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ABSTRACT OF THE DISSERTATION

Cognitive Radio Networks: Resource Allocation and Effect

of End-User Behavior

by Tianming Li

Dissertation Director:

Prof. Narayan B. Mandayam

Recent advances in Cognitive Radio (CR) technology are reshaping wireless communica-

tions systems with two important technological contributions, Radio Access Technology

(RAT) multiplicity and Dynamic Spectrum Access (DSA). Advances in radio design now

enable multi-RAT wireless devices that streamlines the design and implementation of DSA

that provides spectrum sharing flexibility. The flexibility enabled by CR technology has

even permeated up to the application layer where end users have been empowered to a

greater degree of freedom to use wireless devices. In this dissertation, we address two

important aspects of CR networks, (i) resource allocation in multi-RAT enabled wireless

networks; and (ii) impact of end users’ behaviors on wireless networks.

In the first part, we study an example of the coexistence of multiple RATs devices

in a network, namely a concept of Cognitive Digital Home (CDH) requiring spectrum

coexistence of various devices and networks of networks. We develop a resource allocation

framework when there is a multiplicity of RATs including cognitive and legacy radios. We

design distributed algorithms for maximizing sum rate and maximizing service capacity.

Distributed power control and admission control schemes are proposed to improve energy

efficiency and system feasibility.
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In the second part, we focus on the impact of end users’ behaviors on wireless systems

by investigating the role of Prospect Theory (PT) in wireless network design. Prospect

theory, developed by Kahneman and Tversky, explains real-life decision making that often

deviates from the behavior expected under Expected Utility Theory (EUT). As a first step

in this direction, we consider a radio resource management problem where users follow PT

and compare it to the case when users follow EUT. Specifically, we consider a random

access game and prove under mild conditions that deviations from EUT of any player

results in system throughput degradation and increased delay and energy consumption in

a 2-player game. We also study N-player symmetric homogeneous games where similar

system performance disparities are observed. Finally, the framework introduced in the

above random access model is extended to study an exemplary two-level data pricing

model and compare service choices when users follow EUT and PT.
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Chapter 1

Introduction

The recent advances in Cognitive Radio (CR) technology have been reshaping the mod-

ern wireless communications systems. Among numerous contributions the CR technology

have made, flexibility and multiplicity are of paramount importance. The CR technology

has greatly boosted the development of the Radio Access Technology (RAT) multiplicity,

i.e, the radio design where multiple radio technologies can coexist on the same platfor-

m. As early as the dumb cell phones with multiple RATs (e.g., cellular and bluetooth),

the wireless communications researchers and practitioners have been eager to exploit the

advantages the RAT multiplicity would bring, e.g., flexible spectrum usage and energy

efficiency. The recent trend in research on offloading data streams among multiple RATs

on the same platform (e.g., software defined radio) has further advanced this exploration.

The CR technology aims to provide the RAT flexibility as much as possible. A notable

example is the White-Fi radios proposed and developed recently where flexible radio in-

terfaces provide access to multiple available spectrum bands in TV white space [1] [2].

The CR technology has utilized the RAT multiplicity to realize the Dynamic Spectrum

Access (DSA), i.e., one of the fundamental reasons why the CR technology was proposed

and developed. Extensive studies, e.g., [3], have shown that the “scarcity” of available

spectrum bands is nothing but the inefficient usage of the spectrum resources that is a

consequence of the traditional and inflexible wireless system design. The CR technology

aims to utilize the spectrum resources in a more efficient and intelligent way by avoiding

the time and spatial inefficient usage of spectrum resources. Researchers and practitioners

have proposed various solutions to achieve DSA. A well-known model [3] is the two-layer

CR network where users are divided as primary users and secondary users. Primary users

have the license to use a specific spectrum but also have the rights to share it with the
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secondary users. The secondary users are all agile CR devices that can flexibly sense

the spectrum environment and access the available spectrum bands. The primary users

allow the secondary users to share their resources and the secondary users should return

either monetary incentives or communication rewards to the primary users. Besides, one

of the first implementable solutions of DSA is the White-Fi technology mentioned above

where the CR devices try to harvest the abundant available TV white space spectrum [2].

The flexibility enabled by the CR technology and Software Defined Radio (SDR) has even

permeated up to the application layer where the end users have been empowered to use

the wireless devices in many novel ways with smart phones and smart applications. For

example, end users have more RAT options for their communications needs. Meanwhile,

various data communications plans and packages are available to end users. Moreover,

more heterogeneous and convenient smart device applications make the RATs, data plan

and packages selection much easier for end users. Therefore, end users’ behaviors and

choices will definitely become paramount in shaping the current and future wireless sys-

tem design and operation. Therefore, the topic on the impact of end users’ behaviors on the

wireless system design should be considered as a promising and urgent research direction

in the future. In this dissertation, we have addressed both aspects of CR networks, namely

resource allocation in a multi-RATs device enabled wireless networks and the impact and

influence of end users’ behaviors on the underlying network protocol design.

In the first part of this dissertation (chapter 2), we study an example of coexistence of

multiple RATs devices in a novel network, namely a concept of Cognitive Digital Home

(CDH). With advances in radio access technologies and the increasing demand on hetero-

geneous data services, integration of wireless networks with multiple RATs is expected to

be a prevalent feature of future mobile networks. Meanwhile, the growth of multimedia

services in a home environment for communications, entertainment and safety has also

resulted in the concept of a digital home where a multiplicity of devices and RATs co-

exist. Further, with the advent of cognitive and multi-platform radios, one can envision

the spectrum occupancy of these devices and RATs to range from the TV white spaces

(54MHz ∼ 698MHz) [4, 5] to unlicensed bands (2.4GHz and 5GHz) [6] and even all the

way to 60GHz radio bands [7, 8] in a digital home.
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The new features of wireless networks in a digital home have drawn some attention

from the research community though there are still plenty of interesting research topics to

be addressed. One of the most important topics in a digital home is the effective operation

of multi-RAT networks. There have been some efforts directed at the operation of multi-

RAT networks in general. In [9], the authors proposed a framework for optimized dynamic

usage of radio resources in wireless networks with multi-RATs and multi-operators. Par-

ticularly, cognitive radio functionalities have been shown as a must to implement such

a system. The authors in [10] studied the network selection process in multi-RAT net-

works by decomposing it and comparing the common approaches for network selection

proposed in literature. In [11], the authors compared the data transmission schemes over

multi-RATs with single RAT. They concluded that the algorithm for distributing upper

layer data packets over multi-RATs should be carefully designed in order to fully utilize

the resources of wireless networks. Radio resource allocation problems in multi-RAT net-

works were studied in [12] and [13] from the theoretical standpoints. In [12], the authors

formulated a utility maximization problem for multi-channel, multi-RAT and multi-hop

wireless networks and a dynamic algorithm was proposed based on the decomposition of

this problem. The authors of [13] studied a network throughput maximization problem

in a multi-user and multi-RAT network where transmission schemes over multi-RATs and

single RAT are both allowed. This problem was shown to be convex and a distributed

algorithm based on dual decomposition was developed to solve it. Besides the effective

operation of the networks with existing RATs, integration of new RATs into a digital home

is also studied. In [1], the authors began to investigate the feasibility of a new RAT, i.e.,

cognitive radio systems over TV white space, for a digital home. Analytical and simulation

methods have been used to compare the performance of the cognitive radio system with

that of license-exempt systems over other spectral bands, e.g., 2.4GHz and 5GHz bands.

Although the resource allocation in multi-RAT wireless networks has been studied as

discussed above, few efforts [14] [15] have focused on efficient resource allocation in a digital

home with multi-RATs. Fair and efficient resource allocation is of paramount importance

in supporting various data services. In our earlier work in [14], we have developed a

framework for centralized spectrum management in a cognitive digital home (CDH) where
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a home genie node (HG) coordinates spectrum coexistence across a multiplicity of RATs.

Previous works regarding multi-RAT resource allocation usually assume that a RAT and

its accessible spectral band are bundled and different RATs’ bands don’t overlap with each

other. However, in a CDH, legacy RATs are allowed to coexist and Cognitive Radio (CR)

RATs can access all the spectral resources when they are available. These assumptions

make our CDH model different in describing multi-RAT wireless home networks and also

add much more complexity to the resource allocation problems within it. For example, the

multi-RAT resource allocation problems in [13] can be formulated as a convex optimization

and solved by standard methods. However, resource allocation problems in a CDH are

generallyNP-complete and often heuristic algorithms should be carefully designed to trade

off the performance and complexity. General analytical models for resource sharing among

legacy devices in the same spectral band are difficult to build even though experimental

results provide some insights (see [16] and reference therein). In this work, we consider two

models in a CDH for addressing spectrum coexistence of legacy devices: (i) Pessimistic

Controllability (PC) Model, and (ii) Switched RAT (SR) Model. Under the PC model

whose preliminary results can be found in [15], we assume that the HG is unable to

exercise any control over the devices of legacy RATs and hence cannot influence how

the resources are shared by legacy devices that share spectrum. In this case, we assume

somewhat pessimistically that each legacy device obtains an equal share of the spectrum

resource. Under the SR model, we assume that the HG is able to exercise perfect control

over the legacy devices within the parameters of the protocol specifications of each legacy

device. Based on the two models, two resource allocation problems (i) Maximizing Sum

Rate (MSR), and (ii) Maximizing the Service Capacity (MSC), are formulated. Further,

distributed algorithms based on partial dual decomposition are proposed for addressing

these problems. Pricing indices play an important role in the design of the distributed

algorithms since they convey crucial information regarding a service’s achievable and target

data rates. A distributed power control scheme based on the channel and RAT allocation

result is designed for the services to efficiently use the energy. An admission control scheme

based on the pricing indices is also proposed to improve system feasibility when the CDH

system cannot meet all the service requests.
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The chapter 2 is organized as follows. The system model of CDH is presented in section

2.1. In section 2.2, MSR and MSC are formulated. Distributed algorithms, power control

scheme and admission control scheme based on partial dual decomposition are designed

for them. Extensive numerical results are shown in section 2.3 to evaluate the performance

of the system.

In the second part of this dissertation (chapter 3), we focus on the impact and influence

of end users’ behaviors on the wireless systems by studying the role of Prospect Theory

(PT) in wireless networks. This work is a first step in this direction and a game-theoretical

approach is used. Since the early works in [17–21], game theory has emerged as a power-

ful tool for the analysis and design of radio resource management algorithms for wireless

systems and networks. As detailed in recent surveys on game theoretical studies of vari-

ous aspects of wireless communication networks [22] and [23], a great deal of meaningful

insights have been gained into a wide range of problems and engineered system solutions

have emerged for a variety of systems such as cellular, ad-hoc mesh, sensor and WiFi

networks. All these works, including much of traditional game theory (going back to von

Neumann and Morgenstern [24]) rely on the precept that users follow expected utility the-

ory (EUT), where decision-making is guided strictly by accepted notions of utility, always

rational and uninfluenced by real-life perceptions. This is a very sound assumption that

governs the engineered system design of such systems when the actions of end-users do

not interfere with such design. Moreover, there is ample evidence of the success of this

approach as seen by the phenomenal growth of wireless system and network deployments

along with their overarching applications and societal benefits.

On the other hand, the advent of easy to use, smart and programmable radio devices

is resulting in the ability of end-users to control devices with a greater degree of freedom

than ever. While current radio technologies and associated communication protocols are

still for the most part agnostic to the decision- making of end-users, it is conceivable that

in the future, users could make decisions that influence the underlying design of various

algorithms and impact the performance of the overall system. These decisions could range

from choices of access control to cooperation to selection of dynamic pricing plans. Other

common examples of end-user actions include repeated refreshing of a browser under a
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delayed video stream or slowly loading web link. More sophisticated examples include

modifying drivers of radio cards and associated protocols such as is increasingly becoming

possible with the advent of programmable cognitive and smart radio devices. Even from a

system perspective, the ever increasing capacity crunch faced by service providers is driving

the migration of wireless data services in the future towards dynamic spectrum access and

dynamic pricing based options, thereby exposing the overall design of the network to the

decisions of end-users based on their monetary perceptions of the value of the service.

Further, there is ample evidence (anecdotal and otherwise) [25] that decision making in

real- life is often guided by perceptions that deviate from the precepts of EUT.

Motivated by these emerging wireless networking scenarios, we turn to Prospect The-

ory (PT) [25], a Nobel prize winning theory developed by Kahneman and Tversky that

explains real-life decision- making and its deviations from EUT behavior. While the main

ideas and models behind early PT were developed based on responses/decisions of play-

ers involving monetary transactions (prospects), the behavioral deviations from EUT are

general enough that they have widespread application in many areas [26–29]. We believe

that understanding the role of PT in wireless systems and networks, that are increasingly

becoming user-centric is important. It is often recognized that a measurement of user sat-

isfaction must be included in the assessment of the efficiency of the network as a whole [30].

It has also been revealed that service repurchase intention among mobile Internet users

was significantly positively related to “experienced value” and “satisfaction” [31]. While

these findings highlight the importance of emphasizing user-experience when defining and

assessing quality of service, traditionally, improvement in network service has followed a

bottom-up approach, assuming that optimization of performance at the engineering design

level will translate directly into an improved user experience.

As a first step in this direction, we consider an exemplary radio resource management

problem where users follow PT and compare and contrast it to the case when users follow

EUT. Specifically, we consider a random access game where selfish players adjust their

transmission probabilities over a collision channel according to rewards received for suc-

cessful transmission but also incur energy and delay costs. In the initial work [32], we

only considered a 2-player homogeneous wireless random access game with 0/1 collision
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channel. In this dissertation, we significantly extend the work by studying and comparing

both 2-player homogeneous and heterogeneous games where general random access chan-

nel model can be applied, i.e., the packet reception probability can range within [0, 1].

Furthermore, we also extend the investigation to a N-player homogeneous game. Our ex-

tended results prove the correctness of our findings in [32] in a much more general fashion,

i.e., the deviation from EUT results in degradation of system throughput, increased delay

and energy consumption.

While the random access scenario considered here does not exactly reflect the time-scale

or granularity of end-user decision making, it nevertheless serves as a useful illustration

to open up this new line of investigation. There is a gap between the random access

model used here and practical role of PT in the real world. However, we believe this

exemplary model can get rid of the unnecessary complexities of real wireless systems at

the very initial stage of this new research and thus help us identify the possible impact of

end-user behaviors on wireless systems in a clear fashion. Moreover, this simple wireless

random access model actually captures the essence of some real-life wireless communication

scenarios. Notable examples of end-user decision making as it relates to transmission

probabilities are: the decision to access cellular data services when the network may

already be congested; the decision to utilize a Wi-Fi service at an airport depending

on the usage fee and relative importance of immediate data communications; and the

decision to utilize high speed data services even though the battery levels may be very

low. The random access model used in this dissertation may not exactly describe the

above scenarios, however, it is actually a reasonable abstraction of the transmit choices

made by the end user since it focuses on the probability of a user’s data transmission.

The chapter 3 is organized as follows. An extensive related work review is provided in

section 3.1. In section 3.2, a brief introduction to Prospect Theory is provided. Wireless

random access games are formulated in section 3.3 among selfish players under both the

EUT and PT models. In section 3.4, the impact of any player’s deviation from EUT on

the individual player’s and system performance is numerically and analytically studied in

a 2-player heterogeneous wireless random access game. The scenario where both players

follow either only PT or only EUT is further studied as 2-player homogeneous PT game
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and EUT game, respectively in section 3.5. In section 3.6, a N-player homogeneous game

where all the users follow either only PT or only EUT is discussed.

The above work in chapter 3 has clearly shown that the deviation of end user from

EUT can impact on the individual user utility and system performances. A direct extension

and an interesting topic beyond this is that how the impact of end users can change the

underlying the system protocol design. In chapter 4, we start to tackle this issue from data

pricing ( [33] and references therein) that is an essential and key part of any real wireless

data communications systems. An efficient and properly designed data pricing scheme

can motivate the end users utilizing network resources in an optimal way. As a result,

the whole system may be operated at an optimal point. Depending on the designers’

and operators’ objectives, at the optimal operation point, the system may attract the

most end users to utilize the network resources, experience the least traffic congestions or

generate the most profits to the service providers. As mentioned in the above, the impact

of end users’ behaviors on the wireless system has been seldom studied. Therefore, the

current data pricing schemes do not consider this impact extensively or systematically,

either. Moreover, the deviations of people from EUT have constantly been observed in the

monetary activities through numerous experiments that are well studied in PT. Therefore,

the need to study the role of PT in data pricing schemes also seems to be necessary and

urgent. In this dissertation, we also provide a first step study of the impact of end users’

behaviors on data pricing.

In chapter 5, we conclude and provide future directions for further research. Since the

latter part of the dissertation is essentially a first step in exploring the role of PT in wireless

networks, an extensive discussion on the topics in the second part of the dissertation is

provided.
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Chapter 2

A Framework for Distributed Resource Allocation and

Admission Control in a Cognitive Digital Home

2.1 System Model

2.1.1 Cognitive Digital Home Architecture

In a CDH, motivated by [34], a spectrum manager, Home Genie Node (HG), coordinates

the spectrum coexistence across the home networks, with the degrees of freedom ranging

from the transmission parameters such as frequency, bandwidth, power, etc. to the RAT

itself. We assume in our model that the CDH employs devices that support multi-platform

radios (MPR) equipped with both CR and legacy RATs. The legacy RATs include tech-

nologies such as Bluetooth, Wi-Fi, Zigbee, etc.. The CRs in the CDH are assumed to

be generic spectrally agile radios capable of noncontiguous Orthogonal Frequency Divi-

sion Multiple Access (OFDMA) over the entire range of unlicensed frequency spectrum

available. The realization of the CR RAT in a CDH relies on advances in hardware and

antenna design such as anticipated in future cognitive radio networks [35] [36]. Though

a cognitive radio system may allow multiple users to possibly share a channel as in [13],

the noncontiguous OFDMA enabled CR RAT [36] considered in our model is designed to

support the high rate craving services which usually has high transmit power, e.g., high

definition video streaming. Since orthogonal use of a channel maximizes a single service’s

data rate on that channel, we assume that cognitive radios are opportunistically able to

find and use orthogonal channels whenever they are available. Further, we also stipulate

that the cognitive radios avoid channels used by legacy RATs so that their performance

is not degraded. Parallel transmission [13] where a MPR (service) can simultaneously

employ multiple RATs for transmissions is also allowed.
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Figure 2.1: Illustration of a Cognitive Digital Home

The classes of devices considered in this CDH model (see Fig. 2.1) include service

provision devices (SPD) which directly provide data services to the end users, e.g., TV

and Laptop, as well as relay and wireless access network (RWAN) devices, e.g, Wi-Fi

access point and wireless High Definition Multimedia Interface (HDMI), which provide

access and relay services to SPDs. All these devices are equipped with MPRs. The HG

controls the devices via a set of dedicated control channels as shown in Fig. 2.1, e.g.,

link D1 for TV 1. The SPDs and RWANs may report their local spectral environment

information, data rate requirements or access decisions to HG via control channels.

2.4GHz 2.5GHz 5.725GHz 5.825GHz 57GHz 64GHz

Service k and k

(Channel i)

Bluetooth or

802.11 b/g

Service k and k’

(Channel l)

IEEE 802.11 a
Service k ( Channel M-2)

60GHz Radio Technology

Service k 

(Channel 1)

TV  White 

Space

... ... ... ...

54MHz 698MHz

Service k

(Channel m)

Wireless USB

10.6GHz

Service k 

(Channel j)

Cognitive Radio

Figure 2.2: Exemplary service’s channel allocation. Service k and k′ share channel i and l
by using legacy RAT, e.g.,Wi-Fi. Service k exclusively uses channel j by using CR RAT.

2.1.2 Preliminaries

Definition 2.1.1. A channel is the atomic unit of spectrum utilized by legacy RATs in

a CDH. It is also the atomic unit of spectrum that can be controlled and allocated and,
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hence, a single orthogonal tone accessed by the noncontiguous OFDMA enabled Cognitive

Radio (CR).

The idea of channel allocation is illustrated in Fig. 2.2, where for simplicity only three

channels are shown for each portion of spectrum. We assume that the spectrum used

by the RATs in the CDH (ISM, TV White Space, Wireless USB and 60GHz radio) is

divided into M equal width channels. However, in the less crowded spectrum bands but

with more available resources, e.g., 60GHz bands, several contiguous channels may be

grouped as a single allocation unit for better efficiency. As mentioned above, a service can

obtain resources from various RATs and this service may be allocated with noncontiguous

channels. Further, in any channel, there could co-exist multiple legacy RATs and multiple

services (e.g., see channel i in Fig. 2.2) for ensuring fairness among services. However,

service assigned with CR RAT will exclusively use a channel (e.g., see channel j in Fig.

2.2) for maximizing the network throughput. This idea can be formally described by a set

of channel usage constraints which all the services should comply with. In the following,

K = {1, 2, ...,K} and M = {1, 2, ...,M} are the set of services and set of channels in a

CDH, respectively. T = {1, 2, ..., T} is the set of available RATs on each MPR. x(k, i, t) in

constraint (2.1) indicates whether the k-th service uses RAT t in channel i or not. l(k, i, t)

in constraint (2.3) shows how the k-th service uses technology t to access channel i.

x(k, i, t) = {0, 1}, ∀k ∈ K, ∀i ∈ M, ∀t ∈ T (2.1)

xk = [x(k, 1, 1) ... x(k, i, 1) ...

x(k, i, t)... x(k, i, T ) ... x(k,M, T )] (2.2)

lk = [l(k, 1, 1) ... l(k, i, 1) ... l(k, i, t)... l(k, i, T ) ... l(k,M, T )] (2.3)

0 ≤ l(k, i, t) ≤ x(k, i, t), ∀k ∈ K, ∀i ∈ M,∀t ∈ T (2.4)∑
k∈K

∑
t∈T

l(k, i, t) ≤ 1, ∀i ∈ M (2.5)

∑
t∈T

x(k, i, t) ≤ 1, ∀k ∈ K, ∀i ∈ M (2.6)

If the k-th service uses CR as its RAT, it has the flexibility to access all the channels in a

CDH and it occupies channel i orthogonally, i.e., l(k, i, t) = 1, otherwise l(k, i, t) = 0. If the
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k-th service uses legacy RAT to access channel i, the sharing of the channel among services

(using legacy RATs) is possible. l(k, i, t) indicates the effective sharing portion that the k-

th service occupies in channel i and the sharing could occur in the time domain. However,

the value of l(k, i, t) is highly dependent on the legacy RATs sharing model employed

and we will address this issue below. Different from the CR RAT, legacy RATs can only

access a limited number of channels in a specific region, i.e., ∀i ∈ Mt ⊂ M, which is

predetermined, e.g., IEEE802.11 b/g in 2.4GHz. The total usage of a channel should be

no larger than 1 as shown in constraint (2.5). We assume a service can only employ a

single RAT on a channel one time to avoid self-interference as shown in constraint (2.6).

The coexistence of multiple services with possibly different legacy RATs in the same

channel has been studied [37] [38] [39]. However, general analytical models for how re-

sources are shared by legacy devices (e.g., IEEE802.11 and Bluetooth) are not easy to

construct. The complexity lies in the interference generated from multiple services with

multiple legacy RATs, the differing channels seen by the services and heterogeneous access

protocols employed by multiple RATs. As mentioned earlier, in the CDH, we address this

complexity via two models (i) Pessimistic Controllability (PC) model, and (ii) Switched

RAT (SR) model. Under the PC model, we assume that multiple services assigned to the

same channel with possibly different legacy RATs obtain an equal share of the resources.

For instance, if K services share a channel, service k with RAT t only achieves 1
K of the

data rates if service k occupies the channel exclusively with the same RAT t. While this is

indeed pessimistic, it reflects the reality that the HG is limited in its capability to control

the protocol parameters of co-existing legacy RATs. However, in some special cases, the

PC model has been shown to be accurate for describing resource sharing among multiple

services (as in Carrier Sense Multiple Access (CSMA) networks [40]). Specifically, the PC
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model is defined by setting:

l(k, i, t)=



x(k, i, t) if t = CR, ∀i ∈ M, ∀k ∈ K

1∑
k′∈K

∑
t′ ̸=CR

x(k′,i,t′) if t ̸= CRandx(k′, i, t′) ̸= 0,

x(k, i, t) ̸= 0, ∀i ∈ Mt, ∀k ∈ K

0 otherwise

(2.7)

With the advancement of the radio access technologies deployed in a digital home, a

better controllability of the HG over the RATs can be expected [41]. Thus, the SR model

assumes that the MPRs employs the switched legacy RATs scheme, i.e., only one MPR

with a legacy RAT transmits in a channel at a time. The HG may precisely schedule

services with legacy RATs to share the channel. Then, l(k, i, t) should take real number

value in interval [0, 1]. The SR model is defined by setting:

l(k, i, t) =


x(k, i, t) if t = CR, ∀i ∈ M, ∀k ∈ K

[0, 1] if t ̸= CR, ∀i ∈ Mt, ∀k ∈ K

0 otherwise.

(2.8)

The theoretical physical data rate that can be obtained by the k-th service in channel i

is given as: RP (k, i, t) = wi log(1 +
hi
kP (k,i,t)
N0wi

), where wi is the bandwidth of channel i. hik

and P (k, i, t) are the k-th service’s channel gain in the i-th channel and transmit power in

the i-th channel with t-th RAT, respectively. N0 is the noise level. The effective data rate

achieved by the k-th service using technology t in channel i is a RAT dependent function,

i.e., R(k, i, t) = ft(R
P (k, i, t)). For simplicity, in this dissertation we assume the relation-

ship is linear and characterized by a factor α(k, i, t), e.g., R(k, i, t) = α(k, i, t)RP (k, i, t),

where 0 < α(k, i, t) ≤ 1 and α(k, i, t) = l(k, i, t). The data rate achieved by the k-th

service in channel i is R(k, i) =
∑

t∈T R(k, i, t) =
∑

t∈T l(k, i, t)RP (k, i, t).
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2.2 Distributed Resource Allocation and Admission Control in a Cog-

nitive Digital Home

2.2.1 Joint Channel and RAT Allocation Problems

In the most general setting, the resource allocation in a CDH includes the assignment

to each service a set of channels, corresponding RATs along with choice of transmission

power, modulation and coding scheme. In this dissertation, we focus on Joint Channel

and RAT Allocation (JCRA) problems. The first JCRA problem, i.e., Maximizing Sum

Rate (MSR), aims to maximize the sum rates while supporting all the inelastic services

(rate constrained). By solving this problem, the network efficiency of the CDH can be

maximized while the fairness among services can be guaranteed. We study this problem

for both the PC and SR models as follows:

max
X,L

∑
k∈K

∑
i∈M

∑
t∈T

RP (k, i, t)l(k, i, t) (2.9)

s.t.
∑
i∈M

∑
t∈T

RP (k, i, t)l(k, i, t) ≥ Rmin
k , ∀k ∈ K (2.10)

P (k, i, t) = Pt, ∀k ∈ K, ∀i ∈ M, ∀t ∈ T (2.11)∑
i∈M

∑
t∈T

P (k, i, t)x(k, i, t) ≤ Pmax
k , ∀k ∈ K (2.12)

and with constraints (2.1)− (2.6) and (2.7) or (2.8) for PCor SR, respectively,

where X and L are matrices of control variables as defined in constraints (2.1) - (2.6). The

k-th row of X is xk defined in constraint (2.2) which indicates the channel usage of the

k-th service over all the channels and RATs. That of L is lk defined in constraint (2.3) and

describes the actual physical resource share of the k-th service over all the channels. Note

that, under the PC model, l(k, i, t) can be directly calculated from X as in constraint (2.7).

The control variables are the entries in X though l(k, i, t) appears in problem formulation

and derivations below for necessary conciseness. However, under the SR model, beyond

assigning services to a channel with a RAT, the portion of the physical resources it gets

should be decided. Constraint (2.10) requires each service to be satisfied with its own
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minimal data rate requirement. Constraint (2.11) reflects the transmit power assumption

that it’s pre-determined by the RAT itself where a typical value is associated with a RAT

as Pt, ∀t ∈ T . This assumption reduces the dimensions of the assignment and makes the

problems tractable. Each service (a MPR device) is also limited by its maximal transmit

power as shown in constraint (2.12). Also, the channel usage constraints (2.1) - (2.6)

cannot be violated and either constraint (2.7) or (2.8) is added to it depending on which

channel access model is used.

As a special case of the MSR problem (2.9), Maximizing Service Capacity (MSC)

problem is formulated in order to support as many rate constrained services as possible.

max
X,L

∑
k∈K

u(
∑
i∈M

∑
t∈T

RP (k, i, t)l(k, i, t)−Rmin
k ) (2.13)

s.t. P (k, i, t) = Pt, ∀k ∈ K, ∀i ∈ M, ∀t ∈ T (2.14)∑
i∈M

∑
t∈T

P (k, i, t)x(k, i, t) ≤ Pmax
k , ∀k ∈ K (2.15)

and with constraints (2.1)− (2.6) and (2.7) or (2.8) for PCor SR, respectively,

where u(x) = 1 , ∀x ≥ 0 and u(x) = 0 , ∀x < 0.

The channel usage constraints (2.1) - (2.6) with (2.7) or (2.8) add much complexity

to the above problems. Depending on which channel access model is used, i.e., PC model

or SR model, the problems are named as PC-MSR, PC-MSC, SR-MSR and SR-MSC.

The hardness of the channel usage constraints lies in the assumptions that the CR RAT

can access all the channels and multiple services can access the same spectral resources

with multiple RATs. These assumptions capture the features of CDH as envisioned in

the future along with advances in cognitive radio technology. Thus, these problems are

worthwhile to solve regardless of their hardness. Before proceeding to algorithm design,

the complexities of the problems are first studied.

Theorem 2.2.1. The PC-MSR, PC-MSC, SR-MSR and SR-MSC are all NP-complete.

Proof. In the first place, PC-MSR can be shown to be NP. The decision problem of

PC-MSR can be described as ”given a real number P ∈ R+, can the solution to PC-MSR
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problem (9) support sum rates such as
∑

k∈K
∑

i∈M
∑

t∈T R(k, i, t)l(k, i, t) ≥ P ? ”. Given

a solution, i.e., {X∗,L∗}, the correctness of this solution can be verified efficiently, i.e., in

polynomial time. We assume that the calculation time of RP (k, i, t) is constant, then the

total time to calculate the sum rate and verify the individual rate requirements can be

bounded by O(|K||M||T |). Therefore, we can show PC-MSR ∈ NP.

Next, we examine the PC-MSR problem from a different angle and polynomially reduce

a 2-dimensional Multiple Knapsack Problem (MKP) [42] [43] to it. By doing this, we first

consider a Simpler variation of PC-MSR (SPC-MSR) where we assume only legacy RAT

t′ is used and R(k, i, t′) is predetermined. Then, we may consider that each service has its

own knapsack constrained by its own maximal transmit power Pmax
k and its minimal data

rate Rmin
k . For each channel i, there are |K| objects affiliated to it, e.g., the k-th service

with RAT t′ on channel i. This object has constant transmit power size Pt′ and transmit

rate value R(k, i, t′). Then, the SPC-MSR problem aims to maximize the sum transmit

rate value of a subset of the |K||M| objects while the objects are feasibly packed into the

|K| knapsacks. Thus, the correspondence from a 2-dimensional multiple knapsack problem

to SPC-MSR problem is established and we have shown that MKP can be polynomially

reduced to SPC-MSR problem, i.e., MKP ≼p SPC-MSR. With the facts that MKP is

strongly NP-complete, PC-MSR ∈ NP and PC-MSR is harder than SPC-MSR, we can

prove that PC-MSR is also strongly NP-complete. The strongly NP-completeness of

PC-MSC, SR-MSR and SR-MSC problems can be proven in the same manner. PC-MSR

(PC-MSC) problem is harder than SR-MSR (SR-MSC) problem since it includes nonlinear

constraints.

From Theorem 2.2.1, none of the four problems is shown to have an efficient algorithm.

Thus, sensible heuristic algorithms are preferred to balance the system performance and

computational complexity. Further, distributed algorithms are preferred in order to reduce

the computation and sensing burden at the HG. Therefore, we will design distributed

algorithms for JCRA based on partial dual decomposition as discussed below.
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2.2.2 Distributed Algorithms for PC-MSR and PC-MSC Problems

Note that in the PC-MSR problem (2.9), the minimal rate requirements (2.10) and max-

imal transmit power requirements (2.12) are all service-wise. Further, the RAT power

constraint (2.11) does not imply any coupling among the services. Thus, an intuitive idea

is to decompose this problem service-wise by relaxing either (2.10) or (2.12) or both into

the objective function [44] with the only constraint implying couplings among services

being the channel usage constraints (2.1) - (2.6) and (2.7). For the PC-MSR problem, the

major concern is to make the system feasible and thus relaxing individual rate require-

ments into the objective function is preferred. The partial dual function can be obtained

by solving the following problem:

max
{X,L}∈Q

L(X, λ) =
∑
k∈K

∑
i∈M

∑
t∈T

RP (k, i, t)l(k, i, t)

+
∑
k∈K

λk(
∑
i∈M

∑
t∈T

RP (k, i, t)l(k, i, t)−Rmin
k ) (2.16)

s.t. P (k, i, t) = Pt, ∀k ∈ K, ∀i ∈ M, ∀t ∈ T (2.17)∑
i∈M

∑
t∈T

P (k, i, t)x(k, i, t) ≤ Pmax
k , ∀k ∈ K (2.18)

and with channel usage constraints (2.1)− (2.6)and(2.7),

where Q is the feasible set defined by 2.17, 2.18 and constraints (2.1) - (2.6) and (2.7).

λk ≥ 0, ∀k ∈ K is the Lagrangian multiplier and L(X, λ) is the Lagrangian function.

Assume that {X∗,L∗} is the optimal solution to problem (2.16), then the dual problem

(master problem) can be defined as:

min
λ∈RK

+

L(λ) =
∑
k∈K

∑
i∈M

∑
t∈T

RP (k, i, t)l∗(k, i, t)

+
∑
k∈K

λk(
∑
i∈M

∑
t∈T

RP (k, i, t)l∗(k, i, t)−Rmin
k ), (2.19)

where λ = [λ1...λk...λK ] is the Lagrangian multiplier vector and l∗(k, i, t) can be comput-

ed directly from X∗. If strong duality holds for the problem (2.9) and its dual problem

(2.19), the optimal solution to (2.9) can be identified from the feasible solutions of (2.19)
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and additional conditions [45]. Unfortunately, problem (2.16) is still NP-hard and fur-

thermore no strong duality relation can be proven here. Thus, an optimal solution cannot

be identified by following the standard dual decomposition methods. However, this partial

dual decomposition structure is still helpful for developing heuristic distributed algorithms.

Problem (2.16) can be decomposed into K local sub-problems and as for the k-th service:

max
{xk,lk}

∑
i∈M

∑
t∈T

RP (k, i, t)l(k, i, t)

+ λk(
∑
i∈M

∑
t∈T

RP (k, i, t)l(k, i, t)−Rmin
k ) (2.20)

s.t. P (k, i, t) = Pt, ∀i ∈ M,∀t ∈ T (2.21)∑
i∈M

∑
t∈T

P (k, i, t)x(k, i, t) ≤ Pmax
k (2.22)

and with channel usage constraints (2.1)− (2.6)and(2.7),

where the k-th service here can only determine its own channel access strategy, i.e., deciding

its channel access indicator vector xk. Meanwhile, the potential violation of the channel

usage constraints (2.1) - (2.6) and (2.7) can be avoided with the help of the HG. Though

the HG doesn’t make centralized spectrum allocation decisions, it can obtain channel usage

information from all the services and maintain them in a Global Spectrum Map (GSM).

Then, the HG can pass the channel usage information of the other services from the GSM

to the service k. The k-th service can therefore avoid collisions and calculate its own

achievable data rates. A modified greedy algorithm is used here by the k-th service. The

general idea of the modified greedy algorithm is that the individual service should maximize

its data rate when global resources are sufficient. However, when the global resources are

scarce, the individual service should aim to achieve its rate requirement while allowing

possible sharing of the physical resources for other services. As mentioned above, GSM

is only used as a simplified method to meet the channel usage constraints (2.1) - (2.6)

and (2.7). It avoids exponentially enumerating all possible channel and RAT allocations

of all the services but meanwhile introduces performance degradation to the proposed

distributed algorithms. If strong duality holds for the primal and dual problems, i.e., (2.9)
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and (2.19), then the optimal solution can be obtained through standard method [45], i.e.,

iterative improvement of feasible primal and dual solutions. However, the NP-hardness

of primal, dual and local problems prevents us from deriving such results. The solution,

i.e., {X′,L′}, from the K local sub-problems via the local modified greedy algorithm, may

not even be feasible. Thus, we need to improve the current solution to make it feasible.

We propose a pricing index, i.e., PIk, k ∈ K, to indicate the service k’s priority to obtain

resource assignment to meet its data rate requirement. A larger value of PIk represents

that service k has a larger resource insufficiency. If the current allocation is infeasible, the

pricing index is updated as:

PIk(itr + 1) = (2.23)

[PIk(itr)− α(itr)(
∑
i∈M

∑
t∈T

RP (k, i, t)l
′
(k, i, t)−Rmin

k )]+,

where itr is the iteration index and α(itr) > 0 is the step size in iteration itr. [·]+ denotes

the projection onto the nonnegative orthant. The current pricing index is calculated based

on both the services’ achievable data rates in the current allocation, i.e, {X′,L′}, and

their pricing index in the last infeasible resource claim iteration. If the k-th service is not

satisfied with its data rate requirement in the current resource claim iteration, its pricing

index PIk will be increased according to (2.23) in its next resource claim iteration itr+1.

Otherwise, if the k-th service has been assigned much redundant resources, its PIk will be

decreased. Then, the services will claim resources in the descending order of their pricing

indices. The pricing index update in (2.23) should not be considered the same as the

Lagrangian multipliers update in standard dual decomposition method [44]. Here, it only

determines the order of the services to claim resources in the next iteration. A threshold

for the number of resource claim iterations, i.e., MaxItr, must be set in implementation

and its impact is discussed in the numerical results section. If a feasible allocation cannot

be found within the threshold, the system is claimed to be infeasible. The partial dual

decomposition is used as a guideline to decompose the PC-MSR problem (2.9) as in Fig.

2.3 rather than exactly solve it. The HG only needs to update the pricing indices and

maintains GSM. The sensing burden and part of the computation are distributed to local
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services. Based on this decomposition, a 3-stage Distributed algorithm for the PC-MSR

that we refer to as D-PCM can be developed as in Fig. 2.4. Since the first two stages of

the distributed algorithm aims to support as many rate constrained services as possible,

the PC-MSC problem can also be solved with this algorithm. The D-PCM algorithm can

be explained in detail as follows:
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Figure 2.3: Decomposition of Resource Allocation Problems. PC-MSR problem can be
decomposed as a master problem and |K| local problems. The sensing and part of compu-
tation burden is distributed to local services. The HG only needs to maintain and update
the global spectrum information.

(i) Priority Initialization Initial values for pricing indices are computed in this stage.

The initial value of pricing index reveals the gap between service’s potential achievable

data rates and its minimal data rate requirement. The k-th service’s potential achievable

data rates can be estimated by its average achievable data rates across all the channels,

i.e., RE
k =

∑
i∈M wi log(1+

hi
k
Pmax
k

N0wi
)

M . Then, its target rates to potential rates ratio is defined as

TPk =
Rmin

k

RE
k

. Pricing indices are initialized as PIk(0) = TPk, ∀k ∈ K and all the services

are sorted in the decreasing order of the pricing indices. With a larger pricing index, the

service has higher probability of not achieving minimal data rate requirement and thus

should be assigned a higher resource claim priority. The HG disseminates the pricing in-

dices to all the services and the services claim the resources in the order mentioned above.

(ii) Min. Rate Allocation All the MPR devices in a CDH are assumed to be able to
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obtain their own channel gains and the HG node can disseminate the updated channel

usage information (GSM) to them through the control channels. The channel usage infor-

mation records the services which transmit in each channel and the corresponding RATs

employed. Based on this information, the services can solve their local problem (2.20). The

service with the highest pricing index gets the highest priority to solve the local problem

and claims the resources from the HG. The other services solve their own local problems

and claim the resources from the HG in the order of decreasing initial pricing indices.

For the k-th service, its local problem aims to maximize its data rate to satisfy the

minimal data rate requirement subject to the transmit power and channel usage con-

straints. Meanwhile, the k-th service should also consider the other services’ minimal

data rate requirements and not demand too much resources. Hence, depending on the

relationship between the number of services |K| and that of channels |M|, the service

can use a different strategy to solve its local problem. The k-th service starts from its

best channel (the highest channel gain) and searches over all the available channels in

the order of decreasing channel gains. On the channel c , if |M| < |K|, the k-th ser-

vice starts from the lowest transmit power RAT and searches over all the RATs in the

order of increasing transmit power. On the contrary, if |M| ≥ |K|, the k-th services

searches the RATs in the decreasing order of the transmit power. Given that the k-th

service can achieve Rk =
∑c−1

i=1

∑
t∈T RP (k, i, t)l(k, i, t), if Rk +RP (k, c, t)l(k, c, t) ≥ Rmin

k

and this possible allocation does not violate the channel usage constraints (2.1) - (2.6)

and (2.7), the k-th service will claim this resource usage from the HG. Otherwise, it will

check the (t + 1)-th RAT that has next higher (or lower) transmit power. If t = T and

Rk + RP (k, c, t)l(k, c, t) < Rmin
k that means no RATs in the channel c can provide the

sufficient additional rates to satisfy the service’s minimal data rate requirement, the k-th

service will claim Rk = Rk+RP (k, c, t′)l(k, c, t′) where t′ ∈ T is the feasible RAT with the

largest transmit power for the k-th service in the c-th channel and then go to next channel

c + 1 with next lower channel gain. This search process continues until the k-th service

goes through all its accessible channels and sends its channel and RATs usage claim and

achievable data rate to the HG.

After the HG gets the k-th service’s resource usage claim, it updates the GSM and
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sends it to the next service in the priority list to claim the resources. When the HG gets

the resource usage claims from all the |K| services, it can calculate the gaps between each

service’s achievable and minimal required rates, i.e.,
∑

i∈M
∑

t∈T RP (k, i, t)l(k, i, t)−Rmin
k .

If all the services achieve their rate requirements, the HG sends the permissions to all

the services for their feasible claims. If some service cannot be satisfied with its rate

requirement, the HG updates the pricing indices according to (2.23) and sorts them in the

decreasing order that is also the new order for the services to claim the resources. The same

procedures of local problem solving, resource usage claim and the pricing indices updates

will be executed until the system is feasible or the number of resource claim iterations

exceeds a pre-defined threshold MaxItr.

(iii) Marginal Rate Allocation If the resource allocation in the stage 2 can satisfy all

the services’ rate requirements, the services will access the residual spectrum resources in

this stage. The services access the residual resources in the order that is finalized in stage

2. For each service, it accesses the channel and RAT pair which is available and provides

it the largest additional data rate. One important rule of access is that services will not

access the channels which are already shared by other services with legacy RATs in stage

2 since the potential sharing will possibly undermine the feasibility of the system.

The stage 1 of D-PCM requires information of |K| services over |M| channels to ini-

tialize the pricing indices which results in O(|K||M|) complexity. In stage 2, each service

k ∈ K needs to check each RAT and channel pair in each iteration. Since the number of

the resource claim iterations is chosen to be a small constant, the complexity in stage 2

is O(|K||M||T |). Stage 3 only requires O(|K||M|). In total, the D-PCM is of complexity

O(|K||M||T |) which shows it is a fast algorithm with polynomial time complexity.

2.2.3 Distributed Algorithms for SR-MSR and SR-MSC Problems

As proven in section III, the PC-MSR, PC-MSC, SR-MSR and SR-MSC problems are all

strongly NP-complete which entail forbidding complexity to find their optimal solutions.

The SR-MSR and SR-MSC problems can be readily solved by the branch and bound

algorithm [42] which is of asymptotically exponential complexity and centralized. From

(2.7) and (2.8), we can identify that the feasible sets of the PC-MSR and PC-MSC are
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Figure 2.4: D-PCM: Distributed Algorithm for PC-MSR/MSC. The algorithm is designed
based on partial dual decomposition. Pricing indices are used to indicate the gap between
a service’s achievable rate and its target rate. It’s also an important module of D-SRM,
the distributed algorithm for SR-MSR/MSC.
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proper subsets of that of the SR-MSR and SR-MSC, respectively. Thus, the optimal

solution of SR-MSR (SR-MSC) problem gives an upper bound for that of PC-MSR (PC-

MSC) problem and can be used as a benchmark to evaluate the performance of D-PCM.

As in case of PC-MSR and PC-MSC problems, a two stage Distributed algorithm for the

SR-MSR and SR-MSC problems that we refer to as D-SRM is designed as follows.

In the first stage of the D-SRM, an initial channel and RAT allocation should be

obtained in a distributed manner. The D-PCM designed in Fig. 2.4 has two attractive

features: (i)D-PCM will output an initial channel and RAT allocation efficiently, and

(ii)D-PCM is distributed where the majority of the computation and sensing burden is

assigned to the services. Thus, the D-PCM becomes a proper subroutine candidate here.

In the second stage, with the initial channel and RAT allocation, i.e., X̃, the HG solves a

simple linear program (LP) to refine the resource allocation on the channels with legacy

RATs to determine the exact portion of the physical resources each service will obtain.

The legacy RATs refinement LP can be formulated as:

max
L

∑
k∈K

∑
i∈M

∑
t̸=CR

RP (k, i, t)l(k, i, t) (2.24)

s.t.
∑
i∈M

∑
t ̸=CR

RP (k, i, t)l(k, i, t) ≥ Rres
k , ∀k ∈ K (2.25)

∑
k∈K

∑
t ̸=CR

l(k, i, t) = 1, ∀i ∈ M (2.26)

0 ≤ l(k, i, t) ≤ x̃(k, i, t), ∀k ∈ K ∀i ∈ M, (2.27)

where Rres
k = Rmin

k −
∑

i∈M
∑

t=CRRP (k, i, t)l(k, i, t) is the residual part of the rate

constraint which should be satisfied with legacy RATs and part of the rate constraint may

have been satisfied by CR RAT in stage 1. The initial allocation X̃ results in an feasible

allocation. Thus, no power constraint is required here. Meanwhile, only the services

assigned with legacy RAT on a channel in X̃ can be further considered for allocation on

that channel here as in (2.27). The above LP can be efficiently solved by the HG since it

readily obtains the necessary information to solve the LP in the first stage and the problem

size is usually small in a digital home.
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2.2.4 Power Control in a Cognitive Digital Home

Besides channel and RAT allocation discussed above, power control is another important

issue for managing resources in a CDH. However, as we have mentioned in Theorem 1, the

joint channel and RAT allocation itself is already NP-complete. Adding power control as

an additional degree of control, i.e., joint channel, RAT and power allocation, will make the

problem even more intractable. To overcome the intractability, we propose power control

in a CDH as an additional functionality which can improve the system performance based

on the allocation results from D-PCM or D-SRM algorithms. Given the channel and RAT

allocation result obtained from D-PCM or D-SRM, i.e, X∗ and L∗, the power control can

be implemented locally by each service as follows:

max
pk

∑
i∈M

∑
t∈T

RP (k, i, t)l∗(k, i, t) (2.28)

s.t.
∑
i∈M

∑
t∈T

P (k, i, t)x∗(k, i, t) ≤ Pmax
k , ∀k ∈ K (2.29)

0 ≤ P (k, i, t) ≤ Pmax
t , ∀i ∈ M, ∀t ∈ T , (2.30)

where each service tries to locally maximize its achieved data rates given the channel and

RAT assignment. As in equation (2.11), the joint channel and RAT assignment is based on

some fixed nominal transmit power value Pt. Subsequently, each service adjusts its trans-

mission power P (k, i, t) for each channel and RAT here, corresponding to the constraints

(2.29) and (2.30), respectively. For fixed constraints Pmax
k (service) and Pmax

t (RAT), the

above problem (2.28) is a convex program and thus can be solved efficiently. Moreover,

in a typical CDH environment, given the relatively short range of communications, the

dynamic range of power control will typically be less than in a macrocell setting.

2.2.5 Admission Control in a Cognitive Digital Home

As emphasized in previous sections, the JCRA problems, e.g., PC-MSR and SR-MSR,

are all NP-hard and thus their feasibility is hard to achieve. This is the reason why the

D-PCM and D-SRM algorithms weigh more importance on the feasibility of the problems

besides the total sum rates. The infeasibility of the systems when the physical resources
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are limited requires the CDH system to employ an admission control scheme. From the

system aspect, the admission control scheme should help the HG efficiently determine

which services should be accepted for data services. From the optimization aspect, the

admission control scheme should serve as a feasibility seeking algorithm to reduce the

constraint set size so that the reduced optimization problem becomes feasible.

In general, seeking feasibility of an optimization problem can be formulated as the

minimum-cardinality IIS (Irreducible Infeasible Set) set-covering problem that is known to

be NP-hard [46]. Heuristic methods such as in [47] [48] have been developed for it, but the

current state of the art mainly targets linear systems [46]. The JCRA problems in a CDH

are in general nonlinear. Therefore, specific admission control methods should be develope-

d to address the infeasibility issue. The pricing indices PIk in (2.23) used in resource allo-

cation provide a nice indication for admission control since they represent the gap between

each service’s target data rate and its achievable data rate in the resource claim iteration.

One example of a service rejection scheme based on the pricing indices first we consider

is the Average Pricing Index (API) scheme. The API scheme rejects the service with the

largest average pricing index, i.e., k = argmaxi∈K PIi = argmaxi∈K
∑MaxItr

itr=1 PIi(itr)
MaxItr , where

MaxItr is the maximum number of resource claim iterations before the system is deter-

mined infeasible. The API scheme will reject the services until the remaining system is

determined feasible by either D-PCM or D-SRM or all the services are rejected. The API

scheme can be appended to the end of the D-PCM or D-SRM algorithms as shown in Fig.

1.5 where the power control block is also shown. The performance of the API scheme will

be discussed next.

2.3 Numerical Results

We first illustrate our results in a simple setting that exemplifies a CDH environment with

Wi-Fi, bluetooth and cognitive RATs which use fixed transmit power on each channel for

each service. The spectral environment parameters used in the MATLAB-based simulation

are shown in Table 1.1. Due to the directional nature of the wireless links in 60GHz bands,

the link gains of each service in 60GHz bands can be described by a static path loss channel
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Figure 2.5: Distributed Power Control Scheme and Admission Control Scheme(API).
D-PCM and D-SRM are the distributed algorithms for PC-MSR(MSC) and SR-
MSR(MSC), respectively. Power control is completed locally by each service based on
a feasible joint channel and RAT assignment. The pricing index reveals the gap between
a service’s achievable rates and target rates and thus is a proper indication on the service
rejection candidate.

model as

Pr

Pt
= (

c

4πd0f
)2 × (

d0
d
)γ , (2.31)

where Pr and Pt are received and transmit powers. d is the link distance between the

transmitter and receiver. d0 = 1m is the indoor reference distance. f and c are the channel

center frequency and speed of light, respectively. γ is the indoor path loss coefficient that

is chosen to be γ = 1.8 for line of sight (LOS) links in 60GHz bands [49] [50]. For the

2.4GHz and 5GHz bands, the Rayleigh fading model is used to calculate the link gains of

each service as

Pr

Pt
= (

c

4πd0f
)2 × (

d0
d
)γ ×Xg, (2.32)

where the path loss coefficient is chosen to be γ = 3 [51] and Xg is a random variable with

Rayleigh distribution with zero mean and unit variance.
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Table 2.1: Exemplary Resource Allocation in a CDH
Available Channels in the Allocation

Channel Index 1 2 3 4 5 6 7
Center Frequency(GHz) 2.412 2.437 2.462 2.484 57.1 57.2 57.3

Bandwidth(MHz) 20 20 20 20 100 100 100
Service Requirements
Link A Link B Link C Link D

Required Data Rate(Mbps) 1 10 25 60
Power Constraint(mW) 10 60 100 300

Channel Allocation Result
Link A Link B Link C Link D

Wi-Fi(30mW) 4 3, 4 1, 2, 3
CR(60mW) 5, 6, 7

Bluetooth(10mW) 1, 2, 3, 4
Achieved Data Rate(Mbps) 1 13 27 76

The first numerical simulation is for an exemplary scenario where a CDH has service

provision devices such as a game console, game controller, laptop and High Definition

TV (HDTV) as shown in Fig. 2.1. The link A (game controller) is assumed to be a

legacy bluetooth link at 1Mbps and we consider channel and RAT allocation for the link

B (web surfing), C (game display) and D (wireless HDTV). The available channels and

their bandwidths are shown in Table 2.3. We assume Wi-Fi and bluetooth can operate

only on the first 4 channels in the 2.4GHz band while the CRs can operate on all available

channels. The degradation of Wi-Fi due to bluetooth is modeled via a degradation factor

αt = 0.9 [37]. The allocation results also shown in Table 2.3 verify that our D-PCM

algorithm efficiently utilizes the integrated spectrum and RATs resources in the CDH.

The services with high data rate requirements which usually also have high transmit power

margin, e.g., the wireless HDTV, are pushed to higher frequency bands with CR RAT. The

services with low transmit power margin and moderate rate demands, e.g., web surfing,

are allocated to the ISM bands with Wi-Fi legacy RATs. The sharing nature of some

legacy RATs such as Wi-Fi can accommodate more such services to meet their data rate

requirements than the orthogonalized CR RAT while CR RAT can provide more flexibility

to support high rate craving services.

In the following, we will investigate the performance of D-PCM and D-SRM algorithms.

The performance of D-PCM algorithm will be compared with the upper bound of its

optimal solution generated by the SR-MSR problem. It will also be compared with that of



29

the D-SRM algorithm to study the gain due to the relaxation of the legacy RATs access.

The channels of 20MHz wide each which are centered at 5.18, 5.2, 5.22, 5.24, 5.26, 5.28, 5.3,

5.32, 5.745, 5.765, 5.785 and 5.805GHz are used here. In the first place, we will investigate

the performance of D-PCM and D-SRM as the function of the number of services |K|

and the number of channels |M|. Two metrics, i.e., the sum rates of all the services and

the system feasibility rate, are compared in the following figures. If all the services’ rate

requirements are satisfied, the system is claimed to be feasible. The sum rate is defined

as the sum of all the services’ rates if the system is feasible. Here, all the services are of

the same rate requirements, i.e., Rmin
k = 10 Mbps for each k ∈ K. Their link distances are

uniformly generated over [5, 10]m. The services also have the same individual transmit

power constraint, i.e., Pmax
k = 200 mW for ∀k ∈ K. Two RATs, i.e., Wi-Fi with typical

transmit power 30mW and CR with typical transmit power 60mW, are employed in the

CDH where Wi-Fi RAT is allowed in the first 3 channels and the CR RAT can possibly

be used in all the channels. For each choice of number of services and number of channels,

the results (the actual allocation for each of 100 trials is not shown) shown are averaged

over 100 trials.

In Fig. 2.6, the performance of D-PCM in terms of the system feasibility rate is

compared with that of D-SRM. The system feasibility rate is defined as the percentage of

the feasible trials out of the total 100 trials. The D-PCM algorithm almost obtains the

optimal solution in Fig. 2.6. As the number of services increases, its performance will

degrade as expected. The D-SRM algorithm which is based on D-PCM algorithm obtains

the optimal solution in this case. The system feasibility degradation of D-PCM shown

in the figure actually reflects the limited controllability of legacy RATs in the PC-MSR

problem.

The performance of D-PCM and D-SRM in terms of the sum rate are compared in Fig.

2.7. Both D-PCM and D-SRM have less than 25% performance degradation relative to the

optimal solution of the SR-MSR problem. This also indicates that the gap between the

performance of D-PCM and the optimal solution of PC-MSR is lower than 25%. As shown

in the figure, when |K| > |M|, there is a sum rate drop for both D-PCM and D-SRM.

This is due to the RAT access strategy used in the two algorithms. As mentioned above,
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Figure 2.6: System Feasibility Rate. The services have same individual rate requirement
of 10Mbps.

when |K| ≤ |M|, both the algorithms push the services to aggressively access the RATs

to maximize their rates. However, when the physical resource is scarce, the algorithms

encourage the services to conservatively share spectrum with legacy RATs which is impor-

tant to ensure the system feasibility. As a result, the sum rate achieved decreases and as a

trade off, the system feasibility rate increases. The performance improvement of D-SRM

over D-PCM is greater when the system approaches infeasibility.
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Figure 2.7: Max Sum Rate. The services have same individual rate requirement of 10Mbps.

Pricing indices are used by the HG to determine the services’ priority for claiming

resources. They are updated according to (2.23) to find a possible feasible allocation when

the current allocation is infeasible. However, the number of resource claim iterations is

limited by the iteration threshold MaxItr. In Fig. 2.8, the impact of MaxItr is shown in
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Figure 2.8: Convergence of resource claim iterations (D-PCM). The services have same
individual rate requirement of 10Mbps. The effect of the iteration threshold MaxItr is
shown for the D-PCM algorithm implementation.

terms of system feasibility for D-PCM. 4 channels are considered. The results show that

when MaxItr increases from 1 to 5, the performance gain is largest. The reason for this

observation is due to our sensible design of heuristic algorithms for exploring the feasibility

of system and even within a small number of MaxItr, the proposed algorithm D-PCM

could well detect the nature of the system feasibility. Our extensive experiments indicate

that MaxItr = 5 is a reasonable choice for balancing the computation and accuracy.

In the following, the performance of both the D-PCM and D-SRM are evaluated in

a more general setting. Rather than identical rate requirement for each service, three

classes of services with differing rate requirements exist, i.e. low-rate services, medium-rate

services and high-rate services, are considered. Also, the number of services approaches to

20 so that the limiting behaviors of algorithms can be shown. 6 channels are considered

while the fraction of each class of service can vary.

In Fig. 2.3 and Fig. 2.3, the performance of D-SRM with power control is shown.

To illustrate the performance improvement introduced by power control, the individual

maximal transmission power is set to 60mW for each service while other settings stay

the same. The services can use the proposed power control scheme to efficiently assign

its transmission power so that channel diversity can be explored. As a result, D-SRM

with power control has obvious improvement over that without power control in terms of

system feasibility and sum rate both.
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Figure 2.9: Power Control (System Feasibility Rate). Results are shown for different
service distribution. 6 channels are used. Each service’s transmission power is within
60mW. Pmax

wifi = 35mW and Pmax
CR = 65mW . For each problem instance, the composition

of the three classes of services is generated uniformly. Low rate: [5,15]Mbps. Medium
rate: [15,25]Mbps. High rate: [30,40]Mbps
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Figure 2.10: Power Control (Sum Rate). Results are shown for different service dis-
tribution. 6 channels are used. Each service’s transmission power is within 60mW.
Pmax
wifi = 35mW and Pmax

CR = 65mW . For each problem instance, the composition of
the three classes of services is generated uniformly. Low rate: [5,15]Mbps. Medium rate:
[15,25]Mbps. High rate: [30,40]Mbps
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When the system is determined infeasible, an admission control scheme is necessary

as stated in section 2.2.5. In Fig. 2.3, 6 channels are used for simulation. The number

of services varies from 4 to 10. The same three classes of services described earlier are

considered. The SR channel access model is used. The modified D-SRM algorithm with

the API admission control scheme is compared with D-SRM and the optimal solution

obtained from the branch and bound method [42]. The simulation result clearly shows

that the admission control scheme will help the CDH support more services than otherwise.
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Figure 2.11: Admission Control Scheme. Results are shown for different service distribu-
tion. 6 channels are used. For each problem instance, the composition of the three classes
of services is generated uniformly. Low rate: [5,15]Mbps. Medium rate: [15,25]Mbps.
High rate: [30,40]Mbps. Each service’s transmission power is within 200mW.
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Chapter 3

Effect of End-User Behaviors on Wireless Random Access

3.1 Related Work

As mentioned in chapter 1, the advances in smart and programmable radio devices have

provided the end users with a greater degree of control [52–54]. As a result, the un-

derstanding of end users’ real-life decisions are becoming of paramount importance in

designing and managing current and future wireless networks. Prospect Theory (PT) is

well known to be able to explain real-life decision making and thus becomes a candidate

tool to address this need. Though historically, PT has been developed based on monetary

transactions, it has been successfully applied to various fields as mentioned in the above

section, such as [26–29]. Game theory has also been a powerful tool to describe the in-

teractions among end users in wireless networks as some exemplary works can be found

in [17–21,55]. The game theoretical approach heavily relies on the precept that users follow

Expected Utility Theory (EUT). In [56], the authors have provided basic characterizations

of non-cooperative games where players may follow PT for decision making.

As indicated in chapter 1, research is needed to identify how resource allocation mech-

anisms impact the value of that resource to users and conversely, how end-user actions

impact resource allocation. The end users’ subjective perception over the received service

and their behaviors have more and more significant influence on the design, operation and

performance of communication networks and systems [57]. The authors in [58] explore the

possible usage of psychology in the field of autonomous networks and systems. They claim

that the end users’ behaviors and preferences can have direct impact over the operation

and design of the such systems. They used PT as a possible candidate to model end users’

preferences. In [59], the authors identify the importance of the end users’ behaviors and

preferences and proposed a “local community networking system with ad hoc networking
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technology”. Moreover, they used Prospect Theory to model the end users’ behaviors in

such a relaying network environment.

Though the above works have conceptually mentioned the need for Prospect Theory in

communication networks and systems, a more in-depth technical and quantitative study

on this topic is needed. Therefore, we select an exemplary wireless random access model

as a starting point to identify the impact of end users’ decisions on the wireless networks

with the help of PT. The work in [18] is one of first works that applies game theory to

wireless random access and power control. Specifically, the authors applied game theory to

a simplified Aloha system. In [60], a more detailed game-theoretical study was provided on

an Aloha system. The authors in [61] have investigated the probabilities of retransmission

in a distributed manner under both cooperative model and non-cooperative game model in

a slotted Aloha system. In [62], the authors have performed an extensive study on the end

users’ transmission probabilities at the equilibrium of a random access network considering

end users’ throughput rewards, energy costs and delay penalties. Non-cooperative game

theory has been applied there and the case of both selfish and malicious end users were

studied.

3.2 Background: Prospect Theory

Expected Utility Theory (EUT) [24] has been a fundamental part of modern economics. It

provides an approach to valuate a prospect L [25], i.e., a contract that will yieldM different

outcomes oi, i = 1, ...,M and each outcome occurs with probability pi, ∀i = 1, ..,M where∑
i=1,...,M pi = 1. EUT determines that the prospect is valuated as

uEUT (L) =
∑

i=1,...,M

piv
EUT (oi), (3.1)

i.e., the expected value of all possible outcomes. vEUT (·) is a value function of the outcomes

and it is often assumed to be concave in EUT. However, in Prospect Theory (PT) [25]

that was postulated by Kahneman and Tversky, extensive experiments and measurements
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suggest that in decision-making in real life, the prospect L is valuated as

uPT (L) =
∑

i=1,...,M

w(pi)v
PT (oi). (3.2)

This valuation is significantly different from EUT in the following two ways.

1. Probability Weighting Effect: It is revealed in PT that people use their subjective

probabilities w(pi) rather than objective probabilities pi to weigh the values of pos-

sible outcomes. Moreover, people tend to over-weigh low probability outcomes and

under-weigh moderate and high probability outcomes. Based on the experimental

results, an original form for the probability weighting function was proposed in [63].

While there have been several efforts to identify appropriate probability weighting

functions, in this work, we will use the one identified by Prelec [64] that captures the

over-weighting and under-weighting of probabilistic outcomes as follows (see Fig. 1):

w(p) = exp(−(− ln p)α), 0 < α ≤ 1, (3.3)

where α is the parameter which reveals how a person’s subjective evaluation dis-

torts the objective probability and a smaller α describes a more curved probability

weighting function. From Fig. 1, we can see that the probability weighting function

has several features [64]: (1) It is asymmetrically reflected at a point, i.e., 1/e, where

w(1/e) = 1/e; (2) It is concave if 0 ≤ p < 1/e and convex if 1/e ≤ p ≤ 1; (3)

w(p) > p if 0 ≤ p < 1/e and w(p) ≤ p if 1/e ≤ p ≤ 1.

2. Framing Effect: PT [25] states that in decision-making in real life, the value of an

outcome is determined by considering the relative gains or losses regarding a reference

point. PT also proposes that the value function should be a concave function of gains

and a convex function of losses with the convex part usually having a steeper slope.

In other words [25], ”losses looms larger than gains.” The framing effects can be

demonstrated in Fig. 3.2.

It has been consistently observed that EUT fails to interpret people’s real-life decisions

that could be well explained by PT, e.g., the famous Allais’ paradox. In [25], the authors
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Figure 3.1: Probability Weighting Function. The curve shows the probability weighting
effects when α = 0.5. The straight line represents the objective probability.
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Table 3.1: An Example of EUT Violation
XXXXXXXXProblem

Prospect
A B

1 $2500with probability 0.33 $2400with certainty
$2400with probability 0.66
$0with probability 0.01

2 $2500with probability 0.33 $2400with probability 0.34
$0with probability 0.67 $0with probability 0.66

provided a variation of the Allais’ paradox as in Table 3.1. There were two problems

in the experiment and for each problem, the respondents were asked to choose between

two prospects (A or B). For example, in Table 3.1, the respondent had two prospect-

s in problem 1. If she chose A, she would win 2500 dollars with probability 0.33 or

2400 dollars with probability 0.66 or nothing with probability 0.01. If she chose B, she

would win 2400 dollars for sure. In [25], it was found that a majority of the respondents

(61 per cent) chose B for problem 1 and A for problem 2. According to EUT, a respon-

dent would valuate a prospect, e.g., problem 1A, as the expectation of all the prospect’s

outcomes, e.g., 0.33vEUT (2500) + 0.66vEUT (2400) + 0.01vEUT (0). Thus, a preference of

1B over 1A implies 0.33vEUT (2500) + 0.66vEUT (2400) + 0.01vEUT (0) < vEUT (2400) that

is equivalent to 0.34vEUT (2400) > 0.33vEUT (2500). Meanwhile, the choice of 2A over 2B

implies 0.34vEUT (2400) < 0.33vEUT (2500). These two results produce a paradox. This

observation as well as numerous other ones are used in [29] to illustrate the situation-

s where EUT fails to accurately describe people’s real-life decisions. However, PT can

successfully explain the decisions the respondents made in the above experiment. Given

zero is the reference point, α = 0.5 and vPT (·) is linear, it can be easily verified that

w(0.33)vPT (2500) + w(0.66)vPT (2400) + w(0.01)vPT (0) < w(1)vPT (2400) (1B over 1A)

and w(0.34)vPT (2400) < w(0.33)vPT (2500) (2A over 2B) are established simultaneously.

As a special case of the framing effect shown in Fig. 3.2, in this work we apply PT by

assuming a linear value function towards the outcomes of communication activities, i.e.,

vPT (x) = ax where a ≥ 0 is a constant. Note that, x is the gain or loss relative to fixed

reference point zero, i.e., values are framed about the reference point zero.
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3.3 A Wireless Random Access Game

In this work, we consider a time slotted wireless random access network with N = |N |

selfish players accessing a single access point. Each player is assumed to have a saturated

packet queue and able to transmit one packet in a time slot [62]. Given any time slot,

there is a subset J ⊆ N of players that transmit packets to the base station simultaneously

while players in J c ⊆ N decide to wait. For player i ∈ J , let pi|J be the probability that

the base station captures her packet. Note that, player i’s transmission probability is

denoted as pi. For a successful packet delivery, a player obtains a unit reward ci ≥ 0 while

incurring a unit energy cost ei ≥ 0. However, if a player i ∈ J fails to deliver her packet

to the base station, she incurs a unit energy cost ei ≥ 0 and a unit delay penalty di ≥ 0.

If she decides to not transmit (wait), i.e., i ∈ J c, she also incurs a unit delay penalty

di ≥ 0. Note that, we implicitly assume that ci, ei and di are chosen such that they are in

uniformly the same units.

All the players have the same pure strategy set, i.e., Ai = {t, nt}, i ∈ N , where the

strategy t denotes transmission and nt denotes wait (no transmission). The pure strategy

profile of all N players in a time slot can be represented as a vector a = [ai]∀i∈N ∈ A

where A = A1×A2× ...×AN is the set of all possible pure strategy profiles. For any given

a ∈ A, let J (a) ⊆ N denote the set of players who transmit. Each transmission generates

two possible outcomes with probabilities for each player i ∈ J (a), i.e., a successful packet

delivery with probability pi|J (a) ∈ [0, 1] or a packet delivery failure with probability 1 −

pi|J (a). Note that, the successful packet delivery probability pi|J (a) is actually determined

by the underlying channel model, e.g., path loss, AWGN and rayleigh. The exact channel

model adopted is not crucial in this model and thus pi|J (a) is assumed to be available for

each player. If the player i does not transmit, i.e., i ∈ J (a)c, she gets a delay penalty di.

Thus, if we assume a linear value function, then a player valuates the possible outcomes

associated with an arbitrary pure strategy profile as follows:

vi|a =


pi|J (a)(ci − ei) + (1− pi|J (a))(−ei − di) if ai = t

−di if ai = nt.

(3.4)
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Under this setting, we will consider random access games with 2 types of players: (a)

players who follow the precepts of EUT and (b) players who follow the precepts of PT. We

will refer to these players as EUT players and PT players, respectively. Further, depending

on the player composition, two types of wireless random access games are possible: (1)

homogeneous game and (2) heterogeneous game. A homogeneous game consists of either

only EUT players or only PT players. The heterogeneous games must simultaneously have

both PT and EUT players, i.e., some players are PT players and others are EUT players.

Furthermore, under linear value function and framing about 0, the PT and EUT players

have identical value functions over a pure strategy profile, i.e., vEUT
i|a = vPT

i|a = vi|a. We

assume each player may adopt a mixed strategy, i.e., player i will transmit a packet in a

time slot with probability pi ∈ [0, 1] and wait with probability 1 − pi. A mixed strategy

vector of all players can be represented as p = [p1, p2, ..., pN ] where pi is the i-th player’s

transmission probability. An EUT player’s utility can be represented as,

uEUT
i (p) =

∑
a∈A

 ∏
j∈J (a)

pj
∏

k/∈J (a)

(1− pk)vi|a

 , (3.5)

where J (a) is the set of players who transmit in the time slot, i.e., aj = t, ∀j ∈ J (a). Note

that, the probability that a specific pure strategy profile a is chosen is
∏

j∈J (a) pj
∏

k/∈J (a)(1−

pk) and vi|a is the corresponding value for player i as defined in (3.4).

A PT player knows that a will occur with probability
∏

j∈J (a) pj
∏

k/∈J (a)(1−pk). How-

ever, she cannot objectively evaluate this probability and this makes her utility function

fundamentally different from that of an EUT player as discussed in section 3.2. A PT

player’s subjective utility can be formally defined as:

uPT
i (p) =

∑
a1∈A,a1i=t

SP (a1)vi|a1
+

∑
a2∈A,a2i=nt

SP (a2)vi|a2
. (3.6)

Note in the above, the player i subjectively determines that a1 will be chosen with prob-

ability SP (a1) = piwi

(∏
j∈J (a1)\{i} pj

∏
k∈J c(a1)

(1− pk)
)
, where a1 ∈ A denotes the

pure strategy profiles where the i-th player transmits, i.e., a1i = t, and wi(·) is the i-

th player’s probability weighting function. Similarly, she weighs outcomes of a2 with
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SP (a2) = (1 − pi)wi

(∏
j∈J (a2)

pj
∏

k∈J c(a2)\{i}(1− pk)
)
where a2 ∈ A denotes the pure

strategy profiles where she chooses to wait, i.e., a2i = nt. Note that, we assume a PT

player only nonlinearly transforms other players’ strategy probabilities rather than her

own since a person is able to choose her own strategy probability objectively.

For the i-th player, she plays the random access game by solving an optimization

problem as follows:

max
pi

ui(pi, p−i), (3.7)

where ui(·) can be either EUT utility (3.5) or PT utility (3.6) and p−i represents the

collection of all other players’ transmission probabilities. A list of important notations is

list in Table 3.2.

3.4 A 2-Player Heterogeneous Wireless Random Access Game

In our earlier work [32], a 2-player homogeneous wireless random access game with linear

value function was studied using a simple 0-1 random collision channel model for random

access. Here, we investigate a 2-player heterogeneous wireless random access game with

linear value function for a general random access channel. We extensively study the

differences between a 2-player homogeneous EUT game and a 2-player heterogeneous game

. In the following, we use i to denote the player we refer to and j to denote her opponent.

According to (3.5) and (3.6), the utility functions of an EUT and a PT player can be

specified as follows, for i = 1, 2:

uEUT
i (p) =pipjvi|{t,t} + pi(1− pj)vi|{t,nt} + (1− pi)(−di), (3.8)

uPT
i (p) =piwi(pj)vi|{t,t} + piwi(1− pj)vi|{t,nt} + (1− pi)(−di), (3.9)

where vi|{t,t} = pi|{i,j}(ci − ei) + (1 − pi|{i,j})(−ei − di), i = 1, 2 is the value the i-th

player assigns for the pure strategy {t, t}, i.e., both players transmit. vi|{t,nt} = pi|{i}(ci −

ei) + (1 − pi|{i})(−ei − di), i = 1, 2 denotes the value the i-th player assigns for the pure

strategy profile {t, nt}, i.e., only the i-th player transmits. Note that, the first element in

a pure strategy profile is always the referred player’s strategy. pi|{i,j} and pi|{i} denote the
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Table 3.2: Notations Reference Table
Notations Interpretations

N Set of players
a A pure strategy profile vector of all players
p A mixed strategy profile vector of all players, i.e. {pi}

J {a} Set of players choosing transmission given a
vi|a The value i-th player obtains given a

pi The i-th player’s transmission probability
pi|J (a) The i-th player’s successful package delivery probability given J (a)

wi(·) The i-th player’s probability weighting function

uEUT
i (·) The i-th EUT player’s utility

uPT
i (·) The i-th PT player’s utility

vi|{t,nt} The i-th player’s value when she transmits and her opponent stays quite

pi|{i,j} The i-th player’s package reception probability when both players transmit

i-th player’s successful packet delivery probabilities given that her opponent player j also

transmits or not, respectively. pi and pj represent the transmission probabilities of the i-th

player and her opponent, respectively. Under the game setting, players’ communication

performance are compared for three metrics, namely average throughput, average energy

and average delay. They can be calculated as follows, for i = 1, 2:

Ti(p) = pipjpi|{i,j} + pi(1− pj)pi|{i} (3.10)

Ei(p) = pi (3.11)

Di(p) = pipj(1− pi|{i,j}) + pi(1− pj)(1− pi|{i}) + (1− pi) (3.12)

3.4.1 The Existence and Uniqueness of Mixed NEs of a Heterogeneous

Game and a Homogeneous EUT game

The performance of players and system in (3.10) - (3.12) can only be meaningfully eval-

uated at Nash Equilibrium (NE) [65]. In the following, the mixed NE characteristics of

a heterogeneous game and a homogeneous EUT game are studied. The players’ utilities

associated with pure strategy profiles can be compactly described in table 3.3. Note that,

if the strategy profile {t, t} where both players transmit is more preferred by player i than

the strategy where player i does not transmit, i.e., vi|{t,t} ≥ −di, i = 1, 2, it is also true

that vi|{t,nt} > −di since the profile {t, nt} generates less interference to player i’s trans-

mission and thus more preferred than the strategy profile {t, t}. As a result, player i will
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Table 3.3: Players’ Values towards pure strategy
profiles
PPPPPPPPP
Player 1

Player 2
t nt

t (v1|{t,t}, v2|{t,t} ) (v1|{t,nt},−d2)

nt (−d1, v2|{t,nt} ) (−d1,−d2)

always transmit, i.e., pi = 1. Similarly, if −di ≥ vi|{t,nt} > vi|{t,t}, i = 1, 2, player i will

always not transmit by adopting pi = 0. In the following, we exclude these two trivial

scenarios by assuming for i = 1, 2, vi|{t,t} < −di and vi|{t,nt} > −di. Furthermore, in the

following, no further discussion on the resulting two trivial pure NEs, i.e., {t, nt}, {nt, t},

will be made either.

Theorem 3.4.1. There exists a unique mixed NE [pH
1, p

H
2] for a heterogeneous game given

vi|{t,t} < −di and vi|{t,nt} > 0 for i = 1, 2.

Proof. Without loss of generality, we assume player 1 is a PT player with utility function

(3.9) and player 2 is an EUT player with utility function (3.8). In this game, each player,

e.g., player i, i = 1, 2, will choose a probability for transmission, e.g., pi ∈ ∆(Ai) = [0, 1] for

t and thus 1−pi for nt. It can be easily seen that the interval ∆(Ai) is a nonempty compact

convex subset of a Euclidian space for i = 1, 2. Further, the PT player’s utility function

in (3.9) is linear in p1 ∈ ∆(A1). Given a fixed p2 (i.e., the EUT player’s mixed strategy),

we pick any feasible b1, f1, g1 ∈ ∆(A1) and uPT
1 (b1, p2) ≥ max{uPT

1 (f1, p2), u
PT
1 (g1, p2)}.

Then, uPT
1 (λf1+(1−λ)g1, p2) = λuPT

1 (f1, p2)+(1−λ)uPT
1 (g1, p2) < uPT

1 (b1, p2), ∀λ ∈ [0, 1].

Hence, the subset of the PT player’s mixed strategies which yield less utility than an

arbitrary feasible mixed strategy b1 ∈ ∆(A1) is convex and we have shown the PT player’s

utility function is quasi-concave in ∆(A1). Similarly, it can be easily shown that the EUT

player’s utility function uEUT
2 (p1, p2) is also quasi-concave in ∆(A2). According to the

Proposition 20.3 in [65], at least one mixed NE exists in the heterogeneous game.

At the mixed NE p∗ = [p∗1, p
∗
2], by definition, the PT player should always obtain the

identical utility by playing either of the pure strategies, i.e., uPT
1 (1, p∗2) = uPT

1 (0, p∗2). Note

that, uPT
1 (1, p2) = w1(p2)v1|{t,t} + w1(1− p2)v1|{t,nt} and uPT

1 (0, p2) = −d1. If v1|{t,t} < 0
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and v1|{t,nt} > 0, the PT player assigns a negative value to a collision and a positive value

to an interference-free transmission. Then, it follows that

∂uPT
1 (1, p2)

∂p2
=

αw1(p2)(− ln(p2))
α−1

p2
v1|{t,t}

+
αw1(1− p2)(− ln(1− p2))

α−1

p2 − 1
v1|{t,nt} < 0. (3.13)

Therefore, uPT
1 (1, p2) is a strictly decreasing function of p2 ∈ [0, 1]. The points where the

function uPT
1 (1, p2) intersects with the horizontal line uPT

1 (0, p2) = −d1 are the solutions

to the equation uPT
1 (1, p2) = uPT

1 (0, p2) and thus the EUT player’s mixed strategies at

the mixed NE. Since uPT
1 (1, p2) has been shown as a strictly decreasing function of p2 ∈

[0, 1], the intersection point is unique and therefore the EUT player’s mixed strategy

(transmission probability) pH
2 at the mixed NE is also unique. Meanwhile, the EUT player’s

utility when she always transmits, i.e., uEUT
2 (p1, 1), can be similarly shown as a strictly

decreasing function of p1 ∈ [0, 1]. Hence, the PT player’s mixed strategy pH
1 at the mixed

NE is also unique. Furthermore, as mentioned earlier, vi|{t,t} < −di, i = 1, 2 and vi|{t,nt} >

0 > −di, i = 1, 2 ensure that neither of the players would choose a pure strategy. Thus, a

unique mixed NE [pH
1, p

H
2] exists for the 2-player heterogeneous game.

Note that, the conditions in Theorem 1 are mild and intuitive in that they reflect a

communications scenario where a “positive” value (vi|{t,nt} > 0, i = 1, 2 ) results when

only player i transmits and a “negative” value (vi|{t,t} < −di, i = 1, 2) results when the

2 players collide. Further, this negative value is worse than when the player i does not

transmit.

Corollary 3.4.2. There exists a unique mixed NE [pEUT
1 , pEUT

2 ] for the homogeneous EUT

game given vi|{t,t} < −di and vi|{t,nt} > 0 for i = 1, 2.

Proof. The existence and uniqueness of the mixed NE for the homogeneous EUT game

can be established in the same fashion as in the heterogeneous game.
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Due to the analytical intractability of the probability weighting function in equation

(3.3), the mixed NE involving PT players cannot be derived in closed form even for a 2-

player scenario. For example, in a 2-player homogeneous game, the players’ transmission

probabilities [p1, p2] at the mixed NE can be derived by solving the following nonlinear

equations:

exp(−(− ln p1)
α)v2|{t,t} + exp(−(− ln (1− p1))

α)v2|{t,nt} = −d2 (3.14)

exp(−(− ln p2)
α)v1|{t,t} + exp(−(− ln (1− p2))

α)v1|{t,nt} = −d1. (3.15)

Even though the above 2 equations are independent, owing to the analytical intractabil-

ity in arriving at closed form solution, we use the numerical solvers in MATLAB to find

the transmission probabilities at the mixed NE in the rest of this work. In spite of the

analytical intractability, we will prove many intuitive properties of the mixed NE as will

be seen in the remainder of this chapter.

3.4.2 A Heterogeneous Game: Consequence of Deviation from EUT

A heterogeneous game consisting of one PT player and one EUT player is considered and

we will highlight the consequences on the performance compared to a 2-player homoge-

neous EUT game. The heterogeneous game can be considered as a deviation from the

homogeneous game as one of the EUT players is replaced by a PT player who differs from

the EUT players in the homogeneous game only in the probability weighting index α. We

specifically study three issues: (a) the impact on the performance of the EUT player in

the heterogeneous game, (b) the impact on the performance of the whole system, and (c)

the performance difference between the PT and EUT players in the heterogeneous game.

We consider the following 3 scenarios for comparison: (1) Both players are EUT (EUT

game), (2) One EUT and one PT player with α = 0.8, and (3) One EUT and one PT

player with α = 0.5. For both the heterogeneous game and the homogeneous EUT game,

two players randomly access the channel with pi|{i} = pj|{j} = 0.98, pi|{i,j} = pj|{i,j} =
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Figure 3.3: (a) Transmission probability of each player at mixed NE for each game. (b)
Average energy comparison at individual player level and system level. Three games
(heterogeneous game (α = 0.8), heterogeneous game (α = 0.5), EUT game) are studied
and compared where no delay penalty is considered (d = 0).

0.05, i = 1, 2. We begin with a special case where there is no delay penalty for each player

as c1 = c2 = c, e1 = e2 = e = 2, d1 = d2 = d = 0. The system performances are studied

and compared as a function of c/e. Due to the symmetry here, the EUT players in the

homogeneous EUT game have the identical strategy and performance at the mixed NE.

We observed in Fig. 3.3(a) that with the introduction of the PT player , the EUT player

transmits more aggressively in the heterogeneous game than the EUT players in the ho-

mogeneous EUT game. Note that, the PT player in the heterogeneous game under two

different scenarios chooses the same transmission probability at the mixed NE since her

opponent’s (the EUT player) utility function stays unchanged. Within the heterogenous

game, the EUT player is more aggressive in transmission than the PT player. Both the

trends are more obvious as the PT player deviates more from EUT (smaller α). Further,

both the players’ transmissions under the 3 scenarios become more probable as the unit

throughput reward increases and finally converge to transmission with probability 1 when

vi|{t,t} = −d = 0, i = 1, 2 (c/e = 20). Note that, all the curves do not increase to 1 until

c/e = 20 though in the figure, they are seen very close to it before c/e = 20 .

In Fig. 3.3(b), it can be seen that the introduction of the PT player actually causes

the EUT player in the heterogeneous game consume more average energy than the EUT
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Figure 3.4: Average throughput comparison at individual player level and system level.
Three games (heterogeneous game (α = 0.8), heterogeneous game (α = 0.5), EUT game)
are studied and compared where no delay penalty is considered (d = 0).

players in the homogeneous EUT game. Meanwhile, the PT player’s consumed energy

stays unchanged as explained in Fig. 3.3(a). As a result, the players in the heterogeneous

game consume more sum energy in average than those in the homogeneous EUT game.

Moreover, a more deviated PT player causes an increased sum average energy consumption.

Figure 3.4(a) shows that the introduction of the PT player actually increases the EU-

T player’s average throughput compared to the EUT players in the homogeneous EUT

game. However, the PT player herself suffers an obvious average throughput degradation.

Moreover, within the heterogenous game, the PT player achieves an obviously less average

throughput than the EUT player. Further, as the PT player deviates more from EUT,

the above trends are also more exaggerated. Note that, each player’s achieved average

throughput eventually decreases as the unit throughput reward increases since players al-

so transmit more aggressively and thus generate more collisions. The deviation of one

player from EUT to PT can also significantly impact the system level performance as in

Fig. 3.4(b). It can be observed that the players in a heterogeneous game achieve less sum

average throughput than those in the homogeneous EUT game. As the PT player deviates

more from EUT, the heterogeneous game suffers an even larger sum average throughput

loss.
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In Fig. 3.5, we study a heterogeneous game in a more general setting where both

unit throughput reward and unit delay penalty are non-zero and varying. For comparison

purpose, we choose c1 = c2 = c, e1 = e2 = e = 2, d1 = d2 = d and pi|{i} = pj|{j} =

0.98, pi|{i,j} = pj|{i,j} = 0.05 for both players in both the heterogeneous game and the

homogeneous EUT game. The PT player’s probability weighting index is α = 0.6. In Fig.

3.5(a), it can be seen that the introduction of the PT player causes the EUT player of the

heterogeneous game transmit more aggressively than the EUT players in the homogeneous

EUT game. Within the heterogeneous game, the EUT player is more aggressive than the

PT player. Both players’ transmission probabilities converge to 1 when vi|{t,t} ≥ −di, i =

1, 2. In Fig. 3.5(b), the impact of the PT player’s deviation on the average delay is shown.

The EUT player in the heterogeneous game suffers slightly less average delay than the

EUT players in the homogeneous EUT game. However, within the heterogeneous game,

the PT player suffers more average delay than the EUT player. Further, the deviation of

the PT player also causes the heterogeneous game suffer a larger sum average delay than

the homogeneous EUT game. In Fig. 3.5(c), it has been shown that more sum average

energy is consumed in the heterogeneous game than that in the homogeneous EUT game.

Fig. 3.5(d) has shown that the heterogeneous game suffers a sum average throughput

degradation compared to the homogeneous EUT game. Moreover, the PT player is shown

to achieve less average throughput than the EUT player within the heterogeneous game.

Therefore, together with the first set of numerical result this subsection has demon-

strated 3 main consequences of the PT player’s deviation from EUT as listed below:

• (C1) The deviation of PT player causes the EUT player in the heterogeneous game

achieve more average throughput, suffer less average delay but consume more average

energy than the EUT players in the homogeneous EUT game.

• (C2) Within the heterogeneous game, the PT player achieves less average throughput

but suffers more average delay. The EUT player consumes more average energy.

• (C3) The deviation of the PT player undermines the overall system level performance

in every aspect as the heterogeneous game achieves less sum average throughput,

suffers more sum average delay and consumes more sum average energy than the
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Figure 3.5: A heterogeneous game (α = 0.6) and a homogeneous EUT game are compared
where unit throughput reward and unit delay penalty are non-zero.

homogeneous EUT game.

3.4.3 Analytical Insights into Consequence C1 - C3

We will now prove the three main consequences (1), (2) and (3) in subsection 3.4.2 under

mild conditions. We begin with the following Lemmas.

Lemma 3.4.3. Each player’s average throughput function (3.10) is an increasing function

of her own transmission probability and a decreasing function of her opponent’s transmis-

sion probability.
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Proof. It can be easily verified that ∂Ti(p)
∂pi

= pjpi|{i,j} + (1 − pj)pi|{i} > 0 and ∂Ti(p)
∂pj

=

pipi|{i,j} − pipi|{i} < 0 since pi|{i} > pi|{i,j} that simply reflects the fact that player i

gets a higher successful packet delivery probability for a collision-free transmission than a

collision.

Lemma 3.4.4. Each player’s average delay function (3.12) is a decreasing function of her

own transmission probability and an increasing function of her opponent’s transmission

probability.

Proof. This also follows the fact that pi|{i} > pi|{i,j}.

Lemma 3.4.5. If vi|{t,t} < 0, vi|{t,nt} > 0, there exists a unique number pint ∈ (1/ρ, 1 −

1/ρ) (ρ denotes the Euler’s number here) such that uPT
i (1, pint) = uEUT

i (1, pint). Fur-

ther, uPT
i (1, pj) ≤ uEUT

i (1, pj) and uPT
i (1, pj) is convex when pj ∈ [0, pint). Meanwhile,

uPT
i (1, pj) ≥ uEUT

i (1, pj) and uPT
i (1, pj) is concave when pj ∈ [pint, 1].

Proof. Note that, uPT
i (1, 1/ρ) = wi(1/ρ)vi|{t,t} + wi(1 − 1/ρ)vi|{t,nt} < 1/ρ × vi|{t,t} +

(1 − 1/ρ) × vi|{t,nt} = uEUT
i (1, 1/ρ). This holds because vi|{t,t} < 0, vi|{t,nt} > 0 and the

probability weighting function has the property that wi(1/ρ) = 1/ρ and wi(1 − 1/ρ) <

1−1/ρ. Similarly, we can show that uPT
i (1, 1−1/ρ) = wi(1−1/ρ)vi|{t,t}+wi(1/ρ)vi|{t,nt} >

(1 − 1/ρ) × vi|{t,t} + 1/ρ × vi|{t,nt} = uEUT
i (1, 1 − 1/ρ). Thus, there must exist a point

pint ∈ (1/ρ, 1 − 1/ρ) such that uPT
i (1, pint) = uEUT

i (1, pint) due to the continuities of both

uPT
i (1, pj) and uEUT

i (1, pj). We define the difference function of the PT utility and the

EUT utility when the player always transmits as ∆(pj) = uPT
i (1, pj) − uEUT

i (1, pj) =

f1(pj)vi|{t,t} + f2(pj)vi|{t,nt} where f1(pj) = wi(pj)− pj and f2(pj) = wi(1− pj)− (1− pj).

According to the definition of probability weighting function (3.3) and from Fig. 3.1,

it can be easily seen that the function f1(pj) is a monotonically increasing function in

[0, ϵ1(α)], decreasing function in (ϵ1(α), 1− ϵ2(α)) and increasing function in [1− ϵ2(α), 1].

Similarly, f2(pj) can be shown to be a monotonically decreasing function in [0, ϵ2(α)],

increasing function in (ϵ2(α), 1 − ϵ1(α)) and decreasing function in [1 − ϵ1(α), 1]. Note

that, ϵ1(α), ϵ2(α) ∈ (0, 1) depend on the probability weighting index α and ϵ1(α) < ϵ2(α).

Also, it can be shown that ∂wi(pj)/∂pj = 1 when pj = ϵ1(α), 1 − ϵ2(α). The above
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properties can be shown in Fig. 3.6.
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Figure 3.6: wi(pj)− pj and wi(1− pj)− (1− pj) as functions of pj for α = 0.6.

Moreover, for an arbitrary pj ∈ [0, ϵ1(α)), ∆(pj) < 0 since f1(pj) > 0, f2(pj) < 0,

vi|{t,t} < 0 and vi|{t,nt} > 0. ∆(pj) decreases further as pj approaches ϵ1(α) and then

there must be a point ζ1 ∈ [ϵ1(α), ϵ2(α)] where ∆(pj) begins to increase. When pj ∈

[ϵ2(α), 1 − ϵ2(α)], ∆(pj) keeps increasing further since df1(pj)/dpj < 0, df2(pj)/dpj > 0

and thus d∆(pj)/dpj > 0. Note that, ∆(pint) = 0 and this zero is unique due to the above

construction. Hence, we can deduce that uPT
i (1, pj) must lie below uEUT

i (1, pj) and be

convex when pj ∈ [0, pint) if we draw uPT
i (1, pj) and uEUT

i (1, pj) together. At the other

end, for an arbitrary number pj ∈ [1− ϵ2(α), 1], we can show that ∆(pj) > 0. By following

a similar approach as in the previous scenario, we can show that uPT
i (1, pj) > uEUT

i (1, pj)

and uPT
i (1, pj) is concave when pi ∈ [pint, 1]. The above characteristics can be seen in Fig.

3.7.

Theorem 3.4.6. (Consequence (C1)) In a 2-player heterogeneous game, at the mixed

NE, the EUT player achieves more average throughput, suffers less average delay and uses

increased average energy, compared to that in a 2-player homogeneous EUT game if the

PT player’s (player i) value function is such that vi|{t,nt} > −ρdi + (1− ρ)vi|{t,t}.

Proof. In the homogeneous EUT game, the EUT player’s (player j) transmission proba-

bility pEUT
j at the mixed NE can be solved by setting uEUT

i (1, pj) = uEUT
i (0, pj) = −di.

From lemma 3.4.5, when pj ∈ [pint, 1], uPT
i (1, pj) lies above uEUT

i (1, pj) and is concave. If
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vi|{t,nt} > −ρdi+(1−ρ)vi|{t,t}, it can be easily shown that pEUT
j =

−di−vi|{t,nt}
vi|{t,t}−vi|{t,nt}

> 1−1/ρ.

Correspondingly, the horizontal line uEUT
i (0, pj) = −di must intersect uPT

i (1, pj) in the

heterogeneous game at pH
j where pH

j > pEUT
j (A graphical example can be found in Fig. 3.7).

Meanwhile, since the EUT player (player j) in the heterogeneous game is identical to the

EUT player j in the homogeneous EUT game, it can be devised that pH
i = pEUT

i . From

lemma 3.4.3, the EUT player’s (player j) average throughput function Tj in (3.10) is an

increasing function of her own transmission probability and a decreasing function of her

opponent’s transmission probability. Thus, the EUT player (player j) in the heterogeneous

game achieves a larger average throughput than in the homogeneous EUT game due to

her own transmission probability increase while her opponent’s stays unchanged. Similar-

ly, the decline in the EUT player’s average delay in the heterogeneous can be explained

accordingly. However, due to the EUT player’s increasing aggressiveness, she consumes

more average energy in the heterogeneous game.

Theorem 3.4.7. (Consequence (C2)) In a heterogeneous game, if the PT player (player

i) and the EUT player (player j) only differ in the probability weighting index, i.e., αi < 1

and αj = 1 and vi|{t,nt} > −ρdi + (1 − ρ)vi|{t,t}, it can be shown that pH
i < pH

j . In other

words, the PT player transmits less aggressively than the EUT player at the mixed NE.

Further, the EUT player achieves more average throughput and suffers less average delay

but consumes more average energy than the PT player.

Proof. From lemma 3.4.5, uPT
i (1, p) lies above uEUT

j (1, p) and is concave when p ∈ [pint, 1].

Thus, by following a similar approach in theorem 3.4.6, it can be shown that the PT

player transmits less aggressively than the EUT player. Correspondingly, the EUT player

incurs higher average energy consumption than the PT player in the heterogeneous game.

Together with lemma 3.4.3 and 3.4.4, the claims regarding the players’ average throughput

and delay are also established.

Theorem 3.4.8. (Consequence (C3)) In a heterogeneous game, at the mixed NE, if

pH
i >

pj|{j}∑
i=1,2(pi|{i}−pi|{i,j})

for the PT player, the two players achieve less sum average

throughput, suffer more sum average delay and consume more sum average energy than



53

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−6

−4

−2

0

2

4

6

8

10

Player i’s opponent’s transmission probability p
j

U
til

ity
 (

P
la

ye
r 

i)
 

 

u
i
PT(1, p

j
)    α = 0.4

u
i
PT(1, p

j
)    α = 0.6

u
i
EUT(1, p

j
)

u
i
PT(0, p

j
) and u

i
EUT(0, p

j
)

pint

p
j
H

p
j
EUT

Figure 3.7: Players’transmission probabilities at the mixed NE. vi|{t,t} = −6, vi|{t,nt} = 10
and d = −4.

those of the corresponding homogeneous EUT game. In other words, the deviation of the

PT player harms the system performance in every aspect.

Proof. From theorem 3.4.6, it is already known that in the heterogeneous game, the PT

player chooses an identical transmission probability as the EUT players in the homogeneous

EUT game as pH
i = pEUT

i . However, the EUT player in the heterogeneous game becomes

more aggressive than that in the homogeneous EUT game as pH
j > pEUT

j . The two players’

sum average throughput, sum average delay and sum average energy can be written as:

Ts = pipjpi|{i,j} + pi(1− pj)pi|{i} + pipjpj|{i,j} + (1− pi)pjpj|{j} (3.16)

Ds = pipj(1− pi|{i,j}) + pi(1− pj)(1− pi|{i}) + 1− pi

+ pipj(1− pj|{i,j}) + (1− pi)pj(1− pj|{j}) + 1− pj (3.17)

Es = pi + pj . (3.18)

If pi >
pj|{j}∑

i=1,2(pi|{i}−pi|{i,j})
, then it can be easily verified that ∂Ts/∂pj < 0 and ∂Ds/∂pj >

0. Therefore, the sum average throughput function and sum average delay have been

shown as a decreasing and an increasing function of pj , respectively. Therefore, if pH
i >

pj|{j}∑
i=1,2(pi|{i}−pi|{i,j})

, then the two players in the heterogeneous game achieve less sum aver-

age throughput, suffers more sum average delay and consume more sum energy than that

of the homogeneous EUT game due to the increased aggressiveness of the EUT player.
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3.5 A 2-Player Homogeneous PT Wireless Random Access Game

In the above section 3.4.2, we studied the scenario when one player deviates from EUT in a

2-player wireless random access game, i.e., a 2-player heterogeneous game. In this section,

a more general scenario where both players follow the precept of PT is further analyzed.

As in our earlier work [32], a 2-player homogeneous PT wireless random access game has

been studied under a 0/1 collision channel model. We now extend this work by considering

the homogeneous game under a general collision channel model. Further, without loss of

generality, we assume that the two players, i.e., player 1, 2, both follow the precepts of PT

with probability weighting indices 1 > α2 > α1 > 0. Thus, both players’ utility functions

should be described as in (3.9) and the two utility functions differ only in the probability

weighting index. Similar to section 3.4, we will compare the 2-player homogeneous PT

game to a benchmark, i.e., the corresponding 2-player homogeneous EUT game. Note

that, for player i = 1, 2, her value function regarding a pure strategy profile stays the same

with all value functions being linear and about reference point 0 in both the homogeneous

PT and EUT games, i.e., vPT
i|{t,t} = vEUT

i|{t,t} = vi|{t,t} and vPT
i|{t,nt} = vEUT

i|{t,nt} = vi|{t,nt}.

3.5.1 The Existence and Uniqueness of Mixed NEs of a Homogeneous

PT Game

Before investigating the performance deviation of a 2-player homogeneous PT game from

the corresponding 2-player homogeneous EUT game, we first address the existence and

uniqueness of the NE.

Theorem 3.5.1. There exists a unique mixed NE [pP
1, p

P
2] for a homogeneous PT game

given vi|{t,t} < −di and vi|{t,nt} > 0 for i = 1, 2.

Proof. The existence of the NE in a homogeneous PT game can be proven by following

the same argument in theorem 3.4.1. Furthermore, given the identical condition as before,

i.e., vi|{t,t} < −di and vi|{t,nt} > 0 for i = 1, 2, it can be shown that ui(1, pj) is a decreasing

function of pj for i = 1, 2 as shown in (3.13). Since player j’s mixed strategy at the NE is

solved by equating ui(1, pj) = ui(0, pj) = −di and ui(1, pj) is a strictly decreasing function,

pHj must be uniquely determined. Thus, the mixed NE [pP
1, p

P
2] is also unique.
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3.5.2 A Homogeneous PT Game: More Consequences of Deviation from

EUT

In the following, we will compare the performance of the 2-player homogeneous game to

that of the 2-player homogeneous EUT game. Specifically, we will study the following

issues: (1) Performance differences between two PT players within the 2-player homo-

geneous PT game. (2) The difference on the performance of the whole system between

two games. Without loss of generality, in the 2-player homogeneous PT game, we assume

α1 = 0.5 and α2 = 0.8. For both games, two players randomly access the channel with

pi|{i} = pj|{j} = 0.98, pi|{i,j} = pj|{i,j} = 0.05, i = 1, 2. We begin with a special case where

there is no delay penalty for each player as c1 = c2 = c, e1 = e2 = e = 2, d1 = d2 = d = 0.

The system performances are studied and compared as a function of c/e.

In Fig. 3.8(a), the PT players in the homogeneous PT game are shown to transmit more

aggressively than the EUT players in the homogeneous EUT game. Note that, both the

EUT players have the same performance in the homogeneous EUT game due to the same

parameter setting. Further, it can be observed that the PT player that deviates less from

the EUT (i.e., with choice of α = 0.8) transmits more aggressively in the homogeneous PT
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Figure 3.9: Average throughput comparison at individual player level and system level.
Homogeneous PT game (α1 = 0.5, α2 = 0.8) and homogeneous EUT games are studied
and compared where no delay penalty is considered (d = 0).

game. As a result of the transmission aggressiveness of the PT players at the NE shown in

Fig. 3.8(a), the PT players consume more average energy than the EUT players as shown

in Fig. 3.8(b). Between the PT player, the one with a larger probability weighting index

(α = 0.8) consumes more average energy than the other PT player. More importantly,

the deviation of the PT players from EUT costs the system more energy at the mixed NE

compared to the homogeneous EUT game.

In Fig.3.9(a), the throughput performance difference between two PT players in the

homogeneous game is shown. The PT player that deviates less from EUT (α = 0.8)

achieves more average throughput than the one with a smaller probability weighting index.

On the system level, PT players in the homogeneous PT game also incur sum throughput

degradation compared to the homogeneous EUT game as shown in Fig.3.9(b).

While the above results are for the case of no delay penalty, we now study the perfor-

mance deviation of the PT game in a more general setting. Specifically, we consider a case

where unit throughput reward and unit delay penalty both vary while the unit energy cost

is fixed, i.e., c1 = c2 = c, e1 = e2 = e = 2, d1 = d2 = d = d. For comparison, we choose

pi|{i} = pj|{j} = 0.98, pi|{i,j} = pj|{i,j} = 0.05, i = 1, 2 for PT players and EUT players in

both games. In the homogeneous game, we choose α1 = 0.5 and α2 = 0.8 so that PT player
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Figure 3.10: A homogeneous PT game (α1 = 0.5, α2 = 0.8) and a homogeneous EUT
game are compared where unit throughput reward and unit delay penalty are non-zero.
In each figure, the order of plots are according to the order of the legends from top to
bottom.

1 deviates more from EUT than PT player 2. In Fig. 3.10(a), a similar trend in to that in

Fig. 3.8(a) can be observed. The PT players in the homogeneous PT game transmit more

aggressively than the EUT players in the homogeneous EUT game. Further, the PT player

deviating less from EUT (with a larger α) transmits more aggressively than the other one.

The difference in the transmission aggressiveness decreases as the unit throughput reward

and unit delay penalty increase. As a result of the transmission aggressiveness of the PT

players at the mixed NE, Fig. 3.10(b) shows that the homogeneous PT game suffers a sum

average throughput degradation compared to the homogeneous EUT game on the system
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level. This degradation becomes less severe as the unit throughput reward and unit delay

penalty increase. Within the homogeneous PT game, the PT player that deviates more

from EUT (with a smaller α) achieves less average throughput than the other one. In Fig.

3.10(c), homogeneous PT game suffers a greater sum average delay than the EUT game.

Within the homogeneous PT game, the PT player who deviates more from EUT (with

a smaller α) suffers a larger average delay than her opponent. Fig. 3.10(d) shows that

the deviation of the PT players of the homogeneous PT game also consumes the system

more average energy than that of the EUT game. Since average energy is proportional

to a player’s transmission aggressiveness, from 3.10(a), we can see that PT players in ho-

mogeneous PT game consumes more average energy than EUT players in the EUT game.

Within the homogeneous PT game, the PT player who deviates less from EUT consumes

more average energy.

The above results shown in Fig. 3.8(a)- 3.10(b) captures the behavior and performance

deviation of the PT players in the homogeneous PT game from the homogeneous EUT

game. Two distinct features on individual player and system levels can be summarized as

below:

• (C4) In the homogeneous PT game, the PT player that deviates less from EUT (with

a larger α) achieves more average throughput and suffers less average delay than the

PT player who deviates more from EUT. However, the PT player that deviates less

from EUT consumes more average energy.

• (C5) Similar to the observation from the heterogeneous game in section 3.4, the

deviation of both PT players in the homogeneous PT game still hurts the overall

system performance in every aspect. The homogeneous PT game achieves less sum

average throughput but suffers more average delay and incurs more average energy

than the homogeneous EUT game.

3.5.3 Analytical Insights into Consequence C4 - C5

In the following, we will analyze the above consequences of the deviation of the homoge-

neous PT game from EUT. The general idea and techniques used here are based on the
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results in subsection 3.4.3 section 3.4. The following lemma describes the features of the

utility functions of the PT players when they transmit with probability one.

Lemma 3.5.2. If vi|{t,t} = vj|{t,t} < 0, vi|{t,nt} = vj|{t,nt} > 0, there exists a unique

number pint ∈ (1/ρ, 1 − 1/ρ) (ρ denotes the Euler’s number here) such that uPT
i (1, pint) =

uPT
j (1, pint). Further, uPT

i (1, pj) ≤ uPT
j (1, pi) and uPT

i (1, pj) and uPT
j (1, pi) are convex

when pj , pi ∈ [0, pint), respectively. Meanwhile, uPT
i (1, pj) ≥ uPT

j (1, pi) and uPT
i (1, pj) and

uPT
j (1, pi) are concave when pj , pi ∈ [pint, 1].

Proof. This lemma shows that when both PT players transmit with probability one, the

two PT players’ utility functions have similar shape, i.e., first convex and then concave.

Further, the PT player with a smaller probability weighting index α has a utility function

of larger curvature than the other PT player that is a direct result from Fig. 3.1. Note

that, uPT
i (1, 1/ρ) = wi(1/ρ)vi|{t,t}+wi(1− 1/ρ)vi|{t,nt} < wj(1/ρ)× vi|{t,t}+wj(1− 1/ρ)×

vi|{t,nt} = uPT
j (1, 1/ρ). This holds because vi|{t,t} < 0, vi|{t,nt} > 0 and the probability

weighting function has the property that wi(1/ρ) = 1/ρ and wi(1 − 1/ρ) < wj(1 − 1/ρ).

Similarly, we can show that uPT
i (1, 1 − 1/ρ) = wi(1 − 1/ρ)vi|{t,t} + wi(1/ρ)vi|{t,nt} >

wj(1− 1/ρ)× vi|{t,t}+wj(1/ρ)× vi|{t,nt} = uPT
j (1, 1− 1/ρ). Thus, there must exist a point

pint ∈ (1/ρ, 1 − 1/ρ) such that uPT
i (1, pint) = uPT

j (1, pint) due to the continuities of both

uPT
i (1, pj) and uPT

j (1, pj). Similar to the proof of Lemma 5, the rest of the lemma can be

proven based on the definition of probability weighting function (3.3) and from Fig. 3.1

and the fact that both utility functions above are strictly decreasing functions. The above

properties can be seen in Fig. 3.6.

Theorem 3.5.3. (Consequence (C4)) In a 2-player homogeneous PT game, the P-

T player i who deviates more from EUT (with a smaller probability weighting index α)

achieves less average throughput, suffers more average delay but consumes less average en-

ergy than the other PT player j. Further, both PT players transmit more aggressively than

the EUT players of the corresponding homogeneous EUT game if vi|{t,t} = vj|{t,t}, vi|{t,nt} =

vj|{t,nt} and vi|{t,nt} > −ρdi + (1− ρ)vi|{t,t}.

Proof. From Theorem 3.4.6, it can be shown that given vi|{t,t} = vj|{t,t}, vi|{t,nt} = vj|{t,nt}

and vi|{t,nt} > −ρdi + (1− ρ)vi|{t,t}, at the mixed NE pP
i , p

P
j ∈ [pint, 1] and therefore pP

i < pP
j
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and pP
i , p

P
j > pEUT

i = pEUT
j . Moreover, from Lemma 3.4.3 and 3.4.4, it can be concluded that

player i achieves less average throughput and suffers more average delay. However, she

employs less energy than player j since she transmits less aggressively.

Theorem 3.5.4. (Consequence (C5)) Suppose the mixed NE of the homogeneous EUT

game [pEUT
i , pEUT

j ] is such that pEUT
i >

pj|{j}∑
i=1,2(pi|{i}−pi|{i,j})

. Then in a 2-player homogeneous

PT game, the two PT players achieve less sum average throughput, suffer more sum average

delay and consume more sum average energy than those of the corresponding homogeneous

EUT game. In other words, the deviation of the PT players in the homogeneous PT game

harms the system performance in every aspect.

Proof. From theorem 3.4.8, it is shown that if pj >
pi|{i}∑

i=1,2(pi|{i}−pi|{i,j})
, then ∂Ts/∂pi < 0

and ∂Ds/∂pi > 0. Consider a heterogeneous game derived from the homogeneous PT

game where player j becomes an EUT player. Then, pP
j = pH

j > pEUT
j and pP

i > pH
i since

player j faces the same opponent in the two games but player i faces different opponents.

Therefore, if pEUT
j >

pi|{i}∑
i=1,2(pi|{i}−pi|{i,j})

, it is true that pP
j >

pi|{i}∑
i=1,2(pi|{i}−pi|{i,j})

. Then, from

theorem 3.4.8, sum average throughput and sum average delay will be a decreasing and an

increasing function of pi at the mixed NEs, i.e., ∂Ts/∂pi < 0 and ∂Ds/∂pi > 0, respectively.

Thus, it can be concluded the homogeneous PT game achieves less sum average throughput

but suffers more average delay than the heterogeneous game as pP
i > pH

i . Together with

theorem 3.4.8, the statement in the theorem can be shown.

3.6 N-Player Homogeneous Games

We further consider a N-player symmetric homogeneous setting where all the players have

identical utility functions and experience the same channel conditions. Note that, the

N-player symmetric game reflects a realistic scenario where every player has a collective

(aggregated) view of the set of the players in the game. Further, analyzing and evaluating

the perceptions of each of the other N − 1 players is beyond the feasibility of a single

end-user’s action. We now state the following theorem.

Theorem 3.6.1. If each player’s utility function (3.6) is a strictly decreasing function

of her opponent’s transmission probability and neither {t} nor {nt} is the pure dominant
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strategy for each player, there exists a unique mixed NE for an N-player homogeneous

wireless random access game with symmetric utility functions.

Proof. The existence of the mixed NEs can be established by generalizing the results

in theorem 3.4.1. Since the game is symmetric, all the players share the identical utility

function, i.e., uPT
i (·) = uPT

j (·), ∀i ̸= j. Further, each player will choose the identical trans-

mission probability at the mixed NE. Otherwise, assuming there exists a mixed NE such as

p∗ = [p∗, ..., p∗i , ..., p
∗
j , ..., p

∗] and without loss of generality, two players have different trans-

mission probabilities, i.e., p∗i ̸= p∗j , at the mixed NE, we have uPT
i (1,p∗

−i) ̸= uPT
j (1,p∗

−j).

However, this contradicts the symmetry condition where at the mixed NE all the players’

utilities should be the same, i.e., −di = −d, ∀i ∈ N . By following the same rationale, it can

be shown that at the mixed NE, each player’s transmission probability must be equal. Nex-

t, we will show the uniqueness of this symmetric mixed NE. Assuming p∗ = [p∗, ..., p∗]N×1

and p′ = [p′, ..., p′]N×1 are two different mixed NEs for the game, we can establish that:

uPT
i (1,p∗

−i) = uPT
i (1,p′

−i) = −di, ∀i ∈ N , (3.19)

where p∗
−i and p′

−i denote the i-th player’s opponent transmission probability vector, i.e.,

p∗
−i = [p∗](N−1)×1 and p′

−i = [p′](N−1)×1. If p∗ < p′, it can be shown that uPT
i (1,p∗

−i) >

uPT
i (1,p′

−i) since uPT
i (·) is a strictly decreasing function of each i-th player’s opponent’s

transmission probability. If p∗ > p′, uPT
i (1,p∗

−i) < uPT
i (1,p′

−i). Thus, if p∗ ̸= p′, (3.19)

will not be established and a contradiction exists. Then, the mixed NE of the N-player

symmetric homogeneous wireless random access game is shown to be unique. Note that,

an N-player symmetric homogeneous EUT game is just a special case where every player’s

probability weighting index is 1.

In the following example, we compare the characteristics of mixed NEs of 3-player

homogeneous PT and homogeneous EUT games where αi = 0.6, pi|{i} = 1 and pi|J (a) =

0, ∀J (a) \ {i} ̸= ∅, ∀i ∈ N . Further, we assume e = d = 2 and c varies as multiples of e.

Note that, due to symmetry, the three players in either PT or EUT games have identical

performance.
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Figure 3.11: Average throughput comparison between PT and EUT Games. All the players
in the each game have the same average throughput due to the symmetry.

From Fig. 3.11, it can be observed that the players in the homogeneous EUT game

achieve higher individual and thus sum average throughput than that in the homogeneous

PT game. Moreover, the homogeneous PT game is also observed to have larger individual

and sum average delay and average energy consumption than the homogeneous EUT game.

However, the uniqueness of the mixed NE can still be established for the scenario where

N = 3. Assuming p1 = [p∗1, p
∗
2, p

∗
3] and p2 = [p′1, p

′
2, p

′
3] are two different mixed NEs, it can

be established that:

uPT
1 (1, p∗2, p

∗
3) = uPT

1 (1, p′2, p
′
3) = −d1 (3.20)

uPT
2 (p∗1, 1, p

∗
3) = uPT

2 (p′1, 1, p
′
3) = −d2 (3.21)

uPT
3 (p∗1, p

∗
2, 1) = uPT

3 (p′1, p
′
2, 1) = −d3. (3.22)

Without loss of generality, we can assume that p∗2 < p′2 and p∗3 > p′3. To establish (3.21),

it is necessary that p∗1 < p′1. Then, (3.22) cannot be established since uPT
3 (p1, p2, 1) is

a strictly decreasing function of p1 and p2. Thus, (3.20) - (3.22) can be simultaneously

established only when p1 = p2.
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Chapter 4

Impact and Influence of Prospect Theory on Data Pricing

We start from a basic two-tier data pricing scheme as shown in Fig. 4.1. The service

provider charges the end users by providing them with data services. After the service

provider announces the pricing scheme to the end users, the end users make the decision

on how to utilize this service. Depending on the detailed design, the response could be

whether using the service or not, the frequency to use the service, the probability to use the

service and etc.. Then, the end users will utilize the resources according to their decisions

and the wireless network is operated at a corresponding point. The service provider will

collect the fees and information on the status of the whole network. Then, depending on

the designer’s or operator’s objective, the service provider can adjust the pricing scheme to

push the whole network working at an optimal point, e.g., the service provider can collect

the most revenues.

In this work, we extend the above exemplary wireless random access model to study

the data pricing scheme. Similarly, the practical pricing schemes in the real systems resort

much more complex designs and operations. However, given the complexities of the end

users’ behaviors, these unnecessary details will not help us better understand the role

of PT in the data pricing scheme at the initial stage. Therefore, we further utilize this

random access example to study the impact of end users’ behaviors on the data pricing

schemes.

At the service provider level, the service provider’s utility function is composed of two

parts, i.e., the revenue R(p) and the cost C(p) where p is the vector of probabilities of

the transmission for all the end users as in the above wireless random access game. p

actually captures the willingness of end users to utilize the data services. The revenue

R(p) and the cost C(p) are both the results of end users’ decisions on how to utilize the
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Figure 4.1: A Two-tier Wireless Data Service Pricing Model

data services. In general, C(p) should be an increasing function of p. However, the exact

forms of R(p) and C(p) depend on the specific data pricing schemes and will be discussed

later. Generally, the service provider aims to maximize her profits as follows:

max
r

usp(p) = R(p)− C(p), (4.1)

where r = [r1, ..., ri, ...rN ] is the price vector imposed by the service provider and ri

represents the unit fee the i-th end user needs to pay to use the data service. Note that,

revenue and cost are both functions of transmission probability vector p that is a function

of the price vector r. Thus, the service provider’s decision on the price vector r can

determine end users’ usage on the network resources. The service provider can tune the

price vector r to obtain the optimal utility. In the current work, we consider a constant

operational cost for the service provider, i.e., C(p) is constant. Thus, the service provider’s
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revenue optimization problem can be further derived as:

max
r

usp(p) = R(p), (4.2)

In this work, we consider two pricing schemes, namely usage based pricing and through-

put based pricing schemes. The usage based pricing scheme allows the service provider

to charge the end users based on their actual usage of the resources. Per time slot, if the

i-th end user chooses to transmit, the service provider will charge ri for the data service.

Therefore, in each time slot, the service provider will collect a revenue as follows:

Ru(p) =
∑
i∈N

ripi, (4.3)

where ripi represents the expected fee the service provider can collect from the i-th end

user.

The throughput based pricing scheme only allows the service provider to charge the

end users on the successful transmissions. Per time slot, if the i-th end user chooses to

use the channel with probability pi, then the fee will only be charged proportional to her

final throughput. The exact form of the service provider’s revenue is as follows:

Rt(p) =
∑
i∈N

ripiTi, (4.4)

where Ti =
∑

a∈A

(∏
j∈J (a) pj

∏
j∈J c(a)(1− pj)pi|J (a)

)
is the expected throughput of the

i-th end user given she chooses to transmit in this time slot.

At the end user level, given the price announced by the service provider, the end users

decide to access the data services via a wireless random access game. Their final decisions

on how to use the services, i.e., the transmission probabilities, are reflected by the mixed

NE of the corresponding game. The resulting mixed NE, i.e., the transmission probability

vector p, and the price vector r compose of the operation point of the network. Therefore,

the mathematical model of the end user level is almost the same as the wireless random

access games discussed above in this chapter. However, the end users’ value functions for

a given strategy vector as shown in Eq. (3.4) should be modified to reflect the impact
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of pricing schemes on end users’ utilities. Note that, the end users in the data pricing

model are also players in their underlying wireless random access game. Hence, in the

following, “end user” is consistently used to avoid confusion of terms. For the usage based

pricing scheme, whenever the i-th end user chooses to transmit in the time slot, she will

be charged by the service provider by ri regardless of the delivery result. Therefore, her

value function given a strategy vector should be modified as follows:

vui|a =


pi|J (a)(ci − ei − ri) + (1− pi|J (a))(−ei − di − ri) if ai = t

−di if ai = nt,

(4.5)

where the notations carry the same physical meanings as in Eq. (3.4). For the throughput

based pricing scheme, the end user is charged only for her throughput. No fee will be paid

by the end user if the delivery of her packet is failed. Therefore, the i-th end user’s value

function is:

vti|a =


pi|J (a)(ci − ei − ri) + (1− pi|J (a))(−ei − di) if ai = t

−di if ai = nt.

(4.6)

As discussed in earlier part of this chapter, both PT and EUT players retain the same

value function. In other words, players in a usage based pricing scheme have the same

value function as shown in Eq. (4.5) regardless of their preferences over prospects, either

PT or EUT. The same holds true for the throughput based pricing scheme.

From the discussion in the wireless random access game regarding the impact of end

users’ behaviors, we have seen that the involved and intractable form of the probability

weighting function and the resulting utility functions usually make any analysis a difficult

task. Therefore, we start the study on the data pricing schemes from the a basic scenario,

e.g., a 2-user model. Moreover, we can spell out the mathematical models under different
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data pricing schemes. The service provider’s utility functions can be shown as:

uusp(p) =
∑
i=1,2

ripi (4.7)

utsp(p) =
∑
i=1,2

ripi(pjpi|{i,j} + (1− pj)pi|{i}), (4.8)

where the j-th user refers to the i-th user’s opponent.

Under the usage based pricing scheme, end user’s value function when the end user

transmits is as follows:

vui|{t,nt} = pi|{i}(ci − ei − ri) + (1− pi|{i})(−ei − di − ri) (4.9)

vui|{t,t} = pi|{i,j}(ci − ei − ri) + (1− pi|{i,j})(−ei − di − ri). (4.10)

Similarly, the value functions for the throughput data pricing scheme is as follows:

vti|{t,nt} = pi|{i}(ci − ei − ri) + (1− pi|{i})(−ei − di) (4.11)

vti|{t,t} = pi|{i,j}(ci − ei − ri) + (1− pi|{i,j})(−ei − di). (4.12)

Finally, the end user’s utility functions can be shown as follows:

uPT
i,u (p) = piwi(pj)v

u
i|{t,t} + piwi(1− pj)v

u
i|{t,nt} + (1− pi)(−di) (4.13)

uPT
i,t (p) = piwi(pj)v

t
i|{t,t} + piwi(1− pj)v

t
i|{t,nt} + (1− pi)(−di) (4.14)

uEUT
i,u (p) = pipjv

u
i|{t,t} + pi(1− pj)v

u
i|{t,nt} + (1− pi)(−di) (4.15)

uEUT
i,t (p) = pipjv

t
i|{t,t} + pi(1− pj)v

t
i|{t,nt} + (1− pi)(−di) (4.16)

where uPT
i,u (p) and uPT

i,t (p) denote a PT user’s utility function under usage based and

throughput based pricing schemes, respectively. Correspondingly, uEUT
i,u (p) and uEUT

i,t (p)

refer to an EUT player’s utility functions under both the data pricing schemes, respectively.

Mathematically, an EUT user’s utility function can be considered as a special case of a

PT user’s, i.e., the probability weighting index α = 1. In the following, we denote the

Usage-Based Pricing model as UBP where service provider maximizes Eq. (4.7) and end
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users maximize Eq. (4.15) or Eq. (4.13). Similarly, the Throughput-Based Pricing model

(TBP) can be defined. For each data pricing scheme, we will consider 2 scenarios: (1)

both end users are EUT users (denoted as UBP-EUT or TBP-EUT) and (2) both end

users are PT users (denoted as UBP-PT or TBP-PT). .

4.1 The Existence and Uniqueness of the Operating Point of a Two-

Level Data Pricing Model

According to the structure of the data pricing model, the existence and uniqueness of the

operating point is determined by the relationship among service provider’s price and end

users’ utility functions. Furthermore, given a service provider’s price vector r, the existence

and uniqueness of the operation point is equivalent to that of the mixed NE of the end-

user level wireless random access game. Therefore, the conclusions on the existence and

uniqueness of the operation point can be established as follows.

Theorem 4.1.1. There exists a unique operation point [r∗,p∗] for the UBP with either

PT end users or EUT end users if vui|{t,nt} > 0 and vui|{t,t} < −di for i = 1, 2.

Proof. The scenarios where both users are EUT, i.e., UBP-EUT, can be mathematically

considered as special cases of the scenario where both end users are PT users. Thus, we

will establish the existence and uniqueness of operation point for UBP-PT and that of the

other scenario can also be established. From theorem 3.4.1, it can be shown that, for a

fixed a pricing vector r = [r1, r2], if v
u
i|{t,nt} > 0 and vui|{t,t} < −di for i = 1, 2, there exists

a unique mixed NE [p∗1, p
∗
2] in the corresponding end user level game, i.e, a homogeneous

PT game. By applying Eq. (4.9) and Eq. (4.10) in the conditions, we can conclude that if

vui|{t,nt} = pi|{i}(ci−ei)+(1−pi|{i})(−ei−di) > ri and pi|{i,j}(ci−ei)+(1−pi|{i,j})(−ei−di) >

ri − di, there exists a unique operation point in UBP-PT. The same argument holds true

for UBP-EUT.

Corollary 4.1.2. There exists a unique operation point [r∗,p∗] for the TBP with either

PT end users or EUT end users if vti|{t,nt} > 0 and vti|{t,t} < −di for i = 1, 2.
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4.2 Impact and Influence of End-User Behavior on Usage Based Pricing

Scheme

In the above discussion over wireless random access game, it has been clearly shown that

end users’ behavior which usually deviates from EUT can obviously impact and change the

system and individual performance regarding throughput, energy and delay. As a result,

service provider’s utility will also be altered by this deviation. In the following, we will

compare the end users’ actions and the service provider’s utility between two scenarios, i.e.,

UBP-EUT and UBP-PT. We will study the following issues: (1) Variations of operation

point of the data pricing scheme under the two scenarios and (2) Differences of service

provider’s utility at the operation point under the two scenarios. In the following, due

to the mathematical intractability mentioned in the chapter of wireless random access

game, we use numerical methods to demonstrate the characteristics of the pricing models

and comparison results. However, we also analytically prove and validate these findings

under mild conditions. Without loss of generality, in UBP-PT, we assume α1 = 0.5 and

α2 = 0.8. For both UBP-EUT and UBP-PT, two users randomly access the channel with

pi|{i} = pj|{j} = 0.98, pi|{i,j} = pj|{i,j} = 0.1, i = 1, 2. We begin with a special case where

there is no delay penalty for each user as c1 = c2 = c = 20, e1 = e2 = e = 2, d1 = d2 =

d = 0 and the price charged varies, i.e., r1 = r2 = r. As a result, vui|{t,nt} = vuj|{t,nt} and

vui|{t,t} = vuj|{t,t}. The system performances are studied and compared as a function of r/e.

Lemma 4.2.1. An end user’s utility when she chooses to transmit, i.e., uPT
i,u (1, pj) or

uEUT
i,u (1, pj), is a decreasing function of the charged price ri given a fixed pj.

Proof. Under the usage based pricing scheme, whenever the end user chooses to transmit,

she will be charged a unit price ri. A larger value of ri will result a less value of the user’s

utility. Moreover, given a fixed pj , it is true that ∂u
PT
i,u (1, pj)/∂ri = −(wi(pj)+wi(1−pj)) <

0. In particular, ∂uEUT
i,u (1, pj)/∂ri = −1 < 0. Thus, the statement is established.

The above lemma 4.2.1 can provide us with some hint about the influence of the price

r to the transmission probabilities. The transmission probabilities at the mixed NE is

determined by solving uPT
i,u (1, pj) = −di or uEUT

i,u (1, pj) = −di. Thus, a decrease in the
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value of uPT
i,u (1, pj) or uEUT

i,u (1, pj) must result smaller transmission probabilities at the

mixed NE. This qualitative argument can be shown as in the following figure. In Fig. 4.2,

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r/e

T
ra

ns
m

is
si

on
 P

ro
ba

bi
lit

y

Mixed NE Comparison

 

 

PT User  α = 0.8 (UBP−PT)
 PT User  α = 0.5 (UBP−PT)
 EUT Users in UBP−EUT

pint

Figure 4.2: Transmission probabilities at the operation point for UBP

it can be seen that, in both UBP-EUT and UBP-PT, end users’ transmission probabilities

at the operation point decreases as price r increases. Further, as proven in theorem 3.5.3,

PT users in UBP-PT transmit more aggressively given vui|{t,nt} > −ρdi + (1 − ρ)vui|{t,t},

vui|{t,nt} = vuj|{t,nt} and vui|{t,t} = vuj|{t,t}. This indicates that the service provider will expect

a lower service utilization level if she charges a larger price if vui|{t,nt} > 0 and vui|{t,t} < −di

for i = 1, 2. This argument holds true for both EUT user and PT user scenarios and

can be analytically proven in theorem 4.2.2. Another interesting observation in Fig. 4.2

is that when the price charged becomes relatively large, the PT users in UBP-PT will

choose a more conservative utilization of the data services. In particular, there exists a

transmission probability where pEUT
i = pEUT

j = pPT
i = pPT

j = pint as shown lemma 3.4.5.

This phenomenon can be analytically proven in lemma 4.2.3 in a similar approach used in

theorem 3.5.3.

Theorem 4.2.2. End users’ transmission probabilities p1, p2 will be a decreasing function

of the price r, i.e., end users will choose a lower service utilization level if service provider

charges a larger price for both UBP-PT and UBP-EUT if vui|{t,nt} > 0 and vui|{t,t} < −di
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for i = 1, 2.

Proof. End user i’s transmission probability pi at the operation point can be determined

by solving F(r, pi(r)) = vuj|{t,nt}wj(1− pi)+ vuj|{t,t}wj(pi)+ dj = 0. By differentiating both

sides with regard to r, it can be shown that ∂F/∂r + ∂F/∂pi · dpi/dr = 0. Finally, it is

true that

dpi/dr = −(∂F/∂r)/(∂F/∂pi) =
wj(pi) + wj(1− pi)

vuj|{t,nt}∂wj(1− pi)/∂pi + vuj|{t,t}∂wj(pi)/∂pi
< 0,

(4.17)

where wj(pi) + wj(1 − pi) > 0 and vuj|{t,nt}∂wj(1 − pi)/∂pi + vuj|{t,t}∂wj(pi)/∂pi < 0 as

shown in theorem 4.1.1.

Lemma 4.2.3. PT users in UBP-PT will use the data service in a less aggressive manner

than the EUT users in UBP-EUT if vui|{t,nt} > (1 + ρ)vui|{t,t} + ρdi, i = 1, 2.

Proof. The EUT users’ transmission probabilities in UBP-EUT can be easily determined

as pEUT
i = pEUT

j = pEUT =
−d−vu

i|{t,nt}
vu
i|{t,t}−vu

i|{t,nt}
. From lemma 3.4.5, it can be shown that

uPT
i,u (1, pj) ≤ uEUT

i,u (1, pj) and uPT
i,u (1, pj) is convex when pEUT < 1/ρ. As a result, the

horizontal line uPT
i,u (0, pj) = uEUT

i,u (0, pj) = −di must intersect with uPT
i,u (1, pj) at a point

pPT
j < pEUT

j = pEUT . Thus, the PT users will transmit less aggressively than the EUT

users in this scenario. Further, pEUT < 1/ρ is equivalent to vui|{t,nt} > (1+ρ)vui|{t,t}+ρdi.

In figure 4.3, the sum average throughput of both users are compared between UBP-

EUT and UBP-PT. The result shows that with usage based data pricing scheme, the

deviation of PT users from EUT still hurts the system performance in terms of throughput.

This is actually a direct result from theorem 3.5.4. In Fig. 4.4, service provider’s revenues

are shown for both UBP-EUT and UBP-PT as she charges varying prices to the end users.

It can be seen that service provider will gain more revenues when facing PT users when

she charges a relative small fee. However, if the service provider keeps increasing the

price, the revenue collected from PT users will drop more than that in the UBP-EUT.

This can be intuitively explained from Fig. 4.2 and service provider’s utility function

uusp(p) =
∑

i=1,2 ripi. This can be theoretically analysed in the following corollary.
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Corollary 4.2.4. If vui|{t,nt} = vuj|{t,nt} and vui|{t,t} = vuj|{t,t}, the service provider will obtain

larger revenue when facing PT users (UBP-PT) than that when facing EUT users (UBP-

EUT) given vui|{t,nt} > −ρdi + (1− ρ)vui|{t,t}. If vi|{t,nt} > (1 + ρ)vi|{t,t} + ρdi, the trend is

reversed and the service provider will obtain more revenue from EUT users in UBP-EUT.

Proof. The service provider’s revenue is defined as uusp(p) =
∑

i=1,2 ripi. Thus, given

the same r, the revenue is totally determined by the transmission probabilities of end

users. Thus, with the results in theorem 3.5.3 and lemma 4.2.3, the statement can be

established.

A more important result can be derived from Fig. 4.4 is the difference of optimal

operation points between UBP-PT and UBP-EUT. It can be seen that both UBP-PT

and UBP-EUT have unique optimal operation point. Meanwhile, the optimal revenue

collected from UBP-PT is slightly larger than that from UBP-EUT. However, the optimal

price charged in UBP-PT is slightly smaller than that in UBP-EUT. We can theoretically

analyze the above results as follows.

Theorem 4.2.5. The service provider’s revenue collected from UBP-EUT is a strictly

concave function of price r. As a result, there exists a unique optimal operation point in

UBP-EUT where the service provider obtains the largest revenue.

Proof. The second order derivative of service provider’s revenue from the i-th EUT us-

er to the price can be derived as ∂2(rpi)/∂r
2 = 2∂pi/∂r + d2pi/dr

2. Moreover, pi =

−d−vu
j|{t,nt}

vu
j|{t,t}−vu

j|{t,nt}
. Thus, it can be easily derived as ∂2(rpi)/∂r

2 = 2/(vuj|{t,t} − vuj|{t,nt}) < 0.

In other words, the service provider’s revenue from the i-th user is a strictly concave func-

tion of the price r and a unique optimal price can be found by equating ∂(rpi)/∂r = pi +

r/(vuj|{t,t}−vuj|{t,nt}) = 0, i.e., r∗ = vuj|{t,nt}+dj . The similar conclusion can be drawn for the

revenue collected from the j-th user. Hence, given vui|{t,nt} = vuj|{t,nt} and vui|{t,t} = vuj|{t,t},

a unique optimal price can be obtained as r∗ = vuj|{t,nt} + dj = vui|{t,nt} + di.

The similar observation regrading the uniqueness of the optimal price is made through

numerous numerical simulation for the UBP-PT. However, due to the mathematical in-

tractability of the utility function of PT users in UBP-PT, it is difficult to analytically
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prove this argument. We provide this result as the following proposition.

Proposition 4.2.6. There exists a unique optimal operation point in UBP-PT where the

service provider obtains the largest revenue.
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Figure 4.3: Sum Average Throughput at the operation point for UBP

In conclusion, for usage based pricing scheme, the type of the underlying users will

influence system performance and service provider’s revenue. First, a larger price will

discourage the users from using the data service for both UBP-EUT and UBP-PT. Second,

the deviation of PT users from EUT still degrades the system sum average throughput

under the data pricing scheme. Third, under mild conditions as in corollary 4.2.4, the

service provider will gain more revenue in UBP-PT than that in UBP-EUT for a small

price. However, as the price increases, the trend will be reversed. Finally, service provider

will find a unique optimal price to collect the most revenue in both UBP-PT and UBP-

EUT. The optimal revenue collected from UBP-PT is slightly larger than that in UBP-EUT

and the the optimal price in UBP-PT is slightly smaller than that in UBP-EUT.
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Figure 4.4: Service Provider’s Revenue for UBP

4.3 Impact and Influence of End-User Behavior on Throughput Based

Pricing Scheme

Unlike the usage based pricing scheme, the throughput based pricing scheme only charges

the end users for successful transmissions. In the following, we will compare the service

provider’s revenue and system performance between two scenarios, i.e., the end users are

both PT (TBP-PT) and the end users are both EUT (TBP-EUT). We follow a similar

approach as in above section 4.2. In the following, in TBP-PT, we assume α1 = 0.5 and

α2 = 0.8. For both TBP-EUT and TBP-PT, two users randomly access the channel with

pi|{i} = pj|{j} = 0.98, pi|{i,j} = pj|{i,j} = 0.1, i = 1, 2. We begin with a special case where

there is no delay penalty for each user as c1 = c2 = c = 20, e1 = e2 = e = 2, d1 = d2 =

d = 0 and the price charged varies, i.e., r1 = r2 = r. As a result, vti|{t,nt} = vtj|{t,nt} and

vti|{t,t} = vtj|{t,t}. The system performances are studied and compared as a function of r/e.

In the usage based pricing scheme, we have shown that a larger price charged by the

service provider will discourage the end users from using the data services for both PT

and EUT users. The same argument can also be established for the throughput based

pricing scheme as in the following lemma 4.3.1 and theorem 4.3.2. A numerical result can

be found in Fig. 4.5.
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Lemma 4.3.1. An end user’s utility when she chooses to transmit, i.e., uPT
i,t (1, pj) or

uEUT
i,t (1, pj), is a decreasing function of the charged price ri given a fixed pj.

Proof. Given a fixed pj , it is true that ∂uPT
i,t (1, pj)/∂ri = −(pi|{i,j}wi(pj) + pi|{i}wi(1 −

pj)) < 0. In particular, ∂uEUT
i,t (1, pj)/∂ri = −pi|{i,j}pj − pi|{i}(1 − pj) < 0. Thus, the

statement is established.

Theorem 4.3.2. End users’ transmission probabilities p1, p2 will be a decreasing function

of the price r, i.e., end users will choose a lower service utilization level if service provider

charges a larger price for both TBP-PT and TBP-EUT.

Proof. Similar to proof of theorem 4.2.2, it is true that

dpi/dr =
wj(pi)pi|{i,j} + wj(1− pipi|{i})

vtj|{t,nt}∂wj(1− pi)/∂pi + vtj|{t,t}∂wj(pi)/∂pi
< 0, (4.18)

where wj(pi)pi|{i,j}+wj(1−pi)pi|{i} > 0 and vtj|{t,nt}∂wj(1−pi)/∂pi+vtj|{t,t}∂wj(pi)/∂pi < 0

as shown in 4.1.2.
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Figure 4.5: Transmission probabilities at the operation point for TBP

Similarly, in throughput based pricing scheme, UBP-PT still suffers a sum average

throughput degradation due to PT users’ deviation from EUT compared to TBP-EUT as
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Figure 4.6: Sum Average Throughput at the operation point for TBP
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Figure 4.7: Service Provider’s Revenue for TBP
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shown in Fig. 4.6. Moreover, in throughput based pricing scheme the service provider’s

revenue is a linear function of the sum average throughput. Thus, it can be expected that

the service provider will obtain a larger revenue in TBP-EUT than TBP-PT for the same

price r charged under mild conditions shown in Fig. 4.7. This can be analytically proven

in the following theorem.

Theorem 4.3.3. If vti|{t,nt} = vtj|{t,nt} and vti|{t,t} = vtj|{t,t}, the service provider will obtain

a larger revenue when facing EUT users (TBP-EUT) than that when facing PT users

(TBP-PT).

Proof. From theorem 3.5.3 and 3.5.4, it is true that given vti|{t,nt} > −ρdi + (1− ρ)vti|{t,t},

vti|{t,nt} = vtj|{t,nt} and vti|{t,t} = vtj|{t,t}, TBP-EUT will reserve a larger sum average

throughput than that in TBP-PT. Moreover, utsp(p) =
∑

i=1,2 ripiTi = r
∑

i=1,2 piTi.

Thus, the service provider will obtain a larger revenue in TBP-EUT. Further, as shown in

lemma 3.4.5 and Fig. 4.5, as r increases, the revenue collected will also increase until both

TBP-PT and TBP-EUT arrive at the same transmission probability, i.e., pint. Beyond

this point, the revenue collected will decrease and TBP-EUT still generates more revenue

than TBP-PT.

From Fig. 4.7 and numerous numerical simulation, it can observed that there exists

unique optimal price in TBP-EUT and TBP-PT, respectively. Therefore, we have the

following proposition.

Proposition 4.3.4. There exist unique optimal operation points in TBP-PT and TBP-

EUT, respectively.

In conclusion, for the throughput based pricing scheme, we have the following results

under mild conditions. First, end users’ willingness to use the service will be discouraged

by a larger price for both TBP-PT and TBP-EUT. Second, TBP-PT suffers a sum average

throughput degradation compared to TBP-EUT. As a result, finally, the service provider

obtains a larger revenue in TBP-EUT than that in TBP-PT.

Finally, it is interesting to compare two pricing schemes, namely usage based pricing

and throughput based pricing, for two scenarios (end users are both PT or EUT). In
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Fig. 4.8, the revenues the service provider obtains in UBP-PT, UBP-EUT, TBP-PT and

TBP-EUT are shown and compared. It can be seen that for all the four scenarios, the

service provider can find an optimal price to achieve the largest revenue. In general,

the service provider requires a smaller price to achieve the optimal operation point in

usage based pricing scheme than throughput based pricing scheme. The optimal revenues

obtained in the four scenarios are similar. In particular, in the throughput based pricing

scheme, the service provider can achieve the same optimal revenue regardless the type of

the underlying users. This is a useful feature in pricing scheme design since the service

provider can employ the same pricing policy without worrying the valuation preference

of end users. However, it should be emphasized that there is obvious disparities between

the revenues when the optimal price cannot be applied. The service provider should also

consider this feature when designing pricing policy.
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Figure 4.8: Service Provider’s Revenue Comparison between UBP and TBP
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Chapter 5

Conclusion and Discussion

5.1 Summary and General Discussion on Future Work

In this dissertation, we have studied two important research topics motivated by the re-

cent development of CR technology, (i) resource allocation in multi-RAT enabled wireless

networks; and (ii) impact and influence of end users’ behaviors on the underlying protocol

design. In the first part of this dissertation (Chapter 2), we proposed a framework for

distributed resource allocation and admission control in a Cognitive Digital Home (CDH).

Two channel access models were considered in the CDH for addressing spectrum coex-

istence of legacy devices: (i) Pessimistic Controllability (PC) Model where the HG had

no influence over legacy devices, and (ii) Switched RAT (SR) Model where the HG had

perfect control of legacy devices. Two resource allocation problems (i) Maximizing Sum

Rate, and (ii) Maximizing Service Capacity were solved in a distributed manner to reduce

the sensing and computation burden. Distributed algorithms were designed using partial

dual decomposition techniques. A distributed power control scheme was developed for

efficient use of energy. Based on the pricing information obtained from the distributed al-

gorithms, an admission control scheme was designed to improve the system feasibility. The

extensive numerical simulation showed that the proposed resource allocation algorithms

could efficiently manage the spectral resources allocation in a CDH. The power control and

admission control schemes were also shown to greatly improve the system performance.

While this work presents an initial attempt at managing spectrum coexistence in a CD-

H, there are many challenging open issues that require further attention such as dynamism

and scaling in such networks. Moreover, as more novel data and multimedia services, e.g,

home automation, wireless HDMI and smart grid, are introduced into the digital home

and new radio access technologies in TV white space and 60 GHz radio, are developed for
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supporting them, efficient spectrum coexistence of multiple RATs becomes an interesting

and urgent task.

In the second part of this dissertation (chapter 3), we have provided a first step in

exploiting the role of Prospect Theory (PT) in wireless networks. Motivated by the in-

creasing amount of end-user control afforded in programmable radio devices, we have

envisioned a scenario where end-user actions essentially “interfere” with the underlying

engineered system design. In this part, as an exemplary scenario, we have considered a

random access game where players follow the precepts of Prospect Theory (PT), a the-

ory developed by Kahneman and Tversky to explain real-life decision making that often

deviates from the behavior expected under Expected Utility Theory (EUT). A specific

game where selfish players adjust their transmission probabilities over a random access

channel under throughput rewards, delay penalties and energy costs has been considered.

By analyzing the Nash Equilibrium (NE) achieved in a 2-player game, we have proved

under mild conditions, that deviations from EUT of any player results in degradation of

system throughput and increased delay and energy consumption. We have also studied

an N-player homogeneous game with symmetric utility functions and observed similar re-

sults at the NE. Moreover, the framework introduced in the above random access model

is extended to study an exemplary two-level data pricing model. We compare the service

provider’s revenues and system performances in the scenarios where end users follow the

precepts of PT and EUT, respectively. Two pricing schemes, namely per usage pricing

and per successful transmission pricing, are considered and studied.

The results in this work have only characterized the properties of the mixed NE under

both EUT and PT settings. An important aspect of wireless transmission in such net-

working scenarios is the need for distributed algorithms that can be used by the users in

making decisions about transmission probabilities. This future work will necessarily have

to rely on an algorithmic game theoretic formulation of the problems considered here or

consider heuristic distributed algorithms for updating the transmission probabilities using

local information available to the end users. The second important aspect that needs fur-

ther study is the characterization of the probability weighting functions (different from the

parametric weighting function used in this work) that are specifically pertinent to wireless
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device usage. This requires psychophysics experiments involving real wireless users and

devices and is a topic for future study.

In the third part of this dissertation (chapter 4), we provided an initial effort in ex-

ploiting the role of PT in data pricing schemes. We extended the wireless random access

model used in chapter 3 to a 2-tier wireless data pricing model. Two pricing schemes, one

that considers usage based pricing and another that considers throughput based pricing,

are studied and compared for two scenarios, i.e., end users both follow PT or EUT. We

have shown the differences in data service utilization and service provider’s revenues under

different scenarios. In general, a larger price will discourage the end users from using the

data service for both the EUT and PT users. This result may seem intuitive but it is

actually not straight-forward when the end users follow the precepts of PT. More impor-

tantly, we have shown that the optimal revenues collected by the service provider are of

similar amount for both pricing schemes with either PT or EUT end users. However, for a

given price, the type of end users (PT or EUT) will have a direct influence on the service

provider’s revenue that should be considered by the service provider when designing the

pricing policy. Similar to the topic on the role of PT in wireless random access, psy-

chophysics experiments involving real wireless users and devices are necessary in designing

and validating any novel pricing scheme that considers end-users’ real-life behaviors.

Chapter 3 and chapter 4 have provided very initial approaches to understanding and

perhaps exploiting the role of PT in wireless networks. We now provide some pointers to

future research directions.

5.2 An Extensive Discussion on the Future Work of Prospect Theory in

Wireless Networks

The current wireless random access game model with the Prospect Theory players focused

on the non-linear probability weighting effects of the users. A part of the future work

will adopt a more comprehensive model in [29] to address more features regrading the

value functions of the Prospect Theory players. A second part of the future work may

investigate the impact of users’ real - life decisions on the demand responsive pricing
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schemes of wireless data networks.

5.2.1 Extension on the Study of Effect of User Behaviors on Wireless

Random Access

In the current work (chapter 3), we use a linear value function for each player to calculate

their value regarding an outcome. Meanwhile, we assume zero as the reference point for

all PT players. However, this work can be extended by considering a more general value

function that is introduced in section 3.2. For convenience, we rephrase the PT theoretical

value function (Framing Effects) as follows: PT [25] states that in decision-making in

real life, the value of an outcome is determined by considering the relative gains or losses

regarding a reference point. PT also proposes that the value function should be a concave

function of gains and a convex function of losses with the convex part usually having a

steeper slope. In other words [25], ”losses looms larger than gains.” An exemplary value

function was introduced in [63] is as follows:

v(x) =


xβ if x ≥ 0

−λ(−x)γ ifx < 0,

(5.1)

where β, γ, λ are all parameters to tune the shape of the value function. Note that, x

represents the relative gains or losses here regarding a reference point. Also, other value

functions such as in [66] [67] [68] may also be used with caution. In particular, the current

work studied the behaviors of best- effort users with linear value functions. With the help

of framing effects, we could study the behaviors of the rate constrained user that has a

minimum data rate requirement Rmin
i , e.g., a user that wants to watch a high definition

video. Then, Rmin
i will serve as the reference point for the rate constrained user. For an

elastic user (best effort), zero could be set as a reference point.

5.2.2 Demand Responsive Pricing in Data Communication Networks

Demand responsive pricing [67] [68] [66] has been an important part of economics based

approaches to studying data communication network. A pricing scheme that incorporates
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customers’ demand is a key to precisely modelling data communication networks. However,

it has been proven that in everyday life, people tend to follow the precepts of PT to valuate

a prospect. Thus, it will be an interesting topic if we can incorporate PT into the demand

responsive pricing scheme of a data communication market. The basic idea here is that

whenever customers face uncertainty in the offered service from the service providers, the

differences between PT and EUT in every aspect of the market, e.g., behaviors of service

providers and users, should be significant and well studied. The associated results could

be utilized by the service provider to realize a larger revenue and improve her system

efficiency and by the spectrum policy manager to improve the social welfare. This work

should proceed step by step as follows:

1. A single Service Provider (SP) and a single user. The SP is assumed to be EUT

for now. A key issue here is to use PT to model the relationship between user’s

willingness of offer acceptance and a SP’s service offer. An example could be a

concept of Data Package (DP), i.e., the SP offers a data plan with two rate levels

Rmin, Rmax and a probability pa ∈ [0, 1]. This plan DP (pa) will offer the user data

rate Rmin with probability 1− pa and Rmax with probability pa. The expected data

rate the SP provides is E(DP (pa)) = paRmax+(1−pa)Rmin. The SP incurs a cost as

a function of the expected data rate she offers, i.e., csp(DP (pa)). This function could

be a convex function. Meanwhile, the SP charges a price for the DP as p(DP (pa)),

e.g., the price can be an increasing linear function of pa. At the user side, the user

will choose the DP that can give her the maximum non-negative utility. The user

actually faces a prospect and PT will determine how she valuates every DP. Thus,

given a SP’s price for a DP, e.g., p(DP (pa)):

max
pa∈[0,1]

ui(DP (pa)) = wi(pa)vi(Rmax, p(DP (pa))) + wi(1− pa)vi(Rmax, p(DP (pa))),

(5.2)

s.t. ui(DP (pa)) > 0,

where wi() is the PT user’s probability weighting function. vi() is her value function

towards a data rate and its associated price. The user will accept a DP (the pa)
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that generates maximum utility to her. Therefore, the SP’s offered price p(DP (pa))

actually influences the user’s demand pa. The interesting issue here is to compare

the demand difference between an EUT user and a PT user.

2. A Single Service Provider and Multiple Users. The interactions between a SP and

users could be studied as a Stackelberg game. The SP is the leader and she knows the

users responsive demands regarding the price she sets. There are two scenarios for SP

to calculate the users demands regarding a fixed price: (1) the method used in single

SP and single user scenario. (2) the users can form a user-level game and they arrive

at a demand vector ( NE of that game) to the SP. The user locally tries to maximize

her utility while subjecting to the constraints. The SP tries to maximize her revenue

by setting the proper price with the knowledge about the users’ responsive demands.

Two novel topics of significant importance can be studied: (1) Differences in terms

of SP and users behaviors between two systems, a system with all EUT users and a

system with all PT users. The latter one may be a better description for the data

communication market than the prior one. (2) Facing a user group of both PT and

EUT players, what should the SP do to maximize her revenue?

3. Multiple Service Providers Competition. This work can be used to model the compe-

tition among multiple SPs and their interactions with users. The SPs compete with

each other by setting prices for their offered data service and the users choose the

optimal data service (quantity) according to the offered prices. Similarly, the impact

and influence of end-user behaviors on every aspect of the system and individual

performance is an interesting and profound research topic.
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Appendix A

Notations in Chapter 2

• CDH Cognitive Digital Home

• HG Home Genie Node

• RAT Radio Access Technology

• MPR Multi-Platform Radio

• CR Cognitive Radio

• MSR Maximizing Sum Rate Problem

• MSC Maximizing Service Capacity Problem

• PC Pessimistic Controllability Model

• SR Switched RAT Model

• API Average Pricing Index admission control

scheme

• D-PCM Distributed Algorithm for PC-

MSR(PC-MSC)

• D-SRM Distributed Algorithm for SR-

MSR(SR-MSC)

• GSM Global Spectrum Map

• K the set of services

• M the set of channels

• T the set of RATs

• x(k, i, t) the indicator whether service k oc-

cupies channel i with RAT t

• l(k, i, t) the portion of channel for service k

on channel i with RAT t

• P (k, i, t) the service k’s transmit power on

channel i with RAT t

• RP (k, i, t) the theoretical physical rate of ser-

vice k on channel i with RAT t

• R(k, i, t) the effective rate service k can

achieve on channel i with RAT t

• X the k-th row is xk as in (2)

• L the k-th row is lk as in (3)

• wi bandwidth of channel i

• hi
k service k’s channel gain on channel i

• N0 noise level

• Rmin
k service k’s minimum data rate require-

ment

• Pt nominal transmit power for RAT t

• Pmax
k service k’s maximal transmit power

• PIk(itr) service k’s pricing index in itr-th

claim iteration

• Pmax
t RAT t’s maximal transmit power

• MaxItr the threshold for the number of re-

source claim iterations
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