0/n
2
�

. The second source is the variability of estimator b↵, which is of the

order O (1/(nn0)). The third source is the variability of estimating �↵⇤ , which is the
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optimal coe�cient of control variates, in �2
Z

(↵⇤). In bZ
Reg

(e↵), the estimator of �↵⇤ is

b

�e↵. In bZMLE

(e↵), a similar estimator is used, as can be seen from the proof of Theorem

1. This variability is of the order O(1/(n
p
n)) which is also O

�

n0/n
2
�

+ O (1/(nn0))

because 2/
p
n  n0/n+ 1/n0 by the inequality 2ab  a2 + b2.

Remark 4.5. By minimizing the order of di↵erence, the optimal n0 is O(
p
n) and hence

MSE
h

bZ⇤
i

�n�1�2
Z

(↵⇤) is of order O (1/(n
p
n)). The asymptotic rate shows that how

n0 should change with the total sample size n. In practice, another consideration

of selecting n0 is the coverage of the target distribution with pilot samples. A poor

coverage can lead to poorly estimated asymptotic variance and result in inaccurate b↵.

Our experience shows one should choose n0 at least
p
n and possibly larger according

to the complexity of problem and the quality of proposal distributions. On the other

hand, one can assess b↵ by estimating its standard error after the pilot stage. If the

standard error is larger than some criterion, such as 10% of b↵, one can add additional

pilot samples. The standard error formula is given in the last part of the technical

proof.

Remark 4.6. One essential fact leading to Theorem 2 is e↵�↵

⇤ = O(1/
p
n0)+O(n0/n).

Therefore when e↵ is replaced by some other construction which is consistent but with

di↵erent rate (e.g. Remark 3 above), the orders in Theorem 2 may change.

Remark 4.7. When some coordinates of ↵⇤ are on the boundary of [�, 1��], the exact

second order property is complicated. However, it is still reasonable to use the same

n0 as indicated in Theorem 2. For example, when ↵⇤
1 is on the boundary, b↵, as an

M-estimator, will converge to ↵

⇤ with a rate faster than or equal to O(1/
p
n0) (Geyer,

1994). In the proof of Theorem 2, when the convergence rate of b↵1 changes from

O(1/
p
n0) to O(1/n"

0) with " � 1
2 , the second order O

�

n0/n
2
�

+ O (1/(n0n)) changes

to O
�

n0/n
2
�

+O
�

1/(n2"
0 n)

�

. Then by choosing n0 = O(
p
n), MSE

h

bZ⇤
i

�n�1�2
Z

(↵⇤)

is still O (1/(n
p
n)) and the accuracy of bZ

Reg

(e↵) and bZ
MLE

(e↵) remains the same.
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4.3 Extension to Ratio Estimators

4.3.1 Extension of IS Techniques to Ratio Estimators

As mentioned in Section 2.1, the integral (II) can be estimated by the ratio estimator

bµ
IS

=
1
n

P

n

i=1 h(xi)⇡(xi)/q(xi)
1
n

P

n

i=1 ⇡(xi)/q(xi)
, (4.4)

(Rubinstein and Kroese, 2008; Liu, 2008). By the delta method, it is easy to show that

the asymptotic variance of bµ
IS

is

V ar
q

✓

h(x)⇡(x)� µ⇡(x)

q(x)

◆

. (4.5)

In the sense of minimizing (4.5), the optimal choice of q(x) is the probability density

proportional to |h(x)⇡(x)� µ⇡(x)|. Therefore, it is preferred to choose q(x) that mim-

ics the shape of |h(x)⇡(x) � µ⇡(x)|. Similar to estimating the normalizing constant,

multiple proposals may be needed and the techniques in Section 3.1 may be beneficial.

Given p proposal distributions q1(x), · · · , qp(x) and mixture proportions {↵
k

}p
k=1

satisfying
P

p

k=1 ↵k

= 1. Observations {x
k1, · · · , xkn

k

} are generated from proposal

q
k

with size n
k

= ↵
k

n for each k. In Hesterberg (1995), the mixture importance

sampling and stratified sampling were applied to bµ
IS

by using the mixture proposal q↵

in numerator and denominator separately as follows:

bµ
SIS

=
1
n

P

p

k=1

P

n

k

i=1 h(xi)⇡(xki)/q↵(xki)
1
n

P

p

k=1

P

n

k

i=1 ⇡(xki)/q↵(xki)
.

Control variates and likelihood approach can also be applied to bµ
IS

. With the same

control variates g(x) as in (4.1), µ can be estimated by the following:

bµ
Reg

=
1
n

P

p

k=1

P

n

k

i=1
h(x

ki

)⇡(x
ki

)�b�T

1 g(x
ki

)
q↵(x

ki

)

1
n

P

p

k=1

P

n

k

i=1
⇡(x

ki

)�b�T

2 g(x
ki

)
q↵(x

ki

)

, bµ
MLE

=

1
n

P

p

k=1

P

n

k

i=1
h(x

ki

)⇡(x
ki

)

q↵(x
ki

)+e⇣T

g(x
ki

)

1
n

P

p

k=1

P

n

k

i=1
⇡(x

ki

)

q↵(x
ki

)+e⇣T

g(x
ki

)

,
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where

b

�1 = gV ar

✓

g(X)

q↵(X)

◆�1
gCov

T

✓

h(X)⇡(X)

q↵(X)
,
g(X)

q↵(X)

◆

and

b

�2 = gV ar

✓

g(X)

q↵(X)

◆�1
gCov

T

✓

⇡(X)

q↵(X)
,
g(X)

q↵(X)

◆

e

⇣ = argmax
⇣

p

X

k=1

n

k

X

i=1

log
⇥

q↵(x
ki

) + ⇣Tg(x
ki

)
⇤

.

Remark 4.8. The optimality of the above estimators can be seen by extending the

optimality results of bZ
Reg

in Owen and Zhou (2000) and bZ
MLE

in Tan (2004) from scalar

case to vector case. Specifically, under conditions (C1)-(C3) for ⇡(x) and h(x)⇡(x), the

two estimators

0

@

1
n

P

p

k=1

P

n

k

i=1
h(x

ki

)⇡(x
ki

)�b�T

1 g(x
ki

)
q↵(x

ki

)

1
n

P

p

k=1

P

n

k

i=1
⇡(x

ki

)�b�T

2 g(x
ki

)
q↵(x

ki

)

1

A and

0

B

@

1
n

P

p

k=1

P

n

k

i=1
h(x

ki

)⇡(x
ki

)

q↵(x
ki

)+e⇣T

g(x
ki

)

1
n

P

p

k=1

P

n

k

i=1
⇡(x

ki

)

q↵(x
ki

)+e⇣T

g(x
ki

)

1

C

A

can be shown to be consistent and asymptotic normal with the minimum covariance

matrix among all estimators in the form of

0

@

1
n

P

p

k=1

P

n

k

i=1
h(x

ki

)⇡(x
ki

)
q↵(x

ki

)

1
n

P

p

k=1

P

n

k

i=1
⇡(x

ki

)
q↵(x

ki

)

1

A�

0

@

�

T

1

�

T

2

1

A

1

n

p

X

k=1

n

k

X

i=1

g(x
ki

)

q↵(x
ki

)

for arbitrary real vectors �1 and �2. Here A � B means A�B is nonnegative definite

for two square matrices A and B. Then by the delta method, it is straightforward to

show the optimality of bµ
Reg

and bµ
MLE

. Their asymptotic variances are identical and

equal to

�2
µ

(↵) =
1

Z2
V ar↵

✓

h(X)⇡(X)� µ⇡(X)� �

T

↵g(X)

q↵(X)

◆

, (4.6)

where

�↵ = V ar

✓

g(X)

q↵(X)

◆�1

CovT
✓

h(X)⇡(X)� µ⇡(X)

q↵(X)
,
g(X)

q↵(X)

◆

.

4.3.2 Two Stage Procedure For Ratio Estimators

Take bµ
Reg

and bµ
MLE

as functions of ↵ and denote by bµ
Reg

(↵) and bµ
MLE

(↵). The two

stage procedure in Section 4.1 can be applied here:

1. First stage: Given initial proportion � = (�1, · · · , �p) satisfying
P

p

k=1 �k = 1,
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generate n0 independent stratified sample {x
i

}n0
i=1 from q�(x). Obtain b↵ by min-

imizing

b⌧2(↵) =
1

n0

n0
X

i=1

h

h(x
i

)⇡(x
i

)� bµ⇡(x
i

)� b�↵g(xi)
i2

q↵(xi)q�(xi)
, (4.7)

where bµ =
1

n0

n0
X

i=1

h(x
i

)⇡(x
i

)

q�(xi)
/
1

n0

n0
X

i=1

⇡(x
i

)

q�(xi)
,

and b�↵ =

 

1

n0

n0
X

i=1

g(x
i

)g(x
i

)T

q↵(xi)q�(xi)

!�1 "

1

n0

n0
X

i=1

(h(x
i

)⇡(x
i

)� bµ⇡(x
i

)) g(x
i

)

q↵(xi)q�(xi)

#

,

with respect to ↵ over ⇥.

2. Second stage: Generate n � n0 independent stratified observations {x
i

}n
i=n0+1

from qb↵(x). Estimate integral µ by bµ
Reg

(e↵) or bµ
MLE

(e↵) with all n observations,

where e↵ = n0/n · � + (n� n0)/n · b↵.

In the first stage, b⌧2(↵) is the Monte Carlo estimate of Z2�2
µ

(↵). Similar to the

results in Section 3.3.1, bµ
Reg

(e↵) and bµ
MLE

(e↵) for µ have proper asymptotic results

and the case for two proposal distributions is stated below.

Theorem 4.3. Under conditions (C1)-(C5) with ⇡(x) replaced by h(x)⇡(x) � µ⇡(x),

bµ
Reg

(e↵) and bµ
MLE

(e↵) are consistent and

p
n (bµ

Reg

(e↵)� µ)
L�! N(0,�2

µ

(↵⇤))

and
p
n (bµ

MLE

(e↵)� µ)
L�! N(0,�2

µ

(↵⇤)),

where ↵

⇤ is the minimizer of �2
µ

(↵).

4.4 Selection of Component Proposal Distributions

In this paper we focus on finding the optimal mixture weights to construct a mixture

proposal distribution for importance sampling, assuming that the set of component

proposals to be included in the mixture has been preselected. Since the proposed mix-

ture proportion determination automatically discriminates the high quality proposals

from the poor ones, our procedure in a way alleviates the di�culty of selecting the set

of proposal distributions. It also allows a larger set of proposals to be considered as
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the procedure serves as a selection tool. Nevertheless, pre-selection of the proposals is

extremely important as it provides the basis for e�cient inference of optimal mixture

weights. This is an area of active research. Here we provide some remarks and practical

guidance.

Consider the asymptotic variances of bZ
Reg

(e↵), bZ
MLE

(e↵), bµ
Reg

(e↵) and bµ
MLE

(e↵)

in (4.3) and (4.6). Owen and Zhou (2000) and Tan (2004) showed that when ⇡(x) is

a linear combination of the component proposals, �2
Z

(↵) = 0 for any ↵. Therefore for

estimating Z, it is preferred that the component proposals have a linear combination

close to the shape of ⇡(x). This can be achieved by using proposals that separately

approximate the modes and tails of ⇡(x). Alternatively, one can decompose ⇡(x) into

a linear combination

⇡(x) =
r

X

k=1

c
k

⇡
k

(x). (4.8)

Then the component proposals can be obtained by approximating each ⇡
k

(x). Owen

and Zhou (2000) give some illustrations of this strategy.

For the ratio estimator, it can be shown similarly that when h(x)⇡(x)� µ⇡(x) is a

linear combination of the component proposals, �2
µ

(↵) = 0 for any ↵. Therefore the

strategy used for estimating Z can be used here as well. In particular, we can find a

decomposition

h(x)⇡(x)� µ⇡(x) =
r

X

k=1

c
k

h(x)⇡
k

(x)�
r

X

k=1

µc⇤
k

⇡⇤
k

(x).

and find component proposals to approximate the individual terms. If h(x) takes neg-

ative values, additional terms corresponding to h(x) = h+(x) � h�(x) will be needed.

Example 3 in Section 4.5 provides an illustration of this approach.

Another consideration is the tail requirement. For estimating Z, q↵⇤(x) needs to

have heavier tail than ⇡(x); and for estimating µ, q↵⇤(x) needs to have heavier tail

than h(x)⇡(x)� µ⇡(x). In cases where ⇡(x)’s tail decreases exponentially, the require-

ments can be satisfied by including some Student t distributions or other heavy tail

distributions in the set of component proposals (Geweke, 1989).
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Oh and Berger (1993) and West (1993) proposed adaptive procedures to find better

proposal distributions. Liang et al. (2007) proposed a stochastic approximation proce-

dure to partition the sample domain and used truncations of the target distribution in

the subregions as component proposal distributions. The normalizing constant of each

component is estimated in a pilot stage. These procedures can be used here for finding

the component proposals in our setting. In fact, the pilot stage of our proposed proce-

dure can also be used as well. The estimated optimal mixture weights from the pilot

stage may provide hints on potentially useful proposals to be considered. For example,

a large weight for a component proposal that mainly covers the tail in one direction

may suggest to use additional proposals to cover the more extreme part of the tail in

that direction. However, caution should be exercised when considering the removal of

a proposal distribution because of its small weight, since it may be used to serve as a

defensive proposal that guarantees finite variance of the IS estimator.

4.5 Empirical Studies

Here we present several examples to illustrate the performance of the proposed proce-

dure. In all examples, the standard restricted optimization algorithm BFGS (Battiti

and Masulli, 1990) is used in the pilot stage to find b↵.

Example 4.1. Let �(x;�) be the normal density with mean 0 and standard error �,

and  
k

(x) be the density of t distribution with degree of freedom k. In this exam-

ple we consider two target distributions and two sets of proposal distributions. The

combination is listed in Table 1. The case (A1) represents the situation that one of

the proposal distribution, q2(x), is a good approximation to ⇡⇤(x) by itself, and q1(x),

being a product of Cauchy distributions, is a relatively poor proposal. We expect the

two-stage procedure will be helpful to decrease the contamination of q2(x). The case

(A2) represents the situation that both proposals are not good approximation to the

target and an appropriate proportion is not immediately clear. Both (B1) and (B2)

represent the situation that one of the proposals, q2(x), is a good approximation to the

center of the target, but with a lighter tail, and the other proposal, q1(x), has a heavier
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Proposal distributions
q1 =

Q10
i=1  k

(x
i

) and q2 =
Q10

i=1 �(xi;�)

Target distribution
k = 1

� = 1.1

k = 1

� = .4

k = 1

� = 1

k = 2

� = 1
Q10

i=1 �(xi; 1) (A1) (A2)

.2
Q10

i=1  4(xi) + .8
Q10

i=1 �(xi; 1) (B1) (B2)

Table 4.1: Parameter settings of four cases in Example 1

tail, for protection. The case (B1) uses a more conservative protection (Cauchy) and

(B2) is more aggressive (t2).

We compare five methods. The first three methods generate independent and strati-

fied observations {x
i

}n
i=1 from q↵0(x) = ↵0q1(x)+(1�↵0)q1(x) where ↵0 = (.5, 1� .5).

The last two methods generate independent and stratified observations {x
i

}n0
i=1 from

q↵0(x) and {x
i

}n
i=n0+1 from qe↵(x) where e↵1 = ↵0n0/n+b↵1(n�n0)/n and b↵1 is obtained

by the corresponding method. Since the simulation results of regression method are

nearly identical to the likelihood approach, we only list MLE and 2MLE here. Specif-

ically, the methods are as follows. For simplicity, only formulas for estimating Z are

listed.

UIS (Unprotected Importance Sampling): This is estimator (3.1) with q(x) = q2(x).

SIS (Stratified Importance Sampling): This is estimator (3.3) with ↵ = ↵0.

MLE (MLE method): This is estimator (3.6) with ↵ = ↵0.

2SIS (Two-Stage Stratified Importance Sampling):

1

n

n

X

i=1

⇡(x
i

)

qe↵(xi)
, where b↵1 = argmin

↵

✓

↵1
gV ar1



⇡(x)

q↵0(x)

�

+ (1� ↵1)gV ar2



⇡(x)

q↵0(x)

�◆

and gV ar
k

denotes the sample variance with the subset of {x
i

}n0
i=1 which comes

from q
k

(x). This is the method used in Raghavan and Cox (1998).

2MLE (Two-Stage MLE): This is our proposed method.

The results are shown in Table 2 for estimating Z and µ. Simulation is replicated

for 1000 times independently with n = 4000 and n0 = 400 in each simulation. We
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Z µ

Method (A1) (A2) (B1) (B2) (A1) (A2) (B1) (B2)

UIS 0 0 0 0 0 0 0 0
SIS .50 .50 .50 .50 .50 .50 .50 .50

b↵1 2SIS .001 .98 .21 .13 .001 .93 .40 .37
MLE .50 .50 .50 .50 .50 .50 .50 .50
2MLE .004 .98 .72 .999 .001 .91 .42 .30
UIS .16 9.4⇥ 103 3.0 .47 .19 1.2⇥ 103 66 68
SIS .45 28 .15 .16 .34 3.2 .38 .27

nMSE 2SIS .15 16 .087 .028 .20 2.1 .37 .26
MLE .27 28 .041 .0094 .34 3.2 .37 .16
2MLE .15 16 .037 .0066 .20 2.1 .35 .15

Table 4.2: Comparison of methods for Example 4.1, with each column for one setting. b↵1 is the mean
of 1000 estimated mixture proportions and MSE is mean square error of integral estimators.

report the means of bZ or bµ, the means of b↵ and the mean square error

nbV =
n

1000

1000
X

i=1

( bZ
i

� Z)2 or
n

1000

1000
X

i=1

(bµ
i

� µ)2,

where Z and µ are theoretical values.

It is seen that, in (A1) where q2 is a good proposal by itself, 2SIS and 2MLE

choose ↵1 close or equal to the smallest allowed value (0.001) for q1, which minimizes

its contamination, and achieves the same e�ciency as UIS (using the good proposal

only). They are more e�cient than SIS and MLE which use equal proportions for both

proposal distribution.

In (A2), both 2SIS and 2MLE choose ↵̂1 = .98, giving much higher proportion to

the heavy tail t proposal. It is seen that the normal proposal has a much lighter tail

(� = .4) that the target (� = 1). In this case, q1(x) is the better proposal. UIS, which

uses q2(x) exclusively, does not have finite variance. Comparing to one stage MLE,

the two stage procedure reduces MSE by about 43% and 34% for estimating Z and µ

respectively.

In (B1) and (B2), UIS has the largest variance as expected. By using control

variates, 2MLE and MLE perform much better than SIS and 2SIS. With the estimated

mixture proportions, 2MLE reduces MSE by 10% and 30% for estimating Z in (B1)
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Z µ

(A1) (A2) (B1) (B2) (A1) (A2) (B1) (B2)

b↵1 .004 .98 .72 .999 .001 .91 .42 .30
↵⇤
1 .001 .98 .77 .999 .001 .999 .42 .30

nbV .150 15.5 .037 .0066 .20 2.06 .35 .15
�2(↵⇤) .155 15.9 .035 .0061 .19 1.97 .36 .15

Table 4.3: Comparison between finite sample and asymptotic results. ↵

⇤
1 is the mixture proportion

giving the minimum asymptotic variance, b
V is the sample variance of integral estimators and �

2(↵⇤)
is the minimum asymptotic variance.

and (B2) respectively, comparing the one-stage MLE. Note that 2MLE obtains a larger

estimated optimal proportion for q1(x) in (B2) than in (B1). Intuitively this is because

q1(x) in (B2) is “closer” to the target integrand. In estimating µ, 2MLE and MLE

perform better than SIS and 2SIS, but the two stage 2MLE and one stage MLE are

similar, since the estimated optimal proportions are close to .5.

To check the convergence properties of 2MLE, in all four cases we report, in Table 3,

a comparisons between the theoretical minimum asymptotic variances and the sample

variance of 2MLE, as well as a comparison between the optimal proportions and the

average estimated proportions. It is seen that both of them are quite close to the

optimal values.

Example 4.2. Consider a rare event problem in Hesterberg (1995). Let XXX be a three

dimensional random variable with independent components (X1, X2, X3) and

X = (X1, X2, X3) = max(0,Y 1 + 10d�Z1 �Z2 �max(500, 3000� Y 2 � 40d)),

where Y 1 ⇠ N((1600, 1650, 1600), 1002I3), Y 2 ⇠ N((1600, 1700, 1600), 1002I3), Z1 ⇠

�(10013, (5, 6, 7)) with �(scale, shape) denoting the gamma distribution, Z2 has density

proportional to ex/100I
x2(0,300), and d = max(0, 60�t), where t ⇠ N((54, 52, 55), 52I3).

Denote the density of X to be f(x) =
Q3

j=1 fj(xj). The targets of interest are

P = P

"

3
X

i=1

X
i

> 1200

#

and µ = E

"

80 ·max

 

3
X

i=1

X
i

� 1200, 0

!#

.

The true value of P is about 0.003 and therefore the probability measures the area in
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Proposal (I1, I2, I3) E
h

P3
j=1X

0
i

i

↵
i

q1(x) = f(x) .5
q2(x) (1, 0, 0) 1416 .0035
q3(x) (0, 1, 0) 1266 .028
q4(x) (0, 0, 1) 1616 .0005
q5(x) (1, 1, 0) 1482 .236
q6(x) (1, 0, 1) 1832 .018
q7(x) (0, 1, 1) 1682 .0635
q8(x) (1, 1, 1) 1898 .151

Table 4.4: Parameters setting of the mixture proposal. Each q

i

(x) is proportional to

exp

⇣P3
j=1 �j

x

j

⌘
f(x), where � = c · (I1, I2, I3) and c is selected such that the expectation is equal to

the corresponding expectation, e.g. 1416. ↵

i

is the mixture proportion for q

i

(x). Here (X 0
1, X

0
2, X

0
3)

has density q

i

(x).

Mixture Proportions

Method mean var b↵1 b↵2 b↵3 b↵4 b↵5 b↵6 b↵7 b↵8

P SIS 3.4⇥10�3 3.0⇥10�8 .500 .0035 .028 .0005 .236 .018 .064 .151
2MLE 3.4⇥10�3 1.6⇥10�8 .001 .0040 .038 .0009 .420 .051 .170 .310

µ SIS 41 1.8 .500 .0035 .028 .0005 .236 .018 .064 .151
2MLE 41 1.0 .001 .002 .021 .0003 .380 .040 .150 .410

Table 4.5: Comparison between two methods of Example 4.2. SIS is the method of Hesterberg (1995)

and 2MLE is our method. bµ and b
P are the means of 1000 point estimators, b↵

i

are the average mixture
proportions and b

V is the sample variance of 1000 estimators.

the tail of f(x). Hesterberg (1995) used bZ
SIS

to estimate P and µ and constructed the

proposal distributions by exponential tilting, using q(x) = c(�)exp
⇣

P3
j=1 �jxj

⌘

f(x)

with parameters � = (�1,�2,�3). Seven proposals are constructed by setting � =

c · (I1, I2, I3) where I
j

is binary and c is set so that E
h

P3
i=1X

0
i

i

is equal to some pre-

determined value, where (X 0
1, X

0
2, X

0
3) follows q(x). Including f(x) as another proposal

component, there are eight proposal components. Hesterberg (1995) provided preset

mixture proportions for these proposals, listed in Table 4.

Here we compare the proposed two-stage procedure with the estimator used in

Hesterberg (1995) for estimating both P and µ. The results are listed in Table 5.

Again, simulation is replicated 1000 times independently with n = 4000 and n0 = 400

in each simulation. We report the sample means and variances of bP and bµ, and the
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means of the mixture proportion b↵
i

for i = 1, · · · , 8. Comparing to SIS, it is seen

that while the means are the same, 2MLE reduces the variance by 47% for estimating

P and 44% for estimating µ. When comparing the proportion set selected by 2MLE

and the predetermined proportion set used by SIS, it is seen that some of the proposal

considered to be important for SIS is also determined important by 2MLE, such as

q5(x) and q8(x). The major di↵erence is that SIS puts too much proportion on q1(x)

while 2MLE only selects a very small proportion for it, indicating that only a small

proportion is needed for q1(x) in order to guarantee the bounded estimating variance.

Example 4.3. In this example we examine the performance of 2MLE on estimating

Value at Risk (VaR) using a Bayesian GARCH(1,1) model for S&P500 index series.

Given a probability p and a time horizon d, VaR is the value that a portfolio would

encounter a loss greater than or equal to, with probability p over the horizon.

Suppose at time T we have historical log returns y = {y1, · · · , yT }. Let R(y
d

) =
P

d

k=1 yT+k

be the cumulative return in the next d periods, where y
d

= (y
T+1, · · · , yT+d

)

and denote F
y

y

y

d

as the CDF of R. Then the d days ahead VaR is defined as

V aR
p

= inf
�

x 2 R|Fy
d

(x)  p
 

.

VaR is a widely used measure of market risk (Du�e and Pan, 1997; Jorion, 1997). To

obtain the CDF F
y

y

y

d

, we model the return series using GARCH model (Engle, 1982;

Bollerslev, 1986), a commonly used model for return series and modeling volatility

dynamics. Specifically, we use a Bayesian GARCH(1,1) model with normal innovations

(Geweke, 1994; Bauwens and Lubrano, 2008),

y
t

= "
t

h
1/2
t

, "
t

iid⇠ N(0, 1), h
t

= �0 + �1y
2
t�1 + �h

t�1,

where �0 � 0, �1 � 0 and � � 0 and �1 + � < 1 to ensure stationarity. Following

Geweke (1994), the prior distributions of log�0 and (�1,�) are selected to be N(a0,�2
a

)

and U(�1 � 0,� � 0,�1 + � < 1). Here �0 is transformed to have the real line

as domain, and (�1,�) follows a uniform distribution in the stationary domain. The

hyperpamaters a0 and �2
a

are set to be 1 and 2, respectively. We also use the sample

variance for h20 for simplicity.
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The Bayesian approach has the advantage of taking into account of parameter es-

timation variability in the estimation of VaR. Due to the complexity, Monte Carlo

method is used. Since VaR is largely a tail property, an appropriate implementation of

importance sampling may significantly improve the e�ciency. Although VaR is not in

the form of integral, it can be estimated easily by empirical quantiles from the Monte

Carlo samples. Note that, CDF and probability are in the form of integral. Related lit-

eratures about estimating VaR using Importance Sampling can be found in Hoogerheide

and Van Dijk (2010), Glasserman et al. (2000) and Dunkel and Weber (2007).

The two-stage algorithm is tested to estimate VaR with p = 0.05 and 0.01 and

horizons 1, 2 and 5 days, corresponding to 4, 5 and 8 dimensional problem, as there are

three parameters in the GARCH(1,1) model. Denote ✓ = (log�0,�1,�). For each VaR,

following the strategy discussed in Section 4.3, we construct the proposal distributions

based on the asymptotic variance of the empirical posterior CDF at VaR

�2
p

(↵) =

Z

⇥�

1{R(y
d

)V aR}(y
d

)� p
�

⇡(y
d

,✓)� �

T

↵g(yd

,✓)
⇤2

q↵(y
d

,✓)
dy

d

d✓, (4.9)

where ⇡(y
d

,✓) =
Q

T+d

k=1 p(y
k

|y
k�1,✓)p(✓), p(y

k

|y
k�1,✓) is the innovation density and

p(✓) is the prior density of ✓.

Expression (4.9) is not the variance of the VaR estimator. However, Hoogerheide

and Van Dijk (2010) showed that the asymptotic variance of [V aR
p

can be approximated

by �2
p

(↵) times a constant which does not depend on the proposal density. Since it is

di�cult to sample from ⇡(y
d

,✓) directly, we approximate it by the mixture of

q1(y
d

,✓) =
T+d

Y

k=1

p(y
k

|y1:k�1,✓)qN (✓) and

q2(y
d

,✓) = q⇤(y
T+d

|y
T+d�1,✓)

T+d�1
Y

k=1

p(y
k

|y1:k�1,✓)qN (✓),

where q
N

(✓) is the normal distribution with the mean vector being the MLE b

✓ and

the covariance matrix ⌃
N

being the negative inverse Hessian matrix of ⇡(y,✓) at

b

✓, inflated by a constant to allow a wider coverage. We use q⇤(y
T+d

|y1:T+d�1,✓) ⇠

N(�h
1/2
T+d

, h
T+d

) for the proposal q2(y
d

,✓). It tries to cover the tail (large loss on the

last day of the horizon). Similar proposals can be constructed by considering other
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potential situations of large loss, but only this one is included in the current example.

With the approximation of ⇡(y
d

,✓), the heavier tail components can be constructed

by modifying the tails of q1 and q2. Then the following two proposals are included as

the heavier tail components:

q3(y
d

,✓) =
T+d

Y

k=1

p(y
k

|y1:k�1,✓)qt(✓) and

q4(y
d

,✓) = q⇤(y
T+d

|y1:T+d�1,✓)
T+d�1
Y

k=1

p(y
k

|y1:k�1,✓)qt(✓),

where q
t

(✓) is the product of three location-scale generalization of t1 densities with the

means being b✓ and the squared scale parameters being the diagonal elements of ⌃
N

, and

q⇤ is the same as in the construction of q2. Since ⇡(y
d

,✓)/q3(y
d

,✓) = p(✓)/q
t

(✓) and

p(✓) is the prior distribution with exponentially decreasing tail, q3(y
d

,✓) has heavier

tail than ⇡(y
d

,✓). Similarly, q3 and q4 have heavier tail than q1, q2 and proposals below,

and therefore only mixture proportions for q3 and q4 need to be restricted.

To incorporate the integrand as discussed in Section 4.3, we further extend q1(y
d

,✓)

and q2(y
d

,✓) to include

q5(y
d

,✓) / 1{y
T+d

V aR

.05�
P

d�1
k=1 yT+k

}(yT+d

)q1(y
d

,✓) and

q6(y
d

,✓) / 1{y
T+d

V aR

.05�
P

d�1
k=1 yT+k

}(yT+d

)q2(y
d

,✓),

Here the truncation is done only on y
T+d

, instead of the more accurate but computa-

tionally expensive truncation of
P

d

k=1 yT+k

 V aR
.05 under joint normal distribution.

The estimation of V aR
.01 can be done simultaneously by including the following

component proposals

q7(y
d

,✓) / 1{y
T+d

V aR

.01�
P

d�1
k=1 yT+k

}(yT+d

)q1(y
d

,✓) and

q8(y
d

,✓) / 1{y
T+d

V aR

.01�
P

d�1
k=1 yT+k

}(yT+d

)q2(y
d

,✓).

Overall, q1(y
d

,✓) to q8(y
d

,✓) are used as component proposal distributions.

Since our objective is to estimate V aR
.05 and V aR

.01 simultaneously, in the pilot

stage we estimate the optimal mixture proportions by minimizing the sum of variances
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p = 0.05 p = 0.01

horizon Method [V aR bV [V aR bV

1 day MLE �1.332 14e� 5 �1.894 20e� 5
2MLE �1.333 3.8e� 5 �1.895 4.6e� 5

2 days MLE �1.886 5.1e� 4 �2.773 12e� 4
2MLE �1.886 1.5e� 4 �2.771 3.5e� 4

5 days MLE �2.997 17e� 4 �4.432 5.9e� 3
2MLE �2.996 5.4e� 4 �4.424 1.8e� 3

Table 4.6: Comparison between MLE and 2MLE in Example 4.3. [
V aR is the average of 300 point

estimators and b
V is the sample variance of 300 estimators.

of the two estimators. Since q5, · · · , q8 involve the unknown V aR
.05 and V aR

.01, the

first stage sampling is modified as follows.

1. Generate pilot samples from q1 to q4 with sample size n0/8 each;

2. Estimate V aR
.05 using the pilot samples from step 1. Replace V aR

.05 in q5 and

q6 with the estimate and generate pilot samples from them, with sample size n0/8

each.

3. Estimate V aR
.01 using the pilot samples from steps 1 and 2. Replace V aR

.01 in

q7 and q8 with the estimate and generate pilot samples from them, with sample

size n0/8 each.

4. Obtain b↵ by minimizing ⌧̂2
.05(↵)+ ⌧̂2

.01(↵) where ⌧̂2
p

(↵) is the estimator for �2
p

(↵)

using all samples in the first three steps.

Here we compare the two-stage procedure 2MLE with the one stage MLE with

equal mixture proportions. The log returns of S&P500 index from September 28, 2010

to July 13, 2011 are used, with total 200 observations. The simulation is replicated for

300 times independently with n = 4 ⇥ 106 and n0 = 8 ⇥ 104 in each simulation. � is

selected to be .001.

The summary of estimation results and the estimated mixture proportions b↵ are

listed in Table 6 and 7. From Table 6, it is seen that 2MLE’s Monte Carlo variance

is about 23% to 32% of the variance of MLE while there is almost no di↵erence in
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VaR b↵1 b↵2 b↵3 b↵4 b↵5 b↵6 b↵7 b↵8

1 day 1e-3 8e-4 3.4e-1 6.2e-1 9e-3 1.7e-2 8e-3 2e-3
2 days 1e-3 1e-3 3.5e-1 6.0e-1 2.4e-2 3e-3 9e-3 2e-3
5 days 1e-3 6e-4 4.3e-1 5.4e-1 2.0e-2 8e-4 4e-3 5e-4

Table 4.7: Summary of mixture proportions estimated from stage 1. The average over 300 simulations
are reported. b↵1 to b↵8 correspond to the mixture proportions assigned to q1 to q8.

the mean. Table 7 shows that the two-stage algorithm assigns most of the mixture

proportions to q3 and q4 which indicates that these two heavy tail component proposals

are more important than the others. This is probably due to the fact that q1 and q2

do not cover the high density area of target distribution su�ciently, resulted in the

preference to q3 and q4. Compared with MLE, the optimization in the pilot stage of

2MLE requires additional computing time which is about 20% more in practice.

Finally, we report some interesting insights on the comparison between MLE and

2MLE. By multiplying a scaling constant c2 to the covariance matrix ⌃
N

used in the

proposal q1, all the related component proposals are made either more dispersed for

c > 1 or more concentrated for c < 1. Since �2
p

(↵) is proportional to the estimation

variance of VaR and the proportion does not depend on the proposal density, the

trajectories of estimated �2
p

(↵⇤) and �2
p

(↵0) as function of c are given in Figure 1 to

illustrate how the quality of proposal distribution a↵ect the performance of 2MLE and

MLE.

It is seen that 2MLE is always better than MLE. Most interestingly, it shows that

the performance of both methods depends on the quality of the proposal distributions,

but 2MLE is much less sensitive to the proposal distributions and has more robust

performance than MLE. This is due to 2MLE’s ability to automatically adjust mixture

proportion for the most e�cient estimation. The simulation results (not shown here)

show that, when c is small, 2MLE tends to assign most of the mixture proportions to

the heavy tail q3 and q4. This insight re-enforces the notion that the two-stage approach

not only improves upon the one stage approach, but also alleviate to some extend the

di�culty of selecting proposal distributions.
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Figure 4.1: The left figure gives trajectories of estimated �

2
p

(↵⇤) and �

2
p

(↵0), corresponding to MLE
and 2MLE methods respectively, with respect to the scaling constant c. c ranges from .1 to 4. For
each c, the theoretical variances are estimated using one Monte Carlo sample, and the average over 10
replicates is reported. The right figure gives the trajectory of ratio of estimated �

2
p

(↵⇤) over estimated
�

2
p

(↵0).

4.6 Summary

In this chapter, we proposed a two-stage procedure to select the optimal mixture pro-

portions for the regression estimator in Owen and Zhou (2000) and MLE estimator in

Tan (2004), and established the corresponding theoretical framework. The two-stage

procedure significantly improved the existing methods in four aspects. First, the pro-

posed estimator is asymptotically the best among all the estimators proposed in Owen

and Zhou (2000), Tan (2004) and Raghavan and Cox (1998). Second, the criterion

function of our pilot stage optimization is convex in its arguments, and therefore it is

guaranteed that the optimization converges to the global minimum. Third, since there

is no simple intuition in selecting the proportions for Owen and Zhou’s (2000) regres-

sion estimator and Tan’s (2004) MLE estimator, the proposed automatic procedure

makes it much easier and safer to use mixture distributions for importance sampling.

Finally, the automatic determination of the mixture proportion alleviates the di�culty

of choosing the set of proposal distributions to be considered in the mixture, as it serves

as a selection and discrimination tool and hence allows users to include more potential

proposal distributions for consideration.
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4.7 Technical Proof

For simplicity, we only consider two proposal distributions. Then ↵ = (↵1, 1�↵1) and

� = (�1, 1��1). The proofs can be extended to the case of more than two proposals. To

begin with, we establish the consistency of b↵ = (b↵1, 1�b↵1). Note that b↵1 is equivalently

a component of the bivariate M-estimate (b↵1, b�) = argmin
↵,�

n�1
0

P

n0
i=1m(x

i

;↵,�), where

m(x;↵1,�) = [⇡(x)� �g(x)]2 / [q↵(x)q�(x)] . Let M(↵1,�) =
R

m(x;↵1,�)q�(x)dx and

(↵⇤
1,�

⇤) = argmin
↵1,�

M(↵1,�). Meanwhile, M(↵1,�) and �2
Z

(↵) are strictly convex func-

tions.

Lemma 4.1. It holds that

(b↵1, b�)
P�! (↵⇤

1,�
⇤),

(b↵1, b�) = (↵⇤
1,�

⇤)� 1

2
p
n0

V �1
bU + o

p

(
1

p
n0

),

where V and bU are given in Lemma 4.2. Then e

↵ = (e↵1, 1 � e↵1)
P�! (↵⇤

1, 1 � ↵⇤
1).

Meanwhile, M(↵1,�), �2
Z

(↵) and b�2(↵) are strictly convex functions.

Proof. Note that m(x;↵,�) is convex since its Hessian matrix

D2m(x;↵1,�) =
2g(x)2

q↵(x)q�(x)

0

@

(⇡(x)��g(x))2

q↵(x)2
⇡(x)��g(x)

q↵(x)

⇡(x)��g(x)
q↵(x) 1

1

A

is a positive semidefinite matrix. Then the consistency of
⇣

b↵1, b�
⌘

can be proved by

verifying conditions 1�3 in Haberman (1989) for M-estimators by convex minimization.

First, the parameter set ⇥ = [�, 1 � �] ⇥ R of (↵1,�) is convex and closed. Second,

(↵⇤
1,�

⇤) is unique. By Durrett (1996, Appendix 9), the di↵erentiation and integration

in M(↵,�) can be exchanged so that

D2M(↵1,�) =

0

@

2
R [⇡(x)��g(x)]2g(x)2

q↵(x)3 dx 2
R [⇡(x)��g(x)]g(x)2

q↵(x)2 dx

2
R [⇡(x)��g(x)]g(x)2

q↵(x)2 dx 2
R

g(x)2

q↵(x)dx

1

A .

For any bivariate vector v, vT
�

D2M(↵1,�)
 

v � 0 and the equality holds only when

⇡(x) ⌘ c1q1(x)+ c2q2(x) for some c1 and c2. By condition (C5), D2M(↵1,�) is positive

definite. Therefore M(↵1,�) is strictly convex and (↵⇤
1,�

⇤) is unique. Third, let W =
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(�, 1� �)⇥ R. By condition (C3), M(↵1,�) < 1 for any (↵1,�) 2 W .

The expansion of
⇣

b↵1, b�
⌘

can be found in the proof of Haberman (1989, Theorem

6.1) by verifying his conditions 7 and 10. First, D2M(↵⇤
1,�

⇤) is positive definite as

mentioned above. Second, the gradient of m(x;↵1,�) satisfies E|Dm(x;↵1,�)|2 < 1.

Therefore the convergence of (e↵1, 1� e↵1) holds because e↵ = �n0/n+ b↵(n�n0)/n and

n0 = o(n).

Finally, with the strict convexity of M(↵1,�) which is stated above, the strict con-

vexity of �2
Z

(↵) can be seen by the facts that �2
Z

(↵) = min
�

M(↵1,�) and

min
�

M(�↵1 + (1� �)↵2,�) = min
�1

min
�2

M(�↵1 + (1� �)↵2,��1 + (1� �)�2)

for any ↵1,↵2 and � 2 [0, 1]. The strict convexity of b�2(↵) can be proved similarly.

The following expansion of (b↵1, b�) will be used in the higher order calculation of

bZ
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The expansion of (b↵1, b�) follows by substituting (b↵1 � ↵⇤
1,
b� � �⇤) to the RHS of the

above equation.

The combined sample {x1, · · · , xn} can be split into four parts by distributions

q1 or q2 and first or second stages. Denote I
jk

to be the index set of observations

from the jth stage and q
k

, i.e. I11 = {1, · · · , n0�1}, I12 = {n0�1 + 1, · · · , n0}, I21 =

{n0+1, · · · , n0+ d(n� n0)b↵1e}, I22 = {n0+ d(n� n0)b↵1e+1, · · · , n} where dxe means

the largest integer smaller than x, and n
jk

to be the size of I
jk

. Here we can use

for the index, where bxc is the largest integer smaller than x, to define I
jk

. But for

investigating the asymptotic behavior, the di↵erence can be ignored. We will use the
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. (4.10)

The following lemma shows the convergence of bZ
SIS

with e↵ as mixture proportion.

Lemma 4.3. For any integrable function h(x) satisfying V ar↵ [h(X)/q↵(X)] < 1 for

every ↵1 2 [�, 1� �], it holds that
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.

where V ar
k

denote the variance under distribution density q
k

(x).
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Proof. We only need to prove asymptotic normality since it implies the consistency.

Using decomposition (4.10) we have
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(4.11)

The asymptotic normality will be implied by showing that the first two terms in (4.11)

are of order o
p

(1) and the remaining is asymptotic normal.

For the first two terms, we prove that the collection of functions {h(x)/q↵(x)}
↵12[�,1��]

is a Donsker class under either probability measures q1 or q2 by verifying the three condi-

tions in Van der Vaart (2000, Example 19.7). In fact, the parameter ↵ is in a bounded

set; |h(x)/q
↵1(x) � h(x)/q

↵2(x)|  |m(x,↵1,↵2)| · |↵1 � ↵2| for every ↵1,↵2 where

m(x,↵1,↵2) = h(x)g(x)/(q
↵1(x)q↵2(x)), and

R

|m(x,↵1,↵2)|2q
k

(x)dx < 1. By Van der

Vaart (2000, Lemma 19.24) and Lemma 4.1, we have G1k(h/qe↵) = G1k(h/q↵⇤)+ o
p

(1),

k = 1, 2. Then by Central Limit Theorem and n0 = o(n), the first two terms in (4.11)

are of order o
p

(1).

For the last two terms, similarly, we argue that G2k(h/qe↵) = G2k(h/q↵⇤) + o
p

(1)

by a modification of Van der Vaart (2000, Lemma 19.24) to handle random sample

size. In fact, the key condition for his results, namely weak convergence of G2k(h/q↵⇤),

is guaranteed by Van Der Vaart and Wellner (1996, Theorem 3.5.1). Then by the

independence between ↵̂1 and observations in {x
i

}n
i=n0+1 and an extension of Chow

and Teicher (2003, section 9.4), we have
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and by Slutsky’s theorem,
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. Therefore the lemma holds.

In the above proof, only the consistency of e↵ is used. If e↵ is replaced by other

consistent mixture proportion, the convergence properties still hold.
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Corollary 4.1. For any ↵ satisfying ↵
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We also need the convergence of e⇣ in bZ
MLE

(e↵) where

e⇣ = argmin
⇣
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Lemma 4.4. The following convergence properties for e⇣ hold:
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By Taylor expansion, we have

bZ
MLE

(e↵) =
1

n

n

X

i=1

⇡(x
i

)

(e↵1 + e⇣)q1(xi) + (e↵2 � e⇣)q2(xi)

= S
⇡

�
�

S�1
gg

S
⇡g

� �⇤
�

S
g

, (4.12)

where S
⇡

=
1

n

n

X

i=1

⇡(x
i

)� �⇤g(x
i

)

qe↵(xi)
, S

⇡g

=
1

n

n

X

i=1

⇡(x
i

)g(x
i

)

(qe↵(xi) + ⇣̈g(x
i

))2
,

and ⇣̈ is between 0 and e⇣.

Since e↵
P�! ↵

⇤, e⇣
P�! 0 and qe↵(xi) + ⇣̇g(x

i

) = qe↵+(⇣̇,�⇣̇)(xi), we have

S
⇡

P�! Z,
p
n(S

⇡

� Z)
L�! N(0, V ar↵⇤



⇡(X)� �⇤g(X)

q↵⇤(X)

�

),

p
nS

g

L�! N(0, V ar↵⇤



g(X)

q↵⇤(X)

�

),

S
⇡g

P�! Cov↵⇤



⇡(X)

q↵⇤(X)
,

g(X)

q↵⇤(X)

�

and S
gg

P�! V ar↵⇤



g(X)

q↵⇤(X)

�

.

by Lemma 4.3 and Corollary 4.1. Then plugging the above results in (4.12), Slutsky’s
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Similarly, the consistency and asymptotic normality of bZ
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Proof of Proposition 4.1. Denote G
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(4.12) and Taylor expansion around ↵⇤
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The expansion of bZ
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(e↵) follows similarly, except the definition of e� is changed to
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the expectations are of order O(1/n) and O(1/(n0n)), respectively, by the law of iterated

expectations conditioning on {x
i

}n0
i=1. For (k1, k2, k3) = (1, 0, 1), the expectation is of

order O(1/n) by the inequality 2ab  a2 + b2 and the fact E
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bZ⇤ � Z
i

= O(1/n).

From (4.13), note that the calculation of V ar
h

bZ⇤ � Z
i

involves calculating the

cases of k1 = 2. For (k1, k2, k3) = (2, 0, 0), (2, 1, 0) and (2, 2, 0), the expectations

are of order O (1/n), O
�

n0/n
2
�

and O (1/(n0n)), respectively, by (4.14) and the law

of total variance conditioning on {x
i

}n0
i=1. For(k1, k2, k3) = (2, 0, 1) and (2, 0, 2), the

expectations are of order O(1/(n
p
n)) and O(1/n2), respectively, by the inequality

2ab  a2 + b2 and the fact E
hp

n(e� � �⇤)
i4

< 1. The other terms are dominated by
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O
�

n0/n
2
�

+O (1/(n0n)). Therefore by noting that 1/
p
n  n0/n+ 1/n0,

V ar
h

bZ⇤ � Z
i

=
1

n
V ar



G
n

⇡(x)� �⇤g(x)

q↵⇤(x)

�

+O

✓

1

nn0

◆

+O
⇣n0

n2

⌘

.

Again by (4.14) and the law of total variance conditioning on {x
i

}n0
i=1, some algebra

gives that

1

n
V ar



G
n

⇡(x)� �⇤g(x)

q↵⇤(x)

�

=
1

n
�2
Z

(↵⇤) +
n0

n2

⇢

V ar�

✓

⇡(x)� �⇤g(x)

q↵⇤(x)

◆

� �2
Z

(↵⇤)

�

+
1

n
(1� n0

n
)

⇢

V ar1

✓

⇡(x)� �⇤g(x)

q↵⇤(x)

◆

� V ar2

✓

⇡(x)� �⇤g(x)

q↵⇤(x)

◆�

E(b↵1 � ↵⇤
1) (4.15)

⇡ 1

n
�2
Z

(↵⇤) +O
⇣n0

n2

⌘

+O

✓

1

nn0

◆

.

Therefore V ar
h

bZ⇤ � Z
i

= 1
n

�2
Z

(↵⇤) +O
�

n0/n
2
�

+O (1/(nn0)).

The proofs of Proposition 4.1 and Theorem 4.2 reveal the sources of the higher

orders O
�

n0/n
2
�

and O (1/(nn0)) in MSE
h

bZ⇤
i

� n�1�2
Z

(↵⇤). These two orders come

from three sources which can be seen by investigating each term in (4.13) and (4.15).

One source is due to using pilot samples which leads to terms

n0

n
p
n

⇢

G
n

(⇡(x)� �⇤g(x))g(x)

q↵⇤(x)2

�

(�1 � ↵⇤
1) in (4.13)

and
n0

n2

⇢

V ar�

✓

⇡(x)� �⇤g(x)

q↵⇤(x)

◆

� �2
Z

(↵⇤)

�

in (4.15),

and results in the order O
�

n0/n
2
�

. When � = ↵

⇤, these two terms are equal to 0

and thus they are derived from the di↵erence between � and ↵

⇤. Another one is the

variability of random coe�cient of control variates which leads to the term

1

n

⇢

G
n

g(x)

q↵⇤(x)

�

np
n(e� � �⇤)

o

in (4.13).

This variability results in the order O(1/(n
p
n)) which is also O

�

n0/n
2
�

+O (1/(nn0))

when n0 =
p
n, because 2/

p
n  n0/n+1/n0. The other source is the variability of es-

timated mixture proportion e↵ which leads to all other terms in (4.13) and (4.15) except

the previous 3 terms and n�1�2
Z

(↵⇤). This variability results in the order O (1/(nn0)).
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For the asymptotic properties of bµ
Reg

(e↵) and bµ
MLE

(e↵), the proof di↵ers in two

aspects with that of bZ
Reg

(e↵) and bZ
MLE

(e↵). One is the M-estimator b↵ contains an

estimated parameter bµ in the criterion function. The other one is the ratio form of

bµ
Reg

(e↵) and bµ
MLE

(e↵).

Lemma 4.5. b↵1
P�! ↵⇤

1 as n ! 1 for b↵1 defined in (4.7).

Proof. b↵1 can be equivalently obtained as a component of the bivariate estimator

(b↵1, b�) = argmin
↵1,�2⇥

n�1
0

P

n0
i=1 ⇢(x;↵1,�, bµ), where ⇢(x;↵1,�, µ) = [h(x)⇡(x)�µ⇡(x)��g(x)]2

q↵(x)q�(x)

and ⇥ = [�, 1� �]⇥ R. The proof of consistency of (b↵1, b�) contains two steps.

First, although the domain of � is unbounded, b� stays in a compact set almost

surely when n ! 1, because

|b�| = |
1
n0

P

n0
i=1

(h(x
i

)⇡(x
i

)�bµ⇡(x
i

))g(x
i

)
qb↵(x

i

)q�(x
i

)

1
n0

P

n0
i=1

g(x
i

)2

qb↵(x
i

)q�(x
i

)

| 
1
n0

P

n0
i=1

⇣

|h(x
i

)⇡(x
i

)|
q�(x

i

) + |bµ⇡(x
i

)|
q�(x

i

)

⌘

2
�

1
n0

P

n0
i=1

g(x
i

)2

(q1(x
i

)+q2(x
i

))q�(x
i

)

and the RHS converges to a constant almost surely since bµ ! µ almost surely. Then

the consistency of (b↵1, b�) and the minimizer (b↵0
1,
b�0) restricted in some compact set

C ⇢ ⇥, i.e. argmin
↵1,�2C

n�1
0

P

n0
i=1 ⇢(x;↵1,�, bµ), are equivalent since P ((b↵1, b�) 2 C) ! 1.

Second, the consistency of (b↵0
1,
b�0) and the minimizer with bµ replaced by µ, i.e.

argmin
↵1,�2C

n�1
0

P

n0
i=1 ⇢(x;↵1,�, µ), are equivalent because

sup
↵1,�2C

| 1
n0

n0
X

i=1

⇢(x;↵1,�, bµ)�
1

n0

n0
X

i=1

⇢(x;↵1,�, µ)|

(bµ2 � µ2) max
↵1,�2C

1

n0

n0
X

i=1

⇡(x
i

)2

q
↵1(xi)q�(xi)

+ (bµ� µ) max
↵1,�2C

2

n0

n0
X

i=1

(h(x
i

)⇡(x
i

)� �g(x
i

))⇡(x
i

)

q
↵1(xi)q�(xi)

!0 almost surely,

and the argument similar to Van der Vaart (2000, Theorem 5.7). Then since the

consistency of argmin
↵1,�2C

n�1
0

P

n0
i=1 ⇢(x;↵1,�, µ) holds by replacing ⇡(x) in Lemma 4.1 by

h(x)⇡(x)� µ⇡(x), the consistency of (b↵1, b�) follows.

Proof of Theorem 4.3. The consistency and asymptotic normality of bµ
MLE

(e↵) follow
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the extension of proof of Theorem 1 to random vector

p
n

8

<

:

1

n

n

X

i=1

0

@

h(x
i

)⇡(x
i

)/qe↵+e
⇣

⇡(x
i

)/qe↵+e
⇣

1

A�

0

@

R

h(x)⇡(x)/q↵⇤(x)dx
R

⇡(x)/q↵⇤(x)dx

1

A

9

=

;

and the delta method. The proof for bµ
Reg

(e↵) is similar.

Variance Matrices for

b

↵

Denote

I
jkl

=

Z

(⇡(x)� �

⇤T
g(x))jg(x)g(x)T

q↵⇤(x)kq�(x)l
dx,

A = I230 � I120I
�1
010I120, B = I010 � I120I

�1
230I120,

C = I441 � 2I331I
�1
010I120 and D = I331 � 2I221I

�1
010I120.

When estimating Z, (b↵2, · · · b↵p

) has the asymptotic variance matrix

1
p
n0

�

A�1CA�1 � 2I�1
230I120B

�1DA�1
�

.

When estimating µ, similar expression can be obtained by replacing ⇡(x) in I
jkl

by

(h(x)� µ)⇡(x).
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Chapter 5

E�cient Sequential Monte Carlo with Multiple Proposals

and Control Variates

This chapter proposes a novel algorithm to tackle the limitations of SMC proposal

design mentioned in sections 2.2 and 3.2.3, using particles generated from a mixture

proposal distribution and sample weights constructed by Tan (2004)’s control variate

approach. For the problems of infinite variance and multimodal target density, the

bounded variance can be guaranteed by including proposals with heavier tails than the

target distribution, and multimodality can be handled by including proposals to address

the multiple modes separately. For the problem of not considering the target function,

it is dealt with by constructing control variates and proposals which incorporate the

target function in the construction. Unlike the direct use of control variates, they are

included in the resampling step which results in significant improvement and the better

performance of mixture proposal over individual proposal. The guidelines for selecting

component proposals and control variates are given. The theoretical framework of the

algorithm is constructed and the asymptotic results show that the new algorithm is

more e�cient than the naive implementation of multiple proposals and control variates

in SMC, and can be expected to increase the e�ciency significantly over the standard

SMC methods. Its e↵ectiveness is illustrated through numerical studies on the AR(1)

model observed with noise which is a benchmark model since all sequential distributions

are analytically available, and the stochastic volatility model with AR(1) dynamics

which is widely used in economics and finance.
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5.1 Likelihood Based Mixture SMC

5.1.1 The Algorithm

Given p proposal densities q1(xn|x1:n�1), · · · , qp(xn|x1:n�1) and the auxiliary variable

⌘(x0:n) for every n. For t0 < n, let q
k

(x
t0+1:n|x1:t0) =

Q

n

t=t0+1 qk(xt|x1:t�1) for k =

1, · · · , p, ggg(x
t0+1:n|x1:t0) = (q1 � q2, · · · , q1 � q

p

)(x
t0+1:n|x1:t0) and q

↵

↵

↵

(x
t0+1:n|x1:t0) =

P

p

k=1 ↵k

q
k

(x
t0+1:n|x1:t0) with mixture proportion vector ↵↵↵ = (↵1, · · · ,↵p

). The follow-

ing algorithm is proposed to utilize multiple proposals and control variates in the SMC

framework:

The likelihood-based mixture SMC (LM-SMC):

At time n, assume particles {ex(j)0:n�1}Nj=1 and indicator sets I1, · · · , Ip are available

where [p

k=1Ik = {1, · · · , N}. Let n0 be the last time of resampling. For j 2 I
k

,

1. Mutation: Generate x(j)
n

from the proposal q
k

(x
n

|ex(j)0:n�1) and let x(j)0:n = (ex(j)0:n�1, x
(j)
n

).

2. Correction: Assign x
(j)
0:n with weight

v(j)
n

=
⇡
n

(x(j)0:n)

⇡
n0(ex

(j)
0:n0

)⌘(ex(j)0:n0
)
h

q
↵

↵

↵

(x(j)
n0+1:n|ex

(j)
0:n0

) + b⇣⇣⇣
T

n

ggg(x(j)
n0+1:n|ex

(j)
0:n0

)
i . (5.1)

where b⇣⇣⇣
n

= argmax
⇣

⇣

⇣

N

X

j=1

log
h

q
↵

↵

↵

(x(j)
n0+1:n|ex

(j)
0:n0

) + ⇣⇣⇣Tggg(x(j)
n0+1:n|ex

(j)
0:n0

)
i

.

3. Selection: If the condition for resampling is satisfied, resample {x(j)0:n}Nj=1 according

to
n

⌘(x(j)0:n)v
(j)
n

o

N

j=1
to obtain new particles {ex(j)0:n}Nj=1, and divide {1, · · · , N} with

equal probabilities into new indicator sets I1, · · · , Ip satisfying #I
k

= ↵
k

N ; If

resampling is not needed, let ex(j)0:n = x
(j)
0:n.

After the correction step, estimate µ
n

by

bµ
n,MLE

=

P

N

j=1 h(x
(j)
n

)v(j)
n

P

N

j=1 v
(j)
n

.

Remark 5.1. The novelty of this algorithm is that the control variates are included

in both the resampling and estimation. Another way of implementation is that in the
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generalized SMC method, estimate µ
n

by Owen and Zhou’s estimator bµ
Reg

as following

bµ
n,Reg

=

P

N

j=1

h

h(x(j)
n

)w(j)
n

� b⌧⌧⌧T1nggg(x
(j)
n0+1:n|ex

(j)
0:n0

)/q
↵

↵

↵

(x(j)
n0+1:n|ex

(j)
0:n0

)
i

P

N

j=1

h

w
(j)
n

� b⌧⌧⌧T2nggg(x
(j)
n0+1:n|ex

(j)
0:n0

)/q
↵

↵

↵

(x(j)
n0+1:n|ex

(j)
0:n0

)
i (5.2)

where b⌧⌧⌧1n = gV ar



ggg

q
↵

↵

↵

��1
gCov



h⇡
n

⇡
n0cq↵↵↵

,
ggg

q
↵

↵

↵

�

, b⌧⌧⌧2n = gV ar



ggg

q
↵

↵

↵

��1
gCov



⇡
n

⇡
n0cq↵↵↵

,
ggg

q
↵

↵

↵

�

.

We call this the regression-based mixture SMC (RM-SMC). It only uses the control

variates in the estimation without changing the distribution of particles. Actually the

regression approach can also give proper importance weights for each particle, but

they are not necessarily positive and hence cannot be directly used in resampling.

The likelihood approach give positive importance weights, incorporating the e↵ect of

control variates. The asymptotic results in the next section show that this makes the

new algorithm outperforms both the generalized SMC method without control variates

and the RM-SMC.

Remark 5.2. In the algorithm the particles are mutated within each group and only

“mixed up” at the time of resampling. Hence the proposal distribution of x
n0+1:n is the

mixture of p distributions and the number of control variates in ggg is p � 1. Since the

likelihood approach requires the control variates to be compatible with the component

proposals, such an implementation can avoid the situation when too many control

variates are needed and the optimization for b⇣⇣⇣
n

is computationally expensive.

Remark 5.3. For generalized SMC method, the control variates SSS(x1:n) need to satisfy
R

SSS(x1:n)⇡⇤
n

(x0:n)dx0:n = 0 in order to make the estimator asymptotically unbiased,

which makes the construction of SSS(x1:n) not straightforward. The new algorithm does

not require extra e↵ort to construct control variates and is easy to implement.

5.1.2 Theoretical Results

Here the central limit theorems (CLT) for bµ
n,MLE

are presented, similar to that in

Chopin (2004). For simplicity, only the scheme of multinomial resampling at every step

is discussed. Let ev(j)
n

= ⌘(x(j)0:n)v
(j)
n

being the weights used in resampling, e⇡
n

(x0:n) =
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⌘(x0:n)⇡⇤
n

(x0:n) being the unnormalized new target density after resampling with the

auxiliary variable, e⇡⇤
n

(x0:n) = e�1
n

e⇡
n

(x0:n) where e
n

is the normalizing constant, and

eµ
n

=
R

h(x1:n)e⇡⇤
n

(x0:n)dx0:n. We assume the following conditions:

(C1’)
R

|h(x1:n)|⇡⇤
n

(x0:n)dx0:n,
R

|h(x1:n)|e⇡⇤
n

(x0:n)dx0:n and
R

|h(x1:n)|e⇡⇤
n�1(x0:n�1)q↵↵↵(xn|x0:n�1)dx0:n < 1;

(C2’) E
⇡

⇤
n

|h(x1:n)|2 and Ee⇡⇤
n

|h(x1:n)|2 < 1;

(C3’) Let �0 to be the set of square integrable functions with respect to ⇡0(x0) and

�
n

=

⇢

h : ⇥
n

! R
�

�

�

�

Ee⇡⇤
n�1q↵↵↵

h

⇡

⇤
n

e⇡⇤
n�1q↵↵↵

h
i2

< 1, Ee⇡⇤
n�1q↵↵↵

h

e⇡⇤
n

e⇡⇤
n�1q↵↵↵

h
i2

< 1,

E
q

↵

↵

↵

h

⇡

⇤
n

e⇡⇤
n�1q↵↵↵

h|x0:n�1

i

2 �
n�1 and E

q

↵

↵

↵

h

e⇡⇤
n

e⇡⇤
n�1q↵↵↵

h|x0:n�1

i

2 �
n�1

o

. Then h 2 �
n

;

(C4’) The unit function I
n

: ⇥
n

! 1 belongs to �
n

.

(C5) V are⇡⇤
n

q

↵

↵

↵

⇣

g

g

g

q

↵

↵

↵

⌘

< 1 and is positive definite;

(C6)
R

ggg(x
n

|x0:n�1)dxn ⌘ 0.

Let �23,0(h) = V ar
⇡0 [h] and recursively let

�21,n(h) = �23,n�1(Eq

↵

[h|x0:n�1]) + Ee⇡⇤
n�1

(V ar
q

↵

↵

↵

[h|x0:n�1]) ,

�22,n(h) = �21,n(
⇡⇤
n

(x0:n)(h� µ
n

)

e⇡⇤
n�1(x0:n�1)q↵↵↵(xn|x0:n�1)

� ���T
n

ggg

q
↵

↵

↵

),

�23,n(h) = �21,n(
e⇡⇤
n

(x0:n)(h� eµ
n

)

e⇡⇤
n�1(x0:n�1)q↵↵↵(xn|x0:n�1)

� e���
T

n

ggg

q
↵

↵

↵

) + V are⇡⇤
n

(h) ,

where

���
n

= V ar



ggg(x
n

|x0:n�1)

q
↵

↵

↵

(x
n

|x0:n�1)

��1

Cov



⇡⇤
n

(x0:n)(h(x1:n)� µ
n

)

e⇡⇤
n�1(x0:n�1)q↵↵↵(xn|x0:n�1)

,
ggg(x

n

|x0:n�1)

q
↵

↵

↵

(x
n

|x10:n�1)

�

and e���
n

= V ar



ggg(x
n

|x0:n�1)

q
↵

↵

↵

(x
n

|x0:n�1)

��1

Cov



e⇡⇤
n

(x0:n)(h(x1:n)� eµn

)

e⇡⇤
n�1(x0:n�1)q↵↵↵(xn|x0:n�1)

,
ggg(x

n

|x0:n�1)

q
↵

↵

↵

(x
n

|x0:n�1)

�

.

Theorem 5.1. Suppose conditions (C10) � (C40), (C5) and (C6) are satisfied. Then

for any n, �22,n(h) and �
2
3,n(h) are finite and

p
N (bµ

n,MLE

� µ
n

)
L�! N(0,�22,n(h)), (5.3)

p
N

"

1

N

N

X

i=1

h(ex(i)1:n)� eµn

#

L�! N(0,�23,n(h)). (5.4)
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Specifically,

�22,n(h) =
n

X

t=1

Z

⇥

⇡⇤
n

(x0:t)(µt

(x0:t)� µ
n

)� ���T
tn

e⇡⇤
t�1(x0:t�1)ggg(xt|x0:t�1)

⇤2

e⇡⇤
t�1(x0:t�1)q↵↵↵(xt|x0:t�1)

dx0:t, (5.5)

where

���
tn

= V ar



ggg(x
t

|x0:t�1)

q
↵

↵

↵

(x
t

|x0:t�1)

��1

Cov



⇡⇤
n

(x0:t)(µt

(x0:t)� µ
n

)

e⇡⇤
t�1(x0:t�1)q↵↵↵(xt|x0:t�1)

,
ggg(x

t

|x0:t�1)

q
↵

↵

↵

(x
t

|x0:t�1)

�

,

and e⇡⇤0(x0) = ⇡0(x0).

The first four conditions have been used for the convergence of auxiliary particle

filter and analogous to the conditions for the basic SMC method. (C1’) and (C2’)

depend on the model and target function, and in practice are usually satisfied. One

su�cient condition for (C3’) and (C4’) to hold is

p(x
n

|x
n�1)p(yn|xn)

⌘(x0:n�1)q↵↵↵(xn|x0:n�1)
and

⌘(x0:n)p(xn|xn�1)p(yn|xn)
⌘(x0:n�1)q↵↵↵(xn|x0:n�1)

are bounded from above,

(5.6)

which can be satisfied by including heavy tail component proposals. Unlike (C3), only

second moments are required in (C3’). See Cappé et al. (2005, Theorem 9.3.7) for this

weaker condition. Condition (C5) ensures that the optimization for MLE weights b⇣⇣⇣ gives

stable results. Condition (C6) is necessary for �22,n(h) to have the clean expression in

Theorem 2. It is automatically satisfied in LM-SMC and is stated here to emphasize

the requirement for control variates.

The analytical form of �22,n(h) clearly demonstrates how the control variates take

e↵ect in two aspects. First, every term in the asymptotic variance contains the con-

trol variates, which is resulted from including control variates in the resampling step.

Second, the coe�cient vector for control variates is optimal for every n despite the

target density for each term changes as n increases. This is due to the fact that in the

likelihood approach, the estimated coe�cient vector b⇣⇣⇣
n

does not depend on the target

density, and hence the same sample and coe�cients can be adapted for di↵erent target

density automatically. Therefore, LM-SMC outperforms the generalized SMC method

without using control variates. Since the RM-SMC only includes the control variates in

the estimator, its asymptotic variance only have them in the last term, which is shown
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in the technical proof. Therefore, LM-SMC also outperforms RM-SMC.

5.1.3 The Selection of Component Proposals and Auxiliary Variable

The choices of component proposals q1, · · · , qp are critical to the performance of LM-

SMC. As mentioned in Section 3.2.3, a reasonable strategy is to minimize the last term

of the asymptotic variance which is

Z

⇥

⇡⇤
n

(x0:n)(h(x1:n)� µ
n

)� ���T
nn

ggg(x
n

|x0:n�1)e⇡⇤
n�1(x0:n�1)

⇤2

e⇡⇤
n�1(x0:n�1)q↵↵↵(xn|x0:n�1)

dx0:n. (5.7)

By the theory of the likelihood approach (Tan, 2004), (5.7) is equal to 0 when ⇡⇤
n

(h�

µ
n

) is a linear combination of e⇡⇤
n�1q1, · · · , e⇡⇤n�1qp. This property suggests to choose

q1, · · · , qp and ⌘(x0:n) such that ⇡⇤
n

(h � µ
n

) is close to some linear combination of

e⇡⇤
n�1q1, · · · , e⇡⇤n�1qp. Since ⇡

⇤
n

(x0:n)(h(x1:n)�µ
n

) / ⇡⇤
n�1(x0:n�1)p(xn|xn�1)p(yn|xn)(h(x1:n)�

µ
n

), the construction of component proposals can be done by approximating and decom-

posing p(x
n

|x
n�1)p(yn|xn)(h�µ

n

). Specifically, one can approximate p(x
n

|x
n�1)p(yn|xn)

by ⌘(x0:n�1)q(xn|x0:n�1) where ⌘(x0:n�1) is a positive function and q(x
n

|x0:n�1) is a

probability density, and find a decomposition

q(x
n

|x0:n�1)(h(x1:n)� µ
n

) =
p

X

k=1

c
k

r
k

(x1:n�1)q
k

(x
n

|x0:n�1) (5.8)

with real functions r
k

(x0:n�1), densities q
k

(x
n

|x0:n�1) and constants c
k

. Then q1, · · · , qp

and ⌘(x0:n�1) can be selected as the component proposals and auxiliary variable.

Meanwhile, to ensure the sample weights have bounded variance, one can include

a heavy tail component proposal and add a positive constant into ⌘(x0:n�1) to have

⌘(x0:n�1) bounded away from 0, so that the su�cient condition (5.6) is satisfied. A

simple choice of the heavy tailed proposal is the prior density p(x
n

|x
n�1).

The above strategy can be illustrated using the state space model

x
n

= s1(xn�1) + "
n

y
n

= s2(xn) + e
n

, (5.9)

with normal "
t

and e
t

and nonlinear function s2(x). Suppose the target function h(x1:n)
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is x
n

.

Let log(p2(yn|xn)) be the second order Taylor expansion of log(p(y
n

|x
n

)) around the

mode of p(y
n

|x
n

), q2(xn|yn, xn�1) be the normalized p(x
n

|x
n�1)p2(yn|xn) and r(x

n�1)

be the corresponding normalizing constant. By approximating the center of normalized

p(x
n

|x
n�1)p(yn|xn) by q2(xn|yn, xn�1), controlling its tail by p(x

n

|x
n�1) and adding a

positive constant c to r(x
n�1), p(xn|xn�1)p(yn|xn) can be approximated by

⌘(x0:n�1)q(xn|x0:n�1) ⌘ [r(x
n�1) + c] [�1q2(xn|yn, xn�1) + �2p(xn|xn�1)], (5.10)

where the values of �1 and �2 can be arbitrary. The value c should not be too large

or too small compared to r(x
n�1). The expectation E

⇡

⇤
n�2q↵↵↵

[r(x
n�1)] is a reasonable

choice and can be estimated by sample average.

Then the component proposal can be constructed as follows. Note that q2(xn|yn, xn�1)

is a normal density with mean ✓(x
n�1). Decompose q(x

n

|x0:n�1)(xn � µ
n

) by

[�1q2(xn|yn, xn�1) + �2p(xn|xn�1)] (xn � µ
n

)

= �1 [xn � ✓(x
n�1)] q2(xn|yn, xn�1) + �1 [✓(xn�1)� µ

n

] q2(xn|yn, xn�1)

+�2 [xn � s1(xn�1)] p(xn|xn�1) + �2 [s1(xn�1)� µ
n

] p(x
n

|x
n�1) (5.11)

and use the following component proposal distributions: the normalized

[x
n

� ✓(x
n�1)]

+ q2(xn|yn, xn�1), normalized [x
n

� ✓(x
n�1)]

� q2(xn|yn, xn�1),

q2(xn|yn, xn�1), normalized [x
n

� s1(xn�1)]
+ p(x

n

|x
n�1), normalized

[x
n

� s1(xn�1)]
� p(x

n

|x
n�1) and p(x

n

|x
n�1). All of them can be sampled directly

(Weibull distribution or Normal distribution). When the mixture proportion for p(x
n

|x
n�1)

is non-zero (↵6 > 0), then (5.6) is satisfied by the fact that ⌘(x0:n�1) is bounded and

⌘(x0:n�1)q↵↵↵(xn|x0:n�1) > ↵6cp(xn|xn�1).

5.1.4 The Selection of Mixture Proportions

In (5.8), some proposals may be computationally expensive to sample from. The prob-

lem can be circumvented by setting the sampling proportions of these proposals to 0
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and only sampling particles from a subset of q1, · · · , qp, while keeping the control vari-

ates ggg(x
n

|x0:n�1) the same. This is a reasonable strategy since, when ⇡⇤
n

(h � µ
n

) is a

linear combination of e⇡⇤
n�1q1, · · · , e⇡⇤n�1qp, the variance in (5.7) equals to 0 even if some

↵
i

are 0. Such a strategy allows more flexibility in decomposition (5.8) to include terms

which are easy to be normalized but di�cult to sample from. The values of nonzero

proportions can follow some heuristic rules derived from experience or interpretation of

proposals. Equal proportions are often a good starting point.

The strategy raised the question of whether sampling from a subset of q1, · · · , qp will

decrease the estimation e�ciency and o↵set the saving of computational resource. It has

been noted that when the sample coverage is not of a major concern, the improvement

by the likelihood approach mainly comes from the use of control variates. Therefore in

practice, one can construct several easy-to-sample proposals to cover the high likelihood

area of the target density with some additional more sophisticated proposal densities

as covariates to achieve more accurate approximation. We illustrate this observation

through the following example in importance sampling, though similar features can be

seen in SMC as well.

Example. Suppose a random vector XXX = (X1, · · · , X10) follows

⇡(xxx) = .8
10
Y

p=1

�(x
p

) + .2
10
Y

p=1

 4(xp),

where �(x) is the standard normal density and  
t

(x) is the student t density with

degrees of freedom t. This distribution is used in Tan (2004). The target of interest is

the expectation µ = E [f(XXX)] under ⇡(xxx), where f(xxx) =
P10

p=1 xp/10. Here we compare

four estimators to illustrate the e↵ects of setting some mixture proportions to 0.

The first two estimators are based on the proposal choices in Tan (2004). Let

q1(xxx) =
Q10

p=1 �(xp), q2(xxx) =
Q10

p=1  2(xp), g1(x) = q1(xxx)�q2(xxx) and q
.5,2(xxx) = .5q1(xxx)+

.5q2(xxx) where q
↵

↵

↵,k

(xxx) denotes the mixture of k proposals with proportions ↵↵↵. Among

the component proposals, q1 approximates the center of ⇡ and q2 controls the tail of

⇡. Suppose {xxx
i

}n
i=1 are generated from q

.5,2(xxx) in stratification. Then IS and Tan’s
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likelihood approach give the estimator

bµ
P2 =

P

n

i=1 f(xxxi)⇡(xxxi)/q.5,2(xxxi)
P

n

i=1 ⇡(xxxi)/q.5,2(xxxi)
,

bµ
P2C1 =

P

n

i=1 f(xxxi)⇡(xxxi)/
h

q
.5,2(xxxi) + b⇣P2C1g1(xxxi)

i

P

n

i=1 ⇡(xxxi)/
h

q
.5,2(xxxi) + b⇣P2C1g1(xxxi)

i ,

where b⇣
P2C1 = argmax

⇣

P

n

i=1 log (q.5,2(xxxi) + ⇣g1(xxxi)) and bµ
P

k

C

j

denotes the estimator

with k sampling proposals and j control variates.

The third and fourth estimators are based on more sophisticated component pro-

posals following the discussions in Li et al. (2012) which suggested to decompose an

approximation of (f(xxx) � µ)⇡(xxx), similar to the discussions in Section 5.1.3. By ap-

proximating ⇡(xxx) with the mixture of q1(xxx) and q2(xxx) as in the first two estimators,

0

@

1

10

10
X

p=1

x
p

� µ

1

A⇡(xxx) ⇡ (
1

10

10
X

p=1

x
p

� µ) [�1q1(xxx) + �2q2(xxx)]

=
10
X

p=1

⌧1px
+
p

�(x
p

)
Y

i 6=p

�(x
i

)�
10
X

p=1

⌧2px
�
p

�(x
p

)
Y

i 6=p

�(x
i

)

+
10
X

p=1

⌧3px
+
p

 2(xp)
Y

i 6=p

 2(xi)�
10
X

p=1

⌧4px
�
p

 2(xp)
Y

i 6=p

 2(xi)

+ ⌧5q1(xxx) + ⌧6q2(xxx),

with constants �1, �2, ⌧1, . . . , ⌧6. Therefore we choose the following component pro-

posals: q1j+(xxx) / x+
j

�(x
j

)
Q

i 6=j

�(x
i

), q1j�(xxx) / x�
j

�(x
j

)
Q

i 6=j

�(x
i

),

q2j+(xxx) / x+
j

 2(xj)
Q

i 6=j

 2(xi), q2j�(xxx) / x�
j

 2(xj)
Q

i 6=j

 2(xi), for j = 1, . . . , 10

and q1(xxx) and q2(xxx). There are total 42 component proposals and all can be sampled

relatively easily. Let q
↵

↵

↵,42(xxx) be the mixture of these component proposals with equal

proportions and ggg(xxx) be the corresponding vector of control variates. Suppose {xxx
i

}

are generated from q
↵

↵

↵,42(xxx) in stratification. The likelihood approach gives the third

estimator

bµ
P42C41 =

P

n

i=1 f(xxxi)⇡(xxxi)/
h

q
↵

↵

↵,42(xxxi) + b⇣⇣⇣
T

P42C41
ggg(xxx

i

)
i

P

n

i=1 ⇡(xxxi)/
h

q
↵

↵

↵,42(xxxi) + b⇣⇣⇣
T

P42C41
ggg(xxx

i

)
i ,
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bµ
P2 bµ

P2C1 bµ
P42C41 bµ

P2C41

MSE 1.4E � 1 1.4E � 1 4.1E � 3 5.0E � 3

Table 5.1: Comparison of the four estimators in example of Section 5.1.4. Simulation is replicated for
1000 times independently and each replicate uses 4000 draws. The mean square errors are reported.

where b⇣⇣⇣
P42C41

= argmax
⇣

⇣

⇣

P

n

i=1 log
�

q
↵

↵

↵,42(xxxi) + ⇣⇣⇣Tggg(xxx
i

)
�

.

The fourth estimator is constructed by setting the mixture proportions of all com-

ponent proposals except q1(xxx) and q2(xxx) to 0 in bµ
P42C41 , which means the sample is

only generated from q
.5,2(xxx) but the control variates ggg(xxx) is still the same. This gives

the fourth estimator

bµ
P2C41 =

P

n

i=1 f(xxxi)⇡(xxxi)/
h

q
.5,2(xxxi) + b⇣⇣⇣

T

P2C41
ggg(xxx

i

)
i

P

n

i=1 ⇡(xxxi)/
h

q
.5,2(xxxi) + b⇣⇣⇣

T

P2C41
ggg(xxx

i

)
i ,

where b⇣⇣⇣
P2C41

= argmax
⇣

⇣

⇣

P

n

i=1 log
�

q
.5,2(xxxi) + ⇣⇣⇣Tggg(xxx

i

)
�

. Note that bµ
P2C41 has a bounded

variance since the heavy tail proposal q2(xxx) is included.

The mean square errors (MSE) of these four estimators are reported in Table 1.

it can be seen that bµ
P2 and bµ

P2C1 have similar MSE, indicating no improvement by

a control variate g1(xxx) without considering the target function f(xxx). When control

variates constructed using the information of f(xxx) are included, the resulted estimator

bµ
P2C41 improves the MSE of bµ

P2 by more than one order of magnitude. If the sampling

proposals also use the information of f(xxx), the resulting estimator bµ
P42C41 improves the

MSE of bµ
P2C41 by about 20%. It shows that the main contribution of improvement

comes from the control variates instead of proposal distributions.

5.2 Numerical Studies

Here we present several examples to illustrate the performance of the new algorithm. In

these examples, the target function is x
n

, i.e. the posterior mean of state is of interest.

We compare five methods: The bootstrap filter (BF), auxiliary particle filter (APF),

the generalized SMC method without using control variates (GSMC), regression-based

mixture SMC (RM-SMC) of (5.2), and likelihood-based mixture SMC (LM-SMC). The
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generalized SMC used here does not include control variates due to the di�culties

discussed in remark 5.3 of Section 5.1.1. In all examples, systematic resampling (Car-

penter et al., 1999; Douc and Cappé, 2005) is used at every step and the simulation is

replicated 200 times independently, and each step uses 2000 particles. The trust region

optimization algorithm (Nocedal and Wright, 1999) is used for calculating MLE weights

in all examples. The average of mean square error over 100 steps, i.e.

MSE =
1

100

100
X

t=1

MSE
t

, where MSE
t

=
1

200

200
X

i=1

(bµ
ti

� µ
t

)2,

where bµ
ti

is the estimator at the t
th

step of i
th

replication and µ
t

is the theoretical

posterior mean of x
t

, and the comparison between LM-SMC and the i
th

method with

consideration of computing time, i.e. the ratio

R
i

=
MSE

LM�SMC

T
LM�SMC

MSE
i

T
i

,

where T is the computing time, for i = 1, · · · , 4 are reported.

5.2.1 AR(1) Observed with Noise

Consider the following process

x
n

= �x
n�1 + "

n

, "
n

⇠ N(0,�2)

y
n

= x
n

+ ⌘
n

, ⌘
n

⇠ N(0, 1).

It is often used as a benchmark model for comparing SMC methods since all se-

quential distributions are analytically available through Kalman filter. The density

p(x
n

|x
n�1, yn) is normal and ⌘(x

n�1) = ⇡
n

(x0:n�1)/⇡n�1(x0:n�1) can be evaluated.

Therefore the “perfect adaption” of the auxiliary particle filter (Pitt and Shephard,

1999) can be achieved.
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Construction of Component Proposals

For the mixture methods, the component proposals can be obtained by the following

decomposition. Denote the mean of p(x
n

|x
n�1, yn) by ✓n(xn�1). We have

p(x
n

|x
n�1)p(yn|xn)(xn � µ

n

)

= ⌘(x
n�1)

⇥

(x
n

� ✓
n

(x
n�1))

+p(x
n

|x
n�1, yn) + (x

n

� ✓
n

(x
n�1))

�p(x
n

|x
n�1, yn)

+(✓
n

(x
n�1)� µ

n

)p(x
n

|x
n�1, yn)] .

Then we can use ⌘(x
n�1) as the auxiliary variable, and the following component propos-

als: p(x
n

|x
n�1, yn), normalized (x

n

� ✓
n

(x
n�1))+p(xn|xn�1, yn) and normalized (x

n

�

✓
n

(x
n�1))�p(xn|xn�1, yn). All proposals can be sampled directly and equal mixture

proportions are assigned to all component proposals.

Results

The five methods are compared under di↵erent signal to noise ratio (SNR) settings.

The values of parameter � are set to be .7, .8, .9 and � are determined so that the

SNR of the process is controlled at 10, 1 and .5. For each setting, a series with length

100 is generated as observations. Results are listed in Table 2 and the trajectories of

MSE for all five methods are given in Figure 1. From Table 2, several observations can

be made.

In all cases, LM-SMC have the smallest MSE and the improvement over the others

decreases as the value of SNR decreases and the value of � increases. For the SNR=10

case, considering the computing time, LM-SMC improves BF, APF and GSMC by over

85%, except for GSMC when � = .9, and RM-SMC by over 18%. For the SNR=1 case,

considering the computing time, LM-SMC also have improvement over the others for

� = .7 and � = .8 but the improvement is much smaller compared to SNR=10 case. For

the SNR=.5 case, the MSE decrease of LM-SMC is not significant with consideration

of computing time and therefore has similar or worse performance compared with the

others.

The above trends are due to an interesting phenomena. As SNR increases or �
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SNR=10 � = .7,� = 2.3 � = .8,� = 1.9 � = .9,� = 1.4 Time sec

BF 2.2E � 3(.006) 1.0E � 3(.019) 9.1E � 4(.050) 44
APF 4.4E � 4(.031) 4.1E � 4(.045) 3.8E � 4(.11) 46
GSMC 1.1E � 4(.099) 1.1E � 4(.14) 1.1E � 4(.31) 57

RM-SMC 9.7E � 6(.82) 14E � 6(.76) 3.2E � 5(.78) 78
LM-SMC 6.4E � 6(1.0) 8.8E � 6(1.0) 2.0E � 5(1.0) 97

SNR=1 � = .7,� = .7 � = .8,� = .6 � = .9,� = .44 Time sec

BF 4.7E � 4(.34) 3.6E � 4(.53) 3.7E � 4(.78) 44
APF 2.9E � 4(.54) 2.5E � 4(.74) 2.5E � 4(1.1) 46
GSMC 1.4E � 4(.90) 1.4E � 4(1.0) 1.7E � 4(1.3) 57

RM-SMC 9.8E � 5(.93) 1.2E � 4(.95) 1.5E � 4(1.1) 78
LM-SMC 7.3E � 5(1.0) 8.8E � 5(1.0) 1.3E � 4(1.0) 97

SNR=.5 � = .7,� = .5 � = .8,� = .42 � = .9,� = .31 Time sec

BF 3.5E � 4(.70) 3.1E � 4(.90) 2.0E � 4(1.4) 44
APF 2.3E � 4(1.0) 2.2E � 4(1.2) 1.7E � 4(1.6) 46
GSMC 1.5E � 4(1.2) 1.6E � 4(1.3) 1.6E � 4(1.4) 57

RM-SMC 1.3E � 4(1.0) 1.5E � 4(1.1) 1.5E � 4(1.1) 78
LM-SMC 1.1E � 4(1.0) 1.3E � 4(1.0) 1.3E � 4(1.0) 97

Table 5.2: Comparison of five methods in Example 5.2.1. MSE is reported and the ratio of MSE

multiplied with computing time between LM-SMC and the corresponding method is reported in the
parenthesis.

decreases, the average MSE of RM-SMC and LM-SMC decreases, while the average

MSE of BF and APF increases. Figure 1 also indicates that such phenomena not only

happens on the average values, but also on the whole trajectories. A possible reason is

that since the control variates of RM-SMC and LM-SMC fully explore the information

contained in x
n

and SNR is a direct measure of information of x
n

, under higher SNR

setting, the information of x
n

is more significant and therefore gives the control variates

approach more advantage.

Finally, by comparing RM-SMC and LM-SMC, it can be seen that the di↵erence of

their MSE decreases as SNR increases. It means in the asymptotic variance of LM-SMC

in Theorem 2, the last term contains more and more proportion, and then the variance

reduction brought by the historical terms becomes less and less significant. Therefore

the improvement of LM-SMC over RM-SMC decreases as SNR increases.
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Figure 5.1: Trajectories of logarithm of MSE for the five estimators in all cases of Example 5.2.1.



74

5.2.2 Stochastic Volatility with AR(1) Dynamics

Consider the stochastic volatility model in Sandmann and Koopman (1998)

8

>

>

<

>

>

:

x
n

= �x
n�1 + ⌘

n

, ⌘
n

⇠ N(0,�2
⌘

)

y
n

= �e
x

n

2 ⇠
n

, ⇠
n

⇠ N(0, 1),

where ⌘
t

and ⇠
t

are independent, y
n

is the demeaned return of a portfolio, and � is the

average volatility level. Due to the nonlinear structure of the observation equation, the

analytical form of p(x
n

|x
n�1, yn) is unavailable.

For the APF method, Kim et al. (1998) and Pitt and Shephard (1999) suggested to

use the normal density q1(xn|xn�1, yn) / p(x
n

|x
n�1)p1(yn|xn) as the proposal and the

corresponding normalizing constant as the auxiliary variable, where log (p1(yn|xn)) is

the first order Taylor expansion of p(y
n

|x
n

) around �
P

N

j=1 x
(j)
n�1/N . Since p(y

n

|x
n

) is

log-concave, p1(yn|xn) has heavier tails than p(y
n

|x
n

) and hence q1(xn|xn�1, yn) and the

auxiliary variable satisfy the tail requirement of the proposal distribution. In this exam-

ple we select q1(xn|xn�1, yn) and p(x
n

|x
n�1)p1(yn|xn)/q1(xn|xn�1, yn) as the proposal

and auxiliary variable for the APF method.

Construction of Component Proposals

For the mixture methods, let q2(xn|xn�1, yn) being the normalized p(x
n

|x
n�1)p2(yn|xn)

where log (p2(yn|xn)) is the second order Taylor expansion of p(y
n

|x
n

) around the maxi-

mum point of the observation likelihood, r(x
n�1) ⌘ p(x

n

|x
n�1)p2(yn|xn)/q2(xn|xn�1, yn)

and denote the mean of q2(xn|xn�1, yn) by ✓(xn�1). Smith and Santos (2006) discussed

the benefit of using q2(xn|xn�1, yn) as the proposal when there are extreme outliers in

the observations. One problem of q2(xn|xn�1, yn) is that it does not have heavier tail

than p(x
n

|x
n�1)p1(yn|xn).

Since the stochastic volatility model is a special case for the example in Section

5.1.3, its construction of component proposals can be applied in here. The construction

gives the auxiliary variable r(x
n�1)+c

n�1 where cn�1 = E
⇡

⇤
n�2q↵↵↵

[r(x
n�1)] and can be es-

timated by
P

N

j=1 r(x
(j)
n�1)/N , and the component proposals q2(xn|xn�1, yn), p(xn|xn�1),
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CV=10
� = .900, � = .950, � = .980,

Time sec
�
⌘

= .675,� = .0165 �
⌘

= .484,� = .0164 �
⌘

= .308,� = .0166

BF 8.1E � 4(.54) 4.3E � 4(.78) 2.3E � 4(1.4) 53
APF 1.0E � 1(.003) 2.1E � 2(.011) 2.7E � 4(.80) 78
GSMC 5.1E � 4(.56) 3.6E � 4(.61) 2.6E � 4(.80) 81

RM-SMC 3.2E � 4(.58) 2.6E � 4(.54) 2.0E � 4(.67) 126
LM-SMC 1.2E � 4(1.0) 9.3E � 5(1.0) 8.7E � 5(1.0) 193

CV=1
� = .900, � = .950, � = .980,

Time sec
�
⌘

= .363,� = .0252 �
⌘

= .260,� = .0252 �
⌘

= .166,� = .0253

BF 2.7E � 4(.61) 2.2E � 4(.78) 2.4E � 4(1.7) 53
APF 4.1E � 4(.28) 2.5E � 4(.45) 4.7E � 4(.60) 78
GSMC 2.3E � 4(.46) 2.0E � 4(.57) 2.3E � 4(1.2) 81

RM-SMC 1.7E � 4(.41) 1.6E � 4(.44) 2.1E � 4(.82) 126
LM-SMC 4.5E � 5(1.0) 4.6E � 5(1.0) 1.1E � 4(1.0) 193

CV=.1
� = .900, � = .950, � = .980,

Time sec
�
⌘

= .135,� = .0293 �
⌘

= .096,� = .0293 �
⌘

= .061,� = .0295

BF 4.3E � 5(.36) 5.2E � 5(1.4) 3.4E � 5(1.7) 53
APF 3.9E � 5(.27) 4.5E � 5(1.1) 3.2E � 5(1.2) 78
GSMC 4.4E � 5(.23) 5.2E � 5(.93) 3.8E � 5(.95) 81

RM-SMC 3.2E � 5(.20) 5.0E � 5(.63) 3.3E � 5(.71) 126
LM-SMC 4.3E � 6(1.0) 2.0E � 5(1.0) 1.5E � 5(1.0) 193

Table 5.3: Comparison of five methods in Example 5.2.2. MSE is reported and the ratio of MSE

multiplied with computing time between LM-SMC and the corresponding method is reported in the
parenthesis. The theoretical posterior mean is calculated using Monte Carlo sample.

normalized (x
n

� ✓(x
n�1))

+ q2(xn|xn�1, yn), normalized (x
n

� ✓(x
n�1))

� q2(xn|xn�1, yn),

normalized (x
n

� �x
n�1)

+ p(x
n

|x
n�1) and normalized (x

n

� �x
n�1)

� p(x
n

|x
n�1). The

tail requirement can be satisfied by letting the mixture proportion of p(x
n

|x
n�1) larger

than 0.

Although all component proposals can be sampled directly, for the purpose of il-

lustration, we follow the suggestion of Section 5.1.4 and set the mixture proportions

of q2(xn|xn�1, yn) and p(x
n

|x
n�1) to be .5 for each, and the other proposals to be 0.

With such mixture proportions, for di↵erent target functions, the sampling procedure

remains the same and only the control variates need to be changed.
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Results

Here we use the parameter settings in Sandmann and Koopman (1998). The values of

the autoregressive parameter � are set to be .90, .95 and .98, which are compatible with

the range from .9 to .995 of � found in empirical studies. Then for each �, the values

of �
⌘

are selected so that the coe�cient of variation of the volatility h = �2exp(x
n

)

CV =
V ar[h]

E[h]2
= exp

 

�2
⌘

1� �2

!

� 1

takes the values 10, 1 and .1. High value of CV indicates the relative strength of the

volatility process and low value of CV indicates the volatility is close to a constant.

Finally, the average volatility level � is selected such that

E[h] = �2exp

 

�2
⌘

2(1� �2)

!

is equal to .0009. This value of E[h] can be interpreted as an approximately 22%

annualized variance if the simulated data are taken as weekly returns. For each setting,

a series with length 100 is generated as observations. Results are listed in Table 3 and

the trajectories of MSE for all five methods are given in Figure 2. From Table 3, several

observations can be made.

In all cases, LM-SMC has the smallest MSE. The improvement of LM-SMC over

the others decreases as the value of � increases, i.e. the volatility process becomes more

persistent. For � = .9, considering computing time, the improvement of LM-SMC over

BF, APF, GSMC and RM-SMC ranges from 39% to 80%, not including the failed APF.

For � = .95, the improvement of LM-SMC is smaller than those of � = .9. For � = .98,

in some cases the improvement of LM-SMC is not enough to o↵set the extra computing

time and performs worse than BF.

In the results, the mixture methods performs more robust than APF. When CV=10

and CV=1, the APF performs worse than BF, and in two cases of CV=10, its perfor-

mance is extremely bad. A possible reason is although p(y
n

|x
n

)/p1(yn|xn) is bounded,

the upper bound may still be large and the sample weights are skewed. In comparison,

all three mixture methods are more stable. Therefore the protection provided by the
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mixture proposal outperforms the one provided by expanding the log-concave density.

Finally, it can be seen that LM-SMC reduces the MSE of RM-SMC by from 48%

to 87%, without considering the computing time. It means that in (5.5), the variance

reduction brought by adding the control variates to the historical terms is significant.

5.3 Summary

In this chapter, we propose a new SMC algorithm by using Tan’s likelihood approach

(Tan, 2004) within both resampling and estimation , and give a practical guideline

of selecting control variates and proposal for sampling which are critical for e�cient

implementation of the algorithm. Compared to the direct use of multiple proposals and

control variates, the new algorithm always has smaller asymptotic variance, which is

proved in the established theoretical framework. The numerical studies show that, by

including the information of target function and introducing heavy tailed proposal for

protection, the new algorithm can be more e�cient and stable than the bootstrap filter

and auxiliary particle filter.

5.4 Technical Proof

The new algorithm di↵ers with the basic SMC method in the use of three elements:

The proposal density which is the mixture proposal q↵, the addition of auxiliary vari-

able ⌘(x0:n) in resampling, and the new sample weights v(j)
n

. The extension of Chopin

(2004)’s proof to include mixture proposal q↵ is natural, and the extension to include

auxiliary variable can be referred to Johansen and Doucet (2008). Therefore the fol-

lowing proof is focused on including the new sample weights v
(j)
n

in the central limit

theorem. The theorem is proved by inductions. At time t�1, assume conditions (C1’)-

(C4’), (C5) and (C6) are satisfied and the following consistency and the central limit
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Figure 5.2: Trajectories of logarithm of MSE for the five estimators in all cases of Example 5.2.2.
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theorem(CLT) hold:

1

N

N

X

j=1

h(ex(j)1:t�1)
P�!
Z

h(x1:t�1)e⇡
⇤
t�1(x0:t�1)dx0:t�1, (5.12)

p
N

0

@

1

N

N

X

j=1

h(ex(j)1:t�1)�
Z

h(x1:t�1)e⇡
⇤
t�1(x0:t�1)dx0:t�1

1

A

L�! N(0,�23,t�1(h)). (5.13)

The following lemma is an extension of the corresponding results in Chopin (2004)

to include mixture proposal and auxiliary variable.

Lemma 5.1. (Mutation) Under the inductive hypothesis, the following convergence

results hold:

1

N

N

X

j=1

h(x(j)1:t )
P�!
Z

h(x1:t)e⇡
⇤
t�1(x0:t�1)q↵(xt|x0:t�1)dx0:t,

p
N

2

4

1

N

N

X

j=1

h(x(j)1:t )�
Z

h(x1:t)e⇡
⇤
t�1(x0:t�1)q↵(xt|x0:t�1)dx0:t

3

5

L�! N(0,�21,t(f)).

In the next lemma, an expansion of the MLE weights b⇣
t

is given.

Lemma 5.2. Under the inductive hypothesis, it holds that

b

⇣

t

= V ar



g

q
↵

��1 1

N

N

X

j=1

g(x(j)
t

|ex(j)0:t�1)

q
↵

(x(j)
t

|ex(j)0:t�1)
+ o

p

⇣

N�1/2
⌘

.

Therefore b⇣
t

P�! 0 and b⇣
t

= O
p

�

N�1/2
�

.

Proof. By definition, b⇣
t

is the maximizer of the concave function  (s)

=
P

N

j=1 log
h

q↵(x
(j)
t

|ex(j)0:t�1) + s

T

g(x(j)
t

|ex(j)0:t�1)
i

where the concavity can be seen in Tan

(2004). The standard theory for M-estimation with a convex criterion function cannot

apply due to the dependence of
n

x
(j)
0:t

o

. Here the argument for the expansion to hold

follows Hjort and Pollard (1994, basic corollary) and Li et al. (2012, lemma 4). Then

with Lemma 1, the proof is completed.

With the expansion in Lemma 2, the consistency for the correction and selection

holds in the following lemma.
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Lemma 5.3. Under the inductive hypothesis, it holds that

P

N

j=1 h(x
(j)
1:t )v

(j)
t

P

N

j=1 v
(j)
t

P�!
Z

h(x1:t)⇡t(x0:t)dx0:t, (5.14)

1

N

N

X

j=1

h(ex(j)1:t )
P�!
Z

h(x1:t)e⇡
⇤
t

(x0:t)dx0:t. (5.15)

Proof. The Taylor expansion of N�1PN

j=1 h(x
(j)
1:t )v

(j)
t

for b⇣
t

around 0 gives that

1
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X
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1
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X
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Plugging in the expansion of b⇣
t

of Lemma 3 and gives that
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(5.16)

where

⌧ 1t = V ar



g

q↵

��1

Cov



h⇡
t

e⇡
t�1q↵

,
g

q↵

�

,

and the second equation holds by Lemma 1. Then by Lemma 1 again, from 5.16 we

have

1

N

N

X

j=1

h(x(j)1:t )v
(j)
t

P�! e�1
t�1

Z

h(x1:t)⇡t(x0:t)dx0:t.

Similarly, 1
N

P

N

j=1 v
(j)
t

P�! e�1
t�1. Therefore (5.14) holds by Slutsky’s theorem.
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For (5.15), make the decomposition
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Following the similar argument as Cappé et al. (2005, Theorem 9.2.9), with the fact that
n
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0:t

o

conditional on
n

x
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o

are i.i.d from multinomial distribution with probability
n

ew
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o

, it can be shown that

1

N

N

X

j=1

n

h(ex(j)1:t )� E
h

h(ex(j)1:t )|
n

x
(j)
0:t

oio

P�! 0.

Then since

1

N

N

X

j=1

E
h

h(ex(j)1:t )|
n

x
(j)
0:t

oi

=

P

N

j=1 h(x
(j)
1:t )ev

(j)
t

P

N

j=1 ev
(j)
t

and along the same line as proof for (5.14), it holds that
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and therefore (5.15) holds.

Then the CLT of the correction and selection steps can be established.

Proof of Theorem 2. For (5.3), we only need to show the weak convergence of the vector
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(5.17)

and then (5.3) is the result of applying the delta method on the weak convergence of

(5.17). Similar to the expansion in (5.16), we have the expansion
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where ⌧ 2t = V ar
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.

The first term of (5.18) weakly converges to a multivariate normal distribution by the

generalization of Lemma 1 to two dimension. See Chopin (2004) for the generalization
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of the corresponding results to multivariate case. Therefore (5.17) also weakly converges

to the same multivariate normal distribution and (5.3) holds by the delta method.

For (5.4), make the decomposition
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Then follow the argument in Cappé et al. (2005, Theorem 9.2.14), (5.4) holds.

For applying Owen and Zhou’s regression approach in the estimation of the gener-

alized SMC method, which results in bµ
n,Reg

in (5.2), its asymptotic variance is stated



83

below. Let

�0 21,n(h) = �0 23,n�1(Eq

↵

[h|x0:n�1]) + Ee⇡⇤
n�1

[V ar
q↵ [h|x0:n�1]] ,

�0 22,n(h) = �0 21,n(
⇡⇤
n

(x0:n)(h� µ
n

)

e⇡⇤
n�1(x0:n�1)q↵(xn|x0:n�1)

� �

T

n

g

q↵
),

�0 23,n(h) = �0 21,n(
e⇡⇤
n

(x0:n)(h� eµ
n

)

e⇡⇤
n�1(x0:n�1)q↵(xn|x0:n�1)

) + V are⇡⇤
n

[h] .

Proposition 5.1. For any n, �0 2
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(5.20) is the CLT for the selection step. The theoretical results for the mutation, cor-

rection and selection steps, similar to Theorem 1, can be established by the extension

of Theorem 1 to mixture proposal q↵ and the results for auxiliary particle filter in

Johansen and Doucet (2008). Then Following the similar arguments as the expansion

(5.18), at time n it holds that
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by applying CLT of the mutation step on the function vector g(x
n

|x0:n�1)/q↵(xn|x0:n�1)

and the consistency of mutation step on the statistics b⌧ 1n and b⌧ 2n. Then (5.19) holds

by the delta method, and the analytical expression of �0 22,n(h) can be obtained through
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algebra.
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