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ABSTRACT OF THE DISSERTATION

Differential Privacy: An Exploration of the Privacy-Utility

Landscape

by Darakhshan J. Mir

Dissertation Director: Rebecca N. Wright

Facilitating use of sensitive data for research or commercial purposes, in a manner that

preserves the privacy of participating entities, is an active area of study. Differential

privacy is a popular, relatively recent, framework that formalizes data privacy. In this

dissertation, I examine the often conflicting goals of privacy and utility within the

framework of differential privacy. The contributions of this dissertation fall into two

main categories:

1) We propose differentially private algorithms for several tasks that could poten-

tially involve sensitive data, such as synthetic graph modeling, human mobility mod-

eling using cellular phone data, regression, and computing statistics on online data.

We study the tradeoff between privacy and utility for these analyses—theoretically

in some cases, and experimentally in others. We show that for each of these tasks, both

privacy and utility can be successfully achieved by considering a meaningful tradeoff

between the two.
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2) We also examine connections between information theory and differential pri-

vacy, demonstrating how differential privacy arises out of a tradeoff between infor-

mation leakage and utility. We show that differentially private mechanisms arise out

of minimizing the information leakage (measured using mutual information) under

the constraint of achieving a given level of utility. Further, we establish a connection

between differentially private learning and PAC-Bayesian bounds.
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1

1

Introduction

“Indeed, we appear to be in the midst of a massive collision between unprecedented in-
creases in data production and availability about individuals and the privacy rights of
human beings worldwide, most of whom are also effectively research subjects.”

– Gary King [71].

Data contributed by individuals is becoming increasingly central to scientific in-

quiry. Privacy concerns, however, prevent the fullest use of this data. Debates about

tension between individual privacy and use of data for research and analysis, in fields

as varied as social science [71], genomics [49], and library studies [98] are already un-

derway. While use of individuals’ data raises ethical and technical questions about pri-

vacy, reluctance towards contributing such data creates hurdles in scientific progress

and sharing of knowledge. Scientific, social, governmental and legal institutions,

therefore, have a sustained interest in examining questions of potential use of data

while providing privacy to the participating individuals. For example, a report pub-

lished by the National Academy of Sciences [120] that aims at examining “privacy

in the information age”, in a “deep, comprehensive and multidisciplinary” manner,

raises the following questions:

“How are the threats to privacy evolving, how can privacy be protected, and
how can society balance the interests of individuals, businesses, and government
in ways that promote privacy reasonably and effectively?”

Such discussions are not just academic; several business decisions have been af-

fected by this concern. In 2006, for example, the online movie rental and streaming
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service Netflix announced a contest with a million dollar prize for a movie prediction

algorithm that would improve their in-house prediction algorithm by at least 10%.

To encourage wider participation, Netflix published an “anonymized” subset of cus-

tomers’ movie rating data. The contest was a commercial and scientific success with a

wide array of researchers making use of the large dataset in several ways. Two win-

ning teams were announced [13] whose prediction algorithms showed a significant

improvement in the accuracy of predictions. The contest also succeeded in spurring

other research in the area of recommender systems; see Korolova’s Ph.D. thesis [72]

for a detailed discussion. However, in 2008, Narayanan and Shmatikov [94] showed

how to de-anoymize users in the published Netflix dataset by correlating it with non-

anonymous movie reviews on the Internet Movie Database (IMDb). They showed that

with 8 movie ratings, 99% of records in the published database could be uniquely iden-

tified and with two ratings as many as 68%. This led to widespread concern among

privacy advocates and society, in general, leading to a Jane Doe lawsuit—one in which

Narayanan and Shmatikov’s work [94] was extensively cited—by a closeted lesbian

who claimed that she did not “want her sexuality nor interests in gay and lesbian

themed films broadcast to the world” and that Netflix has violated her (and other sub-

scribers’) privacy. As a result of the lawsuit, Netflix decided to cancel the second phase

of this competition [57].

The Netflix case illustrates both the scientific potential of such datasets containing

individuals’ sensitive data as well as the fallouts of not carefully considering privacy

issues. The fundamental question we have to contend with is whether such uses of

data can still be compatible with privacy? In view of such widely known privacy de-

bacles, how can we persuade data owners and stakeholders to contribute their data to

analyses? What risks do individuals face when their data are used? How can privacy-

preserving solutions mitigate these risks? What kinds of data analyses can be done
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privately?

To answer these questions, one must first quantify and define privacy, and develop

a formal framework that facilitates its deployment. In this thesis we will use differential

privacy [33] as our notion of privacy. We will explain this notion and our motivations

for using it in more detail in Chapter 2. The fundamental question raised by the Net-

flix case—of whether data utility can be achieved along with privacy— is a central

question that pervades this thesis.

We briefly note that privacy means different things in different contexts. Through-

out the thesis, we will assume a setting where information is released to the intended

party. The privacy questions that concern us are inferential in nature, that is, what

(other) sensitive information about participating individuals can be inferred from this

legitimate piece of information, often by possibly combining it with arbitrary auxiliary

information?

1.1 Overview of thesis contributions

Using differential privacy as our notion of privacy, we examine how privacy and util-

ity relate to each other and whether in various contexts of data analyses there can be

a meaningful tradeoff between the two. Specifically, our contributions fall into two

categories. In Section 1.1.1 we summarize the first part of the thesis—of studying

the privacy-utility tradeoff for differentially private algorithms in various settings. In

Section 1.1.2 we summarize the second part—of locating the meaning of this privacy-

utility tradeoff in an information theoretic framework
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1.1.1 Differentially private algorithms and the utility-privacy tradeoff

We examine the privacy-utility tradeoff for data analyses that include both interac-

tive and non-interactive settings. Chapters 3, 4 and 5 consider the question in a non-

interactive setting, where statistical information about a dataset is published once.

Chapter 6 considers the interactive setting in which a user poses queries to a data

curator who responds with answers to such queries.

In Chapter 3 we examine the privacy-utility tradeoff in the case of graph data—

data that have associations between entities, such as social networks. Here the non-

interactive setting is particularly appealing. For example, access to a suitably “trans-

formed” social network may help researchers track the spread of an epidemic or a

sexually-transmitted disease in a community. We take recourse to techniques in the

random graph modeling literature to generate representative synthetic graphs that

also achieve a given level of differential privacy. Using tools from statistical infer-

ence, we assume that an observed graph is generated from an underlying, but un-

known, probability distribution. Given a graph, that is treated as a sequence of ob-

servations in such a model, our goal is to infer the (parametrized) distribution itself.

The choice of a model is typically guided by empirical and theoretical considerations

of how well the model captures key properties of real-world graphs. For our purpose,

we use Leskovec et al.’s stochastic Kronecker graph model [77, 78] that effectively

models salient features of real-world graphs. We empirically show that in the stochas-

tic Kroencker graph model, one can achieve a differentially private estimation of the

generating probability distribution that retains the utility of the original estimation

proposed by Leskovec et al. [77] in terms of matching several statistics of the original

graph. We demonstrate experimentally that for a meaningful level of privacy, we can

still approximate statistics that the original Kronecker model did with high accuracy.

This is joint work with Rebecca N. Wright [93, 93].
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In Chapter 4 we turn our attention to study the utility-privacy tradeoff in the con-

struction of models of human mobility in metropolitan areas. Models of human mobil-

ity have wide applicability to areas such as infrastructure and resource planning, anal-

ysis of infectious disease dynamics and ecology. We demonstrate that using an earlier

mobility model named WHERE (Work and Home Extracted REgions) [62] drawn from

real-world and large-scale (cellular phone) location data, we can construct a differen-

tially private model of human mobility (called DP-WHERE) while still retaining the

good utility of the original WHERE model. We study the privacy-utility tradeoff in

this setting showing that differential privacy can be achieved for a modest reduction

in accuracy. We do this by generating commuting patterns for synthetic users in a geo-

graphical area over a period of time. In particular, across a wide array of experiments

involving 10,000 synthetic users moving across more than 14,000 square miles, the dis-

tance between synthetic and real population density distributions for various levels of

privacy in Differentially Private-WHERE (DP-WHERE) differ by only 0.17–2.2 miles

from those of the original WHERE approach. This is joint work with Ramón Cáceres,

Sibren Isaacman, Margaret Martonosi and Rebecca N. Wright [91].

In Chapter 5 we study the problem of differentially private regression, a supervised

learning task concerned with the prediction of continuous quantities. The training set

for this task consists of individuals’ sensitive data. For example, consider a database

that contains individuals’ data on their smoking frequencies and associated risk of

lung cancer. Using this data—the training data—we would like to determine a func-

tion that predicts an individual’s risk of lung cancer given her smoking frequency. This

function is learned by using individuals’ private data, but clearly has great social bene-

fit. Adapting techniques from Gaussian regression, we propose a differentially private

mechanism for linear regression. We achieve this by introducing a novel “relaxed”

exponential mechanism that may be of independent interest. The utility of differentially
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private regression is measured using the expected risk of the predictor. Exploiting a

connection between Gaussian regression and ridge regression helps us achieve util-

ity bounds that, unlike previous work, do not always depend on the dimensionality

of the predictor or feature space. This makes our technique useful in high dimen-

sion problems—where the norm of the “true” predictor is known to be small. We

also experimentally demonstrate the performance of our privacy preserving scheme

on real-world data.

In Chapter 6, we turn to the online interactive setting. Consider online data, where

we track data as it gets inserted and deleted. There are well developed notions of

private data analyses with dynamic data using differential privacy. We want to go be-

yond privacy, and consider privacy together with security, formulated as pan-privacy

by Dwork et al. [34]. Informally, pan-privacy preserves differential privacy while com-

puting desired statistics on the data, even if the internal memory of the algorithm is

compromised (say, by a malicious breakin or insider curiosity or by fiat by the govern-

ment or law). We study pan-private algorithms for estimating the distinct count statistic

on dynamic data with both insertions and deletions. We present the first known pan-

private algorithm for approximating the distinct count statistic, where both positive

and negative updates are made. Our algorithm relies on a sketching technique popu-

lar in streaming, to which we add suitable noise, using a novel approach of calibrating

noise to the underlying problem structure and the projection matrix of the sketch. This

is joint work with Aleksandar Nikolov, S. Muthukrishnan, and Rebecca N. Wright [92].

1.1.2 Differential Privacy and Information theory

Any algorithm that releases a data statistic or any useful approximation of it leaks

some information (in the information-theoretic sense) about participating individuals.
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How can this information leakage be traded against the utility that the algorithm pro-

vides, and what is the relationship of this framework to differential privacy?

Chapter 7 characterizes differentially private mechanisms in terms of this utility-

leakage tradeoff. We observe that differentially private mechanisms arise out of min-

imizing the information leakage (measured using the information-theoretic notion of

mutual information) while trying to maximize ”utility”. The notion of utility is cap-

tured by an abstract distortion function that measures the “distortion” between the

input and the output of the mechanism. This also helps us relate differentially private

mechanisms to the rate-distortion framework in information theory.

Chapter 8 examines similar tradeoffs in the specific context of differentially private

learning. Such tradeoffs help us establish a connection between differentially private

learning and the field of PAC-Bayesian learning. In machine learning, generalization

bounds provide an upper bound on the true risk of a predictor θ in terms of a) its empir-

ical risk on the training data Ẑ, b) some function of a measure of the complexity of the

predictors, and c) a confidence term τ ∈ [0, 1]. Given such a (hopefully tight) upper

bound, one can then compute the predictor that minimizes it. In bounds such as the

VC-Dimension bounds, (see, for example, [7]) the data-dependencies only come from

the empirical risk of the predictor on the training set. This allows the difference be-

tween the empirical risk and the true risk to be bounded uniformly for all predictors in

this class. As a result such bounds are often loose. For “data-dependent” bounds, on

the other hand, the difference between the true risk and the empirical risk depends on

the training set Ẑ. In data-dependent bounds such as PAC-Bayesian bounds possible,

prior knowledge is incorporated into a model that places a prior distribution on the

space of possible predictors. This is then updated to a posterior distribution after ob-

serving the data. We show that under certain assumptions, the randomized predictor

that optimizes the PAC-Bayesian bounds is differentially private thus establishing the
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equivalence between PAC-Bayesian learning and differentially private learning. This

helps us propose generalization bounds for different differentially private machine

learning tasks. For example, the utility bounds in Chapter 5 can also be achieved in

this manner.
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2

Background and Related Work

“I’m in the database but nobody knows.”

– Cynthia Dwork1

In this chapter we briefly survey the history of quantifying privacy and the devel-

opment of the notion of differential privacy. In Section 2.2 we formally define differen-

tial privacy and survey some of the techniques known to achieve differential privacy

which we will use in the rest of the thesis. In Section 2.4 we review an extension of dif-

ferential privacy called pan-privacy. We briefly summarize related work on differential

privacy in Section 2.5, but describe it in more detail in the relevant chapters.

2.1 Why quantify and formalize privacy?

The Netflix fallout discussed in Chapter 1 shows that ad-hoc, even well-intentioned,

methodologies employed with the hope of preserving individuals’ privacy do not al-

ways work. Organizations that use (and especially seek to publish) individuals’ sen-

sitive data need to carefully consider and think through privacy issues. There is need

for a rigorous, robust definition of privacy that provides clear and quantifiable guar-

antees.

Even before the ubiquity of datasets containing individuals’ sensitive information

1 http://cyber.law.harvard.edu/interactive/events/luncheon/2010/09/dwork

http://cyber.law.harvard.edu/interactive/events/luncheon/2010/09/dwork
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analysts, researchers, and policy makers had been grappling with the issue of data pri-

vacy. Modern technology that enables massive generation and storage of individuals’

data, and networking between sources of data, exacerbates this condition in ubiquity

and scale, but some of the fundamental issues remain the same. For example, fed-

eral and state agencies have been collecting data, called microdata, on individuals for

many decades. These collections are critical for social planning, research and develop-

ment. The United States Census Bureau collects a variety of information on individu-

als and businesses—information that is used by federal, state and local governments

to make important social and economic decisions. This information is intended to be

disseminated either as microdata or summary data to both the public and interested

researchers. Some of the earliest work on privacy stems from complex ethical, legal,

and scientific needs of these organizations (see [28], for example). One of the motiva-

tions of this body of research was that if potential participants (whose data is being

collected) are not assured of confidentiality, their responses might not be candid. Con-

sider, for example, a local government planning an AIDS clinic in a specific neighbor-

hood based on responses to a survey that asks sensitive questions. As early as 1965,

Warner [121] proposed ways to allow participants to respond to questions on sensi-

tive issues (such as a sexually transmitted disease or use of drugs) while maintaining

confidentiality

Such concerns in the statistical community have given rise to a body of literature

in Statistical Disclosure Control (SDC) methods [28, 56]. In 1977 Dalenius formulated

disclosure in the following manner [25]:

“If the release of the statistic S makes it possible to determine the value [of con-
fidential statistical data] more accurately than is possible without access to S, a
disclosure has taken place.”

We will revisit this formulation in Section 2.2, see why it is an unachievable notion

of privacy, and how it can be suitably modified to define “achievable privacy”.
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SDC techniques are defined in the glossary on Statistical Disclosure Control [38]

as:

“the set of methods to reduce the risk of disclosing information on individuals,
businesses or other organizations. Such methods are only related to the dissem-
ination step and are usually based on restricting the amount of or modifying the
data released.”

While this stream of work seeks to define and identify privacy and “privacy br-

eaches”, a salient shortcoming is the lack of a unifying principle. Different kinds of

disclosure are identified and sought to be mitigated by making various assumptions,

that may not always hold in reality. Often, models of background knowledge assumed

are short-sighted leading to subsequent attacks on these definitions.

One of the first such attacks was by Latanya Sweeney [114] who carried out a link-

age attack on “sanitized” published data. The US Census Bureau routinely released

data stripped of directly identifying information (such as social security numbers),

leaving fields such as the 5-digit zip code, the gender and date of birth intact. These

were believed to be innocuous attributes that did not directly identify an individual in

a database. Using the 1990 US census data [114] Sweeney showed that for 87% of the

US population, a combination of these three attributes was enough to uniquely iden-

tify them. Further, she carried out a linkage attack on supposedly anonymized data

that consisted of these three attributes (among others). She started with anonymized

data released by the Massachusetts based Group Insurance Commission (GIC) respon-

sible for purchasing health insurance for state employees. She then correlated this

database with a voter registration list that included the name, address, ZIP code, birth

date, and gender of each voter. By linking the two databases she was able to identify

the medical records of William Weld, then the governor of Massachusetts.

This attack led to a subsequent formalization of privacy that seeks to mitigate
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the risks of re-identification because of such linkage attacks. The notion of quasi-

identifiers [115] was used to capture the fact that a combination of information other

than direct identifiers (such as name or social security numbers) may help in uniquely

identifying an individual among a population. For example, for the US population the

combination of ZIP code, birth date and gender constitutes a quasi-identifier. Sweeney

developed a notion of privacy called k-anonymity [115] to prevent the kinds of linkage

attacks she used to identify William Weld’s medical records. Informally, a published

data set is k-anonymous if every tuple in the dataset looks exactly like k − 1 others

with respect to their quasi-identifiers.

Even though k-anonymity thwarts linkage attacks that Sweeney carried out, it does

not prevent other kinds of attacks. If because of some background information, an ad-

versary knows that a particular individual appears in a database, then they might

be able to learn some sensitive piece of information about them. For example, if

because of background knowledge an adversary can locate an individual among a

group of k-anonymous tuples, each of whom suffer from AIDS, then something sen-

sitive about the individual has been learned. Machanavajjhala et al. [82] study some

of the shortcomings of k-anonymity using homogeneity and background knowledge at-

tacks. Subsequently, other notions of privacy in the literature such as `-diversity [82]

and t-closeness [79] were developed, each addressing shortcomings identified in the

preceding definition.

2.2 The case for differential privacy

The history of privacy research is rife with formalizations of notions of privacy, whose

weaknesses and inadequacies are revealed in subsequent attacks. While these defini-

tions such as k-anonymity [115], `-diversity [82] and t-closeness [79] themselves have

not been successful in the sense of being robust to different assumptions, they have
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taught us that modeling the background knowledge an adversary may possess is very

hard. It has become clear that basing a privacy definition on assumptions about the

background information of an adversary is a perilous path. It would, therefore, be

worthwhile to strive for a notion of privacy that is independent of such assumptions.

This is particularly important in the case of privacy because, unlike cryptographical

settings, there is no real distinction between a legitimate recipient and an attacker, in

terms of what information about the database is communicated to them.

With this in mind, let us revisit Dalenius’s formalization of privacy. Dalenius rea-

soned that if, because of a released statistic, something sensitive has been learned

about an individual that would not have been possible without access to this statistic,

then a privacy breach has occurred. While at first sight, this sounds like a reasonable

expectation of privacy, Dwork [37] presents the following scenario to illustrate why

this notion is unachievable.

“Suppose we have a statistical database that teaches average heights of popu-
lation subgroups, and suppose further that it is infeasible to learn this informa-
tion (perhaps for financial reasons) in any other way (say, by conducting a new
study). Finally, suppose that ones true height is considered sensitive. Given the
auxiliary information “Turing is two inches taller than the average Lithuanian
woman,” access to the statistical database teaches Turing’s height. In contrast,
anyone without access to the database, knowing only the auxiliary information,
learns much less about Turing’s height.”

An important thing to note is that Turing does not have to be in the database of

Lithuanian women for this “privacy breach” to occur. Since the purpose of a statistic

release is for recipients to learn something useful about the underlying population,

this can be combined with other background information to learn something sensitive

about an individual—even one who is not in the database.

This example shows that absolute claims about what one can learn from a released

are impossible to make. But, what about relative risks? Can we still retain focus on

the individual and compare the risk of learning something about an individual from
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a released statistic when they are in a database compared to when they are not in the

database.

This “I’m in the database but nobody knows” intuition is precisely what differential

privacy [33] formalizes. It compares the probability distribution on the range of possi-

ble outputs of an algorithm when an individual is present in a database, to the proba-

bility distribution (on the same set of possible outputs) when the individual is absent

from the database. Informally, if the two distributions are guaranteed to be “almost the

same” then the effect of one individual on any possible output (and its consequences)

is negligible. Such a guarantee incentivizes participation of individuals in a database

by assuring them of incurring very little risk by such a participation. To capture the

notion of an individual’s absence or presence in a database, the “sameness” condition

is defined to hold with respect to a neighbor relation; intuitively, two inputs are neigh-

bors if they differ only in the presence or absence of a single individual. For example,

Dwork et al. [33] define datasets to be neighbors if they differ in a single row. Formally,

Definition 2.2.1 (Differential Privacy [33]). A randomized algorithm A provides ε-differ-

ential privacy if for all neighboring input data sets x, x′, and for all S ⊆ Range(A),

Pr[A(x) ∈ S] ≤ exp(ε)× Pr[A(x′) ∈ S].

An important thing to note is that differential privacy is a property, not of the

data but of the (randomized) algorithm A. Given such a randomized algorithm A,

an input x induces a probability distribution on its range (R(A)). Differential privacy

is a boundedness condition on the ratio of the two probability density functions—

corresponding to the two distributions induced onR(A) by x and any possible neigh-

bor x′— in terms of the parameter ε. The closer ε, the privacy parameter, is to zero, the

closer the two distributions are, and the higher the level of privacy.2

2 There is however, a fundamental limitation on how small ε can be, ε has to be Ω( 1
n ) [33] for a useful

notion of privacy.
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McGregor et al. [84] define differential privacy, equivalently, in terms of a family of

probability distributions.

Definition 2.2.2. [84] Let x be a database of length n, drawing each of its elements from an

alphabet X , then an ε-differentially private mechanism on X n is a family of probability

distributions {π(o|x) : x ∈ X n} on a rangeR, such that for every neighboring x and x′, and

for every measurable subset o ⊂ R,

π(o|x) ≤ π(o|x′) exp(ε).

Notice that the distribution (or equivalently the mechanism) is parametrized by

the input database x or x′, whichever is relevant.

This definition constrains the distribution on the range R of the algorithm A to be

exactly the same; otherwise the ratio of the two probabilities will be unbounded over

some region in R. To allow such occurrences, a relaxed notion of differential privacy

called (ε, δ)-differential privacy comes in handy. It lets the ratio be unbounded for a

(negligibly) small fraction, δ, of events in the range.

Definition 2.2.3 ((ε, δ)-differential privacy [33]). A randomized algorithm A provides

(ε, δ)-differential privacy if for all neighboring input data sets x, x′, and for all S ⊆ Range( f ),

Pr[A(x) ∈ S] ≤ exp(ε) · Pr[A(x′) ∈ S] + δ.

When δ=0, this is identical to ε-differential privacy in Definition 2.2.1. (ε, δ)-dif-

ferential privacy allows us to violate the restriction of the the probabilities ratio for

some events, allowing them to be outside the interval [exp(ε), exp(−ε)], as long as

these events themselves are low probability occurrences (specified by δ). We generally

strive for very small values of δ, often smaller than any inverse polynomial in n, the

size of the database. However, ε itself cannot be smaller than O( 1
n ) as noted by Dwork

et al. [33]. We will explain this in more detail when we delve into the property of

“group privacy” below.
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2.2.1 Advantages

Some of the advantages of the notion of differential privacy compared to earlier no-

tions in the literature are:

• Guarantees at the level of an individual, extensible to the level of groups: Ul-

timately, any privacy notion seeks to provide guarantees at the level of individ-

uals. Through the notion of neighbors, that captures the presence or absence of

an individual from a database, differential privacy reasons about relative risks of

an individual (and as we will shortly see, groups of individuals). Another way

of thinking about differential privacy is that it assumes a worst-case adversary.

Consider the case where an adversary knows everything in a database x except

for one individual Tom’s data, that is, a neighboring database x′ is completely

known to the adversary. Then, the probability of learning something about Tom

from composing the output of a differentially private algorithm A(x) with this

(and any other) background information will not change much compared to the

case when Tom is not in the database (that is, if we compose the output of the

algorithm A(x′), where x′ is the same as x except for Tom’s data, with any back-

ground information).

Further, differential privacy naturally lends itself to the case of “group privacy”.

Consider the notion of `-neighbors where two databases x and x′ are said to

be `-neighbors if they differ in the presence or absence of exactly ` individuals.

If algorithm A provides ε-differential privacy, then we can easily see that via

a sequence of ` deletions or additions, it provides `ε-differential privacy with

respect to `-neighbors. This can be seen as a group privacy guarantee which

(as it should) degrades with `, the size of the group. This observation will also

help us in reasoning about the fundamental limitation of Ω( 1
n ) on the order of

ε as discussed by Dwork et al. [33] If epsilon is o( 1
n ), then after deleting every
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element of a database x of size n used as input to an algorithm A, we end up

with an empty database which is an n-neighbor of x. If A is now run on the

empty database as an input, the output is nε-differentially private with respect

to any of its n-neighbors. Notice that nε = n × o( 1
n ) which is a constant. This

implies that the distribution on the output range, when the input is empty, is

within a constant factor of the distribution when the input is x (and presumably

informative). The output distribution would then be the same for every database

(even an empty and uninformative one), and hence would not give any useful

information on x.

• Independence from auxiliary information: Differential privacy bypasses the

issue of background information by making no assumptions about the infor-

mation an attacker may have. Since the guarantees of differential privacy are

relative, it bypasses the issue of having to explicitly model the background in-

formation. Instead, it provides a strong, robust, and natural notion of privacy,

one that holds in the face of any auxiliary information. It captures the dilemma

of information revelation (utility) and information hiding (privacy) in the form

of this relative guarantee.

• No assumptions about the computational power of an attacker: Another ad-

vantage of differential privacy is that it makes no computational assumptions

about the power of an adversary. The attacker is assumed to be a so-called

information-theoretic attacker, and the guarantees hold in the face of unbounded

computational power.

• Composability: Typically, one wants to compute more than one statistic on a

database. In such situations, each time we might learn something more about
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the participating individuals. Ideally, we would like a privacy definition to re-

flect this possible degradation in privacy guarantees. Differential privacy has

appealing composition properties, where if a sequence of queries is made on

the same database x (or on databases that have a non-zero intersection with x),

then the privacy guarantees degrade with the number of queries in the following

manner:

Theorem 2.2.4 (Serial Composition [33]). For i ∈ [k], letAi(x) be an ε i-differentially

private mechanism executed on database x. Then, any mechanism A that is a composi-

tion of A1,A2, . . . , Ak, is ∑i ε i-differentially private.

On the other hand, if we know that a sequence of queries is being made on non-

intersecting sets, then we can invoke a “parallel composition” theorem:

Theorem 2.2.5 (Parallel Composition [33]). For i ∈ [k], let Ai(x) be an ε i-diffe-

rentially private mechanism executed on partition xi of the database x, such that ∀i, j,∣∣xi ∩ xj
∣∣ = 0, and each user appears in exactly one of the xi’s. Then, any mechanism A

that is a composition of A1,A2, . . . , Ak is maxi ε i-differentially private.

Both these theorems help us reason about the overall privacy degradation over

several measurements of a database.

• Post-processing: Yet another desirable characteristic of differential privacy is

that any “post-processing” of an output of a differentially private algorithm is

also differentially private. As long as the post-processing does not need to “dip”

back into the original private data, the privacy guarantees hold.

Theorem 2.2.6 (Post-Processing [106]). Let A : X → R be an (ε, δ)-differentially

private mechanism, and let f : R → Y be any function of R, that takes as input only

the output of the mechanism and is independent of the data, then f (A) : X → Y also

preserves (ε, δ)-differential privacy.
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• Amplification by sampling:

Differential privacy also captures the intuition that if we are uncertain about

which members of a population appear in a database, this should help boost

the level of privacy the algorithm is able to achieve. More specifically, given an

underlying population from which we sample a set of individuals on whom a

(private) statistic is computed, we can improve privacy guarantees of our algo-

rithm, as noted by Cormode et. al [21] and Smith [112].

Theorem 2.2.7 (Amplification by sampling [21]). Given a database x of size n, and

an algorithm A and that provides ε-differential privacy, for any 0 < p < 1, including

each user in the input x, into a sample S with probability p and outputting A(S) is

2pε-differentially private.

Smith offers the following “privacy for free” interpretation of this result in his

blog

“If you are doing a survey and you can reasonably expect that the sample
itself will remain secret, then you get ε-differential privacy for very small ε
essentially for free. This formalizes a common intuition among, say, statisti-
cians at the census bureau, that the very uncertainty about which members
of the US population were surveyed (for long form data) provides a large
degree of protection.”

In the next section we will see general methodologies to achieve differential pri-

vacy.

2.3 How to achieve differential privacy?

One mechanism that Dwork et al. [33] use to provide differential privacy is the Lapla-

cian noise method which depends on the global sensitivity of a function:

Definition 2.3.1 (Global sensitivity [33]). For f : X n → Rd, the global sensitivity of f is

GS f = max
x∼x′

∣∣∣∣ f (x)− f (x′)
∣∣∣∣

1
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.

Definition 2.3.2 (Laplace distribution). The Laplace Distribution with mean 0 and scale b

is the distribution with the following probability density function:

p(x) =
1
2b

exp
(
−|x|

b

)

We will denote an `-length vector, each element of which is drawn from a Laplace

distribution with mean 0 and scale b as 〈Lap(b)〉`. Then the Laplacian mechanism is

given by the following theorem of Dwork et al. [33].

Theorem 2.3.3 (Laplacian mechanism[33]). For any f : D → R`, and ε > 0, the following

mechanism A, called the Laplace mechanism, is ε-differentially private:

A f (D) = f (D) + 〈Lap(GS f /ε)〉`.

Proof. Let x and x′ be any pair of neighboring databases. Let px denote the probabil-

ity density function on R induced by A(x). Similarly, let px′ denote the probability

density function onR induced by A(x′). Consider an o ∈ R = R`. We have

px(o)
px′(o)

=
`

∏
i=1

exp
(
− ε | f (x)i − oi|

GS f

)
exp

(
− ε | f (x′)i − oi|

GS f

)
=

`

∏
i=1

exp
(

ε(| f (x′)i − oi| − | f (x)i − oi|)
GS f

)
≤

`

∏
i=1

exp
(

ε(| f (x′)i − f (x)i|
GS f

)
= exp

(
ε(| f (x′)i − f (x)i|

GS f

)
≤ exp (−ε) .

The first inequality follows from the triangle inequality. The last follows from the

definition of sensitivity (Definition 2.3.1).
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We make extensive use of Laplace mechanism throughout this dissertation.

Another, more general (though, not always computationally efficient) method of

providing differential privacy is the exponential mechanism proposed by McSherry and

Talwar [87]. This is especially helpful in situations when the output is non-numeric.

This mechanism is parametrized by a “quality function” q(x, o) that maps a pair of

an input data set x (a vector over some arbitrary real-valued domain) and candidate

output o (again over an arbitrary range R) to a positive real-valued “quality score.”

Higher quality scores imply good input-output correspondences. It assumes a base

measure π on the rangeR. For a given input x, the mechanism selects an output o with

exponential bias in favor of “ high quality” outputs by sampling from the following

exponential distribution [87]:

πε(o|x) ∝ exp(εq(x, o)) · π(o). (2.1)

The superscript ε in πε denotes the dependence of the distribution πε(o|x), on the

privacy parameter ε.

Theorem 2.3.4 (Exponential mechanism [87]). The exponential mechanism, when used to

select an output o ∈ R, gives 2ε GSq-differential privacy, where GSq is the global sensitivity

of the quality function, that is:

GSq = max
x∼x′, o

∣∣q(x, o)− q(x′, o)
∣∣ .

Proof. Let o ∈ R, then from Equation 2.1, for any two neighboring x and x′, we have:

πε(o|x)
πε(o|x′) =

exp(εq(x, o)) · π(o)∫
o exp(εq(x, o)) · π(o)
exp(εq(x′, o)) · π(o)∫
o exp(εq(x′, o)) · π(o)

=
exp(εq(x, o)) · π(o)
exp(εq(x′, o)) · π(o)

·
∫

o exp(εq(x′, o)) · π(o)∫
o exp(εq(x, o)) · π(o)

≤ exp
(
ε GSq

)
· 1∫

o exp
(
−ε GSq

)
π(o)

≤ exp
(
2ε GSq

)
.
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The proof for a discrete R follows a similar argument with the integrals replaced by

sums.

The exponential mechanism is a useful abstraction when trying to understand dif-

ferential privacy because it generalizes all specific mechanisms, such as the Laplacian

mechanism introduced above. The exponential mechanism because of the generality

of the input space X , the output range R, and the quality function q, can be shown to

capture all differentially private mechanisms:

Theorem 2.3.5. The exponential mechanism captures all differentially private mechanisms.

Proof Sketch. Let A be any ε-differentially private mechanism. Let, q the quality func-

tion be defined as the logarithm of the pdf of the distribution A induces on the range

R, that is,

q(x, o) = log (pA(o|x)) .

Then the exponential mechanism of Equation 2.1 on applying Theorem 2.3.4 is 2ε GSq-

differentially private. As long as we can bound the sensitivity of the log-likelihood

function (the scoring function) we have a differentially private mechanism with the

appropriate parameters.

Specifically, the Laplace mechanism is captured by the exponential mechanism

when

q(x, o) = log (pA(o|x)) ∝ log(exp (− | f (x)− o|) .

In the next section we review the notion of pan-privacy, an extension of differential

privacy.
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2.4 Pan-privacy

Pan privacy guarantees a participant that his/her risk of being identified by partici-

pating in a data set is very little even if there is an external intrusion on the internal

state of the analyzing algorithm.

Consider a universe U of IDs, where |U | = m. An update is defined as an ordered

pair (i, d) ∈ U ×Z where i represents the ID to be updated d represents the update

itself. Consider two such online sequences of updates S =
(
(i1, d1), . . . , (it, dt)

)
and

S′ =
(
(i′1, d′1), . . . , (i′t′ , d′t′)

)
. We define the following notion of neighborhood of se-

quences.

Definition 1 (User-level neigbors [92]). S and S′ are said to be (user-level) neighbors if

there exists a (multi)set of updates in S indexed by K ⊆ [t] that update the same ID, i ∈ U ,

and there exists a (multi)set of updates in S′ indexed by K′ ⊆ [t′] that updates some j( 6= i) ∈ U

such that ∑k∈K dk = ∑k∈K′ d′k and for all other updates in S and S′ indexed by Q = [t]− K

and Q′ = [t′]− K′ respectively,

∀i ∈ U ∑
k∈Q,s.t. ik=i

dk = ∑
k∈Q′,s.t. i′k=i

d′k.

Notice that in the definition above t and t′ do not have to be equal because we allow

the di’s to be integers. The definition ensures that two inputs are neighbors if some of

the occurrences of an ID in S is replaced by some other ID in S′ and everything else

stays the same except (a) the order may be arbitrarily different and (b) the updates

can be arbitrarily broken up since they are not constrained to be 1’s. The neighbor

relation preserves the first frequency moment of the sequence of updates, considered

to be public information. Also, the graph induced by the neighbor relation on any set

of sequences with the same first frequency moment is connected.

Our notion of neighborhood is slightly different from the definition of Dwork et

al. [34] definition, where any two data streams S and S′ are neighbors if they differ
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only in the presence or absence of any number of occurrences of any element i ∈ U .

Our definition ensures that two neighboring sequences of updates are of the same

“length,” in the sense that the sum of the updates over all items is the same for both S

and S′, that is, ∑t
i=1 dk = ∑t′

i=1 d′k. For this purpose, we constrain the sum of the updates

of the occurrences of item i in S to be conserved when they are replaced by item j in S′.

In our definition, the total weight of updates is public, but, still, an adversary cannot

distinguish between appearances of ID i or ID j, even if the adversary knows all other

appearances of all other IDs.

Definition 2 (User-level pan privacy [34]). Let Alg be an algorithm. Let I denote the set of

internal states of the algorithm, and let σ the set of possible output sequences. Then algorithm

Alg mapping input prefixes to the range I × σ, is pan-private (against a single intrusion)

if for all sets I′ ⊆ I and σ′ ⊆ σ, and for all pairs of user-level neighboring data stream prefixes

S and S′

Pr[Alg(S) ∈ (I′, σ′)] ≤ eε Pr[Alg(S′) ∈ (I′, σ′)]

where the probability spaces are over the coin flips of the algorithm Alg.

Pan-privacy protects users appearing (possibly several times) in an online data

sequence, even if the state of the algorithm is revealed once either by an insider (who

may have turned rogue) or by a subpoena or fiat. While this is an extremely strong

(some would say unduly restrictive) notion of privacy, it is interesting to note that

some statistics can still be computed accurately in this model.

2.5 Related work in differential privacy and pan-privacy

The development of differential privacy can be traced to Dinur and Nissim’s work

on identifying blatant non-privacy [27]. They modeled a statistical database by an n-

bit string x1, . . . xn, with queries being sums of random subsets of these bits; the data
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curator adds a certain magnitude of noise to such queries and releases these noisy

answers. They proposed a polynomial reconstruction algorithm that using such noisy

subset sums can recover a significant fraction of the the original database whenever

the magnitude of noise added is less than O(n).

Subsequently, differential privacy was developed as a notion of privacy over a se-

ries of papers [11, 31, 33]. Following this, a growing line of work has emerged iden-

tifying differentially private mechanisms for both interactive and non-interactive set-

tings [12, 87, 95].

There is now a growing body of work on differential privacy, and this section is far

from exhaustive. We refer the reader to a set of tutorials and surveys [29, 36]. Here,

we summarize some work relevant to the problems we examine in this thesis. A more

detailed treatment and a comparison with our results can be found in the relevant

chapters.

Hay et al. [51] first examined differential privacy in graphs releasing a differen-

tially private approximation of the degree distribution of a graph under the notion of

edge differential privacy. Karwa et al. [64] apply the notion of smooth sensitivity formu-

lated by Nissim et al. [95] to compute differentially private approximations to graph

statistics such as the number of k-triangles and k-stars. Sala et al. [109] generate differ-

entially private synthetic graphs that are similar to the original graph by extracting the

original graph’s detailed structure into degree correlation statistics, and then comput-

ing differentially private approximations of these statistics. Proserpio et al. compute

several differentially private graph statistics using a version of the PINQ [85] pro-

gramming language [100]. Task and Clifton [116] ask broader questions about what

graph differential privacy should actually protect and introduce the notion of outlink

privacy. This enables a participant (a node) to plausibly deny its out-links to another

node. More recently, Kasiviswanathan et al. [65] study the problem of releasing graph
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statistics under the (harder to achieve) notion of node differential privacy.

There has been some work on publishing summaries of spatiotemporal data (such

as mobility data) in a differentially private manner. Machanavajjhala et al. [81] gen-

erate synthetic commuting patterns for the United States population using a notion

of probabilistic differential privacy. Chen et al. [19] study the problem of publishing a

differentially private version of the trajectory data of commuters in Montreal. Ho and

Ruan [54] propose a differentially private pattern mining algorithm for geographic lo-

cation discovery using a region quadtree for spatial decomposition. Qardaji et al. [101]

propose methods of releasing differentially private summaries of two-dimensional

datasets. Cormode et al. [21] also study the problem of releasing differentially pri-

vate summaries of two-dimensional data by using spatial decompositions. Andrés et

al. [6] introduce the notion of geo-indistinguishability in location-based systems, which

protects the exact location of a user while allowing release of information needed to

gain access to a service.

Chaudhuri et al. [18] propose a differentially private algorithms for logistic regres-

sion using the so-called objective perturbation method—of adding appropriate noise

into the objective function instead of the output. Rubinstein et al. [107] propose priva-

cy-preserving classification methods using support vector kernels with output pertur-

bation methods. Dwork and Lei [32] also examine regression in a relaxed version of

differential privacy, using the Propose-Test-Release framework. Zhang et al. [124] intro-

duce a novel differentially private functional mechanism that expresses the optimiza-

tion function as a decomposition of “well-behaved” functions (such as polynomials)

and then uses objective perturbation to obtain a solution that optimizes this decom-

position. All of these techniques work in the low-dimensional regime, leading to a

prohibitive amount of noise in the high-dimensional setting. Kifer et al. [69] propose

differentially private algorithms for sparse regression problems in high-dimensional
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settings, where there is an assumption of the existence of a “good” sparse solution.

Pan-privacy was introduced by Dwork et al. [34]; they compute statistics such as

density estimators, cropped means and heavy hitters in this model with only inser-

tions allowed in the online stream. Dwork also studies continual differential privacy in

the online streaming setting [35]. Chan et al. study continual online differential pri-

vacy in centralized [15] and distributed [16] settings.

Alvim et al. [4], [2] first studied the relationship between information theoretic no-

tions of leakage and differential privacy. They use the information-theoretic notion of

min-entropy for the information leakage of the private channel, and show that differen-

tial privacy implies a bound on the min-entropy of such a channel. Barthe and Kopf [9]

also develop upper bounds for the information leakage of every ε-differentially private

mechanism.

2.5.1 Beyond differential privacy

In this section we briefly summarize other notions of privacy that are emerging from

examining the semantics and application of differential privacy to various problem

domains. While some of these are motivated by identifying the implicit assumptions

that differential privacy makes about the data, others are motivated by providing a

formal framework that is a meaningful relaxation of differential privacy yet allows

better utility. Some other frameworks seek to relate the guarantees that differential

privacy provides at the level of an individual to that of a notion of an individual’s

identifiability.

While differential privacy is an extremely strong notion of privacy, it does make

some implicit assumptions on the data. Further, in practice, sometimes it is too strong

a notion to be of use. Kifer and Machanavajjhala [67] examine these aspects, and

argue that without making assumptions about how the data are generated, it is not
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possible to provide both privacy and utility guarantees. Further, they show that for

a meaningful application of differential privacy in context to its hiding “evidence of

participation” of an individual in a database, there is an implicit assumption about the

independence of each tuple (corresponding to the data of a single individual). This

may not always be realistic.

In subsequent work Kifer and Machanavajjhala [68] introduce a general privacy

framework called Pufferfish with the goal of allowing experts in an application do-

main, who often are not privacy experts, to formulate relevant and rigorous privacy

definitions. Pufferfish also generalizes existing privacy definitions including differen-

tial privacy.

Gehrke et al. [40] introduce the notion of crowd-blending privacy that is weaker than

the notion of differential privacy. Informally, k-crowd blending privacy requires that

each individual i in the database “blends” with k other individuals, in the sense that

the private output is “indistinguishable” if individual i’s data is replaced by any of

the k other individuals. They demonstrate that crowd-blending private algorithms

for tasks such as histogram releases, achieve better utility than differentially private

algorithms. Further, when combined with a sampling step where individuals in the

database are randomly drawn from an underlying population, crowd-blending pri-

vacy is shown to satisfy differential privacy as well as the stronger notion of zero-

knowledge privacy [41].

Lee and Clifton [75] introduce the notion of differential identifiability. They remark

that in ε-differential privacy, ε limits how much one individual can affect the resulting

distribution without quantifying how much information is revealed about an individ-

ual. In fact, it can be argued that differential privacy was formulated to bypass the

complex task of trying to quantify such quantities. However, a notion of “informa-

tion revelation” or “risk of identifiability” is often desirable under legal formulations
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such as the U.S. HIPAA safe harbor rule [1] which require protection of “individu-

ally identifiable data”. In addition, interested stakeholders and the general public

are more interested in such notions. Lee and Clifton propose ρ-differential identifia-

bility that explicitly models the background information an adversary may possess.

The adversary is assumed to have complete knowledge of the database except for one

individual, and using this he constructs the possible worlds of input databases. Mod-

eling the background information in this manner enables one to make a quantifiable

statement about the identifiability of an individual database. Using the output of a ρ-

differentially identifiable algorithm A and a prior distribution on all possible worlds,

the adversary creates a new posterior distribution on the possible worlds of databases.

This also enables one to construct a new posterior on a specific individual’s data, as-

sociating the individual with an “identifiability risk”. Informally, the mechanism A

ensures that the identifiability risk of any individual in the universe is less than or

equal to ρ.
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3

Differentially Private Estimation of Random Graph Models

“[...] even from a single anonymized copy of a social network, it is possible for an adver-
sary to learn whether edges exist or not between specific targeted pairs of nodes.”

– Lars Backstrom, Cynthia Dwork and Jon Kleinberg. [8]

3.1 Introduction

As graph databases such as social networks become ubiquitous, researchers have an

unprecedented opportunity to understand and analyze complex social phenomena.

For example, access to a social network may help researchers track the spread of an

epidemic or a sexually-transmitted disease in a community. While society would like

to encourage such scientific endeavors, if individuals run the risk of being identi-

fied, they may be apprehensive of participating in, or making their social network

data available for, such studies. To ensure that public policy promotes such scientific

projects, we are faced with the problem of providing researchers with a fairly accurate

picture of the quantities or trends they are looking for without disclosing sensitive

information about participating individuals.

There are numerous examples of data that have associations between entities, such

as social networks, routing networks, citation graphs, biological networks, etc. Such

associations between entities may be modeled as a graph, where individuals are repre-

sented by the nodes, and relationships between individuals as edges. Each node may

be associated with various attributes. The risk of being identified by participating in



31

such a database is two-fold: individuals may be identified by virtue of their attributes

or they may be identified from their associations with other individuals and some

background information, that they usually cannot predict or control, or they might be

identified using a combination of the two. In this chapter, we will only be concerned

about preventing identification of the nodes using associations between individuals

and some possible background information, an approach that Korolova et al. [73] call

link privacy. Using the work of Hay et al. [51], this can be extended to include a weak

form of node privacy. Our proposed mechanism for synthetic graph generation, which

aims to approximate certain statistics of the original graph, satisfies the rigorous def-

inition of ε-differential privacy. Private estimation of the Stochastic Kronecker Graph

(SKG) model parameter is an interesting problem, especially given the surge in the

popularity of SKGs for graph modeling. Subsequent work by Gleich and Owen [46],

which estimates the SKG model parameters by using a “moment matching” method,

makes it possible for us to apply the work of Hay et al. [51] and Nissim et al. [95] to

efficiently compute private approximations of the “matching statistics” and, hence, in

obtaining private estimates of the model parameter.

To generate representative synthetic graphs, we use tools from statistical inference.

Assuming that observed data is generated from an underlying, but unknown, proba-

bility distribution, we use the data to infer the distribution. A graph G(V, E) is repre-

sented as a vector of random variables {E1, E2, . . . , EN}, where each of the Ei’s are 0-1

random variables representing the presence or absence of an edge (assuming a spe-

cific known ordering of all potential edges between |V| vertices). We assume that data

is generated from a parameterized family of probability distributions. Given a graph,

that is treated as a sequence of observations in such a model, our goal is to infer the pa-

rameter of the distribution and hence the distribution itself. If the estimator preserves

differential privacy and is a good estimator, we can publish it and anyone interested
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in studying statistical properties of the original graph G can sample the distribution

to yield a synthetic graph GS which mimics the statistical properties of G. We could

also sample several graphs from the distribution and compute an average of the de-

sired statistic over several such graphs. To use such an approach, we need to impose

a relevant model on the kinds of graphs we are interested in. The choice of a model

is typically guided by empirical and theoretical considerations of how well the model

captures key properties of real-world graphs. For our purpose, we use Leskovec et al.’s

Kronecker graph model [77, 78] that effectively models salient features of real-world

graphs. We compute an estimator, based on Gleich and Owen’s non-private estima-

tor [46], that is provably differentially private and that still compares favorably with

the estimators proposed by Leskovec et al. [77] and Gleich and Owen [46] in terms of

matching several statistics of the original graph.

Section 3.2 summarizes related work in privacy and anonymization. In Section 3.3,

we provide the required background about the stochastic Kronecker graph (SKG)

model and parameter estimation in this model. In Section 3.4, we discuss our main re-

sults: we show how we can compute an estimator of a given graph in the SKG model

in a differentially private manner and also experimentally demonstrate how well the

private estimator does on mimicking statistical properties of the original graph when

compared to non-private methods such as those of Gleich and Owen [46] and Leskovec

et al. [77]. We observe that our private estimator performs almost similalrly to Gleich

and Owen’s non-private estimators, for meaningful values of the privacy parameter ε.

3.2 Related work in privacy and anonymization

The problem of anonymizing databases has been receiving considerable attention over

the last decade. However, researchers have only recently started looking at the prob-

lem of privacy preservation in graphs. Backstrom, Dwork, and Kleinberg [8] describe
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a family of attacks where access to a naively anonymized graph with the identifiers

of the nodes stripped can enable an adversary to learn whether edges exist or not be-

tween specified pairs of nodes. Many solutions assuming various models of attacks

have been proposed: see [23, 52, 73, 127, 128] for examples. Most of that work, pro-

vides guarantees only against a specific set of adversaries who are assumed to have

specific background knowledge. In reality, however, individuals and even organiza-

tions managing the database have little or no control over auxiliary information avail-

able to the adversary. Hence, we use differential privacy as our notion of privacy.

We base our estimation algorithm on work by Gleich et al. [46] that estimates model

parameters using a moment matching method rather than an approximation of the

Maximum Likelihood Estimator as in Leskovec et al. [78]. The algorithm matches

four statistics of the observed graph to the expected values of these statistics over

the probability distribution on graphs defined by the parameters. This enables us

to use the work of Hay et al. [51] and the results of Nissim et al. [95] to compute

differentially private approximations to these features F of the observed graph that

we seek to match. Hay et al. [51] compute a differentially private approximation to

the degree distribution of a graph using post-processing techniques. Nissim et al. [95]

compute a differentially private approximation to the number of triangles of a graph.

Karwa et al. [64] apply the notion of smooth sensitivity formulated by Nissim et

al. [95] to compute differentially private approximations to other graph statistics such

as the number of k-triangles and k-stars. Sala et al. [109] also generate synthetic graphs

that are similar to the original graph by extracting the original graph’s detailed struc-

ture into degree correlation statistics, and then computing differentially private ap-

proximations of these statistics to generate a private synthetic graph. This is the closest

in spirit to our work.
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3.3 Parametric models and estimation

This section provides background on parametric model estimation, the Stochastic Kro-

necker Graph Model [77, 78] and the moment based estimation method of Gleich [46]

in which our work is grounded.

A parametric statistical model, say F , is a set of probability distributions that

can be parametrized by a finite set of parameters. Parametric estimation in such a

model assumes that data observed is generated from a parametrized family of prob-

ability distributions F = { f (x; θ) : θ ∈ Θ)}, where θ is an unknown parameter

(or vector of parameters) that can take values in the parameter space Θ. Let X =

(X1, X2, . . . XN) denote N random variables representing observations X1 = x1, X2 =

x2, . . . , XN = xN , and let the joint probability density function of (X1, . . . , XN), given

by f (x1, x2, . . . , xN ; θ), depend on θ, the parameter of the distribution.

After observing this data, an estimate θ̂ of the unknown true parameter θ is formed.

θ̂ is a function of the observations and hence, it is also a random variable. The problem

of parameter estimation is to pick a θ̂ from the parameter space that best estimates the

true parameter in some optimum sense. Parameter estimation is a well studied branch

of statistics; see [122] for a review.

As mentioned before, the choice of a generative parametric model for graphs is

typically based on empirical or theoretical considerations of how well a model cap-

tures significant descriptive properties of graphs, such as degree distribution, specific

patterns observed, etc. Once such a model is defined, the task consists of estimating

the parameter of the model that generated a particular instance G. G can be looked at

as a sequence of observations E1, . . . , EN where the Ei’s are 0-1 random variables rep-

resenting the absence or presence of an edge i (according to a specific ordering). The

estimated parameter defines a probability distribution on all graphs, one from which

we assumed G was generated. One can then sample this probability distribution to
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generate a synthetic graph GS and run queries on it to get an approximation to the

answers that one would have obtained from the original graph G. In this section, we

introduce the Stochastic Kronecker Graph (SKG) model, the specific generative model

we use. In Section 3.4, we show how to estimate the parameter in a differentially pri-

vate manner that demonstrates experimental utility with respect to certain statistics.

3.3.1 Kronecker graph model

Modeling graphs, in general, and networks in particular, is an important problem.

Most work in graph modeling consists of studying patterns and properties found in

real-world graphs and then finding models that help understand the emergence of

these properties. Some of the key properties studied are degree distribution, diame-

ter, hop-plot, scree plot, and node triangle participation [77, 78]. The Kronecker graph

model effectively captures some of the salient patterns of real-world graphs, such as

heavy tailed in-degree and out-degree distributions, heavy tails for eigenvalues and

eigenvectors, small diameters, and “densification power law” observed in the Internet,

the Web, citation graphs, and online social networks. Many models in the literature

focus on modeling one static property of the network model while neglecting oth-

ers. Moreover, the properties of many such network models have not been formally

analyzed. Leskovec et al.’s Kronecker graph model has been empirically shown to

match multiple properties of real networks. It also facilitates formal analysis of these

properties and establishes, empirically and analytically, that Kronecker graphs mimic

some important properties of real-world graphs such as those described above. The

Kronecker graph results of Leskovec et al. [77, 78] have three important contributions:

1. Their graph generation model provably produces networks with many proper-

ties often found in real-world graphs, such as a power-law degree distribution

and small diameter.
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2. Their approximate MLE algorithm is fast and scalable, being able to handle very

large networks with millions of nodes.

3. The estimated parameter generates realistic looking graphs that empirically mat-

ch the statistical properties of the target real graphs.

Kronecker graphs are based on a recursive construction, with an aim of creating

self-similar graphs recursively. The process starts with an initiator graph G1 with N1

nodes. By a recursive procedure, larger graphs G2, . . . , Gn are generated in succession

such that the kth graph, Gk, has Nk = Nk
1 nodes. This procedure is formalized by intro-

ducing the concept of Kronecker product of the adjacency matrices of two graphs [78].

Definition 3.3.1 ( [78]). Given two matricesA and B of sizes n×m and n′×m′ respectively,

their Kronecker product is a matrix C of dimensions (n · n′)× (m ·m′) defined as:

C = A⊗ B =



a1,1B a1,2B . . . a1,mB

a2,1B a2,2B . . . a2,mB
...

...
. . .

...

an,1B an,2B . . . an,mB


The Kronecker product of two graphs is the Kronecker product of their adjacency

matrices, defined as:

Definition 3.3.2 ( [78]). Let G and H be graphs with adjacency matrices A(G) and A(H)

respectively. The Kronecker product G ⊗ H of the two graphs is the graph whose adjacency

matrix is the Kronecker product A(G)⊗ A(H).

Informally, the Kronecker product of two graphs G and H is the “expanded” graph

obtained by replacing each node in G by a copy of H. G2 is obtained by taking the

Kronecker product of G1 with itself, G3 by taking the Kronecker product of G2 with

G1, and so on, such that the kth Kronecker power of G1 gives Gk. Formally:
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Definition 3.3.3 (Kronecker power [78]). Given a

Kronecker initiator adjacency matrix Θ1, the kth power of Θ1 defined by

Θ[k]
1 = Θ1 ⊗Θ1 ⊗ . . .⊗Θ1︸ ︷︷ ︸

k times

= Θ[k−1]
1 ⊗Θ1

The graph Gk defined by Θ[k]
1 is a Kronecker graph of order k with respect to Θ1.

3.3.2 Stochastic Kronecker graph model

In this section we review the SKG model and in Sections 3.3.3 and 3.3.4, we review

parameter estimation in this model.

Leskovec et al. [78] introduce stochasticity in the Kronecker graphs model by let-

ting each entry of the N1×N1 initiator matrix Θ1 take values in the range [0, 1] instead

of binary values, representing the probability of that edge being present. If the Kro-

necker power of Θ1 is computed in the manner explained above, larger and larger

stochastic adjacency matrices are obtained where each entry represents the probabil-

ity of that particular edge appearing in the graph. Θ[k]
1 , therefore, defining a prob-

ability distribution on all graphs with Nk
1 nodes. To obtain a stochastic Kronecker

graph (SKG), an edge is independently chosen with a probability specified by the cor-

responding entry in the matrix.

Definition 3.3.4 (SKG). If Θ is an N1 × N1 probability matrix such that θij ∈ Θ denotes

the probability that edge (i, j) is present, θij ∈ [0, 1]. Then the kth Kronecker power P =

Θ[k], is a stochastic matrix where each entry Puv ∈ P encodes the probability of edge (u, v)

appearing. This stochastic matrix encodes a stochastic Kronecker graph. To obtain a graph

G∗, an instance or realization of the distribution, denoted as R(P), an edge (u, v) is included

in G∗ = R(P) with probability Puv.

Given a stochastic matrix P, and a graph G∗ realized from P in the manner specified

above, each edge (i, j) in G∗ is picked independently by tossing a coin with a bias
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specified by Pij.

Notice that, G∗ as defined is a directed graph, but in this work, like Gleich et al. [46]

we examine modeling of undirected graphs only. If A∗ is the adjacency matrix of G∗,

then it may contain loops and may not necessarily be symmetric. These loops and the

assymetry are removed by defining the random graph G with an adjacency matrix A

such that, Aij = 0, ∀i = j and symmetrizing A∗ by letting Aij = A∗i,j if i > j and having

Aji = A∗ji if i < j.

3.3.3 Parameter estimation in the SKG Model

For every graph G, P(G) is the probability that a given stochastic graph model, with a

given set of parameters, generates graph G. In the stochastic Kronecker graph model,

probability distributions over graphs are parametrized by the initiator matrix Θ of

size N1 × N1. An appropriate size for N1 is decided upon using standard techniques

of model selection. Analysis in [78] shows that for many real-world graphs, having

N1 > 2 does not accrue a significant advantage as far as matching of some statistics is

concerned. In this paper, we set N1 = 2, to compare our results to those obtained by

Gleich et al. [46].

Given a graph G that is assumed to be generated by an SKG model, we want to

estimate the true parameter—the initiator matrix Θ—that generated G by an appro-

priate Θ̂. Leskovec et al. provide an algorithm that is linear in the number of edges to

estimate the parameter Θ̂. Let G have N nodes and assume N = Nk
1 , where the size

of the initiator matrix is N1 × N1. Using Θ[k] = P, P defines a SKG on N nodes: Puv

is the probability that there is an edge between nodes u and v. Hence, the probability

p(G|Θ) = p(G = R(P)) that G is a realization of P can be computed easily. The Max-

imum Likelihood Estimator Θ̂ maximizes the likelihood of realizing G. Formally, the
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MLE solves:

Θ̂ = argmax
Θ

p(G|Θ)

3.3.4 Moment based estimation of SKGs

Gleich and Owen [46] propose an alternative method to estimate SKG model param-

eters. They do so for reasons of computational cost of estimating the MLE of the SKG

model. Leskovec et al. [77] try to approximate the MLE itself. Gleich and Owen use

the so-called moment-based estimation of the model parameter, where the observed

values of certain statistics of the graphs are equated with those of the expected value

of these statistics over graphs that a parameter would define. They remark that “while

moment methods can be statistically inefficient compared to maximum likelihood, sta-

tistical efficiency is of reduced importance for enormous samples and in settings where

the dominant error is lack of fit.”

Four statistics for matching (as explained above) are considered:

• number of edges (E),

• number of triangles (∆),

• number of hairpins (2-stars or wedges) (H), and

• the number of tripins (3-stars) (T).

They consider graphs with a 2× 2 initiator matrix of the form

Θ =

 a b

b c


with a, b, c,∈ [0, 1] and a ≥ c. The Kronecker structure of P makes it possible to

compute closed formulae for these statistics from Θ. Given Θ of the form above,
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the expected count for these statistics can be calculated explicitly. Specifically, given

P = [Θ]k, closed formulae can be derived for H, ∆ and T in terms of a, b, c, as follows:

E(E) =
1
2

(
(a + 2b + c)k − (a + c)k

)
E(H) =

1
2

((
(a + b)2 + (b + c)2)k − 2 (a(a + b) + c(c + b))k

− (a2 + 2b2 + c2)k + 2(a2 + c2)k
)

E(∆) =
1
6

(
((a3 + 3b2(a + c) + c3)k − 3a(a2 + b2)+

c(b2 + c2))k + 2(a3 + c3)k
)

E(T) =
1
6

((
(a + b)3 + (b + c)3)k − 3

(
a(a + b)2 + c(b + c)2)k

−3(a3 + c3 + b(a2 + c2) + b2(a + c) + 2b3)k + 2(a3+

2b3 + c3)k + 5(a3 + c3 + b2(a + c))k

+4(a3 + c3 + b(a2 + c2))k − 6(a3 + c3)k )

(3.1)

The problem then is to find an initiator matrix whose expected counts match the

counts of the features F(G) of the observed graph as closely as possible.

Given G, one way to choose Θ̂ (or equivalently, â, b̂, and ĉ) is to solve

min
a,b,c

∑
F

(F−Ea,b,c(F))2

Ea,b,c(F)

where the sum is over three of four of the features F ∈ {E, ∆, H, T} and the minimiza-

tion is taken over 0 ≤ c ≤ a ≤ 1 and 0 ≤ b ≤ 1. A more general minimization method

solves:

min
a,b,c

∑
F

Dist(F, Ea,b,c(F))
Norm(F, Ea,b,c(F)),

(3.2)

where Dist is either of the two distance functions:

DistSq(x, y) = (x− y)2 or Distabs(x, y) = |x− y|

and Norm is one of the normalizations:

NormF = (F, E) = F; NormF2(F, E) = F2; NormE(F, E) = E; NormE2(F; E) = E2.
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Gleich and Owen [46] find that robust results arise from the combination of DistSq

and NormF2 . The next section uses these results.

3.4 A differentially private graph estimator

We present our main result in this section. We use the results of Gleich and Owen [46]

to provide a differentially private estimator of a given graph. Based on experimental

results, in Section 3.4.2 we argue that a modification that makes the estimator differen-

tially private does not destroy the desirable properties of the graph model estimator

for both some real-world and synthetic networks.

3.4.1 Differential privacy for graphs

After a private estimator is computed, we may publish it and sample graphs from this

distribution to compute an approximation of relevant statistics. Under the assumption

that the model captures the essential properties of the graph, our estimator will define

a probability distribution from which we can sample graphs that are “similar” to the

original graph G. We emphasize here that we rely upon the results of [77] to justify us-

ing the SKG model to maintain “similarity” of synthetic graphs to the original graphs.

Our private estimator suffers from the same limitation that the SKG does in capturing

properties of a real-world network but also demonstrates almost the same accuracy. In

this section, we present our main result showing how to compute an estimator for the

SKG model that is also differentially private. We first formalize the idea that the out-

put of the estimator should not change significantly if a link between two individuals

is included or excluded from the observations.
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Definition 3.4.1 (Edge neighborhood [51, 93]). Given a graph G(V, E), the (edge) neigh-

borhood of a graph is the set

Γ(G) = {G′(V, E′) s.t |E⊕ E′| = 1}

Applying the standard definition of differential privacy to graphs instead of datab-

ases and using the above definition of neighborhood yields the following:

Definition 3.4.2 (Edge differential privacy [95]). A parameter estimation algorithm that

takes as input a graph G, and outputs Θ̃(G), preserves (ε, δ)-differential edge privacy if for

all closed subsets S of the output parameter space, and all pairs of neighboring graphs G and

G′, and for all δ ∈ [0, 1],

Pr[Θ̃(G) ∈ S] ≤ exp(ε) · Pr[Θ̃(G′) ∈ S] + δ

The original notion of ε-differential privacy is a special case of the (ε, δ)-differential

privacy in which δ = 0.

Hay et al. [51] also define node differential privacy, by analogously defining the no-

tion of node neighborhood of a graph. Two graphs are node neighbors if they differ

by at most one node and all the incident edges. This notion of privacy is highly re-

strictive when trying to compute accurate approximations of graph statistics because

of potentially high degree nodes and the loss of information that would accompany

their deletion. To provide some degree of privacy to nodes, Hay et al. [51] introduce

the notion of k-edge differential privacy. In k-edge differential privacy, graphs G and

G′ are k-edge neighbors if |V ⊕ V ′| + |E ⊕ E′| ≤ k. They also make the observation

that any algorithm that provides ε-edge privacy with respect to 1-edge neighbors, will

provide kε-edge privacy with respect to k-edge neighbors using a well-known compo-

sition theorem (restated here as Theorem 3.4.8). In this work, we only examine 1-edge

differential privacy.
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According to Definition 3.4.2, for a graph estimator that preserves differential pri-

vacy, outputs of the estimating algorithm do not become significantly more or less

likely if an edge is included or excluded from the database. If the inclusion or exclu-

sion of a single link between individuals cannot change the output distribution appre-

ciably, even an adversary who may have additional background information will not,

by interacting with the algorithm, learn significantly more about an individual than

could be learned about this individual otherwise.

Dwork et al. [33] and Nissim et al. [95] define the notions of local sensitivity and

global sensitivity:

Definition 3.4.3 (Local Sensitivity [95]). The local sensitivity of f : D → R, that maps a

Domain D to reals, at G ∈ D is

LS f (G) := max
G′ s.t. G′∈Γ(G)

‖ f (G)− f (G′)‖1

As an example, when computing the local sensitivity of the number of triangles in

a graph G having N nodes, the domain D is the space of all graphs on N nodes. Here

we express the notion of global sensitivity introduced in Definition 2.3.1 in terms of

the local sensitivity.

Definition 3.4.4 (Global Sensitivity [33]). Theglobal sensitivity of a function of a graph

G, f : D → R` is

GS f := max
G∈D

LS f (G)

Using these notions we compute a differentially private estimator based on match-

ing the expected count to the observed counts of the statistics—we supply differen-

tially private approximations of the statistics E, H, ∆ and T to Equation 3.2. We do this

by computing differentially private approximation to the degree sequence vector of G

and the number of triangles in G.
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Let d be the vector of degrees of G, such that di is the degree of node i of graph G.

Let d be sorted to yield dS such that dS(i) is the i-th smallest degree. Hay et al. [51]

propose a method of computing a differentially private approximation d̃ of the sorted

degree vector dS by adding a vector of appropriate Laplacian noise to dS and then

using post-processing techniques that they experimetally show to be a highly accurate

approximation of dS. Let 〈Lap(σ)〉N denote a N length vector of independent random

samples from a Laplace distribution with mean zero and scale σ. We know that the

global sensitivity of dS, GSd is equal to 2.

Hay et al. [51] use the Laplacian mechanism (Theorem 2.3.3) to compute a “noisy”

degree sequence d̂ as an approximation of dS:

d̂ = dS + 〈Lap(2/ε)〉N .

Therefore, d̂ is then an (ε, 0)-differentially private approximation of dS. Hay et

al. [51] use post-processing techniques that seek to “remove some of the extra noise”

in d̂, to compute a d̃ that is experimentally and theoretically shown to provide higher

accuracy. Using d̃, we compute (ε, 0)-differentially private approximations of E, H,

and T in the following manner:

Ẽ = 1
2 ∑i d̃i; H̃ = 1

2 ∑i d̃i(d̃i − 1) and T̃ = 1
6 ∑i d̃i(d̃i − 1)(d̃i − 2). Hence, we have:

Fact 3.4.5. Computing Ẽ, H̃ and T̃ using d̃ is (ε, 0)-differentially private.

This is straightforward, as computing d̃ is (ε, 0)-differentially private. Since the

number ∆ of triangles is not a simple function of the degree distribution, we instead

use the tehcniques of Nissim et al. [95] to compute an (ε, δ)-differentially private ap-

proximation of ∆. To reduce the amount of noise that needs to be added to compute

an approximation to ∆, Nissim et al. [95] use an upper bound on the local sensitivity

of ∆(G) by computing the β-smooth sensitivity of ∆(G).
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Let dist(G, G′) be the symmetric difference between the edge sets of graphs G and

G′. Hence, if G and G′ are neighbors by Definition 4.3.1, dist(G, G′) = 1.

Definition 3.4.6 (β-smooth sensitivity [95]).

For β > 0, the β-smooth sensitivity of f at G, is

SSβ, f (G) = max
G′

(
LS f (G) · e−β dist(G;G)

)
The smooth sensitivity can be used to compute a differentially private approxima-

tion to a function f :

Theorem 3.4.7 ([95]). Let f : Dn → R be any real-valued query function from an input x ∈

Dn for some domain D,and let SSβ, f : Dn → R be the β-smooth sensitivity of f for some β > 0.

Then, if β < ε
2 ln(2/δ)

and δ ∈ (0, 1), the algorithm that outputs f̃ = f (D) + 2 SSβ, f (D)

ε .η,

where η ∼ Lap(1), is (ε, δ)-differentially private.

Algorithm 1 illustrates the process we adopt. Our results use the above theorem

and the serial composition theorem 2.2.4 restated here:

Theorem 3.4.8 (Composition theorem [32]).

LetM1,M2, . . . ,M`, be ` number of (ε, δ)-differentially private mechanisms computed us-

ing graph G. Then any mechanismM that is a composition ofM1,M2, . . . ,M`, is (`ε, `δ)-

differentially private.

Using these results we compute an (ε, δ)-differentially private approximation of ∆

by outputting:

∆̃ = ∆ + 2
SSβ,∆ 2

ε
. Lap(1),

as an (ε, δ)-differentially private approximation to the number of triangles in G. Using

Theorems 3.4.8, 3.4.7, and Fact 3.4.5, we have

Theorem 3.4.9.

The computation of F̃ = {Ẽ, H̃, T̃, ∆̃} is (2ε, δ) differentially private.
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Using these private statistics F̃, in the moment-matching algorithm of Gleich and

Owen (Equation 3.2), we obtains a differentially private estimator. Algorithm 1 illus-

trates the process. Hence, we have:

Corollary 3.4.10. Θ̃ computed by Algorithm 1 is (ε, δ)-differentially private.

Algorithm 1 Differentially private estimation of Θ̃
Input: Graph G, privacy parameters (ε, δ)

1. Compute the degree vector d of G.

2. Using Hay et al. [51] compute a ε/2-differentially private approximation of d,
d̃

3. Compute Ẽ, H̃, T̃ from d̃.

4. Compute the smooth sensitivity SSβ,∆ of ∆

5. Use SS(G) to compute an (ε/2, δ) private approximation of ∆, ∆̃.

6. Use the Kronecker Moment Estimation of [46] with {Ẽ, H̃, T̃, ∆̃} as inputs to
Equation 3.2 to compute Θ̃.

Output: Θ̃

3.4.2 Experimental results

In this section, we discuss application of Algorithm 1 to three real-world networks

and two synthetic Kronecker graphs. CA-GrQC and CA-HepTh are co-authorship

networks from arXiv [77]. The nodes of the network represent authors, and there is

an edge between two nodes when the authors jointly wrote a paper. AS20 is a real-

world technological infrastructure network [77]. Each node represents a router on the

internet and edges represent a physical or virtual connection between the routers. All

these graphs are naturally undirected and all edges are unweighted. We downloaded

these networks from Snap [76] and used the provided library for our experiments.
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Network KronFit
(a, b, c)

KronMom
(a, b, c)

Private
(a, b, c)

CA-GrQC 0.999
0.245
0.691

1.000
0.4674
0.2790

1.000
0.4618
0.2930

CA-HepTh 0.999
0.271
0.587

1.000
0.4012
0.3789

1.000
0.4048
0.3720

AS20 0.987
0.571
0.049

1.000
0.6300
0.000

1.000
0.6286
0.000

Synthetic Θ =
[.99.45; .45.25]

0.9523
0.4743
0.2493

0.9894
0.5396
0.2388

0.9924
0.5343
0.2466

Table 3.1: Comparison of parameter estimation for ε = 0.2, δ = 0.01

We also used the code provided by Gleich [45] to compute both the private and non-

private moment-based estimators of the networks. Table 3.1 compares the results of

Algorithm 1 (column titled “Private”) to those of Gleich et al. [46] (“KronMom”) and

Leskovec et al. [77] (“KronFit”). Our results are based on Gleich et al.’s results, so

it is not surprising that our results are close to theirs—we observe that the private

parameters we compute are very similar. To provide a reasonable comparison, for each

of the graphs, we use the same Dist and Norm functions in the parameter estimation

of Equation 3.2 as in Gleich and Owen.

For the synthetic Kronecker graph we start with an initiator matrix

Θ =

 0.99 0.45

0.45 0.25


and k = 14 to obtain a synthetic graph on 214 nodes. Then we try to recover the param-

eters of this synthetic graph by running all three algorithms on it. From Table 3.1, we

see that all three algorithms do a satisfactory job in recovering the parameter when the

modeling assumption is true, that is when the graph indeed is a stochastic Kronecker

graph.
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To further understand how well the private estimator captures various properties

of the graph, we carry out further experiments. All experiments are conducted for

(0.2, 0.1)-differential privacy. Using the parameter estimates of a graph, we generate

100 synthetic graphs from the estimated parameters for all three methods, and com-

pute various expected statistics over these 100 graphs. These statistics have been com-

puted in [77] for these graphs, so we compare the performance of our private estimator

on these statistics to Leskovec et al.’s results. We summarize these statistics briefly:

1. The degree distribution plots the distribution of the degrees of the nodes.

2. The Hop-plot plots the number of reachable pairs of noded within h hops, as a

function of the number of hops h.

3. The Scree plot plots the eigenvalues (or singular values) of the graph adjacency

matrix, versus their rank, using the logarithmic scale.

4. The Network values plots the distribution of eigenvector components (indicators

of “network value”) associated with the largest eigenvalue of the graph adja-

cency matrix.

5. The average clustering coefficient plotted as a function of the node degree. The

clustering coefficient is a measure of the extent to which nodes in a graph tend

to cluster together.

For each of these graphs we plot these statistics. “Original” refers to the original graph,

“KronFit” refers to a single synthetic Kronecker graph generated from the parame-

ter Θ̂ which is computed using the KronFit algorithm of Leskovec et al. [78]. “Kron-

Mom” refers to a single synthetic Kronecker graph generated from the parameter Θ̂

that is computed using the “KronMom”, moment-matching algorithm of Gleich and

Owen [46]. “Private” refers to a single Kronecker graph generated from Θ̃ computed
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in Algorithm 1. The prefix “Expected” refers to the expected value of the statistics being

computed over 100 synthetic realizations of the appropriate Kronecker graphs.

From Figure 3.1, we notice that the observed statistics for a single realization are

very close to the expected values, hence one realization appears to give us a represen-

tative sample, at least for these four graphs.

To reduce clutter, for CA-HepTh (Figure 3.3), AS20 (Figure 3.2), and the synthetic

Kronecker graph (Figure 3.4), we only show single realizations. We observe that in

all four cases, the statistics are well-approximated and very close to the “predictions”

made by both the “KronFit” and the “KronMom” estimators. In the case of the syn-

thetic Kronecker graph we also observe a good matching of the average clustering

coefficient which is usually not the case for real-world networks. This has to do with

modeling assumptions. We see that the SKG models the clustering coefficient well for

AS20 but not for CA-GrQC and CA-HepTh. The private estimators are also observed

to perform comparably.

3.5 Conclusions and future work

We applied the rigorous differential privacy framework to problems of generating syn-

thetic graphs that can be made publicly available for research purposes while provid-

ing privacy to the individual participants. We built upon the work of Leskovec et

al. [77, 78] and Gleich and Owen [46] in the generative Kronecker graph model to

demonstrate that synthetic graphs that are statistically similar to the original sensitive

graphs can be generated in a manner that is differentially private. While we used a

specific model and a specific estimator, our work can be broadly placed in the frame-

work of private parametric estimation for graph models.

There are several future directions for future work. A comparison of our results

to those of Sala et al. [109] seems most relevant. An empirical study of the smooth
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Figure 3.1: Overlayed patterns of real network for CA-GrQC (N = 5, 242, E = 28, 980)
and the estimated synthetic Kronecker graph using the three different estimators.
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Figure 3.2: Overlayed patterns of real network for AS20 (N = 6, 474, E = 26, 467) and
the estimated synthetic Kronecker graphs using the three different estimators.
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Figure 3.3: Overlayed patterns of real network for CA-HepTh (N = 9, 877, E =
51, 971) and the estimated synthetic Kronecker graph using the three different esti-
mators.
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Figure 3.4: Overlayed patterns of a synthetic source Kronecker network and the esti-
mated sythetic Kronecker graph using the three different estimators.
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sensitivity of the number of triangles in the SKG is another direction we are currently

pursuing. Nissim et al. [95] propose an upper bound on the smooth sensitivity of the

number of triangles in the G(n, p) Erdos-Renyi model. It would be interesting to ex-

amine the smooth sensitivity of ∆ as a function of the size of the graph G. Preliminary

experiments indicate that in the SKG model, SS∆ might grow slowly. Yet another di-

rection that presents itself is to examine private estimation in other graph models such

as the Exponential Random Graph Model (ERGM) [105], especially since the results of

Karwa et al. [64] provide accurate differentially private approximations to statistics

used in ERGM estimation.
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4

Differentially Private Modeling of Human Mobility at

Metropolitan Scales

“In a dataset where the location of an individual is specified hourly, and with a spatial
resolution equal to that given by the carrier’s antennas, four spatio-temporal points are
enough to uniquely identify 95% of the individuals.”

– Yves-Alexandre de Montjoye et al. [26]

4.1 Introduction

Models of human mobility have wide applicability to infrastructure and resource plan-

ning, analysis of infectious disease dynamics, ecology, and more. The abundance of

spatiotemporal data from cellular telephone networks affords new opportunities to

construct such models. Furthermore, such data can be gathered with greater detail at

larger scale and lower cost than traditional methods, for example a census survey.

Prior work introduced the WHERE (Work and Home Extracted REgions) approach

to mobility modeling [62]. In WHERE, aggregated collections of cellphone Call De-

tail Records (CDRs) form the basis of a mobility model that can be used to charac-

terize a city’s commute patterns and enable the exploration of what-if scenarios re-

garding changes in residential density, telecommuting popularity, etc. Starting with

CDRs from a cellular telephone network that have gone through a straightforward

anonymization procedure, WHERE produces synthetic CDRs for a synthetic popula-

tion. WHERE has been experimentally validated against billions of location samples
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for hundreds of thousands of cell phones in the New York and Los Angeles metropoli-

tan areas.

While human mobility models have the potential for great societal benefits, pri-

vacy concerns regarding their use of individuals’ location data have inhibited their

release and wider use. Despite the fact that WHERE intuitively provides some pri-

vacy because it rests on aggregated distributions of sampled and anonymized data, a

more rigorous assurance of privacy can further advance safe and widespread use of

such techniques.

In this chapter, we present and evaluate DP-WHERE, a differentially private ver-

sion of WHERE. DP-WHERE satisfies the rigorous requirements of differential privacy

while retaining WHERE’s usefulness for predicting movement of human populations

in metropolitan areas. Overall, our work demonstrates that modest revisions to a mo-

bility model drawn from real-world and large-scale location data allow for rigorous

demonstrations of its privacy without overly compromising its utility. Specific contri-

butions of our work include the following:

• We produce and evaluate a differentially private approach for modeling human

mobility based on large sets of cellular network data.

• Our experiments show that differential privacy can be achieved for a modest re-

duction in accuracy. In particular, across a wide array of experiments involving

10,000 synthetic users moving across more than 14,000 square miles, the distance

between synthetic and real population density distributions for DP-WHERE dif-

fered by only 0.17–2.2 miles from those of the original WHERE approach.

• More broadly, this work shows that there is reason for optimism regarding the

judicious use of Big Data repositories of potentially sensitive information. We

show the value of a multi-pronged approach to privacy: Our model starts with
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attributes (such as sampling and aggregation) that make it intrinsically well

suited to offering some intuitive degree of privacy. We subsequently modify the

steps of the modeling algorithm to rigorously implement differential privacy.

Figure 4.1 shows an overview of DP-WHERE and its changes to WHERE. We dis-

cuss related work in Section 4.2. We provide the necessary background on WHERE

in Section 4.3.1. In Section 4.4 we describe the DP-WHERE algorithm in detail. In

Section 4.5 we present our evaluation of the utility of DP-WHERE.

Select  
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(lat, long) 

Add 
noise 
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commute distances 
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DP version of 
Commute Distance 
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Figure 4.1: Overview of DP-WHERE, which modifies WHERE by adding noise to
achieve differentially private versions of the input probability distributions. The rest
of WHERE remains unchanged.

4.2 Related work

Mobility Modeling: Characterizing human mobility based on cellular network or
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other position data has received considerable attention. Previous work developed al-

gorithms for inferring important locations (for example, home and work) from anonymized

cellular network data, and used such information to characterize metropolitan behav-

iors like commute patterns, to quantify carbon footprints, and to create the WHERE

mobility model [59, 60, 61, 62].

Early mobility modeling work used either handheld GPSs or WiFi association be-

havior to model human mobility at much smaller scales, and with little privacy [55, 70,

104]. Previous uses of cellular data has also included some mobility modeling [42, 43,

44, 48, 113], but with little attention to formal privacy assurances. Such studies use at

most anonymization and aggregation, and in some cases, actually point to data char-

acteristics that increase the difficulty of creating privacy-preserving mobility models.

Privacy: To the best of our knowledge, the problem of creating differentially pri-

vate human mobility models based on real-world cellular network data has not been

studied previously. Differential privacy has been examined in other contexts of spatio-

temporal data. Chen et al. [19] study the problem of publishing a differentially private

version of the trajectory data of commuters in Montreal. They then evaluate the util-

ity of published private data in terms of count queries and frequent sequential pat-

tern mining. Similarly, [26] recently characterized sequences of movements from in-

dividual users and found them extremely resistant to privacy techniques. In contrast,

WHERE does not directly model the sequentiality of the spatio-temporal data at the

level of an individual. Some work [54, 101] considers aspects of differential privacy

on spatial data, but without DP-WHERE’s end-to-end treatment. Other characteriza-

tion work also exists. Several recent papers have characterized the privacy risks of

releasing location data, in each case demonstrating the ability to re-identify individual

information from geospatial data sets [47, 74, 123]. These papers motivated us to look
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beyond a simple anonymization of location traces. In addition, Andrés et al. [6] intro-

duce the notion of geo-indistinguishability in location-based systems, which protects the

exact location of a user while allowing release of information needed to gain access to

a service.

4.3 Background

In this section, we provide background for WHERE and the application of differential

privacy to WHERE.

4.3.1 WHERE

DP-WHERE is based on WHERE, which produces models of how large populations

move within different real or hypothetical metropolitan areas [62]. WHERE generates

sequences of times and associated locations that aim to capture how people move be-

tween important places in their lives, such as home and work. Previous work has

shown that people spend most of their time at a few such places [48, 59, 113]. WHERE

aggregates the movements of many synthetic individuals to reproduce human densi-

ties over time at the geographic scale of metropolitan areas.

WHERE draws information from either CDR traces or public sources (for example,

the US Census Bureau). It then creates a set of probability distributions that it uses

to “drive” the generation of synthetic CDRs for the region being modeled. This paper

uses as its starting point the version of WHERE that uses CDR traces as its data source.

As shown in Figure 4.6, this source yields substantially better experimental results

than using current publicly available data sources.

The WHERE modeling algorithm takes as input a database of simplified CDRs.

(Complete CDRs contain details not relevant to mobility, for example, call-termination

codes.) Each row of this database corresponds to a single voice call or text message,
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both of which we refer to interchangeably as calls. WHERE thus uses a database D

of m entries corresponding to calls made by n distinct users. Each user is indexed by

a unique anonymized user ID in the set [n] = {1, 2, . . . n}. The calls were made in a

given metropolitan area divided into smaller geographic areas by imposing a square

grid of d× d cells.

WHERE leverages earlier work that estimates important places in people’s lives

(for example, home and work) by applying clustering and regression methods to the

CDRs in D [59]. In order to work with a single database in DP-WHERE, we append to

each CDR entry these inferred home and work locations for the corresponding user.

Thus, for the purposes of DP-WHERE, each row of D contains the following fields:

id date time lat long home work

At its core, WHERE uses D to construct cumulative distribution functions (CDFs)

for the following probability distributions (see also Figure 4.1):

Home and Work

For each grid cell, all users with inferred home locations in that grid cell are counted

(and normalized) to produce a probability distribution Home over the grid cells. Simi-

larly, a Work distribution is constructed from the inferred work locations of users in the

database.

CommuteDistance

WHERE allows for a coarser grid to be used for commute distances than for home and

work locations by merging adjoining cells in the underlying d× d grid to yield a dc× dc

grid. We refer to this coarser grid as the commute grid. For each cell in the commute

grid, WHERE creates an empirical distribution of commute distances (that is, distance
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between home and work) for people whose home locations are in that grid cell, leading

to a total of d2
c of these CommuteDistance distributions.

CallsPerDay

WHERE computes an empirical distribution CallsPerDay over the set C = {µmin,

. . . µmax} × {σmin, . . . σmax} of possible rounded values of means and standard devi-

ations of numbers of calls per day made by users.

ClassProb and CallTime

For each user in D, WHERE computes the distribution of when calls are made through-

out the day. These per-user distributions are then combined using X-Means clustering

into two classes [62]. Each user belongs to one of two user-classes with a probability

specified by ClassProb. Subsequently, using the CDR database, per-minute call proba-

bility distributions CallTime are computed separately for each user class.

HourlyLocs

For each hour of the day, WHERE computes a distribution of calls made over the grid

cells. Each of those 24 distributions reflects the probability of users being at a given

location during that hour. The HourlyLocs distributions are not tied to a specific user,

but represent the calling activity across the entire metropolitan area during each hour.

As shown in Figure 4.1, subsequent stages of WHERE use the above distributions

to produce synthetic CDRs for any number of synthetic users and a time period of

any duration. WHERE generates a synthetic user as follows. It first selects a home

location by sampling from Home. It then selects a commute distance c by sampling

CommuteDistance c for the region the home lies in. Finally, it selects a work location by

sampling from Work while restricted to locations at distance c from the home location.
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WHERE then generates synthetic call times and locations for a synthetic user i as

follows. First, it samples from CallsPerDay to obtain a (µi, σi) tuple that represents i’s

calling frequency and can itself be viewed as a distribution. Second, it samples from

the normal distribution with a mean µi and standard deviation σi to determine the

number of calls q that i makes in the current simulated day. Third, it samples from

ClassProb to assign i one of two classes of calling time patterns. Fourth, it samples

CallTime to select the times of day for the q calls that day. Finally, it samples HourlyLocs

to determine the locations of these calls while restricted to the user’s home and work

locations.

The synthetic CDR traces that comprise the output of WHERE have been shown to

agree closely across a variety of metrics with real-world CDR traces for hundreds of

thousands of users moving over metropolitan regions of thousands of square miles [62].

4.3.2 Differential privacy for Call Detail Records databases

Differential privacy relies on the notion of neighboring databases [33]—in our context,

two neighboring CDR databases. Intuitively, two databases are neighbors if they differ

only in one individual’s data.

Definition 4.3.1 (Neighbors). Two CDR databases D and D′ are neighbors if D ⊂ D′ and

there is some k ∈ [n] such that for every record r ∈ D′ ⊕ D, id(r) = k (where id(r) denotes

the user id in r).

That is, neighboring CDR databases D and D′ differ in the records of exactly one

user (who may have made many calls).

Differential privacy for multi-step algorithms can be provided by breaking the al-

gorithm down into multiple interactions with the database, each of which is itself dif-

ferentially private. We use the parallel and serial composition theorems from Chapter

2 (Theorems 2.2.4 and 2.2.5) for such algorithms in this work.
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4.4 Differentially private WHERE

Our new approach, DP-WHERE, modifies WHERE to provide differential privacy,

while still offering the high accuracy of the original approach. As described in Sec-

tion 4.3.1, WHERE creates and samples from several spatio-temporal distributions.

Our approach is to render each of these empirical distributions ε i-differentially pri-

vate, using different values of ε i, and then to apply Theorems 2.2.4 and 2.2.5 to arrive

at an ε-differentially private modeling algorithm, where ε = ∑i ε i. For each distribu-

tion, we specify a privacy “budget” ε i that will not be exceeded. The remainder of this

section describes our methodology in detail.

4.4.1 Pre-processing

Before the algorithm executes, we perform a pre-processing step that removes all

users who make more than a maximum threshold MaxCallsHr of calls per hour. This

limits the impact of any one user on the dataset. Our experimental evaluation sets

MaxCallsHr to 120 which makes it likely that any filtered caller is an auto-dialer; Sec-

tion 4.5 shows it yields good results.

4.4.2 Distributions

Home and Work

We compute differentially private empirical CDFs for Home and Work. Let εhome and

εwork be the privacy budgets allocated to computing Home and Work, respectively.

CountHomeNum(i) is defined as the function that returns the number of distinct users

in the database D with homes in the ith grid cell (in the chosen canonical ordering).

Note that the global sensitivity of the vector (Definition 2.3.1) of 〈CountHomeNum(1),

. . . , CountHomeNum(d2)〉 is 2, since each user can change his home location from grid
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cell i to another grid cell j, reducing the count in grid cell i by 1 and increasing j’s

count by 1. Applying the Laplace mechanism described in Theorem 2.3.3, Algorithm 2

provides an εhome-differentially private approximation of Home. Similarly, the Laplace

mechanism achieves an εwork-differentially private empirical CDF for Work.

Algorithm 2 Algorithm to compute an εhome-differentially private CDF of the Home
distribution.

DPhomeCDF(D, εhome)
Count← 0
for i← 1 to d2 do

Count← Count+CountHomeNum(i) + Lap
(

0,
2

εhome

)
CDF[i]← Count

end for
CDF← PostProc(CDF)

return CDF

The noisy CDF does not correspond to a legitimate probability distribution, as the

noisy counts are not necessarily non-decreasing. We use Hay et al.’s post-processing

techniques [53] to “clean up” this noise and create a legitimate (non-decreasing) CDF,

denoted by PostProc in Algorithm 2. The postprocessing method does not need to

access the original private data, so Theorems 2.3.3 and 2.2.5 imply:

Lemma 4.4.1. Algorithm 2 is εhome-differentially private. The equivalent algorithm for Work

is εwork-differentially private.

Figure 4.2 shows the CDFs of the Home distribution for different values of εhome

and the original empirical CDF. (The dataset and parameters used for the figures are

described in detail in Section 4.5.) The private version of Home is very close to its non-

private counterparts even for very low values of εhome. Only for extreme values of ε

such as 0.000001 are the differences even noticeable at this graph scale.
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Figure 4.2: CDF of Home distribution for different values of εhome.

Commute distance

As in WHERE, we impose a dc× dc grid on the geographical area. We first create a data

structure Di that contains the counts of commute distances of users (in CDR database

D) with home locations in grid cell i. In order to avoid having empty grid cells (in a

data-oblivious manner so that we do not incur a privacy budget expenditure), we add

two commute distances (of 0 and 0.1 miles) to every grid cell.

In WHERE, the CDF of the commute distribution is constructed by using the actual

commute distances as histogram bins. In DP-WHERE, for privacy reasons, we cannot

use the actual commute distances of people living in a grid cell as histogram bins. In-

stead, as shown in Algorithm 3, we create a per-commute-grid-cell data-dependent

histogram of commute distances in a differentially private way, and then sample from

this (normalized) histogram. The data-dependent histogram bins also need to be cre-

ated in a differentially private manner. Let εcommute be the privacy budget for the

commute distribution. We allocate half of this to determine the histogram bin ranges
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Algorithm 3 Algorithm to compute εcommute-differentially private CDFs of the Com-
mute distributions.

commuteCDFs(Di, i, εcommute)

CREATE BINS:
dpmedian← ExpoMedian(Di, εcommute

2 )
synthdata← GenExpoSynthData(dpmedian)
bins← FindPercentiles(synthdata)

CREATE NOISY HISTOGRAM:
for j← 1 to numbins do

CDF[i, j]← CountCommute(binsj, i) + Lap
(

0,
2 · 2

εcommute

)
end for

CDF[i]← PostProc(CDF[i])
return CDF[i]

(because they are data dependent) and the other half to compute the counts them-

selves. To determine the bins, we assume that the commute distances in each grid cell

are modeled by an exponential distribution—a popular model for positively skewed

distributions such as commute distances—e.g., see [5]. Let η(x) be the (normalized)

frequency of the distance x in the dataset Di. Then, if it follows an exponential distri-

bution with rate parameter λ, we have

η(x) = λe−λx

.

The rate parameter can be estimated using the median of the empirical data, by

λ̂ = median / log(2).

The differentially private approximation to the median of the commute distances

in grid cell i is called dpmedian and is computed using a computationally efficient ver-

sion of the exponential mechanism [87], as in [22]. In Algorithm 3, ExpoMedian(Di, εcommute
2 )
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implements this algorithm to compute dpmedian, an
εcommute

2
-differentially private ap-

proximation of the median of the commute distances.

Next, we determine the histogram bins by creating a large synthetic set of com-

mute distances that are sampled from an exponential distribution whose parameter

is given by λ = dpmedian
log(2) . In Algorithm 3, GenExpoSynthData(dpmedian) generates a

set of synthetic commute distances, synthdata, from such a distribution. We determine

the 10, 20, 30, . . . , 90, 95 percentiles of this set of distances using FindPercentiles. The

distances corresponding to these percentiles form the edges of the histogram bins.

CountCommute(binsj, i) counts the number of distances in the data structure Di

that fall in binsj. 〈CountCommute(bins1, j), . . . , CountCommute(bins10, i)〉 has a global

sensitivity of 2. Applying the Laplace mechanism yields an εcommute
2 -differentially pri-

vate computation of the approximate histogram counts. Since each user appears in

only one of the dc × dc grid cells, by Theorems 2.2.4 and 2.2.5 and the privacy of the

ExpoMedian [22]:

Lemma 4.4.2. Using Algorithm 3 to compute commuteCDF(Di, i, εcommute), ∀i ∈ {1, . . . , d2
c}

is εcommute-differentially private.

Calls per day per user

To create the CDF of CallsPerDay in a differentially private manner, we begin, as in

WHERE, by assuming that the average number of calls per day for any user is from

the set M = {µmin, . . . , µmax}. Similarly, the standard deviation of the number of calls

per day is from the set Σ = {σmin, . . . , σmax}. Just as for WHERE, each µi and σi corre-

sponding to a user i is rounded to the nearest value in the sets M and Σ, respectively.

Let CountAvgStd(µ, σ) be a function that counts the number of users whose calls

made per day have a (rounded) mean and standard deviation of µ and σ respectively.

Consider the matrix M, of size |M| × |Σ|, each element of this matrix corresponds to
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Algorithm 4 Algorithm to compute an εcpday-differentially private CDF of the
CallsPerDay distribution

CallsPerDayCDF(D, εcpday)

COUNT:
for µ← µmin to µmax do

for σ← σmin to σmax do
M̂(µ, σ)← CountAvgStd(µ, σ)

end for
end for

NOISE ADDITION:
for µ← µmin to µmax do

for σ← σmin to σmax do

M̂(µ, σ)← M̂(µ, σ) + Lap
(

0,
2

εcpday

)
end for

end for

CONVERT TO CDF:
CDF← PostProc(M̂)
return CDF

CountAvgStd(µ, σ), for µ ∈ M and σ ∈ Σ. Any addition or deletion of calls by a

single user can change the mean / standard deviation pair from (µ, σ) to another pair

(µ′, σ′), decreasing the count for at most one element of the matrix M by at most 1 and

increasing the count for another element by 1. Therefore, the global sensitivity of the

vector 〈M(µmin, σmin), . . . M(µmax, µmin)〉 is 2.

Algorithm 4 first counts each user’s (µ, σ). At the end of the COUNT process in

Algorithm 4, element M̂(µ, σ) contains CountAvgStd(µ, σ), ∀µ ∈ M σ ∈ Σ. Using

Theorems 2.3.3 and 2.2.5, the computation of M̂ after it goes through NOISE ADDI-

TION is differentially private. Next, the noisy matrix M̂ is converted to a CDF by

applying post-processing techniques [53] to further reduce the noise. Figure 4.3 shows

the differentially private approximation of the CDF of the CallsPerDay distribution for

different values of εcpday.

Lemma 4.4.3. Algorithm 4’s computation of M̂ and the CDF of the CallsPerDay distribution
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is εcpday-differentially private.
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Figure 4.3: CDF of CallsPerDay

Call times per user class

In DP-WHERE, we cluster users into one of the two classes using differentially pri-

vate k-means clustering [86] (rather than X-means as used in WHERE). From the CDR

database D, just as in WHERE, we compute the number of calls each user makes dur-

ing each hour of the day. From this, a 24-dimensional probability vector (one dimen-

sion for each hour) is constructed so that each element represents the probability that

a user makes calls during that hour. We classify users based on this 24-dimensional

probability vector. An intermediate data structure P that is input for the clustering

algorithm (Algorithm 5) is the set of probability vectors pi for all users i. Each row

of P consists of the id of the user and his calling probability vector pi. The input to

Algorithm 5 consists of P, the target number k (2 in our work) of cluster centers, the

privacy budget for the clustering algorithm εbdg, the amount of the privacy budget εit

that is spent for each iteration within the clustering algorithm, and the error tolerance
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tol. Algorithm 5 will iterate until either the error is within the range of tolerance or

the privacy budget is used up, whichever comes first.

Algorithm 5 Differentially private k-means algorithm
DP-Kmeans(P, εbdg, εit, tol)

INITIALIZE:
ClustCtr1 ← 〈Rand〉24

ClustCtr2 ← 〈Rand〉24

εcalltime ← 0

ITERATE:
while εcalltime ≤ εbdgorerr < tol do

OldCtr← ClustCtr1
OldCtr← ClustCtr2
ClustSize1 ← ClustSize1 +Lap(0, 1

ε )

ClustSize2 ← ClustSize2 +Lap(0, 1
ε )

εcalltime ← εcalltime + εit
Sum1 ← Sum(Cluster1) + 〈Lap(0, 2

ε )〉24

Sum2 ← Sum(Cluster2) + 〈Lap(0, 2
ε )〉24

εcalltime ← εcalltime + εit
ClustCtr1 ← Sum1 / ClustSize1
ClustCtr2 ← Sum2 / ClustSize2
ClustCtr1 ← PostProc(ClustCtr1)
ClustCtr2 ← PostProc(ClustCtr2)
err = dist(OldCtr1, ClustCtr1) + dist(OldCtr2, ClustCtr2)

end while

return ClustSize1, ClustSize2
return ClustCtr1, ClustCtr2, εcalltime

As shown in Algorithm 5, we initialize the cluster centers by picking two random

24-dimensional probability vectors 〈Rand〉24. Vectors in P are assigned to a cluster

depending on which of the two current cluster centers they are closer to. Over each it-

eration, the noisy sum of the vectors in ClustCtri for each current cluster i is computed.

The global sensitivity of the sum of vectors in ClustSumi = ∑j∈Clusteri
pj is 2, because

∀j ∈ [n], ‖pj‖1 = 1 (since each of the vectors is a probability vector). Any change in

one person’s data can change the ClustSumi to another vector ClustSumi +δ, where
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|δ| ≤ 2. The size of a cluster has global sensitivity 1. A differentially private computa-

tion of the cluster size and the cluster sum enables a differentially private approxima-

tion of the mean vector of the cluster. Additionally, for each iteration, the computation

of each ClustSizei is εit-differentially private and the computation of Sumi is also εit-

differentially private. Using Theorem 2.2.4, this leads to a 2εit-differentially private

computation of ClustCtri. The overall privacy level over an iteration, on applying

Theorem 2.2.5, is also 2εit, as the clusters are non-intersecting subsets of the dataset P.

A user and, consequently, his probability vector appears in exactly one cluster.

At this point, ClustCtri, the noisy mean of the vectors in Cluster i, will not nec-

essarily correspond to a probability vector, as some of its elements may be negative

and their sum may not add to 1. To correct for this, we apply post-processing noise

correction techniques on each of these cluster centers before returning to the next iter-

ation. After an iteration where either the privacy budget is exhausted or the error falls

below the given threshold tol, the algorithm returns the differentially private cluster

centers, the total privacy budget spent (εcalltime), and a differentially private computa-

tion of the cluster sizes (the vector ClustSize). All of this incurs a privacy expenditure

of εcalltime.

We use the cluster centers as calling time probability distributions: each element of

the cluster center vectors represents the probability that a user in that cluster makes

a call during that hour. We compute one probability distribution CallTime for each

minute of the day and for each user class by interpolating the probability distribution

over all minutes between the hours (elements of the cluster centers). We use ClustSize

to determine ClassProb, the probability of a user belonging to one of the two classes.

Using Theorems 2.2.4 and 2.2.5:

Lemma 4.4.4. Algorithm 5 gives an εcalltime-differentially private clustering of the user call-

ing probability vectors.
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Figure 4.4: Comparison of distribution of call times for two classes of users as deter-
mined by Algorithm 5 to the non-private clustering.

Figure 4.4 shows that DP-WHERE preserves typical diurnal patterns for both classes,

even for low values of εcalltime.

Hourly calls per location

For every hour of the day, DP-WHERE differentially privately computes an empiri-

cal distribution of calls made over every grid cell. To do this, CountCallsNum(i, j)

is defined as the function that returns the number of calls users in D make in the

ith grid cell between the hour j − 1 and j. We wish to determine a matrix H of size

d2 × 24; each row of H corresponds to a grid cell i ∈ [d2] and each column to an hour

j ∈ [24]. Element H(i, j) of the matrix has value CountCallsNum(i, j). Let NumDays

be the number of days that the database D corresponds to. The (column) vector cor-

responding to calls made over the geographical area during hour j is written as 〈H(×

∗, j)〉 = 〈H(1, j) . . . H(d2, j)〉. Since any change in exactly one user’s data can cause a

change of at most MaxCallsHr for every hour of each of these days, the global sensi-

tivity of this vector is MaxCallsHr ·NumDays.
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Algorithm 6 Algorithm to compute εhrlocs-differentially private CDFs of the
HourlyLocs distributions.

HourlyCDFs(D, εhrlocs)
gnums← b d2

gsizec
for j← 1 to 24 do

for `← 1 to gnums do

GROUP:
g` ← 0
for i← 1 to gsize do

g` ← g` + CountCallsNum(i, j)
end for

end for

NOISE ADDITION:
〈g〉 ← 〈g〉+

〈
Lap(0, MaxCallsHr ·NumDays

εhrlocs/24 )
〉gnums

RECONSTRUCT:
〈H(∗, j)〉 ← Reconstruct(〈g〉)CDF[j]← PostProc(〈H(∗, j)〉)

end for

return CDF

Direct use of the Laplace mechanism with this level of global sensitivity would

add a lot of noise relative to the individual counts. To reduce the overall magnitude

of noise added, we make use of grouping [66], which groups similar counts together

and allows the magnitude of the noise added to each group count to be lower as com-

pared to the total group count. Specifically, we set the group size gsize to be equal

to 24 ·NumDays, comparable to the magnitude of noise we will add to the resulting

grouped-counts vector. Grouping gsize contiguous elements together yields a vec-

tor 〈g〉 of size gnums = b d2

gsizec. Each element g` of 〈g〉 counts the total number of

calls made in locations that appear in group `. Note that the global sensitivity of 〈g〉

is still MaxCallsHr ·NumDays because any one user can make upto a maximum of

MaxCallsHr calls during a particular hour of each of these days. We then apply the
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Laplace mechanism to add noise to each group count. Finally, we replace every indi-

vidual count H(i, j) by the average of the noisy group count it belongs to (as denoted

by Reconstruct in Algorithm 6).

Algorithm 6 applies a similar grouping scheme for each hour (1, ..., 24). By The-

orem 2.3.3, each of these computations is εhrlocs
24 -differentially private. Thus by Theo-

rem 2.2.4:

Lemma 4.4.5. Algorithm 6 is εhrlocs-differentially private.
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Figure 4.5: HourlyLocs Distribution for 5:00pm to 6:00pm

While this kind of grouping may not always yield highly accurate results, in our

case each of the hourly distributions is defined on a geographical area, so we can

expect call counts within a group (corresponding to call counts in contiguous geo-

graphical areas) to be similar to each other for many groups. As demonstrated by

Figure 4.5, showing HourlyLocs for different values of εhrlocs/24, corresponding to an

overall εhrlocs (over all the HourlyLocs distributions) of 0.1, 0.05, and 0.01, respectively,

this method works well in our experiments.
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4.4.3 DP-WHERE: putting it all together

All of the approximations to the empirical distributions computed above are ε i-diff-

erentially private for different values of ε i. DP-WHERE composes these individual

differentially private mechanisms to yield the overall algorithm. To generate synthetic

CDRs from these distributions, DP-WHERE performs the same steps as WHERE to

sample from each of these private distributions to generate synthetic CDRs without

“dipping” back into the original data. Applying Theorem 2.2.4 to Lemmas 4.4.1–4.4.5

yields:

Theorem 4.4.6. DP-WHERE is ε-differentially private, where

ε = εhome + εwork + εcommute + εcpday + εcalltimes + εhrlocs.

It is important to note that, because none of the sampling steps in DP-WHERE re-

quire further access to the original data, it is possible for the data holder to release

the noisy distributions while retaining differential privacy. This would allow others to

produce their own synthetic CDR traces for any desired number of users, time dura-

tion, or other parameters.

4.5 Experimental evaluation

We have shown that DP-WHERE achieves differential privacy. Because it achieves

this by injecting noise, we must also assess the impact on utility. In this section, we

explore this impact by comparing the utility of the models produced by DP-WHERE

and by WHERE, both WHERE using real CDRs as input and WHERE using public

data (for example, the US Census) as input. To evaluate the utility of our models, we

are interested in how closely our synthetic users mimic the behavior of real cellular

network subscribers. Specifically, for multiple kinds of uses, we demonstrate that DP-

WHERE achieves similar accuracy to WHERE using CDRs, and far better accuracy
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than WHERE using only public data.

4.5.1 Datasets and methodology

The input data for our DP-WHERE and WHERE experiments come from a large set

of CDRs generated by actual cellphone use over 91 consecutive days from April 1 to

June 30, 2011. This dataset contains over 1 billion records for both voice calls and text

messages involving over 250,000 unique phones chosen at random from phones billed

to ZIP codes within 50 miles of the center of New York City.

In addition to the differential privacy provided by DP-WHERE, we took several

steps to preserve the privacy of individuals represented in our input datasets through-

out our handling of those datasets. First, we used only anonymized CDRs containing

no Personally Identifying Information (PII). Second, we did not focus our analysis on

any individual phone. Third, we present only aggregate results.

In each of our DP-WHERE and WHERE experiments, we generate 10,000 synthetic

users that travel for 30 consecutive days in an area of more than 14,000 mi2 around

New York City, more specifically bounded by latitudes 40◦N & 42◦N and longitudes

73◦W & 75◦W. This area is further broken down into squares 0.001◦ on a side to con-

struct the d× d grid discussed in Section 4.3.1, with d = 2,000.

4.5.2 Earth Mover’s Distance

An important goal of our modeling approach is that a synthetic CDR trace should

produce population density distributions that closely match those produced by a real

CDR trace at every time of day. We therefore need a quantitative measure for compar-

ing two spatial probability distributions at a given time. Our chosen metric is Earth

Mover’s Distance (EMD) [108], which we compute efficiently using the Fast EMD code

from [97].
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Figure 4.6: EMD error for DP-WHERE using different values of ε and a fixed commute-
grid cell size of 0.01◦ × 0.01◦, as compared to WHERE using CDRs and WHERE using
public data.

EMD finds the minimum amount of energy required to transform one probabil-

ity distribution into another. If one visualizes the problem as reshaping one mound

of earth to match another, this energy is given by the “amount” of probability to be

moved and the “distance” to move it. Thus, a lower EMD value indicates a stronger

similarity between two distributions. Since different distance weightings lead to dif-

ferent EMD values, we follow the method in [62] and convert a raw EMD value to

miles of error by using a normalizing factor. We obtain this factor by calculating the

EMD between two spatial probability distributions with their entire populations con-

centrated in one of two places one mile apart.

The differential privacy parameter ε gives us a “knob” by which to trade privacy

for accuracy. Figure 4.6 compares DP-WHERE using different values of ε to WHERE

using CDRs and WHERE using public data. The size of the commute-grid cells is held

constant at 0.01◦ × 0.01◦. As shown, WHERE using CDRs has the lowest overall EMD,
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Figure 4.7: EMD error for DP-WHERE using different sizes of commute-grid cell side
and a fixed ε of 0.23.

but DP-WHERE performs favorably across a range of ε values, always performing bet-

ter than WHERE using public data. Just as in [62], we compare our results to WHERE

using public data; the dotted curve at the top in Figure 4.6 represents the EMD error

incurred by WHERE using publicly available data (such as the US census data) and

models of some of the probability distributions. This comparison is especially rele-

vant in our case, because if the EMD error incurred by DP-WHERE (for a reasonable

value of ε) were to exceed the “all-public” WHERE error, one could arguably make a

case for using public data sources instead. This, however, is not the case as the figure

shows; even for an overall ε of 0.23, the average EMD error for DP-WHERE is well

below the “all-public” error. As ε is made smaller to achieve better privacy, more noise

is added and the EMD creeps upward. Accuracy is better in some times of day than

in others. In particular, hours before 8 or after 22 suffer from a smaller sample of lo-

cations in the input CDRs because fewer people make calls then, so adding noise has

more of an impact during those hours. We note that the exact choice of an appropriate

ε is a (largely open) policy question.
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The accuracy of DP-WHERE also depends on the granularities of the grids used

to divide the geographic region of interest. Figure 4.7 compares DP-WHERE using

different commute-grid sizes for the same ε of 0.23. At this ε value, coarser commute

grids provide less accurate EMD results.

commute-grid cell size
0.01◦ 0.025◦ 0.05◦

WHERE 3.2150 3.3396 3.0871
ε = 0.33 3.5316 3.1655 4.5687
ε = 0.23 3.4066 4.5577 5.1691
ε = 0.13 5.3391 5.3194 5.2754

Table 4.1: Average EMD error for WHERE using CDRs and DP-WHERE using various
ε, as the commute-grid cell size changes.

We ran a wide range of experiments to explore the effects of ε and commute-grid

cell size. Table 4.1 summarizes the EMD error averaged over the hours of the day

for each choice of ε and cell size. Across all our experiments, the EMD error for DP-

WHERE differed by only 0.17–2.2 miles from those of WHERE using CDRs. Our re-

sults confirm that differential privacy can be achieved for a modest reduction in accu-

racy.

4.5.3 Daily range

Daily range, or the maximum distance between any two points a person visits in a

day, has proven useful for characterizing human mobility patterns [61, 70]. We can

therefore demonstrate the value of our modeling techniques by showing that the daily

range computed from synthetic CDRs closely match those computed from real CDRs.

Figure 4.8 demonstrates the utility of DP-WHERE for daily range experiments. We

compare daily ranges produced by DP-WHERE, WHERE from CDRs, and the original

CDRs. We use boxplots to summarize the resulting empirical distributions, where the

“box” represents the 25th, 50th, and 75th percentiles, while the “whiskers” indicate the
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WHERE from CDRs, and the real CDR dataset.

2nd and 98th percentiles. The horizontal axis shows miles on a logarithmic scale. Like

WHERE, DP-WHERE exhibits daily ranges that are qualitatively similar to those from

real CDRs, with differences of 0.5–1.3 miles across the middle two quartiles.

EMD and daily range serve as important and complementary metrics for validat-

ing our synthetic models. EMD measures the aggregate behavior of synthetic users,

while daily range yields results at a per-user granularity. In summary, our EMD and

daily range results confirm that DP-WHERE produces synthetic CDRs that closely

mimic the behavior of large populations of real cellphone users.

4.6 Conclusions and future work

We have introduced DP-WHERE, which provides differential privacy while maintain-

ing the utility of WHERE for modeling human mobility from real-world cellular net-

work data. Our work demonstrates that it is possible to balance privacy and utility

concerns in practical Big Data applications.

We note that the input data set for this study comes from a much larger dataset of

CDRs of millions of users per metropolitan area. The CDRs used in this study have
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been randomly sampled from this larger database. If we undertake the sampling in

a systematic way, we can improve overall the privacy guarantees of our algorithm,

as noted by Cormode et. al [21]. In our case, if we start with a larger database D of

CDRs and include each user and his associated calls with a probability of p in the final

dataset S, then our privacy parameters for DP-WHERE show a further considerable

improvement. For example, sampling 5% of users from a database of millions of users

and running our DP-WHERE algorithm over the sampled database would yield an

order of magnitude improvement in the privacy parameter ε. Conversely, this could be

used to achieve a given ε with less noise addition. However, to explore how sampling

can help us reduce the magnitude of noise that needs to be added to each distribution,

one would need to formally quantify the relative error of each of the private CDFs.

In our experimental evaluations, described in Section 4.5, we only report the over-

all privacy value ε for each instance of the DP-WHERE modeling process. The choice

of individual privacy budgets (such as εhome) spent on each distribution (or family of

distributions), obviously, affects the overall ε. However, all distributions do not exhibit

a similar utility-privacy tradeoff. For example, as we can see from Figures 4.2 and 4.5,

values of εhome and εhrlocs that are of the same order (0.0001 and 0.0004 respectively)

lead to varying utility (informally, seen as the extent to which private approximations

are “close” to the original distributions). It would be interesting to conduct a system-

atic study of how to divide the overall budget among the constituent distributions.

Here, again a formal quantification of the approximation error of each of the private

CDFs may be helpful.

In DP-WHERE none of these sampling steps require further access to the original

CDRs, making it possible for the data holder to release the noisy distributions while

retaining differential privacy. Among possible uses, these distributions would allow

others to produce their own synthetic CDR traces for any desired population size,
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time duration, or other parameters. This, among other things, would entail a study—

experimental or theoretical—of the approximation error of each of the private CDFs,

perhaps, measured by the relative error in computing the CDFs.

It is our hope that our work on DP-WHERE constitutes a significant step towards

enabling cellular telephony providers to unlock the value of their data for applica-

tions with broad societal benefits, such as urban planning and epidemiology, without

compromising privacy.
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5

Differentially Private Gaussian Regression

Several machine learning tasks use data that is increasingly coming from individuals.

This leads to concerns about preserving the privacy of participating individuals while

enabling as little loss in utility of the machine learning algorithm as possible. In this

chapter, we consider the problem of privacy-preserving linear regression. Regression is

a staple methodology in machine learning and has been considered before in various

privacy preserving paradigms (see [118] for example). We will adhere to the notion

of differential privacy and consider the problem of regression in this model. In the

context of machine learning, differential privacy informally requires that if, using the

training data, we learn a probability distribution on the predictor space, then this dis-

tribution should remain (almost) unchanged whether or not an individual is included

in the training data.

We examine the problem of differentially private regression, a supervised learning

task concerned with the prediction of continuous quantities rather than discrete labels

as in classification. The training set for this task consists of individuals’ sensitive data.

For example, consider a database that consists of individuals’ smoking frequencies and

their associated risk of lung cancer. Using this data— the training data— we would like

to determine a function that predicts an individual’s risk of lung cancer given their

smoking frequency. This function is learned by using individuals’ private data, but

clearly has great social benefit.

Our work makes a connection between Gaussian regression (see [102] for example)
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and differentially private regression. We establish this via the so-called exponential

mechanism [87]. This connection to Gaussian regression, in particular, and Bayesian

regression in general (using an appropriate conjugate prior) helps us propose a gen-

eral computationally efficient exponential mechanism for regression problems. This

novel exponential mechanism is based on the concept of probabilistic sensitivity that

may be of independent interest. Gaussian regression also has well known connections

to ridge-regression; we show how the regularization/penalization constant in the case

of ridge regression is related to the privacy level of the solution. This connection also

helps us in high-dimensional regression, if the L2-norm of the true predictor is low.

We show that the regularization constant, in the case of ridge regression, (or equiva-

lently the Gaussian prior in the case of Gaussian regression) is related to the privacy

parameter ε. Additionally, we also show how this enables us to provide a “dimension-

free” bound for a differentially private predictor, using the concept of effective dimen-

sion [125] or effective degrees of freedom [50]. This, to the best of our knowledge is the

first such bound for differentially private supervised learning. We also experimentally

validate our results by applying our method to the Boston housing data set from the

UCI repository [39].

5.1 Related Work

Chaudhuri et al. [18] propose differentially private prediction by adding appropriate

noise into the objective function instead of the predictor, a technique called objective

perturbation. Though they propose a method for classification, their technique is appli-

cable to regression problems in which the objective function is strongly convex. This

is the case for L2-regularized least squares regression which we consider here. As we

show in Section 5.5.1 our results, unlike theirs, are not always dependent on the un-

derlying dimension of the predictor space.
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Dwork and Lei [32] also examine private regression adding noise proportional to

the dimension of the input space. Rubinstein et al. [107] propose privacy-preserving

classification methods using support vector kernels. Chaudhuri and Hsu [17] pro-

pose sample-complexity bounds for differentially private learning. Our generalization

bounds are in terms of the expected risk of the private predictor, where the expectation

is over the private distribution, rather than in terms of the risk of a single predictor.

Our experimental results show that the risk of a (private) predictor sampled from such

a distribution is fairly concentrated around the expected risk. In the next section we

introduce the framework of differential privacy and in Section 5.3 we introduce the

problem of private regression.

5.1.1 Differential Privacy

We introduce a novel exponential mechanism in this section via the notion of proba-

bilistic sensitivity which may be of independent interest.

5.2 A relaxed exponential mechanism

First, we specify the input and output of the scoring function q of the exponential

mechanism. Recall that the exponential mechanism maps a pair of an input data set

X (a vector or matrix over some arbitrary real-valued domain) and candidate output

ω (again over an arbitrary range Ω) to a real-valued “quality score.” Higher valued

scores imply good input-output correspondences. It assumes a base measure π on the

range Ω. The global sensitivity of the scoring function q (of the exponential mecha-

nism) as outlined in Chapter 2 is given by

GSq = max
X X′,ω

∣∣q(X, ω)− q(X′, vw)
∣∣
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where X and X′ are any two neighboring inputs datasets. Global sensitivity is a worst

case notion that takes into account the “worst” neighboring pair of datasets X and X′

over all outputs ω. Sometimes, it is hard to bound the effect of worst-case neighbors

over every ω in Ω, the output space. However, if we show that this effect is bounded

with a high probability, over the choice of ω sampled from the exponential mechanism,

then we can prove the existence of a (ε, δ)-differentially private “relaxed” exponential

mechanism.

We introduce the notion of a probabilistic upper bound on the global sensitivity of

the scoring function. Recall, that the exponential mechanism is given by the following

family of distributions:

πX,ε(ω) ∝ exp(εq(X, ω)) · π(ω) (5.1)

Definition 5.2.1 (Probabilistic global sensitivity). Let πX,ε denote the exponential mecha-

nism as in Equation 5.1. (U , δ) is said be a probabilistic upper bound on the global sensitivity

of a scoring function q(X, ω), with respect to πε, if with probability at least 1− δ over the

choice of ω (sampled from πε), for any neighboring X and X′,

max
X∼X′

∣∣q(X, ω)− q(X′, ω)
∣∣ ≤ U .

For convenience we refer to this quantity as probabilistic global sensitivity, but

in fact, it is only a probabilistic upper bound. We also prove that sampling from an

exponential mechanism whose score function has a probabilistic global sensitivity of

(U , δ) is (2εU , δ)-differentially private.

Theorem 5.2.2 (Relaxed exponential mechanism). If, with probability 1 − δ, over the

choice of ω with respect to the measure πε

max
X1∼X2

|q(X1, ω)− q(X2, ω)| ≤ U ,

then sampling from the exponential distribution is (2εU , δ)-differentially private
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Proof. Let GOOD be the set of ω’s such that for any x,

∣∣q(X, ω)− q(X′, ω)
∣∣ ≤ U .

If the probabilistic sensitivity of the q with respect to the mechanism πε is given by

(U , δ), then we have πε(GOOD) ≥ 1− δ. Let ωprivate be the result of sampling πε

once.

Now we have

pdf(ωprivate = ω|X1) =

πε(GOOD). pdf(ωprivate = ω|ω ∈ GOOD, X1)

+πε(GOOD) · pdf(ωprivate = ω|ω ∈ GOOD, X1)

≤ πε(GOOD) · pdf(ωprivate = ω|ω ∈ GOOD, X1) + δ

≤ πε(GOOD) · e2εU pdf(ωprivate = ω|ω ∈ GOOD, X2) + δ

≤ e2εU pdf(ωprivate = ω|X2) + δ

The idea of probabilistic global sensitivity, to the best of our knowledge has not

been used before. It would be interesting to compare this notion to that of smooth sen-

sitivity. Another probabilistic notion of sensitivity is used by Dwork and Lei in the

Propose-Test-Release mechanism [32], where they propose a (asymptotic) bound on the

local sensitivity of a function, and subsequently test (in differentially private manner)

whether the local sensitivity is sufficient for the current problem instance. The pro-

posed bound fails with a small probability δ. Subsequently a noisy statistic (with the

added noise being proportional to this bound on the local sensitivity) is released.

We will make use of Theorem 5.2.2 to propose a computationally efficient mecha-

nism for differentially private regression. In the next section we introduce the general

framework of linear and Gaussian regression.
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5.3 Linear Regression

First, we introduce the general framework of statistical prediction, in which there is an

input space X , an output space Y , and a space of predictors F . For any x ∈ X , y ∈ Y ,

and any predictor f ∈ F , a loss quantified by a loss function

` f (x, y) = ` f (z)

is incurred, where z = (x, y),∈ Z = (X × Y). We assume a fixed but unknown,

probability measure P on Z .

The true risk of a predictor f is the expected loss of the predictor given by:

R( f ) = Ez` f (z).

Given a set of n random independent samples Ẑ = {(xi, yi)
n
i=1} ∈ Zn, each drawn

from P, and a predictor f , the empirical risk of f on Ẑ, is given by:

R̂Ẑ( f ) =
1
n

n

∑
i=1

` f (xi, yi)

Empirical Risk Minimization (see [7] for example) seeks to formalize a relationship

between the true risk and the empirical risk of the best (in the empirical sense) predic-

tor in the form of generalization bounds. Specifically, one is interested in how much

difference there will be between the empirical risk and the true risk of a predictor

(that belongs to a class F ) given n random, independent samples. This relationship is

mainly studied using probabilistic bounds.

Another quantity that interests us is the estimation error: that is, how different is the

true risk of a predictor that minimizes empirical risk compared to the true risk of the

“best” predictor in the predictor space. This also takes the form of sample complexity

bounds where one can ask how large does the sample size have for this error to be

within a given E .
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5.3.1 Gaussian Regression

In the case of parametric linear regression (see [102] for example), the input space,

X ⊂ Rd and the output space, Y ⊂ R.

Let Ω be a (often bounded convex) subset of Rd. Then, each function f ∈ F is

parametrized in the following manner:

fω(x) = xT ·ω

for any x ∈ X .

Let X be a matrix, each column of which corresponds to an input xi in the sample

set Ẑ, and let y be a vector, each element of which is a yi from Ẑ.

Next, we review the Bayesian linear model with Gaussian noise. Let x be an input

vector, fω∗ be the “true” function, that is,

fω∗(x) = (x)T ·ω∗.

Each observed value yi differs from the function value fω∗(xi) by a additive noise,

which is assumed to be generated from a Gaussian distribution,N (0, σ2
n) with mean 0

and variance σ2
n . We have

y = fω∗(x) + η, η ∼ N (0, σ2
n).

This noise assumption implies that the likelihood of the observations given the

model also follows a normal distribution, that is:

p(y|X, ω) =
1

(
√

2πσn)n
exp(

−1
2σn2

∣∣∣∣∣∣XTω− y
∣∣∣∣∣∣2)

= N (XTω, σ2
n I). (5.2)

In Bayesian settings, a prior on the parameter space ω is specified, which captures

the “beliefs” about the parameters before looking at the data. The belief is then up-

dated to the so-called posterior probability, which signifies the fact that the probability
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distribution has been updated after observing the data. Like Rasmussen et al. [102],

we assume a Gaussian prior with zero mean and covariance matrix Σp on the weights:

ω ∼ N (0, Σp).

Using Bayes’ rule, the posterior is given by:

p(ω|X, y) =
p(y|X, ω)p(ω)

p(y|X)

After alegbraic manipulation it can be simplified to

p(ω|X, y) ∼ N (ω̄ =
1
σ2

n
A−1Xy, A−1)

where

A = σ−2
n XXT + Σ−1

p .

Since the posterior is also a normal distribution, its mean is the same as its mode,

also called the maximum a posteriori (MAP) estimate of ω.

In Bayesian prediction given a test input xtest, the predictive distribution is given

by

p( ftest|xtest, X, y) =
∫

p( ftest|xtest, ω)p(ω|X, y)dω.

= N (
1
σ2

n
xtestA−1Xy, xtestA−1xtest)

= N (xT
test ·ω, xtestA−1xtest) (5.3)

Given a xtest, the mean (or mode) , ω, of this normal distribution is used to make the

prediction, that is:

fω(xtest) = xT
test ·ω.

In the next section, we adapt this mechanism to propose a differentially private

prediction function. We do this by establishing a connection to the exponential mech-

anism and proving a probabilistic upper bound on the global sensitivity of its score

function.
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5.4 Differentially Private Gaussian Regression

A prior p(ω) over the predictor space Ω captures the beliefs we have without having

seen the training data Ẑ. Consider the score function of the exponential mechanism to

be the log-likelihood of the data, given the model. That is, let

q((X, y), ω) =

log
(

1
(2πσ2

n)
n/2 exp

( −1
2σn2

∣∣∣∣∣∣XTω− y
∣∣∣∣∣∣2)) . (5.4)

The exponential mechanism corresponds to the following density

πX,α(ω|X, y)

=
1

β(X, y)
exp

(
αq
(
(X, y), ω

))
.p(ω) (5.5)

where α is a privacy parameter and β(X, y) is a normalizing factor. This is similar

to the analysis above yielding

πX,α(ω|X, y) = N (
α

σ2
n

A−1Xy, Σ−1
α )

ωα =
α

σ2
n

A−1Xy, Σα = (
α

σ2
n
)−1XXT + Σ−1

p . (5.6)

In the case of Bayesian regression, as we saw above, the prediction is made by

using the mean of the normal distribution πX,α. But, we will instead sample ωprivate

from πX,α and prove the privacy properties of such a sampling.

To prove the privacy properties of sampling from πX,α we prove a probabilistic

upper bound on the global sensitivity of the score function as given in Equation 5.4.

Before that, we briefly remark on the well-known connection between Gaussian

and ridge regression, as we use some of the results from ridge regression in our work.

Connections to ridge regression

There is well-known equivalence between ridge regression and Gaussian regression

with a Gaussian prior [50]. Ridge regression shrinks the regression coefficients ω by
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imposing a penalty on their size. It minimizes the sum of least squares error between

the prediction and the actual y-values, while penalizing large regression coefficients in

the following manner.

ωridge = argminω

{
n

∑
i=1

(yi − xT
i ω)2 + λ ||ω||22

}
. (5.7)

Here, λ ≥ 0 is the regularization or penalty constant that determines the shrinkage

of ω. The larger λ, the greater the shrinkage, leading the coefficients to be shrunk

towards zero. The solution to this is given by

ωridge = [XTX + λI]−1XTy, (5.8)

where I is a d× d-identity matrix.

Consider a Gaussian noise model as in Equation 5.3.1 and assume a Gaussian prior

Σp = τ2 I on the parameter space Ω. Then, assuming that, τ2 and σ2
n are known, the

negative log-posterior of ω, is given by the expression in the RHS of Equation 5.7 with

λ = σ2
n/(ατ2).

ωridge is the same as ωα in equations 5.6 and we will use the two interchangeably, as

convenient.

Ridge regression is used in situations to control the norm of the predictor. The

larger the value of λ, the smaller the L2-norm of the predictor will be. Gaussian re-

gression has an equivalent way of achieving this by imposing a prior on the param-

eter space given by Σp = τ2, where τ is small. We see that the privacy parameter

is inversely related to the regularization parameter, if τ and σn are considered to be

constants.

The predicted values will then be given by

ŷ = Xωridge = X[XTX + λI]−1XTy.
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5.4.1 A probabilistic upper bound on the global sensitivity of the score

function in Gaussian regression

Theorem 5.4.1. A probabilistic upper bound on the global sensitivity of the scoring funtion

associated with πα is ( S
2σ2

n
, δ), where:

S ≤
(

M4n2 Ymax
2

λ2 +
2M2 Ymax

√
2 log(1/δ)

λ
3
2

+
2M2 log(1/δ)

λ

+
2M2 Ymax

2 n
λ

+
2M Ymax

√
2 log(1/δ)√
λ

+ Ymax
2
)

Before we can prove this theorem, we will need to prove a lemma that bounds the

norm of ωridge. We also state two lemmas here (one on Gaussian concentration and

the other on linearity of Gaussian distributions) that we will use in our proof below.

Lemma 5.4.2. [122][Concentration of a Gaussian distribution] Let X ∼ N (0, 1), then for

all t > 1,

Pr [|X| > t] ≤ exp
(−t2

2

)
.

Lemma 5.4.3. [122] If ω ∈ Rd, such that it is drawn from a multivariate normal distribution,

that is X ∼ N (ω′, Σ′), and x is any fixed vector in Rd, then

〈x, ω〉 ∼ N
(
〈x′, ω〉, xTΣ′x

)
.

Lemma 5.4.4 (Bound on the norm of the ridge solution).

∣∣∣∣∣∣ωridge
∣∣∣∣∣∣ ≤ M Ymax n

λ
.



94

Proof. We have

∣∣∣∣∣∣ωridge
∣∣∣∣∣∣ =

∣∣∣∣∣∣[XTX + λI]−1XTy
∣∣∣∣∣∣

≤
∣∣∣∣∣∣[XTX + λI]−1

∣∣∣∣∣∣ ∣∣∣∣∣∣XT
∣∣∣∣∣∣ ||y||

≤ 1
λ
·
∣∣∣∣∣∣XT

∣∣∣∣∣∣√n Ymax

≤ 1
λ

√
XTX
√

n Ymax

≤ 1
λ

√
M2n
√

n Ymax

≤ M Ymax n
λ

.

Proof of Theorem 5.4.1. Consider the score function

q((X, y), ω) = log(p(y|X, ω)).

Now,

max
(X1,y1)∼(X2,y2)

|log(p(y2|X2, ω))− log(p(y1|X2, ω))|

= max
(x1,y1), (x2,y2)

∣∣(〈x1, ω〉 − y1)
2
∣∣

2σn2

This equation follows from the definition of neighbors; without loss of generaliza-

tion we assume that neighboring (X1, y1) and (X2, y2) are exactly the same except for

the first tuple (x1, y1). Then,

∣∣(〈x1, ω〉 − y1)
2 − (〈x2, ω〉 − y2)

2∣∣ ≤ (〈x1, ω〉 − y1)
2.

Pr
{ ∣∣∣〈x1, ω〉 − 〈x1, ωridge〉

∣∣∣ ≥ t
}
≤ exp

( −t2

2(xT
1 Σλx1)

)
≤ exp

(
−t2

2λmax(Σλ) ||x2||2

)
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where the first inequality follows from Lemmas 5.4.2 and 5.4.3. In the second inequal-

ity λmax is the maximum eigen value of the covariance matrix Σλ.

Since the minimum eigen-value of Σλ = [XXT + λI]−1 is greater than or equal to λ,

we have

Pr
{ ∣∣∣〈x1, ω〉 − 〈x1, ωridge〉

∣∣∣ ≥ t
}
≤ exp

(−λt2

2M2

)
This implies that with probability at least 1− exp

(
−λt2

2M2

)
,

(〈x1, ω〉2 − y1)
2 ≤ (〈x1, ωridge〉 − y1)

2 + t2 − 2t(〈x1, ωridge〉 − y1)

≤ 〈x1, ωridge〉2 + y2
1 + 2y1

∣∣∣〈x1, ωridge〉
∣∣∣+ t2 + 2t

∣∣∣〈x1, ωridge〉
∣∣∣+ 2t |y1|

Let, δ = exp
(
−λt2

2M2 ,
)

such that t ≤
√

2 log(1/δ)M√
λ

.

Hence, with probability 1− δ, we have

(〈x1, ω〉2 − y1)
2 ≤ ||x||2

∣∣∣∣∣∣ωridge
∣∣∣∣∣∣2 + Ymax

2 +2 Ymax ||x||
∣∣∣∣∣∣ωridge

∣∣∣∣∣∣+
2 log(1/δ)M2

λ
+ 2

√
2 log(1/δ)M√

λ

(
||x||

∣∣∣∣∣∣ωridge
∣∣∣∣∣∣+ Ymax

)
.

Combining this with Lemma 5.4.4, we get the result.

From Theorems 5.4.1 and 5.2.2 we have:

Theorem 5.4.5. Sampling ωprivate from N (ω̄, Σ̄) is (ε, δ)-differentially private, where

ε =
αS
σ2

n
.

After sampling an ωprivate from πX,α, given an x+, the output is predicted using

fωprivate(x+) = (ωprivate)Tx+.

Since any ωprivate is sampled from the multivariate normal distribution πα, any

linear combination of ωprivate is drawn from the univariate normal distribution, that is

ωprivate ∼ N (x+T
ω̄, x+TΣ̄x)
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where ω̄ is the mean and Σ̄ is the co-variance matrix of πα.

5.4.2 Computationally efficient exponential mechanism for Bayesian regres-

sion

We briefly remark on a general relaxed exponential mechanism for Bayesian regres-

sion.

Using Bayes’ rule, a differentially private posterior given a prior and a likelihood

is:

pα(ω|X, y) =
p(y|X, ω)α p(ω)∫
p(y|X, ω)α p(ω)dω

.

We saw an instance of this in Gaussian regression. Using this observation, we have

the following general result.

Theorem 5.4.6. If (U, δ) is a probabilistic upper bound on the global sensitivity of the log-

likelihood log p(y|X, ω)) (the scoring function) in Bayesian regression, then sampling from

the posterior pα(ω|X, y) is (2αU, δ)-differentially private.

We notice here that the exponential mechanism in case of Gaussian regression has

a closed form, since it is also a Gaussian. In the case of Gaussian regression, since the

likelihood is a Gaussian, corresponding to a (scaled) least square loss function, and

the prior is also a Gaussian, the resulting differentially private posterior is Gaussian.

In general, this may not be the case. For example, if the prior on Ω is Laplacian and

the likelihood is Gaussian, the resulting posterior distribution does not have a closed

form and it is difficult to sample from it. In Bayesian analysis, if the posterior and

the prior distributions are of the same family, then they are called conjugate distri-

butions and the prior is called the conjugate distribution for the likelihood (See [122]

for example). The Gaussian distribution is a conjugate distribution for the Gaussian

likelihood. There are others, such as the Gamma and Wishart distributions. If the like-

lihood has another form, such as an exponential distribution, the gamma distribution
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is a conjugate prior for this.

5.5 Risk Bounds

Zhang [125] discusses the role of the regularization constant λ in inducing the so-called

effective dimension on the predictor space. Assume that the true underlying function is

f . To illustrate the effect of λ, we assume that the design matrix X is fixed, the so-called

fixed-design setting. We see that the expected square error of the predictor ŷ = f̂ (X)

is given by Ey ||ŷ− f (X)||2. Since this is the fixed-design setting, the randomization

comes only from the noise, leading to randomization in y.

The ridge regression predictor from Equation 5.4 is a linear estimator of the form

f = Py, where

P = X[XTX + λI]−1XT.

The expected mean-squared-error of f̂ is given by

E

∣∣∣∣∣∣ f̂ − f
∣∣∣∣∣∣2 = ||P f − f ||2 + Tr(PTP)

n
σ2

n (5.9)

since yi = f (xi) + ηi, where ηi ∼ N (0, σ2
n). The first term represents the bias and the

second the variance. If P is close to the identity matrix, the bias will be small, but on the

other hand, the quantity Tr(PTP) will be close to d the dimensionality of the data, and

this may not be desirable in high-dimensional settings. This is why Zhang uses the

term effective dimensionality for this quantity and discusses how the regularization

term λ influences this quantiy. For the ridge regression the term is

Tr(PTP)

= Tr[X[XTX + λI]−1XT]TX[XTX + λI]−1XT

≤ Tr[X(XTX + λI)−1XT]

This quantity Tr[X(XTX + λI)−1XT] is called the effective dimension of the predictor
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at scale λ [125] or effective degrees of freedom [50]. We have

Dλ = Tr[X(XTX + λI)−1XT] (5.10)

Let λj,∼ 1 ≤ j ≤ d represent the eigen-values of the the matrix XTX, then we have

Dλ =
d

∑
j=1

λj

λj + λ
.

When λ → 0, then the effective dimension at scale λ is close to d the underlying

dimension of the predictor space. When λ→ ∞, the effective dimension tends to zero.

We have seen before that the regularization constant of ridge regression is related

to the noise and prior parameters of Gaussian regression, via the following relation-

ship, λ = σ2
n/(ατ2). Therefore, lower values of ε and consequently α (higher privacy)

correspond to higher values of λ, which results in lower effective dimensionality of the

predictor. This is the reason why we can apply this methodology to high-dimensional

differentially-private regression. In the next section, we derive bounds on the expected

error of sampling from πα in terms of the effective dimension of the predictor space

and the norm of the “best” predictor in Ω rather than the actual dimension d of the

input space.

5.5.1 Risk bounds for differentially private regression

Let,

fω∗ ∈ inf
ω

R( fω)

Generalization bounds state the risk of the predictor in terms of the risk of the best

predictor fω∗ in the predictor space Ω. Using generalization bounds from Zhang [125],

we derive bounds on the expected risk of the private predictor ωprivate.

We reproduce the following theorem of Zhang [125] that provides generalization

bounds for ridge regression.
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Theorem 5.5.1. [125] Assume that the derivative of the loss function is bounded, that is,

| fω(x)− y| ≤ bΩ and that ||x|| ≤ M, almost surely. Then ∀λ > 0, with probability at least

1− 4 exp(−t), we have:

R( fωridge) ≤ R( fω∗) +
λ

n

∣∣∣∣∣∣ωridge −ω∗
∣∣∣∣∣∣2 +[

4tD λ
n

n
+

8t2M2

λn

](
bΩ + M

∣∣∣∣∣∣ωridge −ω∗
∣∣∣∣∣∣2)

This bound holds for using the ridge estimator fωridge to make a prediction. How-

ever, in our case, we need to sample a ωprivate from πα which will then be used to

make a prediction. We bound the expected risk Eω∼πα R( fω) of a private predictor ω

sampled from πα, to the risk of the ridge predictor, R( fωridge). Let λΣα be the maximum

eigen value of the co-variance matrix Σα of πα, then assuming that ||x|| ≤ M, ∀x, we

have

Lemma 5.5.2.

Eω∼πα R( fω) ≤ R( fωridge) + λΣα M2

Proof. We have

Eω(xT ·ω− y)2 = Eω(xT ·ω)2 + Eωy2 −Eω2y(x ·ω)

= Var(ω.x) + (EωxT.ω)2 + y2 + 2yEω(xT ·ω)

= xT A−1x + (xT ·ωridge − y)2

≤ (xT ·ωridge − y)2 + λΣα ||x||2

Taking expectation over x, y, we have the result.

Using this lemma with Theorem 5.5.1 and the conditions therein, we have

Theorem 5.5.3. With a probability of at least 1− 4 exp(−t), ∀λ > 0, we have:

Eω∼πα R( fω) ≤ R( fω∗) +
λ

n

∣∣∣∣∣∣ωridge −ω∗
∣∣∣∣∣∣2 +
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[
4tD λ

n

n
+

8t2M2

λn

](
bΩ + M

∣∣∣∣∣∣ωridge −ω∗
∣∣∣∣∣∣2)+

M2

λ

Compare this to earlier bounds proved by Chaudhuri et al. [18] of the form, where

with probability at least 1− 4 exp(−t),

R( fωprivate) ≤ R( fω∗) + O

(
d2 log2(d)t2

λn
+

t
λ
+

λ

n
||ω∗||2 +

(
1√
n
+

1√
d

)√
t

)
which necessarily depend on the dimensionality d of the predictor (or input) space.

Notice that the risk bounds for differentially private Gaussian regression have a

linear dependence on the effective dimension D λ
n

which (as noted earlier in this sec-

tion) in the worst case is d (but, generally smaller because of the regularization factor

λ). The risk bounds of Chaudhuri et al. [18], on the other hand, have a quadratic

dependence on d. However, when d the dimension of the predictor space is a small

constant, it may not be clear a priori which method is better to use because of the

constants involved that depend on assumptions on the data.

The next section presents experimental results that demonstrate the accuracy of

ωprivate.

5.6 Experiments

We carry out experiments on real-world data using the Boston housing data set [39],

and compare the ridge regression predictor ω
ridge
λ to the private predictor ω

private
λ . The

Boston Housing data set has thirteen predictor variables and one response variable

(median value of the owner-occupied homes) and consists of 506 samples. We use 5-

fold cross validation and repeat it 100 times for each value of ε and report the average

mean-squared-error over the resulting 500 iterations in Figure 5.1. We normalize the

dataset so that each value in a column lies in the range [−1, 1] and such that for every

row vector x, ||x|| ≤ 1. The x-axis shows different values of ε corresponding to a

value of δ = 0.001 in the (ε, δ) from Theorem 5.4.1. The “mean of GR” curve refers
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Figure 5.1: Mean Squared Error (MSE) of the predictor for the Boston Housing data
set, averaged over 100 instances of 5-fold cross validation

to Gaussian Regression without privacy with an “optimal” σ2
n and τ2 (corresponding

to an “optimal” λ in the regularized ridge regression formulation). This will be our

baseline to compare against. The “mean of EM” curve refers to prediction done by

the mean of the exponential mechanism for the corresponding ε. The “private” curve

refers to prediction done by sampling from the Exponential Mechanism. In order to

provide a smoother estimate, we sample from the Exponential Mechanism 10 times

and use the average predictor (while accounting for the overall privacy budget using

Composition Theorem 2.2.4).

As we can see, the (average) sample over 10 draws from the Exponential Mecha-

nism is quite close to its actual mean, which in turn for increasing values of privacy

ε, converges to the “optimal” predictor. Even for values of ε = 0.1, for example, the

Mean Squared Error using the private predictor is close to that achieved by the op-

timal one. In Figure 5.2 we look into the region of smaller (and, therefore, generally

more meaningful) values of ε.

From Figure 5.1, we see that the private estimator performs quite favorably as com-

pared to the ridge estimator, even as we do expect the performance to decrease with

increasing privacy.
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Figure 5.2: Mean Squared Error (MSE) of the predictor for the Boston Housing data
set, for lower values of ε

5.7 Conclusions and future work

We propose a method for differentially private Gaussian regression. Using experimen-

tal results, we show that this method performs favorably over real-world data. We

achieve generalization error bounds that are not not much worse than those for ridge

regression. Further, utilizing the convenience of conjugate priors for Gaussian regres-

sion, we can compute the differentially private predictor without necessarily adding

noise proportional to the dimension of the predictor space, which the Laplacian mech-

anism necessitates. This connection to Gaussian regression in particular and Bayesian

regression, in general, may help in application of a host of techniques from Bayesian

analysis to differentially private machine learning.

Several future directions present themselves. First, we can examine the conjugate

priors of several other classes of likelihood to propose computationally efficient expo-

nential mechanisms for other regression and classification problems. Second, in cases

where the exponential mechanism does not have a closed form, we can examine ap-

proximation techniques prevalent in the literature such as Markov Chain Monte-Carlo

methods. However, this will need to be done in a privacy-preserving manner and
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involves more than a straightforward application. Third, we could apply Gaussian

regression methods to online learning to propose methods for differentially private

online learning.
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6

Pan-private Algorithms via Statistics on Sketches

6.1 Introduction

Consider the following simple, motivating example. Say we keep track of visitors

that enter or leave a large facility (offline sites like a corporate or government office

or online like websites). When queried, we wish to determine how many different

visitors are on-site. This is a distinct count query. Unlike a data publication scenario

where data is static after it is published, here the data is dynamic, varying over time,

and the distinct count query may be posed any time, or even multiple times.

Our focus is first on privacy. Known methods for instance would be able to main-

tain the list of all IDs currently on site and, when queried, compute the precise answer

D but return D + α for some suitable α that balances utility of the approximate distinct

count against compromising the privacy of any particular ID. This intuitive approach

has been formalized and a rich theory of differential privacy now exists for limitations

and successes of answering this and many other queries privately.

Now, we go beyond privacy, and consider security. In particular, suppose the

program—that tracks the data and answers the query—is compromised. Of course,

this may happen because a malicious intruder hacks the system. But more subtly, this

may happen because an insider with access, such as a systems administrator, may turn

curious or crooked; data analysis may be outsourced to far away countries where peo-

ple and laws are less stringent; or the contents of the registers may be subpoenaed by
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law or security officials. How can distinct count query processing be done securely,

as well as with privacy? Maintaining a list of IDs on-site will not work, since it com-

promises all such IDs when a breach occurs. A natural idea is to hash (or encrypt)

IDs into a new space that hides the identity. On a closer look, this too will not work

since a breach will reveal the hash function or the encrypting key, and the intruder

can exhaustively enumerate potential visitors to a site and determine the identity of

all visitors currently on-site; this is known as a dictionary attack. (Notice that we are not

limiting the intruder to have any computational constraints; however, even for com-

putationally bounded adversaries, no cryptographic guarantees are known when the

adversary has full access to the private key.)

Maintaining a random sample of the IDs too will not work since it compromises the

sampled IDs, and further, sample-based solutions are not known for estimating D with

dynamic data when visitors arrive and depart, only for partly dynamic case when de-

parture of visitors is not recorded. One can be principled and use well-known sketches

since they only keep aggregate information (like counts, projections), rather than ex-

plicit IDs, and therefore afford natural obfuscation. While such solutions approximate

distinct count well with dynamic data, they also do not work because they rely on

hash functions to aggregate IDs: during the breach, the intruder obtains access to the

hash functions, and can carry out a dictionary attack, compromising some of the IDs.

This example illustrates the issues involved when one seeks privacy and security

simultaneously: even if we rely on cryptography and use exponential space or time to

process the dynamic data, there are no known methods for even simple queries like

distinct count. Of course, in reality, the dynamic data may have more attributes and

many queries are of interest from estimating statistics like averages, to data mining

tasks like finding heavy hitters, anomalies and others.

In this chapter we develop algorithmic techniques to compute the distinct count
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statistic for fully dynamic data. In order to do that, we need to formalize security and

privacy.

We consider the fully dynamic setting in which for each user, represented by an ID

i, (drawn from a universe U ), we maintain a state ai, which consists of cumulative

updates to i until time t. At each time step, the state of a single user is modified by

incrementing or decrementing updates (in arbitrary integral values). In partly dynamic

data, only increments are allowed. In addition, we call this fully or partly streaming,

respectively, if the algorithms use sublinear space (typically, space polylogarithmic in

various parameters).

We adopt the notion of differential privacy. In the context of online sequences, a

randomized function f is differentially private with respect to the IDs if the probabil-

ity distribution on the range of f is not sensitive to changing the state of any single

user ID. To add security to privacy, Dwork et al. [30, 34] formalized the notion of

pan-privacy. Informally, both the distribution of the internal states of the algorithm

and the distribution of outputs should be insensitive to changing the state of a sin-

gle user. This addresses privacy even in the case when there is one unannounced

memory breach by the adversary. In this chapter, we study this model (see [34] for

variants of the model). Without some “secret state” (such as a secret set of hash or

cryptographic keys), it might seem impossible to estimate statistics privately, but, sur-

prisingly, Dwork et al. [34] showed that several interesting statistics on streams can be

estimated accurately on partly dynamic data. Their algorithms are based on the tech-

nique of randomized response [121] and sampling.

6.1.1 Our contributions

We design the first known pan-private algorithms for distinct count in the fully dy-

namic model. We refer to our full paper [92] for algorithms on cropped first moment
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and heavy hitters count for fully dynamic data and lower bound techniques. Our al-

gorithms rely on sketches widely useful in streaming: in some cases, we add suitable

noise using a novel approach of calibrating noise to the underlying problem structure

and the projection matrix of the sketch; in other cases, we maintain certain statistics on

sketches, and in yet others, we define novel sketches. In what follows, m is the size of

the universe of IDs. These statistics, in one form or the other, have a long history, and

are considered basic in data analysis tasks over dynamic data in the past few decades

and different streaming solutions are known for these problems:

Given a sequence of updates, the Distinct Count statistic D is the number of user

IDs with nonzero state:

D = |{i ∈ U : ai 6= 0}|.

We present an algorithm that is ε-pan private and outputs an estimate (1 + α)D ±

polylog with probability at least 1− δ, where polylog is a polylogarithmic function of

various input parameters and m is the size of the universe. It directly uses a sketch

known before based on stable distributions for estimating distinct count [20, 58], but

maintains noisy versions based on a new method of adding noise tailored to the sketch

and the underlying problem.

In [92] this result is complemented by showing lower bounds. Let A be an online

(not necessarily streaming) algorithm that outputs D ± o(
√

m) with small constant

probability. Then we show that A is not ε-pan private for any constant ε. The lower

bound holds irrespective of the memory used by A—even if the memory is Ω(m).

Further, in [92], we show a lower bound of (1 + α)D ± polylog(1/δ) for algorithms

that succeed with probability 1− δ, essentially tight up to additive polylog terms with

the pan-private algorithm presented in this thesis.

We emphasize that our algorithm works on fully dynamic data which has not been

considered in pan-privacy before. Dwork et al. [34] provide pan-private algorithms
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for the distinct count statistic for partly dynamic data. Our definitions of the problem

we consider differs slightly from those in [34]: we consider distinct count instead of

density but our definition specifies a problem that is at least as hard to approximate as

those in [34].

The algorithms presented in [34] are based on sampling and randomized response

and do not work with fully dynamic data. This is why we had to develop alterna-

tive techniques based on maintaining statistics over sketches. Surprisingly, our dis-

tinct counts algorithm provides estimates for fully dynamic data that matches the

best bounds from [34] for partly dynamic data (up to additive polylog factors for dis-

tinct counts, and multiplicative factor 2 for cropped sum). The hashing technique

used in [34] to obtain a constant multiplicative approximation for distinct count and

cropped sum has an implicit additive factor of O(log m) because of adding Laplacian

noise linear in log m, giving an approximation of (1± α)D±O(log m). In fact a pure

multiplicative approximation of 1± α, for any constant α, is prohibited by our lower

bounds on distinct counts [92].

Finally, we make an intriguing observation. Pan-privacy does not require algo-

rithms to have any computational or storage constraints; it only requires differential

privacy and security against intrusion. In fact, the lower bounds proved in [92] hold

against algorithms that can use unbounded storage and perform arbitrary computa-

tions per update. On the other hand, the pan-private algorithm for distinct count we

present here are actually streaming algorithms that use only polylogarithmic time per

update and polylogarithmic space. This may be an artifact of the techniques we use.

We leave it open to find problems for which pan-private algorithms exist that neces-

sarily use large (say polynomial) space.

We start in Section 6.2 by introducing relevant definitions and notation. In Sec-

tion 6.3, we present our pan-private algorithm by keeping statistics on sketches.
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6.2 Background

In this section we introduce notation and definitions and recapitulate earlier work on

pan-privacy and sketches that we build on.

6.2.1 Model and notation

We are given a universe U , where |U | = m. An update is defined as an ordered pair

(i, d) ∈ U ×Z. Consider a semi-infinite sequence of updates (i1, d1), (i2, d2), . . .; the in-

put for all our algorithms consists of the first t updates, denoted St = (i1, d1), . . . , (it, dt).

The state vector after t updates is an m-dimensional vector a(t), indexed by the elements

in U . (We omit the superscript when it is clear from the context.) The elements of the

vector state vector a = a(t), store the cumulative updates to i: ai = ∑j:ij=i dj. Each

ai is referred to as the state of ID i. In the partly dynamic model, all updates are posi-

tive, i.e. ∀j : dj ≥ 0; in the fully dynamic model, updates can be both positive (inserts),

i.e. dj ≥ 0, and negative (deletes), i.e. dj < 0, but at any time, ai ≥ 0 (since deletes

cannot exceed inserts). We assume an upper bound Z on the maximum absolute value

of the state of any i ∈ U , i.e. ai ≤ Z at any time step.

6.2.2 Pan-privacy

We refer the reader to Chapter 2 to review the notion of pan-privacy and for formal

definitions. Here we recapitulate a few of these definitions and theorems for conve-

nience.

We will use composition theorem (Theorem 2.2.4) from Chapter 3 reproduced here:

Theorem 6.2.1. [33] Given mechanisms Mi , i ∈ [r] each of which provide ε i-differential

privacy, then the overall mechanism M that executes these r mechanisms with independent

randomness and outputs the vector of their outputs, provides
(

∑i∈[r] ε i

)
-differential privacy.
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The second composition result we use concerns composition of the neighbor rela-

tion. First we define the notion of `-neighborhood, which is a binary relation induced

by the neighbor relation.

Definition 3. Given a neighbor relation ∼, the `-neighbor relation ∼` is defined as follows.

Two input datasets D, D′ are said to be 1-neighbors—i.e. D ∼1 D′, if D ∼ D′. For a natural

number ` > 1, D, D′ are said to be `-neighbors—i.e. D ∼` D′ if D ∼`−1 D′ or there exists a

dataset D′′ ∼ D′ such that D′′ ∼`−1 D.

Another way to think of `-neighbors is as inputs that are linked by a path of length

at most ` in the graph induced by the neighbor relation. Next we present a theorem of

Dwork et al. formally showing that differential privacy is resilient to composition of

the neighbor relation.

Theorem 6.2.2. [33] If a function f provides ε-differential privacy with respect to ∼, then f

provides `ε-differential privacy with respect to ∼`.

Pan privacy, as introduced in Chapter 2, guarantees a participant that his/her risk

of being identified by participating in a data set is very little even if there is an external

intrusion on the internal state of the analyzing algorithm. Consider two neighboring

online sequences of updates S =
(
(i1, d1), . . . , (it, dt)

)
and S′ =

(
(i′1, d′1), . . . , (i′t′ , d′t′)

)
associated with state vectors a and a′ respectively as introduced in Definition 4.3.1.

As mentioned in Chapter 2, our notion of neighborhood is slightly different from

the Dwork et al. [34] definition, where any two data streams S and S′ are neighbors

if they differ only in the presence or absence of any number of occurrences of any

element i ∈ U (i.e. a and a′ have hamming distance at most 1). Our definition ensures

that two neighboring sequences of updates are of the same “length,” in the sense that

the sum of the updates over all items is the same for both S and S′, that is, ∑t
i=1 dk =

∑t′
i=1 d′k. For this purpose, we constrain the sum of the updates of the occurrences of
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item i in S to be conserved when they are replaced by item j in S′. In our definition, the

total weight of updates is public, but, still, an adversary cannot distinguish between

appearances of ID i or ID j, even if the adversary knows all other appearances of all

other IDs.

We comment on the composability of our definition of neighborhood. Applying

Definition 3, we see that two sequences S and S′ will be `-neighbors if there exist

(possibly multi) sets of ID’s of cardinality `: {i1, i2 . . . i`} and {j1, j2, . . . , j`} all from U ,

such that some occurrences of each ik, 1 ≤ k ≤ ` in S are replaced by some occurrences

of jk 6= ik, 1 ≤ k ≤ ` in S′. There is no other restriction on the j′ks; they may be all equal,

different or any subset of these may be equal. Hence Theorem 6.2.2 is applicable to our

definition of `-neighbors. We also reproduce the definition of user-level pan-privacy

here:

Definition 4 (User-level pan privacy [34]). Let Alg be an algorithm. Let I denote the set of

internal states of the algorithm, and let σ the set of possible output sequences. Then algorithm

Alg mapping input prefixes to the range I × σ, is pan-private (against a single intrusion)

if for all sets I′ ⊆ I and σ′ ⊆ σ, and for all pairs of user-level neighboring data stream prefixes

S and S′

Pr[Alg(S) ∈ (I′, σ′)] ≤ eε Pr[Alg(S′) ∈ (I′, σ′)]

where the probability spaces are over the coin flips of the algorithm Alg.

6.2.3 Sketches and stable distributions

In this section we discuss previous work in sketch-based streaming.

Definition 5. [96] A distribution S(p) over R is said to be p-stable if there exists p ≥ 0 such

that for any n real numbers b1, . . . , bm and i.i.d. variables Y1, . . . , Ym with distribution S(p),

the random variable ∑i biYi has the same distribution as the random variable (∑i |bi|p)1/pY,

where Y is a random variable with distribution S(p).
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Examples of p-stable distributions are the Gaussian distribution, which is 2-stable,

and the Cauchy distribution, which is 1-stable. Stable distributions have been used to

compute the Lp norms of vectors (Lp = (∑i ap
i )

1/p) in the streaming model [20, 58].

Let X be a matrix of random values of dimension m× r, where each entry of the

matrix Xi,j, 1 ≤ i ≤ m, and 1 ≤ j ≤ r, is drawn independently from S(p), with p

as small as possible. The sketch vector sk(a) is defined as the dot product of matrix

XT with a, so sk(a) = XT · a. From the property of stable distributions we know that

each entry of sk(a) is distributed as (∑i |ai|p)1/pX0, where X0 is a random variable

chosen from a p-stable distribution. The sketch is used to compute ∑i |ai|p for 0 <

p < α/ log Z, from which we can approximate D(t) up to a (1 + α) factor( See [20] for

details). By construction, any sk(a)j can be used to estimate Lp
p. Cormode et al. [20]

and Indyk [58] obtain a low-space good estimator for (∑i |ai|p) by taking the median

of all entries
∣∣∣sk(a)j

∣∣∣p over j:

Theorem 6.2.3. If the continuous stable distribution is approximated by discretizing it to a

grid of size (mZ
αδ )

O(1), the support of the distribution S(p) from which the values Xi,j are drawn

is truncated beyond (mZ)O(1), and r = O(1/α2 · log(1/δ)), then with probability 1− δ,

(1− α)p medianj

∣∣∣sk(a)j

∣∣∣p ≤ median |X0|p (∑
i
|ai|p)

≤ (1 + α)p medianj

∣∣∣sk(a)j

∣∣∣p
where median |X0|p is the median of absolute values (raised to the power p) from a (truncated,

discretized) p-stable distribution.

We will use these details in Algorithm 7 in Section 6.3.1 to propose a pan-private

algorithm for distinct counts.
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6.3 Pan-private algorithms for fully dynamic data

In this section we present our pan-private algorithms that work for fully dynamic data.

Our algorithms follow the outline:

1. initialize a sketch to a noisy vector chosen from an appropriate distribution;

2. update the sketch linearly (linearity may be over the real field, or modulo a real

number); and

3. compute a global statistic of the sketch.

The fact that, for all the algorithms, the state of the algorithm is a linear function of its

input and the noisy initialization allows us to characterize the distribution of the state

of the algorithm at any time step; this property is essential to both the privacy and

utility analyses of our algorithms. While particular entries in the sketches may not be

accurate approximations of the states of the user IDs, the global statistic computed at

the end can be shown to be an accurate estimate of the desired value.

6.3.1 Distinct count

We use sketching based on stable distributions outlined in Section 6.2.3 to design an

algorithm for pan-private estimation of the distinct count statistic D(t). We exploit the

linearity property of the sketches by maintaining a noisy version of the sketch in order

to achieve pan-privacy. Because the sketch is a linear function of the state vector, it

is enough to add an initial noise vector drawn from the appropriate distribution. To

do so without adding too much noise, we develop a new technique of adding noise

calibrated to the underlying random projection matrix and the nature of the statistic

we are computing, using the exponential mechanism of McSherry and Talwar [87]. As

a consequence, while this mechanism, in general, is not computationally efficient, it
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provides us with a new framework for adding noise that is not “function oblivious.”

The established Laplace mechanism [33], that adds noise calibrated to the global sen-

sitivity of the function, beyond being aware of the global sensitivity of the function is

oblivious of the underlying structure of the problem. This is important for our appli-

cation as the sensitivity of the stable distribution sketch can be very high due to the

heavy tails of p-stable distributions for small p.

Next we describe the mechanism we use to draw the noise vector.

An initializing noise vector: We use the exponential distribution to generate a

random noise vector that initializes the sketch. The sketch vector has dimension r; let

us denote the i-th row of X as Xi∗ and the j-th column of X as X∗j.

We use the exponential mechanism of McSherry and Talwar with the following

quality function q. If the true sketch vector is sk(a), then

q
(

sk(a), sk(a)priv
)
= −d

(
sk(a)− sk(a)priv

)
,

where d is defined as:

d(z) := min ‖c‖0 s.t.

z = XTc

∀i ∈ [m] : ci ∈ [−2Z, 2Z].

If the above program is infeasible, then d(z) = ∞.

Given sketch vector sk(a), the mechanism picks a sketch sk(a)priv from a distribu-

tion, µε given by

µε(sk(a)priv) ∝ exp
( ε

4
q(sk(a), sk(a)priv)

)
.

Intuitively, the distance function d roughly measures the minimum number of items

in the state vector a, whose entries need to be changed in order to get from sk(a) to

sk(a)priv. This is used in the utility analysis.
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Next, we need to compute the sensitivity ∆q of q defined as

GSq = max
x∼z,y

|d(x, y)− d(z, y)| .

Lemma 6.3.1. For q as defined above, GSq ≤ 2.

Proof. If sk(a) and sk(a′) are the true sketch vectors for neighboring sequences of up-

dates corresponding to state vectors a and a′ respectively, then for some i, j ∈ U , i 6= j,

sk(a′) = sk(a) +ciXi∗ + cjXj∗, for some ci, cj ∈ [−2Z, 2Z]. Therefore,

GSq ≤ max
sk(a),sk(a′),y

|d(sk(a)−y)− d(sk(a′)−y)|

≤ max
sk(a),ci ,cj,y

|d(sk(a)−y)− d(sk(a)−y + ciXi∗ + cjXj∗)|

≤ 2.

Let B = poly(m, Z) be large enough so that: (1) Theorem 6.2.3 holds, (2) for any

c ∈ [−2Z, 2Z]m, XTc ∈ [−B, B]r. We pick an initializing vector y using the exponential

distribution with quality function q from the range R = [−B, B]r ∩〈X1∗, . . . , Xm∗〉,

discretized to within poly(m, Z, 1/α, 1/δ) precision, again so Theorem 6.2.3 holds.

Notice that logR = O(r · log(poly(m, Z, 1/α, 1/δ))), which implies that logR =

poly(log m, log Z, 1/ε, 1/α, log(1/δ)).

The Algorithm: After initializing, we update and decode the sketch as in the non-

private algorithm. Before outputting the final answer, we draw another vector using

the exponential mechanism with the same parameters. The algorithm is shown below

as Algorithm 7.

Since updates are linear, and q(sk(a), sk(a)priv) is a function of sk(a)− sk(a)priv,

initializing the sketch to a vector picked using the exponential mechanism with quality

function q(y, 0) = −d(y) ensures that any state is 2 ε
4 GSq-differentially private. More

formally, from Theorems 2.3.4 and 6.2.1, and Definition 4:
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Lemma 6.3.2. At any step in Algorithm 7, the state of the algorithm is a sketch and the

distribution over states is given by the exponential mechanism with quality function

q(sk(a), sk(a)priv) = −d(sk(a)− sk(a)priv).

Hence the algorithm is ε-pan private.

Also, by simple application of Theorem 2.3.4:

Lemma 6.3.3. The initializing vector y has

d(y) ≤ 4
log |R|

ε
+

4
ε

log 1/δ ≤ polylog(m, Z, 1/ε, log(1/δ), 1/α)

with probability 1− δ. The same holds for y′

Theorem 6.3.4. With probability 1− δ, Algorithm 7 outputs an estimate in (1± α)D(t) ±

poly(log m, log Z, 1
ε , 1

α , log 1
δ ).

Proof. Follows by the previous lemma, the definition of d, the fact that

‖a‖0 − ‖c‖0 ≤ ‖a + c‖0 ≤ ‖a‖0 + ‖c‖0

, Theorem 6.2.3 and the linearity property of sketches:

sk(a)± sk(b) = sk(a± b).

Algorithm 7 is a streaming algorithm since it uses space polylogarithmic in m and

takes time polylogarithmic in m per new update.

Since we use the exponential mechanism, our techniques are not efficient in gen-

eral. We need to sample from a space of 2S different possible sketches, where S is the

maximum bit size of a sketch. When S is polylogarithmic, we need to sample from
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Algorithm 7 Pan-private approximation of D(t)

INPUT: privacy parameter ε, 0 < p < α/Z < 1, matrix X computed off-line
a, sf(p) = median |X0|p also computed off-line numerically.

Initialize the r-dimensional sketch vector sk(a)priv to y, by picking y from µε

for all tuples (i, dt) do
for all j = 1 to r do

sk(a)priv
j ← sk(a)priv

j +dt ∗ Xij
end for

end for

OUTPUT: Draw r-dimensional vector y′ from µε, assign sk(a)priv ← sk(a)priv +y′.

return D̃ = medianj

(∣∣∣sk(a)priv
j

∣∣∣p) · sf(p)

a See [20] for converting this to the on-line setting using seeded pseudorandom constructions.

a quasipolynomial set of objects. Note that a noise vector is only drawn during the

preprocessing and postprocessing phases of the algorithm. While these phases take

time 2s, the time per update is only polylogarithmic.

6.3.2 A general noise-calibrating technique for sketches.

The construction above gives a more general “recipe.” Assume that a function f from

state vectors to the reals ( f : [−Z, Z]U → R) with f (0) = 0 can be approximated

by a sketch. More precisely, the sketch is given by a linear map L and there exists a

procedure that given the sketch outputs f̃ (a) ∈ [γ1 f (a), γ2 f (a)]. Then we can use

the technique above with d(z) = min{ f (c) : Lc = z}, where the minimum is over

valid differences of state vectors, i.e. c ∈ [−2Z, 2Z]U . By identical proofs to the ones

above, the algorithm is ε/2∆q-pan private and computes an approximation of f in

[γ1 f (a)−O(S), γ2 f (a)+O(S)], where S is a bound on the bitsize of a sketch, provided

that f (a + y) ∈ f (a)± f (y). Note also that GSq = maxy:‖y‖0=1 | f (y)|, where y has one

nonzero component, and that component is bounded in [−2Z, 2Z].
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In particular, a variant of Theorem 6.3.4 can be easily achieved for pan-private

computation of L1 and L2. A key fact that helps us adapt such a technique is the

linearity of the sketches, which renders the state of the algorithm to be a linear function

of the sketch and the initializing noise vector. The noise vector, itself is picked using

a technique that relies on the linearity of these sketches, as outlined above. However,

for both L1 and L2, this results in an additive factor that is linear in Z, the upper bound

on each |ai|. This is because for L1 or L2, the sensitivity of the quality function is

GSq = 2Z (where d minimizes ||c||1 and ||c||2, respectively, instead of ||c||0) and we

need to sample the noise vector from µε′ , where ε′ = ε/2Z. In turn, this results in linear

dependence on Z in the bound on d(y). The linear dependence is inherent in trying to

estimate L1 and L2, due to their high sensitivity.

This is because the proof of Theorem 6.3.4 will involve a triangle inequality of

||a + c||p ≤ ||a||p + ||c||p (for p = 1 and 2) and ||c||p ≤ Z · ||c||0, giving an additive

error term, Z poly(log m, log Z, 1
ε , 1

α , log 1
δ ) An additive error term linear in Z seems to

be inherent to such a statistic as it is highly sensitive (sensitivity 2Z), unlike the distinct

count statistic.

6.4 Discussion

We focus not only on privacy of data analysis, but also security, formulated as pan-

privacy in [34]. We present the first pan-private algorithms on fully dynamic data for

distinct count that almost matches the lower bound for this problem. Privacy with

security is an important issue, and pan-privacy [34] is an effective and interesting for-

mulation of this problem. A number of extensions are of interest.

Other Security Models. In this work we focus on security against a single unan-

nounced intrusion. A natural extension is to protect against multiple intrusions. If

the occurrence of an intrusion is announced before or immediately after the intrusion,
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such as in applications where they are legally mandated or are detected by the system,

then our results will still hold, with the simple fix to randomize anew after each in-

trusion. If the intrusions are unannounced, there are extreme cases when differential

privacy cannot be ensured even with partly dynamic data [34]. We leave it open to for-

mulate a realistic model of multiple unannounced intrusions and investigate tradeoffs

between privacy and accuracy guarantees.

In a dynamic data scenario, it is often desirable to continuously monitor some set

of statistics in order to detect trends in the data in a timely manner [35]. Our results

can also be used to provide continual event-level pan-privacy [35]—that is, to provide the

ability to monitor the statistics we have considered while ensuring privacy and secu-

rity. Event-level pan-privacy can be defined analogously as in Definition 4 by consider-

ing event-level neighbors instead. Two sequences S and S′ are said to be event-level

neighbors if some “event” (ik, dk) in S is replaced by some other event (j, dk), where

j 6= ik in S′. While the notion of user-level privacy offers protection to a user, event-

level privacy seeks to protect an “event,”—i.e., a particular update. Continual event-

level pan privacy addresses the problem of providing continual outputs over dynamic

data (over time 1 ≤ t ≤ T), that are event-level pan-private with respect to one intru-

sion. As further evidence of the utility of linear sketches (and linear measurements of

data, in general), we notice that along with Lp sketches, our noise adding technique of

Section 6.3.1 can easily be extended to provide a continual event-level pan-private data

structure for computing the number of distinct elements in a dynamic stream by a sim-

ple extension of the results in [35]. They propose a counter that within a bounded time

period of T provides an accurate estimate of the number of ones in a binary stream,

with an additive error term scaled by O(log(T)2.5). A key ingredient in their construc-

tion is the linearity of the binary count operation; since operations on sketches are also

linear, essentially the same construction (replaced by linear sketch updates) works for
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our case.

Other Data Models. We studied the fully dynamic data where items may be in-

serted or deleted. In such applications, at all times, for all i, ai ≥ 0 since one does

not delete an item or copy that was not inserted. Still, there are applications with for

example, distributed data, which may be modeled by dynamic data where some ai’s

may be negative. Our algorithm for distinct count from Section 6.3.1 still works and

provides the same guarantees, but we need new algorithms for estimating cropped

sum and heavy hitter count in such a data model.

Other Queries. We studied a basic statistical query in this chapter. Many richer

queries are of interest, including estimating the entropy of dynamic data, join size

estimation for dynamic relations, graph quantities on dynamic graphs, rank and com-

pressibility of dynamic matrices and so on.

We believe that there is a rich theory of pan-private algorithms that needs to be

developed, inspired by recent work on differential privacy and streaming algorithms,

but already quite distinct as we know from [34] and this work.
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7

Information Theoretic Foundations of Differential Privacy

7.1 Introduction

The application of differential privacy to several problems of private data analysis has

made it clear that the utility of the data for a specific measurement degrades with the

level of privacy. For any analysis to provide a useful notion of utility, it must leak in-

formation about the underlying data. The greater this information leakage, the more

useful the data is, and vice versa. This chapter attempts to understand the precise

information-theoretic conditions that necessitate such a trade-off and examines its re-

lationship to differential privacy. We observe that differentially private mechanisms

arise out of minimizing the information leakage (measured using mutual information)

while trying to maximize utility. The notion of utility is captured by the use of an ab-

stract distortion function dist that measures the distortion between the input and the

output of the mechanism. This is a general mechanism, and can be instantiated ap-

propriately depending on the problem domain. The main contribution of this chapter

is that differentially private mechanisms can be characterized as probability distribu-

tions that achieve this constrained minimization—of minimizing mutual information

between the input and output while trying to minimize the distortion (or maximizing

the utility). Conversely, through such a characterization, we show that for a fixed value

of distortion, the higher the level of differential privacy (ε) a mechanism achieves, the

more information it will leak about the input.
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We also show how differentially private mechanisms arise out of the application of

the principle of maximum entropy, first formulated by Jaynes [63]. We see that among all

probability distributions that constrain the expected distortion to stay within a given

value, the differentially private mechanism corresponds to the distribution that maxi-

mizes the conditional entropy of output given the input. This, to our knowledge, is the

first attempt at providing an information theoretic foundation for differential privacy.

In Section 7.2 we review the appropriate definitions and notions from differential pri-

vacy. In Section 7.2.1 we discuss related work. In Sections 7.3 and 7.4 we present our

main results.

7.2 Definitions and background

Notation:. Symbols in upper case represent random variables and in lower case, the

values the random variables take. Vectors are represented using bold symbols. The

measurable space in which random variables take various values is referred to as the

alphabet and is represented using script symbols. Both the probability mass function

(PMF) and the probability distribution function (PDF) are represented by p. Both p(x)

and pX(x) represent the value of the function p at x, and are used interchangeably

throughout the chapter. The only other symbol used for PMF’s or PDF’s is π to distin-

guish the case of distribution on the output of an algorithm.

Assume a probability distribution P on an alphabet X , X may either be a scalar

or vector space. Let Xi ∈ X be a random variable representing the i-th row of a

database. Then the random variable representing a database of size n, (whose ele-

ments are drawn from X ) is X = (X1, X2 . . . , Xn). x represents the value that the ran-

dom variable X takes, that is the observed database x. Note that the X’s themselves

may be multi-dimensional representing the k attributes of the database.

We reproduce McGregor et al.’s [84] definition of differential privacy in terms of
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probability distributions for convenience. This formulation is more useful for us.

Definition 7.2.1. [84] Let x be a database of length n, drawing each of its elements from an

alphabet X , then an ε-differentially private mechanism on X n is a family of probability

distributions {π(o|x) : x ∈ X n} on a rangeO, such that for every neighboring x and x′, and

for every measurable subset o ⊂ O,

π(o|x) ≤ π(o|x′) exp(ε).

Notice that the distribution (or equivalently) mechanism is parametrized by the

input database x or x′, whichever is relevant.

We now review the exponential mechanism [87] and restate the related privacy the-

orem as introduced in Chapter 2, using the negative of a distortion function dist. This

mechanism can be said to be parametrized by a “distortion function” dist(x, o) that

maps a pair of an input data set x (a vector over some arbitrary real-valued domain)

and candidate output o (again over an arbitrary range O) to a real valued “distortion

score.” Lower valued distortions imply good input-output correspondences. It as-

sumes a base measure π on the range O. For a given input x, the mechanism selects

an output o with exponential bias in favor of low distorting outputs by sampling from

the following exponential distribution [87]:

πε(o) ∝ exp(−ε dist(x, o)) · π(o). (7.1)

Here the πε denotes the dependence of the posterior on π(o|x), on the parameter

ε.

Theorem 7.2.2. [87] The exponential mechanism, when used to select an output o ∈ O, gives

2ε GSdist-differential privacy, where GSdist is the global sensitivity of the distortion function

dist.
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7.2.1 Related work

Some information-theoretic notions and metrics of data privacy exist in the literature.

See [119], [10], [99], for example. Sankar et. al [110] consider the problem of quanti-

fying the privacy risk and utility of a data transformation in an information-theoretic

framework. Rebello-Monedero [103] consider the problem in a similar framework and

define an information-theoretic privacy measure similar to an earlier defined measure

of t-closeness [79]. A connection between information theory and differential privacy

through Quantitative flow has been made by Alvim et al. [4], [2]. Alvim et al. [2] use

the information-theoretic notion of min-entropy for the information leakage of the pri-

vate channel, and show that differential privacy implies a bound on the min-entropy

of such a channel. They also show how differential privacy imposes a bound on the

utility of a randomized mechanism and under certain conditions propose an optimal

randomization mechanism that achieves a certain level of differential privacy. Barthe

and Kopf [9] also develop upper bounds for the leakage of every ε-differentially pri-

vate mechanism. Our work is different from (but related to) theirs in the sense that we

do not aim at finding bounds for the information leakage (or risk) of the differentially-

private mechanisms. Our aim is to understand the information-theoretic foundations

of the framework of differential privacy. Our work is in the spirit of Sankar et al. [110]

and Rebello-Monedero et al. [103] but examines how a risk-distortion tradeoff gives

rise to differentially-private mechanisms. In previous work [88] we examine the infor-

mation theoretic connections of differentially-private learning. This was done in the

specific context of learning, and the general implications were not clear.

7.3 Differentially private mechanisms in a rate-distortion framework

Assume an input space X n, and a range O. For any x ∈ X n, and any output o ∈ O,

a distortion function dist is specified. Consider a probability measure P on X and a
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prior probability π on O .

Given a database x, which is a set of n random independent samples Ẑ = {X1,

. . . Xn} ∈ X n, where each Xi is drawn i.i.d from P, and an output o, the “utility” of o

for x, is given by (the negative of ) a function dist : X n ×O → R.

The expected distortion of a mechanism πO|X(o|x) is given by

Ex∼Pn Eo∼π(o|x) dist(x, o)

Rebollo-Monedero et. al [103] define a privacy risk function to be the mutual infor-

mation between the revealed and the hidden random variables. Similarly, we define a

privacy risk functionR to be the mutual information between the input (the underly-

ing database) and the output of the differentially private mechanism, that is

R = I(X; O).

We know that the mutual information

I(X; O) = H(O)− H(O|X) = H(X)− H(X|O), (7.2)

where H(X) represents the entropy of the random variable of X and H(O|X) the

conditional entropy of O given X. So, the mutual information is the reduction in the

uncertainty about X by knowledge of output O or vice versa (See [24] for example).

Also we have that

R = I(X; O) = E log
π(O|X)p(X)
π(O)p(X)

= E log
π(O|X)
π(O)

. (7.3)

This is equal to the conditional Kullback-Leibler divergence between the poste-

rior and prior distributions denoted by DKL (π(O|X)‖π(O)). If the prior and poste-

rior distributions are the same, then the privacy risk is zero, but that also means that

the distortion may be arbitrarily high. However, we are interested in minimizing the

distortion function associated with the posterior distribution, while minimizing the
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Figure 7.1: Information theoretic model of differentially private channel

privacy risk R. As a result, we are interested in quantifying this risk-distortion trade-

off. Notice that until this point, our risk-distortion framework is formulated only in

information-theoretic terms. We will see how a differentially private mechanism arises

out of this framework.

As in Rebollo-Mondero et al. [103], we are interested in a randomized output, mini-

mizing the privacy risk given a distortion constraint (or vice versa). Unlike their treat-

ment, however, the potential outputs are more general than perturbations of the in-

put database elements to capture differentially private mechanims (both interactive

and noninteractive). The privacy risk-distortion function is defined analogously (as in

Rebollo-Mondero [103]):

R(D) = inf
πO|X : Ex,o dist(x, o) ≤ D

I(X; O) (7.4)

7.3.1 An information channel

In view of this we present an information-theoretic view of differentially private in-

formation channels. Given a random sample X of cardinality n from a probability dis-

tribution P, the mechanism outputs a o from O. This process sets up an information

channel, whose input is a X and output is O. Figure 7.1 shows the channel. pO|X(o|x)

represents the probability that the channel will output o when the secret is x, and from

above we know this is specified by the posterior, πε. Hence, the problem of differential

privacy can be looked at as designing an information channel that minimizes the (reg-

ularized) mutual information between O and X, subject to constraints of minimizing

the distortion.
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7.3.2 Connection to the rate-distortion framework

Rebollo-Mondero et. al relate the risk-distortion function formulated in Equation 7.4

[103] to the well-known rate-distortion problem in information theory first formulated

by Shannon. (See [24], for example). Shannon’s rate-distortion theory is applied in the

context of lossy compression of data. The objective is to construct a compact represen-

tation (a code) of the underlying signal (or data), such that the average distortion of

the signal reconstructed from this compact representation is low. Rate-distortion the-

ory determines the level of expected distortion D, given the desired information rate

R of the code or vice-versa using the rate-distortion function R(D) similar to that in

Equation 7.4 where R is the information rate of the code, when applied to the com-

pression problem. So, the rate-distortion function is defined as the infinimum of the

rates of codes whose distortion is bounded by D.

Using this connection, Rebello-Mondero et al. prove that:

Theorem 7.3.1. [103] The privacy risk-distortion function is a convex and non-increasing

function of D.

The problem is to minimize the privacy risk, defined thus, under the expected

distortion constraint. As a function of the probability density, πO|X(o|x), the problem

is also convex. We can also use Lagrangian multipliers to write Equation 7.4 in an

equivalent unconstrained form. We have the functional:

F [π(o|x)] = 1
ε

I(X; O) + E dist(X, O) (7.5)

for a positive ε. Functional F needs to be minimized among all normalized π(o|x).

We can find the distribution that minimizes this function, by using standard optimiza-

tion techniques. Standard arithmetic manipulation, leads Tishby et al. [117] to prove

the following theorem:
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Theorem 7.3.2. [117] The solution of the variational problem,

∂F
∂π(o|x) = 0,

for normalized distributions π(o|x), is given by the exponential form

πε(o|x) = exp(−ε dist(x, o))
Z(x)

π(o). (7.6)

where Z(x, ε) is a normalization (partition) function. Moreover, the Lagrange multiplier ε is

determined by the value of the expected distortion, D, is positive and satisfies

∂R
∂D

= −ε

Among all the conditional distributions, the one that optimizes the functional in

Equation 7.5 is πε (in Equation 8.2 above). This is our main result, that the distribution

that minimizes the privacy risk, given a distortion constraint is a differentially private

distribution. From examining Equation 7.1 and Theorem 7.2.2 we have

Theorem 7.3.3. The distribution that minimizes Equation 7.4 defines a 2ε GSdist-differentially

private mechanism.

Figure 7.3.2 illustrates the tradeoff. It plots the unconstrained Lagrangian function

L(D,R) = D + 1
εR, which because of the convexity of the risk-distortion function is

also convex. For a given privacy parameter ε, we consider lines of slope -ε. We see

that these lines intersect the curve at various points, these points represent the risk-

distortion tradeoffs for those values. As we should expect, a high privacy-risk implies

a low distortion and vice versa. We see that for a given value of slope -ε, the line

that is tangent to the curve represents the optimal tradeoff point between the risk and

the distortion. The value of the function L(D,R) on these lines is a constant, which

implies that in some way the level of privacy imposes a value on the function L, since

such a line can only intersect the curve in at most two places.
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Figure 7.2: Risk-distortion curve

As ε the privacy parameter decreases, for the same level of distortion, the slope of

the tangent to the curve decreases, (since it is -ε), leading to lower mutual information

R (the y-axis intercept).

It is important to note that the distributions that minimize Equation 7.4 are differe-

ntially private, since they can be expressed as exponential mechanisms. Exponential

distributions that correspond to points on the R − D curve correspond to different

values of ε. However, the converse is not, in general true. That is, all differentially

private mechanisms do not lie on the R − D curve. For mechanisms to lie on the

R − D curve, the prior distribution has to satisfy certain conditions as specified by

Tishby et al. [117]; it would be interesting to examine what this means in the context

of differential privacy.

7.4 Differential privacy arising out of the Maximum Entropy principle or

Minimum Discrimination Information principle

The principle of maximum entropy was proposed by Jaynes [63]. Suppose, a random

variable X takes a discrete set of values xi with probabilities specified by pX(xi), and

we know of constraints on the distribution pX, in the form of expectations of some
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functions of these random variables. Then the principle of maximum entropy states

that of all distributions pX that satisfy the constraints, one should choose the one with

the largest entropy H(X) = −∑i p(xi) log(p(xi).

In the case of a continuous random variable, we apply the principle of minimum

discrimination information [63]. It states that given a prior p on X, a new distribution q

should be chosen so that it as hard as possible to distinguish it from the prior distribu-

tion p, that is the new data should produce as small a gain in information as possible

given by DKL (q‖p).

We show that the application of the principle of Maximum Entropy to the distribu-

tion π(o|x) gives rise to a differentially private mechanism.

When trying to find a distribution πO|X(o|x), we utilize the Maximum Entropy

Principle. Among all distributions p(o|x), we choose the one that maximizes the en-

tropy H(O|X) subject to satisfying the constraint that the expected distortion function

dist(o, x) is bounded by a quantity D. So we have,

maximize H(O|X)

subject to ∑ dist(x, o)p(o|x)p(x) ≤ D.

From Equation 7.2 we observe that minimizing the mutual information as in Equa-

tion 7.4 is equivalent to maximizing the entropy H(O|X) for a fixed prior and hence

H(O) is fixed.

Shannon introduced the concept of equivocation as the conditional entropy of a pri-

vate message given the observable [111]. Sankar et al. [110] use equivocation as a

measure of privacy of their data transformation. Their aim is also to maximize the

average equivocation of the underlying secret sample given the observables.
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Since I(X; O) = H(X|O) − H(X), minimizing I(X; O) is also equivalent to maxi-

mizing the conditional entropy H(X|O), subject to constraints on the expected distor-

tion. Therefore, the exponential distribution πε(o|x) as defined in Equation 8.2 maxi-

mizes the conditional uncertainty about the underlying sample given a constraint on

the distortion function.

Now consider the worst case which differential privacy protects against, that is

given knowledge of the entire database except for one row i, represented as X−i, if we

look at the problem of maximizing the uncertainty of the random variable Xi, we have

maximize H(Xi|O, X−i)

subject to ∑ dist(xi, x−i, o)p(xi|x−i, o)p(x−i, o) ≤ D

Again this is equivalent to minimizing the mutual information I(X, O) when X−i

and O are given.

A note on incorporating auxiliary information:.

Usually, differential privacy provides guarantees on the inference, irrespective of

any side or auxilliary information. This can be easily incorporated in our framework

like Sankar et. al [110] by making all the distributions above conditional on the side

information.

7.5 Conclusion and future work

We presented an information-theoretic foundation for differential privacy, which to

our knowledge is the first such attempt. We formulated differential privacy within the

broader frameworks of rate-distortion and the maximum entropy principle in infor-

mation theory. There are several directions for future work.

One, we can try to apply the risk-distortion framework to examine the generation

of private synthetic data when the underlying data generating distribution pX(x) is
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known. Additionally, one could try to derive bounds on the mutual information in

such cases. Second, we can examine the deployment of this framework to problems

where the distortion function dist is specified. Another direction is to examine the no-

tion of compressive privacy [80] in this rate-distortion framework and derive bounds

for the rate or mutual information of such a mechanism.
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8

Differentially Private Learning and PAC-Bayesian Bounds

8.1 Introduction

In this chapter we examine the most general problem of differentially private learning,

and establish a connection to PAC-Bayesian bounds [14, 83, 126]. To our knowledge,

this is the first such connection. We discover that the so-called Gibbs estimator, that

arises when minimizing PAC-Bayesian bounds, corresponds to the exponential mech-

anism [87], which is the most general formulation of a differentially-private mecha-

nism. This PAC-Bayesian connection to differentially private learning also helps us

place the problem in an information theoretic framework similar to that in Chapter 7

with the distortion function specified by the empiricial risk of a predictor. A connec-

tion between information theory and differential privacy through Quantitative flow has

been made by Alvim et al. [3]. They propose upper and lower bounds on the mutual

information between the input and the differentially private output and the connec-

tions this has to the utility of the algorithm. Our connection to information theory,

on the other hand demonstrates that differentially private learning is really a problem

of minimizing (regularized) mutual information between the data (the sample) and

the predictor, under the constraints of minimizing expected risk of the algorithm, and

through such a treatment relate this problem to PAC-Bayesian learning.

In Section 8.1.1 we review the general problem of differentially private learning.
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In Section 8.2 we introduce the relevant PAC-Bayesian bounds and the Gibbs estima-

tor and establish its connection to differentially private learning. We also use PAC-

Bayesian bounds to interpret how differentially private predictors arise out of balanc-

ing the requirements of minimizing the mutual information between the predictor and

the underlying sample and minimizing the expected risk, with the balance “tilt” being

determined by the privacy level.

8.1.1 Differentially private learning

We use the general framework of statistical prediction/learning, in which there is an

input space X , an (optional) output space Y , and a space of predictors Θ. For any

X ∈ X , Y ∈ Y , and any predictor θ ∈ Θ, a loss quantified by a loss function `θ(X, Y) =

`θ(Z) is incurred, where Z = (X, Y), ∈ Z = X × Y . Consider a probability measure

P on Z .

The true risk of a predictor θ is given by:

R = EZ`θ(Z)

Given a set of n random independent samples Ẑ = {(Xi, Yi), . . . (Xn, Yn)} ∈ Zn,

each one i.i.d, drawn from P, and a predictor θ, the empirical risk of θ on Ẑ, is given

by:

R̂Ẑ( f ) =
1
n

n

∑
i=1

`θ(Xi, Yi)

Given a set of random samples Ẑ = {Ẑ1 . . . Ẑn} from P, our goal is to find a pa-

rameter, θ̂(Ẑ), such that the true expected risk L(θ̂) = EZ`θ̂(Ẑ)(Z) is small, where EZ

is the expectation with respect to P and Z is independent of Ẑ. The predictor may

be deterministic or randomized, which is equivalent to specifying a sample-dependent

posterior probability distribution on Θ. The use of a posterior signifies the fact that the

probability distribution on Θ was arrived at after processing the sample Ẑ.
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The goal of differentially private learning is to learn a predictor θ̂(Ẑ) from the data

Ẑ, that respects the definition of differential privacy. For this purpose any two sample

sets, Ẑ and Ẑ′ are neighbors if they differ in exactly one of the samples, that is for some

i ∈ [n], (Xi, Yi) 6= (X′i , Y′i ), and for every other j ∈ [n], j 6= i, (Xj, Yj) = (X′j, Y′j ). As

introduced in Chapter 2, a mechanism M on Ẑ is a family of probability distributions

π̂λ,Ẑ : Ẑ ∈ Zn on Θ. The mechanism is λ-differentially private if for every neighboring

Ẑ and Ẑ′ and for every measurable subset S ⊂ Θ, we have

π̂λ,Ẑ(S) ≤ exp(λ)π̂
λ,Ẑ′(S)

8.2 PAC-Bayesian bounds and differentially private learning

Since the true risk is defined with respect to the unknown distribution P, one needs to

specify which function of the sample (or training) set, Ẑ, needs to be optimized to find

a suitable predictor. The so-called generalization bounds provide an upper bound on the

true risk of a predictor θ in terms of the empirical risk of θ on the training data Ẑ and

some function of a measure of the complexity of the predictors, that may be output

by the learning algorithm, and a confidence term δ ∈ [0, 1]. Given such a (hopefully

tight) upper bound which can be computed from the performance of a predictor on the

training set, one can compute the predictor that minimizes it. For example, Chaudhuri

et al. [18] use this methodology to compute a differentially private predictor in the case

of machine learning tasks such as logistic regression, support vector machines etc.

In bounds such as the VC-Dimension bounds, (see for example [7]) the data-dep-

endencies only come from the empirical risk of the predictor on the training set. This

data-independence constrains the predictor to come from some restricted class of finite

complexity. This restriction is data-independent, it does not look at the training set Ẑ

and by virtue of this restriction allows the difference between the empirical risk and

the true risk to be bounded uniformly for all predictors in this class. As a result such



136

bounds are often loose. For data-dependent bounds, on the other hand, the difference

between the true risk and the empirical risk depends on the training set Ẑ. In data-

dependent bounds such as PAC-Bayesian bounds possible, prior knowledge about the

unknown data distribution is incorporated into a model that places a prior distribution

on the space of possible predictors, which is updated to a posterior distribution after

observing the data.

We can already see the parallels between PAC-Bayesian bounds and differntially-

private learning. Given a Ẑ, and a prior distribution π on Θ, the goal of differentially

private statistical prediction is to find a randomized estimator specified by a poste-

rior probability measure dπ̂Ẑ(θ) on Θ, that fulfills the privacy property. As in PAC-

Bayesian bounds, the posterior on Θ is learned after processing the training set Ẑ,

even though the goals are different. PAC-Bayesian learning starts out with a prior on

Θ which after getting information from Ẑ is updated to the posterior measure dπ̂Ẑ(θ),

the goal being to choose a “good” randomized predictor. The goal of differential pri-

vacy is to arrive at a “good” randomized predictor that also satisfies the property spec-

ified in Definition 2.2.1.

Catoni [14] quantifies these bounds in the following manner: Let DKL (π‖π̂) rep-

resent the Kullback-Leibler divergence between two distributions.

Theorem 8.2.1. [14] For any posterior π̂ on Θ, any prior π on Θ, any sample set Ẑ, and for

any positive λ, with probability at least 1− δ over the choice of Ẑ, we have:

Eθ∼π̂R(()θ) ≤
1− exp

{
− λEθ∼π̂ R̂Ẑ( f )

n
− DKL (π̂‖π)− log δ

n

}
1− exp

(−λ

n

)
≤ λ

n
[

1−exp(−λ
n )

] [Eθ∼π̂ R̂Ẑ( f ) + DKL(π̂‖π)−log(δ)
λ

]
In expectation we have:
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EẐEθ∼π̂R(()θ) ≤ 1−exp(−n−1EẐ[λ·Eθ∼π̂ R̂Ẑ( f )+DKL(π̂‖π)])
1−exp(−λ

n )

≤ λ

n
[

1−exp(−λ
n )

]EẐ

[
Eθ∼π̂ R̂Ẑ( f ) + DKL(π̂‖π)

λ

]
= λ

n
[

1−exp(−λ
n )

]{EẐ
[
Eθ∼π̂ R̂Ẑ( f )

]
+

EẐ [DKL(π̂‖π)]
λ

}
(8.1)

Notice that, the bounds hold for any π and π̂. Usually, these bounds are optmized

to yield an “optimal” posterior. Also, as noticed by Catoni, 1 ≤ λ

n
(
1− exp(−λ

n )
) ≤[

1− λ

2n

]−1

and hence this factor is close to 1 when λ is much smaller than n (which

will always the case for us).

If the prior π and λ are considered to be fixed, then the goal is to come up with a

posterior π̂ that minimizes this bound. Similar bounds were proved by Zhang [126].

We have the following lemma from Catoni [14] and Zhang [126]:

Lemma 8.2.2. [14, 126] Given a λ > 0 and a prior distribution π on Θ, the posterior π̂ that

minimizes the unbiased empirical upper bound given by Theorem 8.2.1 is the Gibbs posterior
¯

,

denoted as π̂λ:

dπ̂λ =
exp(−λR̂Ẑ( f ))

Eθ∼π exp(−λR̂Ẑ( f ))
dπ (8.2)

We observe that the Gibbs estimator of Lemma 8.2.2 is differentially private, pro-

vided the empirical risk function has a bounded global sensitivity. Applying McSherry

and Talwar’s [87] Theorem 2.3.4, we have the following:

Theorem 8.2.3. Given a sample Ẑ, the mechanism given by the posterior π̂ is 2λ GSR̂Ẑ( f ),

differentially private, where GSR̂Ẑ( f ) is the global sensitivity of the empirical risk.

The fact that the Gibbs estimator is differentially private, establishes a connection

between information theory and differential privacy. Catoni [14] remarks that in Equa-

tion 8.1, the quantity EẐ [DKL (π̂‖π)] is equal to

EẐ{DKL (π̂‖EẐπ̂)}+ DKL (EẐπ̂‖π) .
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The quantity EẐ{DKL (π̂‖EẐπ̂)} is actually the mutual information I(Ẑ, θ) between the

sample Ẑ drawn from P and the parameter θ drawn from π̂ under the joint probabil-

ity distribution Pπ̂. The mutual information between Ẑ and θ can be interpreted as

the average amount of information contained in the predictor θ about the sample Ẑ.

Intuitively, we know that the problem of privacy is a tradeoff between minimizing this

mutual information and learning a (possibly) randomized predictor from the data in

order to make meaningful predictions.

As noticed by Catoni [14], from this equation we see that the expected KL-dive-

rgence between π̂ and π, for any π̂, is equal to the mutual information between the

sample and the parameter when the prior π = EẐπ̂. Hence for a given posterior π̂, the

optimal choice for π, is πOPT = EẐπ̂. However, since finding the bound-optimal EẐπ̂

is not better known than P, there is an additional additive factor of DKL (EẐπ̂‖π). To

illustrate the relationship of differential privacy with mutual information, we assume

that we can find the “optimal prior” in this sense. Conceptually, the argument holds

even if an “’optimal” prior is not assumed, but we make the assumption for clarity of

exposition. Then the Gibbs estimator minimizes the expected empirical risk and the

regularized mutual information between the sample and the predictor:

π̂λ = arg inf
π̂

[
EẐ
[
Eθ∼π̂ R̂Ẑ( f )

]
+

1
λ

I(Ẑ, θ)

]
.

This relationship quantifies the tradeoff that was intuitively understood before. The

privacy parameter λ weighs the effect of the mutual information on this tradeoff. For

a small λ, which corresponds to higher privacy, the mutual information penalizes the

bound more than for a larger λ, biasing it towards solutions that have a smaller mutual

information between the parameter and the sample. This tendency towards picking

distributions that induce smaller I(Ẑ, θ), needs to be traded with picking a π̂ that

also minimizes the expected emprical risk. For a larger λ, the Gibbs estimator is not

considerably biased towards solutions having smaller mutual information. We have:
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Ẑ θ
Information channel
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Figure 8.1: Information theoretic model of differentially private learning

Theorem 8.2.4. The minimization of regularized mutual information (or entropy), regularized

by the privacy parameter, under constraints of minimizing expected empirical risk gives rise to

a differentially private predictor (the Gibbs estimator).

In view of this we present an information-theoretic view of differentially private

learning. Given a random sample Ẑ of cardinality n from a probability distribution P,

we come up with a predictor θ from Θ. This process sets up an information channel,

whose input is a Ẑ and output is θ. The sample Ẑ is the secret and the predictor θ

the ouput of the channel, which should be differentially private. Figure 8.1 shows

the channel. pθ|Ẑ(θ|Ẑ) represents the probability that the channel will output θ when

the secret is Ẑ, and from above we know this is specified by the Gibbs posterior, π̂λ.

Hence, the problem of differentially-private learning can be looked at as designing an

information channel that minimizes the (regularized) mutual information between Ẑ

and θ, subject to constraints of minimizing the expected empirical risk.

8.3 Conclusion and future work

We have established a connection between PAC-Bayesian bounds and differentially-

private learning that helps us interpret differentially-private learning in an informa-

tion theoretic framework. This will hopefully help us both apply PAC-Bayes bounds

to investigate more problems in differentially-private learning as well help us under-

stand the connections between differentially private learning and information theory
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in a deeper manner. This connection could also help us in coming up with generaliza-

tion bounds for various machine learning algorithms. As an example the risk bounds

in Chapter 4 for differentially private Gaussian regression can also be obtained by

the use of PAC-Bayesian bounds. We could also examine the use of upper and lower

bounds on the mutual information between the sample and the predictor and their

implication on the utility of differentially-private learning algorithms similar to Alvim

et al. [3], and compare these bounds.
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9

Conclusion

In this dissertation we carried out a study of the privacy-utility tradeoff in various con-

texts of sensitive data analysis. We chose differential privacy as our metric of privacy,

and studied a range of sensitive data analysis tasks in this model. We proposed dif-

ferentially private algorithms for problems over a range of settings—both interactive

and noninteractive .

These tasks, namely, synthetic graph generation, human mobility modeling, statis-

tical prediction, and computation of online statistics are deployed in a range of real-

world problems. They have important real-world applications and there is a dire need

for providing provably private solutions to these problems. Proposing efficient algo-

rithms for these tasks within a strong model of privacy, is the first step to bridging

the gap between the practice and theory of privacy. We see our work as a step in this

direction.

We also studied the privacy-utility tradeoff in the context of information theory

and showed how a higher level of differential privacy constrains outputs of private

mechanisms to reveal less information about the inputs and vice-versa. We also stud-

ied the equivalence between PAC-Bayesian bounds and differentially private learning.

Hence, we contributed to both an algorithmic and conceptual study of differential

privacy.
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its of predictability in human mobility. Science, 327(5968):1018–1021, February
2010. 58, 59

[114] Latanya Sweeney. Uniqueness of simple demographics in the u.s. population.
In Carnegie Mellon University, School of Computer Science, Data Privacy Lab
White Paper Series LIDAP-WP4, 2000. 11

[115] Latanya Sweeney. k-anonymity: a model for protecting privacy. International
Journal on Uncertainty Fuzziness and Knowledge-Based Systems, 10(5):557–570, Oc-
tober 2002. 12

[116] Christine Task and Christopher Clifton. A guide to differential privacy theory
in social network analysis. In IEEE/ACM International Conference on Advances in
Social Networks Analysis and Mining ’12, pages 411–417. 2012. 25

[117] Naftali Tishby, Fernando C. Pereira, and William Bialek. The information bot-
tleneck method. In Annual Allerton Conference on Communication, Control and
Computing ’99, pages 368–377. 1999. 127, 128, 129

[118] Jaideep Vaidya, Yu Michael Zhu, and Christopher W. Clifton. Privacy Preserving
Data Mining (Advances in Information Security). Springer-Verlag New York, Inc.,
2005. ISBN 0387258868. 83

[119] Poorvi L. Vora. An information-theoretic approach to inference attacks on ran-
dom data perturbation and a related privacy measure. IEEE Transactions on In-
formation Theory, 53(8):2971–2977, August 2007. 124

http://adamdsmith.wordpress.com/2009/09/02/sample-secrecy
http://adamdsmith.wordpress.com/2009/09/02/sample-secrecy


151

[120] James Waldo, Herbert Lin, and Lynette I. Millett. Engaging privacy and information
technology in a digital age. National Academies Press, 2007. ISBN 9780309103923.
1

[121] Stanley L. Warner. Randomized Response: A Survey Technique for Eliminating
Evasive Answer Bias. Journal of the American Statistical Association, 60(309):63+,
March 1965. 10, 106

[122] Larry Wasserman. All of Statistics : A Concise Course in Statistical Inference
(Springer Texts in Statistics). Springer, September 2004. ISBN 0387402721. 34,
93, 96

[123] Hui Zang and Jean Bolot. Anonymization of location data does not work: A
large-scale measurement study. In Mobile Computing and Networking ’11, pages
145–156. 2011. 58

[124] Jun Zhang, Zhenjie Zhang, Xiaokui Xiao, Yin Yang, and Marianne Winslett.
Functional mechanism: Regression analysis under differential privacy. Proceed-
ings of the Very Large DataBases Endowment, 5(11):1364–1375, 2012. 26

[125] Tong Zhang. Learning bounds for kernel regression using effective data dimen-
sionality. Neural Computing, 17(9):2077–2098, September 2005. 84, 97, 98, 99

[126] Tong Zhang. Information-theoretic upper and lower bounds for statistical es-
timation. IEEE Transactions on Information Theory, 52(4):1307–1321, 2006. 133,
137

[127] Elena Zheleva and Lise Getoor. Preserving the privacy of sensitive relationships
in graph data. In Proceedings of the First International Workshop on Privacy, Security,
and Trust in KDD ’07, pages 153–171. 2007. 33

[128] Bin Zhou and Jian Pei. Preserving privacy in social networks against neighbor-
hood attacks. In International Conference on Data Engineering ’08, pages 506–515.
2008. 33


	Titlepage
	Abstract
	Preface
	Acknowledgments
	Dedication
	Table of Contents
	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Overview of thesis contributions
	Differentially private algorithms and the utility-privacy tradeoff
	Differential Privacy and Information theory


	Background and Related Work
	Why quantify and formalize privacy?
	The case for differential privacy
	Advantages

	How to achieve differential privacy?
	Pan-privacy
	Related work in differential privacy and pan-privacy
	Beyond differential privacy


	Differentially Private Estimation of Random Graph Models
	Introduction
	Related work in privacy and anonymization 
	Parametric models and estimation
	Kronecker graph model
	Stochastic Kronecker graph model
	Parameter estimation in the SKG Model
	Moment based estimation of SKGs

	A differentially private graph estimator
	Differential privacy for graphs
	Experimental results

	Conclusions and future work

	Differentially Private Modeling of Human Mobility at Metropolitan Scales
	Introduction
	Related work
	Background
	WHERE
	`39`42`"613A``45`47`"603AHome and `39`42`"613A``45`47`"603AWork
	`39`42`"613A``45`47`"603ACommuteDistance
	`39`42`"613A``45`47`"603ACallsPerDay
	`39`42`"613A``45`47`"603AClassProb and `39`42`"613A``45`47`"603ACallTime
	`39`42`"613A``45`47`"603AHourlyLocs

	Differential privacy for Call Detail Records databases

	Differentially private WHERE
	Pre-processing
	Distributions
	Home and Work
	Commute distance
	Calls per day per user
	Call times per user class
	Hourly calls per location

	DP-WHERE: putting it all together

	Experimental evaluation
	Datasets and methodology
	Earth Mover's Distance
	Daily range

	Conclusions and future work

	Differentially Private Gaussian Regression
	Related Work
	Differential Privacy

	A relaxed exponential mechanism
	Linear Regression
	Gaussian Regression

	Differentially Private Gaussian Regression
	Connections to ridge regression
	A probabilistic upper bound on the global sensitivity of the score function in Gaussian regression
	Computationally efficient exponential mechanism for Bayesian regression

	Risk Bounds
	Risk bounds for differentially private regression

	Experiments
	Conclusions and future work

	Pan-private Algorithms via Statistics on Sketches
	Introduction
	Our contributions

	Background
	Model and notation
	Pan-privacy
	Sketches and stable distributions

	Pan-private algorithms for fully dynamic data
	Distinct count
	A general noise-calibrating technique for sketches.

	Discussion

	Information Theoretic Foundations of Differential Privacy
	Introduction
	Definitions and background
	Related work

	Differentially private mechanisms in a rate-distortion framework
	An information channel
	Connection to the rate-distortion framework

	Differential privacy arising out of the Maximum Entropy principle or Minimum Discrimination Information principle
	Conclusion and future work

	Differentially Private Learning and PAC-Bayesian Bounds
	Introduction
	Differentially private learning

	PAC-Bayesian bounds and differentially private learning
	Conclusion and future work

	Conclusion
	Bibliography

